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Abstract

In this thesis, we study the linear hazard (LH) transform and its applications in

actuarial science. Under the LH transform, the survival function of a risk is dis-

torted, which provides a safety margin for pricing insurance products. Combining

the assumption of α-approximation, the net single premium of a continuous insur-

ance policy can be approximated in terms of the net single premiums of discrete

insurance ones. We also find that the LH transform is good at fitting by regression

between two mortality curves. With the method of mortality fitting, the mortalities

for the future years can be predicted as well. Finally, the applications of the LH

transform for an insurance company’s asset managements, such as mortality swap,

risk ordering and optimal reinsurance, are explored.

Keywords: Linear Hazard Transform, Proportional Hazard Transform, Mortality

Fitting, Mortality Prediction, Mortality Swap, Risk Ordering, Optimal Reinsurance
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Chapter 1

Introduction

The proportional hazard (PH) transform has been proposed by Wang (1995) to calcu-

late the risk adjusted premium. It is a remarkable milestone since it possesses many

desirable properties. It can be applied to areas such as ambiguous risks, excess-of-

loss coverages, risk portfolios and increased limits. Let random variable X represent

a continuous and non-negative risk, and µX(t) be the associated hazard rate. Under

the PH transform, the hazard rate becomes

µX•(t) = αµX(t), α > 0. (1.1)

The proportional hazard transform takes a proportional rate of the underlying

force of mortality to provide a safety margin, and can be used for the purpose of pric-

ing, estimation, prediction, etc. The proportional hazard transform can be extended

by adding a constant term to form the linear hazard transform. This project focuses

on the linear hazard transform and its applications.

Because only discrete survival probabilities are available in practice, pricing con-

tinuous insurance products is difficult. To solve this difficulty, fractional age as-

sumptions have been made during the past for the purpose of approximating survival

probabilities at fractional ages, among which are the linear, exponential and har-

monic approximations. With the help of these techniques, the underlying survival

functions can be approximated and therefore be used to price insurance products.

1



CHAPTER 1. INTRODUCTION 2

Also, these three assumptions are generalized and studied in the framework of α-

approximation. When the linear hazard (LH) transform is applied to life insurance

pricing, α-approximation is a powerful tool to evaluate the continuous insurance and

annuity products.

This paper is organized as follows: Chapter 2 is a literature review. It is an

overview of the past research conducted on the PH transform, α-approximation,

mortality study, asset management of insurance companies, risk ordering and op-

timal insurance. In Chapter 3, basic actuarial concepts and formulas are reviewed.

With the help of α-approximation, formulas for pricing continuous insurance products

are proposed under the PH and LH transforms. The chapters that follow explore the

applications of the LH transform. Chapter 4 applies the LH transform to mortality

regression. Some practical techniques are suggested and examples are illustrated. In

Chapter 5, the LH transform is applied to predict future mortality based on the his-

torical data. Different prediction methodologies are discussed and applied to actual

mortality. In Chapter 6, we study risk ordering and optimal reinsurance under the

LH transform. The relationships among the LH order and other risk orders are ex-

plored. Explicit formulas are proposed to solve an optimal reinsurance problem under

the LH transform. Chapter 7 studies the asset management of insurance companies.

Mortality swap is a possible approach and its pricing method under the LH transform

is suggested. Finally, we summarize the findings in Chapter 8.



Chapter 2

Literature Review

Applications of the proportional hazard (PH) transform in insurance were proposed

by Wang (1995). For a continuous and non-negative random variable X, its survival

function and hazard rate are denoted by SX(t) and µX(t), respectively; the hazard

rate after the PH transform, denoted by µX•(t), satisfies

µX•(t) = αµX(t),

where α > 0 and X• is the corresponding random variable, which implies

SX•(t) = [SX(t)]α.

Wang (1996) showed that the PH transform resembles the risk-neutral valuation in

financial economics. When α < 1, E[X•] is called the risk adjusted premium because

it involves a safety margin

E[X•]− E[X] =

∫ ∞

0

[SX(t)]αdt−
∫ ∞

0

SX(t)dt > 0

for the pure premium E[X]. The PH transform also preserves the stop loss order of

risks with increasing concave utility functions. He applied the PH transform to risk

ordering and introduced the PH transform order. Moreover, he explored the relation-

ship between the dangerous order and PH transform order, and further connected

the PH order, the dangerous order with the stochastic dominance order and the stop

3



CHAPTER 2. LITERATURE REVIEW 4

loss order. The relationships among these orders were also discussed. Later, Wang

(1998) applied this method to insurance rate making. Examples were illustrated with

respect to the excess-of-loss coverages, increased limits, risk portfolios, etc. This

project extends the PH transform to the linear hazard (LH) transform, that is,

µX∗(t) = αµX(t) + β,

where X∗ is the corresponding random variable. An LH order will be introduced. The

connection of the LH order with other risk orders will also be established. Moreover,

the LH transform can be applied to mortality fitting and mortality prediction based

on existing mortality rates.

As mentioned in Chapter 1, the linear, exponential and harmonic approximations

are three common assumptions for fractional age mortality. Frostig (2002) conducted

a comparison study of the three assumptions above with unknown survival functions.

Jones and Mereu (2000) introduced a broader concept of fractional age assumption

called α-approximation. It is a unified approach that incorporates and generalizes

all the three approximations. The α-approximation assumes that the α-power of the

survival function at a fractional age is the linear interpolation of the α-power of the

survival functions at two adjacent integer values. They also studied the smoothing

of force of mortality under the fractional age assumptions, and did an application

using actual mortality data. Later, Frostig (2003) studied different approximations

with respect to the stochastic ordering. She also derived properties of the fractional

age assumptions. Yi and Weng (2006) combined α-approximation and copula, and

applied them to multiple life insurance; two kinds of approximation approaches were

constructed, and results were derived for risk ordering in the context of multiple life

insurance. This paper considers applications of the α-approximation in the pricing of

insurance products under the LH transform, with comparisons to the PH transform.

Explicit approximation formulas are given and the relationship between the pricing

of discrete and continuous risks is studied.

Asset and liability management, which helps match liabilities with assets in or-

der to stabilize cash flows in the future, is an interesting research area for insurance

companies. When the actual mortality differs from the expected one, on one hand,
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the values of life insurance assets and liabilities change, and may cause losses for life

insurance issuers. It is the same case for life annuity issuers. This is called mortal-

ity risk. On the other hand, the values of liabilities of life insurance and annuities

liabilities move in opposite directions, which provides a possible approach to hedging

against mortality risks. Therefore, when insurance companies write life insurance

products, it is a common practice for them to sell annuities at the same time to hedge

against future potential losses due to mortality risks, and vice versa. Cox and Lin

(2004) studied this natural hedging strategy. Based on some empirical evidence, they

showed that adopting a natural hedging strategy leads to lower premium charges.

The idea of survivor bonds, raised and discussed in several papers, is that the gov-

ernment could issue a new bond, namely survivor bond, to help annuity issuers hedge

against mortality risks. The coupon of this bond is contingent on the percentage of

retirees who are still alive at a certain age. For example, if mortality improves, i.e.,

more people survive than the expected, annuity companies need to pay more benefits.

However, they receive more coupons from the survivor bonds to offset the impact of

mortality improvement. As a result, the company’s cash flow is stabilized. Blake,

Cairns and Dowd (2006) discussed how companies can hedge against mortality risks

by mortality-linked securities, including survivor bonds, swaps, futures and options.

Cox and Lin (2005) studied the pricing of such securities and the pricing of mortality

risk bonds under the PH transform in particular. This paper will discuss the pricing

of a mortality swap under the LH transform.

Optimal insurance and reinsurance is another important issue for the insurance

companies. Many researches have been conducted on this topic in the past. Young

(1999) studied the optimal insurance assuming that the price is given by Wang’s

premium principle. In that paper, a mixed random variable model was assumed for

analysis, and its distribution function is given by

FX(x) = (1− q) + q

∫ x

0

f(t)dt

for x ≥ 0, where q ∈ (0, 1] is the probability that X is positive and f is the proba-

bility density function of X|X > 0. Based on this model, Young (1999) determined

the optimal contact for a risk-averse company that wishes to optimize its expected
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utility function. Later, Promislow and Young (2005) considered the optimal insur-

ance for a general risk X and a general set of premium principles. On the part of

reinsurance, Kaluszka (2001) investigated an optimal reinsurance problem under the

mean-variance premium principle. Both global and local reinsurance were studied.

Later, Kaluszka (2005) also proposed a general approach to solving optimal rein-

surance problems. He assumed that the reinsurer’s premium is fixed. Reinsurance

companies decide to optimize different indexes based on their needs. Examples of

the exponential, p-mean value, semi-deviation, semi-variance, Dutch and Wang’s pre-

mium principles were given. This paper will focus on the optimal reinsurance under

the LH transform. Explicit formulas are proposed.



Chapter 3

Linear Hazard Transform

3.1 Preliminaries

3.1.1 Actuarial Mathematics Concepts

Before studying the linear hazard transform, some definitions and symbols regarding

actuarial mathematics are introduced in the following. Let T (x) be the future lifetime

of an individual aged x,

ST (x)(t) = Pr{T (x) > t} 4
= tpx

be the survival function of T (x),

FT (x)(t) = Pr{T (x) ≤ t} 4
= tqx = 1− tpx

be the distribution function of T (x), and

µx(t) =
fT (x)(t)

ST (x)(t)
= − d

dt
lnST (x)(t)

be the force of mortality, where fT (x)(t) = tpxµx(t) is the probability density function

of T (x). Moreover, let X be the time of death for an individual aged x, and F be the

associated distribution function. Then we have X = x + T (x). As a result,

tpx = Pr{T (x) > t} =
S(x + t)

S(x)

7



CHAPTER 3. LINEAR HAZARD TRANSFORM 8

and

tqx = Pr{T (x) ≤ t} = 1− tpx =
S(x)− S(x + t)

S(x)
.

In insurance products pricing, the net single premium (NSP) is an important

concept. Now we give the definitions for some life insurance policies and their net

single premiums.

Definition 1. Term life insurance is a life insurance that provides a fixed payment of

death for a specified time period. The net single premium of an n-year discrete term

life insurance that pays a benefit of 1 at the end of the year of death of the insured

within n years is denoted by A1
x:n|. On the other hand, the net single premium of an

n-year continuous term life insurance that pays a benefit of 1 at the time of death of

the insured within n years is denoted by A
1

x:n|.

Definition 2. Annuity is a stream of payments made continuously or at equal in-

tervals for a specified time period or a life time while a given life survives. Annuity

due is made at the beginning of each year. Annuity immediate is made at the end

of each year. The net single premiums of n-year discrete annuities due and immedi-

ate are denoted by äx:n| and ax:n|, respectively. The net single premium of an n-year

continuous annuity is denoted by ax:n|.

Definition 3. Endowment is an instrument that provides a fixed payment for death

for a specified time period and a benefit for survival beyond the specified time period.

The net single premium of an n-year discrete endowment insurance that pays a benefit

of 1 at the end of the year of death of the insured within n years and 1 for survival

beyond n years is denoted by Ax:n|. The net single premium of an n-year continuous

endowment insurance that pays a benefit of 1 at the time of death of the insured within

n years and 1 for survival beyond n years is denoted by Ax:n|.

Definition 4. Curtate future lifetime of a person aged x is the number of future

years completed by the time of death, and is denoted by K(x).

Definition 5. Temporary expected lifetime is the life expectancy of a person aged x

over an n-year time period, and is denoted by
◦
ex:n|. By letting n go to infinity, we
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have the complete expectation of life of an individual aged x, E[T (x)], denoted by
◦
ex.

