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Abstract

Sampling from a distribution is an active problem in statistics. When the distribution is
easy to sample from, methods like Monte Carlo are applicable. But when the distribution is
complex, of non-standard form or multivariate, more complicated algorithms are required.
The well-known Markov Chain Monte Carlo method using the Metropolis-Hastings (MH)
algorithm can perform very well to sample the complicated distributions in many situations.
But it has the drawback of being sensitive to the scale of the proposal distribution used.
Recently, some algorithms have been introduced in the literature to avoid some of the
problems of the MH algorithm. These include Graves method, Sliced sampling, and Equi-
energy sampling. In this project, a simulation study is done to compare the performance of
these algorithms under various settings of their tuning parameters when applied to various

types of distributions.

Keywords: Bayesian Methods; Robust Parameter Design; Sampling; Stationary distribu-

tion

Subject Terms: Sampling; Monte Carlo Method; Regression analysis; Experimental design
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Chapter 1

Introduction

Sampling from a distribution is an active statistical problem. The Metropolis-Hastings
(MH) algorithm has been given a lot of attention as a method of solving this sampling
problem. It has the advantage of being able to deal with distributions that are complex,
of non-standard form, and/ of multivariate. But there are some problems in the application
of the MH algorithm. For example, the algorithm can yield sample histograms that are
very different from the true distribution if the tuning parameter, the step-width, is not
well-chosen, especially when the true distribution is multi-modal. In recent years, some
new methods have been introduced to try to avoid some of the problems that the MH
algorithm encounters. These include “slice sampling” (Neal, 2003), and the Equi-energy
(EE) sampling algorithm (Kou, Zhou, and Wong, 2006). In this project, we will consider
these new methods, along with the MH algorithm, and compare their performances via
simulation.

One main application of these methods is in drawing from the posterior distribution in
a Bayesian framework. Thus, for motivational purposes, we will briefly outline Bayesian
analysis so as to place the main contributions in this project within a broader framework.

Let 6 = (61,...,6p)" denote a vector of unknown parameters in the distribution of y =
(y1,--,yn)’, denoted f(y|@). In a Bayesian framework, parameters 8 are considered to be
random variables with distribution g(€). This is termed the prior distribution and represents
a priori beliefs concerning the parameters, before data collection. As such, f(y]@) becomes

the likelihood given 8. Then via Bayes’ Rule, the posterior distribution of € is

m(Bly) o f(yl0)g(6).
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o

The posterior distribution is interpreted to represent updated beliefs about @ after data
collection, and is used for inference about 6.
Estimation of 8 is often done via examining various quantities based on the posterior

distribution. For example, a common point estimate of a function h(8) is its posterior mean,

El(6)ly] = [ h(O)r(oly)as.

In practice, these integrals are often intractable and are evaluated numerically using Monte

Carlo techniques. That is, let 89 ... .0 be a large number of draws from 7(6|y); then

1 < .
E[@)ly] = 5 S h(OD).
=1

Such posterior draws can also be used to examine other properties of the posterior distri-
bution of 8. For example, one can construct credible intervals or various percentiles.

In simple cases, such as when one can directly sample from the distribution, Monte Carlo
methods can work well. However, if the posterior distribution is complex or of non-standard
form, more sophisticated methods are required. For example, sometimes [ f(y|60)g(8)d8 is

hard to calculate, which makes 7 (6|y) have a complicated form, because

C Fwie)e(0)
"(61Y) = TFyl8)g@)d0°

This can essentially imply that we only know 7(8|y) is proportional to f(y|0)g(8), a non-

standard form. One such method for sampling from complicated forms is the Metropolis-
Hastings (MH) Algorithm. It was developed by Metropolis, Rosenbluth, Rosenbluth, Teller,
and Teller (1953), and subsequently generalized by Hastings (1970).

The MH algorithm was the first of the well known Markov Chain Monte Carlo (MCMC)
methods. These methods have been actively applied in combination with Bayesian analysis.
MCMC methods work as follows. Suppose we can generate a sequence of 8, {9(0), o 6 y
such that, at each iteration i > 0, the next state 8%t is sampled from a distribution
P(8%1)9®) which depends only on the current state of the chain, 8(i), i.e. it is a Markov
chain. As i increases, the chain will gradually “forget” its initial state 8®) and converge to a
stationary distribution P(8)y), which does not depend on i or 6. A properly constructed
chain will have stationary distribution n(8]y). After a sufficiently large number of burn-in

(say B) iterations, points {B(i) :i1=B+1,---,n} will be samples (approximately) from
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7(0ly). Thus, if {0(1),9(2),...0(N)} are draws generated by such a chain, the posterior
mean of the function h(€) can be estimated as
1S
Eln®)ly] = + > heD).
i=1

Given a previous point, 6%, the MH algorithm generates a new candidate point 8* from
a proposal distribution ¢(8*, O(i)) which is a conditional distribution given ). For example,
assume the unknown parameter is ¢ and the proposal distribution is a uniform distribution.
Then the candidate point o* is generated from a Unif(c® — W,6® + W), where W is a
constant typically called the “stepwidth”. That is, ¢(o*, O'(i)) = (2W)—II[O'(“—VVSO'*SO'”)-}—VV]7
where I} is the indicator function. The candidate point is accepted with some user-specified

probability «,

m(8*|y)q (0%, %))

a= a0, 6%) = min . . ,
( ) (6@ |y)g(8, 6%)

The reason that the MH algorithm can deal with non-standard distributions lies in .

Since the ratio of 7(6*|y) and 7(8®|y) is not affected even when 7(|y) is of non-standard

form, say f(y|0)g(0),

©(0%ly) _ f(yl6*)g(0*)  f(y|oP)g(0D)  f(y]67)9(6%)

©(6W]y) f(y) f@) f(yleD)ge™)
and thus o does not depend on the possibly difficult to obtain f(y) = [ f(y|6)g(8)d6.

Another well-known MCMC method is the Gibbs sampler. It was originally developed
by Geman and Geman (1984), and was popularized by Casella and George (1992). Later
this algorithm was shown to be a special case of the MH algorithm (Robert and Casella
(1999)).

The Gibbs sampler requires the full conditional distribution of each element of 8 to be
calculated. That is, the distribution of #; given all other elements of 8 = (61,...,6,), for
each j. The simulation starts from an initial value 0. Given the i-th draw, 81, the
next draw is generated by simulating each element of 8 in turn from their full conditional

distribution,

67t ~ w6116, 60,



CHAPTER 1. INTRODUCTION 4

o5+ ~ 7r(9p|9§i), T 70(21)-

» P
The simulation stops when sufficient samples have been collected.

Therefore, if we can calculate the full conditional distribution of each element of €, and
it has a form that can be directly sampled from, the Gibbs sampler is a viable strategy.
However, if the full conditional distributions are difficult to calculate, or even if such is
possible, they have a complex form rather than being a well-known distribution, other
sampling strategies, such as the MH algorithm, are needed.

In Chapter 2 of this project, we use an example to demonstrate the MH algorithm
and highlight problems it can encounter. Then some more recent methods that have been
introduced in the literature to avoid some of these problems are introduced. A simulation
study to compare the various methods is performed in Chapter 3. Further exploration
on some interesting cases discovered in the simulation study are discussed in Chapter 4.

Chapter 5 summarizes the work and discusses recommendations.



Chapter 2

The Algorithms

2.1 Metropolis Hastings Algorithm

In the previous Chapter, we briefly introduced the MH algorithm in a Bayesian framework.
The MH algorithm has been frequently used to sample complex distributions in a broader
context. Here we describe the algorithm in detail in a general form. Application to Bayesian
analysis remains an important special case.

Assume the target distribution is 7(x). Given the previous point z¥ | a candidate point
x* is generated from a proposal distribution g(z*, x®). The MH algorithm is summarized

as follows.

The Metropolis-Hastings Algorithm.

Step 1. Start from an initial value z(0,
i

Step 2. Generate a proposal x* from some proposal distribution g(z*, x )).

Step 3. Compute

) * * (1)
a(z', z*) = min 7r(:c.)q(:c i ) 11
m(z®)q(z®, z¥)

Step 4. With probability a(z(®,z*), let (0+1) = z*. Otherwise, let z+) = (¥,

Step 5. Repeat Steps 2-4 until a sufficiently large sample is collected.



CHAPTER 2. THE ALGORITHMS 6

Figure 2.1:  Positions of the mean vectors

The MH algorithm is an implementation of MCMC. The transition probability from the
previous state to the next state is P(x(1tD]z®) = ¢(x(+1) z))a(x®, 2+D). It satisfies

the reversibility condition
w(:c(i+1))P(:c(i+1)|:c(i)) - w(:c(i))P(:c(i)[:c(i“))

that assures the samples converge to a stationary distribution equal to 7(x). For discussion
see Chib and Greenberg (1995).

Various densities can be chosen as the proposal distribution. One common family is a
random walk where the candidate x* equals %) plus noise. The uniform distribution is such

a commonly used choice. For example, each component myH) of '+1) is independently

generated from a Unif (a:;-i) - W, :r,;i) + W) centered at xg-i)
my) is the corresponding component of the previous state (¥, Thus, 2* = £ + z where

z ~ Unif(=W,W). One characteristic of the uniform distribution being the proposal

, where W is a constant, and

distribution is, since it is symmetric, q(cc*,:c(i)) = g(x'9,2*) and cancel in a(:c(i),:c*),
yielding

a(z¥, 2*) = min [-7?((5(—))) 1] .

In addition to choosing the family of proposal distributions, the choice of the spread
of the specific proposal distribution used is very important. The choice of spread (or the
step-widths) of the proposal distribution will greatly impact the performance of the MH

algorithm. We use the following example to explain.
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Example 1. Assume the target distribution we want to sample from is a mixture of spherical

bivariate normal distributions,

= wy 1 ’
=3 exp{éo—?m (e - m>},

27r0i‘2

where © = (z1,x2)’, m = 5 is the number of bivariate normal distributions, o; = 0.5 is
the common standard deviation for each element of the I-th bivariate normal distribution,
w; = 1/5 are the weights assigned to each distribution, and p; = (u1;, por)’ are the mean
vectors. Five mean vectors are positioned as a cross (see the Figure 2.1). Along the cross,
the distance between two mean vectors is 3. The simulation starts from the initial point
(0 = (-3,-3).

In the implementation of the MH algorithm we use a uniform distribution centered at
the current x as the proposal distribution, i.e.

g(z*, 29 = go(xt, 2V go(ah, 2,

where

RGN L
go(z}, x;") = QWI[z§i)—u'gz;gz;i)+u'] for j = 1,2,

and W, the step-width, is set to three different values, 0.1, 3 and 10. For each step-width,
the MH algorithm is run for 30000 iterations.

For each step-width, we let the simulation run 200, 400, - - -, 30000, iterations and record
the estimated mean of x; and zo (over each subsequent group of 200 iterations) versus the
number of iterations. When the estimated mean becomes stable over iterations, that is the
estimated mean change in a stable range, it corresponding iteration would typically be used
as the approximate burn-in period. The histogram of the generated points are plotted to
compare with the known marginal distributions. Figures 2.2-2.4 are the “variate mean vs.
iteration” plots and “histogram” plots corresponding to step-widths W = 0.1, W = 3, and
W = 10, respectively.

Viewing the histograms for step-width W = 0.1 (Figure 2.2), we see that the algorithm
has a difficult time migrating from one hump to another. Viewing the “variate mean vs.
iteration” plots, we see that the the mean of 21 or x9 stay in —3 for a period of time, then
change dramaticly to 0, which shows the sampling move from one hump to another.

Viewing the histograms for step-width W = 3 (Figure 2.3), we see that the algorithm

no longer has the difficulties observed for the smaller W, and seems to fit the marginal
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distributions very well. In addition, viewing the “variate mean vs. iteration” plots, we see
that the estimated means of x; and x5 quickly reached 0 and stayed in the stable vibration
range.

