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Abstract 

The MRI ana.lysis pipeline consists of a data-a.cquisition stage defined by a protocol, an 

estimation stage defined by a function, a.nd an analysis stage - nornlally performed by a 

radiologist. MRI data is acquired as a 3D or 4D grid of complex-valued measurements. In 

some protocols more than one set of measurements are fused into a vector of complex values. 

However, ra.diologists normally desire a real-valued 3D or 4D da.taset representing a feature 

of interest. To convert from the measurements to the real-valued feature an estima.tor must 

be applied. 

This thesis st,udies the development and evaluation of estimators. We approach the 

problem not as one of general image processing, but as one specific to  MRI and based in 

the physics of the measurement process. The estimators proposed a,re based on the physics 

of MRI and protocols used clinically. We also show how estimators can be evaluated by 

testing suitability for radiological tasks. 

We present staiistical models for protocols and features of interest that arise in MRI. 

Since the models contain nuisance parameters many estimators are a.vailable from the sta- 

tistical theory. Additionally, we consider how adding a. constraint of regularity in the phase 

coordinate of the complex data affects the estimators. We demonstrate how phase regularity 

can be integrated into the model using estinmtion with local models and avoiding a costly 

unwrapping step. 

To choose among the variety of estima.t,ors available for a model, we suggest task-based 

quality metrics. In particular, for estimaiors whose output is destined to be viewed by 

a radiologist, we demonstrate human observer studies and models of human perception 

that can quantify the qua.lity of an estimator. For features of interest that are analyzed 

quantitatively, we study the trade-offs bet-ween bias and variance that are available. 

We find that choosing an estimakor specific to the feature of interest and protocol can 

iii 



produce substantially improved output. Additionally, we find tha.t our huma.n observer 

results are not predicted by SNR, challenging the use of SNR for qua.ntifying estimator 

suitability. We conclude that  MRI-specific estimation and evaluation provide substantial 

a.dvantages over general-purpose approaches. 

Keywords: magnetic resonance ima.ging; signal processing; image quality; point esti- 

mation; denoising 
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Chapter 

Introduction 

1.1 Estimation and the MRI Signal 

Magnetic resonance imaging (MRI) aJlows us to produce ima.ges and volumes from localized 

measurements of magnetic properties by manipulating nuclear spin in a sample. MRI has 

seen wide adoption in medicine due to  its ability to  differentiate soft tissues which are 

indistinguishable in x-ray or CT images. Additionally: temporal changes in tissue properties 

can be used to  quantify non-chemical features - functional MRI (fMRI) uses temporal 

variations to measure neurological activity [45] while tagged MRI can be used to  measure 

material disp1a.cement during movement [93]. 

The MRI measurement, like measurements in most physical experiments, is an imperfect 

representation of the tissue we are imaging. In addition t o  noise due to electrical resistance, 

the recorded informa,tion can be corrupted with a wide variety of artifacts due to physical 

anomalies in the measurement. Since these measurements are often used as input to  critical 

medical decisions, there is substantia.1 demand for methods that  improve the estimation of 

anatomical images from the h4R.I measurements. While it is often possible to improve the 

measurements by modifying the hardware or the measurement protocol, this does not avoid 

the question of whether a better choice of estimator could further improve the resulting 

image. From a more pra.gma.tic perspective, having purchased a particular MRI scanner, a 

radiology department would like to make sure it is getting the best image possible from the 

significant investment in hardware. 

Although we will cover t,he MRI signal in greater detail in chapter 2,  for now it will suffice 

to  note that  A4RI measurements normally assign a complex value to each discrete location 
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One-Parameter 

Table 1.1 : Trade-offs between estimators in four different classes. We have identified benefits 
(+) and detriments (-) of each estimator class. 

Two-Parameter 

(voxel) in the patient1. In the majority of experimental protocols tha.t are used clinically, 

the information of interest is encoded in the true magnitude of the signal. However, since we 

are dea.ling with complex-valued measurements, the magnitude alone does not completely 

specify the signal; we must also describe the phase of the signal. In these protocols the 

true phase is the result of unknown physical processes and contains no information of value. 

These true magnitude and phase values are then corrupted by noise and artifacts to  produce 

the received measurements. 

Over the history of MRI a variety of estimators have been proposed that  transform the 

complex measurements int,o a real valued estimates suitable for visualization as greyscale 

images. For the  purposes of this thesis, we will classify estimators along two axes: one- or 

two-parameter models being the first axis, and independent or regularized estimators being 

the second. Table 1.1 shows some of the trade-offs between these choices. A one-para.meter 

model uses just a magnitude parameter t o  describe the distribution of its measurements 

(normally just the magnitude measurement). A two-parameter model includes both a mag- 

nitude and phase para.meter and normally describes the full complex measurement. We will 

see in chapter 4 that many reasonable estima.tors based on two-parameter models end up 

discarding the phase measurement. Thus, when we speak of one- or two-parameter models 

we are not specifying what information is used as input to  the estimator, but what model 

is used to  derive and justify the choice of the estimator function. 

We use the terms independent and regularized to  differentiate whether information from 

Independent 
- Ignores phase 
+ Cannot over-smooth 

'To those familiar with MRI this may seem an unusual description, since MRI measurements are actually 
complex values in the Fourier domain (k-space). We will explain the process in more detail, but here we are 
referring to the complex-valued voxels available after an iFFT has been applied to the k-space da.ta. 

Regularized 
- Ignores phase 
- R4ay over-smooth 

- Ignores image structure 

+ Acknowledges phase 
+ Cannot over-smooth 
- Ignores image structure 

+ Uses image structure 
+ Acknowledges phase 
+ R.egularize ma.gnitude and phase 
- May over-smooth 
+ Uses image structure 
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neighbouring measurements is used to  estimate individual points. We use the term indepen- 

dent to  highlight that  the distribution of the resulting estimate at any voxel is independent 

of the mea.surements a t  any other voxel. The same cannot be said of a regularized estimator, 

which takes measurements from a region around each voxel as part of its estimation a t  a 

given voxel. In asking which of these approaches is preferable we must appreciate that  there 

are two conflicting indications: the existence of natural anatomical structure and the desire 

to  ma.intain fine structures in the estimated image. By virtue of the anatomical objects im- 

aged in clinical MRT it is reasona.ble to  assume neighbouring voxels' underlying anatomical 

properties are quite similar. Anatomical structures tend to  be relatively homogenous with 

discontinuities a.t their edges. An estimator that  insists on independence in its estimates is 

essentially asserting that  estimating a MRI volume with all the voxels permuted is the same 

task as estima.ting voxels in their natural order. Clearly this is false - there is information 

in the neighbourhood around a voxel that  can improve our estimation. However, the con- 

trary pressure is t,o avoid estimators that  so heavily favour regularity that  they remove fine 

structures from t,he estimated images. More than most other imaging applications, medical 

ima,ging focuses on the detection of small irregularities. Informally, it is probably acceptable 

t o  smooth over pimples in a family photo, but i t  is not acceptable t o  smooth over a small 

tumor in a medical image. The choice of how much regula.rization should be applied to  

image estima.tion, if i t  should be applied at all, is highly task dependent. 

1.2 Phase-Corrected Real Reconstruction 

This thesis is particulady interested with a two-parameter regularized estimation a,pproach 

for MRI ca.lled phase-corrected real reconstruction. While we will expla.in how phase cor- 

rection methods operate in later chapters, it is sufficient here to  note that, given a two- 

parameter model, we can choose to  regularize the magnitude, the phase, or both when we 

design our estimators. A phase-corrected real estimator applies regularization to  the phase 

parameter in order t o  improve estimation of the signal ma.gnitude. 

MR ima,ges a.re normally constructed by taking the magnitude of the measurement a t  

each location in the  sample as an estimate of the true signal magnitude. Obviously this 

restricts the possible estimated vahes to the non-negative reals. Phase-corrected real images, 

on the other hand, can cover the whole real line. I t  is this a.bility t o  encode 'negative signals' 

tha.t prompted the first explanation of this technique in a general form [2]. In particular, 
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Figure 1.1: Simulation of the effect of phase-correction on inversion recovery data. All three 
images depict a simulated system with a large cylinder of wa.ter containing an empty region 
of air with small water-filled structures (top of cylinder) a,nd four smaller cylinders of oil 
producing slightly greater signal ma.gnitude (bottom of cylinder). The water is simulated 
as producing a signal with positive sign while the oil's signal is given a negative sign. Left: 
Inversion recovery image produced using the sta,ndard magnitude reconstruction. Center:  
Positive part of inversion recovery image produced by phase correction. Right: Negative 
part of inversion recovery image produced by phase correction. Note that  the fat (four small 
cylinders) and water (main body) are separated into the negative and positive images after 
phase correction while the magnitude reconstruction disca.rds the sign and thus blends the 
two signals. 

it was noted that  inversion recovery MR images, where two signal sources (usually fa,t a,nd 

water in medical MRI) can be assigned opposite signs, were far easier to  interpret when the 

images maintained the signs of the signal source. Figure 1.1 shows a.n example of this, where 

the magnitude reconstructed inversion recovery data (left image) cannot distinguish water 

and fat while the positive part of the phase-corrected real reconstruction inversion recovery 

data (center image) conta.ins only water and the negative part (right image) contains only 

fat. 

Interest in phase-corrected real reconstructions was rekindled by a theoretical work show- 

ing that magnitude ima.ges would have less contrast than phase-corrected images [13] (we 

will revisit this result in chapter 3). There have since been a succession of proposals for 

performing phase-corrected real reconstructions (14, 49, 581. However, several authors have 

published concerns about the robustness and significant computational demands of these 

methods [49, 591 and they are not rout-inely used as part of clinical MR imaging. 

In chapter 5, we suggest tha.t one reason previous phase correction methods have tended 
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t o  be unusable in practice is tha.t they focused on simultaneous phase unwra.pping and phase- 

corrected real reconstruction. Phase unwra.pping problems appear in many application areas 

outside of MRI and are generally quite difficult to  solve efficiently. The  basic problem takes 

as input an array whose entries are angles and asks for a. solution which consists of the 

smoothest array of real numbers such that  the solution equals the input modulo 27r. The 

difficulty in this problem varies by the exa,ct definition of 'smoothest' being employed, but 

in general this problem often reduces to some form of multivariate non-linear optimization. 

We can, however, perform phase-corrected real reconstruction without worrying about un- 

wrapping - this thesis demonstrates one such algorithm and suggests a methodology for 

constructing other algorithms based on the same principle. 

1.3 Summary of Our Research Program 

We were interested in whether an algorithm for phase-corrected real MR images could be 

produced that  would be relatively fast, robust given clinical data, and actually improve 

MR image quality. We were pa.rticularly interested in applications of these reconstruction 

approaches to MRI measurements that  have quite low signa.1-to-noise ratio (SNR). In this 

thesis we take concrete steps towards answering all of these questions in the affirmative. 

Interestingly, of the topics we cover in this thesis, concerns about whether phase- 

corrected real MRI could improve MR image quality were the ones least addressed in 

previous publications. This is problematic: if we are not sure that  phase-corrected real 

reconstructions really improve MR image quality, why should researchers be pursuing this 

reconstruction approach? Our reading showed only a. theoretical result on this topic (Bern- 

stein et al. [13]) but no indication of what effect this result might have in practice. 

At first blush it might seem that  this is a chicken-or-egg problem. If there are no 

phase-corrected real reconstruction algorithms to test, how can we perform experiments to  

determine whether phase correction is an improvement over magnitude? Combining previous 

work in measuring image quality in other modalities with a general model of the MlU 

signal, we developed a series of experiments using real human observers to  test the best-case 

outcome from phase-corrected real reconstruction against alternative reconstructions using 

synthetic images. Our results suggest tha,t the best-case phase-corrected real reconstruction 

could indeed provide an improvement over other estimators when searching for faint targets 

in dark parts of the background. While we found thak some of our results for other estimators 



CHAPTER 1. INTRODUCTION 6 

contradicted previous theoretical assertions, this result for the phase-corrected real estimator 

correlates with the enhancement expected by the previous theoretical result [13]. 

Having experimental indication that  phase-corrected real reconstructions could improve 

detection, we were still left with the problem tha.t none of the existing algorithms for phase 

correction were considered reliable for clinical use due t o  the difficulties of regularizing the 

phase parameter. Since regularization was the chief difficulty, we were curious whether an 

independent estimator constructed from the two-para,meter model could approximate the 

best-case phase-corrected real estimator's performa,nce without requiring regularization. In 

particula,r, we were interested in a.pp1ying the large body of statistical research on estimation 

in models with nuisance parameters to  the two-parameter model of the MRI signal. The 

great ma.jority of previous work on independent estimators has focused on oneparameter 

models, but we were interested in whether one of the existing approaches in the statistical 

literature might produce a result similar t o  phase-corrected real estimators without requiring 

regularization. In pursuing this idea we developed a. variety of independent two-parameter 

estimators and quantified their behaviour in terms of bias and mean squared error (MSE). 

While some of these new estimators proved competitive with state-of-the-art independent 

estimators, none of them provided performance similar to the ideal phase-corrected real 

reconstruction. 

Having determined that  regularizing phase in a two-parameter model does indeed provide 

a.dva.ntages over the alternative estima.tors, we derived a new algorithm for phase-corrected 

real reconstruction. Our estimator is different from many previously published algorithms 

in that  i t  is derived with the same method we use to  derive our two-parameter independent 

estimators. Additionally, our derivation focuses on the problem of signal estimation and 

avoids unnecessary work such as phase unwra,pping. Comparisons between our approach 

and previous phase estimation algorithms have demonstrated promising results in a variety 

of real and synthetic data sets. 

1.4 Structure of the Remaining Chapters 

The majority of work in this thesis rests upon a model of the MRI signal originally presented 

by Henkelman [34]. I t  is this model that  ma.kes up  the basis of what we refer to  as the two- 

parameter model for the MRI signal. In chapter 2 we introduce and explain the Henkelman 

model in detail, along with the most oft-encountered exceptions in practice. We also show 
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how the model with ma,gnitude and phase parameters describing the  signal is reduced to  a 

model with just a magnitude parameter via marginalization. 

In chapter 3 we survey the various a,pproa.ches t o  measuring medical ima,ge quality that 

have been used in previous work. We then explain how we used our model of the MRI signal, 

along with the previous task-based experimental methodologies in other medical imaging 

modalities, to  develop new experiments for the evaluation of MRI estimators. We present 

the  results of our experiments and draw the conclusions that  motivate the remainder of this 

thesis. 

Chapter 4 begins with a brief summary of the estimation theory used t o  derive inde- 

pendent estimators from the two-parameter model of MRI. In pr t icular ,  we focus on the 

frequentist concept of point estima.tion from likelihood and likelihood-like functions. We 

discuss some of the theoretical approaches presented in the statistics literature for estima- 

tion of a single pammeter in a multi-parameter model. We then apply these techniques t o  

the models derived from MRI and derive several new estimators for the MRI signal mag- 

nitude. We compare these new estimators with previously published estimators and the 

results expected from the ideal phase-corrected real estimator. 

Our proposal for a novel phase-corrected real estimator is presented in chapter 5. The 

chapter begins with a survey of previous phase correction approaches and other phase esti- 

mation algorithms that  could be used as part of a phase correction algorithm. We explore 

the difference between phase unwrapping and phase-corrected real estimation and highlight 

how the former is unnecessary for the latter. Based on this differentiation we present a slight 

modifica.tion of our two-parameter model which, by a.pplying the standard estimation theory 

outlined in chapter 4, naturally produces phase-corrected rea.1 estima.tors. We compare the 

most basic of these estimators t o  previously published algorithms for phasecorrected real 

reconstruction using real a.nd synthetic data. 

Finally, in chapter 6 we summarize the results of t,he previous chapters and suggest some 

avenues for future research that  appear promising based on the results of this thesis. 

Please note that ,  because of the multi-part (and multi-disciplinary) nature of our research 

program, this thesis uses a slightly different structure than is standard. Where there would 

normally be one or more stand-alone chapters to  cover previous work, here we have included 

the relevant previous work at the  beginning of each cha.pter. This structure hopefully 

highlights exactly what previous work applies to  each part of our research program while 

allowing the chapters to represent logical parcels of the resea.rch program. 
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1.5 Notes on Mathematical Notation 

Before proceeding it is useful to specify some very general rules for mathematical nota.tion 

that are applied for the rest of the work. Throughout the thesis, notation is defined as 

it is introduced and used. However, some very general rules can improve the clarity of 

the equations. Since we must choose some convention among the many available, we have 

followed the IS0  guidelines for engineering mathematics typography [12]. 

We will use lowercase italic type like x for complex variables, lowercase bold italic 

type like x for vector varia.bles, and uppercase bold type like X for matrices. 

0 We will use lowercase upright type like i for constants such as .rr, i and e. 

We will use { ), [I a.nd ( )  as necessary to cla.rify nested parentheses. The choice of 

bracket generally has no specia.1 meaning. The one exception to this is that when we 

are referring to an element of a matrix M that is addressed by a 2-vector index x we 

will use square brackets and write M[x] for the element. 

JJxJJ, is the pnorm of the vector x. When no p is specified, p = 2 is implied. 

P(x  > y; a) is the probability of the measurement x being greater than y with pa.ram- 

eter a fixed. 

p(x; a)  is the probability density function (PDF) for the measurement x with param- 

eter a fixed. 

L(a;x) is the likelihood of the parameter a with measurement x fixed. 

[(a; x) is the log-likelihood of the parameter cr with measurement x fixed. 

U(cr; x) is the score of t-he parameter cr with measurement x fixed. 

E ( x )  is the expected value of x. 

i is an estimate of x. 

N ( p ,  u) is the normal distribution with mean p  and standard deviation a. 

is the matrix of total derivatives of each element of vector 2: with respect to each 

element of vector v. This generalizes to scalars by treating them as 1-vectors. 
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is the Jac0bia.n matrix of the vector x with respect to the vector v. This generalizes 

to scalars by treating them as 1-vectors. 

R+ is the set of non-negative reals. 

JSJ is the cardinality of set S. 

0 I,(z) is the nth-order modified Bessel function of the first kind with argument z .  



Chapter 2 

MR Imaging 

MFU is most commonly used to  record volume da ta  sets from human or animal subjects. 

In a. setup with a single quadrature receiver coil, the measurements a.re normally acquired 

in the complex-valued Fourier domain [16], which is referred t o  as k-space in the MFU 

literature with the individual frequency axes being labeled k,, &, k,. In some cases the 

z-axis is sliced during acquisition, resulting in a stack of 2D Fourier slices instead of one 3D 

Fourier volume. Since t-he k-space measurements are usually acquired on, or re-gridded to, 

a Cartesian grid, the k-space measurements can be efficiently transformed into a complex- 

valued image volume via the inverse fast Fourier transform (iFFT). In the stack-of-2D-slices 

acquisition approach, the iFFT is applied to each slice individually, while in the 3D-volume 

acquisition a 3D iFFT is applied. Since our interest will mostly be on the spatia,l-domain 

measurements: in the remainder of this thesis when we refer t o  "measurement" without 

specifying whether it is pre- or post-iFFT, we will take it to  mean the post-iFFT spatial 

measurements. 

The process of a.cquiring the k-space measurements relies on the interaction of magnetic 

fields with, most commonly, the protons associated with hydrogen atoms in the subject's 

body. The  exact timing and amplitude of the magnetic fields and the timing of the mea- 

surement of voltage across the receiver coil (termed signal readout) determines the details 

of the received signal's relationship t o  other physical properties of the tissue. A particular 

configuration of magnetic field application and signal readouts is called a pulse sequence. 

Although the received signal is generally proportional to  the density of protons at a given 

location, the selection of a particu1a.r pulse sequence can have a substantial impact on the 
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final image. For example, a delay between the excita.tion of the  protons and their measure- 

ment will lead to tissues with fast spin-spin relaxation (also called T2 relaxation) a.ppearing 

darker in the image than tissues with slower relamtion. A variety of good textbooks are 

available that cover the details of the physics of pulse sequences (e.g., [85, 40, 441) and so for 

brevity we will not include a survey of this topic here. Instead we will focus on a higher-level 

model of the recorded measurements that  exp1a.ins the properties of interest without delving 

much into the underlying physics. 

2.1 MRI Noise Model 

In the majority of clinical pulse sequences the information of interest is encoded as the true 

magnitude of each complex-valued voxel. Thus, it is very common to  display a greyscale 

image of the voxel magnitudes as the ima,ge a radiologist will use for diagnosis. One question 

that natura.11~ arises is how the noise of the physical system is distributed in these images. 

The first coherent description of the noise in MR measurements and the resulting distribu- 

tion in ma.gnitude images was given by Henkelman [34]. The basic form of this model comes 

from the assumption that  MRI measurements recorded using a single quadrature coil are 

corrupted at every voxel with two independent samples from the sa.me zero-mean normal 

distribution. One sample is added t o  the real channel and one t o  the imaginary channel. 

Further, since the noise results from random thermal fluctuations associated with the effec- 

tive resistance of the patient combined with that  of the coils themselves, the variance of the 

normal distribution is the same at all locations in k-space [35, 27, 481. Fortunately, the noise 

in this model is a.dditive. Thus, the iFFT of these measurements is the same as the iFFT 

of the true, noise-free complex signal summed with the iFFT of the noise. The noise in the 

two channels is independent and drawn from N(0, a ) ,  which implies the noise has the same 

distribution in the spatial doma.in, although the individual noise samples will be different 

[16]. Combining these results, we find that  our complex-valued spatial-doma.in measure- 

ments are the true, noise free complex-valued signals summed with a. complex zero-mean 

normally distributed noise. 

While Henke1ma.n proceeded from this model to  derive the distribution of the magnitude 

image, he did not solve the integrals in his equation nor note its relationship to  previous 

work in signal processing. This final step was taken by Bernstein, Thomasson, and Perman 

[13] who recognized the magnitude distribution as the Rician distribution [66] and thus 
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Figure 2.1: Example of an MRI voxel, showing the relationship of the various components in 
equation (2.1). The solid black lines represent the three components of our signal model and 
the indica.ted angle is the signal phase. The  dashed line shows the sum of the components. 
This dashed line is the recorded vadue of the voxel while all the other parts of the diagram 
are unknown. 

enabled an integral-free des~ript~ion of the magnitude image's distribution. This was further 

expanded by Gudbjartsson and Patz [32]. Recently there has been doubt raised about 

whether the assumption that  the two channels are uncorrelated truly holds for NIR imaging 

[30]. However, while it is likely that  using a more complicated model might further improve 

the results of our work, we will focus on the work descending from Henkelman's model as this 

has been the source of the most results up to the present. Additionally, the methodologies 

we will describe in later chapters can all be extended t o  other signal models as well. 

In all of the problems discussed in this work we will consider pulse sequences that encode 

the clinically relevant information in the ma.gnitude. However, in order t o  understand the 

probabilistic behaviour of the measured magnitude a t  the receiver, we need a model of the 

noise in the complex-valued MRI measurement. If we consider the  measured value m at a 

single complex-valued voxel, we can write m as the sum of components 

where s E Rf is the magnitude of the true signal produced by the anatomy, 4 E (-T,T] is 

the phase of the true signal, and q, and qi are the noise in the real and imaginary components 

respectively. A single voxel produced by this system is depicted in figure 2.1 to illustrate 

how the components interact. 

Since we have stated that  q, and qi are independent samples a t  every voxel, we can write 

the PDF of the complex-valued measurement a t  a given voxel as 
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where a and b are the real and imaginary pa.rts of m, and a is the noise standard deviation. 

Alterna.tely, we can convert the measured value to polar coordinates and write the PDF as 

where I- and 6 are the ma,gnitude and phase of m. 

The principal virtue of this model, particularly for the work we describe, is tha,t it is 

not concerned with what information is encoded in s and 4 and thus works for almost any 

single-coil pulse sequence. When we consider specific pulse sequences, we can expand the s 

and 4 va.riables as necessary based on our model of the pulse sequences' physics. 

