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Abstract

Key economic variables for pension plan projections are identified. These variables are mod-

eled based on data since 1955. Several time series models are considered including regime

switching models and a simplified Wilkie Model. To investigate the dynamics of different

models, simulations are carried out to project the economic series for the next 50 years using

different starting values. All the models for each series are then compared using different

criteria including economic theories and common actuarial practice. The best model out of

the considered models for each series is selected for pension plan projections. Using actual

starting values, simulation is performed again to project the economic series to model a

sample defined benefit (DB) pension plan and a sample defined contribution (DC) pension

plan. The total employer contributions as a percentage of wages for the DB plan, and the

replacement ratio for the DC plan are studied.

Keywords: Time Series; Parameter Estimation; Simulation; Pension Plan Projection; Em-

ployer Contributions; Replacement Ratio
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“In the darkest times, hope is something you give yourself.

That is the meaning of inner strength.”

— Avartar: The Last Airbender, Nickelodeon, 2007
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Chapter 1

Introduction

1.1 Pension Plan Projections

For a defined contribution (DC) pension plan, the employer contribution as a percentage

of wages is usually fixed. The balance of the pension account at retirement is affected by

the wage increases throughout the career of the employee. It is also heavily affected by the

rates of return earned every year during employment. At retirement, one of the options the

employee has is to purchase an annuity from an insurance company. The amount of pension

converted from the lump sum is based on the prevailing interest rate at retirement. The

replacement ratio, which is the ratio of annual pension amount to annual wages just before

retirement, is influenced by all the economic variables mentioned above.

For a defined benefit (DB) pension plan, the amount of pension payable to employees at

retirement is based on a predetermined formula. Also, auxiliary benefits (bridging benefits,

early retirement subsidy, survivor benefits, and post-retirement indexing) specified in the

plan text provide additional values to the pension. The employer is responsible for fully

funding the pension plan, and therefore, is required to increase the contribution amount

when the pension plan is under-funded. In case of a pension plan surplus, employer is

usually allowed to take a contribution holiday (i.e. contribution is not required). Wage

increases, interest rate for the valuation of the pension plan, and asset returns determine

the funded status of a DB pension plan. Accounting rules in Canada require the employer

to incorporate the pension expense, pension assets, and pension liabilities into the financial

statements. Prevailing interest rates and the outlook of the future assets return at the time

of financial reporting have a significant impact on the pension expense and pension liabilities.

1
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From time to time, employer or employees may want to change the benefit provisions of the

pension plan. Employer usually would like to lower the cost of maintaining the pension

plan while the employees usually would like to increase the value of the pension payable at

retirement. These changes in value, and thus costs and employer contributions, are heavily

influenced by the economic variables.

In order to understand the relationships between the economic variables and the cost

of a pension plan, a projection can be performed. A DB pension plan projection simulates

the amount of pension assets and liabilities in the future. At each valuation date, employer

contributions are revised to reflect the funding status of the pension plan. A DC pension

plan projection simulates the balance of the pension account at retirement, and converts

the balance into an annuity based on the simulated interest rate at retirement.

Traditionally, a pension plan projection uses deterministic variables which have the same

values as in the last valuation. This method only provides a single point estimate of the

changes. However, using stochastic modeling and simulation, a distribution of the results

can be obtained instead. Consequently, the mean and standard deviation can be studied.

Percentiles can also be calculated and are of great importance because they represent the

‘good’ and ‘bad’ scenarios. Another advantage of stochastic modeling is that correlated

series can be modeled together to reflect the correlation between them. Actuaries have

already employed such correlations in determining the values of the valuation variables;

therefore, actuaries are familiar with those relationships, and expect them to be part of the

modeling.

1.2 Economic Variables for Pension Plan Projections

DB pension plan modeling has been investigated in discrete time by Cairns and Parker

(1997), Dufresne (1989), Haberman (1994) as well as in continuous time by Cairns (1996)

with the rates of return modeled as a single stochastic variable. Zhang and Hou (2011)

calculated the optimal investment strategy for a DC pension plan where the wage increase

and inflation are stochastic. Chang and Cheng (2002) used stochastic interest rates and

inflation rates to model a DB pension plan. A stochastic wage index was also calculated as

a function of the inflation rates.

To perform a DB pension plan valuation in Canada, actuaries are required to determine

the values of the economic and demographic variables. For economic variables, the future
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wage increases, and the future return on the assets are needed. Usually, a building block

approach is used to determine the wage increases. That is, future wage increase is determined

as the sum of three components: future expected inflation, future general productivity

increases, and future merit increases. The expected return on the assets is a weighted

average of the returns of each asset class in the target asset mix. Most of the DB pension

assets in Canada include fixed-income, Canadian equity, and global equity in the target asset

mix. For DC pension plans, it is assumed that employee’s pension account includes the same

classes of asset as in the DB pension assets. Since a pension plan projection is a series of

valuations at different points of time in the future, the economic variables needed for pension

plan projection are the same as those needed for a pension plan valuation. Therefore, this

report employs more economic variables than the ones mentioned in the articles above.

In this report, five different economic variables are identified based on the Canadian DB

pension plan valuation requirements. They are:

• inflation;

• wage;

• long-term interest rate;

• Canadian equity return; and

• global equity return.

Note that all the demographic variables are assumed to be deterministic in this report.

1.3 Time Series Models

Box and Jenkins (1976) proposed using the autoregressive integrated moving average

(ARIMA) model to model time series. Since then, a lot of variations of the model have been

created. Box and Jenkins’ model assumed constant innovation variance while Engle (1982)

proposed a model with non-constant variances conditional on the past. Engle’s model is

called autoregressive conditional heteroscedasticity (ARCH) model.

Hamilton (1989) considered a nonlinear stationary process. He proposed a model in

which the trend of a series changes in response to discrete unobserved events. In other

words, the time series follows an ARIMA model but the trend parameter changes when
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the underlying regime changes. The transition of the regime from one state to another is

assumed to follow a Markov chain. This model is generally called a regime switching model.

Since the publication of Hamilton’s paper, regime switching models have been general-

ized to model the effect of the underlying regime on different parameters in ARIMA and

ARCH models (for example Hamilton and Susmel (1994)). In the mean time, Wilkie (1986,

1995) has proposed to model different economic series together through a cascade model.

He first modeled inflation. Then he took advantage of the correlation between economic

series to model them in layers, using one layer to explain another. For example, wages are

modeled using inflation with the error terms following an autoregressive model of order one.

In this report, only the following models are considered:

• white noise model;

• autoregressive model of order one (AR(1));

• autoregressive conditional heteroscedasticity model of order one (ARCH(1));

• regime switching model with two regimes; and

• transfer function (Wilkie model).

For the ARCH(1) model, the series is modeled as an AR(1) model with non-constant

variances based on the previous observation. Also, three versions of the ARCH(1) model

are considered with different parameters in the variance components set to zero. For the

regime switching model, the class of models is also restricted to the AR(1) and ARCH(1)

models only. For the transfer function model, both one lag and two lags are considered.

Only the five models mentioned above are considered because these models are simple

enough to implement the pension plan projections, and flexible enough to do an adequate

job to model the dynamics of the economic variables. Simple models can help actuaries,

employers, and employees understand the dynamics of economic series more easily. This

is an important aspect because stochastic modeling is not common outside the academic

sector, and therefore, simplicity will encourage the usage of time series models.

1.4 Data

With the exception of global equity return, all series identified above can be found in the

CANSIM series of Statistics Canada. Global equity returns were obtained from the Morgan
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Stanley Capital International (MSCI) website.

The data obtained is then studied, and, for some of the series, only the more recent data

is used to estimate the parameters. The main reason for using only recent data is to better

reflect the dynamics of the future by eliminating trends and volatility that only existed in

the past.

1.5 Model Selection

In general, for an AR(1) model, the autocorrelation function (ACF) decreases slowly as the

lag increases, and the partial autocorrelation function (PACF) drops to almost zero after lag

one. If the ACF and PACF display the mentioned patterns, an AR(1) model is considered

an appropriate model. If the ACF is only significant at lag zero and PACF is not significant

at any lag, a white noise model is considered appropriate. See Appendices B.1 and B.2 for

details of the white noise model and the AR(1) model respectively. The graphs of ACF and

PACF are plotted for each series to determine the appropriate model.

Once the white noise or AR(1) model is fitted to the data, the residual process is studied.

In particular, the cross-correlation function between the squared residuals and the series

itself is plotted. If the cross-correlation function is significant at lag minus one, a larger

residual in one period is likely to be followed by a larger observation in the next period. This

suggests that the variance of the innovations might change as the series changes; therefore,

using an ARCH(1) model might be appropriate. As mentioned above, three versions of

the ARCH(1) model are fitted to the data. They are the full model (Appendix B.3), the

non-centered model (Appendix B.4), and the proportional model (Appendix B.5).

For inflation and both equity returns, the next step is to consider regime switching

models. If a certain model is not considered appropriate in the previous step, the regime

switching version of the same model is also not considered in this step. Regime switching

models are generally considered appropriate for economic series as Koop, Milas, and Osborn

(2008) pointed out that “nonlinear time series models in general, and regime-switching

models in particular, have increased our understanding of many issues in economics and

finance”. See Appendices B.7-B.10 for details of the regime switching models. Note that we

have assumed the regime for the equity returns is independent of the regime for inflation.

To model the Canadian equity return and global equity return being influenced by the same

regime, a vector white noise model is used. See Appendix B.6 for details of this model.
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For wages and long-term interest rate, the transfer function model is considered. In

particular, inflation is used as an exogenous variable to explain both series. The error

terms are assumed to follow an AR(1) model. Both transfer function models for two lags

(Appendix B.11) and one lag (Appendix B.12) are considered for comparison purposes. Note

that for wages, this is the model proposed by Wilkie (1995). However, Wilkie proposed a

more complex version for long-term interest rates which involves inflation, two autoregressive

series, and the error term from the dividend yield. This version is not considered in this

report partly because the dividend yield is not modeled.

After all the appropriate models are selected, parameters are estimated using the max-

imum likelihood method. The asymptotic standard deviations of the parameters are also

calculated when the Fisher information matrix is known. The parameter estimates are then

used to project the series for the next 50 years using simulation (100,000 trials each). For

comparison purposes, different starting values are used: one close to the long-term mean,

and one far from the long-term mean. Mean, standard deviation, and percentiles are calcu-

lated based on the projected values. Other information from the simulation is also calculated

if it is useful in identifying the final model.

After all the above steps are done, the models are compared for each series. The final

model is selected based on the parameter estimates, the reasonableness of the dynamics

implied by the model, extreme values in the projection, economic theories, and common

actuarial practices.

The formulas of the log-likelihood function, first and second derivative of the log-

likelihood, and the long-term mean and long-term variance for selected models are sum-

marized in Appendix B.

1.6 Outline

Chapters 2, 3, 4, 5 provide the details of the model selection for inflation, wages, long-term

interest rate, and Canadian equity returns and global equity returns respectively. Chapter

6 provides the methodology of the pension plan projection and two simple illustrations.

Chapter 7 provides a brief conclusion.



Chapter 2

Inflation

2.1 Data

Annual consumer price index (CPI) is available from 1914 to 2010 based on CANSIM series

V41693271. The consumer price index is calculated using the 2005 basket of all items (i.e.

not excluding any items) across Canada.

The force of annual inflation is calculated as follow:

XI(t) = ln
CPI(t)

CPI(t− 1)
. (2.1.1)

In Figure 2.1, the force of annual inflation is significantly more volatile on the left side

of the vertical line (year 1955) than on the right side. Note that Bank of Canada adopted

an inflation-control target in 1991, and revised the target in November 2011. The target

“aims to keep total CPI inflation at the 2 per cent midpoint of a target range of 1 to 3 per

cent over the medium term” (“Inflation-Control Target”, n.d.). As a result, it is reasonable

to believe that big fluctuations in inflation are not expected in the future in Canada, and

consequently, only data from 1955 onwards is used to estimate the parameters.

2.2 Model Selection

2.2.1 AR(1) Model

The ACF and PACF in Figure 2.2 show the pattern of an AR(1) series. As a result, an

AR(1) model is appropriate for the force of annual inflation.