Viewing the histograms for step-width W = 10 (Figure 2.4), we see that the algorithm
seems to fit the marginal distributions fairly well, but comparing to W = 3, the smoothness
of the fit is worse. Viewing the “variate mean vs. iteration” plots, we see that, as with
W = 3, the estimated means of #; and x4 also quickly reached 0 and stayed in some stable
vibration range. Comparing with W = 3, the vibration range is bigger. For both W = 3
and W = 10, the burn-in can be set less or around 2000.

To see the reason that the algorithm’s performance is impacted by choice of step-width,
consider the acceptance probability of a candidate point x* given the previous point (¥,
7(x*) 1] .

Imagine we sample the points near a mode. If w(x*) > 7(x9), a(x®, 2*) = 1, which means

the algorithm will always accept the candidate point. On the other hand, if 7(x*) < 7(z®),
T(I*)

(@)’
the step-width is large, it is more likely the candidate point, z* is far from z*) and thus more

the algorithm will accept the candidate point with probability a(:l:(i), T¥) = So when
likely that Oz(:l:(i), x*) is very small, and more likely the candidate point will be rejected.
This can explain why for W = 10, the histograms have some big peaks for certain values
because the algorithm got stuck there for some period of time.

Decreasing the step-width may improve this situation. When the step-width is too
small, the acceptance rate a(z?, z*) can be relatively big, then it is more likely to accept
the candidate point. However, it can take much longer to sample all the possible values
in the support of the distribution because only small jumps are possible. In some special
situations, such as multiple modes well separated from each other, when the sampling keeps
happening in one mode, it’s very difficult to sample a candidate point from the other mode
because the small step-width limits the possibility, just as what we see in Figure 2.2.

The acceptance rates (AR) for each step-width are listed in Table 2.1. AR for W = 0.1
is extremely high (0.932), and AR for W = 10 is very low (0.093), which verifies the above
discussion.

This property of the MH algorithm has been recognized for a long time. Recently, new
algorithms have been proposed to try to avoid some of these problems. We introduce three

very recent ones in the following three sections.
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Table 2.1: Acceptance rate for each scale

Scale 0.1 3 10
AR 0.932 0.194 0.039

2.2 Automatic Step Size Selection in the Metropolis-Hastings
Algorithm

Although the MH algorithm is a powerful tool, its mentioned drawbacks can often create
difficulties in implementation. We’ve seen via an example that the performance of the MH
algorithm is sensitive to the choice of step-width. Graves (2005) proposes a method for
automatically finding a judicious choice of step-width to use in the MH algorithm. Graves
connects the problem of finding a desirable step-width with how to achieve a desirable ac-
ceptance rate in the MH algorithm. Gelman, Roberts, and Gilks (1995) give theoretical
and simulation-based justification for acceptance rates of 156% to 50% yielding good perfor-
mance of the MH algorithm. If so, the problem of achieving good performance of the MH
algorithm by tuning the step-width reduces to obtaining a good acceptance rate by tuning
the step-width. Graves (2005) empirically notes that the logit of the acceptance rate (A) is
very nearly linear in the log of the step-width (W), that is,

logit(A) = a + b x log(W), (2.1)

where logit(y) = log(y/(1 — y)) and suggests that model (2.1) can be used to find a good
step-width for the MH algorithm via the following method.

Graves’ Method.

1. Divide the burn-in period into P sections each with an equal number of iterations.

For each of these use a different step-width.

2. For each iteration record a 1 if the proposal is accepted and a 0 otherwise, and thus

calculate the acceptance rate A for each step-width.

3. Treat this as a dose-response experiment, with step-width taking on the role of dose
and AR the role of response probability and fit the logistic regression model (2.1) to

obtain G and b.
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4. Find the recommended step-width W* by solving the fitted model for a certain desired
acceptance rate A*, that is,
logit(A*) — a

W* =ex
p( ;

)-

One key problem is how to choose a sequence of step-widths to apply in the burn-in
period. Graves suggests one way. The step-widths are built in a geometric sequence with
the common ratio of 2 around the initial guess of an optimal step-width, C. So once an
initial guess of the optimal step-width, C, and the number of different step-widths, P, are
given, the sequence of step-widths is {C*2'P_51,C’ *2"%, cee O ,C*2%, C+* 2%}.

Based on the above construction of a sequence of step-widths, Graves (2005) performed
simulations to: find an ideal logistic model; determine how accurate the initial guess of the
optimal step-width needs to be; evaluate how many steps are needed and how many runs
for each step are needed.

Graves’ simulation study assumes that the true relationship between acceptance rate
and step-width is given by logit(A) = —5.7 — 1.121log(W) and the optimal step-width W
is 0.01 (yielding A = 0.368). Three factors are used in this study. The initial guess of the
optimal step-width, C, the number of the steps, P, and the number of iterations per step,
M are set as follows: C = 0.01 x2* k= {3,5,7,9,11,13,15}, P = {3,5,7,9,11,13,15}, and
M = {10,20,30,40,50}. For example, if C' is 0.16, P is 5 and M is 20, then the sequence
of the step-widths is (0.04, 0.08, 0.16, 0.32, 0.64) and each of them is run for 20 iterations.
For each combination of the three factors, a logistic model was built. For over 95% of 100
simulated data sets, Graves’ method yielded an acceptance rate falling between (0.25, 0.45).

Graves’ main observations from his simulation study are as follows. If the initial guess
of the optimal step-width is exactly right, three steps and 40 trials per step are adequate.
If the initial guess of the optimal step-width is not correct but too large, say too large by a
factor of two, several ways can make it equally efficient: 20 each at 9 or 11 levels, 30 each
at 7 levels, or 40 at 5 levels. The general rule is, the number of the steps should be large
enough so that at least two step-widths smaller than the optimal are tried. If the initial
guess of the optimal step-width is small, say too small by a factor or two or four, forty trials
of each step are adequate. When the step-width is underestimated by a factor of eight or
more, total sample sizes of 180, 220 and 280 respectively, and 20 or 40 per step size are

equally effective.
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2.3 Slice Sampling

Neal (2003) introduces a new MCMC method called slice sampling. The idea comes from
the observation that for a univariate distribution, to sample a random variable x from #(r),
one can sample uniformly from the region under the curve of the density function and only
look at the horizontal coordinate. This idea can be interpreted as follows. Suppose we wish
to sample from a distribution for a variable z. The density of x is proportional to some
function f(x). An auxiliary variable y is introduced. A joint distribution over z and y that

is defined over the region U = {(r,y) : 0 < y < f(z)} below the curve f(z) is

1/z, if0<y< f(x),
plz,y) =

0, otherwise,

where z = [ f(z)dzx
So to sample x, we can sample (z,y) jointly, and then ignore y. The marginal density

for z, our target distribution, is

f(z)
pa) = [ /2y = pia)

~ For slice sampling, the Markov chain is constructed by repeatedly alternating between

the following two sampling steps. Assume the current state is @,

e Uniformly sample y on the vertical interval (0, f(z(?))). Call the sampled y, y*. See
Figure 2.5.

e Uniformly sample z from the set {z : y* < f(x)} (termed a slice), depicted in Fig-
ure 2.5 as the three horizontal lines with end-points [A, B], [C, D] and [E, F).

The key point in slice sampling is how you can get “the horizontal interval” and sample
from it to make the Markov chain converge to the invariant distribution. That is, how does
one quickly sample from the set of {z : y* < f(z)}7 Neal introduces some updating strate-
gies. We will first introduce the slice sampling method we use for univariate distribution,

and then consider the multivariate case.
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Figure 2.5:  Slice sampling

f(x)

2.3.1 Univariate slice sampling methods

Assume f(z) is a function proportional to the target distribution. The current value of the
variable is z(*) and the new state value is z{!). Slice sampling on a univariate distribution

proceeds as follows.

Slice Sampling (Univariate).

Step 1. Draw y ~ U(0, f(z(¥)). Define a horizontal “slice”, S = {z : y < f(x)}, and
(0)
e S.

Step 2. Find an interval I = (L, R) around z(©) which contains much or all of the slice

(discussed subsequently).
Step 3. Draw the point z; from the interval I (discussed subsequently).

Step 4. Repeat 1 - 3.

To make the Markov chain converge to the right invariant distribution, the correctness
of the univariate slice sampling requires the new state (1) be chosen properly. This involves

obtaining a random interval I = (L, R) followed by selecting (1) from it. There are two
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strategies introduced by Neal to find the interval I; the Stepping out procedure and the
Doubling procedure. We will only consider the simpler of these, the Stepping out procedure.

The Stepping out procedure works as follows. Draw y ~ U(0, f(2(?)) and define a slice
as in step 1 of Slice Sampling. Randomly position an initial interval of length E so that it
contains the current state z(9). Repeatedly expand the interval on both ends, by increasing
its length by E, until the ends satisfy y > f(L) and y > f(R) or the interval reaches a
randomly determined maximum size.

The Stepping out procedure in detail:

Settings: Let E = estimate of the typical size of a slice and m be a parameter to control
the maximum length of interval I = (L, R).

Step 1. Let L =2 — ExU; and R = L + E, where U, ~ Unif(0,1).

Step 2. Let J = Floor(mU,) and K = (m — 1) — J, where Uy ~ Unif(0,1).

Step 3. Repeat while J >0 andy < f(L): L=L—-FE,J=J-1.

Step 4. Repeat while K >0 and y < f(R): R=R+ E, K=K + 1.

After an interval I = (L, R) has been found, the next step is to randomly draw a new
point (1) from this interval.

One could repeatedly uniformly sample from the interval I until a point that lies in
G = INS is found, but this can be inefficient when G is a small portion of I. Neal introduced
one method called the Shrinkage procedure to avoid this problem. Sample uniformly from
the initial interval I if the point drawn is not in G; shrink the interval; and repeat sampling
from the new interval.

Note. In some situations, the doubling procedure may be more efficient than the step-
ping out procedure, because when the initial interval F is too small, the doubling procedure
may expand the initial interval faster than the stepping out procedure. One main difference
between the stepping out procedure and doubling procedure is, the interval I found by the
stepping out procedure ensures that the set G that one should sample from is S N I, while
for the doubling procedure it may turn out the set G one should sample from is only a part
of SN 1. This creates more complications if using the shrinkage procedure to sample a new
point from the interval I found by the doubling procedure. An extra test needs to be done
on the new point to determine whether it is acceptable or not, i.e. whether it is in set G.

More discussion can be found in Neal (2003).
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2.3.2 Multivariate slice sampling methods

Slice sampling from multivariate distributions can be extended from univariate slice sam-
pling by applying it in each dimension in turn. However, performing the stepping out
procedure or doubling procedure to search for the interval I in all p dimensions can be very
time consuming. Instead one can directly sample from multiple dimensions.

Assume & = (z1,...,2p) is a p-dimensional variable whose density is proportional to
f(x). Similar to the idea of using an interval I = (L, R) for the univariate case, one
uses an axis-aligned hyper-rectangle H = {x:L; < z; < R; for j =1,...,p} containing
the current point. Assume the current state is (% = (x(lo), ey x,(go))’, and the next state is

z) = (x(ll), e ,.’E:E,l))’ . Multivariate slice sampling is implemented as follows.

Slice sampling (Multivariate).

Step 1. Draw y ~ U(0, f(x(?)). Define a slice to be § = {x : y < f(x)}.

Step 2. Find a hyper-rectangle H = (L, Ry) x - -+ x (Lp, R,)) around =(©) which preferably

contains at least a big part of the slice.
Step 3. Draw the point V) from the part of the slice within this hyper-rectangle.

Step 4. Repeat Steps 1 — 3.

