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Abstract

We study goodness of fit tests for exponential families. We compare, via Monte Carlo simula

tions, the powers of exact conditional tests based on co-sufficient samples (samples from the

conditional distribution given the sufficient statistic) and approximate unconditional tests

based on the parametric bootstrap. \Ve use the Gibbs sampler to generate the co-sufficient

samples. The gamma and von Mises families are investigated, and the Cramer-von Mises

and Watson test statistics are applied. The results of this study show that those two tests

have very similar powers even for samples of very small size, such as n = 5 for the gamma

family and n = 10 for the von Mises family.
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Chapter 1

Introduction

Suppose Xl, ... , X n is a random sample of size n from an unknown distribution F, and

F = {FI} : eE 8} is a parametric distribution family. We are going to determine whether

the sample is from a distribution in F. The general test of goodness of fit is a test of

H o : F E F, or F = FI}; eE 8. (1.1)

If the parametric vector e is fully specified, the null hypothesis Ho is simple. We call

this Case 0, following Stephens (1986). Otherwise, with one or more elements of e being

unknown, Ho is composite.

In goodness-of-fit, tests based on the empirical distribution function (EDF) are highly

recommended, in which the EDF statistics are applied. For Case 0, those tests of fit could be

simplified to a test of uniformity by the probability integral transformation (PIT). Tables of

the critical values for those statistics are available, even for finite samples. When econtains

unknown element (s), the EDF statistics use the same calculation formulas except replacing

FI} by a suitable estimate. However, different from those of Case 0, their distributions will

depend on the null distribution family tested, the method of estimation, and the sample

size. That means different tables are required for the different families. Asymptotic tables of

the critical values have been provided for some families in Stephens (1986). If the unknown

parameters are location or scale parameters, and appropriate estimates are applied, the

distributions of the EDF statistics will not depend on the unknown parameters but on

the null distribution family and the sample size. However, if there is an unknown shape

parameter present, the distributions of EDF statistics depend on the true value of the

unknown shape parameter. When the dependence is slight, the tables are still useful as a

1



CHAPTER 1. INTRODUCTION 2

reference. But, when the dependence is strong, it is risky to use these tables.

Instead of using the tables, a Monte Carlo method is suggested. It works as follows.

First, find an estimate fJ of e for the given sample, and fit a parametric model F(j to the

given sample. If Ho is true, then the fitted model F(j will be a close approximation to the

unknown true model. Second, independent Monte Carlo samples are derived from the fitted

model. Third, calculate the values of the test statistic, say S, for the original sample and

derived samples. The p-value is evaluated by comparing the value of the test statistic from

the original sample to those from the derived samples. That is, the EDF of those values

of S from the derived samples simulates the true distribution of S. Finally, if the p-value

is less than the significance level 0, we reject Ho; otherwise, we accept it. This is the test

based on the parametric bootstrap. See Cheng (2006) for more information. The Monte

Carlo sample size should be as large as possible to make the EDF of the values of S as close

as possible to its true distribution. Usually, the number is limited by computing ability and

time. When the sample size is finite, increasing the number of Monte Carlo samples only

makes the EDF of the test statistic values approach the distribution of Sunder F(j, instead

of Fe. Thus, the test based on the parametric bootstrap is an approximate unconditional

test.

Recently, it has been proposed to generate the samples from the conditional distribution

of Xl, ... ,Xn given the sufficient statistic Tn, F(XI' ... ,XnITn), which leads to an exact

conditional test. Those samples are called "look-alike" samples or "*samples" in O'Reilly

& Gracia-Medrano (2006) or "co-sufficient" samples in Lockhart et al. (2007) and Lockhart

et al. (2008). In this project, we will use the term "co-sufficient". Because of the sufficiency,

the conditional distribution of any statistic calculated from the co-sufficient samples will not

depend on the unknown parameters. In the composite case of goodness of fit, if Ho is true,

the co-sufficient samples given the value of the sufficient statistic have exactly the same

distributional properties as the original sample. Therefore, by increasing the number of

the Monte Carlo samples, tests based on the co-sufficient samples can be made as exact as

required.

This project is a complement to Lockhart et al. (2007) and Lockhart et al. (2008).

It compares powers of the exact conditional test based on co-sufficient samples and the

approximate unconditional test based on the parametric bootstrap. We will use the same

notations as those in the above two papers, as well as their methods of generating the co

sufficient samples. Large-sample theory suggests that the exact test should have the same
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power as the bootstrap test when the sample size is large enough. In this project, we will

answer the question of "how large is large enough". Chapter 2 gives a general set-up for our

study. Chapter 3 summarizes the methods so far available for generating the co-sufficient

samples. In Chapters 4 and 5, the gamma and von Mises families are investigated, and

the powers of the exact conditional tests and the approximate unconditional tests against

different alternatives are studied. Finally, we summarize our work, and give some discussion

of possible future work.



Chapter 2

General set-up

We investigate tests for the gamma and von Mises families in this project. These are

members of the exponential families, whose sufficient statistics can be found quickly.

We review exponential families and quadratic EDF statistics in Section 2.1 and define

the exact conditional test in Section 2.2. Finally, we illustrate the Monte Carlo realization

of both exact and approximate tests, as well as their power study.

2.1 Review

2.1.1 Exponential families

Generally, a k-parameter exponential family of full rank has density or mass function of the

form

f(x; 0) = g(x) exp {r]1(O)h 1(x) + ... + 17k(O)hk(x) + c(O)}; 0 E e, (2.1)

where 0 is a k-dimensional parameter vector, c(-), g(.), Th(-), and hi (-) are known functions,

and (171, ... ,TJk) has dimension k.

For a random sample Xl, ... , X n from the above distribution with 0 unknown, the mini

mal sufficient statistic for 0 is Tn = (Tn1 , ... ,Tnk), where Tni = 2:j=l hi(Xj ).

2.1.2 Quadratic EDF statistics

Suppose Xl, ... , X n is a random sample from a continuous distribution Fe, which may be

abbreviated as FeU or Fe. Let X(1) < X(2) < ... < X(n) be the order statistics. Based on

4



CHAPTER 2. GENERAL SET-UP

Xl, ... , X n , the empirical distribution function (EDF) Fn is a step function defined by

5

if u < X(1);

if X(i) ::; u < X(i+l), i = 1, ... , n - 1;

if X(n) ::; U.

As n -r 00, Fn -r Fe.

The statistics based on the EDF measure the discrepancy between Fe and Fn. Only

quadratic EDF statistics are applied in our study. The general form of a quadratic EDF

statistic Q, for the simple case, is

where 'l/;(Fe(u)) is a weight function. Different weights give different statistics. The choice

'l/;(x) = 1 gives the Cramer-von Mises statistic W 2 . The choice 'l/;(x) = [x{l- x}]-l gives

the Anderson-Darling statistic A2.

A related statistic is Watson's statistic U2 given by

U
2

= ni: {Fn(U) - Fe(u) - i:[Fn(u) - Fe (u)JdFe(u) }
2

dFe(u).

This statistic is applicable for circular data because it is invariant under rotations.

For case 0, if Ho is true, the EDF statistic has a distribution independent of the null

distribution Fe. Let Z = F(X; 0) (the Probability Integral Transformation PIT), then

Z", U(O, 1). Statistic Q could be written as

where F~(z) is the EDF of the Zi = F(Xi; 0). Thus, all the simple hypothesis cases will be

a test of uniformity.

Computing Formulas

Let Zi = F(Xi; 0), and let z(i), i = 1, ... , n be the order statistics; practical computing

formulas for W2, A2 , and U2 are given by

2 I: { 2i - 1 } 2 1
W = Z(·)--- +-'

t 2n 12n'
i



CHAPTER 2. GENERAL SET- UP

A2 -n - ~ I)2i - l)[log Z(i) + log {I - Z(n+l-i)}] or,
n .

t

1
= -n - - L[(2i - 1) logZ(i) + (2n + 1 - 2i) log {I - Z(i)}];

n .
t

6

In the case of unknown parameters, the same formulas are used with Zi = F(Xi; 8), where

8is an approriate estimate (usually the MLE).

In this project, W 2 and A2 are used to test the gamma family, U2 to test the von Mises

family.