2.2 Basics of Weighted Proton Imaging 

The most common form of MR image used clinically is the weighted proton image. In these 

images, the magnitude of the true, noise-free signal a t  each voxel represents the number of 

protons a,vailable for imaging in the voxel volume weighted by some physical property of the 

tissue in the voxel. Common properties that  a.re used in weight are spin-lattice relaxation 

(TI-weighted), spin-spin relaxation (T2-weighted), and diffusion (DWI). An image that  is 

not weighted by any t,issue property is called a proton density (PD) image since its true 

signal magnitude reflects only the number of protons available for ima.ging in the tissue. 

In principle, all of the quantities being estimated in weighted proton imaging are non- 

negative real values. The pulse sequences that  produce these images encode the information 

as the signal magnitude, s, leaving 4 as a free variable. Spin echo (SE) pulse sequences 

attempt to set q5 = 0 for all voxels, while gradient echo (GRE) pulse sequences do not 

concern themselves with the value of 4 and expect it t o  vary from voxel to voxel. For now 

we may treat this variation as random, but later we will consider whether these variations 

have some underlying structure. 

Images are usually produced from these measurements by taking the ma.gnitude a t  every 

point as the estimate of s .  As noted a.bove, this gives an image with a Rician noise distri- 

bution. To see this, we can marginalize out the phase measurement from equa.tion (2.3) to  

produce the Rician PDF 
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Figure 2.2: P D F  and expected value of the Rician distribution. The x axis is the observed 
magnitude llrnll while the y axis is the value of t,he PDF for the appropriate combination of 
parameters. The distribution is produced as the magnitude of a. complex value consisting 
of the sum of a real-valued signal s and two samples from N(0, a) .  The curves plot the 
PDFs of distributions with a = 1 and s being set to: 0 (solid line), 1.5 (dashed line) and 3 
(dotted line). The vertical solid, dashed, a.nd dotted lines joining the distribution to  the x 
axis demarcate the expected value of the distribution in the three values of s. 

using the identity J_"71 exp ( Z  cos(r3)) d$~ = 27r I. (2), where I. (2) is the zeroth-order modified 

Bessel function of the first kind. One feature of the Rician distribution that  has been much- 

discussed in the MRI literature is its bias when s is small relative to  a (see figure 2.2). 

Because the bias varies with s, i t  has been suggested that  regions of the image with low s 

relative to  a may have reduced contrast [34, 13, 321. Consulting figure 2.2, we can see that  

the bias is quite large when s/a = 0, but diminishes quickly, with the noise distribution 

becoming approxima.te1y normal for s/o > 3. 

Using the model in equation (2.1) we can a.lso now express the basic idea of phase- 

corrected real reconstruction: if 4 is known or ca.n be estimated, we can multiply m by 

exp(-i4), thus aligning s along the real axis. We can then take just the real component of 

the phase-corrected measurement as the estima.te of s ,  which will contain s summed with a 

zero-mean normally distributed noise. 

2.3 Practical Issues in Weighted Proton Imaging 

The probabilistic model described in the previous section describes the effects of electrical 

resistance on the measurements. However, a variety of physical effects also alter the param- 

eters of these distributions. We will term these alterations artzjacts to  differentiate them 
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from the random noise. We will think of noise as the difference between the measurements 

and the distribution para.meters, while artifacts alter the parameters from their ideal val- 

ues. This section provides examples of some of the most common artifacts visible in NIRI 

measurements. 

2.3.1 Physical effects that alter the signal magnitude 

Many physical phenomena can cause the magnitude of the true signal s at a particu1a.r voxel 

t o  include more tha.n just the weighted proton density a t  that  location. One of the most 

visibly apparent is ca.used by movement during the scan. Movement of a patient's tissue 

or the flow of blood during imaging can produce a 'ghosting' effect where the anaiomy 

a.ppears faintly in multiple locations. Since the time required to acquire a. single kg row of 

k-space is quite short in most pulse sequences, it is commonly assumed tha.t ea.ch row is 

recorded with the patient in a fixed locamtion. However, inter-acquisition motion (also called 

inter-view motion) results in the kg rows acquired before and after the movement being 

inconsistent with any one patient location. This inconsistency produces the image ghosts 

when the inverse Fourier transform is applied [33]. 

In addition t o  motion artifacts caused by blood flow, many MRI pulse sequences suffer 

from 'wash in' and 'wash out' effects when they image slice-by-slice. Blood that  was not 

excited 'washes in' and produces a signal void in the  slice. In other cases the excited blood 

vacates the slice producing a signal void in one location and an undesired 'hot spot' in a 

different part of the body. Further, flowing blood can suffer from motion artifacts that  

cause the blood to  a.ppear outside the vessel that  is traveling inside [85: 331. A variety of 

modifications to standard pulse sequences have been proposed t o  reduce these effects. 

Ch,emical sh$ is the name applied to the imaging errors due to  the difference between 

the magnetic fields experienced by the  hydrogen protons in water and fat molecules (for 

more on chemical shifts and their relationship to  pulse sequences see [85, 40, 441). In a 

water molecule, the hydrogens' electrons are strongly attracted to  the oxygen atom. In fat, 

we ha.ve hydrogen-carbon bonds with less pull on the hydrogens' electrons. These differences 

in bonding result in each proton experiencing a different ma.gnetic field depending on the 

tissue type. The  principal effect from chemical shift in most pulse sequences is thak the 

fat and wa.ter signal will be shifted relakive to  each other in particular directions called 

the frequency encoded directions of the pulse sequence (usually kz by convention). The  

magnitude of this shift is influenced by the choice of pulse sequence and, with appropriate 
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choice of para.meters, can often be reduced to  less than one voxel, effectively elimina.ting the 

shift [33]. 

A long-standing  difficult,^ for a.11 MRI systems has been the production of the large, 

time-invaria,nt, homogenous magnetic field needed for proper imaging. A large amount of 

the ma.thematics of MRI relies on precisely controlling the magnetic field a t  every point in the 

scanner. A ma.jor source of problema.tic varia.tions are the fields induced by each substance 

when exposed to  the main field [69, 851. Each substance has its own magnetic susceptibility 

and when two regions immediately adjoining each other have different susceptibilities, the 

total magnetic field cha.nges rapidly along the regions' boundary. This effect is often noticed 

a t  tissue-air boundaries in regions like the sinuses. Calculating the precise shape of these 

induced fields is often difficult even when the precise sha.pe of the objects is known [69]. In 

general, the more curved the boundary, the larger the magnetic field gradient induced along 

the boundary 1851. 

Significant cha.nges in field strength over distances on the order of a micron have an 

effect on the T2 value of the sample. This is because the water molecules, and thus protons, 

being imaged tend to  diffuse a t  about 1.2 x 1 0 - ~ c m ~ / s  in human tissue. This diffusion, 

combined with a. spatially varying magnetic field, causes protons t o  experience many field 

strengths during the pulse sequence [69]. For this reason, magnetic field variations tend to 

cause the observed T2 relaxation t o  be faster than the tissue's inherent T2. To account for 

this, a different, unknown constant T$ is often used to  describe relaxation instead of T2, 

with the understanding that  T2 > T> In practice, this means that  we will experience signal 

loss in areas with large inhomogeneity over short distances. 

When the main magnetic field has a more gradual spa.tia.1 variation, the resulting effect 

a.ppears more like chemical shift. Areas where the field is stronger will be shifted in the 

positive x direction while those experiencing a weaker field will be shifted in the negative x 

direction or vice versa depending on the pulse sequence used. 

2.3.2 Physical effects that alter the signal phase 

We previously stated that  GRE imaging ignores the phase 4 while SE attempts to  force 

q5 = 0. However, we did not go into detail about what causes q5 to take any particular value. 

When imaging a perfectly homogenous object with a perfectly homogenous magnetic field, 

we expect q5 = 0 to  result from either of the pulse sequences. In practice, deviations from 

this perfect model may ca.use 4 t o  take other values. 
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When imaging humans it is obvious that  the sample is not homogenous. We expect 

to  encounter both chemical shift and ma.gnetic field inhomogeneity as described in our 

discussion of magnitude artifa.cts. Both of these effects will cause the value of 4 in GRE 

images to  vary, advancing where the  field is stronger and lagging where the field is weaker. 

However, because the phase is an a.ngle, and thus wraps around the circle, we cannot make 

simple greater-thanlless-than statements about the resulting phases. 

SE imaging is able to  correct for chemical shift and ma,gnetic field inhomogeneity effects 

that  are constant for the duration of the scan. However, if the field changes slightly during 

the scan, either due to patient motion, temperature changes in a fixed magnet, or new fields 

induced by the ma,gnetic field switching required by the pulse sequence, then we will still 

find that  4 # 0 in SE signals. In general, we expect the a.mount of phase advance or lag 

experienced by any point in an SE ima.ge t o  be substantially less than the equivalent point 

imaged using GRE. 

2.4 Published Solutions to  Practical Issues in Weighted Pro- 

ton Imaging 

Due to the long acquisition times required for h4R imaging, correction of patient motion is 

an important area of research. In chest imaging: periodic cardiac and respira.tory motion 

cannot be voluntarily paused for the duration of an imaging sequence. In these cases 'gating' 

is often used so that  measurements are always collected a t  the same point in the biological 

cycle. I t  is hoped that  the anatomy will be in approxima.tely the same position a t  this 

point in each cycle, so the ky rows will represent a consistent state. Another solution makes 

use of the fact that  very often the ana.tomy being imaged can be treated as a rigid body. 

For example, the head and brain tend to move as one rigid unit only undergoing rotations 

and translations. Many different proposals have been ma.de for compensating for rigid body 

motion in an  MRI slice. Approaches for detecting these motions and compensating for them 

either during the scan (e.g., [78, 831) or via post-processing (e.g., [95]) are a significant area 

of research. 

To correct deviations in the main field that  exist for a long period of time (e.g., variation 

due t o  the magnet's construction, or due t o  external influences a t  the installation site) 

smaller shimming magnetic fields are frequently a.pplied to  produce the desired homogeneity. 

However, in practice inhomogeneities that  change over time (e.g., inhomogeneities that  
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move with the patient) ca.nnot be effectively counterbalanced with shimming, although 

some a.pproaches for real-time correction of shimming errors introduced by patient motion 

have been proposed recently (e.g., [83]). 

Finally, a variety of algorithms for turning the received measurements into estimates of 

signal magnitude have been published. Most these approaches focus on compensating for the 

measurement noise described in equations (2.3) and (2.4), and do not account for artifacts 

that  alter the true signal magnitude. We will continue with this focus, leaving artifacts that  

alter signal magnitude as a separate issue. Using the classifications presented in cha,pter 1 

we can separate the previous approaches t o  this problem. Although our work focuses almost 

exclusively on two-parameter estimator, previous work using the one-parameter model to  

generate independent estimators for this problem will be surveyed in chapter 4 and previous 

one-parameter regularized estimators will be presented in chapter 5. 

While both our work and almost all of the previously published works on estimators 

ignore alterakions of the  true signal magnitude, the causes of variation in the true phase 

4 are important t o  phase-corrected real reconstruction and so previous authors have paid 

substantial attention to  them. The most important fact about 4 for these applications is 

that ,  in the ma.jority of pulse sequences, the artifacts that  affect the  true phase vary quite 

smoothly across the spa.tia1 extent of the image. Figure 2.3 shows the phase map for a 

weighted proton image of wa.ter a.nd cream containers, demonstrating the smooth phase 

variation common in MRI. In particular, many previous authors have focused on fitting 

low-degree polynomials to  q5 with relative success [2, 14, 46, 191. I t  is important to note 

that in most pulse sequences these smooth va.riations occur only within MR image slices 

and we should not expect q5 to  va.ry smoothly across slices. However, i t  still allows strong 

assumptions to  be made about 4 ,  and we will rely on this significant result when we derive 

our two-pa.rameter regularized estimator in cha.pter 5. 

2.5 Other Types of MRI Data 

Since the majority of our work will focus on weighted proton imaging, we will not discuss 

other types of MRI data in grea.t detail. However, two other types of NIR data require 

description as we will refer to  them later in the thesis. 

Inversion recovery da ta  is similar t o  weighted proton imaging in that  the  information is 

encoded in s. However, as we noted in chapter 1, inversion recovery images differ in that  
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Figure 2.3: Phase measurements of GRE image with dummy objects in scanner. Phase is 
mapped to greyscale with -.rr being black and .rr being white. However, phases of -.ir and .rr 
represent the same orientation, since they are the same point when wrapped onto the circle 
of angles. Thus, blacklwhite edges are an artifact of the color map, and actually represent 
smooth variations in the phase measurements. The speckle outside the objects is the result 
of the measurements containing pure noise, and thus the voxels have incoherent phase. 
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we allow s to  take on nega.tive values. If we allow this change to  the definition of s, then 

equation (2.3) can still be used t o  describe the PDF of the measurements. Similarly, all of 

the physical effects that we described for weighted proton images apply to  these da,ta as 

well. h4agnitude-reconstructed inversion recovery images suffer from Rician bias, but also 

from the loss of sign informa.tion depicted in figure 1.1. 

T2 echo series are used to  perform quantitative analysis of the T2 relaxation at each 

location in the subject. We have previously stated that by selecting an appropria'te pulse 

sequence we can weight the proton image with a function that  depends on T2. In the usual 

method of T2-weighted imaging, the weighting function is 

where so is the unknown true signal magnitude that  would be observed without any weight- 

ing, t is a parameter that  we may choose, and T2 is the unknown relaxation constant of the 

voxel being imaged. 

In general one of these T2-weighted images alone cannot be used for quantitative es- 

timation of T2 since i t  is impossible t o  distinguish variations in so from variations in T2. 

However, since we know the form of the weighting function and can control the value of t 

for any given image, we can estimate the T2 properties if we have a series of images with 

different t values. In experiments of this type it is normal to  collect many such images for a. 

sequence of increasing t values. Due to the underlying physics of how the signal is acquired, 

ea.ch measurement in the sequence is referred to as an echo. As we can see in equation (2.5), 

the T2-weighting is a dampening effect, so later echoes will have smaller s than earlier ones. 

Additionally, applying enough T2 weighting will effectively completely null the signal a t  a 

given voxel. However, we have seen that  even in regions with no signal there is still a. positive 

bias due to Rician noise if we take the ma.gnitude of each echo as our measurement. The 

combina.tion of gradual exponential decay with the Rician-distributed measurements means 

that  the bias of the measurements will increase as the  decay increases. If this variation in 

bias is not accounted for it c m  distort qua.ntitative analysis of T2 measurements. We will 

discuss this problem, and present a possible solution, in chapter 5 .  



Chapter 3 

Evaluation of Image Estimators 

The first component of our research program was to determine if phase-corrected real recon- 

structions could improve MR image quality. Although there has been previous experimental 

work on MR image quality [68, 541, to  the best of our knowledge there has only been one 

theoretical result on the potential advantages of phase-corrected real NIRI [13]. We begin 

this chapter with an introduction to  the basic problems inherent in quantifying medical 

image quality. This is followed with a survey of some of the approaches that  have previ- 

ously been used for measuring medical image quality. We then describe two experiments we 

conducted with human participants to  quantify the quality difference between the output 

of three different MRI signal magnitude estimators and discuss the results. We use these 

results to  justify our decision t o  pursue the development of estimators that  perform like the 

best-case phase-corrected real estima.tor. Returning to  our survey of evaluation approaches, 

we provide an explanation of how we will quantify and compare estimators for the remainder 

of this thesis and rela.te our choice t o  our experiment results. We finish the cha.pter with a 

brief summary. 

3.1 The Problem of Medical Image Evaluation 

Of the many ways we could evaluate an estimator, the most common is to quantify its fidelity 

to  an ideal estimator. In the common signal processing model, a signal is communicated 

by a source, via a channel, to a receiver. The channel modifies the signal (e.g., adds noise, 

performs some transformations, etc.) so that  the original signal does not arrive a t  the 

receiver. An idea.1 estimator in this model is one that  can, given the measurements made 
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a t  the receiver, reconstruct the original signal. This suggests tha.t we should evaluate our 

image estimators based on their output's fidelity to  the original image. 

The critical issue that  arises with this approach is the need to  define what we mean by 

"fidelity". While, in theory, any measure will suffice, in practice i t  is likely that  certain 

measures are more meaningful for a given estimation problem. In particular, since we often 

model our channel as a random process, we must equally view our estimator as a random 

function of the signal. Thus, our problem is not just one of summarizing the difference 

between two estimates, but summarizing the difference between the ideal and a random 

function. 

The challenge of evaluating an estimator in the context of medical imaging is often 

further compounded by the  fact that  the image is only a part of a. larger process involving a 

radiologist. We can view the patient's sta.te as the source, the imaging process as the channel, 

and the radiologist's report as the estimate based on the received information. In this case 

any estimated images we produce are viewed by radiologists as part of their communica.tions 

channel with the patients. However, since we cannot modify the radiologists, we experiment 

with different proposed image estimators and compare how they affect the fidelity of the 

radiologists' output to  a gold standa,rd experiment measuring the patients' disease states. 

One approach tha.t is often considered ideal for the medical imaging context involves 

constructing a Monte Carlo experiment using a complete clinical environment. To do this, 

we compare the quality of medical imaging systems (e.g., compare estimators, compare 

hardware, compare displays, etc.) by having a set of ra.diologists generate reports about a 

set of subjects using each imaging system. We would then compare these reports with some 

gold standard experiment (e.g., biopsy) t o  measure the error rate of the system. Comparing 

the error ra.tes, we claim the imaging system which produced reports more consistent with 

the ground truth was the superior system for the task under study. This 'ideal' experimental 

methodology is depicted in figure 3.1. 

While empirically sa.tisfying, this sort of experiment is prohibitively expensive to run, 

requiring a. significant amount of radiologist time rea.ding experimental images and addition- 

ally a substantial collection of clinically useless pakient da ta  be captured using experimental 

systems unsuitable for diagnosis. In practice, it is necessary that  we be able to evaluate 

novel estimators for MIU without such an ela.bora.te experiment. Ideally, as researchers, 

we would like algorithms tha t  allow us to  compute the quality of image estimators without 

recourse to  the radiologist. Obviously, new methods destined for clinical practice need a 
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, #, F (-$ Radiologist 
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Figure 3.1: The ideal Monte Carlo experiment for comparing medical imaging systems 
uses information from subjects (represented with the face on the left) collected via three 
information pathwa.ys: the two imaging systems under comparison and a 'gold-standard' test 
such as biopsy. The  imaging systems each generate image stacks that are used by different 
radiologists to  generate independent reports. By evaluating reports generated using the 
two imaging systems against the results of the 'gold-standard' test, we can determine which 
imaging system is superior for a given task. 
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more thorough evalua.tion, but we are interested in first-line methods of validation suitable 

for judging research proposals. The next three sections outline three different approaches 

t o  performing these sorts of research experiments. 

3.2 Quantifying Quality with 2-norm Error Measures 

Error measures attempt to  quantify how similar an estimat,e or estimator is to the true 

signal. To evaluate the error of an estimate, we a.re measuring how similar it is to  the 

true signal. This is distinguished from the error of an estima.tor which must summarize the 

estimator's behaviour given the random na.ture of the communications channel. The error 

ascribed t o  an estimator will, in turn, rely on how we determine the error of any estimate 

it produces. 

The terms mean squared error (MSE) , root mean squared error (RMSE), and root mean 

squared deviation (RMSD) are all commonly used to  describe a choice of error measure for 

an estima.te and an estimator. The basis of all of these measures is that the 2-norm of a 

vector emphasizes a few large entries more than a lot of small ones. Thus, given two images 

representred as vectors x and y of length n, we can see that minimizing llx - yll will tend t o  

encoura.ge spreading the differences between the two vectors over as many entries as possible 

and discourage a few entries with large differences. This describes one intuition about what 

it means for vectors t o  be simi1a.r. However, the exact definitions and meaning of MSE, 

RMSE, and RR4SD often vary slightly between disciplines. For the sake of clarity, we will 

define what we mean when using them. 

We define RMSD for two n-vectors v and u as 

Moving from vectors to  a real estimator 3 of a real quantity x, the MSE and RMSE are 

defined as 

MSE(2) = E [(3 - x)~] , (3.2) 

and 

RMSE(2) = JMsE(3i.). 

Thus, if we take n samples from estimator 2, we can use the RMSD between the n-vector 

of samples and a.n n-vector containing x a t  every entry as an estimate of the RMSE and 
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square this to get a,n estima.te of the MSE. This is the Monte Carlo estimate of MSE that  

we will return to in chapter 4. 

Two other common quantities that  arise in t>he evalua.tion of real-valued estima.tors are 

bias and variance. These are defined for an estimator i as 

and 

Var(f)  = E [( f - E (?))*I . 

These can be related t o  MSE by the formula 

The application of these measures to imaging is where the definitions become important. 

For example, if we ha.ve a greyscale image v, a channel that independently adds noise to  

each pixel, and an estimated greyscale image u, we can use RMSD to  measure the difference 

between the images. However, it is well known that  a high RMSD does not correlate well 

with there being a noticeable difference in the images (it is often stated that  high MSE does 

not correhte with perceptible difference, but this is due to  RMSE being used to describe 

what we have called the RMSD)[29]. For example rotating all the columns ahead one pixel 

such that  the last column on the right becomes the first column on the left will generally 

produce a high RhdSD, but perceptua.11~ the  only difference will be a small ba.nd on the left 

of the image. 

The problems with RMSD as an ima.ge quality measure might lead one t o  question 

whether the 2-norm should be used at a.11 in evaluating estimators for imaging. Let 6 be a 

vector-valued estimator of the vector v. I t  is important t o  note that,, given the definitions 

a.bove, the MSE of 6 is not defined since .Et is not scalar. As alterna.tives, we can consider 

the expected RMSD if we desire a scalar summary of the whole estimator's behaviour or 

produce a vector with an MSE value for ea.ch pixel. We note that  either of these measures 

will be susceptible to  the column rotation described above. These measures will likely prefer 

an estimator that ,  for example, blurs the image over one that  simply rotated the columns 

ahead by one. This seems to indica.te that  as a general-purpose evaluation of estimators in 

imaging, we do not want to  use the 2-norm. 

However, if we restrict the problem we find that  metrics based on the 2-norm become 

more reasonable. A sufficient restriction is that  we only attempt to  evaluate independent 
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estima.tors. F'rom our previous definition, we know that  ea,ch voxel output from the estimator 

has a distribution tha.t depends only on the true parameters of the voxel's distribution a.nd 

has no rela.tions11ip t o  its neighbours' values. This precludes shifts and similar 'perceptually- 

tricky' tra.nsformations because they require that  an estimated voxel depend on neighbours' 

true values. Given this restriction, we can trea.t estimation as a separable problem, with 

each pixel being estima.ted independent of its neighbours. In this case, minimizing the 

MSE penalizes estimators that  are occasionally very far off in favour of those that  stay in a 

narrower band a,round the true value. In image terms, reducing MSE at each voxel decreases 

the proba.bility that  some of the voxels are very different from the true voxels. 

3.3 Quantifying Quality with Task-Free Observer Experiments 

A ma,jor complaint with using MSE as the measure of quality is that it is not justified based 

on how the viewer perceives the image. Even in the case where we have assumed each voxel's 

estimate is independent, we have no clear evidence from human vision that  the 2-norm is 

the preferred error metric. We might, in fact, prefer images that  have a very particular 

distribution of error. Furthermore, what sorts of images we prefer very likely depends on 

what we are trying to do with them and our experiences looking a t  images of a particular 

type. Thus, wha.t a ra.diologist desires in an estimated family photograph might not be the 

same as wha.t she or he wants in an estima.ted MRI slice image. 

One solution to  this problem is to  ask ra.diologists to  score the quality of images produced 

by different estimators. These experiments normally consist of a display with two images, 

one being constructed from the true ima.ge and the  other being produced by one of the 

estimators under comparison. Radiologists are asked how similar the estimated image is to  

the true image. By comparing how the radiologists score a sample of images produced by 

the estimators, we can quantify the quality difference between the two estimators. 

