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Abstract 

Sampling from a distribution is an active problem in statistics. When the distribution is 

easy to sample from, methods like Monte Carlo are applicable. But when the distribution is 

complex, of non-standard form or multivariate, more complicated algorithins are required. 

The well-known Markov Chain Monte Carlo method using the Metropolis-Hastings (MH) 

algorithm can perform very well to sample the complicated distributions in many situations. 

But it has the drawback of being sensitive to the scale of the proposal distribution used. 

Recently, some algorithms have been introduced in the literature to avoid some of the 

problems of the MH algorithm. These include Graves method, Sliced sampling. and Equi- 

energy sampling. In this project, a simulation study is done to compare the performance of 

these algorithms under various settings of their tuning parameters when applied to various 

types of distributions. 

Keywords: Bayesian Methods; Robust Parameter Design; Sampling; Stationary distribu- 

t ion 

Subject Terms: Sampling; Monte Carlo Method; Regression analysis; Experimental design 
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Chapter 1 

Introduction 

Sampling from a distribution is an active statistical problem. The Metropolis-Hastings 

(MH) algorithm has been given a lot of attention as a method of solving this sampling 

problem. It has the advantage of being able to deal with distributions that are complex, 

of non-standard form, and/or multivariate. But there are some problems in the application 

of the MH algorithm. For example, the algorithm can yield sample histograms that are 

very different from the true distribution if the tuning parameter, the stepwidth, is not 

well-chosen, especially when the true distribution is multi-modal. In recent years, some 

new methods have been introduced to try to avoid some of the problems that the MH 

algorithm encounters. These include "slice sampling" (Neal, 2003), and the Equi-energy 

(EE) sampling algorithm (Kou, Zhou, and Wong, 2006). In this project, we will consider 

these new methods, along with the MH algorithm, and compare their performances via 

sinlulation. 

One main application of these methods is in drawing from the posterior distribution in 

a Bayesian framework. Thus, for motivational purposes, we will briefly outline Bayesian 

analysis so as to place the main contributions in this project within a broader framework. 

Let 8 = (el, ..., OP)' denote a vector of unknown parameters in the distribution of y = 

(yl, ..., y,) ' ,  denoted f(yl8). In a Bayesian framework, parameters 8 are considered to be 

random variables with distribution g(8). This is termed the prior distribution and represents 

a priori beliefs concerning the parameters, before data collection. As such, f (y(f3) becomes 

the likelihood given 8. Then via Bayes' Rule, the posterior distribution of 8 is 
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The posterior distribution is interpreted to represent updated beliefs about 8 after data 

collection, and is used for inference about 8 .  

Estimation of 8 is often done via examining various quantities based on the posterior 

distribution. For example, a common point estimate of a function h(8) is its posterior mean, 

In practice, these integrals are often intractable and are evaluated numerically using Monte 

Carlo techniques. That is, let d l ) ,  . . . , 8(N) be a large number of draws from r(81 y);  then 

Such posterior draws can also be used to examine other properties of the posterior distri- 

bution of 8 .  For example, one can construct credible intervals or various percentiles. 

In simple cases, such as when one can directly sample from the distribution, Monte Carlo 

methods can work well. However, if the posterior distribution is complex or of non-standard 

form, more sophisticated methods are required. For example, sometimes J f (yJB)g(B)dO is 

hard to calculate, which makes r(81 y)  have a complicated form, because 

This can essentially imply that we only know r ( 8 J y )  is proportional to f (ylO)g(O), a non- 

standard form. One such method for sampling from complicated forms is the Metropolis- 

Hastings (MH) Algorithm. I t  was developed by Metropolis, Rosenbluth, Rosenbluth, Teller, 

and Teller (1953), and subsequently generalized by Hastings (1970). 

The MH algorithm was the first of the well known Markov Chain Monte Carlo (MCMC) 

methods. These methods have been actively applied in combination with Bayesian analysis. 

MCMC methods work as follows. Suppose we can generate a sequence of {do), d l ) ,  8(2)? . . .) 

such that, a t  each iteration i 2 0, the next state di+') is sampled from a distribution 

~ ( 8 ( ~ + ' ) l 8 ( ~ ) )  which depends only on the current state of the chain, 8( i ) ,  i.e. it is a Markov 

chain. As i increases, the chain will gradually "forget" its initial state 8(') and converge to a 

stationary distribution P (8 (y ) ,  which does not depend on i or d o ) .  A properly constructed 

chain will have stationary distribution ~ ( 8 )  y). After a sufficiently large number of bum-in 

(say B) iterations, points {di) : i = B + 1,. . . , n)  will be samples (approximately) from 
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~(81  y) .  Thus, if {dl), d 2 ) , .  . . dN)) are draws generated by such a chain, the post,erior 

mean of the function h(8) can be estimated as 

Given a previous point, di), the MH algorithm generates a new candidate point e* from 

a proposal distribution q(e*, di) ) which is a conditional distribution given di) . For example, 

assume the unknown parameter is a and the proposal distribution is a uniform distribution. 

Then the candidate point a* is generated from a ~ n i  f (di) - W, CJ(') + W7), where W is a 

constant typically called the "stepwidth". That is, q(a*, a(')) = ( 2 W 7 ) ~ 1 ~ ~ , ~ i ~ ~ w ~ o . < o ~ 2 ~ + w , l ,  - - 

where I[.] is the indicator function. The candidate point is accepted with some user-specified 

probability a, 

~ ( e *  ly)q(e*, 
a = a(@), e*) = min 

T(e(i) 1 y)q(e(i), e*) , I] 
The reason that the MH algorithin can deal with non-standard distributions lies in a .  

Since the ratio of ~ ( e *  1 y )  and . r r ( ~ ( ~ )  1 y )  is not affected even when ~ ( 8 1  y )  is of non-standard 

form, say f (Y le)de), 

and thus a does not depend on the possibly difficult to obtain f (y)  = f (yle)g(B)de. 

Another well-known MCMC method is the Gibbs sampler. It was originally developed 

by Geman and Geman (1984), and was popularized by Casella and George (1992). Later 

this algorithm was shown to be a special caye of the MH algorithm (R,obert and Casella 

(1999)). 

The Gibbs sampler requires the full conditional distribution of each element of 8 to be 

calculated. That is, the distribution of Oj  given all other elements of 8 = (el, . . . , Op)', for 

each j .  The simulation starts from an initial value d o ) .  Given the i-th draw, di), the 

next draw is generated by simulating each element of 8 in turn from their full conditional 

distribution, 
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The simulation stops when sufficient samples have been collected. 

Therefore, if we can calculate the full conditional distribution of each element of 8, and 

it has a form that can be directly sampled from, the Gibbs sampler is a viable strategy. 

However, if the full conditional distributions are difficult to calculate, or even if such is 

possible, they have a complex form rather than being a well-known distribution, other 

sampling strategies, such as the MH algorithm, are needed. 

In Chapter 2 of this project, we use an example to demonstrate the MH algorithm 

and highlight problen~s it can encounter. Then some more recent methods that have been 

introduced in the literature to avoid some of these problems are introduced. A sinlulation 

study to compare the various methods is performed in Chapter 3. Further exploration 

on some interesting cases discovered in the sinlulation study are discussed in Chapt,er 4. 

Chapter 5 summarizes the work and discusses recon~nlendations. 



Chapter 2 

The Algorithms 

2.1 Metropolis Hastings Algorithm 

In the previous Chapter, we briefly introduced the MH algorithm in a Bayesian framework. 

The MH algorithm has been frequently used to sample complex distributions in a broader 

context. Here we describe the algorithm in detail in a general form. Application to Ba-vesian 

analysis remains an important special case. 

Assunle the target distribution is ~ ( x ) .  Given the previous point x ( ~ ) ,  a candidate point 

x* is generated from a proposal distribution q(x* ,  x( ' ) ) .  The MH algorithm is summarized 

as follows. 

The Metropolis-Hastings Algorithm. 

Step 1. Start from an initial value x('). 

Step 2. Generate a proposal x* from some proposal distribution qjx*, ~ ( ~ 1 ) .  

Step 4. With probability a(x ( ' ) ,  x * ) ,  let x('+') = x*.  Otherwise, let x(*l) = x(') .  

Step 5. Repeat Steps 2-4 until a sufficiently large sample is collected. 
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Figure 2.1: Positions of the mean vectors 

The MH algorithm is an implementation of MCMC. The transition probability from the 

previous state to the next state is ~ ( x ( ~ + ' ) J x ( ~ ) )  = q ( ~ ( ~ + ' ) ,  ~ ( ~ ) ) a ( x ( ~ ) ,  x('+')). It satisfies 

the reversibility condition 

that assures the samples converge to a stationary distribution equal to ~ ( x ) .  For discussion 

see Chib and Greenberg (1995). 

Various densities can be chosen as the proposal distribution. One common family is a 

rmdorn  u d k  where the candidate x*  equals x ( ~ )  plus noise. The uniform distribution is such 

a con~n~only used choice. For example, each component x:+') of x('+') is independently 
( .  generated from a ~ n i  f (r,') - W, T:) + M,') centered at 2:); where W is a constant, and 

(4 xi is the corresponding conlponent of the previous state x (~) ) .  Thus, T* = di) + ; where 

z - U n i  f (-W, W). One characteristic of the uniform distribution being the proposal 

distribution is, since it is symmetric, q(x*, x ( ~ ) )  = q ( ~ ( ~ ) ,  x*) and cancel in a(x( ' ) ,  x*), 

yielding 

a(xi i ) ,  x*) = min [m, 7r(x(i)) I] . 

In addition to choosing the fanlily of proposal distributions, the choice of the spread 

of the specific proposal distribution used is very important. The choice of spread (or the 

stepwidths) of the proposal distribution will greatly impact the performance of the MH 

algorithm. We use the following example to explain. 
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Example 1. Assume the target distribution we want to sample from is a mixture of spherical 

bivariate normal distributions. 

where x = (z l ,  z2)', m. = 5 is the number of bivariate normal distributions, or = 0.5 is 

the common st,andard deviation for each element of the I-th bivariate normal distribution, 

W/ = 115 are the weights assigned to each distribution, and pl = (plr, pzr)' are the mean 

vectors. Five mean vectors are positioned as a cross (see the Figure 2.1). Along the cross, 

the distance between two mean vectors is 3. The simulation starts from the initial point 

x(O) = (-3, -3)'. 

In the implementation of the MH algorithm we use a uniform distribution centered at 

the current x as the proposal distribution, i.e. 

where 
(4 - 1 

qo(xJ7 xJ 1 - ~ I [ T ~ z ) - K , 5 x ; 5 x ~ z ) + K , l  for j = 1,2, 

and 141, the step-width, is set to three different values, 0.1, 3 and 10. For each stepwidth, 

the MH algorithnl is run for 30000 iterations. 

For each stepwidth, we let the sinlulation run 200, 400, . . - , 30000, iterations and record 

the estimated mean of XI and x2 (over each subsequent group of 200 iterations) versus the 

number of iterations. When the estimated mean becomes stable over iterations, that is the 

estimated mean change in a stable range, it corresponding iteration would typically be used 

as the approximate burn-in period. The histogram of the generated points are plotted to 

compare with the known marginal distributions. Figures 2.2-2.4 are the "variate mean vs. 

iteration" plots and "histogram" plots corresponding to step-widths W = 0.1, W = 3, and 

W = 10, respectively. 

Viewing the histograms for step-width W = 0.1 (Figure 2.2), we see that the algorithm 

has a difficult time migrating from one hump to another. Viewing the "variate mean vs. 

iteration" plots, we see that the the mean of 21 or z:! stay in -3 for a period of time, then 

change drainaticly to 0, which sliows the sampling move from one hump to another. 