The ideal H is the smallest hyper-rectangle containing S. But obtaining this is likely
not feasible. If the variables have bounded ranges, H can be set to the whole space of the
variables, but this can be very ineflicient. So, in practice we have to be content with finding
one hyper-rectangle that contains the current point (°). The easy way to position the hyper-
rectangle H is to use a common fixed scale parameter along each axis E = (Ei,..., Ep),
where E; = E,.j=1,...,p.

Step 1. Positioning H: Along each axis, j, let the left and right bound of the hyper-
rectangle be denoted L; and Rj, respectively. H is positioned by letting L; = 17;0) - ExU;
and R; = L;j + E, where U; ~ Unif(0,1) independent for j =1,...p.

Step 2. Sample (! from the rectangle H by shrinkage procedure applied to each dimension,
as follows Repeat while y > f(zV): a",;l) =L;+U;(R; — Ly). If xg-l) < 7\ L; = a",;l),

] 7
otherwise, R; = xg-l).



CHAPTER 2. THE ALGORITHMS 16

2.4 Equi-Energy Sampler Algorithm

The Equi-Energy (EE) sampler is proposed in Kou, Zhou, and Wong (2006). To introduce

it, we begin with some definitions from statistical mechanics.

2.4.1 Problem in statistical mechanics

The distribution of a system in thermal equilibrium at temperature T is described by the

Boltzmann distribution,

1

z) = ——exp(—h(z)/T), 22
pr(e) = 7 xpl=h(@)/T) (22
where h(z) is the energy function or Hamiltonian associated with the Boltzmann distribu-
tion, and Z(T') = 3 exp(—h(z)/T) is referred to as the partition function. For any state
function g(x), its expectation pg(7T) with respect to the Boltzmann distribution is known

as the Boltzmann average,
ng(T) =D _ g(x) exp(~h(z)/T)/Z(T). (2.3)

To study the system, people are interested in estimating the Boltzmann averages p,(7) and
the partition function Z(T').

MCMC methods, for example Metropolis and MH algorithms, were applied to solve
these problems, but they can perform poorly if the energy function has many local minima
separated by high barriers that cannot be crossed by the proposed moves. In this situa-
tion the chain will be trapped in local energy wells and will fail to sample the Boltzmann
distribution correctly. To overcome this problem, some ideas have been proposed in the
literature. For example, adding auxiliary variables as in group Ising updating in Swendsen
and Wang (1987) or data-augmentation in Tanner and Wong (1987). However, these ideas
are problem-specific and may not work for any given problem.

Later, some dynamic Monte Carlo methods greatly improved the situation (Geyer (1991);
Marinari and Parisi (1992) etc.). They were developed to simulate from the Boltzmann
distribution at fixed temperatures. These methods can also be called temperature-domain
methods. They aim to provide direct estimates of parameters such as Boltzmann averages

and partition functions that are functions of temperature.
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The EE algorithm of Kou, Zhou, and Wong (2006) is based on energy domain consider-
ation. Energy domain methods use the duality between temperature domain functions and
energy domain functions. They obtain the density of states and microcanonical averages
(both are energy-domain functions), and then are transferred to the temperature domain to

obtain the partition and the Boltzmann averages. Details are in the following section.

2.4.2 Equi-energy sampler algorithm

Before discussing the EE algorithm, we first describe some notation related to this algorithm.
Assume 7(z) is the target distribution and h(z) is the corresponding energy function. Then
7(z) «x exp(—h(x)/T), which has a similar form as the Boltzmann distribution.

To apply the EE sampler algorithm, a sequence of energy levels and the associated
temperatures need to be set,

Hy<H < ---<Hg < Hpyy =00,
0 1 K K+1 = OO (2'4)

1=Ty<Ty < - < Tk,
where Hy is below the minimum energy Hy < inf; h(zx). The EE sampler algorithm con-
structs (K + 1) parallel chains. The target distribution for the k-th chain is mi(x)
exp(—hg(x)/Tx), where h(z) = max{h(z), Hy}, kK = 0,1,..., K. Each chain corresponds
to one energy level and the associated temperature. Chain X[ aims to sample from 7y ().

Chain Xjy) aims to sample from mo(z) which is the target distribution #(z). This is because

1
mo(x) e:r,p(——-ITO x max{h(z), Ho}), and Tp =1, h(zx) > Hy,

so that

mo(z) = m(x) o exp(~hz)).

Thus, the basic idea of the EE algorithm is as follows. The distribution of the higher level
chain, for example chain X[, is flattened by the energy function hx(x) and the associated
temperature level T}, which avoids the problem of local traps. Once the higher level chain
is constructed, in the process of the construction of the lower level chain, the new point
can “jump” to a new x with similar energy level (i.e. y = h(z)) to the current point with
the help of the higher-level chain. We call this an Equi-energy jump (EE jump). That is,
the new point is randomly chosen from similar energy sets from the higher-level chain. An

EE jump helps to avoid the local traps of the lower-level chain. The last chain, X, is
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proved to have steady-state distribution myp = 7 in Kou, Zhou, and Wong (2006). We call
the empirical equi-energy sets energy rings.

To construct the energy rings, the state space ¥ is partitioned according to the energy
levels, ¥ = U;\z() D;, where D; = {z : h(z) € [Hj, Hj41]} for 0 < j < K, are the energy
sets determined by the energy sequence (2.4). For any = € ¥, let I(x) denote the partition
index such that I(x) = j, if z € Djy, i.e. if h(z) € [H;, Hj41).

The EE algorithm starts by constructing the highest level chain X[, then moves on
to the the lower level chains, and ends with the lowest level chain X{q. Each chain has its

]

own empirical energy rings so that ng denotes the j-th energy ring of the k-th chain, for
j=0,...,Kand k=0,..., K. The two basic types of move for generating a new point in
the EE algorithm are: (i) an MH local move. (ii) an EE jump. The algorithm is described

in the order of the chains being constructed.

EE algorithm.

Step 1. The first chain X[, is constructed by the MH algorithm. After a burn-in period
B, the generated points are assigned into different “energy rings” DE-K] where j =
I(Xq K]ﬂ-}) and 7 denotes the i-th step of the chain. Note that the points can belong

to any energy ring.

Step 2. The second parallel chain X _y starts after the first chain X|4] has run (B + N)
steps. Simultaneously, the first chain still keeps running and its generated points are
continually assigned into energy rings. The second chain X[, _yj is constructed either
by an MH move or by an EE jump. The first point, X(x_yj 1}, is generated from
an MH step. The point Xyx_1)413,7 2 1, is also generated by an MH move, if the

]

energy ring D;K of chain Xy is empty, where j is the energy level of the current
point Xy(x_1}4}- When the energy ring D;K] is not empty, the next point Xy _1):413
is generated via an MH local move with probability J, or through an EE-jump with
probability 1 — J. If the EE-jump is implemented, a state z* is uniformly chosen from

J

the energy ring D][-K , and the chosen z* is accepted as X{|x_1]:4+1} with probability

, { m»—l(I*)WA-(X{[K—l},i})}
min § 1, .
Tr-1(X{[k-114)) Tk (%)

If z* is rejected, X{[x_1)i41) keeps the old value Xy _1)4-
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Similar to with the first chain, after an initial burn-in period of B steps, the generated
points of the second chain are assigned into different “energy rings” D][-K—l] where

J = I(X{{x—1},s})- Note by this time the first chain X|4j has run (2B + N)) steps.

Step (K —i+1). The (K — k + 1)-th parallel chain X starts after chain X|;_;) has run
(B + N) steps. All the previous chains are continually updated. The construction
of chain Xp is similar to that of the second chain X _;;. The point Xy i41} is
generated by an MH step when: (i) i = 0; (ii) D](-kH) = (; (iii) with probability J if
D;kﬂ] # (); or by an EE-jump with probability 1 — J when D][-Hl] # 0. z* is chosen
from Dg-kﬂ] and the acceptance rate is

in {1’ Wk(m*)ﬂkﬂ(X{[k],i})}
Te(X (k)1 (%) S
where £ = 0,1,..., K. After the initial period of B steps, the generated points are

assigned into “energy rings” D;k], where j = I(X{x)4))-

Step (K + 1). The last chain Xy is constructed and has target distribution = (x).

In the implementation of the EE algorithm, Kou, Zhou, and Wong (2006) suggest some
practical settings for the parameters. Given the lowest and highest energy levels Hy and Hy,
the other energy levels can be set as a geometric progression, that is, setting log(H;+, — H;)
evenly spaced. Choosing the temperature such that (H;+; — H;)/T; = O, with O € [1,5],
often works well. The choice of K, the number of temperature and energy levels, depends
on the complexity of the problem. Usually more chains and energy levels are needed if the
target distribution is high-dimensional and multi-modal. The authors recommend K be
chosen roughly proportionatl to the dimensionality of the target distribution. The EE jump
probability J should be chosen between 0.05 and 0.30. We illustrate the EE algorithm via

the following example.

2.4.3 Example

Assume the target distribution is a mixture of univariate normal distributions,

I LR
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Figure 2.6: EE energy levels
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levels

where m = 3 is the number of normal distributions, o; = 0.5 is the common standard
deviation of the I-th normal distribution, w; are the weights assigned to each distribution,
wy; = 1/5, wo = 3/5 and w3 = 1/5. And yy are the means, 3 = —3, p2 = 0 and p3 = 3.
Set the number of energy levels to K = 2, constant O = 4 and the probability of an
EE-jump to J = 0.2. The step-width of the MH algorithm is set to 2.6. The simulation
starts from the initial point z(¥) = —3. Since inf h(z) = 0.737, we set the lowest energy
level Hy = 0. The highest energy level Hs3 is set as 100, that corresponds to f(z) =
3.720076e — 44 which is almost 0. So the rest of the energy levels are set in a geometric
progression. The energy level 1, Hy, is set to inf h(x) + 3 = 3.74, and the energy level 2,
H, = Hy*(H3/Hp)'/2. The temperature levels except Ty are set using the relationship with
the energy level (H;y1 — H;)/T; = O, where O = 4 here. So, the temperature levels are 1,
3.9 and 20.17.

Figure 2.6(a) is a plot of the target distribution. Figure 2.6(b) is a plot of the energy
function, h(x), with the energy levels Hy, H;, Hy and Hj depicted as horizontal dotted
lines. Figure 2.7 gives histograms of the samples from the three chains in the EE algorithm
together with the target distributions. Figure 2.7(a) is the first chain Xy, which corresponds
to the target distribution fi(z) oc exp(—ha(x)/132). Figure 2.7(b) is the second chain Xy,
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Figure 2.7:  EE algorithm output

Histogram of the 15t Variable of Chain X(2) Histogram of the 1st Veriable of Chein X(1} Histogram of the 13t Variabie of Chisn X(0)

Xpm 7 X2, 7 X
(a) Chain X|y {(b) Chain Xy (¢) Chain X|g

which corresponds to the target distribution fi(z) « exp(—h;(x)/T1). Finally, Figure 2.7(c)
is the last chain X[, which corresponds to the target distribution f(z).



Chapter 3

Screening Experiment

3.1 Introduction

In the previous chapter, we reviewed a number of sampling algorithms. In this chapter,
a screening experiment will be performed to study and compare the algorithms and to
explore the parameters that have a significant effect on the algorithm performance. In this
screening experiment, we first define the parameters related to the target distribution and
to the algorithms that we feel may impact the performance. Then we set the levels of these
parameters. A 36-run experimental design is used in the simulation. The simulation is done
repeatedly for each algorithm to get five replicates. A model selection procedure is applied
to the average of the five replicate data to find the parameters that most affect the algorithm
performance.

After finding the important parameters, we try to choose the best settings of the algo-
rithm parameters, to maximize the overall performance of each method. We will use robust
parameter design to find the best or better settings of the parameters.

The five algorithms considered in the simulation study are:

MH algorithm. The MH algorithm with a uniform proposal distribution.

Graves’ method. This method models Acceptance Rate as a function of Step-width in the
burn-in period of the MH algorithm, then uses the recommended step-width in the
MH algorithm after the burn-in.