7
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Figure 2.1: Force of Annual Inflation from 1915 to 2010

Figure 2.2: Autocorrelation Function and Partial Autocorrelation Function for the Force of
Annual Inflation
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Figure 2.3: Cross-correlation Function for the Force of Annual Inflation and its Squared
AR(1) Residual

2.2.2 ARCH(1) Models

The parameter estimates for the AR(1) model are summarized in Table 2.3. The residual is

then calculated based on the parameter estimates. Since there is significant cross-correlation

at lag minus one between the series and the squared residual, an ARCH(1) model is consid-

ered. Note that the cross-correlations at lag minus two, zero, and one are also significant.

Although a significant cross-correlation at lag minus two suggests an ARCH(2) model, this

is not within the class of models considered. Significant cross-correlation at lag zero and

one imply the observation at current and next time period, respectively, affect the volatility

at current time period. This is not useful for the model because current and future ob-

servations cannot be used to formulate the current volatility. Only past observations are

available to calculate the volatility in the current period.

Note that only the full ARCH(1) model (ARCH(F)) and the non-centered ARCH(1)

model (ARCH(N)) can be used. Since the first observation is zero, the variance for the sec-

ond observation is zero under the proportional ARCH(1) model (ARCH(P)). Consequently,

the log-likelihood is undefined. However, as stated in Section 2.2.3, the parameter estimates

of the regime switching ARCH(N) model suggest a regime switching ARCH(P) model.

Therefore, the ARCH(P) model is also considered with the first observation removed.
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2.2.3 Regime Switching AR(1) and ARCH(1) Models

For the force of annual inflation, regime switching models are also considered, namely: a

regime switching AR(1) model (RSAR(1)), a regime switching ARCH(F) model

(RSARCH(F)), a regime switching ARCH(N) model (RSARCH(N)), and a regime switching

ARCH(P) model (RSARCH(P)).

The parameter estimates for the RSARCH(F) model (the first column of estimates in

Table 2.1) do not produce a stationary standard deviation. Specifically, regime two is

not a stationary process since α̂2
I2 + γ̂2I2 > 1. Consequently, this model does not produce

meaningful results for pension plan projection. However, a search in the neighbourhood

of the maximum likelihood estimates is performed to find a parameter set that produces a

stationary standard deviation. This new parameter set, inevitably, does not maximize the

log-likelihood function but should be chosen only if the new log-likelihood value is reasonably

close to the maximum value. The standard deviation for regime two is,

SDI2 =
λ̂I2√

1− α̂2
I2 − γ̂2I2

=
0.0096√

1− 0.99592 − 0.33582
=

0.0096√
−0.1046

.

Since changing the value of γ̂I2 decreases the log-likelihood value significantly, the value

of γ̂I2 remains unchanged at 0.3358. As a result, α̂I2 needs to be less than 0.9419 in order

to have a stationary process, and therefore, a step of 0.06 (≈ 0.9959−0.9419) is used. Table

2.1 summarizes different log-likelihood values (LLV) for different parameter sets. The last

column of the table is the parameter set with the highest log-likelihood value among all the

parameter sets that produce a stationary standard deviation. Note that negative values of

γ̂I1 have the same effect as positive values.

For RSARCH(N), both λ̂I1 and λ̂I2 attained the minimum boundary of the maximiza-

tion, which is 0.0001. This suggests that an RSARCH(P) might be appropriate. However, as

mentioned in Section 2.2.2, the first observation has to be removed so that the log-likelihood

function is defined. Note that the maximum likelihood estimates for RSARCH(N) and

RSARCH(P) are different and not comparable because the data used for the maximization

is different.

The estimate of αI1 in RSARCH(P) is essentially zero (1e-8). This implies one regime is

a white noise process while the other regime is an AR(1) process. In order for the model to

be an ARCH(P) model in both regimes, a search is also performed for this set of parameters.
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Table 2.1: Search for Stationary Standard Deviation for RSARCH(F) Model for the Force
of Annual Inflation

µ̂I1 0.0177 0.0177 0.0177 0.0177 0.0177 0.0177 0.0177
α̂I1 0.0360 0.0360 0.0360 0.0960 0.0960 0.0360 0.0360

λ̂I1 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074
γ̂I1 0.0011 -0.0589 0.0611 0.0011 0.0611 0.0011 0.0011

µ̂I2 0.0304 0.0304 0.0304 0.0304 0.0304 0.0304 0.0304
α̂I2 0.9959 0.9959 0.9959 0.9959 0.9959 1.0559 0.9359

λ̂I2 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096
γ̂I2 0.3358 0.3358 0.3358 0.3358 0.3358 0.3358 0.3358

ρ̂I12 0.0412 0.0412 0.0412 0.0412 0.0412 0.0412 0.0412
ρ̂I21 0.0423 0.0423 0.0423 0.0423 0.0423 0.0423 0.0423

LLV 167.5427 167.5090 167.5065 167.4686 167.4360 167.3784 167.3768

A step of 0.1 is used. The final parameter set is chosen based on the highest log-likelihood

value. Table 2.2 summarizes different log-likelihood values for different parameter sets. The

first and last columns of estimates in the table denote the initial and final parameter sets.

Table 2.2: Search for true RSARCH(P) Model for the Force of Annual Inflation

µ̂I1 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178
α̂I1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1000

γ̂I1 0.4995 0.4995 0.5995 0.3995 0.3995 0.3995 0.5995

µ̂I2 0.0361 0.0361 0.0361 0.0361 0.0361 0.0361 0.0361
α̂I2 0.8539 0.8539 0.8539 0.8539 0.8539 0.8539 0.8539
γ̂I2 0.2920 0.2920 0.2920 0.2920 0.2920 0.2920 0.2920

ρ̂I12 0.3786 0.2786 0.3786 0.3786 0.2786 0.4786 0.3786
ρ̂I21 0.0648 0.0648 0.0648 0.0648 0.0648 0.0648 0.0648

LLV 168.1118 168.0157 167.9723 167.8335 167.8075 167.6976 167.3863

2.3 Parameters Estimation

The final parameter estimates as well as the long-term mean (LTM) and long-term standard

deviation (LTSD) are summarized in Tables 2.3 and 2.4. The asymptotic standard error of

the estimation is shown in brackets, if applicable.
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Table 2.3: AR(1)/ARCH(1) Models Parameter Estimates for the Force of Annual Inflation

Model AR(1) ARCH(F) ARCH(N) ARCH(P)

µ̂I 0.0405 (0.0139) 0.0218 (0.0065) 0.0353 (0.0090) 0.0269 (0.0029)
α̂I 0.8624 (0.0652) 0.8794 (0.0906) 0.7984 (0.0852) 0.2429 (0.0891)
σ̂I 0.0141 (0.0013) N/A N/A N/A

λ̂I N/A 0.0097 (0.0014) 0.0080 (0.0000) N/A
γ̂I N/A 0.3570 (0.0933) 0.2613 (0.0463) 0.5850 (0.0563)

LTM 0.0405 0.0218 0.0353 0.0269
LTSD 0.0278 0.0307 0.0225 0.0203

Table 2.4: Regime Switching AR(1)/ARCH(1) Models Parameter Estimates for the Force
of Annual Inflation

Model RSAR(1) RSARCH(F) RSARCH(N) RSARCH(P)

µ̂I1 0.0179 0.0177 0.0184 0.0178
α̂I1 0.0817 0.0360 0.2338 0.1000
σ̂I1 0.0073 N/A N/A N/A

λ̂I1 N/A 0.0074 0.0001 N/A
γ̂I1 N/A 0.0011 0.9026 0.5995

µ̂I2 0.0456 0.0304 0.0366 0.0361
α̂I2 0.8560 0.9359 0.8492 0.8539
σ̂I2 0.0158 N/A N/A N/A

λ̂I2 N/A 0.0096 0.0001 N/A
γ̂I2 N/A 0.3358 0.2951 0.2920

ρ̂I12 0.0356 0.0412 0.4219 0.3786
ρ̂I21 0.0405 0.0423 0.0553 0.0648

LTM 0.0308 0.0240 0.0345 0.0335
LTSD 0.0248 0.0308 0.0312 0.0237

2.4 Time Series Projection

For the force of annual inflation, simulations are only performed for the regime switching

models. Two initial values are used: 3% (close to the long-term mean) and 10% (far from

the long-term mean). Figures 2.4, 2.5, 2.6, and 2.7 show the mean, standard deviation, 5th

and 95th percentiles, and the minimum and maximum of the projection data respectively.
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Figure 2.4: Mean of Projection for the Force of Annual Inflation

Figure 2.5: Standard Deviation of Projection for the Force of Annual Inflation
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Figure 2.6: 5th and 95th Percentiles of Projection for the Force of Annual Inflation

Figure 2.7: Minimum and Maximum of Projection for the Force of Annual Inflation
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2.5 Final Model

Comparing the parameter estimates for the AR(1) and ARCH(1) models, they are very

different. For the ARCH(F) model, the long-term mean µI is also used to determine the

variance of the innovations. As a result, µ̂I is significantly lower because it has to balance

between the mean portion as well as the variance portion of the log-likelihood function

to produce the maximum. Note that the ARCH(F) model can be re-parameterized by

assuming a mean for the variance of the innovations that is different than the long-term

mean; however, given the data is modeled using an AR(1) model, it is difficult to justify

and interpret such model.

The ARCH(P) model also has a significantly lower mean. This is because the local

volatility is very large (as indicated by the large value of γ̂I). Consequently, the larger

observations are viewed as large fluctuations around a lower mean instead of small fluctu-

ations around a higher mean. Moreover, the long-term standard deviation for the force of

annual inflation is between 0.020 and 0.032 for all models. Therefore, in order to preserve

the long-term volatility suggested by the data, the autocorrelation α̂I is also significantly

lower to balance out the large value of γ̂I .

Although there is no graphs or tables to demonstrate the appropriateness of the regime

switching models, regime switching models provide more flexibility to model inflation.

Therefore, all the non-regime switching models are not considered here, unless the parame-

ters estimation and/or dynamics for all the regime switching models are unsatisfactory.

The RSAR(1) model produced reasonable simulation data and dynamics; however, com-

pared to the ARCH models, the RSAR(1) model does not have the feature of conditional

heteroscedasticity, which has been illustrated in Figure 2.3.

For the regime switching models, the mean and the 5th and 95th percentiles look rea-

sonable in Figures 2.4 and 2.6. However, Figure 2.5 shows that the standard deviations

for both RSARCH(F) and RSARCH(N) models do not converge to a long-term value (i.e.

the process is not stationary) even after 50 years. Although the theoretical long-term stan-

dard deviations exist for both models, the local volatility is still large enough to produce

a very large number. This is illustrated in Figure 2.7. The range between the minimum

and the maximum projected value is largest for the RSARCH(F) model, then followed by

the RSARCH(N) model. The extreme values in these two models are so large that they

move the standard deviation away from the stationary value. For pension plan projections,
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Figure 2.8: Extreme Value Ratios of Projection for the Force of Annual Inflation
RSARCH(P) Model

extreme values do not produce meaningful conclusions; therefore, both RSARCH(F) and

RSARCH(N) models should be used with caution when projecting pension plans.

For the RSARCH(P) model, the range of the simulated data is not large enough to pro-

duce a non-stationary series, which is an advantage over the RSARCH(F) and RSARCH(N)

models. To ensure the usability of the RSARCH(P) model, an investigation of the extent of

the extreme values is needed. The extreme values are defined as forces of annual inflation

greater than 20% or smaller than -5%. The extreme value thresholds are not symmetric

because, with these models, deflation is less likely to occur than high inflation. Figure

2.8 shows the extreme value ratio (number of extreme values divided by 100,000) for the

RSARCH(P) model. Out of 100,000 trials, about 0.1% of the time the simulated data is

over 20% or under -5% when the series becomes stationary. For an initial value of 10%,

extreme values, as expected, are more common for the first 10 years. Although extreme

values are not good for pension plan projections, the frequency of its occurrence shown in

Figure 2.8 is acceptable.

In conclusion, RSARCH(P) model is the most appropriate model for the force of annual

inflation for pension plan projections.
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Wage Index

3.1 Data

Average weekly earnings (AWE) are available at Statistics Canada from 1939 to 2010 based

on the following series:

1. Historical Statistics of Canada (second edition) E49 series: This series consists of

annual AWE across Canada from 1939 to 1975. For data between 1939 and 1961, the

1948 Standard Industrial Classification (SIC) was used while data between 1957 and

1975 used the 1960 SIC.