2.2 Exact conditional test

When considering the problem of testing Ho defined in 1.1 where () is unknown, we wish for

a powerful unbiased test with the critical function <1>, where

{
I if Ho is rejected;

<1>=
o if Ho is accepted.

(2.2)

Denote the power function by (3if?(F), which is the probability that the test rejects Ho when

the sample is from F; then,

A test of Ho is said to be unbiased if the power function satisfies

(3if?(F) < a, if FE :F;

(3if?(F) > a, if F 1:- :F.

That is, for no alternative should the rejection probability be less than the size of the test;

otherwise, there will exist an alternative distribution which is more likely to be accepted

than is some distribution in the null hypothesis.

Suppose the power function (3if?(F) is a continuous function of F, unbiasedness implies

(3if?(F) = Ep[<1>] = a; for all FE :F.

Tests satisfying Condition 2.3 are said to be similar.

(2.3)
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Suppose that there exists a sufficient statistic T for F, and T is the family of distributions

of T as F varies over F. If T is complete, Condition 2.3 is equivalent to

E[1>lt] == 0:, for all t. (2.4)

Because of the sufficiency, the conditional power function over Ho is independent of B, and

Condition 2.4 reduces the problem to that of testing a simple hypothesis for each value of t.

Thus, any good unbiased test must be some exact conditional test, when there is a complete

sufficient statistic to the null distribution.

Let 8 be an appropriate test statistic defined in Subsection 2.1.2. The distribution of

8 is G(s; B) which depends on the true value of the unknown B. For an observed sample,

suppose T = t, we denote the conditional distribution of 8 given T = t by Gc(s/t); then,

Gc(slt) is independent of B.

We construct a nonrandomized test, conditioned on T = t, with the critical function

<I> (8, t), satisfying

{

I if 8 > c(t),
<I>(8,t) =

o otherwise;

where the function c(t) are found by solving

Epe [<I> (8, T)lt] = 0:, for all t.

(2.5)

(2.6)

This conditional test is exact because its rejection probability over Ho is exactly 0:. For this

given sample, suppose 8 = So, then its exact p-value is Pc(so) = 1 - Gc(solt).

If an alternative distribution, say K, is specified, the conditional power function of the

exact conditional test given T = t is

,8p(Klt) = EK [<I> (8, T)lt].

The overall power is

EK[,8p(KIT)]

EK [EK [<I> (8, T)IT]]

EK[<I>(8, T)]. (2.7)
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2.3 The Monte Carlo methods

8

Our power study is a two-level Monte Carlo study to give powers of two methods. Each of

a sequence of samples is tested by both of these Monte Carlo test methods.

2.3.1 Monte Carlo implementation of the tests

Given an observed sample Xl, ... , Xn, we calculate the sufficient statistic tn = Tn(X1, ... , xn),

the maximum likelihood estimate eof 0, and the test statistic So = S(X1, ... , xn). The

procedures of tests based on both the co-sufficient and parametric bootstrap samples are as

follows.

Exact conditional test based on the co-sufficient samples

Given Tn = tn, we calculate the conditional p-value by Pc(so) = Pr(S > so/Tn = tn)

1 - Gc(soltn), if Pc(so) < (Y, reject Ho; otherwise, accept it. Since Gc(sltn) is hard or

impossible to calculate, we use co-sufficient samples to simulate Gc ( sltn ). Steps are as

follows.

1. Generate Xi,l' ... ,xi,n from F(X1, ... ,Xnltn), calculate si = S(xb, ... ,xi,n);

repeat the above step until Bj

B. generate XS ,l' ... , xS,n from F(X1, ... , Xnltn), calculate Ss = S(XS,l' ... , xS,n);

return si, ... ,ss'

We estimate the exact conditional p-value by Pc(so) ~ i 2:f=l 1(05; > so). As B in

creases, the estimate will become as accurate as required. The generation of co-sufficient

samples is described in 3.2.

Approximate unconditional test based on the parametric bootstrap

The approximate p-value for the given sample is calculated by po(so) = 1 - G(so; fJ). We

simulate G(S; 0) by using parametric bootstrap samples. Steps are as follows.

1. Generate X1,1, ... , X1,n from Fo' calculate 051 = S(X1,1, ... , X1,n);

2. generate X2,1, ... ,X2,n from Fe' calculate 052 = S(X2,l, ... ,X2,n);
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repeat the above step until B,.

B. generate XB,l, , .. , XB,n from Fe! calculate SB = S(XB,l, ... , XB,n)"

return Sl, ... , SB·

9

The approximate p-value Pe(so) is then estimated by Pe(so) ~ 13 ~f=l 1(sj > so). As

B increases, the estimate will be as accurate as required. However, since the parametric

bootstrap is based on the Fe, and not on Fo, the test is approximate.

2.3.2 Monte Carlo integration for the power function

\Vhen the alternative K is fully specified, we are interested in the powers of the approximate

unconditional test and the exact conditional test. M independent samples are generated

from K; for ith sample, we define <Pi as in Equation 2.2.

The power function for the alternatives K will be estimated by Monte Carlo integration,

1 M
fJcp(K) ~ M L <Pi; where M ~ 00.

i=l
(2.8)

That is, the overall power is estimated by the average of the values of <Pi. As M increases,

the accuracy will be improved.

In our study, we set M = 500, and B = 1,000. For different M, standard errors of the

power estimates are listed in Table 2.1. The same standard errors apply to an individual

simulated p-value (a p-value for a single sample) when M is replaced by B, the number of

bootstrap or co-sufficient samples used.

Power (p-value) 0.05 0.10 0.20 0.30 0.40 0.50

M =500 0.0097 0.0134 0.0179 0.0205 0.0219 0.0224

M =1,000 0.0069 0.0095 0.0126 0.0145 0.0155 0.0158

M =10,000 0.0022 0.0030 0.0040 0.0046 0.0049 0.0050

Table 2.1: Standard errors of the power estimates when M = 500, 1,000, and 10,000. These

standard errors also apply to individual p-value when M is replaced by B.



Chapter 3

Generating the co-sufficient

samples

In this chapter, we will discuss two methods of generating the co-sufficient samples: use of

Rao-Blackwell estimates in Section 3.1 and use of the Gibbs sampler in Section 3.2.

Suppose Xl, ... , X n is a random sample from Fe defined in Equation 2.1, where e is not

specified, and Tn is the sufficient statistic, with k components, for e in Fe. Given Tn = tn,

a co-sufficient sample xi, .,., x~ is a sample from F(XI, .. " Xnltn), The conditioning reduces

the effective dimension of the sample by k. That is, to obtain a co-sufficient sample xi, ... ,x~,
we only need generate xk+l ' ... , x~, and then xi, .. " xk could be found by solving a system

of equations Tn(xi, .. " x~) = tn' Moreover, given Tn = tn, Xl, .. " X n are exchangeable, so

x k+l ' ... , x~ could be any n - k entries of the co-sufficient sample.

3.1 Use of the Rao-Blackwell estimate

O'Reilly & Gracia-Medrano (2006) applied the Rao-Blackwell estimate of Fe to generate the

co-sufficient sample directly for inverse Gaussian family, Given Tn = tn, the Rao-Blackwell

estimate of Fe, denoted by Pn, is defined by

where i could be 1, .. " n. We denote the inverse Pn of by P;;l, If P;;l can be computed, the

following algorithm may be used to generate independent co-sufficient samples:

10



CHAPTER 3. GENERATING THE CO-SUFFICIENT SAMPLES

Algorithm

1. Generate a 'Un from U(O, I), then x~ = F;:I(un);

2. recalculate t~_l from tn and x~;

11

=

=

3. define Fn- 1(x) = P(Xi 'S xlTn-1 = t~_I)' where i could be 1, ... , n - I, and let

F;;.!l be the inverse; generate another Un-I from U(O,l) independent of Un, then

x~_1 = F;:!.l (Un-I);

4. continue computing t~_2' x~_2 and so on, we obtain x~, ... , x'k+I;

5. solve the system of equations Tn (xi, ... ,x~) = tn to get xi, ... , x'k;

6. return (xi, ... ,x~) as a complete co-sufficient sample.