22
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Slice sampling algorithm. Slice sampling (Multivariate) is used, since the target distri-

bution is a bivariate distribution (see Section 3.2.1).

EE-MH algorithm. The Equi-energy sampling algorithm with an MH algorithm local

move.

EE-Slice algorithm. The Equi-energy sampling algorithm with a Slice sampling local

move.

3.2 Factors and Levels

Because the five algorithms do not all have the same tuning parameters, the experiment
is carried out as five separate screening experiments. Below, we discuss all of the factors
and levels included in the study, beginning with the target distributions (which are common
to all five methods), and then move on to the algorithm-specific parameters. Each of the

parameters discussed will be considered at two-levels or three-levels in the study.

3.2.1 The target distribution parameters

To form various possible distributional forms, we use a mixture of bivariate normal distri-
butions f(x) (as in the example of Chapter 2),

m

wy 1 ,
xT) = serpl ——=(x — T - ,
S e )
where 0; = 0.5 is the standard deviation for each component of each bivariate normal

distribution, m is the number of bivariate normal distributions, w; are the weights assigned
to each distribution, and p; = (py, o)’ are the mean vectors. The problem of generating
different distributional shapes depends strongly on the number of mixture components, m,
the relative locations of g;, and their weights,w;. The positions of the mean vectors are
controlled by the distance, d, between g, along a cross shaped grid (termed grid spacing).
Based on observations of the MH algorithm example in Chapter 2 and a number of
related examples, we had some general idea of what shapes of distribution impacts the
performance of the MH algorithm, as well as the performances of other algorithms. For
example, distributions with several modes, very separated, partly connected, or barely sep-

arated; distributions with modes that are of equal size, or a mixture of unequal sizes—one
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single main peak surrounded by several small modes. So, by changing the values of the

parameters m, w; and d, we can control the modes of the distribution in terms of number,

relative heights, and locations, thus generating distributions with varying desired aspects.
We set m, the number of the bivariate normal distributions, at three levels; 3, 5, 7. Each

level also represents a certain pattern of the mean vector positions as depicted in Figure 3.1:

Figure 3.1:  Positions of the bivariate distributions

mu_2 mu_2

m_5 L)

(a) m=3 (b) m=5 (c) m=7

e m = 3. Three mean vectors are along one line (g1,, f5, p3) as in Figure 3.1(a).

e m = 5. The five mean vectors are positioned at the ends (p1, o, tyg, p5) and the

center ps of the cross as in Figure 3.1(b).

e m = 7. The two adjacent lines are at 60 degree angles to each other. The seven mean
vectors are positioned at the ends (pq, po, H3, M5, Mg, f7) and the center, piy, of the

lines depicted in Figure 3.1(c).

The grid spacing, d, the distances between the mean vectors along the lines in Figure 3.1,
are set at three different levels; 1, 3, 5. The reason for choosing these particular values is,
with a; = 0.5, they produce modes that are barely separate; partly connected; and far
apart, respectively. The third parameter, weight w = (w1,--- ,wy,), is considered at two
levels: wy = -+ = wy, = 1/m, making the modes equally sized; and w(y,11)/2 = 2/m and
w; = (m—2)/[m(m —1)],i = {1,---,(m —1)/2,(m + 3)/2,--- ,m}, so as to make one
large central peak surrounded by smaller modes. Table 3.1 is a summary of the parameter

settings related to the target distribution.
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Table 3.1: Target distribution parameter settings

Level 0 Level 1 Level 2 OA col
Grid spacing (d) 1 3 5 2
Normal dist. No. (m) 3 5 7 3
Weight (w) (-, 2) A(m=2...2m=2...Y 10

3.2.2 Algorithm Parameter Settings

In the screening experiment, the algorithms share three common tuning parameters: initial
value (V1, V2)’, number of iterations (N), and number of interactions in the burn-in period
(B). In addition, each algorithm has its own specific parameters. We first introduce the
parameter settings of the common algorithm parameters, and then the algorithm specific
parameters for the algorithms in turn. A summary of the parameter settings is given in
Table 3.2.

Common Algorithm Parameters

The initial values (V1,V,)' corresponding to the variate = (x7,x2)" are both set equal to
V. They are considered at two levels; —d and 0 (the weighted mean of the mean vectors,
S wipi; = 0, j = 1,2). We consider the number of iterations, N, equal to 10000 and
40000, since N = 10000 usually works well for the MH algorithm and slice sampling, but
EE sampling needs a larger N. For similar reasons, we set the burn-in period B at 500 and
2000.

Algorithm Specific Parameters

MH algorithm

Our implementation of the MH algorithm uses the uniform distribution to generate the
candidate points for each variate. Let (W, W) denote the vector of the step-widths of
the proposal distribution for MH algorithm, where W, is the step-width of the uniform
distribution for variate x;, 7 = 1,2. That is, the candidate point for variate is generated
through a uniform distribution, Umf(m;k) -W;, .T,;.k) +W;),j = 1.2, where (:r,gk), m(Qk)) is the
current point (iteration k). In our study we set W7 = Wy = W. Since the grid spacing d is

1, 3, and 5, we choose three values for W; 0.1, 2.6, and 5.1. In this way we consider cases
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where the step-width is much smaller, similar to and much bigger than the grid spacing.
We anticipate that a small step-width relative to grid spacing will impact the ability of the

algorithm to adequately explore the support of the target distribution.

Slice Sampling Algorithm

The strategy of slice sampling a bivariate target distribution is sampling directly from
multiple dimensions. Let (E;, E2)" denote the vector of scale parameters to position the
hyper-rectangle H that contains the current point (I,gk),x(?k)). We let By = E; = E. As
with the MH algorithm, E is set to have the levels (0.1, 2.6, 5.1), to match the three levels

of grid spacing. Thus E' is playing a similar role for slice sampling as W does for MH.

Graves’ Method

In the simulation study, we would like to see whether using model (2.1) will find a step-
width that can improve the performance of the MH algorithm or not. We fit the model in
the burn-in period of the MH algorithm. A sequence of P step-widths are constructed, and
each step-width is run for B/ P iterations with their acceptance rates recorded. These step-
widths and acceptance rates are used to fit model (2.1). A step-width will be recommended
through the model by an ideal acceptance rate, and then be applied in the MH algorithm
after the burn-in period.

Based on our observations, a reasonable step-width is around 1.5d. We want the sequence
of step-widths to cover this value, and also to cover some values that are smaller and bigger
than this value. We thus construct the step-width sequence as follows: we consider the
center step-width C at three levels, 1, 2, and 3, and P at two levels, 5 and 11, and generate

a sequence of step-widths (as suggested in Graves (2005)) by
(Cx27 T Cx2 T [C, - Cx 2T, Cx 2T ),

The last parameter for Graves’ method is the ideal acceptance rate, A, which is used
via inverting model (2.1) to find the recommended step-width. Graves suggests the ideal

acceptance rate be between 0.25 and 0.45. We consider three levels; 0.2, 0.4, and 0.6.

EE-MH Algorithm
The EE-MH algorithm is the EE sampling algorithm with an MH sampling local move.

It has five parameters: the number of energy levels (K), energy level 1 (H;), constant (O)
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related to the energy and temperature levels, EE jump probability (J), and the step-width

The following parameter settings consider the authors’ suggestions in the original EE
sampling paper, Kou, Zhou, and Wong (2006). Based on preliminary investigations, we set
K to two levels; 2 and 4. The energy and temperature levels are set as follows: assume the
energy levels are H;,i = 0,--- , K + 1 and the temperature levels are T;,7 = 0,--- , K. Since
the lowest energy level Hy must be < inf; h(x), and in our case inf; h(z) = inf, (- log(f(z)))
is a small positive number, Hy is set to 0. The highest energy level, Hg 1, which corresponds
to f(x) close to 0, is set to 100. The rest of the energy levels are set in a geometric
progression. So the starting point of the geometric progression H; is needed to construct
the sequence. Once the starting point of the geometric progression, Hj, is determined, the

other energy levels can be set as

Hy H
H2=H1x(%)%,... JHig = Hx_1 x ( }I:(I;—I)%

We consider three levels of Hy; inf, h(z)+1, inf, h(z)+3, and inf; h(z)+5. With the energy
levels set, the temperature levels can be obtained by T; = (H;y1 — H;)/O,i = 1,--- | K,
where Ty = 1, and O is a constant suggested in Kou, Zhou, and Wong (2006) between 1 and
5. We consider O at two levels; 2 and 4. The fourth parameter, J, is the probability of an
EE-jump, and is suggested in Kou, Zhou, and Wong (2006) to be set between 0.05 and 0.30.
We consider three levels, 0.10, 0.20, and 0.30. For the final parameter, step-width (W), we

use the same values as in the MH algorithm.

EE-Slice Algorithm

The EE-Slice algorithm is the EE sampling algorithm with a Slice sampling local move.
It has five parameters: the number of energy levels (K), energy level 1 (H;), constant
(O) related to the energy and temperature levels, EE-jump probability (J), and the scale
estimate (E). The first four parameters are considered at the same levels as those in EE-
MH algorithm, and the scale parameter, E, is considered at the same levels as in the Slice

sampling algorithm.
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Table 3.2: Algorithm parameter settings

Common algorithm parameters
Level 0 Level 1 Level 2 OA col

Initial value (V) —d 0 11
Iteration No. (V) 10000 40000 12
Burn-in (B) 500 2000 13

Algorithm specific parameters
Level 0 Level 1 Level 2 OA col

MH Step-width (W) 0.1 2.6 5.1 4
Graves’ No. of points (P) 5 11 14
Initial guess of the optimal 1 2 3 5
step-width (C)
Acceptance rate (A) 0.2 0.4 0.6 6
Slice Scale parameter (E) 0.1 2.6 5.1 4
EE-MH  Step-width (W) 0.1 2.6 5.1 4
Energy level No. (K) 2 4 14
EE jump prob. (J) 0.1 0.2 0.3 5
Energy level 1 (H;) 1 3 5 6
Constant (O) 2 4 15
EE-Slice Scale parameter (E) 0.1 2.6 5.1 4
Energy level No. (K) 2 4 14
EE jump prob.(J) 0.1 0.2 0.3 5
Energy level 1 (H;) 1 3 5 6

Constant (O) 2 4 15

28
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3.3 Screening Experiment

3.3.1 Design matrix

We use the 36-run orthogonal array (OA) in Zhang, Pang, and Wang (2001) as the basis
for the design matrices for our screening experiments. This is a 6! x 3% x 219 design (see
Table 3.3). That is, it has one 6-level columns, 8 3-level columns and 10 2-level columns.
From the summary of the five algorithms, we see that the MH and Slice sampling algorithms
have 3 three-level factors and 4 two-level factors, Graves’ method has 4 three-level factors
and 5 two-level factors, while both the EE-MH and EE-Slice algorithms have 5 three-level
factors and 6 two-level factors. So for each algorithm we pick out certain columns from the
base OA, and use them as the settings of the parameters of that algorithm. We run five
independent experiments, one for each algorithm. For the common parameters, including
the distribution parameters and the common algorithm parameters, all of the algorithms
use the same settings. The settings of the distribution parameters d, m and w are done via
columns 2, 3 and 10, respectively. The settings of the common algorithm parameters V,
N and B are done via columns 11, 12 and 13, respectively. The settings of the algorithm
specific parameters are as follows: The step-width of MH and the scale parameter of Slice
sampling are set using column 4. For Graves’ method, the number of points, P, the initial
guess of the optimal step-width, C, and the acceptance rate, A, are set using columns 14,
5 and 6, respectively. For the two EE algorithms, the number of energy levels, K, the
EE-jump probability, J, energy level 1, H;, and constant, O, are set using columns 14, 5, 6,
and 15,respectively. The step-width and the scale parameter of the EE algorithms are set
using column 4. The above information is summarized in Tables 3.1 and 3.2. The design
matrix of each algorithm is given in Appendix A, the first column of y-responses in Tables
A.1-A5.