2. CANSIM series V75249: This series consists of monthly AWE across Canada from

1961 to 1985. The annual AWE for each year is calculated as the average of the AWE

for the 12 calendar months. This series uses the 1960 SIC.

3. CANSIM series V252496: This series consists of annual AWE across Canada from

1983 to 2000 with the 1980 SIC.

4. CANSIM series V1796232: This series consists of annual AWE across Canada from

1991 to 2010. This series uses the North American Industry Classification System.

For data between 1961 and 1975, the E49 series and the annual average of the V75249

series produce the same number. Therefore, no adjustment has been made for this period.

When there is a change in classification, the impact of the change in classification is smoothed

out by taking a weighted average of the two data series.

17
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Figure 3.1: Force of Wage Index from 1940 to 2010

The force of annual wage index is calculated as follow:

XW (t) = ln
AWE(t)

AWE(t− 1)
. (3.1.1)

In Figure 3.1, the force of annual wage index went through two periods of large volatility:

one before 1955 and one around 1980. After 1990, the series has small fluctuations around

2%. To be consistent with the inflation data, only data from 1955 onwards (i.e. right of the

vertical line) is used to estimate the parameters.

3.2 Model Selection

3.2.1 AR(1) Model

The ACF and PACF in Figure 3.2 show the pattern of an AR(1) series. As a result, an

AR(1) model is appropriate for the force of annual wage index.

3.2.2 ARCH(1) Model

The parameter estimates for the AR(1) model are summarized in Table 3.1. The residual is

then calculated based on the parameter estimates. Since there is significant cross-correlation
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Figure 3.2: Autocorrelation Function and Partial Autocorrelation Function for the Force of
Annual Wage Index

at lag minus one between the series and the squared residual, an ARCH(1) model is consid-

ered. Note that the cross-correlations at several lags are also significant. However, significant

cross-correlations at lags less than minus one imply higher order ARCH models, which is

not within the class of models considered. Also, significant cross-correlations at future lags

cannot formulate a useful model (as explained in Section 2.2.2). Therefore, the ARCH(F),

ARCH(N), and ARCH(P) models are considered.

3.2.3 Transfer Function Models

For the force of annual wage index, transfer function models are also considered with both

two lags (TF(2)), and one lag (TF(1)). The force of annual inflation is used as an exogenous

variable to explain the force of annual wage index. Figure 3.4 shows the cross-correlation be-

tween the force of annual wage index and the force of annual inflation. The cross-correlation

is significant at lag zero and minus one, which supports the use of TF(2) and TF(1) models.

Note that the cross-correlation is also significant at several other lags; however, significance

at lags less than minus one implies a transfer function model with more than two lags, which

is not considered. Also, significance at lags larger than zero implies that past observations

of the force of annual wage index can be used to explain current observation of the force of
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Figure 3.3: Cross-correlation Function for the Force of Annual Wage Index and its Squared
AR(1) Residual

annual inflation. This is also not in the class of models considered as it suggests a transfer

function model for the force of annual inflation using the force of annual wage index as an

exogenous variable.

Moreover, in reality, when the force of annual wage index is very high, employers will

want to slow down the wage increase. On the other hand, if the force of annual wage index

is very low, the employees will demand bigger wage increase. Therefore, in equilibrium,

there is a pressure for the force of annual wage index returning to some base value. In wage

negotiation, the force of annual inflation will usually be used as the starting point, and

therefore, the force of annual inflation can be considered as some base value. Also, Thury

(1979) pointed out that “wage increases are partly a compensation for past or expected

future inflation”. As a result, the force of inflation can be used to explain part of the

increase in wage index. Note that wage negotiation may not occur every year. Also, the

timing of the negotiation may be different from the release of the inflation data usually.

Therefore, the force of annual inflation in the recent past may affect the current year force

of annual wage index. Consequently, TF(2) and TF(1) models are both possible models for

the force of annual wage index.

As mentioned in Section 1.2, pension actuaries use the building block approach to come

up with the values for future wage increases. Transfer function models can be interpreted
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Figure 3.4: Cross-correlation Function for the Force of Annual Wage Index and the Force
of Annual Inflation

as a building block where the force of annual wage index is equal to a fraction of the

force of annual inflation plus the increase in general productivity and merit modeled as

the innovations. The model assumes that the innovations follow an AR(1) model. This is

reasonable because the general productivity is correlated with the Gross National Product

(GNP) (Özmucur, 2006). Moreover, GNP can be modeled by an autoregressive model

(Cochrane, 1994).

3.3 Parameters Estimation

The final parameter estimates, long-term mean, and long-term standard deviation are sum-

marized in Tables 3.1 and 3.2. The asymptotic standard error of the estimation is shown in

brackets.

The ARCH(P) model does not produce a stationary standard deviation; therefore, it is

not used for the time series projection.
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Table 3.1: AR(1)/ARCH(1) Models Parameter Estimates for the Force of Annual Wage
Index

Model AR(1) ARCH(F) ARCH(N) ARCH(P)

µ̂W 0.0475 (0.0148) 0.0335 (0.0078) 0.0458 (0.0137) 0.0130 (0.0088)
α̂W 0.8586 (0.0691) 0.8978 (0.0862) 0.8519 (0.0784) 0.6970 (0.1949)
σ̂W 0.0156 (0.0015) N/A N/A N/A

λ̂W N/A 0.0112 (0.0016) 0.0116 (0.0000) N/A
γ̂W N/A 0.3501 (0.0890) 0.1820 (0.0413) 1.3297 (0.1268)

LTM 0.0475 0.0335 0.0458 0.0130
LTSD 0.0303 0.0421 0.0291 N/A

Table 3.2: Transfer Function Models Parameter Estimates for the Force of Annual Wage
Index

Model TF(2) TF(1)

β̂W1 0.4816 (0.1228) 0.5779 (0.1408)

β̂W2 0.3458 (0.1215) N/A
µ̂We 0.0155 (0.0089) 0.0248 (0.0088)
α̂We 0.7476 (0.0893) 0.7371 (0.1017)
σ̂We 0.0127 (0.0012) 0.0136 (0.0013)

LTM 0.0432 0.0441
LTSD 0.0265 0.0243

3.4 Time Series Projection

For the force of annual wage index, two initial values are used: 5% (close to the long-

term mean) and 12% (far from the long-term mean). For the transfer function models,

RSARCH(P) model is used for the force of annual inflation. Initial values of 3% and 10%

(from Section 2.4) for the force of annual inflation are paired with initial values of 5% and

12% for the force of annual wage index respectively.

Figures 3.5, 3.6, 3.7, and 3.8 show the mean, standard deviation, 5th and 95th per-

centiles, and the minimum and maximum of the projection data, respectively, for the AR(1)

and ARCH(1) models. Figures 3.9, 3.10, 3.11, and 3.12 show the mean, standard devi-

ation, 5th and 95th percentiles, and the minimum and maximum of the projection data,

respectively, for the transfer function models.
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Figure 3.5: AR(1)/ARCH(1) Models Mean of Projection for the Force of Annual Wage
Index

Figure 3.6: AR(1)/ARCH(1) Models Standard Deviation of Projection for the Force of
Annual Wage Index
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Figure 3.7: AR(1)/ARCH(1) Models 5th and 95th Percentiles of Projection for the Force
of Annual Wage Index

Figure 3.8: AR(1)/ARCH(1) Models Minimum and Maximum of Projection for the Force
of Annual Wage Index
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Figure 3.9: Transfer Function Models Mean of Projection for the Force of Annual Wage
Index

Figure 3.10: Transfer Function Models Standard Deviation of Projection for the Force of
Annual Wage Index
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Figure 3.11: Transfer Function Models 5th and 95th Percentiles of Projection for the Force
of Annual Wage Index

Figure 3.12: Transfer Function Models Minimum and Maximum of Projection for the Force
of Annual Wage Index
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3.5 Final Model

The long-term mean for the ARCH(F) model is significantly lower than the AR(1) and

ARCH(N) models. This may be a problem for pension plan projections because one of the

risks faced by employers in DB pension plans and employees in DC pension plans is wage

increases. For DB pension plan employers, in general, increased wages mean more benefits,

and therefore, costs and contributions. For DC pension plan employees, increased wages

mean more employer contributions but also more retirement income required to maintain

the pre-retirement standard of living. Therefore, using an ARCH(F) model for the force of

annual wage index may underestimate the risk by having a lower long-term mean force of

annual wage index.

In Figure 3.6, the standard deviation for the ARCH(F) model seems to be just about to

converge to the long-term value after 50 years. This is driven by the large extreme values

shown in Figure 3.8. Combined with the lower mean mentioned above, the ARCH(F) model

is not appropriate to model the force of annual wage index for pension plan projections.

The dynamics of the AR(1) and ARCH(N) models are somewhat similar as shown in

Figures 3.5-3.8, except for the fact that the ARCH(N) model has larger variance before

stationarity when the initial value is away from the mean. The ARCH(N) model also

produces slightly larger range of projected values than the AR(1) model. Again, all else

being equal, models with conditional heteroscedasticity are preferable to an AR(1) model

for pension plan projections.

For TF(2) and TF(1) models, the dynamics are very similar, with the exception that the

standard deviation for TF(2) is larger than TF(1). This is due to the underlying force of

annual inflation being modeled by the RSARCH(P) model. Since β̂W2 is larger than twice

of its own standard error, βW2 may be significant and should not be eliminated. Therefore,

the TF(2) model would be more appropriate than the TF(1) model.

Akaike (1974) proposed the Akaike Information Criterion (AIC) to rank competing mod-

els. AIC is defined as

AIC = 2k − 2L (3.5.1)

where k is the number of parameters in the model and L is the maximum log-likelihood

value. The model with the lowest AIC is the most appropriate model among the competing

models. The AIC for the TF(2) and TF(1) models are -314.32 and -308.74 respectively.
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Figure 3.13: Extreme Value Ratios of Projection for the Force of Annual Wage Index TF(2)
Model

This also suggest that the TF(2) model is more appropriate than the TF(1) model.

Figure 3.13 shows the extreme value ratios for the TF(2) model. Extreme value thresh-

olds are defined the same as Section 2.5. The shape of the curve is similar to Figure 2.8

because it is based on the same simulated force of annual inflation. The frequency of ex-

treme values occurrence is somewhat less than the force of annual inflation; therefore, it is

also acceptable for pension plan projections.

In conclusion, the TF(2) model is preferable to all the other models because it is justi-

fiable in a statistical sense. At the same time, this model incorporates the force of annual

inflation, and as a result, the regime switching model chosen for the force of annual inflation.



Chapter 4

Long-term Interest Rate

4.1 Data

The monthly average yield for Government of Canada marketable bonds with maturity

over 10 years is available at Statistics Canada from 1936 to 2010 based on CANSIM series

V122487. The average yield for the last Wednesday of December of each year is used as a

proxy for the annual long-term interest rate.

In Figure 4.1, the annual long-term interest rate was somewhat flat before 1955. It

then increased and reached a maximum around 1980. Since then, the annual long-term

interest rate has been declining. Excluding the pre-1955 data introduces more volatility

into the data, and thus, into the models implied by the estimated parameters. However,

given the recently increased possibility of government bonds defaulting in the United States

and in Europe, more volatility in the Canadian economy can be expected (Simms, 2011).

As a result, it is reasonable to assume similar volatility will continue into the future for the

annual long-term interest rate; and therefore, only data from 1955 onwards (i.e. right of the

vertical line) is used to estimate the parameters.

4.2 Model Selection

4.2.1 AR(1) Model

The ACF and PACF in Figure 4.2 show the pattern of an AR(1) series. As a result, an

AR(1) model is appropriate for the annual long-term interest rate.

29
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Figure 4.1: Annual Long-term Interest Rate from 1936 to 2010

Figure 4.2: Autocorrelation Function and Partial Autocorrelation Function for the Annual
Long-term Interest Rate
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Figure 4.3: Cross-correlation Function for the Annual Long-term Interest Rate and its
Squared AR(1) Residual

4.2.2 ARCH(1) Model

The parameter estimates for the AR(1) model are summarized in Table 4.1. The residual is

then calculated based on the parameter estimates. Since there is significant cross-correlation

at lag minus one between the series and the squared residual in Figure 4.3, an ARCH(1)

model is considered. Again, significance in cross-correlations at other lags is either not

considered or not useful. Therefore, the ARCH(F), ARCH(N), and ARCH(P) models are

considered.