The principal difficulty with this approach is that ,  like the ideal Monte Carlo experiment 

outlined above, it requires a panel of radiologists. Although we have alleviated the need for 

ground truth a.nd the production of radiological reports, this demand for radiologist time 

is still not pra.ctica1 in, for example, a resea.rch setting where many new image processing 

algorithms are being regularly developed and compared. To address this problem several 

models of the perceptual difference between two images have been proposed [21, 871. The 

common idea behind most of these difference measures is to  construct a function representing 
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the contrast sensitivity of the huma.n visual system. These models a,ttempt t o  determine 

whether two images can be distinguished by an average human 50% of the time. Such a. 

difference is called a just noticeable difference ( J N D ) ,  and these can be in turn be used as 

units of difference. 

Having quantified the difference between two images, these models can then be used to  

measure the difference between the output of an estimator and ground truth, thus providing 

a quantitative value of quality. The Case-PDM model ( a  perceptual difference model devel- 

oped a t  Case Western Reserve University) has been used in several experiments studying 

MRI ima.ge quality. Among the many available perceptual difference methods: the Case- 

PDM has been shown t o  best match ra.diologists' quality scores in a variety of MRI pulse 

sequences [68, 541. 

3.4 Quantifying Quality with Task-Based Observer Experi- 

ments 

Perhaps the most common complajnt leveled against the image quality measures described 

in sections 3.2 and 3.3 is that  they fail to  evaluate whether a modification measurably im- 

proves performance in the task of which the image is a part. Since successful completion 

of the task is the end goal of the image, i t  is reasonable t o  construct an experiment where 

only the estimator is varied and measure success in the task. The changes in task per- 

formance can then be used to  quantify the quality difference between estimators. By far 

the most common use of MRI images is visual inspection by a radiologist. Through their 

training, ra.diologists develop specific techniques of observation and complex mental models 

of anatomy and disease to support their visual search and decision [39]. Since our images 

will be observed by the ra.diologist t o  produce the final outcome (a. radjological report), we 

could measure the quality of the process's output, rather than measure the quality of the 

image that  we provide as input. We can then judge the quality of an imaging system by the 

quality of the output a ra.diologist produces when using it. 

Based on this idea, image quality in many medical modalities has been quantified based 

on their ability to support radiologists in a diagnostic task. To perform the experiment sug- 

gested a.bove, we would ideally evaluate the correctness of the radiol~gist~s' reports produced 

when looking a t  the output of a given estima.tor. However, as we noted a t  the beginning of 

this chapter, in practice such an experiment is not feasible for most researchers. Instead, we 
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must usually a.ccept a less realistic task in order t o  conduct our experiments. In general, all 

of the tasks considered for image quality measures a.re detection tasks. In these tasks, the 

observers must in some way either detect an object or express their confidence that  they 

have detected an object in a given image. The choice of these tasks is related t o  a particular 

model of the cognitive process involved in detection and the influential receiver operator 

chara.cteristic (ROC) analysis technique tha.t results from this model. 

3.4.1 ROC analysis 

In the 1950s the American military began developing techniques t o  quantify the utility of 

various ra.dar equipment using a task-based form of experimentation. The task performed 

by a radar operator is actually quite similar to  that  of a radiologist, involving a visual search 

of the display and then classification of each fea.ture of interest into positive/enemy/disease 

or negative/friendly/healthy. The  results of an experimental trial can be described by the 

fraction of true-positives (TPF)  a.nd false-positives (FPF)  reported, be they enemy aircraft 

or tumors. This is known as ROC analysis. Due to  these task similarities, the tools for 

rada.r quality ha.ve been adopted by the medical imaging community for their own studies 

[56Iq 
In this scheme, a viewer is assumed to  ha,ve some internal criteria by which she or he 

determines a diagnosis. We can model this process by describing these criteria as a function 

the viewer a.pplies to  each image. This function produces a test sta.tistic, A, on a continuous 

scale representing the viewer's dia.gnosis and their confidence in it. Thus, the middle of the 

scale represents the viewer being unsure of the state of the imaged pa.tient while scores a t  

the extreme ends of the scale represent confident determination of a positive or negative 

case. 

The viewer is hypothesized t o  turn their rating into a final diagnosis by comparing the 

score to  a threshold value, t .  If the viewer makes their decisions more lax or more strict 

they will affect the number of positive diagnoses they produce on a set of images. Let us 

say a radiologist looks a.t a set of images with her or his internal threshold set to  t = t l  and 

produces some number of illness diagnoses. If the radiologist then looks a t  the same images 

but increases her or his threshold to t = t2, t l  < t2, fewer patients would be diagnosed as 

ill since each image's score would be the same but fewer would be over the threshold. 

Since we are interested in the TPF and FPF, we can describe the behaviour o f t  with two 

distributions: p(X; +) a.nd p(X; -), the PDFs of the scores X in the condition where the image 
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Figure 3.2: ROC model of a useless imaging system. Left: PDFs of the score function X 
when in the positive/disease case p(X; +) and the negativelhealthy case p(X; -) are plotted 
in solid and dashed lines respectively. Note that they overlap in this plot since the PDFs 
are identical. Right: R.OC curve. Since the T P F  and FPF dist-ributions completely overlap, 
changing the threshold will affect the number of positive diagnosis, but a t  every threshold 
diagnosis still has a 50% chance of being correct. 

is in the disease-positive or disease-negative state respectively. Given these distributions, we 

can calculate the probability of correct and incorrect positive diagnoses for a given threshold 

t as P ( X  > t ;  +) and P(X > t; -) respectively. The curve produced by plotting the true- 

positive probability on the y axis versus the false-positive proba.bility on the x axis over the 

full range of possible t produces the ROC curve. 

If the T P F  and F P F  are identical at  all t ,  our test result is no better than chance. For 

this to be the case, we must have p(X; -) = p(X; +) (left side of figure 3.2). Tracing out 

all the possible values of t ,  this produces a perfectly diagonal line as a ROC curve (right 

side figure 3.2). If the TPF and F P F  distributions do not overlap at any threshold, then 

we have a test that diagnoses perfectly. In practice we expect the T P F  and FPF to fall 

between these two cases, having different distributions that overlap somewhat (left side of 

figure 3.3). A ROC curve that is above the dia.gond represents a test of this sort (right side 

of figure 3.3) 

One of the primary difficulties in using ROC curves to compare different estimators is 

deciding which curve, and thus which estimahor, is better. If one estimator's ROC is higher 
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Figure 3.3: ROC model of a useful imaging system. Left: PDFs of the score function X 
when in the positive/disease case p(X; +) and the negative/healthy case p(X; -) are plotted 
in solid and dashed lines respectively. The curve being above the diagonal results from there 
being more true-positive diagnoses than false-positive diagnoses across all possible threshold 
points. 

than its competitor a.t every t ,  then the superiority is clear. However, in cases where the 

curves intersect another metric is needed. A variety of schemes have been developed for 

compa,ring ROC curves based on single-valued metrics [53]. In our work, we will focus on 

the area under the ROC curve (AUC) as our metric of quality. As we will see shortly, this 

metric has a particular appeal given the form of our experiments. 

3.4.2 Choosing Tasks and Observers 

The  most direct experiment based on the above model of cognition is t o  provide observers 

with a series of images and ask them to  select a score for the ima.ge out of some range to  

indicate how confident they are that  the image is in the positive/disease category. Having 

collected this da ta  we can then make post-hoc decisions on behalf of the observer by applying 

a chosen threshold. If we vary the threshold, we can trace out the ROC curve for the observer 

viewing the presented images [53]. 

Another task commonly used as a surrogate for full diagnosis is n-alternative forced- 

choice (n-AFC) signal known exactly (SKE) detection. In this task an observer, ideally a 
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radiologist, is simultaneously shown n images produced by the estimator or a simulation 

thereof. All of the ima.ges contain the anatomy, noise: and other normal aspects of the 

imaging system's output. However, one image also contains a target feature. To assist 

detection, the observer is shown where the feature would be in each of the n images if it 

was present. They are also, separa.tely, shown the feature so that  they know what they are 

looking for. The job of the observer is then t o  give their best guess which one of the n 

images contains the feature. A na.tura1 measure of qua.lity resulting from this experiment 

is the percenta.ge of correct guesses under each imaging system. In terms of the model of 

cognition outlined above, i t  is assumed tha.t the observer gives each of the n-images a score 

and then selects the one with the greatest score as her or his choice [53]. 

The choice of the n-AFC SKE experiment a.voids the problems associated with asking an 

observer t o  score images on a scale (e.g., crowding all their responses at one end of the scale). 

I t  is also conveniently the case that  the percentage correct in the 2-AFC is an estimator for 

the AUC assuming the observer applies the score-a.nd-threshold model laid out above [9]. 

Thus, using a Z A F C  experiment we can easily calculate the the AUC as a quality metric 

without asking the observers to  score each image. 

Just as in the case of task-free models, the requirement of a panel of radiologists to judge 

the quality of every imaging system under resea.rch is impractical in most research settings. 

However, a variety of model observers have been developed that  can provide scores related 

to the confidence of having detected a signa.1, simulating the model of a human's internal 

process. If we are performing an  n-AFC detection task, we can take the model's choice to  

have been the image with the higher score. This then allows us to  apply the same analysis 

as for human choices. 

A variety of models ha.ve been presented, many having had strong correlation with huma.n 

results in initial experiments testing specific modalities (for a summary, see [56, 23, 11). The 

models considered are generally linear, in the sense that  the score assigned to  an image 

is given by the dot product of a weight vector w, based on the signal to  be detected, 

and an input vector representing the image. However, the image a.nd fea,ture data  are often 

transformed through a non-linear model of the perceptua.1 system (channelized) before being 

used as input t o  the linear score function. The models are then taken to be linear in the 

channel responses. 

The  restriction t o  linearity is partially based on the strong optimality results available in 

the statistical decision theory. However, one recent experiment that tried to use non-linear 
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models inspired by the human visual syst.em found little improvement over linear models 

for a 4-AFC detection task with compressed medical ima.ges [94]. Based on the availability 

of well-developed linear models and the lack of positive results for any proposed non-linear 

models, we will focus on linear models for task-based detection. In section 3.5 we will go into 

explicit detail about two of these models, the channelized Hotelling observer (CHO), and 

the non-prewhitening eye-ma.tched (NPWE) observer, when we consider their a,pplication 

t o  MRI data. 

3.4.3 Comparison of task-based and task-free observer quality measures 

The suggestion of using a reduced task to  simulate the full task of radiological diagnosis 

is, in some ways, a worrisome trade-off. In particular, criticizing task-free quality measures 

outlined in section 3.3 for being unrelated t o  task success ma.y be somewhat disingenuous 

if they a.re to  be replaced by measuring success on an unrelated task. In essence, since 

we cannot measure success on the full, realistic task, we are choosing between trusting a. 

radiologist's judgement about which image they prefer, or asking the radiologist to perform 

a simpler task and suggesting the results generalize to  the full diagnostic task. 

The difficulty in choosing between these methods is particularly acute because it is diffi- 

cult to  structure an experiment that evaluates them equally. As yet, there are no established 

methods for converting a. result from a tool like Case-PDM into a decision in a given n-AFC 

SKE instance or vice versa. However, one experiment has a.ttempted to  determine which 

method produces better results in the paramet,ers of a lossy compression algorithm for med- 

ical ima.ges (261. In this study the NPWE observer performing a 4-AFC task was compared 

with a task-free metric known as DCTune (based on the discrete cosine transform and a 

model of human perception) over a. collection of ima.ges to  find the compression settings tha.t 

optimized performa.nce under each model. After compressing images according to the rec- 

ommendations of each measure, the  results were shown t o  human observers who performed 

4-AFC tasks. The results indicated that  the settings recommended by the NPWE resulted 

in better detection by humans observing compressed images than when settings used by 

DCTune were recommended. 

Generalizing from this result would require more experiments, but there is also an addi- 

tional concern: the task being used by humans to  measure post-compression quality is still 

a. reduced ta,sk, and thus may not be indicative of performance in full radiological viewing. 
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However, at the least, this experiment suggests that  task-specific models ca.n be more ac- 

cura.te predictors of huma.n performa.nce in n-AFC task than a general perception model. 

This suggests that  there likely a.re limits to  a general perception model's a,bility t o  measure 

quality for every specific task tha.t might be performed by a ra.diologist. 

3.5 Our Task-Based Experiments of MRI Estimator Quality 

There is a large body of literature using human observers and mathematical models of 

human response on simple detection tasks using x-ray [25, 241 and nuclear-medicine images 

[67]. However, there had not previously been any studies using task-based quality measures 

on MRI da ta  before our work on this problem [80, 811. Although there are many possible 

aspects of MRT that  could be evaluated using task-based measures, we were particularly 

interested in whether phase-corrected real reconstructions would improve image quality. 

We felt that  experiments with human observers could provide a. more solid indication of the 

value of phase correction than the previous theoretic result [13]. In addition to comparing 

phase-correction ~v i th  the current sta.ndard magnitude reconstruction, we also opted to  

evaluate the quality of images produced by a widely cit>ed wavelet thresholding scheme for 

MRI images [59] (we will consider this estimator in more detail in chapter 5). 

We proposed using both human and model observers to  compare the three estima.tors 

of signal magnitude in weighted proton imaging data. We used high-SNR MR images as 

backgrounds combined with complex N(0, uQ) noise to  produce our simulated low-SNR raw 

MRI measurements. Our human observers were volunteers without radiological experience 

and we compared their performance against a CHO [57, :I.] and a NPWE observer [17] in a 

2-AFC SKE detection task. 

Using this configuration, we performed two sepamte experiments. The parameters of 

the second experiment were varied subtly from the first, partially based on lessons learned 

in running the first experiment, but also in order to  explore how the estima.tors affected 

different types of images. In the following descriptions of the experiments we will refer to  

these as experiment one and experiment two when specifying parameters in order to  keep 

the explanations clear. 

In experiment one, we used only a CHO and set its parameters with knowledge of all 

the huma.n results. While this allows the overall fidelity of the model to  be considered, i t  

is not a realistic setup for testing how a model observer might actuaJly be used to  evaluate 
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novel estimators. If we are required to  perform human studies t o  tune the parameters of 

the model for every new experiment, then we could just as well use the results of the human 

study and skip the model. To explore this idea, in our second experiment we set the pa- 

rameters of the model observers with information only about humam observers' performance 

on magnitude MR images. We then tested the model observers' ability to  extrapolate t o  

novel estimators. Experiments structured this way would allow researchers developing new 

estimators t o  quantify the results of their work without needing new human studies for each 

new estimator. 

3.5.1 Synthetic images 

When attempting to  locate a target feature in an h4R image there are three major sources of 

distraction: non-target patient anatomy, artifacts, and thermal noise due t o  resistance. In 

terms of our signal model, equation (2.1), the anatomy, artifa.cts, and target feature combine 

to form the image signal, s ,  while the noise q, + iqi is additive and drawn from a complex 

N ( 0 ,  uQ). By producing synthetic images with both of these components we propose that  

target feature detection in our synthetic images will have approximately the same results as 

similar tasks in clinical MR images when using the estimators under consideration. 

Expa.nding from a single voxel m t o  a matrix M representing an image, we create a 

complex-valued image without a target feature via 

where B is a real-valued background anatomy image, and Q, and Q i  are images whose 

pixels are each drawn from N ( 0 ,  uq). Similarly, we produce a complex-valued image with 

a target feature using 

M = T + B + Q , + i Q i ,  (3-8) 

where T is the real-valued image containing only the target. 

Equations (3.7) and (3.8) do not include signal phases. This is a substantial deviation 

from the model in equakion (2.1), but can be be justified by considering the processing 

that  will be applied to  these ima.ges. The result of the magnitude transform on either 

the fea,ture-present or feature-absent images defined a.bove will be invariant t o  signal phase 

since the magnitude transform discards phase. Similarly, because the wavelet transform 

being considered operates on images after the magnitude transform, its result is also correct 

without needing a simulated signal phase. 
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The phase-corrected rea.1 reconstruction does rely on the signal phase @I either being 

known or estima.ted, and thus potentially on a simula.ted signal phase. However, we note 

that  in the best case, the estimate of q5 is exactly the sa.me as the true q5 and so we can 

simuhte the best case result of phase correction with 

in the target-feature-absent case and 

in the target-feature-present case. If this best-case estimate of phase-corrected real recon- 

struction cannot show an improvement in observer detection, then we should be doubtful 

of any rea.listic implementation providing improvement. 

We also note that if a phase estimation scheme over-fits the phase measurement (i.e., if 

the phase due to  noise is fit, instead of just the signal phase) the result will be an approxima- 

tion t o  the magnitude transform. Alternatively, if the phase estimation under-fits the data. 

there will be spatially varying signal intensity but the noise power will remain the sa.me. 

This will have the same effect as lowering the target feature intensity relative to  the thermal 

noise. Thus, while we do not simulate the failure conditions directly in our experiment, the 

effects of both these types of failures will be discernible from the experiment results because 

we cover both the magnitude transform and a range of target feature intensities a,nd thermal 

noise powers. 

Our target feature, T, is an anti-aliased circular object 1oca.ted in the center of the 

feature-present image. If we index pixels with coordinate vectors x, then this target feaiure 

image matrix is given by 

b if ) )x - z ( (  5 w 

b(1 - llx - z I I  + w) if w < 11x - zll < 1 + w (3.11) 

0 otherwise 

where b is the amplitude of the feature, r is the index of the image center, and w controls the 

width of the feature. For our experiments we set w = 3 which, given the viewing distance 

and image size discussed in section 3.5.2, is equivalent to  an anatomical feature with a. 

diameter of 6 mm. In experiment one, we selected b E {A, A, 2 )  h. {O.O5,0.083,0.139} 
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for each image. In experiment two, we used b E {A, $, A} = {0.03,0.05,0.083), slightly 

dimmer than in experiment one. 

The complex-valued thermal noise was simulated by first selecting UQ and then randomly 

genera.ting two 128 x 128 pixel noise images for each synthetic MR image. Each pixel in 

these noise images was sampled from N ( 0 ,  aQ).  One of these ima.ges was taken as Q, 

a.nd the other as Qi.  In both experiment one and experiment two we selected UQ froin 

{&, &}  - {0.045,0.075}. 

To simulate distra.cting anatomy, B, we used regions of slices from high-SNR MR head 

images of healthy volunteers. These volunteers were scanned using a 3D inversion recovery 

pulse sequence on a Philips Gyroscan Intera 3.0 Tesla MRI scanner. Each volume was 

reconstructed using the magnitude tra.nsform to  give real-valued images. These real-valued 

volumes were then sliced along the axial, coronal, and sagittal directions t o  produce a library 

of 2D images. Each slice was then cropped into separate 128x 128 pixel images which formed 

a library of candidate backgrounds for our experiments. 

In experiment one, we selected images that  had anatomy in the central part of the image 

in order to  ensure the signal would be overlaid on the a.na.tomy. Selections were made by 

summing the portion of each candidate background tha.t would overlap with the signal. If 

the sum was above a chosen threshold, we assumed the nla.jority of the target would overlap 

with anatomy. Images above the threshold were retained as backgrounds for experiment 

one and images below the threshold were excluded. The threshold was chosen by trial and 

error t o  produce a set of ba.ckgrounds for experiment one with the desired properties. 

In experiment two we selected images tha.t effectively had no signal where the target 

feature would be placed, but did contain bright anatomy immediately next to  the target. 

We did this by summing the region that  the target would overlap and comparing it with 

a threshold sufficient to  exclude more than one or two pixels of ana.tomy intersecting the 

regions. Thus, our target was almost always placed on top of air, bone or some other region 

that emits little or no signal. We then summed the region immediately outside the target 

overlap and ensured i t  was a.bove a threshold that  guaranteed the presence of anatomy. 

As in experiment one, the two thresholds were chosen by trial and error in order t o  get a 

large set of ba.ckgrounds that  met our description. The decision to  locate the target next to 

anatomy in experiment t-wo was ma.de so that targets would only directly contrast against 

the dark background, but there would still be distracting anatomy in the observer's visual 

field. 
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In both experiments, backgrounds with the desired configumtion of anatomy were nor- 

malized so that  their pixel intensities were on the range (0; 1). As noted in section 2.1: the 

background images produced by cropping and normalization ha.d Rician noise because the 

magnitude estimator was used to  produce the greyscale values. Since we used these images 

as our real-valued data, this Rician noise will have been added to  the normally distributed 

Q,  and included in all of the synthetic image estimates. However, because our a.na.tomical 

images were scanned a t  3 Tesla, the magnitude images, after being normalized t o  the range 

(0, I), had a standard devia.tion of approximately 0.002 measured in regions of air. Since 

the lowest standard deviation, UQ used for our sinmlated thermal noise is more than 20 

times greater than the inherent noise of our anatomical backgrounds, it is unlikely that  the 

spurious noise included in the anatomical images had any effect on our results. 

For experiment one, 672 images were produced in ea.ch of the 36 possible conditions 

(three estimators, three signal powers, two noise powers, target feature present or a.bsent). 

In figure 3.4 we show one feature-present anatomical background in all 18 possible conditions 

of experiment one. For experiment two, 560 images were produced in each of the 36 con- 

ditions. In figure 3.5 we show one feature-present anatomical background in all conditions 

for experiment two. 

The choice of parameters in both experiments was made by using pilot studies to  ensure 

that  the human responses would cover the range of responses from 50% correct (the task is 

so hard the observer is simply guessing) to  100% correct (the task is so easy the observer is 

always right). However, i t  is then important for us to  verify that  these parameters produce 

realistic images. To quantify our synthetic images' quality using the same calcula.tions 

commonly used to  describe clinical MRI, we define the pea.k signal-to-noise ratio (PSNR) 

as the ratio of the peak signal to  the Rician noise standard devia,tion in a region of air [32], 

max B [ X I  
PSNR = 

o4 j m .  
Due to our normalizing all the anatomical backgrounds to  the range (0,1), we know that  

maxB[x]  = 1. Thus, for images where UQ = we calculate PSNR 2. 33.92 and for 
x 

uq = & we ha.ve PSNR 2. 20.35 These are a little low, but not implausible PSNR values 

for clinical MRI. 
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3.5.2 Human observers 

Sixteen volunteer observers without any previous radiological training were recruited to 

pa.rticipate in each experiment, with no over1a.p between subject groups. We suggest that 

the use of subjects without radio1ogica.l training was acceptable for this experiment for two 

reasons. First, the task itself, while similar to a radiologist's task, does not require any prior 

knowledge of anatomy due to the highly synthetic nature of the embedded target. Second, it 

has been suggested that radiologists are not better than a.verage image viewers at  the basic 

task of perception, but are more successful because they bring substantial mental models to 

bear in refining their search of the image and interpreting its contents [39]. Since our task 

focused almost entirely on how perceptible the targets were, requiring no search or medical 

interpretation, the use of non-radiologist subjects should not be a significant detriment to 

this type of experiment. 

The experimental software presented participants with three images aligned horizontally 

(see figure 3.6). The center image showed the target fea.ture, and the two exterior ima.ges 

represented choices in the 2AFC test. Since this was an SKE task, crosshairs were super- 

imposed over the images in order to reduce the possibility of confusion about the target 

feature 1oca.tion. The crosshairs could be toggled on and off by the user to reduce visual 

distraction. Participants were instructed that, in every display, one of the exterior images 

would contain the target fea.ture and that they should use the mouse to click on whichever 

exterior image they felt most probably contained the target. They were allowed to take as 

long as they wanted to reach a decision on ea,ch ima.ge pair. Once a participant clicked on 

an exterior image, the screen was made completely black for 0.5 seconds, the mouse pointer 

was warped to the center of the screen, and then the next set of images was shown and the 

process repeated. 