The above algorithm is justified as follows. Assume Fe is a continuous distribution. We

write the conditional joint density of X k+1 , ... ,Xn given tn by f(Xk+l, ... ,xnltn); then,

f(Xk+l, ... , Xn, tn)
f(tn )

f(xk+l' ... , Xn, in) f(Xk+2, , Xn,in) f(xn , in)
f(i n) f(Xk+2, , Xn, tn) f(xn , in)

f(xk+l' , Xn,tn) f(Xk+2, , Xn, in) f(xn, in)
f(Xk+2, , Xn, tn) f(Xk+3, , Xn, tn) f(tn)

= f(Xk+ll xk+2' ... , Xn, tn)f(Xk+2Ix k+3, ... , Xn, tn)··· f(xnltn)

The terms in the right side of the identity correspond to the steps in the algorithm.

3.2 Use of the Gibbs sampler

Generally, the Rao-Blackwell estimate Fn cannot be evaluated. The Gibbs sampler has been

proposed to generate co-sufficient samples for the gamma family in Lockhart ei al. (2007)

and the von Mises family in Lockhart et al. (2008).

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm where the

random candidate is always accepted. It was first devised by Geman & Geman (1984)

for image processing and popularized by Casella & George (1992). Chib & Greenberg

(1995) and Walsh (2004) gave good introductions to MCMC and Gibbs sampler. The
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Gibbs sampler is used to generate samples when the target distribution is a multivariate

distribution. The point is that given the joint density function, it is simpler to sample

from a univariate conditional distribution than to integrate over a joint distribution to get

a marginal distribution. For example, when asked to generate samples of a bivariate vector

(X, Y) with the joint density p(x, y), we begin with a value Yo of Y and for i = 1,2, ... and

so on, sample Xi from p(xlY = Yi-t); once Xi is found, sample Yi from p(ylX = Xi). Then,

a sequence of samples (Xi, Yi) is obtained. The Gibbs sampler is applicable when the joint

distribution is not known explicitly, but it requires a set of full conditional distributions.

In our case, the target distribution is the conditional distribution of Xk+l, ... , X n given

Tn = tn. When using the Gibbs sampler, the set of full conditional densities is

... ,

"0'

Denote the full conditional distribution of Xi by fc(Xi). Then, fc(Xi) is derived from the

joint density h(Xk+I, ... ,Xn,tn), and

(3.1)

where h(Xk+l, ... , Xn, tn) is computed from the joint density fs(XI' ... , xn) using the change

of variables formula. The algorithm for using the Gibbs sampler is as follows.

3.2.1 Algorithm

1 B · 'th th ., l l (0) (0). egm W~ e or~gma samp e Xl , ... , Xn .

2. Repeat for j = 0, ... , M,

(HI) (j) (j)
generate Xk+l from fc(xk+llxk+2' ... , Xn ,tn),

(j+l) f f ( I (HI) (j) (j))generate x k+2 rom c xk+2 xk+l ,xk+3'"'' xn ,tn,

"OJ
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(j+l) f r ( I (j+l) (j+l))generate Xn rom Je Xn Xk+l , ... , Xn- l , tn ,

l rr - fi d (j+l) (j+l)so ve .L n - tn to n xl , ... , Xk !

b . h l (j+l) (j+l)a tam t e samp e Xl ,"" Xn .

3. Return a sequence of M samples where the jth sample is {x~j), ... , x~)}.

13

The sequence of samples generated is a Markov chain whose statitionary initial distri

bution is the conditional distribution of Xl, ... , X n given Tn = tn- If x~O), ... , x~O) is known to

be from the null distribution, all the samples generated are co-sufficient samples; otherwise,

a burn-in period is required so that the Markov chain converges to its statitionary distri

bution. The first 100 samples are discarded here. Moreover, in order to have the samples

approximately independent of each other, we take only every 10th sample.

In Lockhart et al. (2007), the values are always drawn from fe(xn). A new value x~ is

drawn from fe(xn). The variables are rotated so that Xk+2 becomes Xk+l, Xk+3 becomes

Xk+2, and so on x~ becomes Xn-l, and X3 becomes the new Xn with no asterisk. This

is equivalent to the above algorithm since given Tn = tn, X k+l , ... , X n are exchangeable,

and all the fe( Xi) 's share a common computational formula. In the remaining parts of this

document, we will discuss only fe(xn).

3.2.2 Draw a value from fe(xn)

Write fe(xn) = Ch(xn), where C is a normalizing constant. Let Fe be the corresponding

CDF. If Fe could be written explicitly, we could use the inversion method as follows:

1. Generate u from U(O, 1),

2. return Xn = Fe-l(u), where Fe-
l is the inverse of Fe.

However, this method, applied to gamma and von Mises distributions, involves complicated

special functions, and has not been used here. We use an acceptance-rejection (A-R) method.

Acceptance-rejection (A-R) method

Suppose there exists a known constant c such that h(xn) < cp(xn) for all Xn, where p is

some so-called candidate density.

1. Generate a candidate z from p(z), and u from U(O, 1).
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2 If < h(z) *. u _ cp(z) , return xn = zi

3. else, go to (1).

14

In the A-R method, c is the expected number of iterations to accept z, and it determines

the rate of acceptance. An optimal value of c is c = suPx~.

3.3 Comments

There is another more direct method that we are not going to discuss here because it is only

applicable for those special cases with only unknown location or scale parameters. For them,

if appropriate estimates are applied, the distribution of the test statistic will not depend on

the unknown parameters, and we can utilize the asymptotic tables in Stephens (1986). It is

also possible in these cases to use the parametric bootstrap to give exact tests; see Lillegard

& Engen (1997) and Lindqvist & Taraldsen (2005).



Chapter 4

The Gamma Family

In this chapter, the gamma family is investigated. A distribution of the gamma family has

the probability density function (PDF),

x Q - 1

f(x;a,(3) = (3Qr(a) exp(-x/(3),x ~ 0;(3 > O,a > 0,

where a is the shape parameter, and (3 is the scale parameter. Graphs of the PDF and CDP

are shown in Figure 4.1, for various shapes and scales.
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Figure 4.1: PDF and CDF of gamma distribution
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When a > 1, the Gamma distribution assumes a mounded, but skewed shape. The

skewness decreases as the value of a increases. When a = 1, it is a exponential distribution

with the scale parameter (3. When a < 1, it is exponentially shaped but the density

approaches CXJ as x --t O.

In Section 4.1, we derive the full conditional density fc(x n) and discuss the difficulty of

using the A-R method to draw a value x~ from fc(xn). Section 4.2 presents Monte Carlo

computations of the powers of both the approximate and exact tests against different gamma

alternatives.

4.1 Generating the co-sufficient samples

When the null distribution is a gamma distribution whose shape parameter a is unknown,

no direct method is available to generate the co-sufficient samples, and we use the Gibbs

sampler. Two cases are discussed here.

Case 1: a is unknown, and (3 = (30 is known,

Case 2: both a and (3 are unknown.

4.1.1 Case 1: a is unknown, and f3 = f30 is known

Given a sample data Yl, ... , Yn, we want to know whether the sample is from a distribution

of the gamma family with a fixed scale (30. Consider the test of

Ho : (Yl, ... ,Yn) comes from Gamma(a, (3 = (30), a is unknown.

Let Xi = yd (30; then Ho can be simplified to

Hb : (Xl, ... , X n ) comes from Gamma(a, (3 = 1), a is unknown.

The likelihood function is

L(a) ~ rn:a) (n Xi) 0-1 exp (- t,Xi) .
Then, the sufficient statistic of a is tn = rrr=l Xi (or Er=llog(Xi)). The maximum likelihood

estimate 6: of a, is found by solving the equation,

n

'l/J(6:) = L log(xi)jn,
i=l
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where 'ljJ(.) is the digamma function defined as

r'(t)
'ljJ(t) = r(t) .

The joint density function of X2, ... , Xn, tn is as follows

where IIAIlis the absolute determinant of A, and the Jacobian is calculated as

i=2

Thus,

17

1rr fs(XI, ... , Xn; 0:)
i=2 Xi

1 (1) n ( n-I t)t a - I
""'" nn -- n exp - L.,; Xi - n

ITi=2 Xi r(0:) i=2 ITi=2 Xi

=

where 0 < X2, ... , Xn, tn < +00.
The full conditional distribution of Xn given X2, ... , Xn-I, tn is

fc(xnlx2, ... , Xn-I, tn)
!I(X2, ... , Xn, tn)

Jo+ oo h (X2, ... , Xn, tn)dxn
1 a

ex: -exp(-Xn --)
X n X n

h(xn); 0 < Xn,

where a = t n / (ITj~i Xj). This quantity a must be updated every time a new Xn is gener

ated.