4.2.3 Transfer Function Models

For annual long-term interest rate, transfer function models are also considered with both

two lags and one lag. The force of annual inflation is used as an exogenous variable to

explain the annual long-term interest rate. Figure 4.4 shows the cross-correlation between

the annual long-term interest rate and the force of annual inflation. The cross-correlation is

significant at lag zero and minus one, which supports the use of the TF(2) and TF(1) models.

As in Section 4.2.2, significance of the cross-correlation at other lags is not considered.
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Figure 4.4: Cross-correlation Function for the Annual Long-term Interest Rate and the
Force of Annual Inflation

4.3 Parameters Estimation

The final parameter estimates, long-term mean, and long-term standard deviation are sum-

marized in Tables 4.1 and 4.2. The asymptotic standard error of the estimation is shown in

brackets.

Table 4.1: AR(1)/ARCH(1) Models Parameter Estimates for the Annual Long-term Interest
Rate

Model AR(1) ARCH(F) ARCH(N) ARCH(P)

µ̂L 0.0730 (0.0186) 0.0421 (0.0134) 0.0739 (0.0256) 0.0739 (0.0256)
α̂L 0.9269 (0.0502) 0.9976 (0.0429) 0.9488 (0.0483) 0.9488 (0.0483)
σ̂L 0.0101 (0.0010) N/A N/A N/A

λ̂L N/A 0.0053 (0.0010) 0.0000 (0.0000) N/A
γ̂L N/A 0.2113 (0.0705) 0.1230 (0.0117) 0.1230 (0.0117)

LTM 0.0730 0.0421 0.0739 0.0739
LTSD 0.0269 N/A 0.0312 0.0312

The ARCH(F) model does not produce a stationary standard deviation, and the ARCH(N)

model is essentially the same as the ARCH(P) model. Therefore, neither model is used for

the time series projection.
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Table 4.2: Transfer Function Models Parameter Estimates for the Annual Long-term Interest
Rate

Model TF(2) TF(1)

β̂L1 0.1269 (0.0951) 0.1327 (0.0966)

β̂L2 0.1728 (0.0970) N/A
µ̂Le 0.0613 (0.0129) 0.0674 (0.0162)
α̂Le 0.8893 (0.0668) 0.9147 (0.0563)
σ̂Le 0.0096 (0.0009) 0.0099 (0.0009)

LTM 0.0713 0.0719
LTSD 0.0221 0.0248

4.4 Time Series Projection

For the annual long-term interest rate, two initial values are used: 7% (close to the long-

term mean) and 14% (far from the long-term mean). For the transfer function models, the

RSARCH(P) model is used for the force of annual inflation. Initial values of 3% and 10%

(from Section 2.4) for the force of annual inflation are paired with initial values of 7% and

14% for the annual long-term interest rate respectively.

Figures 4.5, 4,6, 4.7, and 4.8 show the mean, standard deviation, 5th and 95th per-

centiles, and the minimum and maximum of the projection data, respectively, for the AR(1)

and ARCH(1) models. Figures 4.9, 4.10, 4.11, and 4.12 show the mean, standard devi-

ation, 5th and 95th percentiles, and the minimum and maximum of the projection data,

respectively, for the transfer function models.

4.5 Final Model

The AR(1) and ARCH(P) models have similar dynamics as illustrated in Figures 4.5-4.8

with some exceptions. The ARCH(P) model has larger standard deviation than the AR(1)

model regardless of the initial value. Both models have high autocorrelation factor α̂L, and

this high value produces a unique feature for the ARCH(P) model. The minimum values

simulated using the ARCH(P) model do not go below zero as seen in Figure 4.8. Negative

interest rates rarely occur in reality because interest rates are monitored by the Government

(“Key Interest Rate”, n.d.) and negative interest rates are not good for the economy. Also,

for pension plan projections, negative interest rates imply setting aside a larger amount

now in order to pay a smaller amount in the future. This goes against logic because, at
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Figure 4.5: AR(1)/ARCH(1) Models Mean of Projection for the Annual Long-term Interest
Rate

Figure 4.6: AR(1)/ARCH(1) Models Standard Deviation of Projection for the Annual Long-
term Interest Rate
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Figure 4.7: AR(1)/ARCH(1) Models 5th and 95th Percentiles of Projection for the Annual
Long-term Interest Rate

Figure 4.8: AR(1)/ARCH(1) Models Minimum and Maximum of Projection for the Annual
Long-term Interest Rate
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Figure 4.9: Transfer Function Models Mean of Projection for the Annual Long-term Interest
Rate

Figure 4.10: Transfer Function Models Standard Deviation of Projection for the Annual
Long-term Interest Rate
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Figure 4.11: Transfer Function Models 5th and 95th Percentiles of Projection for the Annual
Long-term Interest Rate

Figure 4.12: Transfer Function Models Minimum and Maximum of Projection for the Annual
Long-term Interest Rate
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Figure 4.13: Extreme Value Ratios of Projection for the Annual Long-term Interest Rate
TF(2) Model

the least, setting aside an amount equal to the amount to be paid in the future should be

enough. Therefore, negative interest rates may not produce meaningful results for pension

plan projections.

Neither β̂L1 nor β̂L2 is greater than twice of its own standard error. However, this does

not necessarily imply the transfer function models are not appropriate. First, Figure 4.4

shows that the annual long-term interest rate and the force of annual inflation have sig-

nificant cross-correlations at different lags. Second, the parameters may not be normally

distributed because both β̂L1 and β̂L2 should be positive as indicated by the positive cor-

relation in Figure 4.4. Also, standard errors calculated using Fisher information matrix

assume the parameters have asymptotic normal distribution. Since only 56 observations are

used to estimate the parameters, the asymptotic behaviour may not be achieved. Third, the

correlation between the annual long-term interest rate and the force of annual inflation is a

combination of β̂L1, β̂L2, and α̂Le. Since α̂Le is very large, it is reasonable to have both β̂L1

and β̂L2 relatively small so that the cross-correlation implied by the parameters estimates

is consistent with the data. In this report, transfer function models are considered to be

reasonable models for the annual long-term interest rates.

Figures 4.9-4.12 show the comparison between the TF(2) and TF(1) models. The most

significant difference between the two models is that, while the TF(1) model has a slightly
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higher long-term standard deviation, the TF(2) model has generally larger range than the

TF(1) model and is more sensitive to big changes in the underlying force of annual inflation.

The AIC for the TF(2) and TF(1) models are -344.45 and -343.28 respectively. Therefore,

the TF(2) model is again preferable to the TF(1) model.

Note that the TF(2) model does produce negative interest rates; therefore, the investi-

gation of the extreme values is important for annual long-term interest rate. In Figure 4.13,

extreme value thresholds are defined as annual long-term interest rate greater than 20% or

smaller than 0%. The extreme value thresholds are tighter than those in Sections 2.5 and

3.5 because the extent of negative interest rates needs to be understood. The frequency of

occurrence of extreme values is very low as illustrated in Figure 4.13. In conclusion, the

TF(2) model is the preferred model for annual long-term interest rate.



Chapter 5

Equity Return

5.1 Data

For annual Canadian equity return (CER), the monthly S&P/TSX composite index (for-

merly TSE 300 index) is available at Statistics Canada from 1952 to 2010 based on CANSIM

series V7668. This index includes the equity prices of the largest companies on the Toronto

Stock Exchange. The Canadian equity index (CEI) in December for each year, t, is used to

calculate the force of annual CER, XC , using the following equation:

XC(t) = ln
CEI(t)

CEI(t− 1)
. (5.1.1)

Figure 5.1 shows a plot of the force of annual CER.

For annual global equity return (GER), the annual MSCI World index, as a proxy

for the global equity index (GEI), is available at the website of Morgan Stanley Capital

International (MSCI) from 1969 to 2010. This index includes 24 developed market country

indices. The force of annual GER, XG, is calculated using the following equation:

XG(t) = ln
GEI(t)

GEI(t− 1)
. (5.1.2)

Figure 5.2 shows a plot of the force of annual GER.
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Figure 5.1: Force of Annual Canadian Equity Return from 1953 to 2010

Figure 5.2: Force of Annual Global Equity Return from 1970 to 2010
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Figure 5.3: Autocorrelation Function and Partial Autocorrelation Function for the Force of
Annual Canadian Equity Return

5.2 Model Selection

5.2.1 White Noise Model

The ACF and PACF in Figures 5.3 and 5.4 both show the pattern of a white noise series.

As a result, a white noise (WN) model is appropriate for both the forces of annual CER

and GER.

5.2.2 ARCH(1) Model

The parameter estimates for the WN model are summarized in Table 5.1. The resid-

ual is then calculated based on the parameter estimates. Figures 5.5 and 5.6 show the

cross-correlation of the series with its squared residual. Since there is no significant cross-

correlation other than at lag zero for both series, ARCH models are not considered.
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Figure 5.4: Autocorrelation Function and Partial Autocorrelation Function for the Force of
Annual Global Equity Return

Figure 5.5: Cross-correlation Function for the Force of Annual Canadian Equity Return and
its Squared WN Residual
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Figure 5.6: Cross-correlation Function for the Force of Annual Global Equity Return and
its Squared WN Residual

5.2.3 Regime Switching Vector White Noise Model

For both of the forces of annual CER and GER, regime switching models are considered.

The regime for the forces of annual equity return is assumed to be independent of the

regime for the force of annual inflation (see Section 2.2.3). On the other hand, the regime

for both of the forces of annual CER and GER are assumed to be the same. Therefore,

a regime switching vector white noise (RSWN) model is considered. Figure 5.7 shows the

cross-correlation between the two series being significant at lag zero, which supports the

idea of a vector regime switching model.

Note that, for this model, the only correlation between the force of annual CER and the

force of annual GER is through the regime. That is, the innovations of the two series are

assumed to be independent. Also, in order to formulate a vector model, the same number

of observations are required for both series. Therefore, only data from 1970 to 2010 is used

for both series to estimate the parameters of the RSWN model.
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Figure 5.7: Cross-correlation Function for the Force of Annual Canadian Equity Return and
the Force of Annual Global Equity Return

5.3 Parameters Estimation

The final parameter estimates are summarized in Tables 5.1 and 5.2 along with the asymp-

totic standard error of the estimation (shown in brackets), the long-term mean, and the

long-term standard deviation.

Table 5.1: WN Model Parameter Estimates for the Forces of Annual CER and GER

Series CER GER

µ̂ 0.0625 (0.0211) 0.0535 (0.0277)
σ̂ 0.1609 (0.0149) 0.1771 (0.0196)

LTM 0.0625 0.0535
LTSD 0.1609 0.1771

5.4 Time Series Projection

For the forces of annual CER and GER, the last observation is used as the initial value

because a white noise model is used, and therefore, the initial value does not change the

dynamics of the model. Figures 5.8-5.11 show the mean, standard deviation, 5th and 95th

percentiles, the minimum and maximum, and the distribution of the accumulated rates of
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Table 5.2: RSWN Model Parameter Estimates for the the Forces of Annual CER and GER

Series CER GER

µ̂1 -0.0991 -0.1329
σ̂1 0.1420 0.1618
µ̂2 0.1545 0.1589
σ̂2 0.0893 0.0597

ρ̂12 0.7385
ρ̂21 0.4155

LTM 0.0632 0.0538
LTSD 0.1649 0.1772

return at year 50 of the projection data for the WN and RSWN models.

5.5 Final Model

For both forces of annual CER and GER, the WN and RSWN models have essentially the

same long-term mean and standard deviation. The slight difference in standard deviation

for the force of annual CER is due to using different data to estimate the parameters of the

WN and RSWN models.

Hardy (2003) pointed out that the density function for the RSWN model has a fatter

left tail than the one for the WN model in the long term. The 5th and 95th percentiles

correspond to a smaller return for the RSWN model than the WN model as shown in Figure

5.10. Also, in Figure 5.11, although the minimum value is not that different between the two

models, the maximum value is clearly shifted downwards for the RSWN model. Moreover,

Figure 5.12 suggests that the probability of the accumulated rates of return at year 50 being

less than 5 is greater for the RSWN model. All three figures confirmed Hardy’s theory.