Viewing the histograms for step-width R' = 3 (Figure 2.3), we see that the algorithm 

no longer has the difficulties observed for the smaller TV, and seems to fit the marginal 
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Figure 2.2: W=0.1 

(a,) varia.te mean vs. iteration (b) x l  histogram (c) x2 histogram 

= e,, 
n , ,  , , , , I 

(a) varia.te mean vs. iteration (b) x l  histogram (c) x2 histogram 

Figure 2.4: W=10 

(a.) varia.te mean vs. iteration (b) x l  hist,ogram (c) x2 hist,ogram 
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distributions very well. In addition, viewing the "variate mean vs. iteration" plots, we see 

that the estimated means of XI and 2 2  quickly reached 0 and stayed in the stable vibration 

range. 

Viewing the histograms for stepwidth W = 10 (Figure 2.4), we see that the algorithm 

seems to fit the marginal distributions fairly well, but comparing to W = 3, the smoothness 

of the fit is worse. Viewing the "variate mean vs. iteration" plots, we see that, as with 

W = 3, the estimated means of XI and x2 also quickly reached 0 and stayed in some stable 

vibration range. Comparing with W = 3, the vibration range is bigger. For both W = 3 

and W = 10, the burn-in can be set less or around 2000. 

To see the reason that the algorithm's performance is impacted by choice of stepwidth, 

consider the acceptance pr~babilit~y of a candidate point x* given the previous point x('), 

a(x( ' ) ,  x*) = min [,"~11) - 11 

Imagine we sample the points near a mode. If ~ ( x * )  > T ( X ( ~ ) ) ,  a(x( ') ,  x*) = 1, which means 

the algorithm will always accept the candidate point. On the other hand, if ~ ( x * )  < T(x(')), 

the algorithm will accept the candidate point with probability u(x('), x*) = m. n(x*' SO when 

the stepwidth is large, it is more likely the candidate point, x* is far from x(') and thus more 

likely that Q(x (~ ) ,  x*) is very small, and more likely the candidate point will be rejected. 

This can explain why for W = lo2 the histograms have some big peaks for certain values 

because the algorithm got stuck there for some period of time. 

Decreasing the stepwidth may improve this situation. When the stepwidth is too 

small, the acceptance rate a(x( ') ,  x*) can be relatively big, then it is more likely to accept 

the candidate point. However, it can take much longer to sample all the possible values 

in the support of the distribution because only small jumps are possible. In some special 

~ituat~ions, such as multiple modes well separated from each other, when the sampling keeps 

happening in one mode, it's very difficult to sample a candidate point from the other mode 

because the small stepwidth limits the possibility, just as what we see in Figure 2.2. 

The acceptance rates (AR) for each stepwidth are listed in Table 2.1. AR for W = 0.1 

is extremely high (O.Y32), and AR for W = 10 is very low (0.093), which verifies the above 

discussion. 

This property of the MH algorithm has been recognized for a long time. Recently, new 

algorithms have been proposed to try to avoid some of these problems. We introduce three 

very recent ones in the following three sections. 
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Table 2.1: Acceptance rate for each scale 

Scale 0.1 3 10 
AR 0.932 0.194 0.039 

2.2 Automatic Step Size Selection in the Metropolis-Hastings 

Algorithm 

Although the MH algorithm is a powerful tool, its mentioned drawbacks can often create 

difficulties in implen~entation. We've seen via an example that the performance of the MH 

algorithm is sensitive to the choice of stepwidth. Graves (2005) proposes a method for 

automatically finding a judicious choice of step-width to use in the MH algorithm. Graves 

connects the problem of finding a desirable stepwidth with how to achieve a desirable ac- 

ceptance rate in the MH algorithm. Gelman, R.oberts, and Gilks (1995) give theoretical 

and simulation-based justification for acceptance rates of 15% to 50% yielding good perfor- 

mance of the MH algorithm. If so, the problem of achieving good performance of the MH 

algorithm by tuning the stepwidth reduces to obtaining a good acceptance rate by tuning 

the stepwidth. Graves (2005) e~npirically notes that the logit of the acceptance rate (A) is 

very nearly linear in the log of the stepwidth ( W )  , that is, 

where logit(y) = log(yl(1 - y)) and suggests that model (2.1) can be used to find a good 

stepwidth for the MH algorithm via the following method. 

Graves' Method. 

1. Divide the burn-in period into P sections each wit,h an equal number of iterations. 

For each of these use a different stepwidth. 

2. For each iteration record a 1 if the proposal is accepted and a 0 otherwise, and thus 

calculate the acceptance rate A for each step-width. 

3. Treat this as a dose-response experiment, with step-width taking on the role of dose 

and AR the role of response probability and fit the logistic regression model (2.1) to 

obtain iL and b. 
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4. Find the recommended step-width W* by solving the fitted model for a certain desired 

acceptance rate A* , that is, 

One key problem is how to choose a sequence of stepwidths to apply in the burn-in 

period. Graves suggests one way. The stepwidths are built in a geometric sequence with 

the common ratio of 2 around the initial guess of an optimal step-width, C.  So once an 

initial guess of the optimal stepwidth, C ,  and the number of different stepwidths, P, are 
P - 1  P - 3  

given, the sequence of step-widt hs is {C r 2 - 7 ,  C * 2 - F ,  - - - , C, - . - , C r 2 y, c r 2 y  } . 

Based on the above const,ruct,ion of a sequence of step-widt,hs, Graves (2005) performed 

simulations to: find an ideal logistic model; determine how accurat,e the initial guess of the 

optimal step-width needs to be; evaluate how many steps are needed and how many runs 

for each step are needed. 

Graves' simulation study assumes that the true relationship between acceptance rate 

and step-width is given by logit(A) = -5.7 - 1.12log(W) and the optimal stepwidth W 

is 0.01 (yielding A = 0.368). Three factors are used in this study. The init(ia1 guess of the 

optimal stepwidth, C, the number of the steps, P, and the number of iterations per step, 

M areset asfollows: C =  0 . 0 1 ~ 2 ~ , k  = {3,5,7,9,11,13,15}, P =  {3,5,7,9,11,13,15}, and 

M = (10, 20,30,40,50). For example, if C is 0.16, P is 5 and M is 20, then the sequence 

of the stepwidths is (0.04, 0.08, 0.16: 0.32, 0.64) and each of them is run for 20 iterations. 

For each combination of the three factors, a logistic model was built. For over 95% of 100 

simulated data sets, Graves' method yielded an acceptance rate falling between (0.25,0.45). 

Graves' main observations from his simulation study are as follows. If the initial guess 

of the optimal step-width is exactly right,, three steps and 40 trials per step are adequate. 

If the initial guess of the optimal stepwidth is not correct but too large, say t,oo large by a 

factor of two, several ways can make it equally efficient: 20 each at 9 or 11 levels, 30 each 

at 7 levels, or 40 at 5 levels. The general rule is, the number of the steps should be large 

enough so that at least two stepwidths smaller than the optimal are tried. If the initial 

guess of the optimal stepwidth is small, say too small by a factor or two or four, forty trials 

of each step are adequate. When the step-width is underestimated by a factor of eight or 

more, total sample sizes of 180, 220 and 280 respectively, and 20 or 40 per step size are 

equally effective. 
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2.3 Slice Sampling 

Neal (2003) introduces a new MCMC method called slice sampling. The idea comes from 

the observation that for a univariate distribution, to sample a random variable x from ~ ( x ) ,  

one can sample uniformly from the region under the curve of the density function and only 

look at the horizontal coordinate. This idea can be interpreted as  follows. Suppose we wish 

to sample from a distribution for a variable x. The density of z is proportional to some 

function f (x). An auxiliary variable y is introduced. A joint distribution over x and y that 

is defined over the region U = {(z? y) : 0 < y < f (x)) below the curve f (x) is 

l / z ,  if 0 < y < f (x ) ,  
P(X, Y)  = 

0, otherwise, 

where z = J f (x)dx. 

So to sample x, we can sample (x, y) jointl3j and then ignore y. The marginal densitmy 

for x, our target distribution, is 

For slice sampling, the Markov chain is constructed by repeatedly alternating between 

the following two sampling steps. Assume the current state is d o ) .  

Uniformly sample y on the vertical interval (0, f (x(O))). Call the sampled y, y*. See 

Figure 2.5. 

0 Uniformly sample x from the set {x : y* < f (x)) (termed a slice), depicted in Fig- 

ure 2.5 as the three horizontal lines with end-points [A, B], [C, Dl and [E, F]. 

The key point in slice sampling is how you can get "the horizontal interval" and sample 

froin it to make the Markov chain converge to the invariant distribution. That is, how does 

one quickly sample from the set of {x : y* < f (x))? Neal introduces some updating strate- 

gies. We will first introduce the slice sampling method we use for univariate distribution, 

and then consider the multivariate case. 
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Figure 2.5: Slice sampling 

2.3.1 Univariate slice sampling methods 

Assume f (x) is a function proportional to the target distribution. The current value of the 

variable is do) and the new state value is x('). Slice sampling on a univariate distribution 

proceeds as follows. 

Slice Sampling (Univariate). 

Step 1. Draw y U ( 0 ,  f (x(O))). Define a horizontal "slice", S = {z : y < f (x)),  and 

x(O) E S. 

Step 2. Find an interval I = (L, R) around x(O) which contains much or all of the slice 

(discussed subsequently). 

Step 3. Draw the point zl from the interval I (discussed subsequently). 

Step 4. Repeat 1 - 3. 

To make the Markov chain converge to the right invariant distribution, the correctness 

of the univariate slice sampling requires the new state x(') be chosen properly. This involves 

obt,aining a random interval I = (L, R) followed by selecting x(') from it. There are two 
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strategies introduced by Neal to find the interval I ;  the Stepping out procedure and the 

Doubhg procedure. We will only consider the simpler of these, the Stepping out procedure. 

The Stepping out procedure works as follows. Draw y U(0, f (do))) and define a slice 

as in step 1 of Slice Sampling. R.andomly position an initial interval of length E so that it 

contains the current state x(O). Repeatedly expand the interval on both ends, by increasing 

its length by E, until the ends satisfy y 2 f (L) and y 2 f (R)  or the interval reaches a 

randoinly determined maximum size. 

The Stepping out procedure in detail: 

Settings: Let E = estimate of the typical size of a slice and m be a parameter to control 

the maximum length of interval I  = (L, R). 

Step 1. Let L = x(O) - E * U1 and R = L + E, where U1 - Uni f (0, 1). 

Step 2. Let J = Floor(mU2) and K = ( m  - 1) - J, where U2 rn Unif (0 , l ) .  

Step 3. R.epeat while J > 0 and y < f (L) :  L = L - E, J = J -  1. 

Step 4. Repeat while K > 0 and y < f(R):  R = R+ E ,  K = K + 1. 

After an interval I  = (L, R) has been found, the next step is to randomly draw a new 

point x(') from this interval. 

One could repeatedly uniformly sample from the interval I  until a point that lies in 

G  = I n s  is found, but this can be inefficient when G  is a small portion of I .  Neal introduced 

one method called the Shrinhage procedure to avoid this problem. Sample uniformly from 

the initial interval I ;  if the point drawn is not in G;  shrink the interval; and repeat sampling 

from the new interval. 

Note. In some situations, the doubling procedure may be more efficient than the step- 

ping out procedure, because when the initial interval E is too small, the doubling procedure 

may expand the initial interval faster than the stepping out procedure. One main difference 

between the stepping out procedure and doubling procedure is, the interval I  found by the 

stepping out procedure ensures that the set G  that one should sample from is S  n I ,  while 

for the doubling procedure it may turn out the set G  one should sample from is only a part 

of S  n I .  This creates more complications if using the shrinkage procedure to sample a new 

point from the interval I  found by the doubling procedure. An extra test needs to be done 

on the new point to determine whether it is acceptable or not, i.e. whether it is in set G. 