The function h(.) does not have a closed form integral. Thus we cannot use the inversion

method to generate a value, so the acceptance-rejection method is applied to draw a new

Xn. The value of a affects the shape of he) dramatically (see Figure 4.2). To make the

A-R method efficient, we choose the candidate generation distribution p(x) according to the

value of a.
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Figure 4.2: Graph of he) under different values of a

When a < 1, we use

{

Qlexp(-alx) x < b·
C x - ,

p(x) = .Q2. exp(-x) b
C x x> ,

18

where b = -1+~, C1 = exp(-b), C2 = exp(-a/b) and C = C1Ei(1,~) + C2Ei(1, b).

Here, Ei is the exponential integral function; see Abramowitz & Stegun (1972). The CDF

ofp(x) is

{

Cl Ei(l !!) x < b·
P(x) = C ' x - ,

l-~Ei(l,x) x>b.

Therefore, the probability of acceptance a is calculated by

h(x)a = --,---,-'-,:c'-_

p(x)Cmax

C C
C C exp( -x)I(x::;b) + C C exp( -a/x)I(x>b) ,

1 max 2 max

h C - hex) - C (1 1)were max - sUPx>o PTXJ - X max C
1

' C2 .

When a ~ 1, the candidate distribution could be Gamma(shape=l';;, scale=l), where

I';; = 1+~. The probability of acceptance a is given by

h(x) exp( -a/x)
a = p'(x)C.:nax = xl<.

where C:nax = exp( -I';;) (l';;/a)l<..
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4.1.2 Case 2: both 0: and {3 are unknown

19

For an observed sample Xl, ... , Xn , where both a and (3 in the null distribution are unknown,

the likelihood function will be

n

£(a,(3) = IIf(xi;a,(3)
i=l

1 1 n n

(3na rn(a) ql Xi)a-l exp(- ~Xd(3);

Therefore, the sufficient statistic is Tn = (sn,Pn) = (L~=l Xi, rr~l Xi)' The MLEs a and ~

are found by solving the equations

log(Pn)/n -log(sn/n)

p
7/;(a) - log(a),

sn/n
a

=

Similar to Case 1, the joint density function of X3, ... , Xn,Sn,Pn is given by

where the Jacobian J(X3, .. " Xn, Sn,Pn) is given by

Define s = L~:l Xi, P = rr~:ll Xi, C = Sn - S, and D = Pn/P, The full conditional

distribution of X n is given by

fc(Xn!X3, ... ,Xn-I,Sn,Pn)
1 1

ex:
Xn J(Sn - S - Xn)2 - 4(Pn/p)/xn
1 1

Xn J(C - xn)2 - 4D/xn
1 1

Xn J(C - Xn)2 - 4D/xn



CHAPTER 4. THE GAMMA FAMILY

Let c = 4D/C3
, and define a new variable V = Xn/C. The PDF of V, y(v), is then

y(v) ex [VZ:;VV(1-v)2-crl

1

20

.jVv(v - a)(b - v)(d - v)
h(v); v E (a, b), (4.1)

where a < b < d and a, b, and d are the three solutions of the equation v(1 - v)2 = c.

They can be found numerically with a E (0,1/3), b E (1/3,1), and d > 1 . Since h(v) is

a V-shaped function, a scaled Beta(0.5, 0.5) in (a, b) is used as the candidate generation

function. The density is given by

1 1
p(v) = - ; v E (a,b).

1r V(v - a)(b - v)

The probability of acceptance is (); = h(v)/ {p(v)Cmax }, where the constant Cmax is calcu

lated by

Cmax
h(v)

sUPvE(a,b) p(v)
1r

SUPvE(a,b) vv(d - v)
1r 1r

max( , ).
va(d-a) y'b(d-b)

(4.2)

After we derive a value vof V, we let x~ = Cv.

Once x3' ...x~ have been found, we can find xi and xi by solving the equations

n

Xl + X2 = Sn - LX;

i=3
n

XIX2 = Pn/ IT xi·
i=3

The values Xl and X2 are the two solutions of the quadratic

n n

x2
- (sn - LX;)x - Pn/IT x; = O.

i=3 i=3

Discussion:

As c -+ 0 in Equation 4.1, a -+ 0, b -+ 1, and d -+ 1. In this limit, the A-R method fails

because Cmax -+ 00; that is, the candidate is always rejected. To avoid this problem, we

study the limiting conditional distribution of V as c -+ O.
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For any v E (a + E, b - E), EE (0, (a + b)j2), the limiting density of V is, limc-->o y(v) =

limc-->o J:(~)dv = 0 , which means that Pr( V = a or ble = 0) = 1.

In practice, when e > 10-9 , we used the regular A-R method. On very few occasions,

e::::: 10-9 , in which case we took v to be a value close to b or a (b - 10-5 or a + 10-5 ) with

equal probability. When c = 10-9 , Cmax ~ 99336.

4.2 Power study

The Anderson-Darling statistic A2 and the Cramer-von Mises statistic W 2 are used for tests

at the 0.05 and 0.10 levels. The alternatives studied are Weibull, log-normal and half-normal

distributions. From each alternative, 500 samples are drawn; for each sample, we use 1000

co-sufficient samples and 1000 bootstrap samples to evaluate the exact and parametric p

values by the methods shown in Section 2.3.1. The powers for both tests are estimated as

in Equation 2.8.

4.2.1 Weibull alternatives

The Weibull distribution is a continuous probability distribution. The probability density

function is

f(X;I\"A) = ~ (~r-l exp(-(xjAt);X > 0;1\, > O,A > 0,

where I\, is the shape parameter, and A is the scale parameter. Plots of the PDF are given

in Figure 4.3.

For the Weibull alternatives, we discuss three cases (denote Case 1, 2.a, and 2.b). For

Case 1, in the null hypothesis distribution, ex is unknown, but (3 is known, and we use a

Weibull alternative with I\, = 1.2 and A = 1. For Case 2.a and 2.b, both ex and (3 in the null

hypothesis distribution are unknown. The alternative in Case 2.a is a Weibull distribution

with I\, = 0.5 and A = 1; that in Case 2.b is a Weibull distribution with I\, = 2 and A = 1.

Table 4.1 shows the powers of the two tests for Case 1 at levels 0.05 and 0.10 for sample

size 5, 10, 20, 30, 40, and 50. The scale parameter in the null distribution is known, (3 = 1.
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Figure 4.3: PDF of Weibull distribution

Sample Exact Parametric Bootstrap

Size A2 W2 A2 W2

0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

5 0.034 0.078 0.056 0.122 0.042 0.092 0.056 0.112

10 0.044 0.118 0.064 0.142 0.044 0.108 0.068 0.142

20 0.096 0.174 0.112 0.186 0.082 0.180 0.104 0.190

30 0.116 0.196 0.114 0.228 0.122 0.198 0.114 0.210

40 0.148 0.244 0.162 0.226 0.154 0.242 0.160 0.232

50 0.190 0.300 0.174 0.272 0.192 0.294 0.178 0.276

Table 4.1: Powers of exact and bootstrap tests at levels 0.05 and 0.10 based on 500 samples

from the alternative Weibull(K:;=1.2,,\=1) in Case 1

Figure 4.4 gives plots of corresponding p-values given by the two tests. The correlation

was calculated from the 500 samples. This was found to be very high for all sample sizes;

for n=5 the value with test statistic W 2 was 0.9977, and that with A 2 was 0.9976. The

correlations increase with sample size.
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Table 4.2 shows the powers of the two tests for the Case 2.a at levels 0.05 and 0.10 for

sample size 5, 10, 20, 30, 40, and 50. Both ex and f3 in the null distribution are unknown.