3.3.2 Response to measure the goodness of fit

For each algorithm, a 36-run simulation is carried out. Each run of the simulation is one ap-
plication of the parameter settings of the algorithm based on the algorithm’s corresponding
design matrix. The output of each run from one algorithm is a sample that is purportedly

from the target distribution. An appropriate goodness-of-fit measure is needed to evaluate



30

CHAPTER 3. SCREENING EXPERIMENT

Table 3.3: Orthogonal Array OA
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how closely the algorithm output matches the true target distribution. The Average Abso-
lute Distance (AAD) was used for this purpose. It measures the “average absolute distance”
between the true cumulative distribution function (CDF) of the target distribution and the
empirical cumulative distribution function (ECDF) from the sample.

We define AAD as follows. Assume F(z) = [*1 [2 f(t;,t9)dt1dts is the CDF of the of
the target distribution, S(x) =the proportion of (x1;,T2;) satisfying x1; < 1 and T9; < 9
is the ECDF from the sample. The average absolute distance (AAD) is defined as

>iny [S(@) — F(zW)]
N 3

where N is the number of the generated points. We use AAD as the response, y, for each

AAD =

simulation run in our experiments.

3.3.3 Analysis based on one replicate

We ran the simulation once for the parameters of the five algorithms set based on their design
matrix, and got 36 AAD’s corresponding to different parameter settings for each algorithm.
The results of the five experiments are summarized in Tables A.1-A.5 of Appendix A. A
very rough preliminary look at the data is given in the first two columns of Table 3.4. The
design is ignored and the mean and standard deviation over the 36 runs is given for each

algorithm.

Table 3.4: Response comparison

One replicate  Five replicates

Algorithm g sdy, ] sd,,
MH 0.0780 0.0530 0.0768 0.0470
Slice 0.0805 0.0604 0.0836 0.0536
Graves 0.0854 0.0524 0.0881 0.0536
EEMH  0.0623 0.0346 0.0658 0.0382
EESlice  0.0682 0.0489 0.0716 0.0475

The table suggests that EE-MH has the smallest average and variance of AAD, which
shows it potentially has the best goodmness of fit and stability. The EE-Slice algorithm also
seems to perform well. Slice sampling and Graves’ method do not seem to perform better
than the MH algorithm.
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Table 3.5: Model selection criteria

32

Criteria

Formula

Note

Akaike Information Criterion

Bayesian Information Criterion

R-square

Adjusted R-square

AIC = =2logL + 2p

BIC = —2logL + log(n) x p

RSS,
— 1 255
Rsq=1 RSS

Adjr2 =1— (1 — Rsq)%=]

L is the likelihood, p is

the No. of predictors of the
model plus 1. The smaller
the AIC value, the better
the model.

n is the No. of observa-
tions.  The smaller the
BIC value, the better the
model.

RSS, is the residual sum
squares, RSS; is the total
sum square of the values of
the y-variable subtracting
the mean. Tle bigger the
Rsq value, the better the
model.
The
value,
model.

the
better

bigger
the

Adjr2
the
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In the screening experiment, we are interested in what parameters play important roles
in each algorithm. Model selection will be applied to find the best subsets among the main
effects (linear and quadratic) and their two-way interactions. The main effects considered
include the two-level parameters, the linear term of three-level parameters and the quadratic
term of three-level parameters. We use an all subsets regression to find all subsets up to size
6, restricting to weak-heredity models (i.e. models for which at least one of the factors in
every two-factor interaction is also in the model), and rank them by the Akaike Information
‘Criterion (AIC), Bayesian Information Criterion (BIC), Adjusted R-square (Adjr2) and
R-square (Rsq). We also looked at the criteria values for subset size 7, but since the criteria
values of size 6 are very close to those of size 7, we stopped the exploration on subset size 6.
Table 3.5 is a summary of the formulae for and some notes on these criteria. More details
about these criteria can be found in Miller (2002). We looked at the best subsets of size
and compared to those with 6 eflects and found modest improvement. Thus, we decided to
look at the best model of size 6.

Before looking at the subset search results, we review the main effects of each algorithm.
MH algorithm

d; Linear term of the grid spacing

do Quadratic term of the grid spacing

my, Linear term of the number of the bivariate normal distributions
mg Quadratic term of the number of the bivariate normal distributions
w Weight

1% Initial value

N Iteration number

B Burn-in number

W, Linear term of step-width

Wo Quadratic term of step-width

Slice sampling algorithm

dr Linear term of the grid spacing

do Quadratic term of the grid spacing

my Linear term of the number of the bivariate normal distributions
Mg Quadratic term of the number of the bivariate normal distributions

w Weight
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Initial value

Iteration number

Burn-in number

Linear term of scale estimate

Quadratic term of scale estimate

Graves method

de
de

mg

Linear term of the grid spacing

Quadratic term of the grid spacing

Linear term of the number of the bivariate normal distributions
Quadratic term of the number of the bivariate normal distributions
Weight

Initial value

Iteration number

Burn-in number

Number of the step-width in the sequence

Linear term of the initial guess of the optimal step-width
Quadratic term of the initial guess of the optimal step-width
Linear term of the acceptance rate

Quadratic term of the acceptance rate

Linear term of the grid spacing

Quadratic term of the grid spacing

Linear term of the number of the bivariate normal distributions
Quadratic term of the number of the bivariate normal distributions
Weight

Initial value

Iteration number

Burn-in number

Linear term of step-width

Quadratic term of step-width

Energy levels
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Jr Linear term of EE jump probability
Jo Quadratic term of EE jump probability
Hy, Linear term of 1st energy level
Hi, Quadratic term of 1st energy level
0] Constant
EE-Slice
dy, Linear term of the grid spacing
do Quadratic term of the grid spacing
my Linear term of the number of the bivariate normal distributions
Mg Quadratic term of the number of the bivariate normal distributions
w Weight
|% Initial value
N Iteration number
B Burn-in number
E, Linear term of scale estimate
Eq Quadratic term of scale estimate
K Energy levels
Jr Linear term of EE jump probability
Jo Quadratic term of EE jump probability
Hy, Linear term of 1st energy level
Hy, Quadratic term of 1st energy level
0] Constant

We use all subsets regression to find all the subsets and picked the best two weak
hereditary subsets of different size based on the residual sum square RS5S,. Table 3.6
shows the top 2 weak hereditary subsets up to size 6. The best subset of size 6 for the MH
algorithm is: d;, do, Wy, d. B, doW,., and dgymg. So the important parameters are d, m,
W and B. The best subset of size 6 for the slice sampling algorithm is: d., mq, E., d E,,
dgomg, moE,. The important parameters are d, m and E. The best subset of size 6 for
Graves’ method is: d, dg, V, AL, dym, and VA,. The important parameters are d, m, V
and A. The best subset of size 6 for the EE-MH algorithm is: N, W,, J., d.J., doJ, and
W_Hi,.. The important parameters are d, N, W, J and H;. The best subset of size 6 for
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the EE-Slice algorithm is: m,, w, E., Eq, d E;, wE,, The important parameters are d, m,
wand E.

3.3.4 Analysis based on five replicates

The above analysis is based on one replicate of the 36 run simulation. We repeated each
experiment simulation a second time and found there to be some significant differences from
the first experiment. For example, Table 3.7 shows the percent differences of AAD for the
2nd replicate of MH compared with the 1st replicate. For some runs the difference is fairly
high. Run 12 and 36 both have over 100% difference. Another eleven runs have over 15%
percent differences. This tells us the simulation performances of the MH algorithm are not
very stable across the replicates. A similar result was also seen with the other algorithms.
So we repeated the experiments another three times and observed the algorithms’ behavior
based on the average response of the five replicates. A very rough preliminary look at the
five algorithms on the average AAD and the standard deviation of each run is given in the
last two columns of Table 3.4. The EE-MH algorithm has the smallest average and standard
deviation. EE-Slice has small average too but the standard deviation is a bit worse. Slice

sampling and Graves’ method do not seem to perform better than the MH algorithm.

Model selection for the mean of the replicates

All subsets regression is applied to the average AAD, §. Table 3.8 displays the top two weak
hereditary subsets up to size 6 of the five algorithms. The best subset of size 6 for the MH
algorithm is d,, dg, Wy, d, W, dymgo, VW,. The important parameters are d, m, W and
V. The best subset of size 6 for Slice sampling algorithm is d,, dg, Er, d EL, doEr, doE.
The important parameters are d and E. The best subset of size 6 for Graves’ method is d,
dg, A, dymy, d )V, d,A,. The important parameters are d, m, A and V. The best subset
of size 6 for the EE-MH algorithm is W, Wy, d,W,, d, Wy, m W, W,O. The important
parameters are d, m, W and O. The best subset of size 6 for the EE-Slice algorithm is m,
N, E,, Eg, mpw, NE,. The important parameters are m, w, N and E.

Comparing with the model selection results of one replicate, most of the significant
factors of one replicate are also significant in the subsets of five replicate. But there is also
some difference between these two cases. For example, for the MH algorithm, burn-in B is

significant based on one replicate, but not on the average of five replicates. Considering the
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Table 3.6: Top 2 weak hereditary subsets up to size 6 on response of one replicate

Size Selected (actors AlC BIC Adjr2 Rsq

T Wy —228.080 —224.913 0403 _ 0.420

1 dp —214.281 -211.114 0.124 0.149

2 dr Wi -236.741 —231.991 0.542  0.568

2 WL 4w ~236.109 —231.358 0.534  0.561

3 dy, Wy diWp —248.994 —242.660 0.682 0.710

M 3 4 Wy, dp B —241.732 -235398 0611  0.645
H 4 dp Wy E LWy —253.393 -245.475 0.725  0.757
4 dg Wy d Wy doWp —251.835 —243.918 0.713  0.746

5  dg mo Wr  diWL,  domg —259.090 —249.589 0.771  0.804

5 dg do W, d W domg —-250.068 —249.567 0.771  0.804

6 dr dQ Wy d;. B d,Wy deQ —264.606 —253.521 0.808 0.841

6 dp mg W,  diWp domg doWip  —264.504 —253.420 0.807  0.840

T Egp T211.787 —208.620 0.276  0.296

1 dg, —205.750 —202.583 0.144  0.168

2 dg Ep —219.611 —214.861 0.432  0.464

S 2 EL dLEL —-214.218 —209.467 0.340 0.378
L 3 dp EL drLEr, —223.552 -217.218 0.503  0.546
1 3 dr, E,  mgEL —223.352 -217.018 0.501  0.543
Cc 4 dy, dg Ep  dgomg —228.736 ~220.818 0.580 0.628
E 4 dp mg Ep  dgmg -228.429 —220.511 0577 0.625
5  dg dg Ep dgmg mgEL —235.324 -225.823 0.658 0.707

5  dg mo Ep domg mgEL —-234.935 —225.434 0.654 0.704

6 dr mg Er drEy dgmg mQEL —241.403 -230.318 0.717 0.766

6 dr mg Ey, diV diEp mgEp  —239.618 -228.533  0.703  0.754

1 dr, ~341.651 -238484 0581 0.593

1 dg —213.883 -210.716 0.093 0.119

2 dg do —252.120 -247.370 0.694 0.712

G 2 4 Ap —244.534 -239.783  0.623  0.644
R 3 d dg Ap —257.235 —250.901 0.741  0.764
A 3 4 do Cq —255.571 —249.237 0.720  0.752
Vo4 dr do Ap VAL —264.066 —256.149 0.791  0.815
E 4 dp do Co Ap —-261.996 —254.079 0.779  0.804
s 5 dr, do 1% Ap VAL —270.403 —260.902 0.829  0.853
5  dg dg 1% Co AL —267.812 —258.311 0.816 0.842