Fatter left tail is an important feature for the RSWN model in pension plan projections

because it highlights the risk faced by both employers and employees. In a low return

environment, employers in DB pension plans are more likely to contribute large amounts,

which increases their financial risk. At the same time, employees in DC pension plans are

more likely to accumulate insufficient assets to retire and maintain a similar standard of

living after retirement. The RSWN model demonstrates that the path of the rate of return

can affect the accumulated rates of return significantly, even though the mean and standard

deviation of the individual annual rate of return are the same as the WN model every year.
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Figure 5.8: WN/RSWN Models Mean of Projection for the Forces of Annual Canadian
Equity Return and Global Equity Return

Figure 5.9: WN/RSWN Models Standard Deviation of Projection for the Forces of Annual
Canadian Equity Return and Global Equity Return
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Figure 5.10: WN/RSWN Models 5th and 95th Percentiles of Projection for the Forces of
Annual Canadian Equity Return and Global Equity Return

Figure 5.11: WN/RSWN Models Minimum and Maximum of Projection for the Forces of
Annual Canadian Equity Return and Global Equity Return
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Figure 5.12: WN/RSWN Models Distribution of Accumulated Rates of Return at Year 50
of Projection for the Forces of Annual Canadian Equity Return and Global Equity Return

In conclusion, the RSWN model is preferable to the WN model for pension plan projec-

tions. Note that extreme values analysis is not performed for equity returns because large

increases or decreases in stock prices are not rare. Also, there are no effective mechanisms

in the market or from the Government to prevent large fluctuations in stock prices.



Chapter 6

Pension Plan Projections

6.1 Methodology

For the projections of the DB pension plan and DC pension plan, 100,000 trials are simulated

using the final models selected for inflation, wage index, long-term interest rate, Canadian

equity return, and global equity return in the previous chapters.

6.1.1 Defined Benefit Pension Plan

A DB pension plan projection is essentially a series of valuations at each valuation year (this

ranges from one year to three years) in the future. The common practice for consulting

actuaries performing pension plan projections is to use deterministic variables based on

the values of the valuation variables. In other words, the same value is used for every

future valuation. To investigate sensitivity of an economic variable, the value is changed

deterministically to see how the results change. That is, the change is only from one single

number to another single number. For example, if the discount rate used for the last

valuation is 5% per year, the discount rate for the projection is also 5%. To investigate the

impact of discount rate being lower, the projection is performed again using, say, a 4.5%

discount rate. Then the results between two projections are compared to determine the

impact. This method does not consider the stochastic nature of economic series.

In this report, the steps of the pension plan projection are the same as above with

the exception that the economic variables are now stochastic. This means the economic

series are allowed to change in the future; however, the simulated values for the economic

50
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variables are used for future valuations as if they are deterministic as required by the pension

legislations in Canada. For example, if the discount rate in year one is 5%, the valuation

performed at the end of year one uses a 5% discount rate. In year two, if the discount rate

changes to 5.5%, the discount rate for valuation performed at the end of year two is 5.5%.

For illustrations, this report:

• studies a pension plan with only one member. A typical pension plan has at least 10

members with different demographic profiles;

• assumes the member retires at age 60. A typical valuation also assumes termination

of employment, death, and retirement at different ages with different probabilities;

• ignores the post-retirement period;

• uses the total unit credit (TUC) funding method instead of the projected unit credit

(PUC) funding method as required by the pension legislations. For details of TUC

and PUC, see Aitken (1996);

• sets the discount rate at the prevailing simulated interest rate only. In reality, the

discount rate should be the expected future return on the pension assets adjusted by

the additional expected return from active management, investment expenses, and a

margin for adverse deviation;

• performs going-concern valuations only; pension legislations also require solvency val-

uations;

• assumes that the contribution to fund the accumulation of the benefit (called normal

cost) continues regardless of the going-concern surplus level. However, in Canada, the

Income Tax Act prevents the employer from contributing when the pension assets are

too large compared to the pension liabilities;

• amortizes any going-concern deficit over three years, and the amount to be amortized

in the next valuation is recalculated solely based on the new funded status. In real-

ity, contributions for the deficit (called special payments) are determined based on a

schedule where each deficit has its own contributions. Also, the amortization period

for a going-concern deficit is typically 15 years; and
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• performs a valuation every year. Depending on the jurisdiction in Canada, valuation

may be required to be performed every one to three years. The frequency of valuation

also depends on the funded status at the last valuation.

Mortality rates are assumed to follow the 1994 Uninsured Pensioners Mortality Table

(UP94). This is a fairly common mortality table for pension plan valuations. In recent years,

there has been an expectation to project the mortality rates using AA scale. Therefore, the

mortality rates used for the pension plan projection follow UP94 projected to year 2020

(denoted UP94@2020). The original UP94 rates and AA scale are summarized in Appendix

A. Only the rates from age 60 and onwards are shown because it is assumed that the member

retires at age 60 and there are no pre-retirement deaths.

6.1.2 Defined Contribution Pension Plan

There is no legislation requiring a valuation or a projection for DC pension plans in Canada.

However, most of the DC pension plan administration companies provide some sort of

planning tool which involves simple deterministic projection of the account balance.

In this report, the account balance is projected forward to retirement using stochastic

returns (as a weighted average of long-term interest rate, Canadian equity return, and global

equity return). The account balance is then converted into a pension using the prevailing

interest rate at retirement. The replacement ratio is calculated as the ratio of the pension

amount to the pre-retirement wages. Replacement ratio is a better measure of benefit

adequacy than just the account balance at retirement because it is a measure of standard

of living.

For illustrations, this report:

• assumes the asset mix is the same for each year. However, some financial institutions

offer life-cycle products which increase the weighting of fixed-income as the member

grows older;

• uses the long-term interest rate to calculate the pension. However, this is not always

the case for insurance companies;

• uses the UP94@2020 mortality rates. In reality, insurance companies usually have

their own mortality tables which can be significantly different than the UP94 mortality

table; and
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• ignores any loading added to the purchase price of an annuity. In reality, the price

charged by the insurance companies includes a loading for expenses and profit.

6.1.3 Demographic Variables and Plan Provisions

Table 6.1 summarizes the demographic variables and the plan provisions for the pension plan

projections in this report. Note that demographic variables are assumed to be deterministic.

Table 6.1: Demographic variables and Plan Provisions of the Sample DB and DC Pension
Plans

Plan DB DC

Hire Age 30 30

Sex Male Male

Starting Salary 50,000 50,000

Asset Mix
- Fixed-income 40% 40%
- Canadian Equity 30% 30%
- Global Equity 30% 30%

Retirement Age 60 60

Termination of Employment Nil N/A

Pre-retirement Death Nil N/A

Post-retirement Death UP94@2020 UP94@2020

Plan Provisions 2% of final wages times Employer contributes
years of service 10% of wages annually

6.2 Projection Results

6.2.1 Defined Benefit Pension Plan

Figures 6.1-6.6 show the mean, standard deviation, 5th and 95th percentiles, and mini-

mum and maximum for surplus, employer contributions, and employer contributions as a

percentage of wages.

6.2.2 Defined Contribution Pension Plan

Figures 6.7-6.9 show the histogram of account balance at retirement, pension purchased

using the account balance, and the replacement ratio. Table 6.2 summarizes the statistics

of the distribution of the three indicator items above.
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Figure 6.1: Mean and Standard Deviation of Projected DB Surplus

Figure 6.2: 5th and 95th Percentiles and Minimum and Maximum of Projected DB Surplus
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Figure 6.3: Mean and Standard Deviation of Projected DB Employer Contribution

Figure 6.4: 5th and 95th Percentiles and Minimum and Maximum of Projected DB Employer
Contribution



CHAPTER 6. PENSION PLAN PROJECTIONS 56

Figure 6.5: Mean and Standard Deviation of Projected DB Employer Contribution Percent-
age

Figure 6.6: 5th and 95th Percentiles and Minimum and Maximum of Projected DB Employer
Contribution Percentage
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Figure 6.7: Histogram of Projected DC Account Balance at Retirement

Figure 6.8: Histogram of Projected Annual Pension Amount at Retirement Purchased using
DC Account Balance
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Figure 6.9: Histogram of Projected DC Replacement Ratio

6.3 Comments

6.3.1 Defined Benefit Pension Plan

The standard deviation of surplus increases over 30 years of the employee’s career. This is

expected because the randomness of the economic series gets compounded every year. The

increase in standard deviation can also be observed in Figure 6.2 where the gap between the

5th and 95th percentiles increases over time. Notice that the percentiles are not symmetric

around zero. The 95th percentile is larger in magnitude than the 5th percentile. However,

minimum and maximum is the opposite where minimum values tend to be larger in magni-

tude than maximum values. This suggests a skewed distribution for surplus. Interestingly,

the mean of surplus increases for 22 years and then decreases to almost zero at year 30.

The mean of the employer contributions goes up every year. This is expected because,

apart from the randomness, normal costs go up every year as the member ages. Also, TUC

does not take into account the future wage increases. Moreover, special payments can only

be positive. That is, the surplus accumulated in the assets cannot be used to pay for the

normal cost while the deficit needs to be amortized in the form of special payment. The non-

symmetry of the employer contributions clearly shows in Figure 6.4 where the 5th percentile

and minimum value are close to the normal costs and the 95th percentile and maximum



CHAPTER 6. PENSION PLAN PROJECTIONS 59

Table 6.2: Statistics of Projected Data for DC Indicator Items

Indicator Account Pension Replacement
Items Balance Amount Ratio

Mean 700,458 61,391 37.46%
SD 244,445 26,195 15.65%

Minimum 167,385 6,672 5.30%
5th Percentile 384,910 28,993 17.77%
25th Percentile 530,867 43,257 26.39%
Median 662,796 56,800 34.60%
75th Percentile 828,207 74,337 45.34%
95th Percentile 1,139,557 108,813 66.60%
Maximum 11,750,390 1,134,736 193.26%

values are unbounded.

In Figures 6.5 and 6.6, the graphs of the statistics of the employer contribution as a

percentage of wages are similar to the ones for employer contribution. The only difference

between these two items is the additional step of dividing the employer contributions by

wages. This step has offset some of the randomness introduced by the wages as illustrated

in Figure 6.6 where the 95th percentile of the contribution percentage did not grow as

fast as the 95th percentile of the contribution. Wages determine the pension amount and

in turn the pension liabilities. The special payment is determined by the surplus which is

simply the difference between pension assets and liabilities. Therefore, fluctuations in wages

affect the distribution of the employer contributions. However, by dividing the employer

contributions by wages, part of the effect of fluctuations is canceled out in the employer

contribution percentage.

Employers in DB pension plans are most interested in employer contributions as a per-

centage of wages. A mean contribution percentage of over 20% of wages is quite high. On

top of that, 5% of the time the employer has to contribute 100% of wages, and, in the worst

case scenario, close to 1000% of wages. This simple projection highlights the high volatility

of the employer contributions, which is a common belief among employers.

6.3.2 Defined Contribution Pension Plan

The distribution of the account balance at retirement is very skewed as illustrated in Figure

6.7 and in Table 6.2. Notice the account balance is always positive among the 100,000 trials.

This is because the employer contributes into the account every year. Also, the accumulated
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amount is positively skewed as shown in Figure 5.12.

The distribution of the pension purchased by the account balance has a very similar

shape as the distribution of the account balance. This is because the pension purchased is

the account balance divided by a life annuity factor calculated using the long-term interest

rate at retirement. The minimum pension amount is about $6,700. But this amount does

not provide information regarding the standard of living without comparing it to the wages

just before retirement.

The distribution of the replacement ratio is still very skewed but less skewed than the

distribution of the pension purchased. Again, similar to the employer contribution per-

centage in Section 6.3.1, dividing the pension by the wages eliminates some volatility in

the replacement ratios. Also note that the path of the wage increases affects the account

balance, all else being equal, because larger increases in the earlier stage of the career means

more time for the larger contributions to earn interests to retirement.