Sample Exact Parametric Bootstrap

Size A2 W2 A 2 W2

0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

5 0.044 0.084 0.046 0.096 0.048 0.090 0.046 0.100

10 0.070 0.130 0.076 0.138 0.072 0.126 0.084 0.144

20 0.126 0.194 0.132 0.192 0.128 0.188 0.130 0.186

30 0.200 0.296 0.198 0.294 0.198 0.296 0.198 0.300

40 0.236 0.346 0.226 0.332 0.224 0.336 0.220 0.324

50 0.282 0.362 0.266 0.352 0.278 0.366 0.272 0.350

Table 4.2: Powers of exact and bootstrap tests at levels 0.05 and 0.10 level based on 500

samples from the alternative Weibull(K;=0.5,,\=1) in Case 2.a

Table 4.3 shows the powers of the two tests for Case 2.b at levels 0.05 and 0.10 for sample

size 5, 10, 20, 30, 40, and 50. Both ex and f3 in the null distribution are unknown.
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Sample Exact Parametric Bootstrap

Size A2 W2 A2 W2

0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

5 0.046 0.084 0.048 0.084 0.042 0.094 0.048 0.098

10 0.066 0.126 0.064 0.126 0.064 0.128 0.064 0.132

20 0.088 0.166 0.076 0.174 0.086 0.168 0.076 0.174

30 0.108 0.174 0.098 0.156 0.108 0.172 0.092 0.158

40 0.136 0.192 0.120 0.196 0.128 0.194 0.118 0.196

50 0.162 0.268 0.148 0.252 0.164 0.262 0.152 0.240

25

Table 4.3: Powers of exact and bootstrap tests at levels 0.05 and 0.10 based on 500 samples

from the alternative Weibull(K=2)=1) in Case 2.b

4.2.2 Half-normal alternatives (HN)

The half-normal distribution is a normal distribution with mean J.l = 0 and scale (J", limited

to the domain x E [0,00). It has probability density given by

Two cases (called Case 1 and 2) are discussed. For Case 1, in the null hypothsis dis

tribuion, a is unknown, but f3 is known; the alternative is a half-normal distribution with

J.l = 0 and (J" = 1. For Case 2, both a and f3 are unknown, and the alternative is same.

Table 4.4 shows the powers of the two tests for Case 1 at levels 0.05 and 0.10 for sample

size 5, 10, 20, 30, 40, and 50. The scale parameter in the null distribution is known, f3 = 1.
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Sample Exact Parametric Bootstrap

Size A2 W2 A2 W 2

0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

5 0.056 0.124 0.086 0.168 0.058 0.114 0.090 0.168

10 0.078 0.150 0.106 0.204 0.076 0.154 0.098 0.206

20 0.158 0.292 0.180 0.290 0.156 0.304 0.182 0.300

30 0.266 0.432 0.262 0.388 0.280 0.434 0.260 0.390

40 0.390 0.562 0.338 0.482 0.396 0.566 0.346 0.492

50 0.504 0.650 0.442 0.568 0.516 0.652 0.444 0.564

26

Table 4.4: Powers of exact and bootstrap tests at levels 0.05 and 0.10 based on 500 samples

from the alternative HN(f.l=O,CT=l) in Case 1

Table 4.5 shows the power of the two tests for Case 2 at levels 0.05 and 0.10 for sample

size 5, 10, 20, 30, 40, and 50. The scale parameter 13 in the null distribution is unknown.

Sample Exact Parametric Bootstrap

Size A2 W 2 A2 W 2

0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

5 0.064 0.130 0.070 0.124 0.066 0.126 0.068 0.124

10 0.060 0.114 0.068 0.106 0.062 0.108 0.060 0.106

20 0.088 0.156 0.090 0.154 0.086 0.166 0.082 0.154

30 0.112 0.192 0.112 0.182 0.112 0.190 0.112 0.186

40 0.154 0.248 0.142 0.228 0.156 0.250 0.146 0.224

50 0.194 0.302 0.182 0.276 0.194 0.300 0.182 0.284

Table 4.5: Powers of exact and bootstrap tests at levels 0.05 and 0.10 based on 500 samples

from the alternative HN(f.l=O,CT=l) in Case 2
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4.2.3 Log-normal alternatives (LN)

27

If Y is a random variable from the normal distribution, then X = exp(Y) has a log-normal

distribution. The probability density function of X is given by

1 { (lnx-J.l)2}f(x; J.l, a) = exp - 2 2 ;x> 0,
(av2Jrx ) a

where J.l and a are the mean and standard deviation of the normal distribution respectively.

This density has a mounded shape as in Figure 4.5.

Three cases (denote Case 1, 2.a, and 2.b) are discussed. For Case 1, in the null distribu

tion, ex is unknown, but (3 is known; the alternative is a log-normal distribuion with J.l = 0

and a = 1. For Case 2.a and 2.b, both ex and (3 in the null distribuion are unknown; the

alternative in Case 2.a is a log-normal distribution with J.l = 0 and a = 1 , and that in Case

2.b is a log-normal distribution with J.l = 0 and a = 2.

°N

~

"0
o.,{

~

'"0

o
o

- ~;0,cr;3.0

- ~;O,cr= 1.5
..... ~; 0,cr-1.0
- ~;0,cr;0.5

~; O,cr= 0.25

-~--

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 4.5: PDF of log-normal distribution

Table 4.6 shows the power of the two tests for Case 1 at levels 0.05 and 0.10 for sample

size 5, 10, 20, 30, 40, and 50. The scale parameter in the null distribution is known, (3 = 1.
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Sample Exact Parametric Bootstrap

Size A2 W2 A2 W 2

0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

5 0.152 0.208 0.082 0.152 0.148 0.214 0.080 0.152

10 0.184 0.260 0.112 0.186 0.180 0.268 0.114 0.184

20 0.236 0.330 0.166 0.264 0.242 0.326 0.156 0.254

30 0.316 0.422 0.208 0.316 0.310 0.424 0.208 0.308

40 0.348 0.476 0.228 0.334 0.350 0.474 0.220 0.348

50 0.424 0.544 0.280 0.414 0.424 0.562 0.284 0.418
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Table 4.6: Powers of exact and bootstrap tests at levels 0.05 and 0.10 based on 500 samples

from the alternative LN(p=O,a=l) in Case 1

Table 4.7 shows the power of the two tests for Case 2.a at levels 0.05 and 0.10 for sample

size 5, 10, 20, 30, 40, and 50; Both ex and (3 in the null distribution are unknown.

Sample Exact Parametric Bootstrap

Size A2 W 2 A2 W2

0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

5 0.066 0.114 0.068 0.124 0.068 0.120 0.072 0.128

10 0.098 0.154 0.102 0.154 0.104 0.156 0.108 0.158

20 0.234 0.322 0.226 0.306 0.230 0.326 0.218 0.308

30 0.350 0.460 0.332 0.438 0.350 0.458 0.336 0.428

40 0.464 0.564 0.426 0.528 0.460 0.564 0.428 0.530

50 0.512 0.628 0.486 0.594 0.514 0.624 0.490 0.598

Table 4.7: Powers of exact and bootstrap tests at levels 0.05 and 0.10 level based on 500

samples from the alternative LN(p=O,a=l) in Case 2.a

Table 4.8 shows the power of the two tests for Case 2.b at levels 0.05 and 0.10 for sample
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size 5, 10, 20, 30, 40, and 50; Both a and (3 in the null distribution are unknown.

Sample Exact Parametric Bootstrap

Size A2 W2 A2 W2

0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

5 0.082 0.176 0.102 0.192 0.086 0.178 0.108 0.196

10 0.196 0.290 0.204 0.302 0.190 0.300 0.198 0.312

20 0.516 0.600 0.516 0.606 0.514 0.610 0.514 0.600

30 0.676 0.754 0.658 0.740 0.680 0.744 0.658 0.740

40 0.836 0.882 0.822 0.876 0.836 0.882 0.826 0.878

50 0.916 0.944 0.912 0.938 0.912 0.942 0.910 0.938
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Table 4.8: Powers of exact and bootstrap tests at levels 0.05 and 0.10 based on 500 samples

from the alternative LN(p.=Op=2) in Case 2.b

4.3 Comments

In this chapter, we have studied powers for testing the gamma family with unknown shape

and with scale known or unknown. Several alternatives from families close to the gamma

family were investigated, such as the Weibull, half-normal, and log-normal distributions.