Similarly, the expected curtate life time of a person aged x over an n-year time period

is denoted by ex:n| while the curtate expectation of life of a person aged x, E[K(x)],

is denoted by ex.

Definition 6. The actuarial present value of an n-year term annuity of 1 per year,

payable in installments of 1
m

at the beginning of each m-th of the year while a person

of age x is still alive, is denoted by ä
(m)
x:n|.

3.1.2 Basic Formulas

The NSP actuarially discounts all future cash flows and adds them up to get a lump

sum payment that is paid by the policyholder at the start of a policy. We can see

that the net single premium is a big payment needed to be made at the beginning.

It may not be realistic for policyholders to do so due to budget constraints. An

alternate approach is the net level premium (NLP) which annuitizes the NSP over a

specific time period by dividing the NSP of the policy by the NSP of an annuity. For

example, the NLP of an n-year discrete term life insurance, denoted by P 1
x:n|, with

each of n payments made at the beginning at the year whenever the insured is alive is

A1
x:n| / äx:n|. The NSP’s for the standard insurance products discussed in the previous

subsection are given below.

• The NSP of a discrete n-year term life insurance is

A1
x:n| =

n∑

k=1

k−1|qxv
k =

n∑

k=1

( k−1px − kpx)v
k

where k−1|qx =k−1 px − kpx is the probability that an individual of age x dies

between times (k − 1) and k.

• The NSP of a continuous n-year term life insurance is

A
1

x:n| =
∫ n

0
tpxµx(t)v

tdt.
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• The NSP of a discrete n-year annuity due is

äx:n| =
n−1∑

k=0

kpxv
k.

• The NSP of a discrete n-year annuity immediate is

ax:n| =
n∑

k=1

kpxv
k.

• The NSP of a continuous n-year annuity is

ax:n| =
∫ n

0
tpxv

tdt.

• The NSP of a discrete n-year endowment is

Ax:n| =
n∑

k=1

k−1|qxv
k +n Ex.

where nEx
4
= npxv

n is the NSP for the survival benefit payable when the insured

survives to the end of n years.

• The NSP of a continuous n-year endowment is

Ax:n| =
∫ n

0
tpxµx(t)v

tdt +n Ex.

Let the random variable

T ∗(x) =

{
T (x), 0 < T (x) ≤ n,

n, n < T (x),

and denote E[T ∗(x)] by
◦
ex:n|. This expectation is the expected lifetime of an individ-

ual aged x over the next n years. Let the random variable

K∗(x) =

{
K(x), K(x) = 0, 1, 2, ..., n− 1,

n, K(x) = n, n + 1, ...,
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and denote E[K∗(x)] by ex:n|. This expectation is the expected curtate lifetime of an

individual aged x over the next n years. These two expectations are calculated by

◦
ex:n|=

∫ n

0
tpxdt

and

ex:n| =
n∑

k=1

kpx,

respectively.

3.1.3 Approximation of Survival Probabilities at Fractional

Points

In actuarial mathematics, the number of people who survive at the end of each year

(integer value) and the number of deaths during that year can be expected based on

the mortality table. Assuming that px or qx is given for all x’s, actuaries can calculate

the quantities such as survival probabilities, probability of people dying in a given

period, etc., at the integer time points. However, the exact survival probabilities at

the fractional ages are not available.

To solve this problem, actuaries make use of survival probabilities at the integer

values and make appropriate assumptions on survival functions. The following three

assumptions are common approaches in actuarial practice.

Definition 7. Linear approximation (or UDD assumption) : spx is said to be linearly

approximated if

spx = (1− s) 0px + s px = (1− s) + s px

for 0 ≤ s < 1 and x = 0, 1, 2....

Remark 1.

Linear approximation implies that

1−s qx = (1− s) + s(1− qx)
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which can be rearranged as follows:

sqx = s qx.

In this case, the force of mortality is

µx(s) =
d(sqx)/ds

spx

=
d(s qx)/ds

spx

=
qx

1− s qx

.

Definition 8. Exponential approximation (or constant force of mortality assumption) :

spx is said to be exponentially approximated if

ln spx = (1− s) ln 0px + s lnpx,

or equivalently,

spx = 0p
1−s
x · ps

x = ps
x

for 0 ≤ s < 1 and x = 0, 1, 2....

Remark 2.

Exponential approximation implies that the force of mortality is

µx(s) =
d(sqx)/ds

spx

=
d(1− ps

x)/ds

ps
x

=
(−logpx) ps

x

ps
x

= −logpx,

a constant force.

Definition 9. Harmonic approximation (or Balducci assumption) : spx is said to be

harmonically approximated if

1

spx

= (1− s)
1

0px

+ s
1

px

,

or equivalently,

spx =
1

(1− s) + s
px

=
px

(1− s)px + s

for 0 ≤ s < 1 and x = 0, 1, 2....
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Remark 3. Harmonic approximation implies that

sqx = 1− spx = 1− px

(1− s)px + s
=

s qx

(1− s)px + s
.

In this case, the force of mortality is

µx(s) =
d( s qx

(1−s)px+s
)/ds

spx

=

qx((1−s)px+s)−s q2
x

((1−s)px+s)2

px

(1−s)px+s

=
qx

(1− s)px + s
.

The three assumptions above can be generalized and summarized in the framework

of α-approximation.

Definition 10. Let F be the distribution function of the time of death X for an

individual aged x and α be a real number. Then the survival function of X, S = 1−F ,

is said to be α-approximated if S satisfies

S(x + s)α = (1− s)S(x)α + s S(x + 1)α (3.1)

for 0 ≤ s < 1, x = 0, 1, 2, . . ., and α 6= 0.

To obtain an expression for α = 0, we rewrite (3.1) as

S(x + s) = [(1− s)S(x)α + s S(x + 1)α]
1
α

= e
1
α

ln[(1−s)S(x)α+s S(x+1)α].

With the help of L’Hopital’s rule, we have

lim
α→0

S(x + s) = lim
α→0

e
(1−s)S(x)αlnS(x)+s S(x+1)αlnS(x+1)

(1−s)S(x)α+s S(x+1)α

= e(1−s)lnS(x)+slnS(x+1).

That is, for α = 0, F satisfies

lnS(x + s) = (1− s)lnS(x) + slnS(x + 1),

or equivalently,

S(x + s) = S(x)1−s · S(x + 1)s. (3.2)
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Since spx = S(x+s)
S(x)

, from (3.1) and (3.2) we get

spx =





[(1−s)S(x)α+s S(x+1)α]
1
α

[S(x)α]
1
α

= [(1− s) + spα
x ]

1
α , α 6= 0,

S(x)−s · S(x + 1)s = ps
x, α = 0.

With α equaling -1, 0 and 1, the α-approximation reduces to the special cases of

the harmonic, exponential and linear approximations, respectively.

3.2 Linear Hazard Transform

Wang (1995) introduced the proportional hazard transform. Under the PH transform,

the force of mortality, known as a hazard rate, is multiplied by a constant.

Definition 11. Given a force of mortality µx(t), the proportional hazard transform

of µx(t) is defined as µx•(t) = αxµx(t) for some αx > 0 where the subscript • of x

denotes the proportional hazard transform.

As a result, the transformed survival probability can be expressed as

tpx• = Pr{T (x•) > t} = e−
∫ t
0 µx• (s)ds = e−αx

∫ t
0 µx(s)ds = (e−

∫ t
0 µx(s)ds)αx = (tpx)

αx .

The idea of the PH transform is to calculate risk-adjusted premium by changing

the weight of right tail. In the case where rare events take place and cause large

losses, the PH transform will charge higher premium portion for large tail loss.

Definition 12. Given a force of mortality µx(t), the linear hazard transform of µx(t)

is defined by

µx∗(t) = αxµx(t) + βx (3.3)

for some αx > 0 where the subscript ∗ of x denotes the linear hazard transform.

Similarly, the LH transformed survival function can be expressed as

tpx∗ = e−
∫ t
0 µx∗ (s)ds = e−

∫ t
0 [αxµx(s)+βx]ds = [e−

∫ t
0 µx(s)ds]αxe−βxt = [tpx]

αxe−βxt. (3.4)
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Generally, we need αx > 0, and βx could be negative. To ensure that µx∗(t) > 0

for all t ≥ 0, we require βx > −αx inf{µx(t) : t ≥ 0}. Since the force of mortality is

a hazard rate, µx∗(t) is a linear hazard transform of µx(t). The LH transform (3.4),

like the PH transform, is the adjusted force of mortality creating a safety margin as

well for pricing life insurance (αx > 1) or life annuity (αx < 1). Comparing it with

the PH transform, we can see that the difference is that an extra constant term is

added to the transformed force of mortality (hazard rate). When βx = 0, µx∗(t) is the

proportional hazard transform of µx(t). In this case, the transformed hazard rate is

denoted by µx•(t) = µx∗(t)|βx=0. When αx = 0, we have µx∗(t) = βx, a constant force

of mortality. To simplify these symbols, we use α and β for αx and βx, respectively,

and we will use them throughout the project.

First, rewrite t = k + s where k is an integer and s ∈ [0, 1). Then from (3.4),

we get k+spx∗ = [k+spx]
αe−β(k+s) = [kpx spx+k]

αe−β(k+s). Applying α-approximation in

(3.2) to [k+spx]
α for α 6= 0 yields

k+spx∗ = [(1− s) + s(px+k)
α](kpx)

αe−β(k+s)

= {(1− s)[kpx]
α + s[k+1px]

α}e−β(k+s)

= (1− s)[kpx∗ ]e
−βs + s[k+1px∗ ]e

β(1−s). (3.5)

Taking natural logarithm and differentiating with respect to s leads to

−µx∗(k + s) =
d ln[k+spx∗ ]

ds
=

dk+spx∗

ds

1

k+spx∗

=
{[k+1px]

α − [kpx]
α}e−β(k+s) − β ·k+s px∗

k+spx∗

or

k+spx∗ µx∗(k + s) = {[kpx]
α − [k+1px]

α}e−β(k+s) + β ·k+s px∗

= [kpx∗ ]e
−βs − [k+1px∗ ]e

β(1−s) + β ·k+s px∗ . (3.6)

Let Ā1
x∗:n|i and āx∗:n| i be the net single premiums of the continuous n-year term

life and n-year temporary life annuity, respectively, based on the adjusted force of

mortality µx∗(t). Also, let δβ = δ +β, where δ satisfies e−δ = v = (1+ i)−1. Then the
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corresponding discount factor vβ and interest rate iβ which satisfy (1 + iβ)−1 = vβ =

e−δβ can be solved as vβ = e−(δ+β) = ve−β and iβ = (1 + i)eβ − 1, respectively. Also,

we define dβ = iβ · vβ = 1− vβ,

X0 =

∫ 1

0

vs
βds =

1− vβ

δβ

, (3.7)

and

X1 =

∫ 1

0

svs
βds =

1− vβ

δ2
β

− vβ

δβ

. (3.8)

The following proposition gives an expression for āx∗:n| i in terms of äx∗:n| i and ax∗:n| i.

Proposition 1. Under the α-approximation assumption,

āx∗:n| i = (X0 −X1) äx∗: n| i +
X1

vβ

ax∗: n| i =
δβ − dβ

δ2
β

äx∗: n| i +
iβ − δβ

δ2
β

ax∗: n| i.