More discussion can be found in Neal (2003). 
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2.3.2 Multivariate slice sampling methods 

Slice sampling from multivariate distributions can be extended from univariate slice sam- 

pling by applying it in each dinlension in turn. However, performing t,he st,epping out 

procedure or doubling procedure to search for the interval I in all p dimensions can be very 

time consuming. Instead one can directly sample from multiple dimensions. 

Assume x = (xl,  . . . , xp)' is a pdimensional variable whose density is proportional to 

f (x) .  Similar to the idea of using an interval I = (L, R) for the univariate case, one 

uses an axis-aligned hyper-rectangle H = {x : Lj < x j  < Rj  for j = 1, . . . , p) containing 
(0) the current point. Assume the current stfate is = (x, , . . . , xp)) ' ,  and the next state is 

x(l) = (xi1), . . . , x!))'. Multivariate slice sampling is implemented as follows. 

Slice sampling (Multivariate). 

Step 1. Draw y -- U(0, f (~( '1)) .  Define a slice to be S = {x : y < f (x)}. 

Step 2. Find a hyper-rectangle H = (L1, R1) x . - .  x (Lp, Ry) around z ( O )  which preferably 

contains at least a big part of the slice. 

Step 3. Draw the point x(l) from the part of the slice within this hyper-rectangle. 

Step 4. Repeat Steps 1 - 3. 

The ideal H is the smallest hyper-rectangle containing S.  But obtaining this is likely 

not feasible. If the variables have bounded ranges, H can be set to the whole space of the 

variables, but this can be very inefficient. So, in practice we have to be content with finding 

one hyper-rectangle that contains the current point x(O). The easy way to position the hyper- 

rectangle H is to use a common fixed scale parameter along each axis E = (El, . . . , Ep), 

where Ej = E ,  j = 1 , .  . . ,p. 

Step 1. Positioning H: Along each axis, j, let the left and right bound of the hyper- 

rectangle be denoted Lj and Rj,  respectively. H is positioned by letting Lj = 2:) - E r Uj 

and R:, = Lj + E, where Uj - Uni f ( 0 , l )  independent for j = 1, .  . . p. 

Step 2. Sample x(') from the rectangle H by shrinkage procedure applied to each dimension, 
(1) as follows Rlpeat while y > f(x(l)): x(') = Lj + Uj(Rj - Lj). If x:') < xy) ,  Lj = xi , 

3 
(1) otherwise, Rj  = x j  . 



C H A P T E R  2. T H E  ALGOR.ITHMS 

2.4 Equi-Energy Sampler Algorithm 

The Equi-Energy (EE) sampler is proposed in Kou, Zhou, and Wong (2006). To introduce 

it, we begin with some definitions from statistical mechanics. 

2.4.1 Problem in statistical mechanics 

The distribution of a system in thermal equilibrium at temperature T is described by the 

Boltzmann distribution, 

where h(z) is the energy function or 

tion, and Z(T) = Ex exp(-h(x)/T) 

function g(z) , its expectation pg (T) 

as the Boltzmann average, 

Hamiltonian associated with the Bolt zmann distribu- 

is referred to as the partition function. For any state 

with respect to the Boltzmann distribution is known 

To study the system, people are interested in estimating the Boltzmann averages pg(T) and 

the partition function Z(T).  

MCMC methods, for example Metropolis and MH algorithms, were applied to solve 

these problems, but they can perform poorly if the energy function has many local minima 

separated by high barriers that cannot be crossed by the proposed moves. In this situa- 

tion the chain will be trapped in local energy wells and will fail to sample the Boltzmann 

distribution correctly. To overcome this problem, some ideas have been proposed in the 

literature. For example! adding auxiliary variables as in group Ising updating in Swendsen 

and Wang (1987) or data-augmentation in Tanner and Wong (1987). However, these ideas 

are problem-specific and may not work for any given problem. 

Later, some dynamic Monte Carlo methods greatly improved the situation (Geyer (1991); 

Marinari and Parisi (1992) etc.). They were developed to simulate from the Boltzmann 

distribution at fixed temperatures. These methods can also be called temperature-domain 

methods. They aim to provide direct estimates of parameters such as Boltzma~m averages 

and partition functions that are functions of temperature. 
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The EE algorithm of Kou, Zhou, and Wong (2006) is based on energy domain consider- 

ation. Energy domain methods use the duality between temperature domain functions and 

energy domain functions. They obtain the density of states and microcanonical averages 

(both are energy-domain functions), and then are transferred to the temperature domain to 

obtain the partition and the Boltzmann averages. Details are in the following section. 

2 A.2  Equi-energy sampler algorithm 

Before discussing the EE algorithm, we first describe some notation related to this algorithm. 

Assume ~ ( x )  is the target distribution and h(x) is the corresponding energy function. Then 

~ ( x )  cx exp(-h(x)/T), which has a similar form as the Boltzmann distribution. 

To apply the EE sampler algorithm, a sequence of energy levels and the associated 

temperatures need to be set, 

where Ho is below the minimum energy Ho 5 inf, h(z) .  The EE sampler algorithm con- 

structs ( K  + 1) parallel chains. The target distribution for the k-th chain is rk (x )  m 

exp(-hk(z)/Tk), where hk(x) = n~ax{h(x), Hk}, k = 0,1, . . . , K. Each chain corresponds 

to one energy level and the associated temperature. Chain X[k] aims to sample from rk (z ) .  

Chain Xlol aims to sample from T"(.T) which is the target distribution ~ ( x ) .  This is because 

1 
no(,) cx exp(-- x rnax{h(x), Ho)), and To = 1, h(x) 2 Ho, 

To 

so that 

ro(x)  = 4 5 )  cx exp(-h(x)). 

Thus, the basic idea of the EE algorithm is as follows. The distribution of the higher level 

chain, for example chain X[k], is flattened by the energy function hk(x) and the associated 

temperature level Tk, which avoids the problem of local traps. Once the higher level chain 

is constructed, in the process of the construction of the lower level chain, the new point 

can "jump" to a new z with similar energy level (i.e. y = h(x)) to the current point with 

the help of the higher-level chain. We call this an Equi-energy jump (EE jump). That is, 

the new point is randomly chosen from similar energy sets from the higher-level chain. An 

EE jump helps to avoid the local traps of the lower-level chain. The last chain, X,ol, is 
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proved to have steady-state distribution TO = T in Kou, Zhou, and Wong (2006). We call 

the empirical equi-energy sets energy rings. 

To construct the energy rings, the state space 9 is partitioned according to the energy 
h' levels, 9 = Uj=o Dj,  where Dj  = {x : h(x) E [Hj, Hj+l]) for 0 5 j 5 K, are the energy 

sets determined by the energy sequence (2.4). For any x E 9, let I (x) denote the partition 

index such that I (x )  = j, if x E Dj, i.e. if h(x) E [Hj, Hj+l). 

The EE algorithm starts by constructing the highest level chain XI,], then moves on 

to the the lower level chains, and ends with the lowest level chain X l o 1  Each chain has its 
lkl own empirical energy rings so that D j  denotes the j-th energy ring of the k-t11 chain, for 

j = 0 , .  . . , K and k = 0, .  . . , K. The two basic types of move for generating a new point in 

the EE algorithm are: (i) an MH local move. (ii) an EE jump. The algorithm is described 

in the order of the chains being constructed. 

EE algorithm. 

Step 1. The first chain XI,] is constructed by the MH algorithm. After a burn-in period 
I h'l B ,  the generated points are assigned into different "energy rings" D j  where j = 

I(X{l,l,i)) and i denotes the i-th step of the chain. Note that the points can belong 

to any energy ring. 

Step 2. The second parallel chain XIh'-ll starts after the first chain XI,] has run ( B  + N) 

steps. Siinultaneously, the first chain still keeps running and its generated points are 

continually assigned into energy rings. The second chain is constructed either 

by an MH move or by an EE jump. The first point, X{l,-ll,l), is generated from 

an MH step. The point X{[,-ll,,+l), i 2 1, is also generated by an MH move, if the 

energy ring DY' of chain XI,] is empty, where j is the energy level of the current 

point X{I,-ll,z). When the energy ring DY' is not empty, the next point X{ls-ll,t+l) 

is generated via an MH local move with probability J, or through an EEjump with 

probability 1 - J .  If the EE-jump is implemented, a state x* is uniformly chosen from 

the energy ring DY], and the chosen T* is accepted as X{lh,-ll,,+l) with probability 

If x* is rejected, X~[,-ll.i+ll keeps the old value X{[h'-ll,i). 
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Similar to with the first chain: after an initial burn-in period of B steps, the generated 

points of the second chain are assigned into different "energy rings" D[.~-'] where 
3 

j = I(X{l,-ll,i)). Note by this time the first chain XIXI has run (2B + IV) steps. 

Step ( K  - z + 1). The ( K  - k + 1)-th parallel chain Xlk1 starts after chain X[k-l] has run 

(B + N) steps. All the previous chains are continually updated. The construction 

of chain X[k] is similar to that of the second chain XiK-ll. The point X{[k],i+l) is 

generated by an MH step when: (i) i = 0; (ii)  Djk") = I; (iii) with probability J if 

D'!+l1 # I ;  or by an EEjump with probability 1 - J when D:+'] # I .  rr* is chosen 
3 

from D?"] and the acceptance rate is 

min 1, 
~ k ( ~ * ) ~ k + l  (X{[k],i)) { ~k(x{[k],i))Tk+l(x*) 

where Ic = 0,1,.  . . , K .  After the initial period of B steps, the generated points are 

assigned into "energy rings" D:], where j = I(X{lkl,i)). 

Step ( K  + 1). The last chain XIol is constructed and has target distribut,ion ~ ( x ) .  

In the implementation of the EE algorithm, Kou, Zhou, and Wong (2006) suggest some 

practical settings for the parameters. Given the lowest and highest energy levels Ho and HK, 

t,he other energy levels can be set as a geometric progression, that is, setting log(Hj+1 - Hj) 

evenly spaced. Choosing the temperature such that (Hj+' - Hj)/Tj x 0, with 0 E [l, 51, 

often works well. The choice of K, the number of temperature and energy levels, depends 

on the complexity of the problem. Usually more chains and energy levels are needed if the 

target distribution is high-dimensional and mult,i-modal. The authors recommend K be 

chosen roughly proportional to the dimensionality of the target distribution. The EE jump 

probability J should be chosen between 0.05 and 0.30. We illustrate the EE algorithm via 

the following example. 

2.4.3 

9 ~ m e  A.. 

Example 

the target distribution is a mixture of univariate normal di~t~ributions, 
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Figure 2.6: EE energy levels 

(b) Energy function h(x) plot with the energy 
levels 

where m = 3 is the number of normal distributions, a1 = 0.5 is the common standard 

deviation of the 1-th normal distribution, wl are the weights assigned to each distribution, 

uil = 115, up2 = 315 and w3 = 115. And pl are the means, p1 = -3, p2 = 0 and ,u3 = 3. 

Set the number of energy levels to K = 2, constant 0 = 4 and the probability of an 

EE-jump to J = 0.2. The step-width of the MH algorithm is set to 2.6. The simulation 

starts from the initial point do) = -3. Since inf h(x) = 0.737, we set the lowest energy 

level Ho = 0. The highest energy level H3 is set as 100, that corresponds to f ( x )  = 

3.720076e - 44 which is almost 0. So the rest of the energy levels are set in a geometric 

progression. The energy level 1, HI, is set to inf h(x) + 3 = 3.74, and the energy level 2, 

H2 = H1 * ( H ~ I H ~ ) ~ ' ~ .  The temperature levels except To are set using the relationship with 

the energy level (Hj+1 - Hj)/Tj z 0, where 0 = 4 here. So, the temperature levels are 1, 

3.9 and 20.17. 