DC pension plan employees are most interested in the replacement ratio. In general, a

retiree needs over 70% replacement ratio to maintain the pre-retirement living standards

(Aon Consulting, 2008). Diamond (1977) suggested that a replacement ratio of 2/3 from

a pension plan is adequate. Therefore, out of the 70%, more than 60% should come from

employer-sponsored pension plan, government pension plan, and social security. As gov-

ernment pension plan and social security are generally not substantial, the majority of the

60% should come from employer-sponsored pension plan. The mean replacement ratio is

37.46% which is significantly below 60%. The employees have to be in almost the 95th

percentile to get the 60% replacement ratio. Moreover, the worst case scenario is as low as

5.30% of pre-retirement wages. Obviously, this poses a problem to maintain not only the

pre-retirement living standards but also the minimum living standards. In addition, the

impact of inflation has not been taken into account. The pension amount may be adequate

at retirement; however, the purchasing power of the pension amount may not be adequate

10 years into retirement if the inflation has been high since retirement.

This simple DC pension plan projection highlights the inadequacy of retirement income

for employees participating in DC pension plans. As employees have not yet retired in a

large group (like the baby boomers) from DC pension plans, the fact that DC pension plan

does not provide enough income for retirement has not been felt by the society yet. In 10

years times, government and citizens may rethink the vehicles to provide retirement income

that balance the shortcomings of both DB pension plans and DC pension plans.



Chapter 7

Conclusions

This project focused on key economic variables for pension plan projections. A class of time

series models was selected to model the economic variables. After parameter estimation,

simulations were performed with different initial values. Then the final model for each

variable is selected using multiple criteria: parameter estimates, statistics of the simulated

data for the next 50 years, dynamics of the model, extreme values, economic theories, and

common actuarial practices. The final models are:

• inflation: regime switching ARCH(1) proportional model;

• wage index: transfer function of lag two with inflation as an exogenous variable;

• long-term interest rate: transfer function of lag two with inflation as an exogenous

variable; and

• Canadian equity return and global equity return: regime switching vector white noise

model.

The selected final models and parameter estimates are used to simulate a sample DB

pension plan and a sample DC pension plan, and brief comments were made for each projec-

tion. The projection highlights the high volatility of employer contributions in DB pension

plans and the inadequacy of retirement income in DC pension plans.

In future research, several areas can be investigated. For example, consider

• the criteria for the parameters so that the simulated data is always positive for the

ARCH(P) model similar to the one for Cox-Ingersoll-Ross model (Cox, Ingersoll &

61
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Ross, 1985);

• statistical tests to rank the different time series models including regime switching

models and transfer function models;

• the use of Bayesian model averaging instead of selecting a single model for each vari-

able;

• the use of stochastic demographic variables;

• a more realistic approach to DB pension plan projection;

• an expansion of the asset classes in the asset mix (as well as more time series models

to model the new asset classes);

• an expansion of the types of pension plans to include hybrid pension plans (i.e. pension

plans with both DB and DC components);

• accounting valuations including the calculation of pension expenses;

• the impact of changes in asset mix;

• the impact of changes in benefit provisions of a DB pension plan; and

• the impact of changes in the employer contribution rate of a DC pension plan.



Appendix A

Mortality Table

The males mortality rates and AA projection scales for the 1994 Uninsured Pensioner Mor-

tality Table are summarized in the following table.

Source: Society of Actuaries UP-94 Task Force. (1995). The 1994 uninsured pensioner

mortality table. Transactions of the Society of Actuaries. 47.

63
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Age Rate AA Scale Age Rate AA Scale

60 0.008576 0.016 90 0.164442 0.004
61 0.009663 0.015 91 0.179849 0.004
62 0.010911 0.015 92 0.196001 0.003
63 0.012335 0.014 93 0.213325 0.003
64 0.013914 0.014 94 0.231936 0.003

65 0.015629 0.014 95 0.251189 0.002
66 0.017462 0.013 96 0.270441 0.002
67 0.019391 0.013 97 0.289048 0.002
68 0.021354 0.014 98 0.306750 0.001
69 0.023364 0.014 99 0.323976 0.001

70 0.025516 0.015 100 0.341116 0.001
71 0.027905 0.015 101 0.358560 0.000
72 0.030625 0.015 102 0.376699 0.000
73 0.033549 0.015 103 0.396884 0.000
74 0.036614 0.015 104 0.418855 0.000

75 0.040012 0.014 105 0.440585 0.000
76 0.043933 0.014 106 0.460043 0.000
77 0.048570 0.013 107 0.475200 0.000
78 0.053991 0.012 108 0.485670 0.000
79 0.060066 0.011 109 0.492807 0.000

80 0.066696 0.010 110 0.497189 0.000
81 0.073780 0.009 111 0.499394 0.000
82 0.081217 0.008 112 0.500000 0.000
83 0.088721 0.008 113 0.500000 0.000
84 0.096358 0.007 114 0.500000 0.000

85 0.104559 0.007 115 0.500000 0.000
86 0.113755 0.007 116 0.500000 0.000
87 0.124377 0.006 117 0.500000 0.000
88 0.136537 0.005 118 0.500000 0.000
89 0.149949 0.005 119 0.500000 0.000

120 1.000000 0.000



Appendix B

Models: Definitions, Log-likelihood

Functions, and Properties

This appendix provides the formulas for the definition, log-likelihood function, and the first

and second derivatives of the log-likelihood function of the models if they are determinable.

The formulas for the stationary mean and stationary variance are also produced. Note that,

for regime switching models, only two regimes are considered. The log-likelihood functions

for regime switching models are obtained using the filtering method proposed by Hamilton

(1989).

B.1 White Noise Model

Definition

X(t) = µ+ ε(t) where ε(t) i.i.d. N
(
0, σ2

)
B.1.1 Log-likelihood Function

l(θ) = −nlnσ − n

2
ln(2π)− 1

2σ2

n−1∑
t=0

[x(t)− µ]2

65
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B.1.2 First Derivative of the Log-likelihood Function

∂l(θ)

∂µ
=

1

σ2

n−1∑
t=0

[x(t)− µ]

∂l(θ)

∂σ
= −n

σ
+

1

σ3

n−1∑
t=0

[x(t)− µ]2

B.1.3 Second Derivative of the Log-likelihood Function

∂2l(θ)

∂µ2
= − n

σ2

∂2l(θ)

∂µ∂σ
= − 2

σ3

n−1∑
t=0

[x(t)− µ]

∂2l(θ)

∂σ2
=

n

σ2
− 3

σ4

n−1∑
t=0

[x(t)− µ]2

B.1.4 Stationary Mean and Stationary Variance

E[X(t)] = µ

V ar(X(t)) = σ2

B.2 AR(1) Model

Definition

X(t) = µ+ α[X(t− 1)− µ] + ε(t) where ε(t) i.i.d. N
(
0, σ2

)
B.2.1 Log-likelihood Function

By conditioning on X(0), one gets

l(θ) = −(n− 1)lnσ − n− 1

2
ln(2π)− 1

2σ2

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2
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B.2.2 First Derivative of the Log-likelihood Function

∂l(θ)

∂µ
=

1− α
σ2

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]

∂l(θ)

∂α
=

1

σ2

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ][x(t− 1)− µ]

∂l(θ)

∂σ
= −n− 1

σ
+

1

σ3

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2

B.2.3 Second Derivative of the Log-likelihood Function

∂2l(θ)

∂µ2
= −(n− 1)(1− α)2

σ2

∂2l(θ)

∂µ∂α
= − 1

σ2

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]− 1− α
σ2

n−1∑
t=1

[x(t− 1)− µ]

∂2l(θ)

∂µ∂σ
= −2(1− α)

σ3

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]

∂2l(θ)

∂α2
= − 1

σ2

n−1∑
t=1

[x(t− 1)− µ]2

∂2l(θ)

∂α∂σ
= − 2

σ3

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ][x(t− 1)− µ]

∂2l(θ)

∂σ2
=
n− 1

σ2
− 3

σ4

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2

B.2.4 Stationary Mean and Stationary Variance

E[X(t)] = µ

V ar(X(t)) =
σ2

1− α2
if α2 < 1
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B.3 ARCH(1) Model - Full

Definition

X(t) = µ+ α [X(t− 1)− µ] + ε(t) where ε(t) ∼ N
(
0, σ2(t)

)
and

σ2(t) = λ2 + γ2 [X(t− 1)− µ]2

B.3.1 Log-likelihood Function

By conditioning on X(0), one gets

l(θ) = −1

2

n−1∑
t=1

ln
(
λ2 + γ2 [x(t− 1)− µ]2

)
− n− 1

2
ln(2π)

− 1

2

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2

λ2 + γ2 [x(t− 1)− µ]2

B.3.2 First Derivative of the Log-likelihood Function

∂l(θ)

∂µ
= γ2

n−1∑
t=1

x(t− 1)− µ
λ2 + γ2 [x(t− 1)− µ]2

+ (1− α)

n−1∑
t=1

x(t)− µ− αx(t− 1) + αµ

λ2 + γ2 [x(t− 1)− µ]2

− γ2
n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2 [x(t− 1)− µ](
λ2 + γ2 [x(t− 1)− µ]2

)2
∂l(θ)

∂λ
= −λ

n−1∑
t=1

1

λ2 + γ2 [x(t− 1)− µ]2
+ λ

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2(
λ2 + γ2 [x(t− 1)− µ]2

)2
∂l(θ)

∂α
=

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ] [x(t− 1)− µ]

λ2 + γ2 [x(t− 1)− µ]2

∂l(θ)

∂γ
= −γ

n−1∑
t=1

[x(t− 1)− µ]2

λ2 + γ2 [x(t− 1)− µ]2

+ γ
n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2 [x(t− 1)− µ]2(
λ2 + γ2 [x(t− 1)− µ]2

)2
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B.3.3 Second Derivative of the Log-likelihood Function

∂2l(θ)

∂µ2
= −γ2

n−1∑
t=1

1

λ2 + γ2 [x(t− 1)− µ]2
+ 2γ4

n−1∑
t=1

[x(t− 1)− µ]2(
λ2 + γ2 [x(t− 1)− µ]2

)2
− (1− α)2

n−1∑
t=1

1

λ2 + γ2 [x(t− 1)− µ]2

+ 4 (1− α) γ2
n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ] [x(t− 1)− µ](
λ2 + γ2 [x(t− 1)− µ]2

)2
+ γ2

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2(
λ2 + γ2 [x(t− 1)− µ]2

)2
− 4γ4

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2 [x(t− 1)− µ]2(
λ2 + γ2 [x(t− 1)− µ]2

)3

∂2l(θ)

∂µ∂λ
= −2λγ2

n−1∑
t=1

x(t− 1)− µ(
λ2 + γ2 [x(t− 1)− µ]2

)2
− 2λ (1− α)

n−1∑
t=1

x(t)− µ− αx(t− 1) + αµ(
λ2 + γ2 [x(t− 1)− µ]2

)2
+ 4λγ2

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2 [x(t− 1)− µ](
λ2 + γ2 [x(t− 1)− µ]2

)3

∂2l(θ)

∂µ∂α
= −

n−1∑
t=1

x(t)− µ− αx(t− 1) + αµ

λ2 + γ2 [x(t− 1)− µ]2

− (1− α)
n−1∑
t=1

x(t− 1)− µ
λ2 + γ2 [x(t− 1)− µ]2

+ 2γ2
n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ] [x(t− 1)− µ]2(
λ2 + γ2 [x(t− 1)− µ]2

)2
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∂2l(θ)

∂µ∂γ
= 2γ

n−1∑
t=1

x(t− 1)− µ
λ2 + γ2 [x(t− 1)− µ]2

− 2γ3
n−1∑
t=1

[x(t− 1)− µ]3(
λ2 + γ2 [x(t− 1)− µ]2

)2
− 2 (1− α) γ

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ] [x(t− 1)− µ]2(
λ2 + γ2 [x(t− 1)− µ]2

)2
− 2γ

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2 [x(t− 1)− µ](
λ2 + γ2 [x(t− 1)− µ]2

)2
+ 4γ3

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2 [x(t− 1)− µ]3(
λ2 + γ2 [x(t− 1)− µ]2

)3
∂2l(θ)

∂λ2
= −

n−1∑
t=1

1

λ2 + γ2 [x(t− 1)− µ]2
+ 2λ2

n−1∑
t=1

1(
λ2 + γ2 [x(t− 1)− µ]2

)2
+
n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2(
λ2 + γ2 [x(t− 1)− µ]2