Proof:

āx∗:n| i =

∫ n

0
tpx∗v

tdt =

∫ n

0

[tpx]
αe−βtvtdt

=
n−1∑

k=0

∫ 1

0

[k+spx]
αe−β(k+s)vk+sds

=
n−1∑

k=0

vk
β

∫ 1

0

{(1− s)[kpx]
α + s[k+1px]

α}vs
βds

=
n−1∑

k=0

[kpx]
αe−βkvk

∫ 1

0

(1− s)vs
βds +

1

e−βv

n−1∑

k=0

[k+1px]
αe−β(k+1)vk+1

∫ 1

0

svs
βds

= (X0 −X1)
n−1∑

k=0

kpx∗v
k +

X1

vβ

n−1∑

k=0

k+1px∗v
k+1

=
δβ − dβ

δ2
β

äx∗: n| i +
iβ − δβ

δ2
β

ax∗: n| i.

Note that since A1
x:n|i = v äx: n|i−ax: n|i, or äx: n| = (1+ i)[A1

x:n|i +ax: n|i], āx∗:n| i can

also be expressed in terms of A1
x∗:n|i and ax∗: n| i. That is,

āx∗:n| i = (X0 −X1) (1 + i)[A1
x∗:n| i + ax∗: n| i] +

X1

vβ

ax∗: n| i. (3.9)
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Corollary 1. Under the α-approximation assumption,

āx∗ = (X0 −X1) äx∗ +
X1

vβ

ax∗ = (X0 −X1) (1 + i)[Ax∗ + ax∗ ] +
X1

vβ

ax∗ .

Proof: Letting n go to infinity in Proposition 1 and (3.9) yields the result.

From (3.6), a relationship between Ā1
x∗:n|i and āx∗:n| i can be derived as well.

Proposition 2. Under the α-approximation assumption,

Ā1
x∗:n| i = (X0 + βX0 − βX1) äx∗:n| i +

βX1 −X0

vβ

ax∗:n| i.

Proof: From (3.6), we have

Ā1
x∗:n| i =

∫ n

0
tpx∗µx∗(t)v

tdt

=
n−1∑

k=0

∫ 1

0
k+spx∗µx∗(k + s)vk+sds

=
n−1∑

k=0

vk

∫ 1

0

vs{[kpx∗ ]e
−βs − [k+1px∗ ]e

β(1−s) + β ·k+s px∗}ds

=
n−1∑

k=0

vk

∫ 1

0

{kpx∗v
s
β −k+1 px∗v

s
βeβ + βvs ·k+s px∗}ds. (3.10)

Then with (3.7) and (3.8), equation (3.10) can be written as

Ā1
x∗:n| i =

n−1∑

k=0

vk{[kpx∗ −k+1 px∗e
β]X0}+ β

n−1∑

k=0

vk

∫ 1

0

vs ·k+s px∗ds

= X0

n−1∑

k=0

(kpx∗)v
k − X0

vβ

n−1∑

k=0

(k+1px∗)v
k+1 + β āx∗:n| i

= β āx∗:n| i + X0 äx∗:n| i −
X0

vβ

ax∗:n| i, (3.11)

which is a relationship between Ā1
x∗:n|i and āx∗:n| i. Then by Proposition 1,

Ā1
x∗:n| i = β[(X0 −X1) äx∗:n| i +

X1

vβ

ax∗:n| i] + X0 äx∗:n| i −
X0

vβ

ax∗:n| i

= (X0 + βX0 − βX1) äx∗:n| i +
βX1 −X0

vβ

ax∗:n| i.
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Corollary 2. Under the α-approximation assumption,

Āx∗ = (X0 + βX0 − βX1) äx∗ +
βX1 −X0

vβ

ax∗ .

This corollary follows from Proposition 2 by letting n go to infinity.

Note that äx∗:n| i in Propositions 1 and 2 can be written as

äx∗:n| i =
n−1∑

k=0

(kpx)
αe−kβvk =

n−1∑

k=0

(kpx)
αvk

β =
n−1∑

k=0

(kpx•)v
k
β = äx•:n| iβ .

Similarly, we have

ax∗:n| i = ax•:n| iβ .

Therefore, āx∗:n| i in Proposition 1 can be rewritten as

āx∗:n| i = (X0 −X1) äx•: n| iβ +
X1

vβ

ax•: n| iβ ,

and Ā1
x∗:n| i in Proposition 2 can also be rewritten as

Ā1
x∗:n| i = (X0 + βX0 − βX1) äx•:n| iβ +

βX1 −X0

vβ

ax•:n| iβ .

Next, we apply the α-approximation to
◦
ex∗:n|, the expected lifetime of a person

aged x over an n-year time period under the linear hazard transform. Before we give

the proposition, we introduce the following notations for the purpose of expression:

Y0 =

∫ 1

0

e−βsds =
1− e−β

β
, (3.12)

and

Y1 =

∫ 1

0

se−βsds =
1− e−β(1 + β)

β2
. (3.13)
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Proposition 3. Under the linear hazard transform and α-approximation assumption,

the expected lifetime of a person aged x over an n-year time period can be approximated

as

◦
ex∗:n|= (Y0−Y1)(1+ex∗:n−1|)+Y1e

βex∗:n| =
β − 1 + e−β

β2
(1+ex∗:n−1|)+

eβ − 1− β

β2
ex∗:n|

where ex∗:n| is the expected curtate lifetime of a person aged x over an n-year time

period under the linear hazard transform.

Proof: From (3.5) and the definition of expected curtate lifetime, we have

◦
ex∗:n| =

∫ n

0
tpx∗dt

=
n−1∑

k=0

∫ 1

0
k+spx∗ds

=
n−1∑

k=0

∫ 1

0

[(1− s)kpx∗e
−βs + s k+1px∗e

β(1−s)]ds

=
n−1∑

k=0

∫ 1

0

[se−βs(k+1px∗e
β − kpx∗) + kpx∗e

−βs]ds.

With the notations introduced in (3.12) and (3.13), we get

◦
ex∗:n| =

n−1∑

k=0

[Y1(k+1px∗e
β − kpx∗) + Y0 kpx∗ ]

= (Y0 − Y1)
n−1∑

k=0

kpx∗ + Y1e
β

n−1∑

k=0

k+1px∗

= (Y0 − Y1)(1 +
n−1∑

k=1

kpx∗) + Y1e
β

n∑

k=1

kpx∗

=
β − 1 + e−β

β2
(1 + ex∗:n−1|) +

eβ − 1− β

β2
ex∗:n|.

Corollary 3. Under the α-approximation assumption,

◦
ex∗=

β − 1 + e−β

β2
+

eβ + e−β − 2

β2
ex∗ .
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Proof: This corollary follows directly from Proposition 3 by letting n go to infinity.

A special case: when β = 0, Y0 and Y1 in (3.12) and (3.13) become Y0 =
∫ 1

0
ds =

1 and Y1 =
∫ 1

0
sds = 1

2
, and Proposition 3 reduces to

◦
ex•:n|=

1 + ex•:n−1| + ex•:n|
2

.

Moreover, under the linear hazard transform and α-approximation assumption, it

is easy to obtain formulas for deferred m-year continuous n-year life annuities and

life insurance from Propositions 1 and 2 because m|nāx∗ and m|nĀx∗ can be written as

m|nāx∗ = mpx∗v
māx∗+m:n| i,

and

m|nĀx∗ = mpx∗v
mĀ1

x∗+m:n| i,

respectively. By letting n go to infinity, we can also get formulas for deferred m-year

whole life insurance and annuity.

Next, we apply α-approximation to ä
(m)
x∗:n| and explore its relationship with the

continuous annuity.

Proposition 4. Under the α-approximation assumption,

ä
(m)
x∗:n|i = äx∗:n|i

[
ä

(m)

1| iβ −
1

m
(Iä)

(m)

1| iβ

]
+

1

mvβ

(Iä)
(m)

1| iβax∗:n|i. (3.14)
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Proof:

ä
(m)
x∗:n|i =

n−1∑

k=0

m−1∑
j=0

1

m
vk+ j

m
k+ j

m
px∗

=
n−1∑

k=0

m−1∑
j=0

1

m
v

k+ j
m

β ( k+ j
m

px)
α

=
n−1∑

k=0

m−1∑
j=0

1

m
v

k+ j
m

β

[
(1− j

m
) kp

α
x +

j

m
k+1p

α
x

]

=
n−1∑

k=0

m−1∑
j=0

1

m
v

k+ j
m

β kp
α
x +

n−1∑

k=0

m−1∑
j=0

1

m
v

k+ j
m

β

j

m
(k+1p

α
x − kp

α
x)

=
n−1∑

k=0

kp
α
xvk

β

1

m

m−1∑
j=0

v
j
m
β +

n−1∑

k=0

(k+1p
α
x − kp

α
x)vk

β

1

m

m−1∑
j=0

j

m
v

j
m
β

= äx∗:n|iä
(m)

1| iβ +

[
1

vβ

ax∗:n|i − äx∗:n|i

]
1

m
(Iä)

(m)

1| iβ (3.15)

= äx∗:n|i

[
ä

(m)

1| iβ −
1

m
(Iä)

(m)

1| iβ

]
+

1

mvβ

(Iä)
(m)

1| iβax∗:n|i.

Proposition 5. Under the α-approximation assumption, if we let m go to infinity,

(3.14) becomes

āx∗:n| i = (X0 −X1) äx∗: n| i +
X1

vβ

ax∗: n| i

which is the same as the one in Proposition 1.

Proof: First, limm→∞ ä
(m)
x∗:n|i = āx∗:n| i. Next, by (3.15) and l’Hopital’s rule,

lim
m→∞

ä
(m)

1| iβ = lim
m→∞

∑m−1
j=0 v

j
m
β

m

= (1− vβ) lim
m→∞

1
m

1− v
1
m
β

= (1− vβ) lim
m→∞

− 1
m2

−(ln vβ) v
1
m
β (− 1

m2 )

= −(1− vβ) lim
m→∞

1

(ln vβ) v
1
m
β

=
1− vβ

β + δ
.
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Moreover, from (3.15),

lim
m→∞

1

m
(Iä)

(m)

1| iβ = lim
m→∞

m−1∑
j=0

jv
j
m
β

m2

= lim
m→∞

−mvβ(1− v
1
m
β ) + v

1
m
β (1− vβ)

m2(1− v
1
m
β )2

=
−vβ(β + δ) + (1− vβ)

(β + δ)2
.

Therefore,

āx∗:n| i = lim
m→∞

ä
(m)
x∗:n|

=
1− vβ

β + δ
äx∗:n| i +

−vβ(β + δ) + (1− vβ)

(β + δ)2

[
1

vβ

ax∗:n| i − äx∗:n| i

]

=

[
1− vβ

β + δ
− −vβ(β + δ) + (1− vβ)

(β + δ)2

]
äx∗:n| i

+
−vβ(β + δ) + (1− vβ)

vβ(β + δ)2
ax∗:n| i.

It is easy to check that

1− vβ

β + δ
− −vβ(β + δ) + (1− vβ)

(β + δ)2
=

δβ − dβ

δ2
β

= X0 −X1,

and

−vβ(β + δ) + (1− vβ)

vβ(β + δ)2
=

iβ − δβ

δ2
β

=
X1

vβ

,

which completes the proof.



Chapter 4

Mortality Fitting under the LH

Transform

4.1 Mortality Improvement Fitting

Intuitively, one application of the linear hazard transform is the fitting of different

sets of mortalities for pricing insurance and annuities. Due to the improvement of

medical conditions, living environment and health care system, people tend to live

a longer life. Table 4.1 illustrates a portion of male mortalities from 1980 CSO and

2001 CSO.

As Table 4.1 and Figure 4.1 demonstrate, we see that over decades, the probability

of dying at a given age is gradually decreasing (the probability of survival is gradually

increasing), indicating the extended longevity of people on average.

In order to capture the improvement of mortality, the linear hazard transform can

be used to model the improvement of force of mortality over decades and predict the

trend of future mortality.