Figure 2.6(a) is a plot of the target distribution. Figure 2.6(b) is a plot of the energy 

function, h(x), with the energy levels Ho, HI, Hz and H3 depicted as horizontal dotted 

lines. Figure 2.7 gives histograms of the samples from the three chains in the EE algorithm 

together with the target distributions. Figure 2.7(a) is the first chain X12], which corresponds 

to the target distribution f2(x) C( exp(-hz(z)/Tz). Figure 2.7(b) is the second chain X,ll, 
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Figure 2.7: EE algorithm output 

(a) Chain XpI 

R.tmnrn d lhe 1.1 V.n.Ueol Chin XIi) Hi.lmnrn d h e  1.1 Vmi.ble d Chln X(O1 

(b) Chain XIIl  ( c )  Chain Xlol 

which corresponds to the target distribution fl (x) K exp(-hl (x)/Tl). Finally, Figure 2.7(c) 

is the last chain X["], which corresponds t,o the target distribution f (z). 



Chapter 3 

Screening Experiment 

3.1 Introduction 

In the previous chapter, we reviewed a number of sampling algorithms. In this chapter, 

a screening experiment will be performed to study and compare the algorithms and to 

explore the parameters that have a significant effect on the algorithm performance. In this 

screening experiment, we first define the parameters related to the target distribution and 

to the algorithms that we feel may impact the performance. Then we set the levels of these 

parameters. A 36-run experimental design is used in the simulation. The simulation is done 

repeatedly for each algorithm to get five replicates. A model selection procedure is applied 

to the average of the five replicate data to find the parameters that most affect the algorithm 

performance. 

After finding the important parameters, we try to choose the best settings of the algo- 

rithm parameters, to maximize the overall performance of each method. We will use robust 

parameter design to find the best or better settings of the parameters. 

The five algorithms considered in the sinlulation study are: 

MH algorithm. The MH algorithm with a uniform proposal distribution. 

Graves' method. This method models Acceptance Rate as a function of Step-width in the 

burn-in period of the MH algorithm, then uses the recommended stepwidth in the 

MH algorithm after the burn-in. 
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Slice sampling algorithm. Slice sampling (Multivariate) is used, since the target distri- 

bution is a bivariate distribution (see Section 3.2.1). 

EE-MH algorithm. The Equi-energy sampling algorithm with an MH algorithm local 

move. 

EE-Slice algorithm. The Equi-energy sampling algorithm with a Slice sampling local 

move. 

3.2 Factors and Levels 

Because the five algorithms do not all have the same tuning parameters, the experiment 

is carried out as five separate screening experiments. Below, we discuss all of the factors 

and levels included in the study, beginning with the target distributions (which are common 

to all five methods), and then move on to the algorithm-specific parameters. Each of the 

parameters discussed will be considered at two-levels or three-levels in the study. 

3.2.1 The target distribution parameters 

To form various possible distributional forms, we use a mixture of bivariate normal distri- 

butions f (x) (as in the example of Chapter 2), 

where 01 = 0.5 is the standard deviation for each component of each bivariate normal 

distribution, m is the number of bivariate normal distributions, uil are the weights assigned 

to each distribution, and pl = (pll ,  pzl)' are the mean vectors. The problem of generating 

different distributional shapes depends strongly on the number of mixture components, m, 

the relative locations of pl, and their weights,wl. The positions of the mean vectors are 

controlled by the distance, d l  between p1 along a cross shaped grid (termed grid spacing). 

Based on observations of the MH algorithm example in Chapter 2 and a number of 

related examples, we had some general idea of what shapes of distribution impacts the 

performance of the MH algorithm, as well as the performances of other algorithms. For 

example, distributions with several modes, very separated, partly connected, or barely sep- 

arated; distributions with modes that are of equal size, or a mixture of unequal sizes-one 
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single main peak surrounded by several small modes. So, by changing the values of the 

parameters m, U I ,  and d, we can control the modes of the distribution in terms of number, 

relative heights, and locations, thus generating distributions with varying desired aspects. 

We set m, the number of the bivariate normal distributions, at three levels; 3, 5, 7. Each 

level also represents a certain pattern of the mean vector positions as depicted in Figure 3.1: 

Figure 3.1: Positions of the bivariate distributions 

(a) m=3 (b) m=5 ( c )  m=7 

0 m = 3. Three mean vectors are along one line (pl, p2, p3) as in Figure 3.l(a). 

0 m = 5. The five mean vect,ors are positioned at the ends (pl, p2, p4, p5) and the 

center p3 of the cross as in Figure 3.l(b). 

0 m = 7. The two adjacent lines are at 60 degree angles to each other. The seven mean 

vectors are positioned at the ends (pl, p2 ,  p3, p5, ps, p7) and the center, p4, of the 

lines depicted in Figure 3.1 (c). 

The grid spacing, d, the distances between the mean vectors along the lines in Figure 3.1, 

are set at three different levels; 1, 3, 5. The reason for choosing these particular values is, 

with ai = 0.5, they produce modes that are barely separat,e; partly connected; and far 

apart,, respectively. The third parameter, weight w = ( w l ,  - - , w,)', is considered at two 

levels: wl = . . . = w ,  = l l m ,  making the modes equally sized; and w ( , + ~ ) / ~  = 2/m and 

wi = ( m  - 2)/[m(m - 1)] , i  = { I , . . .  , (m - 1)/2, (m + 3) /2 , - . .  ,m.), so as tto make one 

large central peak surrounded by smaller modes. Table 3.1 is a summary of the parameter 

settings related t,o the target distribution. 
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Table 3.1: Target distribution parameter settings 

Level 0 Level 1 Level 2 OA col 
Grid spacing (d) 1 3 5 2 
Normal dist. No. (m) 3 5 7 3 
Weight (w) . . . L m L(& m m-1' . . . ,2 ,  &, m-1 . . .)I 10 

3.2.2 Algorithm Parameter Settings 

In the screening experiment, the algorithms share three common tuning parameters: initial 

value (Vl, V2)', number of iterations (N) ,  and number of interactions in the burn-in period 

(B). In addition, each algorithm has its own specific parameters. We first introduce the 

parameter settings of the common algorithm parameters, and then the algorithm specific 

parameters for the algorithms in turn. A summary of the paranieter settings is given in 

Table 3.2. 

Common Algorithm Parameters 

The initial values (Vl, V2)' corresponding to the variate x = ( z l ,  z2)' are both set equal to 

V. They are considered at two levels; -d and 0 (the weighted mean of the mean vectors, 

ELl Wipij = 0, j = 1,2).  We consider the number of iterations, N ,  equal to 10000 and 

40000, since N = 10000 usually works well for the MH algorithm and slice sanlpling, but 

EE sampling needs a larger N. For similar reasons, we set the burn-in period B at, 500 and 

2000. 

Algorithm Specific Parameters 

MH algorithm 

Our implementation of the MH algorithm uses the uniform distribution to generate the 

candidate points for each variate. Let (Wl, Wr2)' denote the vector of the stepwidths of 

the proposal distribution for MH algorithm, where Wj, is the step-width of the uniform 

distribution for variate z j ,  j = 1,2. That is, the candidate point for variate is generated 
(k) (4 ('") is the through a uniform distribution, ~ n i  f (x ik )  - Wj, zj + Wj), j = 1.2, where (zl , z2 

current point (iteration k ) .  In our study we set W1 = W2 = W .  Since the grid spacing d is 

1, 3, and 5, we choose three values for W; 0.1, 2.6, and 5.1. In this way we consider cases 
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where the step-width is much smaller, similar to and much bigger than the grid spacing. 

We anticipate that a small step-width relative to grid spacing will impact the ability of the 

algorithm to adequately explore the support of the target distribution. 

Slice Sampling Algorithm 

The strategy of slice sampling a bivariate target distribution is sampling directly from 

multiple dimensions. Let (El, E2)' denote the vector of scale parameters to  position the 

hyper-rectangle H that contains the current point (zjk), z? ' )  We let El = E2 = E .  AS 

with the MH algorithm, E is set to  have the levels (0.1, 2.6, 5.1), to match the three levels 

of grid spacing. Thus E is playing a similar role for slice sampling as W does for MH. 

Graves' Method 

In the simulation study, we would like to see whether using model (2.1) will find a step- 

width that can improve the performance of the MH algorithm or not. We fit the model in 

t,he burn-in period of the MH algorithnl. A sequence of P stepwidths are constructed, and 

each stepwidth is run for B / P  iterations with their acceptance rates recorded. These step- 

widths and acceptance rates are used to  fit model (2.1). A step-width will be recommended 

through the model by an ideal acceptance rate, and then be applied in the MH algorithm 

after the burn-in period. 

Based on our observations, a reasonable step-width is around 1.5d. We want the sequence 

of step-widths to  cover this value, and also to cover some values that are smaller and bigger 

than this value. We thus construct the step-width sequence as follows: we consider the 

center stepwidth C at three levels, 1, 2, and 3, and P at two levels, 5 and 11, and generate 

a sequence of stepwidths (as suggested in Graves (2005)) by 

The last parameter for Graves' method is the ideal acceptance rate, A, which is used 

via inverting model (2.1) to find the recommended step-width. Graves suggests the ideal 

acceptance rate be between 0.25 and 0.45. We consider three levels; 0.2, 0.4, and 0.6. 

EE-MH Algorithm 

The EE-MH algorithm is the EE sampling algorithm with an MH sampling local move. 

It has five parameters: the number of energy levels (K), energy level 1 (HI), constant (0) 
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related to the energy and temperature levels, EE jump probability (J), and the step-width 

(W). 
The following parameter settings consider the authors' suggestions in the original EE 

sampling paper, Kou, Zhou, and Wong (2006). Based on preliminary investigations, we set 

K to two levels; 2 and 4. The energy and temperature levels are set as follows: assume the 

energy levels are Hi, i = 0, .  - .  , K + 1 and the temperature levels are Ti, i = 0, - .  . , K .  Since 

the lowest energy level Ho must be 5 inf, h,(z), and in our case inf, h(x) = inf,(- log( f (x))) 

is a small positive number, Ho is set to 0. The highest energy level, HKS1, which corresponds 

to f (z) close to 0, is set to 100. The rest of the energy levels are set in a geometric 

progression. So the starting point of the geometric progression H1 is needed to construct 

the sequence. Once the starting point of the geometric progression, HI,  is determined, the 

other energy levels can be set as 

We consider three levels of HI; inf, h(z) + 1, inf, h(z) + 3, and inf, h(x) + 5. With the energy 

levels set, the temperature levels can be obtained by T, = (Hi+l - Hi)/O, i = 1, . - . , K, 

where To = 1, and 0 is a constant suggested in Kou, Zhou, and Wong (2006) between 1 and 

5. We consider 0 at two levels; 2 and 4. The fourth parameter, J, is the probability of an 

EEjump, and is suggested in Kou, Zhou, and Wong (2006) to be set between 0.05 and 0.30. 

We consider three levels, 0.10, 0.20, and 0.30. For the final parameter, step-width (W) , we 

use the same values as in the MH algorithm. 

EE-Slice Algorithm 

The EE-Slice algorithm is the EE sampling algorithm with a Slice sampling local move. 