The tables presented lead to the following conclusions:

1. The exact conditional tests and the approximate bootstrap tests have very similar

powers even for samples of very small size, such as n = 5. This conclusion is also

verified by the closeness of two p-values for each sample, and their high correlation

based on 500 Monte Carlo samples from each alternative.

2. As expected, the powers increase as the sample size increases.

3. When the sample size is large enough, both tests appear to be unbiased.



Chapter 5

The von Mises Family

In this chapter, we will discuss the von Mises family, which is an important distribution

family in circular statistics. Circular data measure directions and can be represented as

angles or as points on the circumference of a unit circle. The left panel of Figure 5.1 shows

a unit circle centered at the origin O. It also shows a typical point Pi from a sample PI, ... , Pn

of n points on the circumference. Each Pi is related to an angle ()i, the angle of a vector

OPi from 0 to Pi. We represent the vector, OPi, by (1, ()i) in the polar co-ordinate system

or (cos(()i), sin(()i)) in the rectangular co-ordinate system. The right hand panel of Figure

5.1 shows the resultant vector t = (L~=I COS(()i), L~=I sin(()i)) which is the vector sum of

the OPi . This vector plays an important role later in this chapter.

The von Mises family (VM) is a continuous distributional family on the circle. A random

variable e from the generalized l-modal von Mises distribution has the probability density

function:

1
f(();K"fJ) = 1 ( ) exp{K,cosl(() - fJ)};() E (0,271"];fJ E (0,271"],"; > 0,

271" 0 K,

where [0(K,) is the modified Bessel function of order 0, and l indicates the number of modes.

In this project, we only work on the von Mises family where l = 1. Plots of the PDF

and CDF of a von Mises distribution are shown in Figure 5.2. The density is symmetric

about the direction fJ, and a larger value of ,,; indicates a higher concentration around fJ.

When K, = 0, the distribution is a uniform distribution over (0,271"). As ,,; -t 00, we have

~(e - fJ) -t N(O, 1).

30
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Figure 5.1: Circular data Pi, and resultant vector t
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Figure 5.2: PDF and CDF of von Mises distribution

In Section 5.1 are discussed the methods of generating the co-sufficient samples for the

von Mises distribution test (Lockhart et at. (2008)). In Section 5.2 the results of a power
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study on the tests against different alternatives are presented.

5.1 Generating the co-sufficient samples

32

There is no direct method to generate co-sufficient samples when I';, is unknown. Instead we

apply the Gibbs sampler. We will discuss two cases:

Case 1: /.L = /.Lo is known, and I';, is unknown,

Case 2: both /.L and I';, are unknown.

5.1.1 Case 1: J1 is known, and I';, is unknown

Given a sample of data (}:1, ... , (}:n, consider a test of Ho,

Ho : (}:1, ... , (}:n comes from V M(I';" /.L); I';, is unknown, and /.L = /.Lo.

Let Bi = (}:i - /.Lo· Then, Ho simplifies to H6

H6 : B1 , ... , Bn comes from V M(I';" /.L); I';, is unknown, and /.L = O.

The likelihood function is

n

L(I';,) IIf(Bi,I';,,/.L=O)
i=l

L'I~(KJexp { Kt COS(Oi) } .

Therefore, the sufficient statistic for I';, is tn = L~=l cos(Bi ). The maximum likelihood

estimate of I';, can be obtained by solving the equation

where h(l';,) is the modified Bessel function of order 1; also h(l';,) is the derivative of 10 (1';,).

The joint density function of 8 2 , ... , 8 n,Tn is
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where the Jacobian is

33

11 8Uh, , On, tn) II

8(01, , On)

n

1- (tn - LCOS(Oi))2.
i=2

So, we have

ex

The full conditional distribution of 8 n given 8 2 , ... , 8 n- 1 , tn is

ex

fc(OnI 02, ... , On-I, tn)
1

Define Z = cos(8n ), and let h = tn - L~-I COS(Oi)' Then the conditional density y(z) of Z

given h is

y(z) ex (\11- (z - h)2~)-1

g(z); z E (a, b); (5.1)

where a = max(h-1, -1), and b = min(h+1, 1). The A-R method can be used to generate z.

Since g(.) has a "U" shape, a scaled Beta(0.5, 0.5) in (a,b) can be the candidate generation

distribution. This density is given by

1 1
p(z) = - ; z E (a,b).

n yI(z - a)(b - z)

The probability a of acceptance is a = ()~) ,where Cmax is calculated by
p Z max

Cmax =
g(z)

sUPzE(a,b) p(z)

{

SUP 1r
zE(h-l,l) V(1-z+h)(l+z)

sup 1r
zE(-l,l+h) y(1-z)(z-h+1)

if h > 0,

if h :::; 0. (5.2)
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Once z is obtained, take e~ = arccos(z) or - arccos(z) with equal probability.

After obtaining a cycle of e2, ... ,B~, we can find ei by solving cos(B1) = tn - L:~2 cos B;

to set ei = arccos(tn - L:~2 cos en or - arccos(tn - L:~=2 cos en with equal probability.

Discussion

As h -+ °in Equation 5.1, a -+ -1, and b -+ 1. The A-R method then fails because

Cmax -+ 00; as we did in the case of the gamma distribution, we set a bound on h to keep

it away from 0. When h is close to 0, we sample from the limiting distribution of Z.

For any f E (0, (a + b)/2), the limiting density function

g(z)
lim b dz=O; forzE(a+f,b-f),
h---+O fa g(z)dz

which means Pr(Z = a or blh = 0) = 1.

As defined, h is the sum of two i.i.d objects, say Zl and Z2- The desired Z could be

either of them. When h = 0, Zl = -Z2- Thus, Pr(Z = alh = 0) = Pr(Z = blh = 0) = 1/2.

In practice, a value z E (a, b) close to a or b can be drawn with equal probability when

h is very small.

5.1.2 Case 2: Both 11 and K, are unknown

Given a random sample e1, ... , en, the likelihood function for Case 2 is

n

L("',I1) = II f(ei ;""p)
i=l

and the sufficient statistic for ("" p) is the resultant vector tn = (t1, t2), where t1 =

L:~=1 cos(ei ) and t2 = L:~=1 sin(ei )· Let Itn I and 5:0 be the norm and angle of tn respectively.

The maximum likelihood estimates Pi, and p" can be found by solving the equations

h(",) Itnl
10("') n

p, 5:0·
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The joint density function of 8 3 , ... , 8 n , Tl, T2 is given by

where the Jacobian is

II o(fh ... ,Bn , iI, t2) II
o(Bl, ... ,Bn )

1 _ { 1 _ (tl - I:~3 cos(Bi))2 ; (t2 - I:~3 Sin(Bi ))2} 2.

The full conditional distribution of 8 n , !c(Bn ) is given by

!c(Bn IB3, ... , Bn-l, tl, t2)
1

ex:
2 '1 - { 1 _ (h1-COS(tln))2t(h2-Sin(tln))2}

where hI = tl - I:Z:31cos(Bi) and h2 = t2 - I:r:3l sin(Bi ).

Define a vector h by h = (hI, h2). Let Ihl and ah denote the norm and angle of h

respectively. Define a new variable Z = cos(8n - ah). Then Z has the conditional PDF

y(z) such that

y(z) ex: (VI -{I - (lhl2 _ 21hlz + 1)/2}2~)-1

1
ex: V(1- z)(z - a)(I~I~l - z)(z - b)

g(z); z E (a,l) , (5.3)

where a = max {(lhI2 - 3)/2Ihl, -I}, and b = min {(lhI2 - 3)/2Ihl, -I}. When Ihl > 1,
_ 'h1113 _. _ _ Ih12 -3a - 2h ,and b - -1, else, a - -1, and b - 2JhI'

To draw a value z from y(z), we apply the acceptance and rejection method. Since g(.)

is a "U" shape function, a scaled Beta(O.5,O.5) in (a, 1) will be the candidate distribution,

whose density is given by

1 1
p(z)=- ;zE(a,I).

K yI(z - a)(1 - z)

Cmax

The probability of acceptance a = C g(z\ ), where Cmax is calculated by
maxP Z

g(z)
sUPzE(a,l) p(z)

K K
max( , ).

V(lhJI~l - a)(a - b) V(lhJI~l - 1)(1 - b)
(5.4)
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Once z is obtained, B~ = ah + arccos(z) or ah - arccos(z) with equal probability.