Throughout this study, mortality tables from 1980 CSO and 2001 CSO are used

unless indicated otherwise. We want to model the mortality improvement from 1980

CSO to 2001 CSO. Suppose we are selling insurance and annuity products with a

term of n years. We have the options of fitting kpx or px+k, k = 1, 2, ..., n, between

23
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Table 4.1: Male mortalities from 1980 CSO and 2001 CSO

Age x qx: 1980 Male qx: 2001 Male Improvement of mortality 1

30 0.00173 0.00114 0.00059
31 0.00178 0.00113 0.00065
32 0.00183 0.00113 0.00070
33 0.00191 0.00115 0.00076
34 0.00200 0.00118 0.00082
35 0.00211 0.00121 0.00090
36 0.00224 0.00128 0.00096
37 0.0024 0.00134 0.00106
38 0.00258 0.00144 0.00114
39 0.00279 0.00154 0.00125
40 0.00302 0.00165 0.00137
41 0.00329 0.00179 0.00150
42 0.00356 0.00196 0.00160
43 0.00387 0.00215 0.00172
44 0.00419 0.00239 0.00180
45 0.00455 0.00265 0.00190
46 0.00492 0.00290 0.00202
47 0.00532 0.00317 0.00215
48 0.00574 0.00333 0.00241
49 0.00621 0.00352 0.00269

1Improvement of mortality is the difference between qx’s from
1980 CSO male and 2001 CSO male



CHAPTER 4. MORTALITY FITTING UNDER THE LH TRANSFORM 25

0 2 4 6 8 10 12 14 16 18 20
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Year k (x=30)

kp x

 

 

1980 CSO
2001 CSO

Figure 4.1: kpx: 1980 CSO and 2001 CSO male mortalities, x = 30, n = 20

1980 CSO and 2001 CSO. In this paper, fitting kpx rather than px+k is studied. The

reason will be discussed later. Let kpx,A be the source survival probability (1980 CSO

in this context), kpx,B be the target survival probability we want to fit (2001 CSO),

and kpx∗,A be the fitted survival probability by fitting kpx,A to kpx,B under the linear

hazard transform (3.4). What we need to do is to obtain the values of α and β such

that fitted values kpx∗,A are as close to kpx,B as possible.

Let’s have a look at the plot of kpx, which is shown in Figure 4.1. The plot shows

that the curve of kpx looks like an exponential function. In fact,

kpx = e−
∫ k
0 µx(s)ds.

This observation prompts us to consider the model

µx,B(t) = αµx,A(t) + β + ε(t), (4.1)

where ε(t) is a white noise at t, which implies

tpx,B = tp
α
x,Ae−βte−

∫ t
0 ε(s)ds.
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In order to obtain the estimated values of α and β in the regression, we take the

natural logarithm on both sides to produce

ln(tpx,B) = α ln(tpx,A)− βt−
∫ t

0

ε(s)ds.

We need to minimize the sum of square errors

n∑

k=1

[

∫ k

0

ε(s)ds]2 =
n∑

k=1

{ln (kpx,B)− [α ln(kpx,A)− βk]}2. (4.2)

Based on the reasoning above, the following method is proposed.

• Take the natural logarithm on kpx,A, and kpx,B, k = 1, 2, ..., n, respectively;

• Do regression based on ln kpx. Correspondingly, the sum of square errors is

SLH
4
=

n∑

k=1

[ ln(kpx,B)− ln(kpx∗,A)]2 =
n∑

k=1

[ln(kpx,B)− α ln(kpx,A) + βk]2.

• Obtain values of α and β such that SLH is minimized.

With the help of this method, explicit formulas can be obtained for α and β.

To minimize SLH , take the derivatives with respect to α and β, respectively, let the

resulting expressions equal 0, and solve them for α and β. That is,

∂SLH

∂α
= −2

n∑

k=1

ln(kpx,A) [ln(kpx,B)− α ln(kpx,A) + β k] = 0, (4.3)

and

∂SLH

∂β
= 2

n∑

k=1

k [ln(kpx,B)− α ln(kpx,A) + β k] = 0. (4.4)

Solving equations (4.3) and (4.4) for α and β gives

α =
cd− be

ad− b2
(4.5)
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and

β =
bc− ae

ad− b2
(4.6)

where

a =
n∑

k=1

(ln kpx,A)2, (4.7)

b =
n∑

k=1

k (ln kpx,A),

c =
n∑

k=1

(ln kpx,A)(ln kpx,B), (4.8)

d =
n∑

k=1

k2,

and

e =
n∑

k=1

k (ln kpx,B).

We are also going to fit kpx,B on kpx,A under the proportional hazard transform,

and compare the performance of the LH and PH transforms. Adopting the same

methodology as mentioned above, similar formula can be obtained for the value of α

under the PH transform by minimizing the following sum of square errors

SPH
4
=

n∑

k=1

[ln (kpx,B)− α ln (kpx,A)]2.

Here α is the only variable to be determined. Taking the derivative with respect to

α and then setting to 0 yields

∂ SPH

∂ α
= −2

n∑

k=1

ln (kpx,A)[ln (kpx,B)− α ln (kpx,A)] = 0. (4.9)

Solving (4.9) for α gives

α =
c

a
(4.10)
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where a and c are defined by (4.7) and (4.8).

We apply the methodologies above to 1980 CSO and 2001 CSO mortalities for

an individual aged x with a term of n = 20 years. Comparisons are made among

(α, β) for the LH transform, α for the PH transform and the corresponding values

achieved by running software R package. Standard error (S.E.) is calculated by S.E. =√
SSE

n
, where SSE is defined by

∑n
k=1[

∫ k

0
ε(s)ds]2. Tables 4.2 and 4.3 summarize these

regression results.

Table 4.2: Summary of 1980 CSO Male fitting 2001 CSO Male, n = 20

Age x Method
LH PH

α β S.E. α S.E.

30
Formula 0.5496741 0.0000757 0.0001894 0.5767702 0.0002358

R 0.5491000 0.0000774 0.0001893 0.5768290 0.0002358

40
Formula 0.6036607 -0.0001786 0.0002310 0.5745926 0.0004301

R 0.6030000 -0.0001750 0.0002309 0.5743650 0.0004298

50
Formula 0.6916951 -0.0010723 0.0002425 0.6185154 0.0022611

R 0.6915000 -0.0010690 0.0002425 0.6170160 0.0022504

Table 4.3: Summary of 1980 CSO Female fitting 2001 CSO Female, n = 20

Age x Method
LH PH

α β S.E. α S.E.

30
Formula 0.5372490 0.0000159 0.0001358 0.5445070 0.0001389

R 0.5371000 0.0000163 0.0001358 0.5445140 0.0001389

40
Formula 0.8836010 -0.0011710 0.0004622 0.6210066 0.0020379

R 0.8815000 -0.0011620 0.0004620 0.6198000 0.0020370

50
Formula 0.9086175 -0.0011806 0.0010160 0.7768785 0.0023616

R 0.9140314 -0.0012276 0.0010127 0.7753600 0.0023573

As illustrated by Tables 4.2 and 4.3, we can see that estimates of α and β under

the LH transform in (4.5), (4.6), and the estimate of α under the PH transform in

(4.10), yield good approximation compared with exact values obtained by R software.

The standard errors are very close to the exact values obtained by R as well, which
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Figure 4.2: kpx: A (1980 CSO male) fits B (2001 CSO male), x = 30, n = 20

justifies us to use those formulas to estimate values of α and β that minimize the sum

of square errors.

Figures 4.2-4.5 are regression plots of 1980 CSO male mortality fitting 2001 CSO

male mortality for ages 30 and 40 over a time period of 20 years. qx+k’s in Figures

4.3 and 4.5 are obtained by qx+k = 1− k+1px

kpx
, k = 0, 1, . . . , n− 1, where kpx’s are from

Figures 4.2 and 4.4, respectively.

Observing Figures 4.2-4.5 and Tables 4.2 and 4.3, we can tell that the LH trans-

form produces smaller standard errors than the PH transform. Adding one more

parameter β to the proportional hazard transform does yield more accurate regres-

sion results. By fitting kpx,A to kpx,B under the LH transform, we can minimize the

error.

From the results as shown above, we see that as long as two mortalities from either

two different years or different genders are available, we can use this methodology to

regress one on the other to get the values of α and β. The relationship between two

sets of mortalities can be determined by these two parameters α and β, which serve as

the foundation of fitting of mortalities, pricing of life insurance and annuity product,
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Figure 4.3: qx+k: A (1980 CSO male) fits B (2001 CSO male), x = 30, n = 20
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Figure 4.4: kpx: A (1980 CSO male) fits B (2001 CSO male), x = 40, n = 20
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Figure 4.5: qx+k: A (1980 CSO male) fits B (2001 CSO male), x = 40, n = 20

and prediction of mortality improvement.

4.2 Fitting kpx Versus Fitting px+k

As mentioned in the previous section, fitting px+k under the linear hazard transform

is one alternative approach to conduct regression. That is, finding α and β such that

the sum of square errors

n∑

k=1

[

∫ k

k−1

ε(s)ds]2 =
n−1∑

k=0

[ln(px+k,B)− α ln(px+k,A) + β]2 (4.11)

is minimized. Fitting kpx will minimize the sum of square errors in (4.2) calculated

based on kpx while fitting px+k will minimized the sum of square errors in (4.11)

based on px+k; each method has its own advantages. In this project, fitting kpx is

thoroughly studied for the following reasons:

• The net single premium of an n-year life annuity policy is evaluated by the
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formula

äx∗:n| i =
n−1∑

k=0

kpx∗v
k, (4.12)

or

ax∗:n| i =
n∑

k=1

kpx∗v
k, (4.13)

both of which are expressed in terms of kpx∗ . Once we know the interest i and

obtain the fitted kpx∗ values, this annuity can be evaluated accordingly.

• The net single premium of an n-year term life insurance policy can be expressed

in terms of äx∗: n| and ax∗: n| as follows:

A1
x∗:n| = v äx∗: n| − ax∗: n|.

Therefore, fitting kpx∗ is sufficient to calculate the net single premium of this

insurance product.

• When we compute the deferred annuity and deferred insurance, the discounting

factor mpx∗v
m is needed, where m is the term of deferral. The discounting factor

is a function of kpx∗ as well.

• When calculating the net level premium of a life insurance or annuity policy,

we just take the ratio of one net single premium to the other. These two net

single premiums are all related to kpx∗ rather than px∗+k.

• Although the error terms in (4.2) are not independent of each other, there is a

benefit of doing so. When companies price life insurance and annuity products,

the accuracy of kpx’s for the first few years are very important. Fitting kpx

stresses more on the accuracy of estimates in the near future, i.e., kpx’s for

small k. The errors in kpx for large k can be largely reduced by the discount

factor vk as in (4.12) and (4.13). Table 4.4 compares the estimates of kpx’s

under the kpx fitting and px+k fitting, where kpx fitting error is the difference

between kpx∗,A (kpx fitting) and kpx,B divided by kpx,B. As we can see, kpx

fitting produces more accurate estimates of kpx’s for small k.
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Table 4.4: kpx: A (2001 CSO male) fits B (2001 CSO female), x = 30, n = 20, based
on kpx fitting and px+k fitting

kpx∗,A kpx∗,A kpx fitting px+k fitting
k kpx,B (kpx fitting) (px+k fitting) error error
1 0.998860 0.998973 0.998991 0.011313% 0.013101%
2 0.997731 0.997920 0.997954 0.018872% 0.022358%
3 0.996604 0.996840 0.996891 0.023677% 0.028773%
4 0.995458 0.995717 0.995783 0.026079% 0.032641%
5 0.994283 0.994547 0.994625 0.026527% 0.034394%
6 0.993080 0.993318 0.993407 0.023919% 0.032893%
7 0.991809 0.992019 0.992116 0.021158% 0.031007%
8 0.990480 0.990634 0.990738 0.015590% 0.026026%
9 0.989054 0.989154 0.989259 0.010117% 0.020819%

For the reasons above, it justifies us to fit kpx. Tables 4.5 and 4.6 are illustrations

of fitting kpx versus fitting px+k for various premiums compared with true values.