6  di dg 1% Ap domp VAL,  —277.622 —266.537 0.863 0.886

6  dp dg 14 Co Ap CoP  —275302 -264.218 0.854 0.879

1 W —257.017 —253.850 0.373  0.391

1 W —243.785 —240.618 0.094  0.120

2 WL Wy —262.935 —258.184 0.481 0.511

2 W, Nwg —260.102 —255.351 0.439  0.471

E 3 W, Wg NWL -267.388 —261.054 0.553  0.591
E 3 W, W JL —-266.777 —260.443 0.545 0.584
M 4 W Jr drJp  doJr —278.546 -270.629 0.680 0.716
H 4 W, W JL BJ, ~275.551 —207.633 0.652  0.692
5 N wr, JL drJy  doJr —~287.171 —277.670 0.754  0.789

5  Wg Jr dpJp  doJr  moJL —-284.222 —274.721 0.733 0.771

6 N Wy, Jr drJr  dgJp  WLHIL  -292.628 —281.544 0.793 0828

6 N Wi Jr drJr doJr Wr0 —291.852 —280.768 0.788  0.825

1T Eg —233.824 -230.657 0.40I 0418

1 Eg -220.094 —216.927 0.123 0.148

2 E Eg —-242.387 —237.637 0.540  0.566

E 2 my Ep —241.624 —236.873 0.530  0.557
E 3 my Ep Eq ~254.247 —247.913 0.677  0.705
S 3 my EL mgJL —249.274 242940 0629 0.661
L 4 my Ep Eg drLEp —261.314 -253.397 0.741 0.770
I 4 my Ep Eg mpK —258.842 —250.925 0.722 0.754
C 5 my w Ey Eg dpEp, —267.721 —258.220 0.788 0.818
E 5 my Ep Eg dLEr,  wEp ~266.078 —256.577 0.778  0.810
6 mr w EL Eg dLEL wEp, ~ —274.498 -263.413 0.828 0.858

6 mg w Ep Jo moJy  KJog = —274.386 -—263.301 0.828 0.857
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Table 3.7: Percent differences of two replicates of MH

run 1-6 ~051%  6.75% —18.94% —1.40% -1.45% —18.00%
run 7-12  —10.82% —4.62% -38.77% —-8.34% -18.77% 182.00%
run 13-18 —4.46%  8.92% -2.70% 1.05% 6.19% 27.88%
run 19-24  15.08% —8.09% -16.23% —6.33% 2.16% —0.40%
run 25-30  0.57% 7.29% 6.71% -52.00%  22.57% —-9.35%
run 31-36  19.15% -1.73% —4.61% 7.711% -39.94% 112.72%

variability of the simulation results across the replicates, we prefer to use the subset chosen
from five replicates and try to find the best settings of the important parameters. Note, in a
real experimental situation we might have treated the replicates as replicates and used them
to estimate the error to determine significance. In our case, we were primarly interested in

identifying the most important factors and thus chose this simpler strategy.

Finding the algorithms’ best settings

In this section, we’ll try to find the best settings of the important parameters we found in the
previous section. The parameters are grouped into noise factors and control factors. In the
robust parameter design, noise factors are factors whose values are hard to control during
normal process or use conditions, but that can be controlled during the experiment; control
factors are factors usually much easier to change. In our experiment, the noise factors are
the target distribution parameters d, m and w (denoted by lower-case letters), which in the
real world we probably would not know; the control factors are the algorithm parameters,
such as number of iterations, N, the step-width of the MH algorithm, etc. (denoted by
upper-case letters). In a real situation these are controlled by the analyst. To find the best
settings of the control factors, we use techniques for analyzing combined arrays in robust
parameter design, which seeks to change the control factor settings to reduce the response
variation by exploiting the interaction between control and noise factors (Wu and Hamada
(2000)). Control-by-noise interaction plots will be used to choose control factor settings.
We also use control main effects and control-by-control interaction plots to find the best
combination of the control factors settings which make the response small. Each algorithm

will be discussed in turn.
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Figure 3.2: MH interaction plots
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MH algorithm
Model (3.1) is the MH’s linear regression model for the response, E(y) (average AAD),
on the significant factors d., dg, W, d,W,, d,mg and VW,

y = 0.077 + 0.037d, + 0.0147d, ~ 0.051W, — 0.046d, W, + 0.031d,mq + 0.018VW,. (3.1)

Among these effects, d;, do, mg are the noise factors, W, V are the control effects. d, W,
is a noise-control factor interaction. The interaction plots for dW and VW are shown
in Figure 3.2. Figure 3.2(a) recommends level 2 of W since it has the smallest response
variation over setting of d and the smallest average y response (main effect). Figure 3.2(b)
suggests level 1 for V is the better setting, since the combination of V' at level 1 and W at
level 2 yields the smallest y response. The other control factors do not appear to impact
the MH algorithm.
Slice sampling

Model (3.2) is Slice sampling’s linear regression model on the factors d, dg, E., d E,,
doE., doEo,

y = 0.084 4 0.043d, + 0.012d, — 0.059F, — 0.046d, E, + 0.031d,E, — 0.038d,Ep. (3.2)

The noise effects are d,, dy and the control effects are E;, and E,. The control-by-noise

interaction plot of dFE is given in Figure 3.3. The plot suggests level 2 is the best choice of
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Figure 3.3:  Slice sampling interaction plots
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E since it has the smallest response average (main effect) and also the smallest variation
across settings of d.
Graves’ Method

Model (3.3) is the Graves’ method linear regression model on the factors d,, do, A,
dymyp,d,V and d A,

y = 0.088 4 0.0702d,, + 0.028d,, + 0.019A, + 0.049d,m, — 0.037d,V 4+ 0.035d, A.. (3.3)

d., dy and m, are the noise factors. A, and V are control factors. Figure 3.4(a) is the
interaction plot of dA. It suggests level 0 is the best choice of A since it has the smallest
response average and variation over settings of d. Figure 3.4(b) suggests level 1 is the better
choice of V for similar reasons.
EE-MH

Model (3.4) is the EE-MH linear regression model on factors W,, Wy, d,W,, d, Wy,
m Wy, W.0,

y = 0.066—0.045W, +0.027W, —0.0284 . W, +0.029d, W, —0.027m W, +0.015W 0. (3.4)

d, and m,, are the noise effects. W, W, and O are the control effects. Figure 3.5(a) gives
the interaction plot for dW while Figure 3.5(b) the interaction plot for mW. Both suggest

W at level 0 is worse than levels 1 or 2, but it’s hard to tell which one is better between
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Figure 3.4:  Graves’ miethod interaction plots
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levels 1 and 2. Figure 3.5(c) shows that if W is set at level 1, O should be set at level 1,
while if W is set at level 2, O should be set at level 0. Either choice looks fine. We choose
W at level 1 and O at level 1.

EE-Slice

Model (3.5) is EE-Slice linear regression model on factors m,, N, E,, E5, m;, and NE,,
y = 0.072 - 0.015m, — 0.009N — 0.061F, + 0.036E, — 0.017m, w + 0.02INE,.  (3.5)

m,, is the noise factor, E., E, and N are the control factors. Viewing Figure 3.6, N at level

1 and E at level 1 performs best.
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Figure 3.5: EE-MH interaction plots
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Table 3.8: Top 2 weak hereditary subsets of the algorithm on average response

Size Selected factors AIC BIC Adjr2 Rsq

1 W —-236.079 —232.912 0.390  0.408

1 dy —225.880 —222.713 0.191 0.214

2 dr Wy —250.185 —245.435 0.598 0.621

2 Wr dpWp —244.403° -239.653 0.528  0.555

3 d Wy AWy 265981 —259.647 0.747  0.769

M 3 dr Wi dp B —252.566 —246.232 0.633 0.665
H 4 dr do Wi a Wy -269.670 —261.753 0.777 0.803
4 4 W d v Wy —267.911 —259.993 0.766  0.793

5 dr, dg 14%3 W domg —274.237 —-264.736  0.808 0.836

5 dr dg Wi arVv doWi -272.318 —262.817 0.798 0.827

6 dr, dg 14%3 dpWr, dpmg \48%%3 ~-277.961 —266.877 0.831 0.860

6 dy dg Wy ;v dp Wy doWo  —275.530 —264.446 0.819 0.850

1 E; —~227.084 —223.917 0.399 0.416

1 dr ~216.544  —213.377 0.195 0.218

2 dr Er —241.902 -—237.152 0.612 0.634

2 Er di Ep —230.725 —225.975 0.471 0.501

S 3 dr Er drEp —249.378 —243.044 0.692 0.719
L 3 dr B E; —244.029 —237.695 0.643 0.674
1 4 dr Ep diEp doEp —252.621 —244.703 0.726  0.757
cC 4 4. EL dLv dLEr _9251.315 -243.397 0.715  0.748
E 5 dr, dg Ep dpEp doEg —256.641 —247.140 0.760 0.794
5 dr do EL dLEL  domo _255.549 —246.048 0.753  0.788

6 dr dg Er drEp doEL doEq —262.019 -250.934 0.798 0.832

6 dr dg Ep drE;p deQ doEL ~260.683 —249.598 0.790 0.826

1 dy —239.892 -—236.725 0.578 0.590

1 dg —211.372 —-208.205 0.069 0.095

2 dr dg —247.425 —242.674 0.667 0.686

G 2 dr Ap -241.814 —237.063 0.610 0.633
R 3 dr dg Ap —250.625 —244.291 0.702 0.728
A 3 dr, dg drCr, —250.095 —243.761 0.698 0.724
vV 4 dg do dimy LV —254.980 —247.062 0.743  0.772
E 4 dr dg Ap drCyp —254.079 -246.161 0.736  0.766
s 5  dg Co Ar AV mpAr —261.326 —251.825 (.789  0.819
5 dr do AL dimg  drV -260.362 —250.861 0.783  0.814

6  dr dg AL dimi  dLV  diAp  —267.563 —256.478 0.826  0.856

6  dr dg Co Ar ALV mpAp —267.342 —256.257 0.825  0.855

1 14%3 —255.811 —252.644 0.469  0.484

1 Wo —238.576 —235.409 0.142 0.167

2 Wi Wo —267.852 —263.101 0.629 0.650

2 Wi W0 —257.878 —253.128 0.511 0.539

E 3 14%3 Wo diWo —-273.168 —266.834 0.688 0.715
E 3 14%3 Wo WrO —272.034 —-265.700 0.678 0.706
M 4 Wi Wo diWqg WL O —278.903 —270.986  0.740 0.770
H 4 W, W, AW,  miwy —278.078 —270.160 0.734  0.765
5 14%3 Wo drWp drWgo mpWp —287.557 —278.056 0.800 0.829

5 14%3 Wo diWg NW; w0 —285.015 —275.514 0.786 0.816

6 W W diWL  diWo miWp WL O  —200968 —279.883 0.822 0.853

6 B Wy Wo diWo doB BJg —290.159 —-279.074 0.818 0.849

1 Ep —246.597 —243.430 0.555 0.568

1 Eq —224.214 -221.047 0.172 0.196

2 E; Eq —266.344 —261.593 0.750  0.764

E 2 my, Ep —-247.603 —242.852 0.579 0.603
E 3 my, Ep Eq —270.048 —263.714 0.780 0.799
S 3 E; Eg NE; —269.837 —263.503 0.778 0.797
L 4 my E; Eg NEL —274.576  ~266.658 0.810 0.832
1 4 E; Eg dpEg NE -273.658 -2656.741 0.805 0.828
C 5 my E Eq mpw  NEj _077.426 -267.925 0.829  0.853
E 5 mp N Er Eg NEL —277.115 —-267.614 0.827 0.852
6 my N Ep Eq myw NE} —280.670 —269.586 0.847 0.873

6 myr Ep Eq Hyg doHyo mpw —280.536 —269.451 0.846 0.873
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Chapter 4

Simulation Study

4.1 Compare the Algorithms at Their Best Settings

In this section, a small simulation will be done to compare the algorithms at their best set-
tings. Only the target distribution parameters will be varied in this simulation experiment.
From the screening experiment, we found the distribution parameters d and m appear with
high frequency in the 12 best weak hereditary models of all the five algorithms, while the
other parameter related to the target distributions, w, does not. So we set the distribu-
tion to have equal weights, and only use parameters d and m with their previous levels to
control the distribution shape. For the algorithm parameters, the settings are fixed at the
best values chosen using the robust parameter design concepts of the previous chapter. The
simulation in this section is based on a 9-run 32 full factorial design. This design matrix
is given with the simulation results in Appendix B. For each algorithm, the simulation is
repeated to get five replicates.