Each participant was given two training sets, composed equally of all 18 possible com- 

binations of noise power, target feature power, and estimator. If the training took less 

than ten minutes, they were then instructed to wait until ten minutes had elapsed in order 

to ensure a constant dark adapta.tion time across all participants. After the tra.ining and 

delay, the participants then proceeded through 16 experiment sets composed equally of the 

18 possible combinations for a total of 288 image pairs. In order to minimize order effects, 

the ordering of the image pa.irs was selected randomly for each participant from a constant 

distribution of a.11 possible orderings. As the experiment lasted up to an hour, fatigue was 
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Figure 3.6: Example of the user interface used in the human observer experiments. In this 
case the target feature is in the right image and located on top of ana.tomy, as would occur 
in the images we used for experiment one. 

reduced by displaying a. black screen a,fter every 18 image pairs and instructing users to take 

as long a break as they desired while the display was dark. 

The  experiments were conducted in a completely darkened room using a CRT monitor 

(SGI ChdNB024B) as a display. The monitor's spectrum was measured in both the left 

and right image centers using a telephotometer (Photo Research PR-650) over a range of 

digital pixel values. The luminance was computed for each digita.1 value using the CIE 1931 

observer [92] (see figure 3.7). The luminance was not corrected to the DICOM standard, but 

we were satisfied that  the critical areas a t  the center of the two images had sufficiently close 

luminance curves that  our display could be considered sufficiently homogenous across its 

extent. All participants viewed the monitor from approximately 50 cm away while wearing 

a.ny corrective lenses they would normally use for computer viewing. When displa.yed on 

the screen, the images each ha,d a diameter of approximately 8.5 cm and so each occupied 

an angle of approximately 10 degrees from the viewer's eye position. 

In order to  display the images without distorting their brightness, we had to ensure that 

the pixels' vahes  in each experiment's image set fell in the digital greyscale range (0,255). 

To achieve this, we first truncated a.11 negative image pixel intensities a t  0. The maximum 

pixel intensity in each experiment's image set was found: N 1.36 for experiment one and 

N 1.2925 for experiment two. All pixels' intensities were then scaled by the same value in 

each experiment set (N  186.94 in experiment one and - 197.29 in experiment two) to ensure 

complete coverage of the digital greyscale range. By imposing a consistent scaling on all 

images, some (e.g., those with a low-intensity target feature and low noise power) did not 
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digital pixel intensity 

Figure 3.7: Luminance in cd/m2 of the monitor (y-axis) plotted against the digital greyscale 
intensity sent to the video card (x-axis). The solid line is the luminance measured at the 
location of the left image's center and the dashed line is the luminance measured at the 
right image's center. 
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use the entire range of display intensities. 

3.5.3 Model Observers 

Channe l i zed  Hote l l ing  obse rver  

We applied the CHO [57, I.] with Gabor channels to our synthetic images. The CHO is the 

optimal linear two-class discriminator when the covariance of each class's channelized form 

is known. Gabor channels in particular were used because it has been suggested they are a. 

useful approximation for the gra.ting response of the human visual system [25, 24, 611. The 

channels are defined by the response equa.tion 

where xo is the image center, f is the central frequency of the filter in cycles per pixel, w, 

is the filter width in octaves of f ,  4 is the angle of the filter, and /3 E (0, ;} determines 

if it is odd or even. We have used a setup with forty channels, based on the example of 

Eckstein (25, 241, with w, = 0.8825 and 4 E (0, %, F, F, F}. To compute the central 

frequencies, note that  ea.ch pixel subtends & degrees from the viewer's eye position. We 

would like our filters to have frequencies of 2, 4, 8, or 16 cycles per degree. Converting this 

to  cycles per pixel gives f E {A, A, i, :). The 16,384 x 40 channel matrix, C, is produced 

by rearranging each channel, G ,  as a 16,384 x 1 vector and ma.king them each a column of 

C .  We can then compute the 40 x 1 channel response vector, u of image MI by rearranging 

the image into the 16,384 x 1 vector, y' and setting 

where ct is the transpose of C. 

In order to derive the CHO for each of the 18 experimental conditions in each experiment, 

we must compute the specific cova,riance ma.trix, K k ,  for each condition, c. We first note 

that  
1 

K: = -(KL,- + KL,,) + K: 
2 

where Kk,-  and Kk ,+  are the covaria.nce matrices of the channel responses in condition c's 

target feature-absent and -present cases respectively, and Kz is the covariance matrix of 

the observer's internal noise process in condition c. This process is assumed to a.dd noise 

independently to each response channel by sampling from a normal distribution with zero 
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mea.n and variance depending on the channel. Following the exa.mple of Eckstein, we define 

KE = a C H O  Diag (+(K;,- + KL,+)) where Diag() zeroes all the off-diagonal elements of its 

argument and crc~o is a proportionality constant thak can be varied to reduce the absolute 

performance of the model observer [24]. 

This leaves the problem of determining K& and KL,+. Given that we have closed forms 

for neither the pixel covariance of the anatomical backgrounds, nor the effects of the wavelet 

filter, we opted to estimate KL,- and K;,, from the synthetic data. Noting that K&,- and 

KL,+ are ea.ch 40 x 40 matrices, we used the channel responses from 400 signal-present and 

signal-a.bsent images respectively to estimate each for each condition. In experiment one 

we had 560 target feature-present and 560 target feature-absent images in each of the 18 

experimental conditions, this left 160 image pairs for testing each condition. In experiment 

two we 11a.d 672 target feature-present and 672 target feature-a.bsent images in each of the 

18 experimental conditions, leaving 272 image pairs for testing each condition. 

With the 18 Kk estimates con~puted, we can determine the optimal channel weights, 

vC, for each condition, c, according to the Hotelling strategy as 

where (uy) and (ug) are the sample mean target feature-present and target feature-absent 

channel response vectors for condition c. From this we can write the template, wC, applied 

by the observer in condition c as 

wc = CvC . (3.17) 

This template can be used to calculate the response, A, to a reconstructed image MI. 

Reordering the 128 x 128 matrix M' to the 16,384 x 1 vector y' we write 

where y' was produced with conditions c. 

If there is no internal decision noise (i.e., if a C H 0  = 0) then deciding the CHO's choice 

in a 2AFC experiment requires calculating the X for ea,ch of the two image choices and 

then selecting the ima.ge with the larger score. However, when QCHO # 0 we must add the 

internal noise of the observer. Rather than compute a noise for each channel, we note that 

the effect of the channel decision noises is combined in the final response score. Thus, we 

can modify the computed response by adding a single sample, E ,  from N(O,a,) where 
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Adding this noise sample gives our final estimate of the score a human observer would assign 

t,o the image: 

A 1 = A + c .  (3.20) 

As discussed above, the image with the greater A' in each pair is considered the CHO 

selection in the 2AFC trial. 

Non-prewhitening eye-matched observer 

Non-prewhitening observers are named based on their inability to  take advantage of the 

covaria.nce matrix to decorrelate the noise and background present in the image. The choice 

to  ignore the covariance matrix is ma.de because it has been suggested that  humans are 

poor a t  decorrelating noise when searching for a feature. While the basic non-prewhitening 

observer simply multiplies the known signal with the observed image to determine A, the 

eye-matched version, like the CHO, at,tempts to include information a.bout the huma.n visual 

system. In particular, the NPWE filters the observed image to  simula.te the spatial contrast 

response of the human eye [17]. In our experiments, we construct our template (which is 

the same across all conditions) with the equation 

where F indica.tes the discrete Fourier transform, u is a 2-dimensional location in frequency 

space, W is the matrix form of the template that  will be reordered to produce w, matrices 

subscripted by vectors represent the matrix element indexed by the vector, and 

is the sensitivity model across a.ngular visual field suggested as an approximation to the 

human eye response. The fraction & appears in equation (3.21) to account for the change 

of units from pixels to a.ngle subtended in the visual field, based on our calculations in the 

previous section. We note that  we do not need to compute a different template for each 

condition since changes in noise do not affect the template and changes in target a,mplitude 

produce only a constant factor change in every pixel of the template. 

In the absence of internal noise, we calculate the NPWE's choice between two ima.ges 

exactly as with the CHO, by taking 
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and guessing the ima.ge with the higher X contains the target. To a.dd decision noise to the 

NPWE, we select C X N ~ W E  and then use 

where E is a sample from N(0, JaNpwE). 

3.5.4 Human Experiment Results and Discussion 

We computed the percentage correct, PC, for each participant in each of the 18 experimental 

conditions. We computed the median PC over all the participants as well as the first and 

third quartiles. As we noted a.bove, PC is an estimator of the AUC from the ROC analysis 

model [9]. Taking advantage of this, we have plotted the first, second, and third quartiles 

of the estima.ted AUC based on huma.n performance in experiment one (figure 3.8) and 

experiment two (figure 3.9). 

The width of the first and third quartiles indicates substantial inter-subject variability. 

The resolution of our AUC quartile measurements is only & because we opted to cover a 

va.riety of experimental cases and thus show each participant each condition only 16 times. 

Although this structure allows us to study patterns over a. large number of conditions, it 

also means that  we are unable t o  demonstrate sta.tistically significant differences between 

the estimators given the small effect. 

Experiment one 

Our human observers did not show a measurable increase in performance when using the 

phase-corrected real reconstruction. The  lack of effect here may be due the to  fact tha.t the 

Rician distribution of a. magnitude image becomes very similar to  that  of a phase-corrected 

real image when > 3. Since most of our target features were added completely on top 
OQ 

of bright anatomy in this experiment, these two estimators should be effectively the same 

in many of the tested cases. 

Similarly, we do not show an improvement in signal detection using the wavelet trans- 

form, despite the improved RMSD between the wavelet estimated image and the true image 

when compared to  the RMSD between magnitude and true images [59]. I t  is not clear if a 

specific task would be better suited t o  this estimator, since i t  has been described as useful 

generally for MRI. Clearly, the wavelet basis underlying the filtering algorithm could be 
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varied, and other wavelet processing algorithms could be implemented as well. However, 

our results reenforce the notion t>hat claiming improved RMSD alone does not necessarily 

imply improved signal detection in MR images when e d u a t i n g  regularized estimators. 

Experiment two 

Having failed to  find any difference between phase-corrected real and magnitude images in 

experiment one, we moved the features to  dark regions of the image in experiment two. 

This setup should provide the maximum difference we could expect to see between these 

two estima.tors. Although we have not shown statistically significant differences, the human 

results now appear t o  support the assertion that  phase-corrected images improve detection 

compared to  magnitude images when the signal is in the dim pa,rt of the image. This can 

be seen in figure 3.9 by comparing both the AUC of each signa.l/noise pair under the phase- 

corrected and magnitude reconstructions. In every case the phase-corrected reconstruction 

results in higher median AUC and in many cases the first and third quartiles have moved 

u p  substantially as well. 

However, this experiment's results still conflict with the RMSD results that  predicted the 

wavelet algorithm would enhance signal detection. However, we do note that  the wavelet 

filter performed better a t  equivalent feature/noise/background ratios in experiment t,wo 

than in experiment one. We suspect that  the filter is more sensitive to  edges in this part of 

the image and thus less likely to smooth them out. 

Both experiments 

Considering the magnitude and phase-corrected real AUCs, we note that  in every case except 

one where two conditions share the same ratio of target fea.ture amplitude to  thermal noise 

standard devia,tion (vertical bands in figure 3.8 and 3.9), the condition with higher target 

feature intensity outperforms the condition with the lower target feature intensity. Since 

both the fea,ture-to-noise ratio and anatomical ba,ckground intensity were held constant in 

these cases, the only changes are the increase in target feature and noise intensity relative 

to  the anatomical background. We hypothesize that  this effect is due tlo the anatomical 

ba,ckground obscuring the target feature more often when the feature is less intense. Com- 

bined with anecdotal comments from our subjects, this encourages us thak using ana.tomical 

backgrounds to  provide realistic distractors is important in studying feature detection. 
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Although the wavelet estimator produced similar results, it is unclear if this also demon- 

stra.tes the effects of the anatomical background. The wa.velet filter uses fJQ as an input to  

control the a.mount of smoothing performed and so there is clearly a non-linear relation- 

ship, a t  least in theory, between AUC, the target feature intensity, and the simulated noise 

power. We cannot differentiate with our experiment, whether the dominant effect in these 

conditions is the thermal noise or the smoothing a.rtifacts. 

3.5.5 Model Results and Discussion 

We ca.lculated the AUC for the CHO and NPWE by applying the template t o  each synthetic 

image, computing A' using equations (3.20) and (3.24), and then totaling the number of 

correct selections to  compute the PC. We performed this operation for 50 separate instances 

of each model observer, and then computed the result of tshe mean observer in each of the 

experimental conditions. As in the human observer case, the PC values were taken as 

estimates of the AUC. 

Comparing models and humans - experiment one 

In experiment one only the CHO was used. We were interested in testing how well a model 

observer could fit the human results across a variety of MRI estimators. The mean AUC of 

the CHO observers for each condition was fit to  the mean human observer data  by searching 

for the OCHO that  minimized the RMSD between the model and human results taking all 

18 experimental conditions as a vector. We determined the optimal setting to be a = 3.2 

(RRJSD z 0.00189) by performing an exhaustive search on an initially coarse range of a 

values and then gra.dually refining the range. This computation took approximately three 

hours on a 1 GHz PowerPC G4. The mean AUC of the 50 model observers is shown in 

comparison t o  the mean human results in figure 3.10 (note that  figure 3.8 displays the 

median human results while figure 3.10 displays the mean). 

Overall, the CHO shows a very good match with the human study. There is no appre- 

ciable difference between the three estimators according to  the model observer. We note 

that  there was a small disagreement between the model and mean human observer on the 

ordering of some of the weaker signals. However, considering figure 3.8, we note that  the 

inter-subject variability in these conditions was high as well. Additionally, there is a ten- 

dency for the CHO t o  slightly over-estimate mean human performance a t  the highest target 
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feature intensity. 

U s i n g  mode ls  to e x t r a p o l a t e  h u m a n  p e r f o r m a n c e  - e x p e r i m e n t  t w o  

The mean AUC of the model observers was fit to the mean human observer data by searching 

for the QCHO a.nd a N p w ~  that minimized the RMSD between the human and model results 

in the magnitude estimated experimental conditions. This was chosen t o  test the ability of 

the model observers to  extrapolate to other estimators with different statistical properties 

given only human results in magnitude images. Using humans to  calibrate the models based 

on only ma,gnitude images was a feasible model for how an experimenter might proceed t o  

test a new MRI estima.tor. With this approach the experimenter must only record human 

results once for the magnitude estimates of a given da.ta set. Ha.ving determined this baseline 

model configuration, experiments could then evahate  as many other estimators as they 

desired using the calibrated models, as long as the statistical properties of the data set were 

unchanged. 

We determined the best fit of the CHO to  the mean human results on magnitude images 

to be QCHO = 1.4 (RMSD = 5.19 x between human and CHO in magnitude images) 

usjng the sa.me search process as in experiment one. This computation took approximately 

one hour on a 1 GHz PowerPC G4. Using the same technique, the optimal setting for the 

NPWE was found to  be CYNPWE = 0.016 (RMSD = 2.92 x between human and NPWE 

in magnitude images). The mean AUC of the CHO and NPWE model observers is shown 

in comparison to  the mean human results in figure 3.11 (again, note that  figure 3.9 displays 

the median human results while figure 3.11 displays the mean). In both the phase-corrected 

and magnitude estima.tes, the model observers show a good match to  the human study. 

In the wavelet estimated images, we find that  the CHO overestimates human performance 

while the NPWE does not err consistently above or below. Noting that  many of our human 

volunteers complained of "blurriness" in the wavelet estima.ted images, we suspect that  the 

CHO may be more successful than humans when compensating for the smoothing due to  

its use of the channel covariance matrix. 

3.6 Choosing an Evaluation Method for MRI Estimators 

Having seen several a.pproaches to  evaluating the quality of an image produced by estimation, 

we must now decide which of these methods we will use for continuing our research. In 
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discussing this, we will lay out some general ideas that may be helpful in choosing evaluation 

methods for R4RI. 

One of the principal goals of the experiments discussed above was to  determine whether 

a. best-case phase-corrected real reconstruction could produce noticeable differences between 

the images and, in particular, differences tha.t improved fea.ture detection. While we ha.ve not 

demonstrated statistically significant results - due t o  our small number of subjects relakive 

to  the number of conditions explored - our experiments do suggest that dim features in 

the dark parts of tahe image are more detectable in phase-corrected images than magnitude 

ones. Further, our experiments suggested that  fea.tures in bright parts of the image are not 

more detectable with phase-corrected real reconstruction. 

As we noted above, these results match predictions made based on the bias and MSE 

of the two estimators - phase-corrected real reconstructions are lower bias and have lower 

MSE than ma.gnitude images in the dark parts of the image, but are essentially the same 

in bright parts. However, in the part of our experiment comparing wavelet reconstructions 

our results contradicted predictions based on 2-norm error measures. While these results 

may lead one to doubt the value of pixel 2-norm in gauging MRI estimator quality, if we 

return t o  the discussion in section 3.2 we can distinguish why pixel MSE predicts some of 

our results and not others. 

We previously noted tha.t RMSD and other 2-norm error measures are unlikely to  be 

useful when the estimator uses regularization across pixels. This is because many transforms 

that we roughly defined as 'perceptually tricky' (blurring, shifts, etc.) ca.n be produced 

by these estimators, and these changes are poorly ca,ptured by the 2-norm. The wavelet 

estimator that  we st,udied is an estimator of this type - i t  uses neighbourhoods of each 

pixel's measurements t o  estima.te the true pixel value - and so we should not expect Znorm 

error measures to predict human feature detection performance with this estimator. 

In contrast, the magnitude estimator is an independent estimator, and so 2-norm er- 

ror measures are more reasonable in evaluating changes in quality between images of this 

type. In fact, the historical use of 2-norm error measures to  evaluate the improvement in 

magnitude images produced by changes in hardware has likely influenced the widespread 

use of these measures in other aspects of the MRI community. Much of the early work on 

quantifying the quality of h4FU measurements focused on comparisons between hardware, 

principally between different ma.gnets and coil setups. Referring to  the PDF in equation 
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(2.3) we can describe the effects that  changes t o  these components should produce as a. con- 

stant scaling of s at every pixel and cha.nge in the value of a [35, 37, 27, 50, 481. If these are 

the changes we expect to see between the images we a.re comparing, 2-norm error measures 

are indeed reasonable. Imaging systems with equal ratios of signal to  noise varia.nce are 

effectively equiva.lent, and this ratio will be captured in 2-norm error measures. These error 

measures, however, will not effectively quantify the difference between the variety of images 

tha,t can be produced by regularized estimators. Thus, using these values to  evaluate the 

quality of wavelet-thresholded MR ima.ges is probably ill-a.dvised. 

In chapter 4 we will consider independent estimators. Relying on the discussion and 

results of this chapter, we will use bias and hdSE as the metrics for our preliminary compar- 

ison of these estimators. In particular, we will focus on the idea tha.t, given two estimators, 

if one has lower MSE at all possible values of the true parameters, this estimator is likely 

to  be preferable to  the high-MSE estimator for feature detection. 

However, in chapter 4 we are also interested in determining whether any of the inde- 

pendent estimators produce results similar to  the ideal phase-corrected real reconstruction. 

Since we have previously stated that  phase-corrected estimators are regularized estima.tors, 

this may seem to contradict the conclusion we just made about the use of 2-norm error 

measures and regularized estima.tors. We make this exception because the best-case phase- 

corrected real estimator is independent. As we stated in section 3.5.1, if the true phase 4 is 

known, as we assume in the best-case estimator, then ea.ch pixel can be phase-corrected in- 

dependently a.nd there is no correlation introduced between neighbouring pixels. The use of 

regula.rization occurs in practical implementa.tions of phase correction since 4 is not known 

and so is estimated using a regularized estimator. However, since chapter 4 is only con- 

cerned with comparing practical, independent estimators with the idealized, independent, 

best-case phase-corrected estimator, our use of 2-norm error measures is reasonable. 

3.7 Summary 

In this chapter we have surveyed a variety of a.pproaches for comparing medical image 

estima.tors. We ha.ve presented human experiments that  we developed to  evalua.te R4R 

image estimators and have shown that  our results suggest the best-case phase-corrected 

real estimators do indeed provide improved detection compared to ma.gnitude images. This 

leads to  our work in cha.pters 4 and 5 where we will attempt t o  derive practical estimators 
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that  implement these results. The human results were also used to  provide the first results 

demonstra.ting the applicability of CHO and NPWE model observers to MRI data. 

We have also discussed the applicability of different error measures t o  the comparison 

of different types of estimat,ors. 2-norm error measures can be justified when applied to 

independent estimators, and their historical use in evaluating MRI hardware is quite rea- 

sonable. Although these error measures should not be used generally in the comparison 

of regularized estimators, we have justified our use of bias and MSE in the remainder of 

this thesis by noting that  the phase-corrected real estimator is unusual in that its best-case 

formulation, which is the target of our comparisons, is an independent estimator while all 

practical implementations of phase correction are regularized estimators. 



Chapter 4 

Independent Estimation of Signal 

Magnitude 

The experimental results shown in chapter 3 suggest that  an estimator approximating the 

best-case phase-corrected real estimator can improve detection of some features. Based 

on these results, we were interested in determining whether an independent two-parameter 

estimator could produce a result approximating the desired performance. If such an indepen- 

dent estimator could be constructed, it would avoid the difficulties that  previous attempts t o  

regularize the phase parameter had encountered and provide the benefits of phase-corrected 

real reconstruction without the attendant drawbacks. 

We begin this chapter with a brief survey of parametric point estimation theory. Follow- 

ing this survey, we introduce the previous work on independent estimators for MRI, most 

of which has focused on the one-parameter model. We then apply the stakistical estima- 

tion theory we have surveyed to  the two-parameter model of the MRI signal and relate 

the resulting estimators to  those previously published. Finally, we compare our newly de- 

rived estimators with those previously published and with the best-case phase-corrected real 

estimator and draw some conclusions from the results. 

4.1 Survey of Parametric Point Estimation Theory 

Parametric estimation problems ask us t o  summarize our knowledge of some parameters 

given some measurements. Normally these parameters are thought of as the parameters of 
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some distribution from which the measurements are dra.wn. For example, given a set of mea- 

surements from N ( p :  a )  we might be asked to summarize our knowledge of p a.nd a.  There 

a.re, very generally, two major schools of thought in statistics a.bout how this problem should 

be approached, which are dubbed Frequentist and Bayesian. Without going into details, 

in this work we will restrict ourself to wha.t are normally considered frequentist methods 

of summarizing knowledge, although i t  is likely tha.t identical results could be produced 

via Bayesian approaches with the assignment of different definitions and assumptions. The  

choice of frequentist methodology is not due t o  any preference for the philosophy, so much 

as the fact that it has been previously employed in R4RI and so the relationship between 

old estimators and new estimators generated in the frequentist framework is likely easier to 

understa.nd. 

The parametric estimation problem we are most concerned with is summarizing our 

knowledge of the true signal magnitude, given measurements drawn from the distribution 

shown in equation (2.3). In the frequentist methodology, there are many ways that  we can 

express our knowledge of the parameters given the measurements. One approach is t o  assign 

some range of values t o  the parameters along with a definition of what the range means 

(e.g., confidence intervals). However, if we assign a range of values to the true value of 

the signal magnitude a t  ea.ch voxel, it is unclear how we should represent this as an image. 

Instead of a single greyscade va,lue, we would then have a range of possible values a t  each 

pixel. In order to  produce a greyscale image we must assign a single value as our summary 

of knowledge about the true signal magnitude at each point. Such a summary is called a 

point estimate, and so we will now provide a brief ~ u r \ ~ e y  of the theory of parametric point 

estimation. 

4.1.1 Likelihood and maximum likelihood estimators 

The notion of a lilcelihood is central to  frequentist methodology for performing inference. A 

likelihood is a P D F  viewed as a function of its parameters with its measurements fixed. I t  

is importa.nt t o  note that  a likelihood does not have many properties common to  PDFs. For 

exa.mple, integrating a likelihood function over its parameters will not usually produce "1" as 

the answer. Similarly, a. likelihood should not be confused with a probability of a parameter 

taking a certain value given the measurements. In frequentist statistics, one cannot assign a 

probability to  parameters given measurements, and so it is critical to  distinguish likelihoods 

(mriable parameters, fixed measurements) from pr~babilit~ies (variable measurements, fixed 
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parameters). We write the likelihood of the model with pa.rameters a a.nd 0 given the fixed 

vector of measurements x as L(a, 0; x) .  