After a cycle of Bj, ... , B~ is found, find Bi and B2by solving the equations

n

cos(Bd + cos(B2) = tl - L cos (Bn
i=3

n

t2 - L sin(Bn.
i=3

Figure 5.3: Bi and B2
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Define 6T in Figure 5.3 as the vector of (tl - 2:r=3 cos(Bn, t2 - 2:~3 sin(Bn). Let

l be the norm of 6T, and at be the angle. Then, 6T is the sum of two unit vectors

(cos(B1),sin(B1)) and (COS(B2),sin(B2)). As Figure 5.3 shows, we have Bi = at +arccos(l/2),

and B2= at - arccos(l/2), where Bi and B2are exchangeable.

Discussion

We have the same difficulty as that in Case 1. When Ihl -t 1 in Equation.5.3, a -t -1.

The A-R iterations become stuck, so we consider using the limiting distribution of Z.

For any z E (a + E, 1 - E), where E E (0, (1 + a)/2), the limiting density function

. g(z)
hm 1 dz = 0,

Ihl-+l fa g(J.L )dJ.L
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which means Pr(Z = -lor 111hl = 1) = 1.

From the definition, we see that h is the resultant vector of three unit random vectors,

which are exchangeable The desired Z could belong to anyone of them. The fact that

Pr(Z = -lor 1) = 1 means that the directions of those three vectors must be identical

or opposite to that of h. Geometrically, this happens only when some two of them are

identical to h and the third one is opposite. Thus, Pr(Z = -lllhl = 1) = 1/3, and

Pr(Z = 111hl = 1) = 2/3.

In practice, if Ihl > 1.0001 or Ihl < 0.9999, the regular A-R method is applied. Otherwise,

we draw a value from the limiting distribution. Fewer than 0.02% of the values were drawn

from this limiting distribution, so the impact on the power estimates is negligible. When

Ihl = 1.0001 or 0.9999, Cmax :=:::! 31410.

5.2 Power study

The Watson's statistic U2 is used for the power study for tests at the 0.05 and 0.10 levels.

In the following subsections, we present a variety of alternative distributions and compare

the powers of the parametric bootstrap and exact conditional tests in a Monte Carlo study.

In each subsection we consider a different family of alternatives. Alternatives from the offset

normal family are studied in Subsection 5.2.1, the cardioid family in Subsection 5.2.2, the

wrapped skew-normal family in Subsection 5.2.3, and the asymmetric circular family in

Subsection 5.2.4. We generated 500 Monte Carlo samples from each alternative. Again, for

each sample, we use 1000 co-sufficient samples and 1000 bootstrap samples to evaluate the

exact and parametric p-value. The powers of both tests for the alternative are evaluated by

the percentages of the samples with p-value less than a.

We only work on Case 2 (both /1 and K, are unknown).

5.2.1 Offset normal alternatives (ON)

Suppose (X, Y) is a random vector from a bivariate normal (BN) distribution, say with

X, Y rv BN(/1, 1/, aI, a2, p). Let 8 be the angle of (X, Y). Then we say 8 is a random

variable from the offset normal (ON) distribution. The PDF for 8 is

1 { [a(/1Sin8-l/cos8]}1(8) = C(8) ¢(/1, 1/; O,~) +aD(e)<I>[D(8)]¢ JC(e) ,
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where

1

38

a
0"10"2~'

C(e) = a2(0"~cos2e-pO"W2sin(2e)+O"rsin2e),

a2

D (e) 07Li\ [/-L0"2 (0"2 cos e - PO"l sin e) + VO"l (0"1 sin e - P0"2 cos e)],
yc(e)

and where ¢O and <1>(.) are the PDF and CDF of N(O, 1) respectively. See Figure 5.4 for

examples of the probability density function of the ON distribution.
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Figure 5.4: PDF of offset normal distribution

We discuss three cases (denote Case 2.a, 2.b, and 2,c). For all the cases, K and /-L are

unknown. For Case 2.a, the alternative is a transformed offset normal distribution whose

density function has only one mode. The alternatives in the other two cases have a density

function with two modes.

In Case 2.a, the alternative is ON(O,O,O"l = 1,0"2 = 2, P = 0) which we transform into a

uni-modal density by setting 8' = 28. The density function of 8' is

( ' ~ '( )f e) = 21f(1- bcos(B,));e E 0,21f ,

172 172

where b = 3-:-3+- = -0.6. Table 5.1 shows the power of the two tests for Case 2.a at levels
171 172

0.05 and 0.10 for sample size 5, 10, 20, 30, 40, and 50.
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Sample Exact Bootstrap

Size U2 U2

0.05 0.10 0.05 0.10

5 0.046 0.114 0.020 0.072

10 0.050 0.104 0.030 0.082

20 0.058 0.116 0.048 0.090

30 0.052 0.106 0.042 0.100

40 0.084 0.136 0.076 0.128

50 0.082 0.152 0.078 0.144

39

Table 5.1: Powers of exact and bootstrap tests at 0.05 and 0.10 levels based on 500 samples

from the alternative of transformed ON(O, 0,1.0,2.0,0) in Case 2.a

Table 5.2 shows the power of the two tests for Case 2.b, in which the alternative distri

bution is ON(l,l,O"l = 1.5,0"2 = 1.5, P = 0.45), at levels 0.05 and 0.10 for sample size 5, 10,

20, 30, 40, and 50.

Sample Exact Bootstrap

Size U2 U2

0.05 0.10 0.05 0.10

5 0.062 0.128 0.046 0.108

10 0.128 0.208 0.110 0.188

20 0.208 0.298 0.196 0.290

30 0.240 0.344 0.234 0.334

40 0.292 0.412 0.278 0.412

50 0.364 0.494 0.354 0.480

Table 5.2: Powers of exact and bootstrap tests at 0.05 and 0.10 levels based on 500 samples

from the alternative ON(1,1,1.5,1.5, 0.45) for Case 2.b
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Table 5.3 shows the power of the two tests for Case 2.c, in which the alternative is

ON(1,2,CTl = 1.5,CT2 = 1.5, P = 0), at levels 0.05 and 0.10 for sample size 5, 10, 20, 30, 40,

and 50.

Sample Exact Bootstrap

Size U2 U2

0.05 0.10 0.05 0.10

5 0.066 0.136 0.062 0.136

10 0.090 0.144 0.088 0.152

20 0.060 0.138 0.072 0.130

30 0.092 0.166 0.084 0.164

40 0.094 0.174 0.092 0.168

50 0.108 0.192 0.112 0.202

Table 5.3: Powers of exact and bootstrap tests at 0.05 and 0.10 levels based on 500 samples

from the alternative ON(1,2,1.5,1.5, 0) for Case 2.c

5.2.2 Cardioid alternative (CA)

The Cardioid distribution, derived from the cardioid curve, has the probability density

function:
1

f(Bj p, p) = 2Jr {1 + 2pcos(B - pH,

where 0::; p < 2Jr, -~ < P < ~. It has a symmetric and uni-modal shape as in Figure 5.5.
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Figure 5.5: PDF of cardioid distribution

Table 5.4 shows the power of the two tests for the case, in which the alternative is

Cardioid(p, = 7r, P = 1/3), at levels 0.05 and 0.10 for sample size 5, 10, 20, 30, 40, and 50.

Sample Exact Bootstrap

Size U2 U2

0.05 0.10 0.05 0.10

5 0.046 0.100 0.036 0.060

10 0.040 0.108 0.022 0.070

20 0.066 0.116 0.062 0.100

30 0.062 0.112 0.048 0.104

40 0.076 0.134 0.066 0.124

50 0.070 0.146 0.068 0.130

Table 5.4: Powers of exact and bootstrap tests at 0.05 and 0.10 levels based on 500 samples

from the alternative CA(7r, 1/3)

Figures 5.6 and 5.7 present the exact p-values and approximate p-values for the 500
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samples drawn from the alternative CA(f..l = 7f,p = 1/3) for sample sizes n=5, 10, 20, and

30. Points in the plots lie close to the diagonal line, which shows the closeness between

the two kinds of p-values. The correlations between the p-values of two tests based on 500

samples are corr=0.9808 when n = 5, corr=0.9958 when n = 10, corr=O.9975 when n = 20,

and corr=0.9978 when n = 30. As the sample size increases, the correlation between two

kinds of p-values gets stronger. The plots also show there are more samples whose exact

p-values are smaller than their bootstrap p-values, which implies the exact tests are more

powerful.
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5.2.3 Wrapped skew-normal alternatives (WSN)
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Suppose Z is a random variable from the skew-normal distribution, which we denote by

Z", SN(fl, u 2
, A), where fl, u, and A are the location, scale, and shape, respectively. The

PDF of SN(fl,U2 ,A) is given by

2 (Z-fl) (Z-fl)f(z; fl, u, A) = ~¢ -u- 1> A-
U

- ,

-00 < Z < 00, -00 < fl < 00, u > 0, and -00 < A < 00.