It has five parameters: the number of energy levels (K), energy level 1 (HI) ,  constant 

(0) related to the energy and temperature levels, EE-jump probability (J), and the scale 

estimate (E).  The first four parameters are considered at the same levels as those in E E  

MH algorithm, and the scale parameter, E, is considered at the same levels as in the Slice 

sampling algorithm. 
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Table 3.2: Algorithm parameter settings 

Common algorithm parameters 
Level 0 Level 1 Level 2 OA col 

Initial value (V) -d 0 11 
Iteration No. (N) 10000 40000 12 
Burn-in (B) 500 2000 13 

Algorithm specific parameters 
Level 0 Level 1 Level 2 OA col 

MH Step-width (W)  0.1 2.6 5.1 4 
Graves' No. of points (P) 5 11 14 

Initial guess of the optimal 1 2 3 5 
stepwidth (C) 
Accept,ance rate (A) 0.2 0.4 0.6 6 

Slice Scale paraineter (E) 0.1 2.6 5.1 4 
EE-MH Step-width (W)  0.1 2.6 5.1 4 

Energy level No. (A') 2 4 14 
E E  jump prob. ( J )  0.1 0.2 0.3 5 
Energy level 1 (HI)  1 3 5 6 
Constant ( 0 )  2 4 15 

EE-Slice Scale parameter (E) 0.1 2.6 5.1 4 
Energy level No. (K) 2 4 14 
EE jump prob.(J) 0.1 0.2 0.3 5 
Energy level 1 (HI)  1 3 5 6 
Constant ( 0 )  2 4 15 
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3.3 Screening Experiment 

3.3.1 Design matrix 

We use the 36-run orthogonal array (OA) in Zhang, Pang, and Wang (2001) as the basis 

for the design matrices for our screening experiments. This is a 6l x 38 x 21•‹ design (see 

Table 3.3). That is, it has one 6-level columns, 8 3-level columns and 10 2-level columns. 

From the summary of the five algorithms, we see that the MH and Slice sampling algorithms 

have 3 three-level factors and 4 two-level factors, Graves' method has 4 three-level factors 

and 5 twelevel factors, while both the EE-MH and EESlice algorithms have 5 three-level 

factors and 6 two-level factors. So for each algorithm we pick out certain columns from the 

base OA, and use them as the settings of the parameters of that algorithm. We run five 

independent experiments, one for each algorithm. For the common parameters, including 

the distribution parameters and the common algorithm parameters, all of the algorithins 

use the same settings. The settings of the distribution parameters d, m and w are done via 

columns 2, 3 and 10, respectively. The settings of the common algorithm paraineters V,  

N and B are done via columns 11, 12 and 13, respectively. The settings of the algorithm 

specific parameters are as follows: The stepwidth of MH and the scale parameter of Slice 

sampling are set using column 4. For Graves' method, the number of points, P, the initial 

guess of the optimal step-width, C,  and the acceptance rate, A, are set using columns 14, 

5 and 6, respectively. For the two EE algorithms, the number of energy levels, K ,  the 

EEjump probability, J, energy level 1, H I ,  and constant, 0, are set using columns 14, 5, 6, 

and 15,respectively. The stepwidth and the scale parameter of the EE algorithms are set 

using column 4. The above information is sumnmrized in Tables 3.1 and 3.2. The design 

matrix of each algorithm is given in Appendix A, the first column of y-responses in Tables 

A.l-A.5. 

3.3.2 Response to measure the goodness of fit 

For each algorithm, a 36-run simulation is carried out. Each run of the simulation is one ap- 

plication of the parameter settings of the algorithm based on the algorithm's corresponding 

design matrix. The output of each run from one algorithm is a sample that is purportedly 

from the target distribution. An appropriate goodness-of-fit measure is needed to evaluate 



C H A P T E R  3. SCREENING EXPERIMENT 

Table 3.3: Orthogonal Array OA 

col 1 2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 
1 0 1 1 2 2 1 1 2 2 0  0  0  0  0  0  0  0  0  0  
2  1 1 1 2 2 2 2 1 1  1 1  0  0  0  1 0  1 0  1 
3  1 2 2 1 1 1 1 2 2  0  0  1 1  1 1  0  0  0  1 
4  0 2 2 1 1 2 2 1 1  1 1  1 1  0  1 0  0  1 0  
5  4 1 2 1 2 2 0 2 0 0  0  1 0  0  1 1  1 1  1  
6  5 1 2 1 2 0 2 0 2  1 0  0  1 0  0  1 0  1 1  
7  5 2 1 2 1 2 0 2 0 0  1 0  0 1 1  1 0  1 0  
8  4 2 1 2 1 0 2 0 2  1 1  1 0  1 0  1 0  0  1 
9  2 1 2 2 1 0 1 1 0 0  1 0  1 1  0  0  1 1  1 
1 0 3 1 2 2 1 1 0 0 1  1 0  1 0  1 0  0  1 1  0  
1 1 3 2 1 1 2 0 1 1 0 0  1 1  1 0  0 1 1  0  0  
1 2 2 2 1 1 2 1 0 0 1  1 0  0  1 1  1 1  1 0  0  
1 3 2 2 2 0 0 2 2 0 0 0  0  0  0  0  0  0  0  0  0  
1 4 3 2 2 0 0 0 0 2 2  1 1  0  0  0  1 0  1 0  1 
1 5 3 0 0 2 2 2 2 0 0 0  0  1 1  1 1  0  0  0  1 
1 6 2 0 0 2 2 0 0 2 2  1 1  1 1  0  1 0  0  1 0  
1 7 0 2 0 2 0 0 1 0 1  0  0  1 0  0  1 1  1 1  1 
1 8 1 2 0 2 0 1 0 1 0  1 0  0  1 0  0  1 0  1 1  
1 9 1 0 2 0 2 0 1 0 1  0  1 0  0  1 1  1 0  1 0  
2 0 0 0 2 0 2 1 0 1 0  1 1  1 0  1 0  1 0  0  1 
2 1 4 2 0 0 2 1 2 2 1 0  1 0  1 1  0  0  1 1  1 
2 2 5 2 0 0 2 2 1 1 2  1 0  1 0  1 0  0  1 1  0  
2 3 5 0 2 2 0 1 2 2 1  0  1 1  1 0  0  1 1  0  0  
2 4 4 0 2 2 0 2 1 1 2  1 0  0  1 1  1 1  1 0  0  
2 5 4 0 0 1 1 0 0 1 1  0  0  0  0  0  0  0  0  0  0  
2 6 5 0 0 1 1 1 1 0 0 1  1 0  0  0  1 0  1 0  1 
2 7 5 1 1 0 0 0 0 1 1 0  0  1 1  1 1  0  0  0  1 
2 8 4 1 1 0 0 1 1 0 0 1  1 1  1 0  1 0  0  1 0  
2 9 2 0 1 0 1 1 2 1 2 0  0  1 0  0  1 1  1 1  1 
3 0 3 0 1 0 1 2 1 2 1  1 0  0  1 0  0  1 0  1 1  
3 1 3 1 0 1 0 1 2 1 2 0  1 0  0  1 1  1 0  1 0  
3 2 2 1 0 1 0 2 1 2 1  1 1  1 0  1 0  1 0  0  1 
3 3 0 0 1 1 0 2 0 0 2 0  1 0  1 1  0  0  1 1  1 
3 4 1 0 1 1 0 0 2 2 0  1 0  1 0  1 0  0  1 1  0  
3 5 1 1 0 0 1 2 0 0 2 0  1 1  1 0  0  1 1  0 0  
3 6 0 1 0 0 1 0 2 2 0  1 0  0  1 1  1 1  1 0  0  



CHAPTER 3. SCREEhTING EXPERIMENT 31 

how closely the algorithm output matches the true target distribution. The Average Abso- 

lute Distance (AAD) was used for this purpose. It measures the "average absolute distance" 

between the true cumulative distribution function (CDF) of the target distribution and the 

empirical cumulative distribution function (ECDF) from the sample. 

We define AAD as follows. Assume F(x) = J:; J:: f (t l ,  tz)dtldtz is the CDF of the of 

the target distribution, S(X) =the proportion 0.f (zli ,  x2i) satisfying X l i  < XI  and zzi < ~ : z  

is the ECDF from the sample. The average absolute distance (AAD) is defined as 

where N is the number of the generated points. We use AAD as the response, y, for each 

simulation run in our experiments. 

3.3.3 Analysis based on one replicate 

We ran the simulation once for the parameters of the five algorithms set based on their design 

matrix, and got 36 AAD's corresponding to different parameter settings for each algorithm. 

The results of the five experiments are suminarized in Tables A.l-A.5 of Appendix A. A 

very rough preliminary look at the data is given in the first two columns of Table 3.4. The 

design is ignored and the mean and standard deviation over the 36 runs is given for each 

algorithm. 

Table 3.4: R.esponse comparison 

One replicate Five replicates 
Algorithm jj sd, Y s 4 - 

MH 0.0780 0.0530 0.0768 0.0470 
Slice 0.0805 0.0604 0.0836 0.0536 

Graves 0.0854 0.0524 0.0881 0.0536 
EEMH 0.0623 0.0346 0.0658 0.0382 
EESlice 0.0682 0.0489 0.0716 0.0475 

The table suggests that EE-MH has the smallest average and variance of AAD, which 

shows it potentially has the best goodness of fit and stability. The EE-Slice algorithm also 

seems to perform well. Slice sampling and Graves' method do not seem to perform better 

than the MH algorithm. 
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Table 3.5: Model selection criteria 

Criteria Formula Note 
Akaike Illformation Criterion AIC = -210gL + 2p L is the likelihood, p is 

the No. of predictors of the 
model plus 1. The smaller 
the AIC value, the better 
the model. 

Bayesian Information Criterion B I C  = -2logL + log(n) x p n is the No. of observa- 
tions. The smaller the 
BIC value, the better the 
model. 
RSSp  is the residual sum 
squares, RSS l  is the total 

RSS Rsq = 1 - & 

Adjusted R-square Adjr2 = 1 - (1 - R S ~ ) ~  

sum square of the values of 
the y-variable subtracting 
the mean. The bigger the 
Rsq value, the better the 
model. 
The bigger the Adjr2 
value, the better the 
model. 
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In the screening experiment, we are interested in what parameters play important roles 

in each algorithm. Model selection will be applied to find the best subsets among the main 

effects (linear and quadratic) and their two-way interactions. The main effects considered 

include the two-level parameters, the linear term of three-level parameters and the quadratic 

term of three-level parameters. We use an all subsets regression to find all subsets up to size 

6, restricting to weak-heredity models (i.e. models for which at least one of the factors in 

every two-factor interaction is also in the model), and rank them by the Akaike Information 

Criterion (AIC), Bayesian Information Criterion (BIC) ,  Adjusted R-square (Adjr2) and 

R-square (Rsq). We also looked at the criteria values for subset size 7, but since the criteria 

values of size 6 are very close to those of size 7, we stopped the exploration on subset size 6. 

Table 3.5 is a summary of the formulae for and some notes on these criteria. More details 

about these criteria can be found in Miller (2002). We looked at the best subsets of size 

and compared to those with 6 effects and found modest improvement. Thus, we decided to 

look at the best model of size 6. 

Before looking at the subset search results, we review the main effects of each algorithm. 