In these tables, 2001 CSO male mortality is used to fit 2001 CSO female mortality.

Fitted values are used to price life insurance and annuity products that were sold in

2001, and compared with true values (based on 2001 CSO female mortality). Interest

rate is assumed to be 5%.

Table 4.5: Comparison of fitting 2001 CSO female mortality by male mortality be-
tween kpx fitting and px+k fitting, x = 30, n = 20

Female kpx fitting change (%) px+k fitting change (%)
A1

x:n| 0.0155563 0.0156102 0.3465% 0.0156318 0.4857%

Ax:
1
n| 0.3663534 0.3663579 0.0012% 0.3663534 0.0000%

Ax:n| 0.3819096 0.3819681 0.0153% 0.3819852 0.0198%
äx:n| 12.9798979 12.9786700 -0.0095% 12.9783113 -0.0122%
P 1

x:n| 0.0011985 0.0012028 0.3560% 0.0012045 0.4980%

Px:
1
n| 0.0282247 0.0282277 0.0107% 0.0282281 0.0122%

Px:n| 0.0294232 0.0294304 0.0248% 0.0294326 0.0320%
ex:n| 19.7706840 19.7694184 -0.0064% 19.7688000 -0.0095%
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Table 4.6: Comparison of fitting 2001 CSO female mortality by male mortality be-
tween kpx fitting and px+k fitting, x = 40, n = 20

Female kpx fitting change (%) px+k fitting change (%)
A1

x:n| 0.0360356 0.0360953 0.1658% 0.0360737 0.1058%

Ax:
1
n| 0.3516501 0.3515586 -0.0260% 0.3516501 0.0000%

Ax:n| 0.3876857 0.3876539 -0.0082% 0.3877238 0.0098%
äx:n| 12.8586006 12.8592680 0.0052% 12.8577999 -0.0062%
P 1

x:n| 0.0028024 0.0028069 0.1606% 0.0028056 0.1120%

Px:
1
n| 0.0273475 0.0273389 -0.0312% 0.0273492 0.0062%

Px:n| 0.0301499 0.0301459 -0.0134% 0.0301548 0.0161%
ex:n| 19.4929997 19.4935685 0.0029% 19.4916554 -0.0069%

As Tables 4.5 and 4.6 show, fitting kpx is better than fitting px+k when we price

life insurance or annuity products, or calculate the expected life time (generally has

a smaller error margin). Although kpx fitting is not as good at pricing some insur-

ance products for some age, the overall accuracy confirms that fitting kpx is a good

approach.

4.3 Fitting Mortality on Separate Intervals

Previous subsections deal with mortality fitting for people aged 30 and 40. A reason

for this is that most of life insurance products are sold to adults. Except some

special circumstances such as global epidemic which causes great changes in mortality

structure, mortality rates for adult groups are usually increasing with age. Fitting

mortality for adult groups between two sets of mortalities usually gives very good

estimation.

For infant or teenage groups, however, the mortality rates are a little bit more

complicated. Figures 4.6 and 4.7 give fitted curves for 1980 CSO (male) fitting 2001

CSO (male) for x = 5 and n = 20. Both qx+k curves have slightly similar but different
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Figure 4.6: kpx: A (1980 CSO male) fits B (2001 CSO male) for x = 5 and n = 20

4 6 8 10 12 14 16 18 20 22 24
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

Age (x+k), x=5

q x+
k

 

 

q
x+k,A

q
x+k,B

q
x

*
+k,A

(LH)

q
x

•
+k,A

(PH)

Figure 4.7: qx+k: A (1980 CSO male) fits B (2001 CSO male) for x = 5 and n = 20



CHAPTER 4. MORTALITY FITTING UNDER THE LH TRANSFORM 36

shapes. The curve for 1980 CSO is not monotone. It goes down first and then starts

going up at around age 10, and steadily increases until the age reaches around 20

where the curve starts going down again. On the other hand, 2001 CSO curve is

increasing; it increases slowly over intervals [5,10] and [19, 24], but increases faster

over the interval [10,19].

One major problem with fitting one curve to the other under the hazard transforms

is that the fitted curve usually inherits the shape of the original curve. The fitted curve

minimizes the sum of square errors without changing its original shape. Apparently,

the problem here is that the qx+k curves for 1980 CSO and 2001 CSO have different

shapes. Therefore, there will be significant differences between the fitted curve and

the curve for 2001 CSO as illustrated in Figure 4.7. Although the linear hazard

transform gives a better fit than the proportional hazard transform, there is still

room for improvement. Note that although qx+k plot shows the drawback, kpx plot

in Figure 4.6 indicates that the fitted curve under the LH transform looks good. The

reason is that the error of qx+k at each step offsets each other’s impact since kpx is

the product of (1− qx+i), i = 0, 1, ..., k− 1. Therefore, the deviation of the fitted kpx

curve is less significant than that of the fitted qx+k curve.

In order to solve this problem, we consider partitioning the age interval [5,25] into

two or more intervals, over each of which both qx+k curves for 1980 CSO and 2001

CSO look more similar to each other. First of all, we have two options to split the

interval, either non-overlapping subintervals [5,10], [11, 20], [21, 24], or overlapping

subintervals [5,10], [10, 20], [20, 24]. The idea behind this is that we make both

curves monotone and look as similar to each other as possible over each subinterval,

and make the number of partitioned subintervals as few as possible to save time and

effort. Regressions are done under the PH and LH transforms. Both kpx and px+k

fitting are applied for the purpose of comparison. The sum of square errors based

on the deviation of kpx is calculated. The results are summarized in Table 4.7.

From Table 4.7, it can be concluded that the non-overlapping subintervals gives a

better fit overall. Figures 4.8-4.11 are regression on the non-overlapping subintervals.

Table 4.8 is a summary of fitting on the entire interval [5, 24] and the non-overlapping

subintervals [5, 10], [11, 20] and [21, 24]. Table 4.8 tells us that when we do regression
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Table 4.7: Comparison of different methods of fitting over partitioned subintervals

S.S.E. Transform Non-overlapping Overlapping

kpx fitting
LH 4.34E-09 4.41E-09
PH 3.11E-07 2.66E-07

px+k fitting
LH 4.30E-09 4.63E-09
PH 1.20E-06 1.26E-06

Table 4.8: Standard error comparison between the entire interval and non-overlapping
subintervals based on kpx fitting

Regression on LH method PH method
Entire interval 7.979E-05 59.9E-05

Non-overlapping subintervals 4.337E-09 310.7E-09

over the non-overlapping subintervals, the standard error will be greatly reduced for

both the PH and LH transforms. Figures 4.8 and 4.10 are the improved fitting plots

for kpx. As mentioned earlier, due to the cumulative offset impact of errors, the

differences are not easily noticed. When we look at Figures 4.9 and 4.11, however, we

observe some interesting results. One thing worth noting is that the curve under the

LH transform well fits the curve for 2001 CSO while the curve under the PH transform

does not fit as well, and has obvious jumps at the points of partition, 10 and 20. The

explanation for this is that the PH transform does not have a constant term, and

therefore does not have as much flexibility as the LH transform. Regression over non-

overlapping subintervals under the LH transform makes these two curves have similar

properties and, as a result, fitting error can be greatly reduced. However, regression

over non-overlapping subintervals under the PH transform may cause a non-smooth

curve at the partitioning points between subintervals, and the sum of square errors is

still far larger than that under the LH transform, which is caused by its inflexibility

in the transform.

Another interesting observation is that the increasing monotonicity of qx+k may

change after applying both the LH and PH transforms over some intervals. For
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example, in Figure 4.9, the qx+k’s are increasing on the interval [11, 20] before and

after the LH transform. However, the decreasing qx+k’s on the intervals [5, 10] and

[21, 24] become increasing after the LH transform because the corresponding α’s are

negative (we allow negative α for the purpose of mortality fitting) for these intervals.

Consider the sequence {qx+k : k = n1, n1 + 1, . . . , n2} where 0 ≤ n1 ≤ n2 ≤ n. Then

qx+k − qx+k−1 = 1− px+k − (1− px+k−1)

= e−
∫ k

k−1 µx(s)ds − e−
∫ k+1

k µx(s)ds.

Therefore,

qx+k − qx+k−1 ≥ 0 ⇔
∫ k

k−1

µx(s)ds ≤
∫ k+1

k

µx(s)ds.

For the fitted sequence {qx∗+k : k = n1, n1 + 1, . . . , n2},

qx∗+k − qx∗+k−1 = e−
∫ k

k−1 µx∗ (s)ds − e−
∫ k+1

k µx∗ (s)ds

= e−β(e−α
∫ k

k−1 µx(s)ds − e−α
∫ k+1

k µx(s)ds).

Therefore,

qx∗+k − qx∗+k−1 ≥ 0 ⇔
{ ∫ k

k−1
µx(s)ds ≤ ∫ k+1

k
µx(s)ds, if α ≥ 0;∫ k

k−1
µx(s)ds ≥ ∫ k+1

k
µx(s)ds, if α ≤ 0.

For the reasons above, we have

qx+k ≤ qx+k−1 ⇔
{

qx∗+k ≤ qx∗+k−1 and α ≥ 0;

qx∗+k ≥ qx∗+k−1 and α ≤ 0.

Therefore, the increasing (decreasing) monotonicity of qx+k is preserved under both

the LH and PH transforms if α is non-negative (non-positive).
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Figure 4.8: kpx: A (1980 CSO male) fits B (2001 CSO male) for x = 5 and n = 20
based on px+k fitting
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Figure 4.9: qx+k: A (1980 CSO male) fits B (2001 CSO male) for x = 5 and n = 20
based on px+k fitting
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Figure 4.10: kpx: A (1980 CSO male) fits B (2001 CSO male) for x = 5 and n = 20
based on kpx fitting
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Figure 4.11: qx+k: A (1980 CSO male) fits B (2001 CSO male) for x = 5 and n = 20
based on kpx fitting



Chapter 5

Mortality Prediction

5.1 Linear Interpolation of Parameters α and β of

the LH Transform

We have showed that fitting kpx under the LH transform is better since it has a

smaller sum of square errors than the PH transform. The fitting of historical data

works well. Intuitively, we can also predict future mortality given current estimates of

the parameters of the LH transform. Suppose two mortality tables for years (y −m)

and y are available. By fitting year (y − m)’s mortality to year y’s, estimates of

α and β can be obtained. We assume that mortality improvement from year y to

(y + m) follows the same trend, i.e., µ
(y+m)
x (t) = αµ

(y)
x (t) + β. We need to find

approximate values of α and β for year (y + k), k = 0, 1, ..., i.e., αy+k and βy+k such

that µ
(y+k)
x (t) = αy+kµ

(y)
x (t) + βy+k with αy = 1, αy+m = α, βy = 0 and βy+m = β. In

this project, linear interpolation is proposed to calculate αy+k and βy+k, that is,

αy+k = (1− k

m
)× 1 +

k

m
× α, (5.1)

= 1 +
k

m
(α− 1) (5.2)

and

βy+k =
k

m
× β, (5.3)

41
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Figure 5.1: Predicted kpx: use 2001 CSO male to predict future mortality, x = 30,
n = 20

k = 0, 1, 2, . . ..