Define a circular random variable e = Z ( mod )2Jr. vVe say e is from a wrapped

skew-normal distribution having the density function

e E (0,2Jr). Denote e '" WSN(fl,U2 ,A). See Pewsey (2000) for more about the WSN

distribution.

""0

<D
0

"'0

"z. 0
";;;
c:

" M0
0

N
0

0

0
0

Figure 5.8: PDF of wrapped skew-normal distribution

Two cases (denote Case 2.a and 2.b) are discussed. For Case 2.a, the alternative is

WSN(fl = Jr, U = 1, A = 2.0); for Case 2.b, the alternative is WSN(fl = Jr, U = 1, A = 1.0).

The density function of the alternative in Case 2.a is more skewed than that in Case 2.b.
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Table 5.5 shows the power of the two tests for Case 2.a, in which the alternative is

WSN(J-l = Jr, (T = 1, A = 2.0), at levels 0.05 and 0.10 for sample size 5, 10, 20, 30, 40, and

50.

Sample Exact Bootstrap

Size U2 U2

0.05 0.10 0.05 0.10

5 0.048 0.102 0.052 0.094

10 0.036 0.098 0.038 0.104

20 0.058 0.116 0.054 0.112

30 0.072 0.130 0.076 0.126

40 0.082 0.148 0.082 0.156

50 0.114 0.196 0.120 0.204

Table 5.5: Powers of exact and bootstrap tests at 0.05 and 0.10 levels based on 500 samples

from the alternative WSN(Jr, 1,2.0) in Case 2.a

Table 5.6 shows the power of the two tests for Case 2.b, in which the alternative is

WSN(J-l = Jr, (T = 1, A = 1.0), at levels 0.05 and 0.10 for sample size 5, 10, 20, 30, 40, and

50.



CHAPTER 5. THE VON MISES FAMILY

Sample Exact Bootstrap

Size U2 U2

0.05 0.10 0.05 0.10

5 0.044 0.088 0.048 0.088

10 0.042 0.090 0.038 0.092

20 0.056 0.098 0.054 0.098

30 0.056 0.108 0.056 0.106

40 0.072 0.130 0.064 0.134

50 0.070 0.140 0.062 0.138
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Table 5.6: Powers of exact and bootstrap tests at 0.05 and 0.10 levels based on 500 samples

from the alternative WSN(7f,1,1.0) for Case 2.b

5.2.4 Asymmetric circular alternatives CAe)

We are also interested in a family of circular densities given by

f( e; 0:, (3) = C exp(0: cos(e- J-Ll) + (3 cos(2(e- J-L2))); eE (0, 27f]; (3 > 0,0: > 0,

where C is a normalizing factor. Since we do not know C, only the shape of the density

function is provided in Figure 5.9. This is an asymmetric circular distribution (AC) discussed

in Jammalamadaka & SenGupta (2001). In our study, we consider only the symmetric shape

with two modes, that is we take J-L1 = J-L2 = 7f.

Two cases (denote Case 2.a and 2.b) are discussed here. For Case 2.a, the alternative is

AC(o: = 1, (3 = 1); for Case 2.b, the alternative is AC(a = 1, (3 = 1/2).
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- a=1.p=1
- a=2,p=1
'.,.. a=3,p=1
- a=1,p=1/2

o

o 7< 27<

Figure 5.9: PDF of asymmetric circular distribution with f.ll = f.l2 = 7f

Table 5.7 shows the power of the two tests for Case 2.a, in which the alternative is

AC( ex = 1,,8 = 1), at levels 0.05 and 0.10 for sample size 5, 10, 20, 30, 40, and 50.

Sample Exact Bootstrap

Size U2 U2

0.05 0.10 0.05 0.10

5 0.110 0.190 0.076 0.166

10 0.198 0.308 0.162 0.288

20 0.422 0.558 0.408 0.538

30 0.570 0.678 0.560 0.666

40 0.722 0.818 0.722 0.818

50 0.838 0.890 0.836 0.894

Table 5.7: Powers of exact and bootstrap tests at 0.05 and 0.10 levels based on 500 samples

from the alternative AC(l,l) for Case 2.a

Table 5.8 shows the power of the two tests for Case 2.b, in which the alternative AC( ex =
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1,,6 = 1/2), at levels 0.05 and 0.10 for sample size 5, 10, 20, 30, 40, and 50.

Sample Exact Bootstrap

Size U2 U2

0.05 0.10 0.05 0.10

5 0.074 0.136 0.048 0.090

10 0.132 0.204 0.110 0.170

20 0.126 0.212 0.120 0.190

30 0.202 0.304 0.192 0.280

40 0.266 0.386 0.252 0.382

50 0.358 0.476 0.348 0.474
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Table 5.8: Powers of exact and bootstrap tests at 0.05 and 0.10 levels based on 500 samples

from the alternative AC(1,1/2) for Case 2.b

5.3 Comments

In this chapter we investigated the von Mises family in which both concentration and location

parameters are unknown, and studied the powers of both the exact and bootstrap tests

against different alternatives: offset normal distribution, cardioid distribution, wrapped

skew-normal distribution, and asymmetric circular distribution. The tables presented lead

to the following conclusions:

1. The estimates of the powers of exact tests are slightly larger than those of the bootstrap

tests, but it is hard to say which test is more powerful because the estimates are subject

to variability.

2. The difference between the powers of two tests gets smaller as the sample size n

increases. When n 2. 10, both tests have very similar powers. This conclusion is also

verified by the strong correlations between the exact and bootstrap p-values.

3. Both kinds of tests appear to be unbiased when the sample size is large enough.
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Summary

In this project, we studied the powers of both the exact conditional tests and the bootstrap

tests. The gamma and von Mises families were investigated against different alternatives.

Our study leads to the following conclusions.

1. Both kinds of tests have very similar powers even the sample size is very small.

2. The exact conditional tests are easier in terms of the computation of test statistics,

which involves the calculation of the maximum likelihood estimates (MLE) for the

unknown parameters. The MLE's depend on the value of sufficient statistics T. For

co-sufficient samples from the same conditional distribution provided T = t, we need

compute the MLE only once. However, the parametric bootstrap samples are not

subject to the constraint T = t, we have to calculate the MLE for every parametric

bootstrap sample.

3. The bootstrap tests are faster to implement, but the difference of time spent is ac

ceptable if we conduct tests on 1 data set. For example, when a data set of size

15, Example 1 in Lockhart et al. (2008), is tested for von Mises family (both K, and

J.L unknown), and the same number (10,000) of co-sufficient samples and parametric

bootstrap samples are used, it takes 13 minutes for the exact test and 2 minites for

the bootstrap test.

Future work

There is still more work that could be done in the future.

50
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1. We expected exact tests to be always slightly more powerful than bootstrap tests

before this project. However, we saw the powers of bootstrap tests were larger than

those of exact tests occasionally. This happened because both the powers and p-values

are estimates, subject to variability. Therefore, the numbers of Monte Carlo samples

(both M and B) could be increased for a future study to improve the accuracy.

2. In Subsection 3.2.2, the inverse of the conditional distribution for X n is mentioned.

This could be used in future work. For Case 2 of von Mises family, this also requires

the distribution of Ihl for any 3 unit vectors, which are uniformally distributed on the

circle. This was discussed in Stephens (1962). For Ihl = 1, the density is infinite. We

do not explore the inversion method in this project.

3. The application of the Gibbs sampler makes exact tests possible for other distribution

families in which the Rao-Blackwell estiamte is not available, so we can extend our

work to other distribution families.
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