The  likelihood allows us t o  assign a. numerica.1 value t o  any choice of point estimate 

for t,he parameters. The most common approach is to  then pick the point estimate which 

maximizes the likelihood. This is called the maximum likelihood estimator (MLE). If we 

think of the PDF as describing error due to 'noise', as is the case in our model of the 

MRI signal, then maximizing the likelihood is equivalent to picking the point estimate 

which assumes the smallest amount of noise in the measurement. Noting that taking the 

logarithm of a function does not change its extrema, i t  is often more convenient t o  maximize 

the log of the likelihood function, which we will denote !(a, P;  x). This is so common, in 

fact, that  there is a name, score, for the gra.dient of the log-likelihood, which we will denote 

U(a ,  0; x). M7e will use U, to denote the score in the direction of parameter a, and Up t o  

denote the score in the direction of P. 
Setting U ( a ,  p; x )  = 0 and solving for the parameters gives the extreme points of the 

likelihood, and second or higher derivatives of [(a, P ;  x )  can be used to  select point estimates 

that  a.re maximal. I t  is generally the case that  most 'well-behaved' likelihoods will have only 

one maximum, and we will find that  this generally holds for our problem. 

4.1.2 The Fisher information matrix and the Cram&-Rao bound 

As we noted above, the second derivative of the log-likelihood is useful for helping determine 

maximum likelihood points. However, they also are part of the definition of the Fisher 

informa.tion ma.trix I, which is defined as the negative expected value of the matrix of all 

possible second derivatives of L with respect to  the parameters. This matrix ca.n be thought 

of as the covariance matrix of the individual components of the score function. 

Equally important to our work is the Cra.m&-Rao bound derived from the information 

ma.trix. The basic definition of the bound is that  the inverse of the Fisher informakion 

matrix provides a lower bound on the variance of any unbiased estimator of the parameters. 

Thus, if we desire an unbiased estimator of our MRI signal pa.rameters, the Cram&-Rao 

bound determines what amount of variance we must be prepa,red to  accept in our result. 

I t  is important to note that it does not guarantee that  there is an unbiased estimator that 

achieves such variance. However, any unbiased estimator that  does achieve the bounding 

variance is said to  be eficient. 

The Cram&-Rao bound is used in many problems as pa.rt of the motiva.tion for choosing 
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the maximum likelihood estimator over a.ny other possible choice. This is because it can be 

shown that  when the Fisher information matrix is non-zero and well-defined, the MLE is 

asymptotically unbiased and efficient as the number of measurements increases to  infinity 

[8, 411. Of course, in problems such as ours where the number of measurements is small - 

in many cases there is only one measurement per locamtion - these optimality criteria. for 

the MLE are not sufficient. 

4.1.3 Reduction by Sufficiency 

I t  is common to  ha.ve a P D F  specified that  describes one measurement from a system, and 

then take multiple independent measurements as part of an experiment and try to  make a 

single estimate of the para.meteer using all the measurements. One way of doing this is t o  

produce a joint P D F  for all the measurements, and then trea.t this as a joint likelihood from 

which the parameters ca.n be inferred. Since the measurements are independent, the joint 

P D F  is the product of the individual PDFs. However, this can quickly become cumbersome 

particularly if one is trying t o  derive estimators for the general case of n measurements 

where n might be different for any individual experiment. 

An alternative a.pproach t o  use a single quantity, computed from all the measurements, 

as a summary of all the measurements. When a reduction like this is possible, the reduced 

quantity is called a suficient statistic. The most common way of proving that a given 

function of the da ta  q(x) ,  is a sufficient statistic for n measurements x = {xl, . . . x,) is to 

show that  the joint PDF p(x ;  a )  can be factored as 

where f and g are arbitrary functions. In this case we can use the PDF p ( q ( x ) ;  a) for 

estimation of a without loss of information [41]. 

4.1.4 Nuisance parameters and likelihood-like functions 

It  is often the case tha.t, although a likelihood is specified with multiple parameters, only 

one of the pa,rameters is actually of interest for the problem at  hand. In our problem, 

we can see that  the parameter s is the parameter of interest, while 4 and a are simply 

nuisance parameters. We are indifferent to the point estimate of q5 and a because only the 

point estinmte of s a.ffects the image we will generate. The problem of estimating only one 
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parameter from a model with many parameters is a significant problem in statistics a.nd 

we will now survey some of the suggested a.pproaches that  we will use in later sections. 

Since none of the models to  which we will apply these a.pproaches contain more than one 

parameter of interest and one nuisance parameter, we will restrict our survey to  models of 

this type, even though the theory presented generally extends t o  any number of parameters 

of interest and nuisance parameters. 

Prof i le  likelihood 

Perha.ps the most common intuition about how to  solve this problem is to  simply take the 

maximum likelihood estimate for a.11 the parameters and ignore those that  are not of interest. 

More formally, let us define a likelihood-like function called the profile likelihood. Given a. 

likelihood L(a ,  ,O; x) where a is a parameter of interest, ,f3 is a vector of nuisance parameters, 

and x a vector of measurements, we define the profile likelihood 

where m a .  f(P) is the maximum value of f achieved over the range of valid values for P. 
P 

Taking the logarithms of both sides gives us the definition of the profile log-likelihood ep and 

taking the derivakive with respect to  a gives the profile score. While ep(a;  x) is generally 

not the same as !(a, p;  x ) ,  it is true that  maximizing tp(cr; x) produces the same estimate 

of CY as maximizing the full likelihood [8]. 

M a x i m u m  marg ina l  likelihood e s t i m a t e  

Given a. PDF of the form p(x,  y ;  a , P ) ,  with measurements divided into two vectors x, y ,  

parameter of interest a, and nuisance parameter p, a. marginal likelihood for a can be 

constructed whenever marginalizing out the measurements y will produce 

In other words, marginalization can be applied when integraiing over the values of y simul- 

taneously removes the dependence on the nuisance parameter [36, 111. This is sometimes 

referred to  as x being a-oriented [ll]. By the general sufficiency principle this reduction is 

only information-preserving when x is a-oriented and sufficient for a when P is held fixed 

WI- 



CHAPTER 4. INDEPENDENT ESTIMATION OF SIGhrAL MAGNITUDE 

R4aximum Bartlett-corrected profile likelihood 

A variety of modifications to the profile likelihood ha,ve been suggested to  improve its per- 

formance. We will first consider Bartlett's modification to the profile score [lo, 421. Bartlett 

uses the first-order model of the full likelihood's score. In this approxima.tion, the derivative 

with respect to ea.ch parameter is assumed to  be normally distributed with zero mean and 

comriance given by the Fisher information matrix. If we denote the Fisher information 

matrix as I and split it (and its inverse) into quadmnts addressed as ( a ,  a), ( a ,  P), or ( P , P )  

(only three are needed since I is symmetric), we can write the approximation t o  the score 

function as 

where c = I ~ , ~ I & .  We note tha,t if I,,p = 0, the second term of this model must be 

zero. When I,,p = 0 we say that  the nuisance parameters a.re orthogonal to  the parameter 

of interest. Fortuna.tely, bemuse a is a scalar, there is always a transformation of the 

parameters tha.t makes the nuisance parameters orthogonal to  t8he parameter of interest [8]. 

Thus, if the parameters are not orthogonal in the origina,l specification, we can transform 

$0 to a new nuisance parameter < that is ~r t~hogonal  to  a. In this way, we can write our 

model for the score function using only one term. We also note that this transformation 

does not affect P p ( a ;  x )  [a]. Thus, a c~rrect~ion determined with either parameterization can 

be applied to f p  ( a ;  x). 

If we perform a, change of parameters such that the nuisance parameters are orthogonal 

to the parameter of interest, we can write Bartlett's proposed correction as 

where I' is the information matrix for the transformed parameters and k"(a, <; x )  is the 
d e p ( a ; z )  transformed log likelihood. This correction is then subtracted from the profile score 7 

to  produce the Bartlett-corrected profile score. This new function can be treated as a score 

and thus set equal to zero and solved for the maximum Bartlett-corrected profile likelihood 

estimator. 

Maximum stably adjusted profile likelihood estimate 

The stably a.djusted profile likelihood approximates the likelihood tha.t would result if nui- 

sance parameters could be removed in an information-preserving factorization. I t  does this 
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by calculating a weight M ( a )  such that  M ( a ) L p ( a ; x )  is the approximation and can be 

maximized to produce an estimate, just like a standard likelihood. If a is the parameter 

of interest, and ,!? is a nuisance parameter, we begin as in the Bartlett-corrected case by 

determining a change of parameters such that  the nuisance parameter 5 is orthogonal to  a .  

We will similarly use primes (e.g., 1') to  represent reparameterized functions of the model. 

The stably adjusted profile likelihood is given by the weighting [8, 71 

d2 I where J = -ve (a, 5; x) ,  (a is the solution of UC(a,  (; x )  = 0 in terms of a,  a.nd 

4.2 Formulation of the  Signal Magnitude Estimation Prob- 

lem 

In sections 2.1 a.nd 2.2 we provided the PDFs for the full conlplex measurement - equation 

(2.3) - and the magnitude of this complex measurement - equation (2.4). In this section 

we will now use these equations to formalize the two major forn~ulations of the signal 

magnitude estima.tion problem. We begin with what we call the two-pa,rameter model and 

then show how it can be used to  derive the one-parameter model. 

However, we first need to  clarify exactly what measurements we are performing estima- 

tion from and how they are obtained. For our purposes, we will assume that  the complex 

measurement a t  each voxel has been repeated n tjimes, where n is the same for all voxels. 

This sort of repea.ted measurement is usually achieved by repetition of the pulse sequence 

(the value of n is often called number of excitations or NEX on MRI scanners). Each of 

these measuren~ents is independently drawn from the same distribution. Additionally, the 

samples are normally repeated quickly enough that  registration does not become an issue. In 

the next two subsections, we will discuss different distributions that  can be used to  model 

these measurements and how they define the point estimation problem of turning the n 

measurements a t  ea.ch point into a single estimate of s. 
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The other significant feature of our measurements is that  a is fixed at a common value 

for all voxels, while the other parameters are free t o  assume different va.lues at every voxel. 

The knowledge tha.t a is fixed is particularly useful when combined with the fact that almost 

all MR images include regions of air. Since we know tha.t there is no signal emitted in voxels 

containing air, we can use these voxels t o  estimate the only remaining parameter of the 

PDF: a. Then, since u is the same a t  all voxels, we can extrapolate this estimate t o  all 

the other voxels and treat a as known. If n > 1, we can also use the difference between all 

the measurements a.t each voxel t o  estimate a even more robustly. Whichever method we 

choose, it is usual to  assume that  a is known [34, 50, 55, 321. The one significant exception 

to  this, that we know of, is the independent estima.tor derived by Koay et al., that assumes 

a can vary between voxels and attempts to  solve for this parameter as well 1381. For our 

purposes, a model where a is common t o  all voxels is sufficient, and so we will proceed with 

this assumption. 

4.2.1 Two-parameter model 

The PDF shown in equation (2.3) has three parameters: s, 4, and a. However, as we 

mentioned above, we can treat a as known. Thus a t  every voxel, we have a model with two 

free parameters: s is our parameter of interest and q5 is a nuisance parameter. We will write 

this reduced model as p(r,  8; s, 4) and define i t  as a s  the PDF given in equation (2.3) with 

a treated as a consta,nt. 

In order to apply any of the point estima.tion techniques presented above, we need a 

single PDF that  can be turned into a likelihood. However, we have n measurements, and 

so p(r ,  0; s, 4)  cannot be directly a.pplied. As suggested in section 4.1.3, we will apply 

reduction by sufficiency to our measurements. Noting that  our two-parameter model is a 

binormal distribution with independent measurements in the real and imaginary channels, 

the optimal sufficient sta.tistic is the complex mean of the complex measurements [41.]. The 

PDF of the mean measurement is exa,ctly the same as p ( r ,  0; s, 4, a ) ,  although the standard 

deviation is now a/n. Of course, since we are estimating a from the data, we can perform 

this estimation using the complex mean data,  and then the fa.ctor of lln will be taken 

into account a.utomatically. Thus, if we immediately take the complex average of all the 

measurements a t  each voxel, we can then proceed t o  perform estimation as if we had only 

taken one measurement. 

Having reduced the data  to  a. single complex measurement a t  each voxel, and expla.ined 
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a method for removing the parameter a from the model, the PDF of this model is 

which is essentially the same as equation (2.3) except now we let (r, 8) be the polar coordi- 

nates of the a.verage complex measurement and a is treated as a constant. 

From this PDF we can now derive the Fisher information ma.trix for this problem, 

which we will denote I2 to  make clear it describes the two-parameter model. Ordering the 

parameters s, 4, the matrix is then 

The  most important choice remaining in constructing estimators from the two-parameter 

model is how to  deal with the existence of the nuisance parameter. Although some work 

has considered this question [71], to  the best of our knowledge there ha.s been no previous 

systematic application of the statistical theory t o  this problem. We have published the first 

results in this area [82], and this chapter extends these published results still further. We 

will consider a variety of derivations in section 4.4. 

4.2.2 One-parameter model 

The PDF of just r with 8 discarded was previously given in equation (2.4), and this forms 

the basis of what we call the one-parameter model. The choice of this model as a topic of 

previous research seems to  be based on the understanding that  norma.lly 0 is discarded by 

MRI sca.nner software and only r is reported. Thus, an estimator for the two-parameter 

model that required measurements of 8 would not be useful without being integrated into the 

scanner. The implied connection in past work is that, having discarded the measurements 

of 8, 0 should also be marginalized out of the model that is used for inference. The fact that  

this reduction removes the dependence on the parameter 4 seems to be treated as simply a 

fortuitous by-product and not the goal of the marginalization. We will return to these ideas 

in section 4.6. 

When using the one pa,rameter model, it is still possible to estimate a from the data, 

and thus we write the PDF used for estimation as p(r ;  s), treating a as known. As in the 

two-parameter case, we have n measurements and would like to  perform a reduction by 

sufficiency. One common assumption is that  the complex measurements were averaged by 
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the scanner before the phase data  was discarded. Thus, even with n measurements, T is 

taken t,o be the single real value representing the magnitude of the complex average. This 

is what is commonly called the magnitude image. 

We note that  it has been suggested anecdotally t o  the author that  some MRI systems 

define the magnitude ima.ge as the mean of the magnitude of the n complex measurements. 

However, the average magnitude is not a sufficient statistic for the  n magnitudes and doing 

such a reduction would discard data  that could be used for inference. Regardless, since we 

lack a clear description of how any given scanner constructs its magnitude image, in this 

work we proceed with the definition that  magnitude images are produced by averaging the 

complex measurements and then taking the magnitude of the average. Using this assumption 

the PDF for the one-parameter model at each voxel is then 

where r is the ma.gnitude of the avera.ge complex measurement and a is treated as a constant. 

Unlike the two-parameter case, there is no nuisa.nce parameter t o  be dealt with, so the 

inference process is clearly defined in frequentist sta.tistica1 theory. Additionally, the Fisher 

information matrix for this model has only one entry, which we will denote I1 for the sake 

of consistency with our previous nota.tion. Following our assumptions about how data are 

In the next section, we will look a.t some estimators that  have been developed by other 

authors using the one-parameter model. 

4.3 Previously Published Independent Estimators for Signal 

Magnitude 

Currently, most clinical diagnoses are performed using magnitude images. In these images, 

the estimated true signal magnitude s is given by 
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As we stated before, this estimator is known to have a Rician distribution [32, 481 with bias 

and mean squared error (MSE) 

where is the confluent hypergeometric function. 

A va.riety of other estima,tors have been proposed for the independent estimation of 

the true signal magnitude from the one-parameter model. The great majority of these 

[32, 34, 50, 55, 381 have been based on the observation that 

This result is a consequence of r2/a2 having a non-central X2 distribution with two degrees of 

freedom. McGibney and Smith [50] and Miller and Jospeh [55] independently proposed the 

same estimator, which will call the MM estimator for brevity. This estimator was created 

by replacing ~ [ r ~ ]  with r2 in this equation, and then solving for s ,  giving 

P u t  another way, they find an unbiased estima.te of s2 aad then take the square root of t,his 

quantity as their estimate of s. Note that  taking the square root means that S M M  is not an 

unbiased estimate of s, even though d:IM is an unbiased estimate of s2.  

One complaint that has been leveled aga.inst this estimator is tha.t i t  can produce 

imaginary-valued estimates for the real-valued s. I t  has been suggested that  this mea,ns 

iMM "cannot be a valid estimator" when s/a is small [72]. We have a different interpre- 

tation of this that  leads to  a particular solution t o  the imaginary estimates. FGw - 2a2 is 

an unbiased estimator of s2 and so, when s E 0, the unbiased e~ t~ imator  must be able to  

take negative values. However, since we know that  s2 must be positive, there is another 

estimator that can be derived from Gag - 2a2 that  is guaranteed to  have equal or smaller 

error: max(0, Gag - 202). Taking the square root then gives us 

Thus, by simply taking the real part of SMM (which is likely what MacGibney and Smith, 

and Miller and Joseph intended, although neither paper is explicit in this [50: 551) we are 

basing our result on an improved estimator of s2 and producing a valid estimator. 
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The estimator proposed by Gudbjartsson a.nd Pa.tz, which we will call the GP estimator, 

is quite similar to  this interpreta.tion of iMM. Starting with just the Rician-distributed 

magnitude measurements, they propose to  make the resulting estimator's distribution closer 

t o  Gaussian by using [32] 

iGP = 

Note the differences between this and equa.tion (4.16) are bhe introduction of the absolute 

value inside the square root and a change in the coefficient of the a term. 

An ahernative to  these approaches is t o  begin with the one-parameter model and perform 

maximum likelihood estimation. An analysis of this idea has previously been published in the 

context of astronomy by Simmons and Stewart [73, 751 and then independently reanalyzed 

by Sijbers et al. more recently in the context of AIR1 [72, 711. The work by Sijbers et 

al. provides a more thorough description of how they arrive a.t their results and presents a 

clear algorithm for performing maximum likelihood estimation on the one-parameter model. 

The basis of this model begins by setting the one-parameter model's score function equal 

t o  zero 

The solutions of this equation were then studied using ca.tastrophe theory [72]. The basic 

result of this analysis is that  the one-parameter maximum likelihood estimate of s is 0 when 

r2 5 2na2. Otherwise, there is one positive maximum which can be found numerically. 

We implemented the numerical root finding using Mathematica.'~ implementation of Brent's 

method [go]. For brevity, we will ca.11 this the Sijbers estimator. 

4.4 Our Derivations of Independent Two-Parameter 

Estimators for MRI 

In this section we will apply the sta.tistica1 theory we surveyed in section 4.1 to  the two 

parameter model to derive a variety of estima.tors for the MRI signal magnitude. We will find 

that some of the estimators derived using these methods are the same as previous estimators. 

When this overlap occurs, we will highlight how the previously published estimator relates 

to  the statistical theory. 
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4.4.1 Maximum likelihood estimate 

Let (SML, &) be the MLE of (s, 4 )  computed by solving 

U(s, 4; r, 8) = 0 1 

which produces the tu7o equations 

r s  sin (8 - #) 
= 0 

02 

The solutions that  maximize the likelihood are 

The choice of n even or odd selects the sign of iML. However, since we know that  s > 0, 

it is reasonable to select the positive version of iML as the maximum likelihood estimate. 

Noting that  iML is just the magnitude image, we know that  this estimator has a Rician 

distribution with bias a.nd MSE as given in equations (4.13) and (4.14). 

Although we know that  the maximum profile likelihood will give the same answer, the 

profile likelihood function will be useful later so we will derive it here. We do this by noting 

tha.t 4 = 6' is the solution to Ub(s ,  4; r, 8) = 0 and substituting this into the likelihood to 

produce 

Although this result is somewhat trivial mathematically, i t  is importa.nt because previous 

a.uthors have referred to  tphe one-parameter MLE as "the MLE" of the MRJ signal. In reality, 

the magnitude image is the WlLE of the two-para.meter MRI model. In the next subsection 

we will determine the rela,tionship of the one-para.meter MLE to the two-parameter model. 

4.4.2 Maximum marginal likelihood estimate 

In the two-parameter model we have proposed, marginalizing out 8 gives the one-parameter 

model 
r 

p(r;  s)  = - o2 exp (-s) I~ (3) . 
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As we noted above, maximizing the one-pa.rameter model's likelihood has previously been 

presented by Sijbers et al. [72, 711. However, our interest here is understanding whether 

this reduction meets the criteria for being infornmtion-preserving that  we laid out in section 

4.1.4. 

Since this marginalimtion removes the dependence on 4, we can see that  r is s-oriented 

[Ill. The remaining problem in determining whether the marginalization is information 

preserving is t o  test if r is sufficient for s when 4 is held constant in the  two-parameter 

model. This is equivalent to  finding a factorization of [41] 

However, consulting equation (4.8), we can see that  such a factorization does not exist due 

( 
ST COS(~-4) t o  the existence of the factor exp ) in p(r, 8; s, 4). Thus, we should not expect 

this marginalization to  be information preserving and it would not be recommended as an 

inference a.pproach under the general sufficiency principle [l 11 . 
Regardless of the information-preserving properties of the reduction, we will consider 

this marginalization because it describes an  alterna.te methodology that  can be used to  

produce the Sijbers estimator [72, 70, 711. Interestingly, while our understanding is that  the 

one-parameter model was used by Sijbers et al. based on its avoidance of 8 measurements, 

we can equally interpret it ,  as we do here, in terms of parameter reduction. However, 

regardless of how the marginalization is justified, the loss of information suggested by the 

general sufficiency principle is problematic, and we will a.ddress this further in section 4.6. 

4.4.3 Maximum Bartlett-corrected profile likelihood estimate 

In section 4.1.4 we showed how t o  ca.lculate Bartlett's correction for orthogonal nuisance 

parameters, and also how t o  convert any model to  one with orthogonal nuisance parameters. 

However, looking a t  the information ma.trix for the two-parameter model in equation (4.9) 

we can see that our nuisance parameter is already orthogonal. Thus, we can immediately 

apply the simplified formula for the correction. Using the information matrix we compute 

the Bartlett correction for our problem as 
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We can then use this to produce the corrected profile score function using the profile score 

function (the derivative of the log of Lp(s; r, 0) as defined in equation (4.25)) 

r - s  1 
UP(s;T,8) - A  = - - - .  

a2 2s 

Setting the corrected profile score function to  zero and solving for s gives the maximum 

corrected profile likelihood estima.te 

where kML is the MLE as described in section 4.4.1. 

Comparing this estimator to equation (4.16), we can see that  our new estima.tor is the 

average of SML and ZMM. This mea.ns that ,  like iMM, the Bartlett-corrected estimator can 

produce complex-valued estimates of the real-valued s. We will resolve this problem the 

same way we did with SMM, by taking the real part of the complex-valued estimated. 

4.4.4 Maximum stably adjusted profile likelihood estimate 

As we noted in deriving Ba.rtlett's correction, our two-para.meter model's nuisance pa.rameter 

is already orthogonal so we ca.n directly apply the equation for the adjustment factor to  

parameters s a.nd 4. We compute 

and 

Substituting these equations into equation (4.7), and simplifying we can write 

which simplifies t o  

g(s)  = - log(s/r) . 



CHAPTER 4. INDEPEAJDEATT ESTlndATION OF SIGNAL MAGNITUDE 72 

Using this identity, we can writ,e the weighting fa.ctor, derived from equation (4.6), for this 

Combining this with the profile likelihood function gives the stably adjusted profile likelihood 

Taking the log and then maximizing we find that  our maximum adjusted likelihood estimate 

Thus, the difference between the Bartlett-corrected estima.te and the stably adjusted one 

is the coefficient of a in the second term. This estimator can a k o  produce complex-valued 

estimates and, using the same reasoning as before, we will use only the real part as our 

estimate. 