Formulas (5.1) and (5.3) use the linear interpolation to estimate values of αy+k and

βy+k. It is reasonable to do so because of the observation that mortality improves

steadily over time. Given an individual aged x, a time period m and a particular

future year y + k, we can estimate the values of αy+k and βy+k with the help of

formulas (5.1) and (5.3). Then we can project the mortality curve for the individual

and the particular year. Note that from (5.2), if α < 1, predicted αy+k’s will be less

than 1; if α > 1, predicted αy+k’s will be greater than 1.

For the purpose of illustration, several scenarios are discussed and plots are drawn

to show the effect of the linear interpolation of α and β. 1980 CSO and 2001 CSO

mortality tables are available. Regression of these two sets of mortalities are illus-

trated previously in Tables 4.2 and 4.3. We are going to estimate mortality for year

2001 and the following years. Therefore, m equals 21 and y equals 2001 in this case.

Future projections are illustrated by Figures 5.1-5.4 for people aged 30 and 40

over a time period of 20 years. Actual mortality (2001 CSO) is also included in

the figures for the purpose of comparison. For each age x, the first plot predicts



CHAPTER 5. MORTALITY PREDICTION 43

30 35 40 45 50
0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

Age (x+k), x=30

q x+
k

 

 

year 2001
year 2006
year 2011
year 2016
year 2021

Figure 5.2: Implied qx+k: use 2001 CSO male to predict future mortality, x = 30,
n = 20
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Figure 5.3: Predicted kpx: use 2001 CSO male to predict future mortality, x = 40,
n = 20
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Figure 5.4: Implied qx+k: use 2001 CSO male to predict future mortality, x = 40,
n = 20

survival probability kpx for future years accompanied by another plot of qx+k implied

by qx+k = 1− k+1px

kpx
.

These figures show that the linear interpolation adjustment of α and β are reflected

in the trend of mortality improvement for the future. Actually, this method can also

be applied to obtain the mortalities for the years in the past where the mortality tables

are not available. As a matter of fact, making a mortality table is a time-consuming

process because lots of work involving data collection and processing needs to be

done. So when we try to obtain a mortality table for a year in the past, it is not

practical to do all the necessary work to get one. Instead, we can rely on two most

recent mortality tables available (1980 CSO and 2001 CSO) and the associated values

of α and β. Then the methodology above is applied to predict mortalities for given

x, n and a certain year between 1980 and 2001. This could save a lot of time and

efforts. The linear hazard transform and the linear interpolation of parameters do

provide us a tool to forecast future and past mortalities.
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5.2 Future Diagonal qx

The last section discusses the method of the linear interpolation of α and β to predict

mortality curves for the years in the past or future. But when we price insurance

products, this method does not take the mortality risk into account with respect to

time. That is to say, each mortality curve for a year is estimated based on a time origin

for that year. When a person ages, his or her mortality should change accordingly,

i.e., the mortality improves to a new one based on that particular year. We call

this the diagonal mortality method. Taking diagonal qx captures the improvement

of mortality each year and takes into account the effect of time. It is a dynamic

mortality scheme instead of a static one where all mortality rates are based on only

one specific year’s table. Table 5.1 is an illustration of how this method works.

Table 5.1: Method of Taking Diagonal Mortality

Year Mortality Table

y q
(y)
x q

(y)
x+1 q

(y)
x+2 q

(y)
x+3 q

(y)
x+4 q

(y)
x+5 . . .

y+1 q
(y+1)
x q

(y+1)
x+1 q

(y+1)
x+2 q

(y+1)
x+3 q

(y+1)
x+4 q

(y+1)
x+5 . . .

y+2 q
(y+2)
x q

(y+2)
x+1 q

(y+2)
x+2 q

(y+2)
x+3 q

(y+2)
x+4 q

(y+2)
x+5 . . .

y+3 q
(y+3)
x q

(y+3)
x+1 q

(y+3)
x+2 q

(y+3)
x+3 q

(y+3)
x+4 q

(y+3)
x+5 . . .

y+4 q
(y+4)
x q

(y+4)
x+1 q

(y+4)
x+2 q

(y+4)
x+3 q

(y+4)
x+4 q

(y+4)
x+5 . . .

y+5 q
(y+5)
x q

(y+5)
x+1 q

(y+5)
x+2 q

(y+5)
x+3 q

(y+5)
x+4 q

(y+5)
x+5 . . .

...
...

...
...

...
...

...
...

As we see in Table 5.1, for a person aged x over a time period of n, we project the

future mortalities for the next n years. Then the mortality q
(y+k)
x+k , k = 0, 1, . . . , n− 1,

on the diagonal line are selected. This makes sense because as a person ages, his or

her mortality might change due to mortality improvement. This progressive approach
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Figure 5.5: qx+k with the diagonal method, male, x = 30, n = 20

help us better understand the dynamic of future mortalities.

As an application, the diagonal method is applied to the 2001 CSO male mortality,

aged 30 and 40 over a time period of 20 years. Based on the mortality for year

2001, we are going to predict the mortalities for years 2011 and 2021. The plots

include the mortality curves obtained in section 5.1 as well as diagonal mortality

curve. The following plots are diagonal projections of future mortalities based on the

2001 CSO mortality. As observed in Figures 5.5 and 5.7, the diagonal mortality curve

gradually moves from year 2001 curve towards year 2021 curve, colliding with year

2021 curve at the end. This demonstrates that diagonal mortality curve represents

the mortality improvement over time. To approximate this diagonal curve, we can

also apply the LH transform to year 2001 mortality to obtain the best estimate.

The adopted methodology is the same as the one in Chapter 4. Figures 5.9-5.12 are

regression plots. As seen from Figures 5.9-5.12, the LH transform gives a good fit of

the future diagonal mortality curve based on the 2001 CSO.

Tables 5.2 and 5.3 are premiums for insurance products based on 2001 CSO, the

diagonal mortality and the mortality fitted by the LH transform. As we can see from
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Figure 5.6: kpx with the diagonal method, male, x = 30, n = 20
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Figure 5.7: qx+k with the diagonal method, male, x = 40, n = 20
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Figure 5.8: kpx with the diagonal method, male, x = 40, n = 20
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Figure 5.9: kpx: fitting 2001 CSO male to the diagonal projection mortality, x = 30,
n = 20
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Figure 5.10: qx+k: fitting 2001 CSO male to the diagonal projection mortality, x = 30,
n = 20
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Figure 5.11: kpx: fitting 2001 CSO male to the diagonal projection mortality, x = 40,
n = 20
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Figure 5.12: qx+k: fitting 2001 CSO male to the diagonal projection mortality, x = 40,
n = 20

these tables, the LH fitting gives very good approximations to these premiums based

on the diagonal mortalities.
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Table 5.2: Comparison of premiums based on 2001 CSO, diagonal mortality and LH
fitted mortality, x = 30, n = 20

2001 CSO Diagonal LH fitting Error (%)
A1

x:n| 0.0209139 0.0167868 0.0168035 0.0992%

Ax:
1
n| 0.3628028 0.3660589 0.3660311 -0.0076%

Ax:n| 0.3837167 0.3828457 0.3828345 -0.0029%
äx:n| 12.9419495 12.9602411 12.9604748 0.0018%
P 1

x:n| 0.0016160 0.0012953 0.0012965 0.0974%

Px:
1
n| 0.0280331 0.0282448 0.0282421 -0.0094%

Px:n| 0.0296491 0.0295400 0.0295386 -0.0047%
ex:n| 19.6903784 19.7373572 19.7375670 0.0011%

Table 5.3: Comparison of premiums based on 2001 CSO, diagonal mortality and LH
fitted mortality, x = 40, n = 20

2001 CSO Diagonal LH fitting Error (%)
A1

x:n| 0.0450985 0.0354123 0.0355665 0.4354%

Ax:
1
n| 0.3456883 0.3532805 0.3531635 -0.0331%

Ax:n| 0.3907868 0.3886928 0.3887300 0.0096%
äx:n| 12.7934773 12.8374510 12.8366693 -0.0061%
P 1

x:n| 0.0035251 0.0027585 0.0027707 0.4416%

Px:
1
n| 0.0270207 0.0275195 0.0275121 -0.0270%

Px:n| 0.0305458 0.0302780 0.0302828 0.0157%
ex:n| 19.3541276 19.4660930 19.4651640 -0.0048%



Chapter 6

Risk Ordering and Optimal

Reinsurance

6.1 Risk Ordering

In insurance industry, it is sometimes difficult or not necessary to quantify the exact

amount of a risk. Instead, actuaries are more interested in comparing two risks based

on some criteria. This is called risk ordering. As long as they have the ordering of

the underlying risks, actuaries can further compare the ordering of other quantities

of interest, such as ruin probabilities, prices of insurance products, etc.

For a risk Z, let SZ(t) be its survival function, t ≥ 0. The PH transform of

random variable Z is denoted by Z•
α and the LH transform of Z is denoted by Z∗

α,β.

It is straightforward to see that the survival function of Z•
α is SZ(t)α while the survival

function of Z∗
α,β is SZ(t)αe−βt. Define πα(Z) =

∫∞
0

SZ(t)αdt = E(Z•
α) and πα,β(Z) =∫∞

0
SZ(t)αe−βtdt = E(Z∗

α, β) for α > 0 and β ≥ 0. We give a variety of definitions of

ordering in the following.

Definition 13. A risk Y stochastically dominates a risk X (written as X ≤st Y ) if

and only if SX(t) ≤ SY (t) for t ≥ 0.

52
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Definition 14. A risk X is smaller than a risk Y in the hazard rate order (written

as X ≤hr Y ) if and only if rX(t) ≥ rY (t) for t ≥ 0, where rZ(t) = fZ(t)
SZ(t)

, Z = X, Y .

Since SZ(t) = e−
∫ t
0 µZ(s)ds, Z = X,Y , it is easy to see that X ≤hr Y implies

X ≤st Y .

Definition 15. A risk X is smaller than a risk Y in the PH-transform (proportional

hazard transform) order (written as X ≤ph Y ) if and only if πα(X) ≤ πα(Y ) for

α > 0.

Definition 16. A risk X is smaller than a risk Y in the LH-transform (linear hazard

transform) order (written as X ≤lh Y ) if and only if πα,β(X) ≤ πα,β(Y ) for α > 0

and β ≥ 0.

It is trivial that X ≤lh Y implies X ≤ph Y by letting β = 0.

Definition 17. A risk X is smaller than a risk Y in the Laplace transform order

(written as X ≤lt Y ) if and only if E(e−sX) ≥ E(e−sY ) for s ≥ 0.

Since E(e−sZ) =
∫∞
0

e−stfZ(t)dt = − ∫∞
0

e−stdSZ(t) = 1 − s
∫∞

0
e−stSZ(t)dt for

s ≥ 0 and Z = X, Y , we have X ≤lt Y ⇔ ∫∞
0

e−stSX(t)dt ≤ ∫∞
0

e−stSY (t)dt for

s ≥ 0.

Definition 18. A risk X is less dangerous than a risk Y (written as X ≤D Y ) if

and only if (1) E(X) ≤ E(Y ) and (2) there exists c ≥ 0 such that

SX(t)

{
≥ SY (t), 0 ≤ t < c ,

≤ SY (t), c ≤ t.