)2
− 4λ2

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2(
λ2 + γ2 [x(t− 1)− µ]2

)3
∂2l(θ)

∂λ∂α
= −2λ

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ] [x(t− 1)− µ](
λ2 + γ2 [x(t− 1)− µ]2

)2
∂2l(θ)

∂λ∂γ
= 2λγ

n−1∑
t=1

[x(t− 1)− µ]2(
λ2 + γ2 [x(t− 1)− µ]2

)2
− 4λγ

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2 [x(t− 1)− µ]2(
λ2 + γ2 [x(t− 1)− µ]2

)3
∂2l(θ)

∂α2
= −

n−1∑
t=1

[x(t− 1)− µ]2

λ2 + γ2 [x(t− 1)− µ]2

∂2l(θ)

∂α∂γ
= −2γ

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ] [x(t− 1)− µ]3(
λ2 + γ2 [x(t− 1)− µ]2

)2
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∂2l(θ)

∂γ2
= −

n−1∑
t=1

[x(t− 1)− µ]2

λ2 + γ2 [x(t− 1)− µ]2
+ 2γ2

n−1∑
t=1

[x(t− 1)− µ]4(
λ2 + γ2 [x(t− 1)− µ]2

)2
+

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2 [x(t− 1)− µ]2(
λ2 + γ2 [x(t− 1)− µ]2

)2
− 4γ2

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2 [x(t− 1)− µ]4(
λ2 + γ2 [x(t− 1)− µ]2

)3
B.3.4 Stationary Mean and Stationary Variance

E[X(t)] = µ

V ar(X(t)) = E[V ar(X(t)|X(t− 1))] + V ar(E[X(t)|X(t− 1)])

= E[σ2(t)] + V ar(µ+ α[X(t− 1)− µ])

= λ2 + γ2E[[X(t− 1)− µ]2] + α2V ar(X(t− 1))

= λ2 + γ2V ar(X(t)) + α2V ar(X(t))

⇒ V ar(X(t)) =
λ2

1− α2 − γ2
if α2 + γ2 < 1

B.4 ARCH(1) Model - Non-Centered

Definition

X(t) = µ+ α [X(t− 1)− µ] + ε(t) where ε(t) ∼ N
(
0, σ2(t)

)
and

σ2(t) = λ2 + γ2X2(t− 1)

B.4.1 Log-likelihood Function

By conditioning on X(0), one gets

l(θ) = −1

2

n−1∑
t=1

ln
[
λ2 + γ2x2(t− 1)

]
− n− 1

2
ln(2π)

− 1

2

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2

λ2 + γ2x2(t− 1)
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B.4.2 First Derivative of the Log-likelihood Function

∂l(θ)

∂µ
= (1− α)

n−1∑
t=1

x(t)− µ− αx(t− 1) + αµ

λ2 + γ2x2(t− 1)

∂l(θ)

∂λ
= −λ

n−1∑
t=1

1

λ2 + γ2x2(t− 1)
+ λ

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2

[λ2 + γ2x2(t− 1)]2

∂l(θ)

∂α
=

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ] [x(t− 1)− µ]

λ2 + γ2x2(t− 1)

∂l(θ)

∂γ
= −γ

n−1∑
t=1

x2(t− 1)

λ2 + γ2x2(t− 1)

+ γ
n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2 x2(t− 1)

[λ2 + γ2x2(t− 1)]2

B.4.3 Second Derivative of the Log-likelihood Function

∂2l(θ)

∂µ2
= − (1− α)2

n−1∑
t=1

1

λ2 + γ2x2(t− 1)

∂2l(θ)

∂µ∂λ
= −λ (1− α)

n−1∑
t=1

x(t)− µ− αx(t− 1) + αµ

[λ2 + γ2x2(t− 1)]2

∂2l(θ)

∂µ∂α
= −

n−1∑
t=1

x(t)− µ− αx(t− 1) + αµ

λ2 + γ2x2(t− 1)
− (1− α)

n−1∑
t=1

x(t− 1)− µ
λ2 + γ2x2(t− 1)

∂2l(θ)

∂µ∂γ
= −2 (1− α) γ

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]x2(t− 1)

[λ2 + γ2x2(t− 1)]2

∂2l(θ)

∂λ2
= −

n−1∑
t=1

1

[λ2 + γ2x2(t− 1)]2
+ 2λ2

n−1∑
t=1

1

[λ2 + γ2x2(t− 1)]2

+
n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2

[λ2 + γ2x2(t− 1)]2

− 4λ2
n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2

[λ2 + γ2x2(t− 1)]3
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∂2l(θ)

∂λ∂α
= −2λ

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ] [x(t− 1)− µ]

[λ2 + γ2x2(t− 1)]2

∂2l(θ)

∂λ∂γ
= 2λγ

n−1∑
t=1

x2(t− 1)

[λ2 + γ2x2(t− 1)]2

− 4λγ
n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2 x2(t− 1)

[λ2 + γ2x2(t− 1)]3

∂2l(θ)

∂α2
= −

n−1∑
t=1

[x(t− 1)− µ]2

λ2 + γ2x2(t− 1)

∂2l(θ)

∂α∂γ
= −2γ

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ] [x(t− 1)− µ]x2(t− 1)

[λ2 + γ2x2(t− 1)]2

∂2l(θ)

∂γ2
= −

n−1∑
t=1

x2(t− 1)

λ2 + γ2x2(t− 1)
+ 2γ2

n−1∑
t=1

x4(t− 1)

[λ2 + γ2x2(t− 1)]2

+

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2 x2(t− 1)

[λ2 + γ2x2(t− 1)]2

− 4γ2
n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2 x4(t− 1)

[λ2 + γ2x2(t− 1)]3

B.4.4 Stationary Mean and Stationary Variance

E[X(t)] = µ

V ar(X(t)) = E[V ar(X(t)|X(t− 1))] + V ar(E[X(t)|X(t− 1)])

= E[σ2(t)] + V ar(µ+ α[X(t− 1)− µ])

= λ2 + γ2E[X2(t− 1)] + α2V ar(X(t− 1))

= λ2 + γ2V ar(X(t)) + γ2µ2 + α2V ar(X(t))

⇒ V ar(X(t)) =
λ2 + γ2µ2

1− α2 − γ2
if α2 + γ2 < 1
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B.5 ARCH(1) Model - Proportional

Definition

X(t) = µ+ α [X(t− 1)− µ] + ε(t) where ε(t) ∼ N
(
0, σ2(t)

)
and

σ2(t) = γ2X2(t− 1)

B.5.1 Log-likelihood Function

By conditioning on X(0), one gets

l(θ) = −(n− 1)lnγ − n− 1

2
ln(2π)−

n−1∑
t=1

lnx(t− 1)

− 1

2γ2

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2

x2(t− 1)

B.5.2 First Derivative of the Log-likelihood Function

∂l(θ)

∂µ
=

1− α
γ2

n−1∑
t=1

x(t)− µ− αx(t− 1) + αµ

x2(t− 1)

∂l(θ)

∂α
=

1

γ2

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ] [x(t− 1)− µ]

x2(t− 1)

∂l(θ)

∂γ
=

1

γ3

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2

x2(t− 1)
− n− 1

γ

B.5.3 Second Derivative of the Log-likelihood Function

∂2l(θ)

∂µ2
= −(1− α)2

γ2

n−1∑
t=1

1

x2(t− 1)

∂2l(θ)

∂µ∂α
= − 1

γ2

n−1∑
t=1

x(t)− µ− αx(t− 1) + αµ

x2(t− 1)
− 1− α

γ2

n−1∑
t=1

x(t− 1)− µ
x2(t− 1)
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∂2l(θ)

∂µ∂γ
= −2 (1− α)

γ3

n−1∑
t=1

x(t)− µ− αx(t− 1) + αµ

x2(t− 1)

∂2l(θ)

∂α2
= − 1

γ2

n−1∑
t=1

[x(t− 1)− µ]2

x2(t− 1)

∂2l(θ)

∂α∂γ
= − 2

γ3

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ] [x(t− 1)− µ]

x2(t− 1)

∂2l(θ)

∂γ2
= − 3

γ4

n−1∑
t=1

[x(t)− µ− αx(t− 1) + αµ]2

x2(t− 1)
+
n− 1

γ2

B.5.4 Stationary Mean and Stationary Variance

E[X(t)] = µ

V ar(X(t)) =
γ2µ2

1− α2 − γ2
if α2 + γ2 < 1

B.6 Regime Switching Vector White Noise Model

Definition

Let St denote the regime at time t with transition matrix P =

[
ρ11 ρ12

ρ21 ρ22

]
.

X(t) = µSt
+ ε(t) where ε(t) i.i.d. N (0,ΣSt)

where

X(t) =

[
X1(t)

X2(t)

]
µSt

=

[
µ1St

µ2St

]
ΣSt =

[
σ21St

0

0 σ22St

]
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B.6.1 Stationary Mean and Stationary Variance

E [X1(t)] = π1µ11 + π2µ12

E [X2(t)] = π1µ21 + π2µ22

where

π1 =
ρ21

ρ12 + ρ21
and π2 =

ρ12
ρ12 + ρ21

V ar (X1(t)) = π1σ
2
11 + π2σ

2
12 + (µ11 − µ12)2 π1π2

V ar (X2(t)) = π1σ
2
21 + π2σ

2
22 + (µ21 − µ22)2 π1π2

B.7 Regime Switching AR(1) Model

Definition

Let St denote the regime at time t with transition matrix P =

[
ρ11 ρ12

ρ21 ρ22

]
.

X(t) = µSt + αSt [X(t− 1)− µSt−1 ] + ε(t) where ε(t) i.i.d. N
(
0, σ2St

)
B.7.1 Stationary Mean and Stationary Variance

E[X(t)] = π1µ1 + π2µ2

V ar(X(t)) = π1V1 + π2V2 + (µ1 − µ2)2 π1π2

where Vi is the stationary variance for regime i.

At stationarity, the variance at time t for regime 1 is the variance at time t-1 for regime 1

times α2
1 if the regime changes from 1 to 1 plus the variance at time t-1 for regime 2 times

α2
1 if the regime changes from 2 to 1 plus the variance of the innovations for regime 1. The

variance at time t for regime 2 follows a similar pattern. In other words,V1 = π1ρ11
π1

(
α2
1V1 + σ21

)
+ π2ρ21

π1

(
α2
1V2 + σ21

)
V2 = π1ρ12

π2

(
α2
2V1 + σ22

)
+ π2ρ22

π2

(
α2
2V2 + σ22

)
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Solving the system of equations, one gets

V1 =

(
1− ρ22α2

2

)
σ21 + ρ12α

2
1σ

2
2(

1− ρ11α2
1

) (
1− ρ22α2

2

)
− ρ12ρ21α2

1α
2
2

V2 =
ρ21α

2
2σ

2
1 +

(
1− ρ11α2

1

)
σ22(

1− ρ11α2
1

) (
1− ρ22α2

2

)
− ρ12ρ21α2

1α
2
2

B.8 Regime Switching ARCH(1) Model - Full

Definition

Let St denote the regime at time t with transition matrix P =

[
ρ11 ρ12

ρ21 ρ22

]
.

X(t) = µSt + αSt

[
X(t− 1)− µSt−1

]
+ ε(t) where ε(t) ∼ N

(
0, σ2St

(t)
)

and

σ2St
(t) = λ2St

+ γ2St

[
X(t− 1)− µSt−1

]2
B.8.1 Stationary Mean and Stationary Variance

For details of derivation, see Section B.7.1.