4.5 Comparison of New and Previously Published 

Estimators 

Having presented four previous estimators (magnitude image/maximum likelihood, MM, 

GP, and Sijbers/maximun~ marginal likelihood) and derived two new new ones (maximum 

Bartlett-corrected profile likelihood and maximum stably adjusted profile likelihood), we 

would like t o  compa.re these estima,tors with each other and the best-case phase-corrected 

real estimator. As discussed in section 3.6, we will use bias and MSE to  analyze the perfor- 

mance of these estimators, since all of them are independent. We have presented a similar 

analysis previously with early results of this work [82], but this section extends the results 

with new estimators derived using the more thorough analysis of statistical theory laid out 

earlier in this chapter. 

Based on the design of the best-case phase-corrected real estimator - as implemented 

in equations (3.9) a.nd (3.10) - we know that  this estimator has distribution N(s, a )  and 

thus is unbiased and has MSE a2. Since this estimator is unbiased we can compare it t o  the 

CramQ-Rao bound of the two-parameter model. This comparison shows that  the best-case 

phase-corrected real estimator is the efficient estimator for the two-parameter model. 
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However, it is important, to  note that  this distribution does not actually describe the 

images that  we tested in chapter 3, because nega'tive estin~at~es a t  ea.ch pixel were set to 

zero, truncating the ra.nge of possible estimates. Thus, the bias and MSE of the estimator 

that  produced our images are given by 

a 
E ( i  - s) = - exp (- &) - 

(I - erf (s) ) 

where erf is the error function. Clearly this is not an efficient estima.tor since it is biased. 

However, this is the estimator that  we tested in our perceptual experiments, and so these 

bias a.nd MSE values will be the baseline for comparison with our results below. 

To compute the bias and MSE of all the estima.tors, we have used closed forms where 

possible and otherwise have estimated these values using a. Mont,e Carlo simulation. At each 

da.ta point our Monte Carlo simulation used 50,000 samples drawn from the two-parameter 

model and then processed as per the estimators. We ran the experiment from s = 0 to s = 4 

a t  intervals of 0.25. In all of our simulations we used a = 1, since i t  is the ratio of s t o  a 

that  controls the performance of these estimators and so altering a would be equivalent to  

scaling s. 

While useful for quantifying estimator performance in some cases, bias and MSE mea- 

surements do not lend themselves to qmlitative descriptions of the resulting ima.ges. Thus, 

before proceeding with the quantitative analysis of the estimators, we present an exa.mple 

data  set in figure 4.1 tha.t may allow a more qualitative comparison of the estimators' out- 

put. In particular, we have set a = 1 and used targets whose signal amplitude matches 

the range of values considered in the bias and MSE analysis that  makes up the rest of t,his 

section. 

4.5.1 Bias Results and Discussion 

The bias of the estimators is plotted in figure 4.2. Comparing the bias of individual estima- 

tors (black curves) t o  the bias of the base-case phase-corrected images (grey curves), we see 

that  none of the estimators we have presented in this cha.pter have bias performance similar 

to  the phase-corrected estimator's bias. From our definition in section 4.1.2 we know that an 

efficient estimator would have zero bias a t  all values of s. Although none of our estimators 
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True image 
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G P  

Phase-corrected real 

MM 

Sijbers 

Adjusted 

Figure 4.1: Example of independent estimator output. Complex zero-mean Gaussian noise 
with a = 1 was added to  the true image and the resulting magnitude data  was used t o  
produce estimated images. The four target circles have integer amplitudes from 1-4. The 
ima.ges are all scaled to the same units to enable correct comparison. The top row shows 
idealized reconstructions that are not possible with independent estima.tors. The remaining 
ima.ges show estima,tors discussed in this chapter. 



CHAPTER 4. INDEPENDENT ESTIMATION OF SIGNAL MAGNITUDE 75 

match this performance, i t  is clear that  the best-case phase-corrected ima.ges most closely 

approximate this behaviour. 

Of course, the best-case phase-corrected image estimator is not a pra.ctica1 estimator 

since it requires prior knowledge of the true phase 4 at every voxel. If we would like t o  avoid 

regularization completely, then we should ignore the best-case phase-corrected estimator and 

compare only the estimators that  we have presented in this chapter. All the black curves 

in figure 4.2 represent estimators that  can be practically implemented; and we can attempt 

to  determine which is preferable among the practical independent estimators. 

Comparing the black bias curves we can see tha.t there are several trade-offs that  warrant 

further evaluation. For example, the Sijbers/maximum ma.rgina1 likelihood estima.tor (d in 

figure 4.2) has lower initial bias than most other estimators, but is slower to  reach unbiased- 

ness than either the maximum Bartlett-corrected profile likelihood or the G P  estimators (e 

and c respectively in figure 4.2) .  Similarly, comparing these la,st two estimators, we see that  

the maximum Bartlett-corrected profile likelihood estimator has lower bias everywhere, but 

the GP estimator becomes unbiased slightly sooner. Determining what effect, if any, these 

trade-offs have, would likely require further perception studies of the sort we presented in 

section 3.5. 

4.5.2 MSE Results and Discussion 

The MSE of the estimators is plotted in figure 4.3. As in the bias plots, we can see that 

none of the proposed independent estimators have h4SE performance similar to  the best-case 

phase-corrected images. Efficient estimators should ha.ve MSE of 1 in these experiments, 

a.nd we can see that  best-case phase-corrected images represent the closest approximation 

to  this of any estimator we considered. 

As in our bias comparison, we can ask which estima.tor we would prefer if we excluded 

phase-correction. Again, this depends on what sort of trade-offs we are interested in making. 

The ma.gnitude image (a in figure 4.3) has very high MSE at s = 0, but very quickly 

approximates the efficient estima.tor's MSE. Alternatively, the maximum stably adjusted 

profile likelihood (f in figure 4.3) is closer t o  the efficient MSE over more of the range, but 

does not a.pproach the true efficient MSE as quickly. 
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Figure 4.2: Biases of the  estimators. Each plot displays the bias of one estimator (a: max- 
imum profile likelihood, b: MM, c: GP, d: Sijbers/maximum marginal likelihood, e: max- 
imum Bartlett-corrected profile likelihood, f: maximum stably adjusted profile likelihood) 
as a solid black curve. A lighter grey curve plots the bias of the best-case phase-corrected 
image estima.tor. An efficient estimator would have zero bias everywhere. The x-axis is the 
true signal value, and the y-axis is the bias of the estimator either computed directly or via 
the Monte Carlo experiments. 
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Figure 4.3: MSEs of the estimators. Each plot displays t,he MSE of one estimator (a: max- 
imum profile likelihood, b: MM, c: GP, d: Sijbers/maximum marginal likelihood, e: max- 
imum Bartlett-corrected profile likelihood, f: maximum stably adjusted profile likelihood) 
as a. solid black curve. A lighter grey curve plots the MSE of the best-case phase-corrected 
image estimator. An efficient estimator would have MSE 1 everywhere. The x-axis is the 
true signal value, and the y-axis is the MSE of the estimator either computed directly or 
via the Monte Carlo experiments. 
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4.6 Conclusions About Independent Estimators for MRI 

Comparing the results of the previous section we can see that none of the independent 

estimators derived via the statistical theory approxima.te the beha.viour of the best-case 

phase-corrected real estimator. As such we cannot assume that  our previous perceptual 

experiments can be used t o  justify the choice of any of these estimators. Moreover, the 

uniqueness of the phase-corrected estimator results imply that there is indeed a value in 

developing phase-corrected rea.1 estimators. We will pursue this further in chapter 5. 

However, the results of these independent estimator experiments are also interesting on 

their own for several reasons. First, to the best of our knowledge there has not previously 

been a head-to-head comparison of the variety of estima.tors that  are available for MRI. 

AdditionaJly, we have found that  the maximum Bartlett-corrected profile likelihood and the 

maximum stably adjusted profile likelihood estimators, which we a.re introducing t o  the MFU 

literature, are highly competitive with the estimators previously published. In addition to  

deriving new estima.tors, we ha.ve also related previously published estimators derived from 

the one-parameter model to the two-parameter model. Overall, our comparisons seem to  

indicate that ,  by choosing different independent estimators, we can trade-off bias for MSE 

at  various signa.1 levels. However, we are unable to  draw strong conclusions from this 

comparison because i t  is unclear what trade-off is optimal a t  any signal level. 

Based on our survey of the literature on independent estimators in MRI, we feel that 

our work highlights the necessity of being clear about which model is being used as the 

basis for estimation. For example, several authors ha.ve referred t o  their results as "the" 

maximum likelihood estimator for the MRI signal, but there are clearly several different 

maximum likelihood estimators, depending on the model used. This problem is accentuated 

when the estimation problem involves a more complicated model, such as the estimation 

of T2 from a time series of decaying measurements, or fractional anisotropy from a set 

of directionally sensitive measurements. There are several papers in the literature where 

individual estimators are referred to  as "the" maximum likelihood estimator for the T2 

estimation problem without ma.king clear that  they are producing the MLE for specific, 

simplified models [15, 701. 

Our survey also seems to indica.te that  there is a belief that correct inference from the 

magnitude measurements r should be performed using the one-pammeter model. This belief 

seems to be implicit in some work [34, 50, 55, 321, but is explicit in others [72, 711. Our 
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understanding is that  this model is used so that  only the magnitude measurements remain 

and estimators will not rely upon the measurements of 8 disca.rded by the sca.nner. 

From our survey of the statistical litera,ture, it is our belief that  we are better off starting 

from the most complete model tha.t we know is correct and then simplifying it using the 

theoretical tools for inference in models with nuisance parameters [36, 11, 8, 411. In the case 

of MRI, the most complete model that  we have a t  each pixel is the two-parameter model, and 

so we suggest this as the basis of estimation. Additionally, as our work shows, the resulting 

estimators do not rely on the measurements of 8 and so can be used even after the data, for 

0 has been discarded. This highlights an important and easily confused point in inference: 

measuring something and throwing it awa.y is not the same as not knowing the measurement 

exists. In our case, our estimators derived from the two-parameter model know about the 

8 information and throw it away. The one-parameter estimators are derived from a frame 

of reference where the 9 measurements are completely outside the model. Clarification on 

this issue in statistical inference would probably assist further work on other estimators in 

MRI. 

Any of the estimators for which we have closed forms could be implemented trivially 

in an MRI data processing pipeline with minimal effort. Addition of the Sijbers estimator 

would require slightly more effort as its efficiency is highly dependent on the numerical 

root-finder employed a t  each voxel. In contrast t o  regularizing estimators of any sort, these 

independent estimators are very conservative and cannot introduce artifacts or smooth over 

fine features. As such, their use on medical images is likely to  be low-risk. However, since 

we have not evalwted these estimators using perceptual experiments, it is not yet known 

whether they would enhance detection. 

Finally, regardless of whether these estimators can enhance detection, we feel the in- 

troduction of statistical estimation techniques for models with nuisance parameters into 

the MIU estimation literature is useful. These tools could yield improved inference in 

quantita,tive estimation problems based on MRI measurements. For example, although the 

maximum profile likelihood [15] and maximum marginal likelihood 1701 estimators for T2 

estimated from decay measurements has been presented, the full model for this problem has 

many nuisa.nce parameters and might well be amenable to  some of the techniques we have 

presented. 
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4.7 Summary 

In this chapter we ha,ve introduced the basics of frequentist point estima.tion as a method of 

summarizing inferences from measurements about parameters. We have demonstrated tech- 

niques for dealing with multiple measurements and nuisance p ramete rs  when performing 

inference and defined the concept of an efficient estimator. 

Based on our survey of the MRI litera.ture, we have presented one- and two-parameter 

models that can be used for inference. We have surveyed the previous work using the one- 

parameter model and derived a. selection of new estimators using the two-parameter model. 

In some cases inference from the two-parameter model assigns a new name to  a previously 

published estimator, and in these cases we highlight how the previous estimator fits into the 

two-parameter theory. 

We have compared all the estimators we presented using Monte Carlo experiments to  

measure bias and MSE. The estimators are evalua.ted not only relative to  each other, but 

with the bias and MSE of the best-case phase-corrected real images we tested in chapter 3. 

We conclude that  phase-corrected real images do have unique properties not replicated by 

any of the independent estimators. We also demon~t~rate  that  two of the new independent 

estimators we have derived are competitive with those currently published. 

Finally, we analyze some of the reasoning behind the way statistical inference has been 

previously performed on MRI measurements. We highlight, what we feel are limitations 

of these approaches and suggest some alterna,tives t>hat may be broadly applicable in MRI 

e~t~imators.  



Chapter 5 

Regularized Estimation of Signal 

Magnitude 

Having considered approaches to independent estimation in chapter 4, we now focus on 

regularized estimators. As in the case of independent estimators, we can build regularized 

estimators using one- or two-parameter models. However, in the two-parameter case we now 

have an extra choice: regularization can be applied to either parameter individually, or both 

sjmultaneously. We will begin this chapter with a survey of estimators that  regularize signal 

magnitude only. We will then proceed to  discuss estimators that  jointly regularize the phase 

and magnitude information. The  structure of this work is very specific to the MRI signal 

and, interestingly, somewhat inconsistent with our approach to the twc-parameter model. 

Having surveyed these alterna.tives, for the remainder of the chapter we focus on estimators 

that regula.rize only the phase parameter. We survey previous results on estima.tors of this 

type, and derive our own novel estimator. We demonstrate the result of our estima.tion 

approach using both imaging data  and T2 echo series. 

5.1 Popular Regularization Methods 

The funda.menta1 idea. of regularization is tha.t we would like to  impose some extra conditions 

on our estimates so that  the va.lues we infer for neighbouring locations are linked to  each 

other. In the context of images, this is most commonly used to express the informal idea 

that neighbouring pixels are likely to have very similar values. 
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One of the earliest implementations of this idea. imposes two cost terms that  an estimate 

should simultaneously minimize. The  first cost term penalizes an estimate more heavily 

the larger the 2-norm between the estima.te and the measured data. The second cost term 

penalizes an estimate the larger the tota.1 squared gra.dient of the estimate. This combination 

of costs is known a.s Tikhonov regularization (41. In general, this is not a good regularization 

scheme when the parameters being estimated contain edges and so i t  is not often used in 

image estimation. A more suitable alternative for image da ta  is the total variation cost [60, 

41. This cost-function replaces the total squared curvature in the Tikhonov regularization 

formulation with the total one-norm of the estimate's gradient. In general this cost penalizes 

regions of slope and prefers homogenous regions with sha.rp edges at their boundaries. I t  

has been suggested that  this is a better model for edges. 

Another method for enforcing regularity is to fit a polynomial to  the data. Given real- 

valued measurements and a cost function t11a.t penalizes the 2-norm between the po1ynomia.l 

and the measurements, this can be fit efficiently using a weighted least squares algorithm. 

The difficulty in fitting polynomials is that  changing any single coefficient will affect the 

estimate everywhere. An alternative is t o  fit local polynomials between the data  points 

and insist on some degree of continuity between the polynomials. Thin plate splines have 

been presented as natural minimizers of cost functions that  simultaneously enforce fidelity 

to image measurements (under specific definitions of fidelity) and minimize the total of the 

squa.re of a chosen degree of derivative [86]. 

The linkage between neighbours can sometimes be better expressed by transforming the 

measurements to a different basis where the pammeters are more compa,ctly represented. 

Ideally, the parameters should only be represented using part of the basis, allowing us to  infer 

that other elements represent pure noise. One simple a.pproach to  this is t o  represent the 

measurements in the Fourier domain, where na.tura1 images tend to  be mostly represented 

in the low-frequency coefficients. Of course, by the properties of the Fourier transform we 

know that  trunca.tion in the Fourier domain is equivalent to convolution with some point 

sprea,d function, and thus may not be good for ima.ges [16]. The wavelet basis has gained 

popularity as an alternative basis for representing measurements [22]. Unlike the Fourier 

basis functions, which have infinite support, wavelet basis functions have finite support but 

are still frequency-specific. Truncat-ions in wavelet bases are, in general, not equivalent to  

simple convolutions~ and so are less destructive to  edges and better for image estimation. 
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Fina.lly, a. variety of methods use analogies t o  physical processes evolving towards a low- 

energy state. These methods begin with a.n initia.1 candidate estimate, which is usually poor, 

and then use partial different equations (PDEs) t o  specify how the candidate estimate will 

cha.nge through an a.dvancing pseudo-time. The  pseudo-time is stopped when the evolution 

reaches a desirable candida.te estimate, which is then taken as the estimated image. Due 

to  their method of specification, these methods are referred t o  as PDE-based. Perhaps the 

simplest PDE we can imagine for this task is the heat-diffusion model. However, a s  with 

Tikhonov regularizakion and Fourier trunca.tion; this P D E  will tend to wipe out edges and 

so is not often desirable for image estimation. To a.ddress this shortcoming, anisotropic 

diffusion PDEs ha.ve been proposed [62, 41. The  classic exa.mp1e of this idea is to  make the 

rate of diffusion inversely proportional t o  the gradient of the measurements a t  a point. This 

means that  diffusion across edges will be slow, preserving them in estimates, while diffusion 

inside homogenous regions will behave like the heat PDE, smoothing the data. 

5.2 Regularization Applied to  the Magnitude Parameter 

For researchers experienced in regularized image estimators, performing regularized estima- 

tion on the magnitude parameter of MRI is a na.tura1 extension of the work in other a.reas 

of imaging. Interestingly, only a small percentage of the published work applying regular- 

ization to magnitude images has focused on the one-parameter model described in section 

4.2.2 [59, 64, 51. As in the case of independent estimators, this model is chosen primarily 

from a desire to avoid estimators that  might use the phase measurements discarded by the 

scanner. 

In some cases, particularly in early applications of regularization to  MRI da.ta (e.g., 

[88, 28]), the one-parameter model is further simplified by assuming a Gaussian distribution 

for signal magnitude instead of the Rician distribution. The decision to use a Gaussian 

model stems from the existence of a wide variety of tools for smoothing Gaussian noise in 

images. One substantial difficulty in a.pplying these techniques to  MR images is that the 

Rician noise distribution is dependent on the true magnitude, where most models used for 

image regulariza.tion assume additive noise independent of the signal. 

To address the Rician distribution, one common approach has been to work with the 

squared magnitude image [59, 641. These estimators are thus the regularized cousins of the 

MM estimator discussed in section 4.3 - they first produce an unbiased estimate of s2, and 
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then ta.ke the square root to produce an estimate of s. Although we addressed the  point 

in chapter 4, since i t  is not clear in these publications i t  is important t o  reitera.te that  an 

unbiased estimate of s2: regularized or not, does not imply an unbiased estimate of s by 

taking the square root. 

5.3 Regularization Applied Jointly to the Magnitude and 

Phase Parameters 

The a,pplica.tion of regularization t o  both parameters has taken an interesting form in MRI. 

To the best of our knowledge no work has been done on regularizing s and @ directly. 

Instead, regularization has been a.pplied to  scos(+) and ssin(+) by Wood and Johnson, 

Alexander et al., and Bao and Zhang [91, 3, 61. Consulting equation (4.8), we can see that  

chmging the coordinates of the two-parameter model PDF's measurements back from polar 

to the real a and imaginary b coordinate system we have the two-parameter P D F  

Considering the structure of this PDF, the a.ttractiveness of regularizing s cos(4) and s sin(+) 

becomes more a.pparent: if we create separa.te images of a and b, the real and imaginary 

measurements respectively, the result is two images whose true intensities are s cos(@) and 

ssin(4) respectively and each corrupted with independent zero-mean, additive Gaussian 

noise. As noted previously, there are far more regularization methods available for data  

with this noise model so a choice of well-developed techniques can be applied. Having 

estimated scos(q5) and ssin(+), Wood and Jonston, Alexander et  al., and Bao and Zhang 

propose to  produce an estimated complex value a.t every voxel and then take the magnitude 

of this estima.ted complex value as the estimate of s [91, 3, 61. 

While this approach is surely innovative, concerns have been raised about the method- 

ology. First, neither of the parameters being regularized represent the information we are 

interested in. Instead, the parameter of interest a.nd the nuisance parameter are mixed to- 

gether and the result is regularized. Figure 5.1 shows the problem that  results, where due t o  

variation in 4, the majority of the signal alternately shifts between the real and imaginary 

channels of the spatial extent of the image. By splitting the signal power this way, we risk 

having our regularizing estimator perform more poorly in regions where sin(@)/ cos(4) -. f 1. 
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Figure 5.1: Absolute value of real and imaginary measurements of an inversion recovery 
knee image. Left: Absolute value of real measurements. Right: Absolute value of imaginary 
measurements. Due to  the slow variation of r$ a.cross the spatial extent of the image, the 
signal alterna.tely fades between the real and ima.gina.ry components. This is visible as black 
bands in the image where the signal is oriented completely in the opposite channel. 

In these regions of the images, neither the real nor the ima.ginary image has a strong repre- 

sentation of the true signa.1 and thus a greater amount of regulariza.tion may be a.pplied t o  

these measurements than is actually desirable. The  desire t o  avoid this problem has been 

cited by other a.uthors as one of the reasons they chose to developed regularized estimators 

from the one-parameter model [59]. 

5.4 Previous Estimators Regularizing the Phase Parameter 

In cha.pter 2 we stated that the phase parameter varies smoothly across the extent of the 

image for a variety of pulse sequences. Due t o  this feature of the signal, the idea of regular- 

izing the phase parameter has arisen in several different MRI applications. Although we are 

interested only in phase-corrected real reconstructions, the methods employed to  regularize 

the phase pa.rameter in other MRI problems are sometimes transferable to  our problem. 

In this section we will first survey previous approaches to  phase-corrected real reconstruc- 

tion. In the second half of the section, we will present some of the phase regula.rization 

approaches that  have been used in other NlRI problems. In particular, we will consider the 



CHAPTER 5. REGULARIZED ESTIMATION OF SIGNAL MAGNITUDE 

Figure 5.2: Example of a phase-corrected MRI voxel, showing the relationship of the various 
components in equation (5.2). The solid black lines represent the true parameter s and the 
noise in one sample from the phase-corrected distribution. The dashed line is the recorded 
value of the voxel while all the other parts of the diagram are unknown. 

phase unwrapping problem and discuss its similarities to the phase correction problem. 

5.4.1 Previous phase-corrected real estimators 

Two-step phase-corrected real es t imators  

Previous publications on phase-corrected real estimators all share a basic formulation of 

the problem. In every case, the first step is to estimate q5 with $. The second step begins 

with the assumption that the estimate is the true value of 4. Based on this assumption, 

the measurements are multiplied by exp(-$). As we can see in figure 5.2, if 4 = q5 this 

will rotate the true conlplex signal so that it is aligned with the real axis. If we call the 

real and imaginary components of the post-rotation measurement a' and b', and assume 

that 4 = 4; we can modify the two-parameter model shown in equation (5.1) to produce a 

one-parameter PDF 

1 (a' - . s ) ~  + bt2 
p(at ,  b'; s )  = - 

2ra2 > . 

Figure 5.2 and this PDF both show that the post-rota.tion imaginary component 6' contains 

no information a.bout s and so can be disca.rded. Similarly, the post-rotastion real con~ponent, 

a' is an unbiased estimator of s with a Ga.ussian distribution. 

As in the case of independent estimation, multiple measurements at  each location are 

assumed to be replaced by their complex average via. an appeal to sufficiency. However, since 

none of the previous work we will consider relies on the PDF in the estimation of 4, we treat 

this data reduction more as a result of current scanner software (which will often perform 
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the complex averaging automa.tically) than as a. necessary step in the phase-corrected real 

estimators. 

All of the previous work shares identica.1 a.pproaches to da ta  reduction and identical 

second steps. The only factor differentiating the algorithms is their formulation of the first 

step. We will now consider the two major families of previous approaches to  estima.ting q5 

as step one of a two-step phase-corrected real reconstruction. 