Proposition 6. For risks X and Y , X ≤st Y if and only if X∗
α, β ≤st Y ∗

α, β, which

implies X ≤lh Y , or equivalently, X•
α ≤lt Y •

α .
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Proof: For all t ≥ 0, α > 0 and β ≥ 0,

X ≤st Y ⇔ 0 ≤ SX(t) ≤ SY (t)

⇔ 0 ≤ SX(t)αe−βt ≤ SY (t)αe−βt

⇔ SX∗
α, β

(t) ≤ SY ∗α, β
(t)

⇔ X∗
α, β ≤st Y ∗

α, β,

which implies
∫ ∞

0

SX(t)αe−β tdt ≤
∫ ∞

0

SY (t)αe−β tdt (6.1)

or X ≤lh Y . From (6.1), we also have that X•
α ≤lt Y •

α , completing the proof.

Note that letting α = 1 and β ≥ 0 in (6.1) gives that X ≤lh Y implies X ≤lt Y .

The following proposition explores the relationship among the dangerous order,

Laplace transform order and LH transform order.

Proposition 7. X ≤D Y and X ≤lt Y ⇒ X ≤lh Y and X∗
α,β ≤D Y ∗

α,β.

Proof: Let g(x) = xα, α ∈ (0, 1]; it is easy to see that g(x) is concave and non-

decreasing. Therefore, for any point (SY (t), g( SY (t)) ), there exists a tangent line

L(u) touching the curve g(x) at (SY (t), g( SY (t)) ) such that
{

L(u) = g′( SY (t) )(u− SY (t)) + g(SY (t)),

L(u) ≥ g(u),
∀u ∈ [0, 1].

Therefore, we know that g(u)−g(SY (t)) ≤ g′( SY (t) )(u−SY (t)). Now let u = SX(t);

we have

g(SX(t))− g(SY (t)) ≤ g′(SY (t))[SX(t)− SY (t)] (6.2)

which means

g(SY (t))− g( SX(t) ) ≥ g′(SY (t))[SY (t)− SX(t)]. (6.3)

Since g(x) is concave and non-decreasing, we have that g′(x) is non-increasing and

non-negative. Therefore, for t > c,

SY (t) < SY (c) ⇒ g′(SY (t)) ≥ g′(SY (c)). (6.4)
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By (6.3) and (6.4),

g(SY (t))− g( SX(t) ) ≥ g′( SY (c) )[SY (t)− SX(t)]

⇒ [g(SY (t))− g( SX(t) )]e−βt ≥ g′( SY (c) )[SY (t)− SX(t)]e−βt

⇒
∫ ∞

c

[g(SY (t))− g(SX(t))]e−βtdt

≥
∫ ∞

c

g′(SY (c))[SY (t)− SX(t)]e−βtdt. (6.5)

On the other hand, for t ≤ c,

SY (t) > SY (c) ⇒ g′(SY (t)) ≤ g′(SY (c)). (6.6)

From (6.2) and (6.6), we get

g(SX(t))− g( SY (t) ) ≤ g′( SY (c) )[SX(t)− SY (t)]

⇒ [g( SX(t) )− g( SY (t) )]e−βt ≤ g′( SY (c) )[SX(t)− SY (t)]e−βt

⇒
∫ c

0

[g(SX(t))− g(SY (t))]e−βtdt

≤
∫ c

0

g′(SY (c))[SX(t)− SY (t)]e−βtdt. (6.7)

Combining (6.5) and (6.7) leads to
∫ ∞

0

g(SY (t))e−βtdt−
∫ ∞

0

g(SX(t))e−βtdt

=

∫ ∞

c

[g(SY (t))− g(SX(t))]e−βtdt−
∫ c

0

[g(SX(t))− g(SY (t))]e−βtdt

≥
∫ ∞

c

g′(SY (c))[SY (t)− SX(t)]e−βtdt−
∫ c

0

g′(SY (c))[SX(t)− SY (t)]e−βtdt

= g′(SY (c))[

∫ ∞

0

SY (t)e−βtdt−
∫ ∞

0

SX(t)e−βtdt]. (6.8)

As a result, (6.8) can be written as

πα,β(Y )− πα,β(X) ≥ g′(SY (c))

∫ ∞

0

[SY (t)− SX(t)]e−βtdt. (6.9)

Since X ≤lt Y , we have
∫∞

0
SX(t)e−βtdt ≤ ∫∞

0
SY (t)e−βtdt for β ≥ 0. Moreover, g′(x)

is non-negative. Therefore, we conclude from (6.9) that

πα,β(Y )− πα,β(X) ≥ 0
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for α > 0 and β ≥ 0, which means X ≤lh Y .

Next, the definition of the dangerous ordering for X ≤D Y implies

(SX(t))αe−βt

{
≥ (SY (t))αe−βt, 0 ≤ t < c ,

≤ (SY (t))αe−βt, c ≤ t.

Together with

E(X∗
α,β) =

∫ ∞

0

(SX(t))αe−βtdt = πα,β(X) ≤ πα,β(Y ) =

∫ ∞

0

(SY (t))αe−βtdt = E(Y ∗
α,β),

we reach that X∗
α,β ≤D Y ∗

α,β for α > 0 and β ≥ 0.

All the ordering relationships above are summarized in Diagram 1.

Diagram 1:

X ≤hr Y =⇒ X ≤st Y (≡ X∗
α,β ≤st Y ∗

α,β) =⇒ X ≤lt Y

⇓ ⇑ ⇓ + X ≤D Y

X ≤ph Y ⇐= X ≤lh Y ( ≡ X•
α ≤lt Y •

α )

6.2 Optimal Reinsurance

Let X be a non-negative random variable representing the amount of claims in a

certain time period. An insurance company, or known as the cedent, is faced with the

risk X and decides to purchase a reinsurance contract from a reinsurance company.

The reinsurance contract is written on X; the reinsurance company collects a risk

adjusted premium P and promises to pay R(X), 0 ≤ R(X) ≤ X. Therefore, the

remaining amount X − R(X) is paid by the ceding company. R(X) is also known

as a compensation function. Under the LH transform, the risk adjusted premium P

satisfies

P = E[R(X)∗] =

∫ ∞

0

SR(X)∗(t)dt =

∫ ∞

0

SR(X)(t)
αe−βtdt, (6.10)

where SR(X)(t) is the survival function of R(X), and R(X)∗ is the corresponding

random variable of R(X) under the LH transform.
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This study extends the results of Kaluszka (2005). We tackle an optimization

problem of reinsurance based on the utility function by maximizing the expected

utility function E u(R(X)−X). Since it is assumed that the cedent is risk averse, we

know that u is an increasing and concave function. If we substitute w(x) = −u(−x),

the problem becomes to minimize E w(X − R(X)) where w is an increasing and

convex function. First, we define R0 = {0 ≤ R(X) ≤ X; R(·) is nondecreasing and

left continuous}. We will find an optimal reinsurance contract from the set R0.

Let Π be a mapping from non-negative random variables to real numbers. Π is

called a convex functional if for non-negative random variables X and Y ,

Π(Y ) ≥ Π(X) + E(Π′(X)(Y −X)),

where Π′(X) is a derivative of Π at X.

At a reinsurance premium P , the cedent needs to minimize a convex functional

Π(X −R(X)). So we consider the following reinsurance problem

min Π(X −R(X)) s.t. f(P ) = H(R(X)), 0 ≤ R(X) ≤ X, (6.11)

where P is a real value given by some premium principle, H is a convex function and

f is an increasing function. Theorem 1 provides a solution to problem (6.11).

Theorem 1. Assume there exist a compensation function R̂(X), derivatives H ′ =

H ′(R̂(X)) and Π′ = Π′(X − R̂(X)), and a real c > 0 such that

(1) (Π′ − c inf H ′)+ = c (H ′ − inf H ′),

(2) if H ′(w) = inf H ′ then R̂(X)(w) = 0,

(3) f(P ) = H(R̂(X)), and

(4) E[X], E[|Π′X|], and E[|H ′X|] are finite.

Then R̂(X) is a solution of (6.11).

Proof: Refer to Kaluszka (2005).

In order to solve this optimal reinsurance under the LH transform, we consider

the following problem

min E[w(X −R(X))] s.t. f(P ) = E[h(R(X))Z], 0 ≤ R(X) ≤ X, (6.12)
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where Z is a fixed positive random variable, h is a strictly convex, increasing and

differentiable function, P is a real number and f is an increasing function. Put

vc(t) = t + h′−1[(
1

cµZ

w′(t)− h′(0))+ + h′(0)] (6.13)

where µZ = E[Z] > 0. Let v−1
c (t) be the inverse function of vc(t), t ≥ 0. Theorem 2

provides a solution to problem (6.12).

Theorem 2. Assume that E[X], E[Xh′(X)Z] and E[Xw′(X)] are finite. Since

w′(0) ≥ 0, h′(0) ≥ 0 and µZ > 0, there exists the smallest non-negative real number,

say c0, such that w′(0) ≤ c0µZh′(0). Suppose also that µZh(0) < f(P ) < E[h(L)Z],

where L stands for the right limit of X − v−1
c (X) at c0. Then a solution of problem

(6.12) is given by R̂(X) = X − v−1
c (X) with c > c0 being such that E[h(R̂(X))Z] =

f(P ).

Proof: We use Theorem 1 with Π(X) = E[w(X)] and H(X) = E[h(X)Z]. First,

condition (1) of Theorem 1 is equivalent to the following

[w′(x−R(x))− cµZh′(0)]+ = cµZh′(R(x))− cµZh′(0), x ≥ 0, (6.14)

where inf H ′ = inf h′(x)E[Z] = h′(0)µZ > −∞. Arguing as in Theorem 2 in Kaluszka

(2005), we can conclude that there exists a non-decreasing function R, being the

solution of problem (6.12), if w′(0) ≤ cµZh′(0). Moreover, x 7→ x − R(x) is non-

decreasing. Since both R(x) and x − R(x) are non-decreasing, we have 0 = R(0) <

R(x) and 0 = 0−R(0) ≤ x−R(x). Therefore, 0 ≤ R(x) ≤ x for x ≥ 0. It is easy to

see that (6.14) can be expressed as vc(x−R(x)) = x, where vc(x) is given by (6.13).

So R(x) = x− v−1
c (x).

Second, since inf H ′ = h′(0)µZ and h′ is increasing, it is obvious that condition

(2) of Theorem 1 holds.

Third, put φ(c) = f(P )− E[h(X − v−1
c (X))Z], c > c0. Because

E[h(X)Z] = E[Z

∫ X

0

h′(t)dt] + µZh(0) ≤ E[Zh′(X)X] + µZh(0) < ∞
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according to the dominated convergence theorem, φ(c) is continuous at c. Moreover,

φ(∞) = f(P )− µZh(0) > 0 and φ(c0+) = f(P )− E[h(L)Z] < 0. Therefore, there is

a real c such that E[h(R(X))Z] = f(P ). Condition (3) of Theorem 1 holds.

Last, condition (4) of Theorem 1 obviously holds. Proof is completed.

Theorem 3. The optimal reinsurance problem (6.12) under the LH transform for

β < 0 is given by R̂(X) = X − v−1
c (X), where

vc(t) = t− 1

β
ln[(

1

cµZ

w′(t)− 1)+ + 1],

µZ = E[g′(1 − F (X))], F is the distribution function of X, g(x)
4
= xα, v−1

c (t) is

the inverse of vc(t), and c > c0 is such that E[h(R̂(X))g′(1 − F (X))] = P with

h(x)
4
= 1−e−βx

β
.

Proof: From (6.10),

P =

∫ ∞

0

g(Pr(R(X) > t))e−βtdt

=

∫ ∞

0

∫ 1

0

1[0, P r(R(X)>t)](x)e−βtdg(x)dt

=

∫ 1

0

∫ ∞

0

1[x,∞](Pr(R(X) > t))e−βtdtdg(x) (6.15)

where

1[x,∞](Pr(R(X) > t)) =

{
1, if Pr(R(X) > t) > x,

0, if Pr(R(X) > t) ≤ x.