MH algorithm 

Linear term of the grid spacing 

Quadratic term of the grid spacing 

Linear term of the number of the bivariate normal distributions 

Quadratic term of the number of the bivariate normal distributions 

Weight 

Initial value 

Iteration number 

Burn-in number 

Linear term of step-width 

Quadratic term of step-width 

Slice sampling algorithm 

d~ Linear term of the grid spacing 

d~ Quadratic term of the grid spacing 

m~ Linear term of the number of the bivariate normal distributions 

m~ Quadratic term of the number of the bivariate normal distributions 

U I  Weight 
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V Initial value 

N Iteration number 

B Burn-in number 

EL Linear term of scale estimate 

EQ Quadratic term of scale estimate 

Graves method 

Linear t,erm of the grid spacing 

Quadratic term of the grid spacing 

Linear term of the number of the bivariate normal distributions 

Quadratic term of the number of the bivariate normal distributions 

Weight 

Initial value 

It(eratioi1 number 

Burn-in number 

Number of the step-width in the sequence 

Linear term of the initial guess of the optimal step-width 

Quadratic term of the initial guess of the optimal step-width 

Linear term of the acceptance rate 

Quadratic term of the acceptance rate 

Linear term of the grid spacing 

Quadratic term of the grid spacing 

Linear term of the number of the bivariate normal di~t~ributions 

Q~adra t~ ic  term of the number of the bivariate normal distributions 

Weight, 

Initial value 

It,erat,ion number 

Burn-in number 

Linear term of step-width 

Quadratic term of step-width 

Energy levels 
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Linear term of EE jump probability 

Quadratic term of EE jump probability 

Linear term of 1st energy level 

Quadratic term of 1st energy level 

Constant 

Linear term of the grid spacing 

Quadratic term of the grid spacing 

Linear term of the number of the bivariate normal distributions 

Quadratic tern1 of the number of the bivariate normal distributions 

Weight 

Initial value 

Iteration number 

Burn-in number 

Linear term of scale estimate 

Quadratic term of scale estimate 

Energy levels 

Linear term of EE jump probability 

Quadratic term of EE jump probability 

Linear term of 1st energy level 

Quadratic term of 1st energy level 

Constant 

We use all subsets regression to find all the subsets and picked the best two weak 

hereditary subsets of different, size based on the residual sum square RSSp. Table 3.6 

shows the top 2 weak hereditary subsets up to size 6. The best subset of size 6 for the MH 

algorithm is: d,, d Q ,  W L ,  dLB,  dQWL, and dQmQ. So t,he important parameters are d ,  m,, 

W and B. The best subset of size 6 for the slice sampling algorithm is: d L ,  m Q ,  EL ,  dLEL, 

dQmQ, mQEL.  The important parameters are d ,  m, and E.  The best subset of size 6 for 

Graves' method is: d L ,  d Q ,  V ,  A,, dQmSL and V A L .  The important parameters are d ,  m ,  V 

and A. The best subset of size 6 for the EE-MH algorithm is: N ,  W L  , JL, d L  JL, dQ JL and 

W L H I L .  The important parameters are dl N ,  W ,  J and H I .  The best subset of size 6 for 
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Table 3.6: Top 2 weak hereditary subsets up to size 6 on response of one replicate 

Size Select.ed factors A I C  B I C  Adjr2 Rsq 
1 I 4 . r  -228.080 -224.913 0.403 0.420 



Table 3.7: Percent differences of two replicates of MH 

run 1-6 -0.51%1 6.75% -18.94%) -1.40%) -1.45% -18.00% 
run 7-12 -10.82% -4.62% -38.77% -8.34% -18.77% 182.00% 
run 13-18 -4.46% 8.92% -2.70% 1.05% 6.19% 27.88% 
run 19-24 15.08% -8.09% -16.23% -6.33% 2.16% -0.40% 
run 25-30 0.57% 7.29% 6.71% -52.00% 22.57% -9.35% 
run 31-36 19.15% - 1 . 7 3  -4.61% 7.71% -39.94% 112.72%) 

variability of the simulation results across the replicates, we prefer to use the subset chosen 

from five replicates and try to find the best settings of the important parameters. Note, in a 

real experimental situation we might have treated the replicates as replicates and used them 

to estimate the error to determine significance. In our case, we were primarly interested in 

identifying the most important factors and thus chose this simpler strategy. 

Finding t h e  algorithms' best set t ings 

In this section, we'll try to find the best settings of the important parameters we found in the 

previous section. The parameters are grouped into noise factors and control factors. In the 

robust parameter design, noise factors are factors whose values are hard to control during 

normal process or use conditions, but. that can be controlled during the experiment; control 

factors are factors usually much easier to change. In our experiment, the noise factors are 

the target distribution parameters d, m and w (denoted by lower-case letters), which in the 

real world we probably wolild not know; the control factors are the algorithm parameters, 

such as number of iterations, N, the stepwidth of the MH algorithm, etc. (denoted by 

upper-case letters). In a real situation these are controlled by the analyst. To find the best 

settings of the control factors, we use teclmiques for analyzing combined arrays in robust 

parameter design, which seeks to change the control factor settings to reduce the response 

variation by exploiting the interaction between control and noise factors (Wu and Hamada 

(2000)). Control-by-noise interaction plots will be used to choose control factor settings. 

We also use control main effects and control-by-control interaction plots to find the best 

combination of the control factors settings which make the response small. Each algorithm 

will be discussed in turn. 
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Figure 3.2: MH interaction plots 
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MH algorithm 

Model (3.1) is the MH's linear regression model for the response, E(y)  (average AAD), 

on the significant factors d,, dQ, W,, d, WL, dLmQ and VW,, 

Among these effects, d,, dQ, mQ are the noise factors, W,, V are the control effects. dLWL 

is a noise-control factor interaction. The interaction plots for dW and VW are shown 

in Figure 3.2. Figure 3.2(a) recommends level 2 of W since it has the smallest response 

variation over setting of d and the smallest average y response (main effect). Figure 3.2(b) 

suggests level 1 for V is the better setting, since the combination of V at level 1 and at 

level 2 yields the smallest y response. The other control factors do not appear to impact 

the MH algorithm. 

Slice sampling 

Model (3.2) is Slice sampling's linear regression model on the factors dL dQ, EL, dLEL, 

~ Q E L ,  ~ Q E Q ,  

The noise effects are d,, dQ and the control effects are EL and EQ. The control-by-noise 

interaction plot of d E  is given in Figure 3.3. The plot suggests level 2 is the best choice of 
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Figure 3.3: Slice sampling interaction plots 
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E since it has the smallest response average (main effect) and also the smallest variation 

across settings of d. 

Graves ' Method 

Model (3.3) is the Graves' method linear regression model on the factors d,, d Q ,  A,, 

dLmL, dLV and dLAL, 

d L ,  dQ and mL are the noise factors. A, and V  are control factors. Figure 3.4(a) is the 

interaction plot of dA. It suggests level 0 is the best choice of A since it has the snlallest 

response average and variation over settings of d. Figure 3.4(b) suggests level 1 is the better 

choice of V  for similar reasons. 

EE-MH 

Model (3.4) is the EEMH linear regression model on factors W,, WQ, dLWL, d ,  WQ, 

mLWL, WLO, 

dL and m, are the noise effects. W,, WrQ and 0 are the control effects. Figure 3.5(a) gives 

the interaction plot for d W  while Figure 3.5(b) the interaction plot for mW. Both suggest 

W  at level 0 is worse than levels 1 or 2, but it's hard to tell which one is better between 
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Figure 3.4: Graves' method inMaction plots 

(b) dV 

levels 1 and 2. Figure 3.5(c) shows that if W is set at level 1, 0 should be set at level 1, 

while if W is set at level 2, 0 should be set at level 0. Either choice looks fine. We choose 

W at level 1 and 0 at level 1. 

EE-Slice 

Model (3.5) is EE-Slice linear regression model on factors mL, N ,  EL, EQ, m.L and NEL,  

m,L is the noise factor, EL, EQ and N are the cont,rol factors. Viewing Figure 3.6, N at level 

1 and E at level 1 performs best. 
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Figure 3.5: E E M H  interaction plots 
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Table 3.8: Top 2 weak hereditary subsets of the algorithm on average response 

Size Selected factors A I C  BIC ild7r2 Hsq 
1 M ;  -236.079 -232.912 0.390 0.408 

1 d~ -225.880 -222.713 0.191 0.214 
2 d~ WL -250.185 -245.435 0.598 0.621 
2 W L  ~ L W L  -244.403 -239.653 0.528 0.555 
3 d~ W L  ~ L W L  -265.981 -259.647 0.747 0.769 

M 3 d L  W L  d~ B -252.566 -246.232 0.633 0.665 
H 4 d L  dQ W L  ~ L W L  -269.670 -261.753 0.777 0.803 

4 d L  W L  ~ L V  ~ L W L  -267.911 -259.993 0.766 0.793 
5 d~ do WL ~ L U ' L  d ~ m ~  -274.237 -264.736 0.808 0.836 
5 d~ d~ WL ~ L V  ~ Q W L  -272.318 -262.817 0.798 0.827 
6 d~ d~ W L  dLWL dhmQ VM*'L -277.961 -266.877 0.831 0.860 
6 d L  d~ W L  dLV dLMrL dQ% -275.530 -264.446 0.819 0.850 
1 EL -227.084 -223.917 0.399 0.416 
1 d~ -216.544 -213.377 0.195 0.218 
2 d~ EL -241.902 -237.152 0.612 0.634 
2 EL ~ L E L  -230.725 -225.975 0.471 0.501 

S 3 d L  EL d~ EL -249.378 -243.044 0.692 0.719 
L 3 d L  B EL -244.029 -237.695 0.643 0.674 
I 4 d L  EL dLEL dQEL -252.621 -244.703 0.726 0.757 
C 4 d L  EL ~ L V  dLEL -251.315 -243.397 0.715 0.748 
E 5 d L  dQ EL ~ L E L  ~ Q E Q  -256.641 -247.140 0.760 0.794 

5 d~ do EL ~ L E L  d ~ m ~  -255.549 -246.048 0.753 0.788 
6 d~ d o  EL dhEL doEL doEo -262.019 -250.934 0.798 0.832 
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Figure 3.6: E E M H  control-by-noise interaction plots 
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Chapter 

Simulation Study 

4.1 Compare the Algorithms at  Their Best Settings 

In this section, a small simulation will be done to compare the algorithms at their best set- 

tings. Only the target distribution parameters will be varied in this simulation experiment,. 

From the screening experiment, we found the distribution parameters d and m appear with 

high frequency in the 12 best weak hereditary models of all the five algorithms, while the 

other parameter related to the target distributions, w, does not. So we set the distribu- 

tion to have equal weights, and only use parameters d and m with their previous levels to 

control the distribution shape. For the algorithm parameters, the settings are fixed at the 

best values chosen using the robust parameter design concepts of the previous chapter. The 

simulation in this section is based on a 9-run 32 full factorial design. This design matrix 

is given with the simulation results in Appendix B. For each algorithm, the simulation is 

repeated to get five replicates. 

The algorithm parameter settings are as follows. The common algorithm parameters, 

iteration number N and burn-in length B are both set at their previous high level: 40000 

and 2000 iterations, respectively. These high settings should give the algorithms a better 

chance to converge. The initial value V is set to 0, since MH and Graves method both 

perform better at  this setting. For the algorithm specific parameters, the important ones 

from the screening experiment are set as follows: the step-width W of MH is set to level 2, 

5.1. The scale estimate E of Slice sampling is set to level 2, 5.1. The Acceptance rate A of 

Graves method is set to level 0, 0.2. The stepwidth W of EE-MH is set to level 1, 2.6. The 

constant 0 of EE-MH is set to level 1, 4. The scale estimate E of EESlice is set to level 1, 
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2.6. The iteration number N is set 40000 which is consistent with the common parameter 

setting. The other algorithm specific parameter settings are: number of the step-widths P 

is set as 11, which compared to 5 we think might give better chance to fit the model (2.1) 

accurately. The initial guess of the optimal stepwidth is set to 2, using the previous middle 

level. For t,he two EE algorithms, the number of energy levels, K ,  is set to 2, the EEjump 

probability J is set to 0.2, energy level 1 is set to 3, and Constant 0 is set to 4. The 

summary of these control parameter settings is given in Table 4.1. 

Table 4.1 : Best parameter settings, used in the comparison simulation 

Common algorithm parameters 
Iteration number N 40000 
Iteration number in burn-in B 2000 
Initial value V 0 

Algorithm specific parameters 
MH Strep-width W 5.1 
Slice Scale parameter E 5.1 
Graves Acceptance rate A 0.2 

Number of the step-widths P 11 
Initial guess of the opt(ima1 st,ep-widt,h C 2 

EEMH Step-width W 2.6 
Constant 0 4 
Probability of EE jump J 0.3 
Energy level 1 H I  3 
Number of energy levels K 2  

EESlice Scale parameter E 2.6 
Constant 0 4 
Probability of EE jump J 0.3 
Energy level 1 HI 3 
Number of energy levels h' 2 

4.2 9-Run Simulation Results 

The con~plet,e result,s of t,he 9-run simulation are shown in Tables B.l to B.5, in Appendix B. 