The  first widely a.pplicable a.pproa.ch t o  phase-corrected real reconstruction was presented 

by Ahn and Cho in 1987 [2]. In this work the authors assumed that the phase could be 

described by a polynomial of the form 

where x represented the pixel index in the readout direction. The assumption here was that  

the principal components of q5 were a constant offset, plus a linear factor proportional t o  

the error in the timing of the signal readout. To determine the coefficient of this model, 

they proposed t o  use a weighted mean of the difference in phase measurements 0 between 

neighbouring pixels as an estimate of c2. Since Ahn and Cho were interested only in esti- 

ma,ting phase variation in the readout direction, we can focus only on the rows of the image. 

Given N voxels in a row, we will refer to  the measured complex value a t  the ith voxel with 

magnitude ri and phase Bi. Ahn and Cho computed the weighted mean difference in a row 

via 

Averaging together the values of A for all the rows gives their estimate of ca. Having 

corrected the linear component, they then suggested picking cl to  center the histogram 

of partially corrected phases around 0. '\Vith a final estimate of $ a t  every voxel via the 

polynomial, the authors then follow the standard second step in phase-correction and take 

r cos(0 - 6) as the estimate of s at  each voxel. 

An extension of this polynomial fitting approach to  both x and y directions and higher- 

order terms, was ma.de by Bernstein et al. in 1987 [14], who proposed a quadratic polynomial 

as sufficient for most practical data  sets (the choice of quadrakic polynomials has been 

suggested by other groups as well [46, 191). However, this algorithm encounters a serious 
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Figure 5.3: Demonstration of the fitting errors caused by treating angles a s  real values. Data 
values (shown as dots) are drawn from the function f (x) = x, sampled every 7r/4 from 0 to 
47r and wra.pped to the range (-7r, T ) .  These are fit to  a quadratic polynomial using linear 
least squares, resulting in the polynomial 0.72623 + 0.0340557~ - 0.0105118x2. The error 
between the da.ta a.nd the polynomial demonstra.tes that  even though the data  function is 
linear, fitting a polynomial to the wrapped values is a, non-linear optimization problem. 

difficulty that  afflicts most attempts t o  fit polynomials to  phase measurements: the phase- 

data  is circle valued. If the phase da ta  were real-valued, the polynomial fitting would be 

solved by performing a linear least-squares fit. However, the difficulty with this approach 

1a.ys in the computation of the dista.nce between 0 and the estimate 4. Their difference 

cannot be computed as 13 - 6 because they are angular values and thus points on a circle. 

Unlike on the real line, on the circle there are two geodesics (straight paths) between any 

pair of non-identical points. The error introduced by ta.king the real-valued difference is 

shown in figure 5.3. We can avoid this problem by taking the shortest of the two geodesics 

as our distance measure 

this turns the polynomial fitting into a non-linear optimization problem. Bernstein et al. sug- 

gested fitting the constant and linear terms of the polynomial using the Ahn and Cho method 

a.nd then using these as initial values for the non-linear search. Although there have been at- 

tempts to develop specific algorithms for this problem, a robust solution is not yet available 

An alterna.te approa.ch t o  polynomial fitting has been present by Chang and Xiang [19]. 

Instead of using a non-linear optimization algorithm, they extend the differencing method 

proposed by Ahn and Cho to  the estimation of coefficients for quadratic and higher terms. 

Chang and Xixg also introduce the novel idea of fitting the square of the complex image 
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in order to remove the sign from inversion recovery da.ta, a t  the cost of doubling all the 

phase errors. The major impediment to  a,pplication of their algorithm is that  it requires the 

qua.dratic and higher components to be sma.11 in the squared complex image [19]. However, 

when this is the case, their algorithm is quite efficient a t  estimating coefficients for low order 

polynomials. 

Homodyne detection 

The most common alternative to polynomial fitting is the homodyne detection approach 

presented by No11 et al. in 1991[58]. The core idea of this methodology is very similar 

to  the joint regularization approa,ches discussed in section 5.3. The authors proposed to 

independently apply regularization to  the real and imaginary measurements in order to  

produce an initial estimate of s cos(4) and s sin(4). This regularimtion normally takes the 

form of convolution with some kernel designed t,o remove the high-frequency information. 

However, unlike the approaches in 5.3, which take the jointly regularized data  as the final 

estimate, No11 et al. use the phase of the regularized data  only. This phase is taken as the 

estimate of the phase pammeter 4 and then, as before, r cos(19 - 4) is taken as the estimate 

of s. Criticism of this approa.ch is very similar to that  leveled against the joint regularization 

a.pproaches, focusing on concerns about the mixing of the parameters [49, 511. 

5.4.2 Other published uses of regularized phase estimators 

The estima,tion of 4 via regularized estinlators has been used for a variety of applications 

in MRI.  For example, phase estimation was used extensively in partial k-space imaging 

[46, 49, 581, aJthough with the a,dvent of mult,i-coil parallel imaging these methods are 

now somewhat less significant clinically. Additionally, the problem of phase unwrapping 

has received much work [43, 44, 201. Many of the phase estima.tion algorithms applied to  

these problems can equally be refitted as part of a pipeline for the production of phase- 

corrected real images. We now survey proposed methods for these problems and focus on 

the differences between phase unwrapping and phase-corrected real estimation. 

Partial k-space imaging 

Partial k-spa,ce imaging [46, 49, 58, 441 was the principal means of accelerating A4RI ac- 

quisition before the a.dvent of multi-cha.nne1 parallel imaging [74, 65, 311. The basic idea 
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of partial kspace imaging is that ,  by taking a.dvantage of the properties of the weighted 

proton imaging signal, we can avoid having to acquire up to  half of k-space. Acquisition 

time is accordingly cut in proportion to  the percentage of k-space that  is skipped. We ha.ve 

already covered the first property of the imaging signal that  is important to  this idea: the 

informa.tion of interest is in the magnitude of the true signal and the true phase contains 

no informa.tion of value. This means that  we could, in theory, represent our parameter of 

interest with just real values. Appealing to  the properties of the discrete Fourier transform 

(DFT), we note that  a real-valued signal will have a symmetric k-space [16]. This means 

that, if 4 = 0 everywhere, then we only need to  measure one half of k-space and duplicate 

that half to  produce the unmeasured entries. 

The problem with this a.pproach, as we have seen, is that  4 # 0 at all locations in almost 

any clinical image. However, if we know q5, we can multiply it out, as we did in step two of the 

phase-corrected real reconstruction, and then the phase-corrected k-space will be symmetric. 

Since we are more interested in the phase estimation than how the estimate is used in partial 

k-space imaging, we will not go into detail here about the various reconstruction approaches 

(for more details, see [49, 441). Algorithms presented for this problem have generally fallen 

into the same two categories as phase-corrected real reconstructions: polynomial fitting 

and homodyne detection [46, 49, 51, 581. In fact, most of the phase-estimation algorithms 

presented for this application were also presented as methods of performing phase-corrected 

real reconstruction. 

Phase unwrapping 

Phase unwra.pping appears as a problem in h4RI when, contrary to our description of 

weighted proton imaging, information is encoded in the true phase q5. For example, flow 

velocity can be encoded in 4 using specific pulse sequences. However, since velocity is a 

rea.1-valued quantity, when it is encoded in 4 it may become wra,pped if the range of en- 

coded velocities exceeds the ra.nge (-T,  T). The  core idea of phase unwrapping is to  restore 

the real values from the angular da,ta by taking advantage of the fact that  q5 should vary 

continuously in the image. 

Many of the polynomial fitting approa.ches described for phase-corrected real imaging 

have also seen applica.tion in phase unwra.pping [43]. The  other common a.pproach is to  

perform path-following through the image, attempting t o  determine the connectivity of 

each point to  its neighbours (e.g., [20]). 
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There is an important distinction between phase unwra.pping and phase-corrected real 

imaging. Phase unwra.pping attempts to  add integer n~ultiples of 27r to  images in order to  

form a continuous surface. Most often phase unwmpping is not concerned with estimating 

the true value of 4, but estimating it to within 7r so tha.t t,he correct integer value can be 

added t o  the measurement [43]. By contrast, phase-corrected real imaging requires that  we 

correctly estimate q5 at each point. In this sense, phase-corrected real estimation is tasked 

with a. grea,ter challenge in terms of fidelity. However, the problem is also easier because our 

estimate of q5 is indifferent t o  adding integer multiples of 27r. Thus, the two approaches are 

concerned with different aspects of 4. While i t  is possible to  solve them both simulta.neously, 

it is not necessary, which provides the intuition behind the deriva.tion of our estima.tor. 

5.5 Derivation of Our Novel Phase-Corrected Real Estimator 

Having surveyed the previous work on phase estimation and phase-corrected real reconstruc- 

tion, we can now present our novel algorithm for phase corrected real reconstruction. Our 

approach is motivated by an intuition about the problem that  suggests a different approach; 

we begin this section by discussing these differences. Having clarified the reasoning behind 

our a.pproach, we proceed to  derive our novel estimator. However this formulation of the 

estimator has a free parameter that  must be selected. We suggest a method for selecting this 

parameter from the data., producing a con~pletely data-driven method for phase-corrected 

real reconstruction. 

5.5.1 The intuition behind our approach 

The basic intuition behind our problem is that  almost all of the previous phase-corrected real 

reconstruction schemes unnecessarily perform phase-unwra.pping. The chief exception t o  this 

is homodyne detection [58].  In general, a.pplica.tions of the regularization techniques covered 

in section 5.1 all perform unwrapping as an essential part of their operation. Our intuition 

is to suggest a. regularization approach for phase estimation that  does not simultaneously 

perform phase unwrapping. 

Phase correction via, polynomial fitting is the clearest example of the extra phase- 

unwrapping work implicit in current methods. Once we have fit a polynomial to the phase 

then we have implicitly unwrapped it. The  polynomial is a map from voxel coordinates t o  

reals which is then wrapped back onto the circle to get angular estimates of 4. Piecewise 
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polynomial fitting, which has received some study for applicabion to  angular data. [47], has 

the sa.me problem. Once we have defined a continuous surfa.ce as a function of the spatial 

coordinates, we have implicitly unwrapped the data.  

Our intuition is that  as long as an estimate of 4 is constructed by restricting the deriva.- 

tives of some continuous surface, estima.tion will require implicit phase unwmpping. This 

is bemuse, by the act of constructing a continuous surface, the data  is being unwrapped. 

Thus, even PDE-based methods designed for circular data  [63, 77, 84, 18, 521 must implicitly 

solve the phase-unwrapping problem as part of estimating phase. 

Based on this intuition, if we a.re to produce a regularized estimator that  does not perform 

phase unwrapping, we must ensure that  we do not implicitly construct a continuous surface. 

This means that  we should not expect to fit one coherent model to  the phase a,t all points 

in the ima.ge. The alterna.tive a.pproach we choose is to use, a t  each voxel, a local model 

with no guarantee about how this model relates to other voxels' local models in terms 

of continuity, smoothness, or similar properties. We have previously published a phase- 

corrected real estimator based on this idea [79]. However, in the remainder of this section 

we will present a new estimator that  is based more rigorously on the point estimation theory 

we have presented in chapter 4. 

5.5.2 The neighbourhood model 

Having determined that  we will construct our estima.tor using local models, we must define 

what local properties are t o  be captured and how regularity of 4 will be expressed. Since 

the local model will be a.pplied a t  each voxel, we begin specifying our model by defining 

the voxel of interest as having a neighbourhood of voxels denoted C. Since we would like 

to  perform inference inside each local model using the frequentist point estimation theory, 

we must specify a. P D F  for the measurements of the voxels in C. From our description of 

independent estimation methods in chapter 4, we know that  to perform inference without 

regularization, we would specify the P D F  as the joint P D F  of each voxel individually. If we 

were tjo use the two-parameter model (i.e., assume tha.t a has been estimated from the data  

and can be treated as constant), we would write this joint P D F  as 

where r~ and eL are the collections of all  measurement,^ in the neighbourhood, s~ and 4L 
are collections of all the parameters in the neighbourhood, and the subscript nota.tion on 
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the right of the equa.tion is used t o  specify the measurements and pa.rameters of individual 

voxels. 

Although the local model relies on pammeters from all voxels in the neighbourhood, it is 

being used to  estimate only the p ramete rs  of the voxel of interest, which we will denote s, 

and 4,. Since the voxel of interest is one of the voxels in C, when making inferences about 

s, the joint P D F  in equation (5.6) can be reduced by appealing to sufficiency. In particular, 

because of the independence of the measurements a t  each voxel, we can ignore all the other 

voxels in the neighbourhood and perform estimation using: just the measurements in the 

voxel of interest. Clearly this is not wha.t we want, since the whole purpose of applying a 

model to  enforce regularity in @i a t  ea.ch voxel is to use information from the neighbouring 

pixels in the estimate of s,. Thus, we must modify the joint P D F  to  express some sort of 

regularity. 

Although many modifications expressing regularity are possible, we choose what is per- 

haps the simplest modification: force C$ to  be constant for all voxels in the neighbourhood, 

including the voxel of interest. The  P D F  that  expresses this idea is 

P(TC, BZ; SL, d )  = ~ ( r i ,  ~ i ; ~ i ,  4) - (5.7) 
i€L 

Note that  there is only one parameter for the whole local model, and we have thus 

substantially reduced the degrees of freedom a.vailable to  describe the measurements. With 

this formulation it is no longer possible t o  a.ppea1 to  sufficiency and ignore any of the 

measurements in the neighbourhood. All of the measurements will help us perform inference 

a t  the voxel of interest. 

Returning to the intuition behind the use of local models, we can now clearly see how this 

a,pproach is different from those that  define a continuous surface with local properties. Our 

local models cannot be joined to  produce a. coherent model for all the measurements unless 

we fix 4 as constant across all voxels. Since we do not want to produce a coherent model, 

we assume only locally constant phase and perform estimation completely independently 

in each local model. Our local models do not influence each other except insofar as they 

overlap and use the same measurements for inference about different voxels of interest. 

5.5.3 MLE of the neigbourhood model 

Having specified the P D F  of the local model that  will be a.pplied at each voxel of interest, we 

must now decide how to combine the P D F  and the measurements to produce an estima.te. 
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One obvious choice is the h4LE of the magnitude of the voxel of interest in each local 

model. We can alterna.tively think of this as the maximum profile likelihood of the voxel 

of interest's magnitude. Since we know the maxima of these two functions are identical 181, 

in the deriva.tions that  follow we will solve for the MLE rather than construct the profile 

likelihood. 

Locating critical points 

Given the PDF in equa.tion (5.7) we can invert the sense of the arguments and produce 

a likelihood function. Setting the score tha,t results from this likelihood t o  zero gives the 

equa.tions 

Thus, there is one equation of the first form and (C( equations of the second form, one for 

each of the i E L. Taking the derivative in each of the equations of the form (5.9) and 

rearranging gives us the MLE of the magnitudes under our local model 

We then perform the differentiation in (5.8) and substitute in the definition of $ given in 

(5.10) as the value of si in our further reduction to produce 

Using standa.rd trig identities, this can be rewritten as 

Defining 
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we can isolate 4 as 

4 = a.rctan (v lu )  /2 + n q  n E iZ . 

Pairing this result wit,h our estimate of $ shows that  the choice of n does not change the 

location in the complex plane that  is being estimated, only whether we locate it with a 

positive magnitude and a particular choice of 4 or a negative magnitude an the flipped 

choice of 4. These two descriptions of the point both represent maxima. and thus valid 

MLEs. 

Summary of MLE for local model 

The results of our derivation show that  the MLE of our local mode produces a two-step 

phase-correction approach. First, we estimate 4 a t  every point using local models centered 

on ea.ch voxel. We then treat that  phase estimate as if it was the true value of 4 and, like 

the previously published phase corrected real estima.tors we presented, take ri cos(Oi - 4)  

as our estimate of si. Remembering that  we are only interested in inference about s, in 

each local model, we can write the MLE of the voxel of interest's magnitude, given the local 

model, as 

G = &r, cos [0, - arctan (v lu )  /2] : (5.16) 

where the choice of f is equivalent to  choosing n even or odd in equa.tion (??). This is 

similar to  the pair of maxima that  result from the MLE of the independent two-parameter 

model (see section 4.4.1). The MLE does not give us any guidance about which of these 

estimates to choose. We could solve this problem, as we did in the independent case, by 

forcing ŝ , > 0. However, we now have another alternative for choosing n by a,ppealing to  

our assumption of regularity in 4, which can improve the quality of the resulting estima.te. 

However, before considering how to choose n ,  we would like to note one of the attractive 

features of equation (5.16) for implementation. We first note that  equations (5.13) (5.14) 

can be rewritten as 

j€Nt 

allowing them to  be calculated without trig operations. Further, with this definition cal- 

cula.ting u and v for a local model surrounding every pixel becomes a convolution of an 
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indica.tor function for the neighbourhood with the two combinations of real and imaginary 

measurements shown in equations (5.17) and (5.18). Tllus, having fixed the shape of the 

neighbourhood, the calculation of s^,, ignoring its sign, can be performed a t  all voxels in 

a number of operations that  scales linearly with the data. This lea,ves the problems of 

estimating the sign at each voxel, and choosing the size of the neighbourhood. 

5.5.4 Selecting between the two maxima 

As we noted previously, the MLE does not give us a method for choosing between the two 

maxima of the likelihood function, and thus the positive or nega.tive estimate of the voxel 

of interest's signal ma,gnitude. While in the independent estimator we chose the positive 

estimate in every case, this is not necessarily desirable. I t  is impossible in weighted proton 

ima.ging for s < 0, but this does not mean that  an estimator which produces a negative 

estimate of s is automatically incorrect. As we suggested when considering the independent 

MM estimator (section 4.3),  a negative estinmte of a non-negative is not necessarily wrong, 

but it is trivial to improve upon by simply trunca.ting all nega.tive values a t  zero. However, 

if we wish an unbiased estima.tor we might even ignore the truncation and accept negative 

estima.tes in exchange for being able to  give unbiased estimates of s = 0. 

Clearly i t  is desirable t o  get the correct sign for our estimate of s,. Fortunately, given 

our assumption of 4 as constant in local regions, there is a relatively simple method to  

choose the sign. We formulate the problem of selecting the orientation of 4, a t  each point 

as an energy minimization problem. In our problem the states are n-odd and n-even and 

we can define our energy roughly, as encouraging a. change of state at a point when doing so 

makes the phase closer t o  the phase of its neighbours in its local L. More formally, we define 

the penalty assigned to  a state of q5* a t  a given point as the 2-norm of s, exp(i4,) a.nd the 

complex average of the neighbourhood (excluding the voxel of interest). If s, exp(i(q5, + n)) 
has lower penalty, then we flip the orienta,tion of 4,. We simultaneously evaluate all voxels 

and flip them if necessary. We repeat this process until a sta.ble state is reached and then 

take the resulting orientations a.t each point as our choice between the two available MLE 

maxima. 
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5.5.5 Choosing the  neighbourhood 

If we are to  assume that  our parameters can be approximated around any point with a. 

region of constant true phase 4, it is natural t,o ask exactly how big these regions a.re a.nd 

what shape they take. These questions are significant since the choice of C has a critical 

effect on the resulting estimate of 2,  from each local model. If we exclude from C some 

pixels that  really share a constant phase, we risk over-fitting the data  and failing t o  take 

full advantage of the regularity inherent in our measurements. Alternately, if we choose C 

to  include pixels that  do not share a.n approximately constant phase, we risk under-fitting 

the da ta  and mixing true signal with our estimaked noise. 

Leaving aside, for the moment, the question of the size of C, we can begin by addressing 

the issue of its shape. Based on the previous experimental characterization of q5 [46, 13, 491, 

we find that  there is no a priori expectation of greater phase va.riability in one direction 

than any other. Thus, we should desire that  II: will be invariant under rotations, and so we 

chose it to  be a circle centered around the voxel of interest. Pixels whose center is within 

the circle will be considered members of L and all others will be excluded. Voxels a t  the 

edge of the image will have have their neighbourhoods truncated as necessary. 

Based on our choice of shape, we are left to pick the radius of L. I t  is certainly possible 

that  we could define a different radius t o  use in estimating 4, in each local model. However, 

for the present work, we will choose one radius and use it to define all the neighbourhoods 

so that all the measurements can be used to  inform our choice. To select the radius of our 

neighbourhoods, we will compute the error of our estimate a.t a. variety of radii and then 

choose the radius with the lowest error. 

We choose the cross-validation error of s, exp(i4,) as our method of selecting the radius 

of L. We calculate this error a t  each point by calculating the estima.te specified in equations 

(??) and (5.16) and choosing the maxima that  most closely matches the measured complex 

value a t  tha.t point under the 2-norm. However, when we calculate u and v for each local 

model we do not include the voxel of interest in the neighbourhood. Thus, the difference 

between the measurement and the estima.ted complex value represents the prediction error 

using the local model to estimate the true parameters. Averaging this error over all of the 

voxels, each computed with its own local model missing the voxel of int,erest, gives us a 

complex value whose Znorm we take as the cross-va.lidation error. 
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5.5.6 Summary of complete algorithm 

Having presented the individual components of our algorithms we will now summarize the 

order in which these elements are put together when presented with real MRI data. 

Our first step is to separate the data, into individual slices, since as we noted in section 

2.4, in most clinical pulse sequences we cannot assume any regularity between slices. We 

then a.pply our algorithm to  each slice individually. We begin the algorithm by determin- 

ing the neighbourhood diameter that minimizes the cross-validation error. We then use 

neighbourhoods of this diameter to calculate the values of the parameters at each voxel of 

interest; using local models and equations (??) and (5.16). Having produced these initial 

estima.tes, we iteratively flip the phase estimates a t  each voxel until we have reached a stable 

energy state under our chosen energy function. 

Having ca.lculated our estimate of 4 a t  every point, our algorithm now follows the same 

two-step structure as all other phase-corrected real reconstruction algorithms, taking the 

magnitude in the direction of 4 as the estimate of s. If the final use of the estimated values 

of s a t  each voxel is the production of an image, we truncate the negative estimates of s 

a t  zero. If an unbiased estimator of s is desired, we ta.ke the aligned estimates of s as our 

solution without further processing. 

5.6 Experiments with Real Data 

In this section we present experiments with some different data  sets that  compare results 

using different phase-corrected real estimators with each other and the magnitude recon- 

struction. In particular, we will use the polynomial fitting algorithm approach suggested by 

Bernstein et al. [14], the homodyne detection approach suggested by No11 et al. [58] and the 

algorithm we a.re proposing. The  Bernstein et  al. algorithm has been implemented using the 

Levenberg Masquardt non-linear optimization algorithm in Mathematica 6.0 [go]. We have 

implemented the convolution in the homodyne detection algorithm by multiplying the DFT 

of the complex da ta  with a function which takes the value 1 for a square of width w centered 

around the origin, and then takes values that  linearly descend to zero over another w/2 DFT 

coefficients. Thus, all frequencies outside the lowest 2w x 2w coefficients are set to  zero. 

The smooth descent to zero is chosen to reduce Gibbs ringing. In each of our experiments 

we will specify what w was used. We will present experimental data sets that demonstrate 

the limit,a.tions of these a.pproaches, and so we will not be particularly concerned with any 
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specific quality metric. 

The goal of these experiments is not to demonstra.te that  our algorithm produces superior 

estimates to  those already available. Instea.d, we are interested here in demonstra.ting the 

applicability of our general a.pproach. Since our phase-corrected real estima.tor is the first 

built up from a local model employing frequentist point estimakion theory, we are interested 

in demonstrating the feasibility of our approach. 

5.6.1 Fluid-filled objects 

The first da.ta we consider is a. 192 x 192 sample slice from a GRE volume acquired on a 3.0 

Tesla Philips Achieva scanner. The  three objects in the scene contained fluids (water and 

varying percenta.ges of crea.m) which produce different values of s in this pulse sequence. 

The pulse sequence was selected so that signal from water and fat protons would be summed 

together in the true magnitude s positive sign. We used w = 32 for the homodyne detection 

algorithm. 