And since F−1
R(X)(t) = R(F−1(t)) for every R(X) ∈ R0 (see Rolski et al., 1999, p.97),
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(6.15) can be written as

∫ 1

0

∫ F−1
R(X)

(1−x)

0

e−βt dt dg(x)

=

∫ 1

0

1− e−βF−1
R(X)

(1−x)

β
dg(x)

=

∫ 1

0

1− e−βR(F−1(1−x))

β
dg(x)

=

∫ ∞

0

1− e−βR(x)

β
d[1− g(1− F (x))]

4
= E[h(R(X))g′(1− F (X))]

where h(x)
4
= 1−e−βx

β
. Note that h(x) is strictly convex, increasing and differentiable

since h′(x) = e−βx > 0 and h′′(x) = −βe−βx > 0. Let Z = g′(1 − F (X)), f(P ) = P

and apply Theorem 2; then R̂(X) = X−v−1
c (X) is the solution to (6.12) under the LH

transform where v−1
c (t) is the inverse of vc(t) given by (6.13) with h′−1(t) = −(1/β) ln t

and h′(0) = 1. In this case,

vc(t) = t− 1

β
ln[(

1

cµZ

w′(t)− 1)+ + 1],

and c > c0 is the one such that E[h(R̂(X))g′(1− F (X))] = P .



Chapter 7

Mortality Swap

7.1 Background

When insurers sell insurance or annuity products, they face mortality risks - actual

versus expected mortality. The pricing of insurance or annuity products is based on

a predetermined mortality table, interest rate and loading. If the actual mortality

experience differs from the expected, the company that sells the product may suffer

losses or gain profits from the unexpected mortality change. For example, when the

mortality improves, i.e., more people survive than the originally expected, we have

a situation where annuity companies suffer losses because they have to pay more

survival benefits while insurance companies gain since they pay fewer death benefits

during the term of the policy. On the other hand, when the mortality worsens,

i.e., more people die than the expected, it will result in losses for life insurance

company because more death benefits need to be paid while creating gains for annuity

companies since not as many survival benefits as expected need to be paid out.

In order to stabilize the cash flows for companies, the idea of mortality swap is

proposed. Within the framework of mortality swaps, the annuity insurer is willing to

pay floating payments on the counter-party’s life insurance while receiving floating

payments on its own annuity policies.

Upon entering the mortality swap, suppose no payment is made at the beginning.

These two parties agree that the value for each of the parties must be based on the

61
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equal present values of their future cash flows. Each year, the annuity insurer pays

a floating amount to the life insurer based on the actual number of deaths; the face

value is F per death. On the other hand, the life insurer pays a floating amount to

the annuity insurer based on the actual number of survivals; the payout is b per year

per annuitant.

7.2 Main Results of Mortality Swap

Lemma 1. Suppose the underlying force of mortality is µx∗(t) = αµx(t)+β, and there

is a random mortality shock ε on the parameter α, i.e., µ
(ε, 0)
x∗ (t) = (α + ε) µx(t) + β,

where the random shock ε is assumed to follow a normal distribution with mean c1

and variance σ2
1. To factor the random shock into pricing, the annuity can be priced

as

ä
(ε, 0)

x∗: n| = Eε

[
ä

(ε, 0)

(K(x∗)+1)∧n|

]
=

n−1∑

k=0

vk
kpx∗e

−c1 Λ(k)+
σ2
1
2

Λ2(k)

where

Λ(k) =

∫ k

0

µx(t)dt = − ln(kpx).

Proof: In the case of the mortality shock ε on parameter α, assume that h(w) is the
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probability density function of ε; then we have

Eε

[
ä

(ε, 0)

(K(x∗)+1)∧n|

]
= Eε

[n−1∑

k=0

vk
kp

(ε ,0)
x∗

]

=

∫ ∞

−∞

( n−1∑

k=0

vk (kpx)
α+we−β k

)
h(w)dw

=
n−1∑

k=0

vk (kpx)
αe−β k

∫ ∞

−∞
(kpx)

w h(w)dw

=
n−1∑

k=0

vk (kpx)
αe−β k

∫ ∞

−∞
e−w Λ(k) h(w)dw

=
n−1∑

k=0

vk (kpx)
αe−β k Mε[−Λ(k)]

=
n−1∑

k=0

vk
kpx∗ e−c1 Λ(k)+

σ2
1
2

Λ2(k).

Lemma 2. Suppose the underlying force of mortality is µx∗(t) = αµx(t)+β, and there

is a random mortality shock ξ on the parameter β, i.e., µ
(0, ξ)
x∗ (t) = α µx(t) + (β + ξ),

where the random shock ξ is assumed to follow a normal distribution with mean c2

and variance σ2
2. To factor the random shock into pricing, the annuity can be priced

as

Eξ

[
ä

(0, ξ)

(K(x∗)+1)∧n|

]
=

n−1∑

k=0

vk
kpx∗e

−c2 k+
σ2
2
2

k2

.

Proof: In the case of the mortality shock ξ on parameter β, assume that g(u) is the
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probability density function of ξ; then we have

Eξ

[
ä

(0, ξ)

(K(x∗)+1)∧n|

]
= Eξ

[n−1∑

k=0

vk
kp

(0, ξ)
x∗

]

=

∫ ∞

−∞

( n−1∑

k=0

vk (kpx)
αe−(β + u) k

)
g(u)du

=
n−1∑

k=0

vk (kpx)
αe−β k

∫ ∞

−∞
e−u k g(u)du

=
n−1∑

k=0

vk
kpx∗ Mξ(−k)

=
n−1∑

k=0

vk
kpx∗e

−c2 k+
σ2
2
2

k2

.

Theorem 4. Suppose the underlying force of mortality is µx∗(t) = αµx(t) + β, and

there are random mortality shocks ε and ξ on the parameters α and β, respectively,

i.e., µ
(ε, ξ)
x∗ (t) = ( α + ε )µx(t) + (β + ξ), where the random shocks ε ∼ N(c1, σ

2
1) and

ξ ∼ N(c2, σ
2
2). To factor the random shocks into pricing, the annuity can be priced as

E

[
ä

(ε, ξ)

((K(x∗)+1)∧n)|

]
=

n−1∑

k=0

vk
kpx∗e

−c1 Λ(k)+
σ2
1 Λ2(k)

2 e−c2 k+
σ2
2
2

k2

.

Proof: According to the iterated expectation for continuous random variables, we

have

E

[
ä

(ε, ξ)

((K(x∗)+1)∧n)|

]
= Eε

[
Eξ

(
ä

(ε, ξ)

((K(x)+1)∧n)|

∣∣∣∣ ε

)]
. (7.1)

With the help of Lemmas 1 and 2, it is easy to obtain the result.

Based on the theorems and statements above, it is straightforward for us to obtain

the following proposition.

Proposition 8. Suppose that an insurance-written company and an annuity-written

company swap mortality for the purpose of hedging potential mortality shocks. The

life issuer and annuity issuer enter a mortality swap, where the annuity issuer pays a

floating benefit to the life issuer based on the actual number of deaths for the face value
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of F per death at the end of the year, and gets a floating benefit from the life issuer

based on the actual number of survivors for the amount of b per year per annuitant at

the end of the year. The life issuer swaps N1 insureds with the annuity issuer for N2

annuitants. For the annuity issuer, the underlying force of mortality is µx(t) while the

underlying force of mortality for the life issuer is assumed a linear hazard transform

of µx(t), that is, µx∗(t) = αµx(t) + β. The corresponding forces of mortality for the

annuity and life issuers with random mortality shocks are

µ(ε1, ξ1)
x (t) = (1 + ε1) µx(t) + ξ1

and

µ(ε2, ξ2)
x∗ (t) = ( α + ε2 ) µx(t) + ( β + ξ2 ),

respectively, where the mortality shocks follow the normal distributions given by

ε1 ∼ N( d1, σ2
1 a),

ξ1 ∼ N( d2, σ2
2 a),

ε2 ∼ N( c1, σ2
1 l),

and

ξ2 ∼ N( c2, σ2
2 l).

Then the value of the swap can be calculated by

F ×N1 ×
(n−1∑

k=0

vk+1
kpx∗qx∗+k C1, k C2, k

)
= b×N2 ×

( n∑

k=1

vk
kpx D1, k D2, k

)

where

C1, k = e−c1 Λl(k)+
σ2
1l Λ2

l (k)

2 ,

C2, k = e−c2 k+
σ2
2l k2

2 ,

D1, k = e−d1 Λa(k)+
σ2
1a Λ2

a(k)

2 ,

D2, k = e−d2 k+
σ2
2a k2

2 ,

Λa(k) =

∫ k

0

µx(t)dt = − ln(kpx),
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and

Λl(k) =

∫ k

0

µx∗(t)dt = αΛa(k) + βk = −α ln(kpx) + βk.

In the notations above, the subscripts a and l stand for companies that provide annu-

ities and life insurance, respectively.

How mortality swap works is of interest to many. If mortality improves and fewer

people than expected die, the life issuer pays less benefits than expected and makes

money out of its insurance business line. But upon entering this swap, it is obliged

to pay the annuity benefits sold by the annuity issuer. Since the annuity policies

are issued to similar population, similar shocks strike that population and therefore

more people survive. So the life issuer needs to pay survival benefits. The risk is

transferred from the annuity issuer to the life issuer. One the other hand, when

mortality worsens, the annuity issuer makes money out of its annuity business since

fewer survival benefits are paid out. It is obliged, however, to pay the death benefits

from the insurance policies issued by the life insurance company. In this case, the risk

is transferred from the life issuer to the annuity issuers. To sum up the discussion

above, the mortality risk is shared between the life and the annuity issuers. As a

result, negative impacts can be offset, and their future annual cash flows are more

stable.
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Conclusion

The PH transform and its properties were proposed and investigated by Wang (1995).

This marked a milestone in actuarial research. The PH transform distorts the survival

function and adjusts weights in the tail of the survival function. Its applications to

a variety of areas, such as insurance premium calculation, rate making, and risk

measure, have become widely known in actuarial practice.

In this project, we study the linear hazard transform. As a complimentary tool,

we adopt the assumption of α-approximation. With the help of α-approximation

assumption, we obtain explicit formulas for pricing continuous insurance products

under the LH transform. Such formulas are expressed in terms of the net single

premiums of discrete insurance products.

The LH and PH transforms are also useful for fitting two mortality curves by

regression. Comparison is made between the LH transform fitting and the PH trans-

form fitting. It is concluded that the LH transform fitting gives better results with

a smaller sum of square errors than the PH transform fitting does because the LH

transform fitting has two parameters which provide more flexibility and accuracy for

regression. Due to the good fit under the LH transform, the relationship between two

sets of mortalities can be determined by these two parameters of the LH transform.

Mortality prediction is explored under the LH transform. The diagonal mortality

method is proposed and applied for mortality prediction. Plots of different predic-

tion methods are drawn for the purpose of comparison. It is found that the diagonal
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method well represents the mortality improvement and is useful for mortality predic-

tion.

Finally, the LH transform is applied to asset management, such as mortality swap,

risk ordering and optimal reinsurance. When insurance or annuity companies sell

products, they bear the risk of unfavorable mortality change. In order to stabilize

the cash flows, mortality swap between the insurance issuer and the annuity issuer

is considered. The value of a mortality swap incorporates the LH transform as well.

Under the LH transform, an optimal reinsurance strategy is studied and an explicit

formula is suggested. The LH transform order is also introduced and its connections

with other risk orders are explored. The future work includes the potential extension

of the LH transform µx∗(t) = αµx(t) + β to µx∗(t) = αµx(t) + β(t), where β(t) is a

function of t.
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