Here we list t,he mean and the standard deviation of the response for each run (Table 4.2). 

We can see, for the nine combinations of d and m, the performance of Graves' method is not 

very stable. In runs 1,2,4,5,7 and 8 it performs well, but in runs 3,6 and 9 it performs badly. 
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Graves' method performs badly when d is large, that is, when the modes are separated 

and far apart. Basically, if the MH gets trapped in a single mode during burn-in, Graves' 

method will only give a good step-width for exploring the single mode and not the entire 

space. When the modes are overlapping or connected, Graves' method works well. 

Table 4.2: 9 run simulation results of MH 

Parameters MH Slice Graves E E M H  

For the other four algorithms, among these nine runs, they all work reasonably well. 

The average absolute distance range between the CDF and ECDF is (0.02,0.06). The 

standard deviation shows that the two EE algorithms have better stability than MH and 

Slice sampling. 

If we group the 9 runs into three groups, 1-3, 4-6 and 7-9, and look at the results 

of the four algorithms closely, we can see every first run of the three groups have worse 

performance than other two runs. Those cases are when d = 1, which shows the choice 

of the step-width or the scale parameter, 5.1, is somewhat too large compared to the grid 

spacing d = 1. As the grid spacing d and the number of normal distributions m, increase, the 

performance of the four algorithms are good based on the mean and the standard deviation 

of the five replicates' response, until run 9 (d = 5 and m, = 7). For this run, MH and 

Slice sampling algorithms have worse repeatability (sd) compared to other settings, and 

compared to the EE algorithms. This is an interesting phenomenon. It suggests that when 

there are more modes far apart, and the stepwidth or scale parameter is big enough to cut 

across the modes, this creates more variability in the simulation results. This motivates us 

to explore cases where d gets even bigger. We would expect for MH and slice sampling, the 

performance level would decrease because of the sensitivity to the step-width or the scale 

parameter. For EE algorithms, the performance will also be affected by the st,epwidth or 

the scale parameter, but the effect might be more mild than MH or slice sampling, since 
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the EE algorithm starts from the flatter distributions and gradually moves on to the target, 

distribution. 

Another important factor to be considered in the application of the algorithms in the real 

world is the simulation time. The recorded run times of the five algorithnls is given in Table 

B.6 in Appendix B. From Table B.6, we can see that for the MH and EE algorithms, the 

simulation time of run 1-3 is similar, run 4-6 is similar, and run 7-9 is similar. This is because 

m is set at three different levels 3, 5, and 7. Since the target distribution f (x)  is the sum 

of bivariate normal distributions, as m increases, the computation time of f (x)  increases. 

Every generated point is related to the computation of f (x) .  For example, in the MH algo- 

rithm whether a new generakd point x*  is accepted depends on whether a random number 

from Uni  f (0 , l )  is less than a ( ~ ( ~ ) ,  x*)  = min [(f (x*)g(x*, ~ ( ~ ) ) ) / ( f  ( x ( ~ ) ) ~ ( x ( ~ ) ,  x*)) ,  I]. 

With the number of iterations N = 40000 and the number of iterations in burn-in period 

B = 2000, the MH algorithm performs fastest, which taking less than 30 seconds. Graves' 

method is just slightly slower. Slice sampling takes less than 76 seconds. While the EE 

algorithms take about 20 minutes. The EEMH algorithm takes about 45 times as much 

time as that of the MH algorithnl, while the EESlice algorithm takes about 25 times that 

of the Slice sampling algorithnl. This raises an interesting issue: From previous discussion, 

we might expect the EE algorithn~s to be less sensitive to the step-width or choice of scale 

parameter than the MH or slice sampling algorithms. But, the EE algorithms take much 

longer to run. If given the same length of time as the EE algorithm, what will the simulation 

performance of the MH and slice sampling algorithms be like? Would a long simulation time 

overcome the problem of the sensitivity to the step-width or scale parameter? 

To summarize the above, there is little difference among most of the algorithms based 

on the 9-run simulation. But two further problems have been identified: 

1. The sensitivity to the stepwidth or the scale parameter of the algorithms when d keeps 

increasing. 

2. The simulation performance of MH and slice sampling compared with EE algorithms if 

given the same simulation time. 
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4.3 Simulations for Fixed Time 

To explore these two problems, we add two more runs after the previous 9-run settings: one 

run with d = 7 and m = 7, and one run with d = 9 and m = 7. The resulting 11-run 

experiment was carried out for all five methods, aiming to run all algorithms for about 

the same length of time: 20 minutes. For the MH algorithm, Slice sampling, and Graves' 

method, run time was controlled to 20 minutes by stopping after an appropriate number of 

iterations. Because of the special structure of the EE algorithms, running several parallel 

chains continuously, it was not possible to control run time by repeating shorter sets of 

iterations. So we let the EE algorithms run for N = 40000 iterations, which takes from 11 

to 21 minutes for EE-MH and from 16 to 26 minutes for the EE-Slice algorithm. 

The results of one replicate of the 11 runs are given in Table 4.3. The number of 

iterations of MH, slice sampling and Graves' method are also listed in Table 4.3. MH and 

Graves' method both had over 3 million , 2 million and 1 million iterations, for cases with 

m = 3, m = 5 and m = 7, respectively. The iteration range of Slice sampling is (0.6,1.4) 

million. For the overall performance of the five algorithms across the first 9 runs, we see 

from the mean and the standard deviation of the response that the EE algorithms no longer 

show superior performance to the MH algorithm or Sliced sampling. This is also true in 

conlparison to Graves' method except for run 9. 

If we look closely at  the results of each run, it is easy to see for the first 8 runs, the five 

algorithms perform similarly well. For run 9, which is d = 5 and m = 7, Graves' method 

seems to perform worse than other algorithms. Recall that these 9 settings were used to set 

the tuning parameters of the algorithms. 

When d keeps increasing to 7, which is run 10, Slice sampling and Graves' method 

don't perform well. The MH algorithm and the two EE algorithms seem to work well. 

When d increases to 9, the MH algorithm's performance also deteriorates, while the two EE 

algorithms still perform reasonably well. 

Histogram plots of each variate give more straightforward comparison of the performance 

of the five algorithms. Since the five algorithms perform similarly well for the first 9 runs 

(except run 9 of Graves' method), we will skip showing the histogram plots of those runs. For 

run 10, MH, EE-MH and EESlice perform well, while slice sampling and Graves' method 

seem to perform worse. Here we will display the histogram plots for various runs. 
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Figure 4.1: Histogram plots of two variables of MH for run 10 

histogram of x l  histogram of x2 

Figure 4.2: Histogram plots of two variables of slice sampling for run 10 

histogram of x l  histogram of x2 

(b) 2 2  
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Table 4.3: 11 - r u n  simulation results 

Parameters Iteration (million) Response 
Run d m N m h  Nsr N g r  Y m h  Y d  Ygr  Y e e m h  Yeesl 

1 1  3 3.48 1.37 3.6 0.0587 0.0586 0.0583 0.0600 0.0582 
2 3 3 3.58 1.30 3.6 0.0558 0.0556 0.0540 0.0530 0.0559 
3 5  3 3.58 1.23 3.6 0.0556 0.0565 0.0537 0.0556 0.0573 
4 1 5 2.34 1.05 2.36 0.0439 0.0451 0.0438 0.0479 0.0456 
5 3  5 2.34 0.94 2.36 0.0334 0.0338 0.0341 0.0368 0.0358 
6 5  5 2.34 0.86 2.36 0.0353 0.0347 0.0373 0.0371 0.0357 
7 1 7 1.74 0.87 1.76 0.0361 0.0325 0.0350 0.0373 0.0344 
8 3  7 1.74 0.74 1.76 0.0201 0.0206 0.0204 0.0222 0.0201 
9 5  7 1.74 0.67 1.76 0.0219 0.0241 0.0711 0.0223 0.0220 

yl-g 0.0401 0.0402 0.0453 0.0414 0.0406 
sd,,l-g 0.0144 0.0143 0.0154 0.0138 0.0146 

10 7 7 1.74 0.66 1.76 0.0261 0.0764 0.1534 0.0237 0.0240 
11 9 7 1.74 0.66 1.76 0.1432 0.1509 0.1516 0.0253 0.0251 

ylo-ll  0.0846 0.1136 0.1525 0.0245 0.0246 
s d y , l ~ - l l  0.0828 0.0527 0.0013 0.0012 0.0007 

Figures 4.1 to 4.3 give histograms of the two variables for samples from the MH algo- 

rithm, slice sampling and the EE-MH sampling for run 10, respectively (EESlice performed 

similar to EE-MH). The solid lines are the marginal distribution plots. For MH and E E  

MH, the histogram plots fit the marginal distribution plot fairly well, while slice sampling, 

Figure 4.2(a.) shows one mode of x l  is not sampled as it should be, while the other two are 

over sampled. Similar things happen to x 2 ,  as well. 

When d increases to 9, which is the case in run 11, the histogram plots of x 2  for MH, 

slice sampling and Graves' method and EE-Slice are given in Figure 4.4, while Figure 4.5 

gives the three parallel chains using EE-MH. We can see tha.t the EE algorithms continue 

to perform quite well, while the others have a tendency to get stuck in a single mode. This 

is because the tuning parameters that control stepwidth are too small. 

The above exploration shows, Graves' method seems to work fine in what amount to 

nearly uni-modal situations, but when there are multiple, well-separated modes, it does 

not do well as a method of recommending a step-width for the MH algorithm. The MH 

algorithm and slice sampling are more sensitive to the stepwidth or scale parameter than the 

EE algorithms, but the EE algorithms take much longer to run. Given a longer sinlulation 

time, MH and slice sampling improve greatly. Overall, the EE algorithms seem to have 

more stable performance than the other algorithms. 
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Figure 4.3: Histogram plots of two variables of EE-MH for run 10 

Histogram of x l  Histogram of x2 
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Figure 4.4: Histogram plots of x2 of four algorithms for run 10 

histogram of x2 histogram of a2 

(a) MH 2 2  

histogram of x2 

(b) Slice sampling 2 2  

Histogram of x2 

(c) Graves' method 2 2  (d) EE-Slice 2 2  
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Figure 4.5: Histogram plot of 2 2  of EE-MH three chains for run 11 

(a) Chain x(,2' (b) Chain X(,') (c) Chain xy' 



Chapter 5 

Conclusions 

5.1 Summary 

The sampling problem we are trying to solve is to sample a multi-dimensional distribution 

that has several modes. The most well-known sampling algorithm is the MH algorithm, 

but it has some difficulty with this type of problem because of its sensitivity to the tuning 

parameter, stepwidth. When the stepwidth is too small, it has difficulty cutting across the 

modes. Three alternative algorithms recently introduced in the literature, Graves' method, 

slice sampling and EE sampling, are expected to solve part of the problem. The summary 

of these algorithms are listed as follows. 

Graves' method 

Graves' method is basically an improved MH algorithm. The difference between these 

two algorithms is, Graves' method attempts to automatically find a better choice of the 

stepwidth in the burn-in period and applies it in the MH algorithm. It does so by using 

the linear relationship of the logit of the acceptance rate ( A )  and the log of the stepwidth 

(W), a step-width is suggested by an ideal acceptance rate through this model. Graves' 

method is shown to improve the MH algorithm in some situation, for example, when the 

target distribution has a single mode or several connected modes. But when the modes are 

far apart, which is a difficult situation for the MH algorithm in general, Graves' method 

does not show improvement over the MH algorithm. There are two points which might 

be related to this problem: (i) The assumption of Graves' method that finding a desirable 

stepwidth can be solved by some connection with achieving a desirable acceptance rate; 

and (ii) The accuracy of the linear relationship of the logit of the acceptance rate ( A )  and 
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the log of the stepwidth (W) in more extreme.situations. 