The raw measurements and the results of the estimakors are shown in figure 5.4. We 

can see from the results that  both our estimator and homodyne detection have provided 

estimates tha.t are relatively close t o  the original data. Of course, due to  the low noise 

level in the measurements, we ca.nnot see any improvement in image quality due to the 

phase-corrected estimation. However, we can see that  the polynomial fitting algorithm of 

Bernstein et al. has failed to  produce a via.ble estimate of 4, leading to  incorrect estimation 

of s in the lower half of the image. We should note that  this is not because it completely 

failed to fit the measured phases. In the top half of the image the fit is quite good. Thus, 

while perhaps there is a better quadratic fit t o  the phase measurements, it may also be the 

case that  there is no quadratic that  can a.ccurately fit 4 in this da.ta. 

To get a. better understanding of how these estimators performed, we show the absolute 

differences between the magnitude image and our estimate, and the ma.gnitude image and 

the homodyne detection estima.te in figure 5.5. As we can see, the most significant error in 

both phase-corrected real reconstructions occurs around the edge of an  air bubble a t  the top 

of the top-most water bottle. As we mentioned in section 2.3.2, air/wa.ter boundaries induce 

IocaJ variations in the magnetic field and thus local variations in 4. Since this region viola.tes 

the assumption that  4 va.ries smoothly, we expect that  both of these methods will fail t o  

produce correct estimates here. However, it is important to  note that localized errors such 

as this do not induce errors in the rest of the image, and so we can see that  both of these 
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Figure 5.4: Ma.gnitude (left) and phase (right) images of the slice chosen from the fluid-filled 
object volume for our experiment. The first row shows the measured values which are the 
MLE of s a.nd 4. The remaining rows show the positive part of the estimate of s and the 
associated estimate of 4 produced using the three phase correction algorithms. 
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Figure 5.5: Absolute difference between magnitude and phase-corrected estimates of fluid- 
filled object slice. The difference between the magnitude and our estimate is shown on the 
left. The difference between the magnitude and the homodyne detection estimate is shown 
on the right. Both images axe in the same units for accurate comparison, and contrast 
has been reduced to compress small and large errors into the same image. Note that  the 
principal difference tha.t occurs in both images is the error around the water bubble in the 
top-most object. 

methods are relatively robust when presented with local violations of their assumptions. 

5.6.2 Fat-suppressed knee 

Our second experiment uses a fat-suppressed knee image. This da ta  has a slowly varying 

va.lue of 4 and so is not particularly challenging for any of the avaihble estimators. We 

include this data because it has a.n interesting artifact that  demonstrates differences between 

our a.pproach a.nd the other two we present. Fat is suppressed in these images using an 

approach called short-tau inversion recovery (STIR) in which the pulse sequence should 

ensure fat ma.kes no contribution to the va,lue of s a.t any point. However, due to ma.gnetic 

field inhomogeneities, there are a few regions of fat that  appear in the image. These fat 

regions form an interesting a.rtifact because the signal is inverted and thus the sign of s is 

nega.tive. We are interested in how the availa.ble a.pproa.ches estima.t,e the signa.1 in the fatty 

regions. 

In figure 5.6 we show the raw measurements and the estinmtes of the positive a.nd 
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inverted components of s, along with the estimated phase. To make clear where the regions 

of inverted fat exist, we have put two arrows on the magnitude ima,ge. As we expect, all three 

of the phase-corrected real estimators assign a negative estima.te to  the fat signal a t  these 

points and thus their estimated images are bla.ck in these regions. However, understanding 

how each estima.tor arrived a t  this estimate for the fatty regions illustrates their differences. 

For example, the polynomial fitting algorithm proposed by Bernstein et al. does not include 

any model of inverted signal. Thus, when the pa.tches of inverted signal are small, like in 

this image, they are simply considered error by the fit. If the patches of inverted signal were 

larger, they would likely begin to  affect the estimated value of 4. Our algorithm, on the 

other ha,nd, first estimates the fat as being positive signal, and then orients i t  negatively 

during our iterative orientation selection sta.ge. 

In figure 5.7 we show the raw measurements and the estimates of the positive and inverted 

components of s, along with the estimated phase produced by the homodyne detection 

estimator at two different values of w. At w = 2 the homodyne detection algorithm behaves 

like the polynomial fitting algorithm, smoothing over the small regions of inverted signal 

in favour of the larger regions of positive signal. However, a t  w = 16 the fitting is now 

fine-grained enough to fit the pa.tches of inverted fat signal as separate regions, estimating 

them with positive signal instead. We show this result to demonstrate the importance 

of choosing a correct window size when using the homodyne detection algorithm. In our 

previous data (figure 5.4) w = 32 was a correct setting, while here we find w = 2 to be 

correct. Further, using w = 16 on this knee data  results in the erroneous orientation of the 

fat signal illustrated by the arrows. Contra.ry to this, both the polynomial fitting approach 

and our algorithm do not require the choice of a parameter like w. Of course, this is not t o  

say that  there is no way to  a.utomate the choice of w in homodyne detection. However, t o  

the best of our knowledge no such scheme has been presented in the literature. 

5.6.3 Discussion of experimental results 

We have now seen two example data, sets that highlight the differences between our estimator 

and the approa.ches previously presented in the literature. It is not difficult to  construct 

pathological synthetic data  that  will cause a.ny of these algorithms to  fail, so our goal 

here is not to  choose one algorithm as better than the others. Instead, we believe these 

experimental results demonstrate that  the use of local models and our novel, statistics- 

based approa.ch t o  phase-corrected real reconstruction is a viable alternative to  polynomial 
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Bernstein et al. 

Figure 5.6: Magnitude (left) and phase (right) images of the slice chosen from the knee 
volume for our experiment. The first row shows the measured values which are the MLE of 
s and 4. Arrows on the magnitude image indicate the 1oca.tions of inverted fat signals. The 
remaining rows show the positive part of the estima.te of s and the associa.ted estimate of 4 
produced using the three phase correction algorithms. 
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Figure 5.7: Magnitude (left) and phase (right) images of the slice chosen from the knee 
volume for our experiment. The  first row shows the measured values which are the MLE of 
s and 4. Arrows on the magnitude image indicate the locations of inverted fat signals. The 
remaining rows show the positive part of the estimate of s and the associated estimate of q5 
produced using the homodyne detection algorithm with different settings of w. Note that  
changing the value of w alters whether or not the fa,t is included in the estimated positive 
image. 
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fitting and homodyne detection. Our algorithm has demonstrated general correct behaviour 

with local failure when confronted with data  violating its a~sumpt~ions,  a core property of the 

use of local models and one that  we feel is important in analyzing clinical data. Additionally, 

our local model approach allows the algorithm to 1oca.lly determine the orientation of each 

voxel, making it feasible for our estimator to orient fat and water properly in our example 

data, in a second step after an initial estimate of 4 is constructed. 

5.7 Application to T2 Measurements 

The measurement of T2 echo series suggests an interesting application of our approach to 

phase-corrected real reconstruction. As discussed in section 2.5, the bias introduced by 

Rician noise can be quite substantial in later echoes when there is little signal remaining. 

Given that  many of the analysis algorithms used to process these echo series assume Gaussian 

instead of Rician noise [89, 15, 761, it seems reasonable that  phase-corrected real estimation 

can bring the data into line with their noise assumptions. Thus, while in the imaging case 

we truncated all our estimates of s below a t  zero, in this problem we will want to keep all 

the negative estimates of s to ensure that  we have an unbiased estimator a t  each echo. 

In this section we demonstrate a phase-corrected real estimator for 32-echo T2 series 

where the values of t are equispaced between echoes. Before proceeding to apply phase- 

corrected real reconstruction to our T2 data, we need to produce a model of our measure- 

ments. We could expect that the magnitude parameters in a given echo series are related 

by equation (2.5) with only our chosen variation in t between echoes' magnitudes. How- 

ever, we will ignore this relationship between echo magnitudes in developing local model for 

phase-corrected estimation and treat all the echoes' magnitude parameters as completely 

unrelated. We do this so as not t o  bias any later T2 analysis algorithms for which our 

estimates will be used as input. 

However, we would like to assume regularity between echoes in the parameter 4. Our 

discussions with physicists suggested that  a given voxel should have two values of the phase 

parameter 4; one for the even-numbered echoes and one for the odd-numbered echoes. 

While it was true that in our measurements the phase of the odd and even echoes were 

generated with different processes, we found that  our measurement indicated that  4 was a 

linear function of the echo number, as shown in figure 5.8. Having confirmed our hunch with 

our physicist collaborators, we used this linear model of phase to derive an experimental 
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Figure 5.8: Phases of odd (left) and even (right) echo series in water sample. Phase is 
plotted on the y-axis and echo number advances from left to  right in each plot. The phase 
of the early echoes is clearly a linear function of the echo number, with constants such that  
the phase is increasing with echo number in t,he odd echoes and decreasing in the even 
echoes. This pattern is eventually overwhelmed by noise in the later echoes. However, the 
deviations in later echoes do not mean that  the underlying true phase 4 is not still linear, 
just that  the measured phase 13 is now more affected by noise than by the true phase 4. 

algorithm for T2 fitting. Note that  this algorithm is likely highly specific t o  the combination 

of pulse sequence and scanner used to  measure this data. I t  is for this reason that  we 

highlight the experimental nature of this algorithm and we present it as an example of how 

our local models and statistical methods ca.n be extended to  other problems in MRI. 

In the following application we will demonstrate our algorithm on one voxel in parallel 

with our explanation of the a.lgorithm. This voxel comes from a bottle of water and is known 

to  have Tz = 25 ms. Its phase measurements are shown in figure 5.8 and its magnitude 

mea,surements are shown in figure 5.9. 

5.7.1 Phase-corrected real estimation of T2 data 

We begin with 32 echoes, and split them into odd and even echoes which will be treated 

sepamtely since their 4 parameters come from different processes. Given that  we have 16 

echoes in the odd and even groups a.t each voxel in our data, we do not need to  use a 

local model that  imposes any sort of regularity between neighbouring voxels. Instead we 

will impose a local model on the odd and even echoes a t  each voxel that  assumes the 4 
parameter varies linearly with echo number. We begin by estimating the slope of 4 with 

respect to echo number for the odd and even echoes using the method presented by Ahn 

and Cho [2]. Following their example, we then correct for this 1inea.r shift across the echoes 

a t  each voxel. The odd a.nd even phase data  of our experimental voxel is shown after the 
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Figure 5.9: Magnitude of echo series in water sample. Magnitude is plotted on the y-a.xis 
and echo number advances from left to  right. Early echoes have magnitudes greater than 
100 and so are not plotted to  preserve scale. Note the decay due to T2 weighting and the 
positive bias in the later echoes due to  Rician noise. 

linear correction in figure 5.10. 

As the example in figure 5.10 shows, once the linear correction is performed we are 

rela.tively confident that one q5 is fixed a t  any given voxel for all of its odd echoes and 

similarly for the even echoes. We can then apply our local model of constant phase that  

we outlined in the last section to the odd and even echoes independently a,nd compute the 

MLE of all the elements in the odd and even echoes series of the voxel. Given that  the local 

model applied to all odd or even echos a t  a voxel is the same, we can perform simultaneous 

estimation treating the ma.gnitude of all odd or even echoes in the voxel as the parameter 

of interest. We note that this is different from our previous use of local models to enforce 

spatial regularity in which the local model could only be used to  estimate the voxel of 

interest. 

Ha.ving independently estimated the parameters of the odd a.nd even echoes in a voxel, 

we interleave the estimates to  produce an estimate of the complete echo series. However, 

we note that  the MLE for this model still does not allow us to  chose the orientation of 

our echoes a.utoma.tically. We address this problem by aligning our odd-echo estimates a t  

each voxel to minimize its 2-norm with the complex measurement of the first echo and our 

even-echo estimates t o  minimize the 2-norm with the second echo. We choose the first echo 

a.nd second echoes as our targets for alignment beca.use they are guaranteed to be the odd 

and even echos with the highest value of s and should be completely uncorrelated with noise 

in later echoes. The phase of our sample voxel after this orientation correction can be seen 
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Figure 5.10: Phases of odd (left) and even (right) echo series in wa.ter sample after linear 
phase correction. Phase is plotted on the y-axis and echo number a.dvances from left to right 
in ea.ch plot. The early echoes now clearly show the underlying constant value of 4. As in 
figure 5.8, later echoes are corrupted with substantial amounts of noise and so the consta.nt 
value is obscured. 

Figure 5.11: Phases of odd (left) and even (right) echo series in water sa.mple after complete 
phase correction. Phase is plotted on the y-=is and echo number advances from left to right 
in each plot. The phases of the ea.rly echoes are now a,pproximately zero, with deviation 
from zero increasing due to increased noise in la.ter echoes. 

in figure 5.11. Our phase-corrected estimate of s at  each echo is shown in figure 5.12. We 

ca.n see in figure 5.12 that our estimates are now far closer to unbiased than the magnitude 

echo series, even as the true value of s becomes zero in the later echoes (see later echoes of 

figure 5.9 for comparison). 

5.7.2 Discussion of results 

The ability of phase-corrected real reconstruction to produce unbiased echo trains in T2 data 

is depicted in figure 5.12. Although we will not plot other echo series here, it is the case 

that all other exploratory plots we made from the estimated echo series in voxels with short 

relaxation times demonstrated the same unbiased property in later echoes. This result is 
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Figure 5.12: Phase-corrected estimates of s at each echo in water sample. Estimate of s 
is plotted on the y-axis and echo number advances from left to  right. Early echoes have 
phase-corrected estimates grea,ter t,han 100 and so are not plotted t,o preserve scale. Note 
that  the later echoes now have mean zero and so are unbiased. 

significa.nt in that  severa.1 pa.pers on T2 curve fitting have focused on dealing with bias during 

data  ana.lysis [70], or justifying why the bias can be ignored [15]. By providing unbiased, 

Gaussian-distributed estimates of the echo magnitudes we can avoid the necessity of either 

of the previous approaches. 

Interestingly, further inspection of the data  highlights some properties that  suggest fur- 

ther improvements t o  our model are possible. The differences between the phase of the 

even and odd echoes, hypothesized t o  be completely independent, looks t o  be quite close to  

.rr in figure 5.10. Additionally, there appears to be some correlation between the even and 

odd neighbouring echoes in figure 5.12. These correlations indicate that there is likely some 

underlying parameter driving both the even and odd echoes phases, and that  specifica.tion 

of this model can further improve the results using our general approach. 

Further work on applimtions of this da ta  to problems using T2 measurements will be 

necessary in order to  meaningfully quantify any improvement that comes from this type of 

method. Additionally, we have used a very simple model to perform these estimates. A 

more complicated estimator could factor the T2 para.meter explicitly into the model or take 

a.dvantage of simila.rities in 4 between neighbouring voxels and not just within echo series. 

However, despite the preliminary nature of these results in terms of their use in T2 based 

problems, we view these estimates as further evidence that  our approach to phase-corrected 

real estimation can produce improvements in MRI da.ta. 
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5.8 Summary 

We began this cha.pter with a discussion of the various forms of regularization that  are com- 

monly a.pplied in image estimation. We then surveyed the various ways in which regularizing 

estima.tors have arisen in the context of h4RI. We focused particularly on the problems in 

which estimation of the phase parameter 4 is important. Having considered the previous 

work, we described our intuition about how to separate the phase-corrected real estimation 

problem from the phase unwrapping problem. We suggest that  fitting global models t o  the 

da,ta forces us to solve the phase unwrapping problem in pa,rallel with the phase-corrected 

real estimation problem. Since we are only interested in the latter, we should derive an 

estimator that eschews global modeling. 

Following this intuition, we used tjhe point estima.tion theory and models we presented 

in chapter 4 to derive a novel phase-corrected real image estimator using independent local 

models a t  every voxel. This is followed with some experiments demonstrating the feasibility 

of the algorithm we have derived conipa.red to existing algorithms. Finally, we conclude 

the cha.pter by a.pplying the  same genera.1 estimation methodology t o  Tz echo series and 

demonstrate the resulting unbiased estimates of the signal parameters. These experiments 

suggest that  promising phase-corrected real estimators can be derived using local models 

and point estimation. 
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Conclusions 

6.1 Summary of Contributions 

The research program explored in this thesis has produced three major contributions. First, 

we have demonstrated a method for using high-field MRI data  and a model of the MRI signal 

to  evaluate MR image estimators using 2-AFC experiments. Second, we have rephrased 

the independent MRI estimation problem in terms of the statistical literature on point 

estima.tion in models with nuisance parameters, highlighting the rich theory on this problem 

produced by statisticians. Third, we have used point estimation theory and local models 

a t  ea.ch voxel to  produce a novel phase-corrected real estimator which avoids the phase 

unwrapping problem. 

Although there has been previous work using task-based quality measures to evaluate 

image quality in other medical modalities, t o  the best of our knowledge our work is the first 

a.pplica.tion of this a,pproa.ch to the evaluation of MR images. Previous approaches have 

focused on 2-norm error measures or task-free perception-based quality measures. However, 

none of the previous work has presented a method t o  produce synthetic MRI ima,ges for 

experiments, making it difficult for researchers developing e~t ima~tors  to evaluate these algo- 

rithms. Our work has combined our understanding of the MRI signal's characteristics with 

the previous work on image quality in other modalities to demonstrate a viable method for 

evaluating MRI estimators using task-based experiments. Using this work, we have pro- 

vided empirical corrobora.tion for the previous theoretical assertions that  phase-corrected 

real images could improve viewers' ability to  detect signal in dim regions of MR images. 

We have shown tha.t, despite the range of publications deriving independent estima.tors 
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for the true magnitude parameter s, very few of t,hese approaches are based on the methods of 

inference developed by statisticians. Additionally, in the cases where the MLE has previously 

been applied to  MRI data, i t  has almost always been applied to  a reduced model that 

does not fully describe the true properties of the signal. We have demonstrated that  the 

estima.tion of s from MRI measurements can be addressed using point estimation theory 

a.pplied to  the full model of the MFU signal. Using these methods we have derived two novel 

estimators a.nd rela.ted severa.1 existing estimators to  the point estimation theory. In doing 

this we have demonstrated that the model reductions employed by previous authors are 

both unnecessary and, further, incorrect under the logic of frequentist statistical inference. 

However, none of the independent estimators that  we considered performed like a phase- 

corrected real reconstruction. Thus, we explored a.pplication of the point estimation theory 

in such a way as to enforce local regularity but not perform phase unwrapping. We pro- 

posed the application of independently applying regularity-enforcing local models a t  each 

voxel and then performing point estimation using the MLE. The result of this method is a 

novel form of the twestep phase-corrected real reconstruction algorithm formulation seen 

in several previously published variations. Applying our result to empirical data, we find 

tha.t our method is con~petitive with several of the alternative approaches published previ- 

ously. Additionally, we show how the basic intuition of our method can be applied to the 

estimation of T2 echo series. Considering these two results together, we suggest that  our 

introduction of point-estimation theory and independent application of regularity-enforcing 

local n~odels as a method for deriving phase-corrected real estimators is promising. This 

method suggests a general framework that  can be expanded upon to derive phase-corrected 

real estima.tors for a wider variety of IVIRI estimation problems. 

6.2 Future Work 

Much of the work in this thesis has involved relating different areas of research to  suggest 

new methods for problems in MR da ta  analysis. The  a.pproa.ches that  we have proposed 

suggest a, variety of possible avenues for future research. We outline some of these ideas 

below, grouping them into the major components of our research program. 
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6.2.1 Task-based image estimator quality experiments 

While the results of our task-based estimator evalua.tion experiments convinced us tha.t pro- 

ceeding with phase-corrected real estimation was a useful course of a.ction, there are several 

factors in the experiments that could be improved upon in future studies. Perhaps most 

importantly, we would like to  improve the experimental interface so that  users can a,djust 

image contrast and brightness in realtime the same way ra.diologists do when viewing im- 

ages. The adjustments to  contrast and brightness essentially allow the users to explore a 

limited range of image estimators based on the estimator applied to  the original measure- 

ments. This explora,tion could affect how successful users are a t  locating objects in images 

and so we feel that  any future experiments should include this feature. 

In broa.der terms, the widespread adoption of these sorts of experiments by researchers 

investigating estimators requires that  software tools be ma.de available to  reduce the large 

amount of labour required. In particular, we feel that  a tool to assist investigators in 

producing test images using their own experimental estimators would be of great use. There 

are several groups currently working on providing experimental workstations for displaying 

images and collecting data  as we have done in our experiment, but as of yet there is no 

easy way for a researcher to easily generate sufficient examples to run these experiments. 

Further, standard implementations of the model observers would likely encoumge more 

researchers to  publish results compa,ring them with human performance, and thus enhance 

our understanding of how these models ca.n be used to evalua.te image quality. 

6.2.2 Independent estimators 

Although we found that  none of our estimators approxima.ted the performance of the phase- 

corrected real estimator, this does not necessarily mean that  they are not an improvement 

over using magnitude images. We feel that  the maximum Bartlett-corrected profile like- 

lihood a.nd the maximum adjusted profile likelihood estima.tes a.re worth evaluating using 

task-based experiments due to  their ease of practical implementation and their substantially 

different behaviours compa,red to  the magnitude estimator currently used. 

Of course, the estimators we have derived are by no means the exhaustion of all the 

possible statistical theories for dealing with nuisance parameters. Although we have pre- 

sented what we feel are in most common approaches to the problem, there are likely many 

more estima.tors that can be derived by applying tools from the statistics literature to  our 
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problem. Additionally, we ha.ve not explored whether Bayesian reasoning about the problem 

would suggest different approaches, beyond noting that  the IMLE and maximum marginal 

likelihood estimator both have equivalent formula.tions in Ba.yesian inference. 

Finally, a. very interesting problem tha.t arises from estimation is how t o  display inference 

producing confidence intervals a t  each voxel. In almost all frequentist estimation problems, 

confidence intervals are preferred to  point estima.tes as methods of summarizing the result 

of inference. While confidence intervals can be calculated for our parameter of interest a t  

each voxel, it is not clear how to display these intervals in a meaningful way to radiologists. 

Improving the visualization of the uncertainty in estimated medical images seems like a 

potentially fruitful problem, particularly in modalities like low-field MRI where there is a 

substantial amount of uncertainty in the estimate. 

6.2.3 Phase-corrected real estimation 

There are several natural routes for further development of the phase-corrected real esti- 

mator we have developed. The two that  are likely to  have the largest improvement on the 

quality of the output are locally linear phase models and improved orientation correction. 

Idodifying the local model to assume locally linear phase variation instead of locally 

constant would likely provide significant quality improvements as the size of the neighbour- 

hoods used for inference could be substantially expanded. Noting that  a linear phase shift 

in the spa.tia1 domain is equivalent to a coordina,te shift in the Fourier domain, and that  a 

real-valued signal should ha.ve a symmetric representation in the Fourier domain, there may 

well be efficient solutions to this local model's estimation problem if we express our P D F  in 

the Fourier domain [16]. 

Currently the orientation correction step is the bottleneck in our algorithm. If we are only 

interested in the magnitude of the real channel, and thus are indifferent to  the orientakion 

of the estima.te, our algorithm is very fast - on the order of seconds per slice - and 

impressively robust across a wide variety of test images. However, our iterative orientation 

correction step can run for many itemtions, taking several minutes per slice, if we require 

tha.t the orientation be recovered as well. This is also the step least based in the sta,tistical 

theory we ha.ve used to justify the other components of the algorithm. One interesting 

approach to this problem was suggested by Chang and Xiang [19]: work on the squared 

complex image and then divide the resulting estimate of 4 by two a.t every voxel. This 

approa.ch is feasible when a polynomial is used to express the value of 4, since the division 
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by two occurs before the estima.te is wra.pped onto (-T,  x). However, since our algorithm has 

only an angular estima,te of 4, division by two is not meaningful and so their idea cannot be 

transported to our algorithm directly. Rega.rdless, providing a better solution to this aspect 

of our estimation algorithm would be a. useful improvement to our current proposal. 
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