The algorithm parameter settings are as follows. The common algorithm parameters,
iteration number N and burn-in length B are both set at their previous high level: 40000
and 2000 iterations, respectively. These high settings should give the algorithms a better
chance to converge. The initial value V is set to 0, since MH and Graves method both
perform better at this setting. For the algorithm specific parameters, the important ones
from the screening experiment are set as follows: the step-width W of MH is set to level 2,
5.1. The scale estimate E of Slice sampling is set to level 2, 5.1. The Acceptance rate A of
Graves method is set to level 0, 0.2. The step-width W of EE-MH is set to level 1, 2.6. The
constant O of EE-MH is set to level 1, 4. The scale estimate E of EE-Slice is set to level 1,

45
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2.6. The iteration number N is set 40000 which is consistent with the common parameter
setting. The other algorithm specific parameter settings are: number of the step-widths P
is set as 11, which compared to 5 we think might give better chance to fit the model (2.1)
accurately. The initial guess of the optimal step-width is set to 2, using the previous middle
level. For the two EE algorithms, the number of energy levels, K, is set to 2, the EE-jump
probability J is set to 0.2, energy level 1 is set to 3, and Constant O is set to 4. The

summary of these control parameter settings is given in Table 4.1.

Table 4.1: Best parameter settings, used in the comparison simulation

Common algorithm parameters

Iteration number N 40000
Iteration number in burn-in B 2000
Initial value | % 0
Algorithm specific parameters
MH Step-width 124 5.1
Slice Scale parameter E 5.1
Graves Acceptance rate A 0.2
Number of the step-widths P 11
Initial guess of the optimal step-width C 2
EE-MH  Step-width W 26
Constant 0 4
Probability of EE jump J 0.3
Energy level 1 Hy 3
Number of energy levels K 2
EE-Slice Scale parameter E 2.6
Constant O 4
Probability of EE jump J 0.3
Energy level 1 H, 3
Number of energy levels K 2

4.2 9-Run Simulation Results

The complete results of the 9-run simulation are shown in Tables B.1 to B.5, in Appendix B.
Here we list the mean and the standard deviation of the response for each run (Table 4.2).
We can see, for the nine combinations of d and m, the performance of Graves’ method is not

very stable. In runs 1,2,4,5.7 and 8 it performs well, but in runs 3,6 and 9 it performs badly.
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Graves’ method performs badly when d is large, that is, when the modes are separated
and far apart. Basically, if the MH gets trapped in a single mode during burn-in, Graves’
method will only give a good step-width for exploring the single mode and not the entire

space. When the modes are overlapping or connected, Graves’ method works well.

Table 4.2: 9 run simulation results of MH

Parameters MH Slice Graves EE-MH EE-Slice
Run  d m Ymh 5dmp Ysl sdsi Ygr sdgr Yeemh 5deemh Yeesl Sdeest
1 1 3 0.0601 0.0048 0.0588 0.0006 0.0593 0.0019 0.0598 0.0014 0.0579  0.0008
2 3 3 0.0553 0.0020 0.0560 0.0009 0.0545 0.0022 0.0559 0.0016 0.0558 0.0012
3 5 3 0.0553 0.0051 0.0553 0.0012 0.1067 0.0324 0.0561 0.0023 0.0553 0.0012
4 1 5 0.0469 0.0011 0.0450 0.0004 0.0450 0.0011 0.0468 0.0014 0.0444  0.0008
5 3 5 0.0351 0.0007 0.0349 0.0007 0.0357 0.0009 0.0371 0.0011 0.0342 0.0007
6 5 5 0.0368 0.0022 0.0365 0.0016 0.1585 0.0494 0.0366 0.0018 0.0358 0.0008
7 1 7 0.0361 0.0018 0.0348 0.0005 0.0352 0.0022 0.0366 0.0004 0.0349 0.0007
8 3 7 0.0215 0.0009 0.0207 0.0002 0.0219 0.0011 0.0216 0.0007 0.0209 0.0003
9 S 7 0.0298 0.0095 0.0391 0.0180 0.1372 0.0298 0.0221 0.0005 0.0241 0.0031

For the other four algorithms, among these nine runs, they all work reasonably well.
The average absolute distance range between the CDF and ECDF is (0.02,0.06). The
standard deviation shows that the two EE algorithms have better stability than MH and
Slice sampling.

If we group the 9 runs into three groups, 1-3, 4-6 and 7-9, and look at the results
of the four algorithms closely, we can see every first run of the three groups have worse
performance than other two runs. Those cases are when d = 1, which shows the choice
of the step-width or the scale parameter, 5.1, is somewhat too large compared to the grid
spacing d = 1. As the grid spacing d and the number of normal distributions m increase, the
performance of the four algorithms are good based on the mean and the standard deviation
of the five replicates’ response, until run 9 (d = 5 and m = 7). For this run, MH and
Slice sampling algorithms have worse repeatability (sd) compared to other settings, and
compared to the EE algorithms. This is an interesting phenomenon. It suggests that when
there are more modes far apart, and the step-width or scale parameter is big enough to cut
across the modes, this creates more variability in the simulation results. This motivates us
to explore cases where d gets even bigger. We would expect for MH and slice sampling, the
performance level would decrease because of the sensitivity to the step-width or the scale
parameter. For EE algorithms, the performance will also be affected by the step-width or

the scale parameter, but the effect might be more mild than MH or slice sampling, since
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the EE algorithm starts from the flatter distributions and gradually moves on to the target
distribution.

Another important factor to be considered in the application of the algorithms in the real
world is the simulation time. The recorded run times of the five algorithms is given in Table
B.6 in Appendix B. From Table B.6, we can see that for the MH and EE algorithms, the
simulation time of run 1-3 is similar, run 4-6 is similar, and run 7-9 is similar. This is because
m is set at three different levels 3, 5, and 7. Since the target distribution f(x) is the sum
of bivariate normal distributions, as m increases, the computation time of f(z) increases.
Every generated point is related to the computation of f(x). For example, in the MH algo-
rithm whether a new generated point x* is accepted depends on whether a random number
from Unif(0,1) is less than a(z'?), z*) = min [(f(:l:“)q(:l:“,.'Is(i)))/(f(.’l:(i))q(.’l:(i),.’I:"))7 1].

With the number of iterations N = 40000 and the number of iterations in burn-in period
B = 2000, the MH algorithm performs fastest, which taking less than 30 seconds. Graves’
method is just slightly slower. Slice sampling takes less than 76 seconds. While the EE
algorithms take about 20 minutes. The EE-MH algorithm takes about 45 times as much
time as that of the MH algorithm, while the EE-Slice algorithm takes about 25 times that
of the Slice sampling algorithm. This raises an interesting issue: From previous discussion,
we might expect the EE algorithms to be less sensitive to the step-width or choice of scale
parameter than the MH or slice sampling algorithms. But, the EE algorithms take much
longer to run. If given the same length of time as the EE algorithm, what will the simulation
performance of the MH and slice sampling algorithms be like? Would a long simulation time
overcome the problem of the sensitivity to the step-width or scale parameter?

To summarize the above, there is little difference among most of the algorithms based

on the 9-run simulation. But two further problems have been identified:

1. The sensitivity to the step-width or the scale parameter of the algorithms when d keeps

increasing.

2. The simulation performance of MH and slice sampling compared with EE algorithms if

given the same simulation time.
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4.3 Simulations for Fixed Time

To explore these two problems, we add two more runs after the previous 9-run settings: one
run with d = 7 and m = 7, and one run with d = 9 and m = 7. The resulting 11-run
experiment was carried out for all five methods, aiming to run all algorithms for about
the same length of time: 20 minutes. For the MH algorithm, Slice sampling, and Graves’
method, run time was controlled to 20 minutes by stopping after an appropriate number of
iterations. Because of the special structure of the EE algorithms, running several parallel
chains continuously, it was not possible to control run time by repeating shorter sets of
iterations. So we let the EE algorithms run for N = 40000 iterations, which takes from 11
to 21 minutes for EE-MH and from 16 to 26 minutes for the EE-Slice algorithm.

The results of one replicate of the 11 runs are given in Table 4.3. The number of
iterations of MH, slice sampling and Graves’ method are also listed in Table 4.3. MH and
Graves’ method both had over 3 million , 2 million and 1 million iterations, for cases with
m =3, m =25 and m = 7, respectively. The iteration range of Slice sampling is (0.6,1.4)
million. For the overall performance of the five algorithms across the first 9 runs, we see
from the mean and the standard deviation of the response that the EE algorithms no longer
show superior performance to the MH algorithm or Sliced sampling. This is also true in
comparison to Graves’ method except for run 9.

If we look closely at the results of each run, it is easy to see for the first 8 runs, the five
algorithms perform similarly well. For run 9, which is d = 5 and m = 7, Graves’ method
seems to perform worse than other algorithms. Recall that these 9 settings were used to set
the tuning parameters of the algorithms.

When d keeps increasing to 7, which is run 10, Slice sampling and Graves’ method
don’t perform well. The MH algorithm and the two EE algorithms seem to work well.
When d increases to 9, the MH algorithm’s performance also deteriorates, while the two EE
algorithms still perform reasonably well.

Histogram plots of each variate give more straightforward comparison of the performance
of the five algorithms. Since the five algorithms perform similarly well for the first 9 runs
(except run 9 of Graves’ method), we will skip showing the histogram plots of those runs. For
run 10, MH, EE-MH and EE-Slice perform well, while slice sampling and Graves’ method

seem to perform worse. Here we will display the histogram plots for various runs.
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Table 4.3: 11 — run simulation results

Parameters Iteration (million) Response
Run d m Nyah, Nt Ngr Ymh Yst Yor Yeemh Yeest

1 1 3 3.48 1.37 3.6 0.0587 0.0586 0.0583 0.0600 0.0582
2 3 3 3.58 1.30 3.6 0.0558 0.0556 0.0540 0.0530 0.0559
3 5 3 3.58 1.23 3.6 0.0556 0.0565 0.0537 0.0556 0.0573
4 1 5 2.34 1.05 2.36 0.0439 0.0451 0.0438 0.0479 0.0456
5 3 5 234 094 2.36 0.0334 0.0338 0.0341 0.0368 0.0358
6 5 5 234  0.86 2.36 0.0353 0.0347 0.0373 0.0371 0.0357
7 1 7 1.74  0.87 1.76 0.0361 0.0325 0.0350 0.0373 0.0344
8 3 7 1.74 0.74 1.76 0.0201 0.0206 0.0204 0.0222 0.0201
9 5 7 1.74  0.67 1.76 0.0219 0.0241 0.0711 0.0223 0.0220
Y1-9 0.0401 0.0402 0.0453 0.0414 0.0406

sdy 1-9 0.0144 0.0143 0.0154 0.0138 0.0146

10 7 7 1.74  0.66 1.76 0.0261 0.0764 0.1534 0.0237 0.0240
11 9 7 1.74  0.66 1.76 0.1432  0.1509 0.1516 0.0253 0.0251

Y10-11 0.0846 0.1136 0.1525 0.0245 0.0246
sdy 10-11  0.0828 0.0527 0.0013 0.0012  0.0007

Figures 4.1 to 4.3 give histograms of the two variables for samples from the MH algo-
rithm, slice sampling and the EE-MH sampling for run 10, respectively (EE-Slice performed
similar to EE-MH). The solid lines are the marginal distribution plots. For MH and EE-
MH, the histogram plots fit the marginal distribution plot fairly well, while slice sampling,
Figure 4.2(a) shows one mode of z; is not sampled as it should be, while the other two are
over sampled. Similar things happen to zs, as well.