E[X(t)] = π1µ1 + π2µ2

V ar(X(t)) = π1V1 + π2V2 + (µ1 − µ2)2 π1π2

whereV1 = π1ρ11
π1

[(
α2
1 + γ21

)
V1 + λ21

]
+ π2ρ21

π1

[(
α2
1 + γ21

)
V2 + λ21

]
V2 = π1ρ12

π2

[(
α2
2 + γ22

)
V1 + λ22

]
+ π2ρ22

π2

[(
α2
2 + γ22

)
V2 + λ22

]
Solving the system of equations, one gets

V1 =

[
1− ρ22

(
α2
2 + γ22

)]
λ21 + ρ12

(
α2
1 + γ21

)
λ22[

1− ρ11
(
α2
1 + γ21

)] [
1− ρ22

(
α2
2 + γ22

)]
− ρ12ρ21

(
α2
1 + γ21

) (
α2
2 + γ22

)

V2 =
ρ21
(
α2
2 + γ22

)
λ21 +

[
1− ρ11

(
α2
1 + γ21

)]
λ22[

1− ρ11
(
α2
1 + γ21

)] [
1− ρ22

(
α2
2 + γ22

)]
− ρ12ρ21

(
α2
1 + γ21

) (
α2
2 + γ22

)
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B.9 Regime Switching ARCH(1) Model - Non-Centered

Definition

Let St denote the regime at time t with transition matrix P =

[
ρ11 ρ12

ρ21 ρ22

]
.

X(t) = µSt + αSt

[
X(t− 1)− µSt−1

]
+ ε(t) where ε(t) ∼ N

(
0, σ2St

(t)
)

and

σ2St
(t) = λ2St

+ γ2St
X2(t− 1)

B.9.1 Stationary Mean and Stationary Variance

For details of derivation, see Section B.7.1.

E[X(t)] = π1µ1 + π2µ2

V ar(X(t)) = π1V1 + π2V2 + (µ1 − µ2)2 π1π2

whereV1 = π1ρ11
π1

[(
α2
1 + γ21

)
V1 + λ21 + γ21µ

2
1

]
+ π2ρ21

π1

[(
α2
1 + γ21

)
V2 + λ21 + γ21µ

2
2

]
V2 = π1ρ12

π2

[(
α2
2 + γ22

)
V1 + λ22 + γ22µ

2
1

]
+ π2ρ22

π2

[(
α2
2 + γ22

)
V2 + λ22 + γ22µ

2
2

]
Solving the system of equations, one gets

V1 =

[
1− ρ22

(
α2
2 + γ22

)] [
λ21 + α2

1

(
ρ11µ

2
1 + ρ12µ

2
2

)][
1− ρ11

(
α2
1 + γ21

)] [
1− ρ22

(
α2
2 + γ22

)]
− ρ12ρ21

(
α2
1 + γ21

) (
α2
2 + γ22

)
+

ρ12
(
α2
1 + γ21

) [
λ22 + α2

2

(
ρ12µ

2
1 + ρ22µ

2
2

)][
1− ρ11

(
α2
1 + γ21

)] [
1− ρ22

(
α2
2 + γ22

)]
− ρ12ρ21

(
α2
1 + γ21

) (
α2
2 + γ22

)

V2 =
ρ21
(
α2
2 + γ22

) [
λ21 + α2

1

(
ρ11µ

2
1 + ρ12µ

2
2

)][
1− ρ11

(
α2
1 + γ21

)] [
1− ρ22

(
α2
2 + γ22

)]
− ρ12ρ21

(
α2
1 + γ21

) (
α2
2 + γ22

)
+

[
1− ρ11

(
α2
1 + γ21

)] [
λ22 + α2

2

(
ρ21µ

2
1 + ρ22µ

2
2

)][
1− ρ11

(
α2
1 + γ21

)] [
1− ρ22

(
α2
2 + γ22

)]
− ρ12ρ21

(
α2
1 + γ21

) (
α2
2 + γ22

)
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B.10 Regime Switching ARCH(1) Model - Proportional

Definition

Let St denote the regime at time t with transition matrix P =

[
ρ11 ρ12

ρ21 ρ22

]
.

X(t) = µSt + αSt

[
X(t− 1)− µSt−1

]
+ ε(t) where ε(t) ∼ N

(
0, σ2St

(t)
)

and

σ2St
(t) = γ2St

X2(t− 1)

B.10.1 Stationary Mean and Stationary Variance

For details of derivation, see Section B.9.1. with λ1 = λ2 = 0.

E[X(t)] = π1µ1 + π2µ2

V ar(X(t)) = π1V1 + π2V2 + (µ1 − µ2)2 π1π2

where

V1 =

[
1− ρ22

(
α2
2 + γ22

)]
α2
1

(
ρ11µ

2
1 + ρ12µ

2
2

)[
1− ρ11

(
α2
1 + γ21

)] [
1− ρ22

(
α2
2 + γ22

)]
− ρ12ρ21

(
α2
1 + γ21

) (
α2
2 + γ22

)
+

ρ12
(
α2
1 + γ21

)
α2
2

(
ρ12µ

2
1 + ρ22µ

2
2

)[
1− ρ11

(
α2
1 + γ21

)] [
1− ρ22

(
α2
2 + γ22

)]
− ρ12ρ21

(
α2
1 + γ21

) (
α2
2 + γ22

)
V2 =

ρ21
(
α2
2 + γ22

)
α2
1

(
ρ11µ

2
1 + ρ12µ

2
2

)[
1− ρ11

(
α2
1 + γ21

)] [
1− ρ22

(
α2
2 + γ22

)]
− ρ12ρ21

(
α2
1 + γ21

) (
α2
2 + γ22

)
+

[
1− ρ11

(
α2
1 + γ21

)]
α2
2

(
ρ21µ

2
1 + ρ22µ

2
2

)[
1− ρ11

(
α2
1 + γ21

)] [
1− ρ22

(
α2
2 + γ22

)]
− ρ12ρ21

(
α2
1 + γ21

) (
α2
2 + γ22

)
B.11 Transfer Function Model - Two Lags

Definition

X(t) = β1Y (t) + β2Y (t− 1) + e(t) where

e(t) = µ+ α[e(t− 1)− µ] + ε(t) and ε(t) ∼ N
(
0, σ2

)
where Y (t) follows the RSARCH(P) model (see Section B.10).

Let Z(t) = β1Y (t) + β2Y (t− 1) + µ

Then X(t)− Z(t) = α[X(t− 1)− Z(t− 1)] + ε(t)
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B.11.1 Log-likelihood Function

By conditioning on e(0), one gets

l(θ) = −(n− 1)lnσ − n− 1

2
ln(2π)

− 1

2σ2

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)]2

B.11.2 First Derivative of the Log-likelihood Function

∂l(θ)

∂µ
=

1− α
σ2

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)]

∂l(θ)

∂α
=

1

σ2

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)][x(t− 1)− z(t− 1)]

∂l(θ)

∂σ
= −n− 1

σ
+

1

σ3

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)]2

∂l(θ)

∂β1
=

1

σ2

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)][y(t)− αy(t− 1)]

∂l(θ)

∂β2
=

1

σ2

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)][y(t− 1)− αy(t− 2)]

B.11.3 Second Derivative of the Log-likelihood Function

∂2l(θ)

∂µ2
= −(n− 1)(1− α)2

σ2

∂2l(θ)

∂µ∂α
= − 1

σ2

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)]

− 1− α
σ2

n−1∑
t=1

[x(t− 1)− z(t− 1)]
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∂2l(θ)

∂µ∂σ
= −2(1− α)

σ3

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)]

∂2l(θ)

∂µ∂β1
= −1− α

σ2

n−1∑
t=1

[y(t)− αy(t− 1)]

∂2l(θ)

∂µ∂β2
= −1− α

σ2

n−1∑
t=1

[y(t− 1)− αy(t− 2)]

∂2l(θ)

∂α2
= − 1

σ2

n−1∑
t=1

[x(t− 1)− z(t− 1)]2

∂2l(θ)

∂α∂σ
= − 2

σ3

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)][x(t− 1)− z(t− 1)]

∂2l(θ)

∂α∂β1
= − 1

σ2

n−1∑
t=1

[x(t− 1)− z(t− 1)][y(t)− αy(t− 1)]

− 1

σ2

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)]y(t− 1)

∂2l(θ)

∂α∂β2
= − 1

σ2

n−1∑
t=1

[x(t− 1)− z(t− 1)][y(t− 1)− αy(t− 2)]

− 1

σ2

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)]y(t− 2)

∂2l(θ)

∂σ2
=
n− 1

σ2
− 3

σ4

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)]2

∂2l(θ)

∂σ∂β1
= − 2

σ3

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)][y(t)− αy(t− 1)]
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∂2l(θ)

∂σ∂β2
= − 2

σ3

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)][y(t− 1)− αy(t− 2)]

∂2l(θ)

∂β21
= − 1

σ2

n−1∑
t=1

[y(t)− αy(t− 1)]2

∂2l(θ)

∂β1∂β2
= − 1

σ2

n−1∑
t=1

[y(t)− αy(t− 1)][y(t− 1)− αy(t− 2)]

∂2l(θ)

∂β22
= − 1

σ2

n−1∑
t=1

[y(t− 1)− αy(t− 2)]2

B.11.4 Stationary Mean and Stationary Variance

E[X(t)] = (β1 + β2)E[Y (t)] + µ

V ar(X(t)) = V (Y ) +
σ2

1− α2

where

V (Y ) =
2∑

st=1

2∑
st−1=1

[
β21Vst(Y ) + β22Vst−1(Y ) + 2β1β2Cst−1,st(Y )

]
πst−1ρst−1,st

+

2∑
st=1

2∑
st−1=1

[
µst−1,st(Y )− µ̄(Y )

]2
πst−1ρst−1,st

and

st = regime at time t

µst(Y ) = E [Y (t) |st ]

Vst(Y ) = V ar (Y (t) |st ) (see section B.10.1)

Cst−1,st(Y ) = Cov (Y (t), Y (t− 1) |st, st−1 ) = αstVst−1(Y )

µst−1,st(Y ) = β1µst(Y ) + β2µst−1(Y )

µ̄(Y ) =
2∑

st=1

2∑
st−1=1

µst−1,st(Y )πst−1ρst−1,st



APPENDIX B. MODELS 83

B.12 Transfer Function Model - One Lag

Definition

X(t) = β1Y (t) + e(t) where

e(t) = µ+ α[e(t− 1)− µ] + ε(t) and ε(t) ∼ N
(
0, σ2

)
where Y (t) follows the RSARCH(P) model (see Section B.10).

Let Z(t) = β1Y (t) + µ

Then X(t)− Z(t) = α[X(t− 1)− Z(t− 1)] + ε(t)

B.12.1 Log-likelihood Function

By conditioning on e(0), one gets

l(θ) = −(n− 1)lnσ − n− 1

2
ln(2π)

− 1

2σ2

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)]2

B.12.2 First Derivative of the Log-likelihood Function

∂l(θ)

∂µ
=

1− α
σ2

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)]

∂l(θ)

∂α
=

1

σ2

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)][x(t− 1)− z(t− 1)]

∂l(θ)

∂σ
= −n− 1

σ
+

1

σ3

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)]2

∂l(θ)

∂β1
=

1

σ2

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)][y(t)− αy(t− 1)]
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B.12.3 Second Derivative of the Log-likelihood Function

∂2l(θ)

∂µ2
= −(n− 1)(1− α)2

σ2

∂2l(θ)

∂µ∂α
= − 1

σ2

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)]

− 1− α
σ2

n−1∑
t=1

[x(t− 1)− z(t− 1)]

∂2l(θ)

∂µ∂σ
= −2(1− α)

σ3

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)]

∂2l(θ)

∂µ∂β1
= −1− α

σ2

n−1∑
t=1

[y(t)− αy(t− 1)]

∂2l(θ)

∂α2
= − 1

σ2

n−1∑
t=1

[x(t− 1)− z(t− 1)]2

∂2l(θ)

∂α∂σ
= − 2

σ3

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)][x(t− 1)− z(t− 1)]

∂2l(θ)

∂α∂β1
= − 1

σ2

n−1∑
t=1

[x(t− 1)− z(t− 1)][y(t)− αy(t− 1)]

− 1

σ2

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)]y(t− 1)

∂2l(θ)

∂σ2
=
n− 1

σ2
− 3

σ4

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)]2

∂2l(θ)

∂σ∂β1
= − 2

σ3

n−1∑
t=1

[x(t)− z(t)− αx(t− 1) + αz(t− 1)][y(t)− αy(t− 1)]

∂2l(θ)

∂β21
= − 1

σ2

n−1∑
t=1

[y(t)− αy(t− 1)]2
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B.12.4 Stationary Mean and Stationary Variance

E[X(t)] = β1E[Y (t)] + µ

V ar(X(t)) = β21V ar(Y (t)) +
σ2

1− α2
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