Slice sampling 

Slice sampling is another algorithm that uses tuning parameters, scale parameter, which 

plays a similar role to the stepwidth in the MH algorithm. Our exploration suggests that 

the performance of slice sampling is sensitive to this scale parameter. When there are more 

modes, and the scale parameter is too small to slice across the modes, it fails to perform 

well. One point that needs to be noted is that the slicing strategy applied in this project is 

not the only option available. Since the target distribution is a bivariate distribution, the 

slicing strategy we used is locating the hyper-rectangle which includes the current point by 

setting a common random scale parameter E on each dimension. So the slice interval is 

restricted to the length of E. It is not hard to see that when E is too small this strategy 

will face the problem of not cutting across the modes. There are more slicing strategies 

introduced in Neal (2003). For example, the "stepping out" procedure, which creates the 

chance to extend the slice interval from the length of E. 

EE algorithms 

The EE algorithm generates a new point by an MH local move or by jumping to a point 

that has the similar energy level (value of f(x)) as the current point. It starts from a chain 

aiming at a flatter distribution which corresponds to a higher energy level, and moves on 

to the target distribution corresponding to a lower energy level. The EE-jump and parallel 

chains are designed to help overcome the local traps (modes) of the distribution. In this 

project, two EE algorithms, one with the usual MH local move and one with the slice 

sampling local move, were explored. The EE algorithms were shown to have more stable 

performance compared to the other three algorithms. When the distribution has separated 

modes, the EE algorithms are less sensitive to the tuning paranleters than the MH and slice 

sampling algorithms. But the disadvantage of EE algorithms are in taking a much longer 

time to run. This is an important problem in practice. One point needs needs to also be 

noted is that for the parameter settings of EE algorithm. one has to construct the energy 

levels and temperature levels, which is related to some prior knowledge of the distribution. 

This creates some complexity in applying this algorithm. 

As a summary of these algorithms, if not considering the time problem, the EE algo- 

rithms would be a stable choice to sample a distribution. Especially if it is known that the 

distribution has several modes, but one is not sure how they are positioned. However from 

an application standpoint, since MH and slice sampling perform much faster, one might 
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argue that some preliminary exploration could reveal a good choice for the tuning param- 

eters followed by a much larger number of iterations, might yield similar performance. It 

seems the big problem happens when there are separate modes and the tuning parameter 

is too small. So people may spend the time to try bigger tuning parameter to explore what, 

the right values are, and then apply them. And how this can be done might refer to each 

specific problem. 

5.2 Future Work 

There are some points that might be interesting to improve or try out in future. 

1. For slice sampling, as we mentioned above, the slicing strategy in this project is 

locating the hyper-rectangle which includes the current point by setting a common 

random scale parameter E on each dimension. This limits the slice interval to the 

length of E. More slicing strategies would be interesting to try. For example, the 

"stepping out" procedure, which creates the chance to extend the slice interval from 

the length of E. Although it might be time consuming to apply it in higher dimensions. 

2. For the EE algorithnls, we used the suggestions from Kou, Zhou, and Wong (2006) 

for the parameter settings. But we are not sure if there is a better way to set these 

parameters, or how to find a better way to set these parameters. 



Appendix A 

Screening Experiment Result 

Table A. l :  36 run design matrix and siniulation results of MH 

Design matrix ula.tion results 
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Table A.2: 36 run design matrix and simulation results of slice sampling 

Design matrix Simulation results 
Run d m WJ V N B E Y s l l  Y s / 2  Y s ~ 3  Y s / 4  Y a ~ 5  Yal s d s /  

1 1 1 0 0 0 0 2 0.0338 0.0356 0.0328 0.0367 0.0361 0.0350 0.0016 
2 1 1 1 1 0 0 2 0.0391 0.0450 0.0431 0.0413 0.0442 0.0425 0.0024 
3 2 2 0 0 1 1 1 0.1837 0.1874 0.2108 0.1808 0.10G6 0.1738 0.0394 
4 2 2 1 1 1 1 1 0.1069 0.1153 0.1022 0.0891 0.11GO 0.1059 0.0110 
5 1 2 0 0 1 0 1 0.0252 0.0220 0.0204 0.0255 0.0238 0.0234 0.0022 
6 1 2 1 0 0 1 1 0.0231 0.0321 0.0226 0.0266 0.0365 0.0282 0.0060 
7 2 1 0 1 0 0 2 0.0368 0.0928 0.0482 0.OG39 0.0529 0.0589 0.0213 
8 2 1 1 1 1 0 2 0.0402 0.0433 0.0461 0.0434 0.0422 0.0430 0.0021 
9 1 2 0 1 0 1 2 0.0214 0.0231 0.0207 0.0215 0.0210 0.0215 0.0009 
10 1 2 1 0 1 0 2 0.0238 0.0214 0.0233 0.0216 0.0222 0.0225 0.0010 
11 2 1 0 1 1 1 1 0.0468 0.0847 0.1961 0.0775 0.1849 0.1180 0.0678 
12 2 1 1 0 0 1 1 0.2098 0.0750 0.0705 0.2153 0.1217 0.1385 0.0706 
13 2 2 0 0 0 0 0 0.1731 0.1632 0.2694 0.1857 0.1961 0.1975 0.0421 
14 2 2 1 1 0 0 0 0.1435 0.1504 0.1133 0.1401 0.1433 0.1381 0.0144 
15 0 0 0 0 1 1 2 0.0590 0.0583 0.0601 0.0587 0.0572 0.0587 0.0011 
16 0 0 1 1 1 1 2 0.0651 0.0656 0.0654 0.0644 0.0666 0.0654 0.0008 
17 2 0 0 0 1 0 2 0.0526 0.0605 0.0546 0.0536 0.0576 0.0558 0.0032 
18 2 0 1 0 0 1 2 0.0615 0.0618 0.0692 0.0626 0.0587 0.0628 0.0039 
19 0 2 0 1 0 0 0 0.0730 0.0599 0.1034 0.0718 0.0931 0.0803 0.0176 
20 0 2 1 1 1 0 0 0.0373 0.0516 0.0853 0.0899 0.0516 0.0632 0.0231 
21 2 0 0 1 0 1 0 0.1250 0.1255 0.1215 0.1144 0.1155 0.1204 0.0052 
22 2 0 1 0 1 0 0 0.2034 0.1961 0.2131 0.2183 0.2273 0.2117 0.0122 
23 0 2 0 1 1 1 2 0.0350 0.0345 0.0342 0.0359 0.0336 0.0346 0.0009 
24 0 2 1 0 0 1 2 0.0411 0.0436 0.0383 0.0425 0.0408 0.0413 0.0020 
25 0 0 0 0 0 0 1 0.0557 0.0586 0.0573 0.0608 0.0566 0.0578 0.0020 
26 0 0 1 1 0 0 1 0.0661 0.0658 0.0661 0.0661 0.0626 0.0653 0.0015 
27 1 1 0 0 1 1 0 0.2143 0.1601 0.2127 0.1792 0.1247 0.1782 0.0377 
28 1 1 1 1 1 1 0 0.2143 0.2026 0.0822 0.1234 0.2183 0.1682 0.0617 
29 0 1 0 0 1 0 0 0.0567 0.0536 0.0455 0.0641 0.0464 0.0533 0.0077 
30 0 1 1 0 0 1 0 0.0794 0.0945 0.0871 0.0676 0.0786 0.0814 0.0101 
31 1 0 0 1 0 0 1 0.0525 0.0529 0.0591 0.0570 0.0556 0.0554 0.0028 
32 1 0 1 1 1 0 1 0.0587 0.0583 0.0610 0.0603 0.0611 0.0599 0.0013 
33 0 1 0 1 0 1 1 0.0440 0.0449 0.0454 0.0482 0.0453 0.0456 0.0016 
34 0 1 1 0 1 0 1 0.0534 0.0514 0.0518 0.0530 0.0530 0.0525 0.0009 
35 1 0 0 1 1 1 0 0.0808 0.0977 0.1143 0.1192 0.0940 0.1012 0.0156 
36 1 0 1 0 0 1 0 0.0614 0.1121 0.1873 0.2095 0.1848 0.1510 0.0621 
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Table A.3: 36 run design matrix and simulation results of Graves' method 

Design matrix Simulation results 
Run d m 7Ll V N B P C A y g r l  Y g r 2  ~ g r 3  ~ g r 4  ~ g r 5  G g r  s d g r  

1 1 1 0 0 0 0 0 2 1 0.0906 0.0658 0.0494 0.0672 0.1594 0.0865 0.0433 
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Appendix B 

Simulation Study Result 

Table B.l: 9 run sinlulation results of MH 

Design ma.trix Simulation results - 
Run d m Ymhl Ymh2 Ymh3 Ym1~4 Ymh5 Ymh ~ d m h  

1 0 0 0.0642 0.0550 0.0627 0.0546 0.0638 0.0601 0.0048 

Table B.2: 9 run siniulation results of Slice sampling 

Design ma.trix Simulation results 
Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
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Table B.3: 9 run simulation results of Graves' method 

Design matrix Simulation results 
Run d m Y g r l  Y g r 2  Y g r 3  Vgr4  Ygr5  Y g r  

1 0  0 0.0585 0.0576 0.0580 0.0622 0.0602 0.0593 
2 1 0 0.0552 0.0529 0.0572 0.0556 0.0517 0.0545 
3 2 0 0.0797 0.1558 0.0788 0.1210 0.0981 0.1067 
4 0 1 0.0434 0.0465 0.0452 0.0447 0.0451 0.0450 
5 1 1 0.0366 0.0354 0.0353 0.0368 0.0347 0.0357 
6 2 1 0.2121 0.1576 0.0779 0.1694 0.1756 0.1585 
7 0 2 0.0374 0.0334 0.0378 0.0342 0.0335 0.0352 
8 1 2 0.0207 0.0220 0.0213 0.0236 0.0220 0.0219 
9 2 2 0.1114 0.1742 0.1649 0.1162 0.1193 0.1372 

Ta.ble B.4: 9 run simulation results of EEMH 

Design matrix Simulation results 
Run d m Y e e m h l  Yeenrh2 Y e e m h 3  Y e e m h 4  Y e e m h 5  g e e m h  ~ d e e m h  

1 0  0 0.0575 0.0603 0.0594 0.0608 0.0609 0.0598 0.0014 

Table B.5: 9 run simulation results of EESlice 

Design matrix Simulation results 
Run d m ~ e e s l l  gees12 Y F ~ ~ L B  gees14 ~ e e s 1 5  ~ e ? s /  ~ d e e . 9 ~  

1 0  0 0.0587 0.0570 0.0584 0.0571 0.0586 0.0579 0.0008 
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Table B.6: Simulation time of five algorithms in the 9 - ru,n simulation study 

Run MH Slice Graves E E M H  EESlice 
1 15s/0.25m 37s/0.62m 16s/0.26m 716 s / l l .S lm 974 s/16.24m 
2 15s/0.25m 40s/0.66m 16s/0.26m 725 s/l2.08m 985 s/16.41m 
3 15s/0.25m 42s/0.69m 16s/0.26m 732 s/12.20m 993 s/16.55m 
4 22s/0.37m 49s/0.82m 23s/0.39m 974 s/16.23m 1247s/20.78m 
5 22s/0.37m 54s/O.9Om 23s/0.39m 994 s/16.57m 1251s/20.85m 
6 22s/0.37m 59s/0.9Xm 23s/0.39m 999 s/l6.65m 1278s/21.30m 
7 30s/0.49m 59s/0.9Xm 31s/0.51m 1236s/20.61m 1509s/25.15m 
8 30s/0.49m 69s/1.16m 31s/0.51m 1254s/20.90m 1524s/25.41m 
9 30s/0.50m 76s11.27m 3ls/0.51m 1266s/21.09m 1569s/26.15m 
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