When d increases to 9, which is the case in run 11, the histogram plots of 25 for MH,
slice sampling and Graves’ method and EE-Slice are given in Figure 4.4, while Figure 4.5
gives the three parallel chains using EE-MH. We can see that the EE algorithms continue
to perform quite well, while the others have a tendency to get stuck in a single mode. This
is because the tuning parameters that control step-width are too small.

The above exploration shows, Graves’ method seems to work fine in what amount to
nearly uni-modal situations, but when there are multiple, well-separated modes, it does
not do well as a method of recommending a step-width for the MH algorithm. The MH
algorithm and slice sampling are more sensitive to the step-width or scale parameter than the
EE algorithms, but the EE algorithms take much longer to run. Given a longer simulation
time, MH and slice sampling improve greatly. Overall, the EE algorithms seem to have

more stable performance than the other algorithms.
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Figure 4.3:  Histogram plots of two variables of EE-MH for run 10
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Figure 4.5:  Histogram plot of xs of EE-MH three chains for run 11
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Chapter 5

Conclusions

5.1 Summary

The sampling problem we are trying to solve is to sample a multi-dimensional distribution
that has several modes. The most well-known sampling algorithm is the MH algorithm,
but it has some difficulty with this type of problem because of its sensitivity to the tuning
parameter, step-width. When the step-width is too small, it has difficulty cutting across the
modes. Three alternative algorithms recently introduced in the literature, Graves’ method,
slice sampling and EE sampling, are expected to solve part of the problem. The summary
of these algorithms are listed as follows.

Graves’ method

Graves’ method is basically an improved MH algorithm. The difference between these
two algorithms is, Graves’ method attempts to automatically find a better choice of the
step-width in the burn-in period and applies it in the MH algorithm. It does so by using
the linear relationship of the logit of the acceptance rate (A) and the log of the step-width
(W), a step-width is suggested by an ideal acceptance rate through this model. Graves’
method is shown to improve the MH algorithm in some situation, for example, when the
target distribution has a single mode or several connected modes. But when the modes are
far apart, which is a difficult situation for the MH algorithm in general, Graves’ method
does not show improvement over the MH algorithm. There are two points which might
be related to this problem: (i) The assumption of Graves’ method that finding a desirable
step-width can be solved by some connection with achieving a desirable acceptance rate;

and (ii) The accuracy of the linear relationship of the logit of the acceptance rate (A) and

99
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the log of the step-width (W) in more extreme.situations.

Slice sampling

Slice sampling is another algorithm that uses tuning parameters, scale parameter, which
plays a similar role to the step-width in the MH algorithm. Our exploration suggests that
the performance of slice sampling is sensitive to this scale parameter. When there are more
modes, and the scale parameter is too small to slice across the modes, it fails to perform
well. One point that needs to be noted is that the slicing strategy applied in this project is
not the only option available. Since the target distribution is a bivariate distribution, the
slicing strategy we used is locating the hyper-rectangle which includes the current point by
setting a common random scale parameter E on each dimension. So the slice interval is
restricted to the length of E. It is not hard to see that when F is too small this strategy
will face the problem of not cutting across the modes. There are more slicing strategies
introduced in Neal (2003). For example, the “stepping out” procedure, which creates the
chance to extend the slice interval from the length of E.

EE algorithms

The EE algorithm generates a new point by an MH local move or by jumping to a point
that has the similar energy level (value of f(x)) as the current point. It starts from a chain
aiming at a flatter distribution which corresponds to a higher energy level, and moves on
to the target distribution corresponding to a lower energy level. The EE-jump and parallel
chains are designed to help overcome the local traps (modes) of the distribution. In this
project, two EE algorithms, one with the usual MH local move and one with the slice
sampling local move, were explored. The EE algorithms were shown to have more stable
performance compared to the other three algorithms. When the distribution has separated
modes, the EE algorithms are less sensitive to the tuning parameters than the MH and slice
sampling algorithms. But the disadvantage of EE algorithms are in taking a much longer
time to run. This is an important problem in practice. One point needs needs to also be
noted is that for the parameter settings of EE algorithm. one has to construct the energy
levels and temperature levels, which is related to some prior knowledge of the distribution.
This creates some complexity in applying this algorithm.

As a summary of these algorithms, if not considering the time problem, the EE algo-
rithms would be a stable choice to sample a distribution. Especially if it is known that the
distribution has several modes, but one is not sure how they are positioned. However from

an application standpoint, since MH and slice sampling perform much faster, one might



CHAPTER 5. CONCLUSIONS 57

argue that some preliminary exploration could reveal a good choice for the tuning param-
eters followed by a much larger number of iterations, might yield similar performance. It
seems the big problem happens when there are separate modes and the tuning parameter
is too small. So people may spend the time to try bigger tuning parameter to explore what
the right values are, and then apply them. And how this can be done might refer to each

specific problem.

5.2 Future Work
There are some points that might be interesting to improve or try out in future.

1. For slice sampling, as we mentioned above, the slicing strategy in this project is
locating the hyper-rectangle which includes the current point by setting a common
random scale parameter E on each dimension. This limits the slice interval to the
length of E. More slicing strategies would be interesting to try. For example, the
“stepping out” procedure, which creates the chance to extend the slice interval from

the length of E. Although it might be time consuming to apply it in higher dimensions.

2. For the EE algorithms, we used the suggestions from Kou, Zhou, and Wong (2006)
for the parameter settings. But we are not sure if there is a better way to set these

parameters, or how to find a better way to set these parameters.



Appendix A

Screening Experiment Result

Table A.1: 36 run design matrix and simulation results of MH

Design matrix

Simulation results

Run d m w |4 N B w Ymhi Ymh2 Ymh3 Ymha Ymhs Ymh sdmh
1 1 1 0 0 0 0 2 0.0382 0.0381 0.0406 0.0378 0.0367 0.0383 0.0014
2 1 1 1 1 0 0 2 0.0401 0.0428 0.0418 0.0491 0.0478 0.0443 0.0039
3 2 2 0 0 1 1 1 0.1174 0.0952 0.1902 0.1537 0.0630 0.1239 0.0497
4 2 2 1 1 1 1 1 0.1025 0.1011 0.1379 0.0986 0.1880 0.1256 0.0385
5 1 2 0 0 1 0 1 0.0226 0.0222 0.0221 0.0198 0.0204 0.0214 0.0012
6 1 2 1 0 0 1 1 0.0320 0.0262 0.0377 0.0246 0.0253 0.0292 0.0056
7 2 1 0 1 0 0 2 0.0422 0.0377 0.0516 0.0443 0.0360 0.0424 0.0061
8 2 1 1 1 1 0 2 0.0444 0.0424 0.0416 0.0452 0.0446 0.0436 0.0015
9 1 2 0 1 0 1 2 0.0319 0.0195 0.0239 0.0271 0.0223 0.0249 0.0048

10 1 2 1 0 1 0 2 0.0228 0.0209 0.0247 0.0228 0.0243 0.0231 0.0015
11 2 1 0 1 1 1 1 0.0658 0.0534 0.0405 0.0597 0.1213 0.0681 0.0312
12 2 1 1 0 0 1 1 0.0638 0.1799 0.1086 0.0658 0.1039 0.1044 0.0471
13 2 2 0 0 0 0 0 0.2110 0.2016 0.1864 0.2111 0.2250 0.2070 0.0142
14 2 2 1 1 0 0 0 0.1360 0.1481 0.1520 0.1520 0.1530 0.1482 0.0071
15 0 0 0 0 1 1 2 0.0579 0.0564 0.0613 0.0613 0.0582 0.0590 0.0022
16 0 0 1 1 1 1 2 0.0660 0.0667 0.0657 0.0635 0.0719 0.0668 0.0031
17 2 0 0 0 1 0 2 0.0573 0.0608 0.0586 0.0575 0.0590 0.0586 0.0014
18 2 0 1 0 0 1 2 0.0560 0.0716 0.0568 0.0580 0.0670 0.0619 0.0070
19 0 2 0 1 0 0 0 0.0638 0.0735 0.0543 0.0754 0.1115 0.0757 0.0217
20 0 2 1 1 1 0 0 0.0479 0.0440 0.0523 0.0642 0.0465 0.0510 0.0080
21 2 0 0 1 0 1 0 0.1348 0.1130 0.1226 0.1266 0.1188 0.1232 0.0082
22 2 0 1 0 1 0 0 0.2163 0.2026 0.2056 0.1874 0.1976 0.2019 0.0106
23 0 2 0 1 1 1 2 0.0356 0.0364 0.0351 0.0351 0.0326 0.0350 0.0014
24 0 2 1 0 0 1 2 0.0426 0.0424 0.0411 0.0416 0.0392 0.0414 0.0014
25 0 0 0 0 0 0 1 0.0618 0.0622 0.0591 0.0620 0.0647 0.0620 0.0020
26 0 0 1 1 0 0 1 0.0666 0.0714 0.0664 0.0665 0.0706 0.0683 0.0025
27 1 1 0 0 1 1 0 0.1887 0.2013 0.1647 0.0797 0.0519 0.1373 0.0673
28 1 1 1 1 1 1 0 0.1766 0.0848 0.0774 0.0872 0.0665 0.0985 0.0444
29 0 1 0 0 1 0 0 0.0385 0.0472 0.0592 0.0578 0.0385 0.0482 0.0101
30 0] 1 1 0 0 1 0 0.0790 0.0716 0.0619 0.1035 0.0541 0.0740 0.0190
31 1 0 0] 1 0 0 1 0.0567 0.0675 0.0588 0.0564 0.0521 0.0583 0.0057
32 1 0 1 1 1 0 1 0.0593 0.0582 0.0586 0.0613 0.0593 0.0593 0.0012
33 0 1 0 1 0 1 1 0.0437 0.0417 0.0470 0.0444 0.0482 0.0450 0.0026
34 0 1 1 0 1 0 1 0.0515 0.0555 0.0543 0.0524 0.0536 0.0535 0.0016
35 1 0 0 1 1 1 0 0.1422 0.0854 0.1532 0.1281 0.0785 0.1175 0.0337
36 1 0 1 0 0 1 0 0.0958 0.2038 0.1158 0.1065 0.1065 0.1257 0.0442
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Table A.2: 36 run design matrix and simulation results of slice sampling

Design matrix

Simulation results

Run d m w V N B FE Ysi1 Ysi2 Ysi3 Ysia Ysis Ust sdg
1 1 1 0 0 0 0 2 0.0338 0.0356 0.0328 0.0367 0.0361 0.0350 0.0016
2 1 1 1 1 0 0 2 0.0391 0.0450 0.0431 0.0413 0.0442 0.0425 0.0024
3 2 2 0 0 1 1 1 0.1837 0.1874 0.2108 0.1808 0.1066 0.1738 0.0394
4 2 2 1 1 1 1 1 0.1069 0.1153 0.1022 0.0891 0.1160 0.1059 0.0110
5 1 2 0 0 1 0 1 0.0252 0.0220 0.0204 0.0255 0.0238 0.0234 0.0022
6 1 2 1 0 0 1 1 0.0231 0.0321 0.0226 0.0266 0.0365 0.0282 0.0060
7 2 1 0 1 0 0 2 0.0368 0.0928 0.0482 0.0639 0.0529 0.0589 0.0213
8 2 1 1 1 1 0 2 0.0402 0.0433 0.0461 0.0434 0.0422 0.0430 0.0021
9 1 2 0 1 0 1 2 0.0214 0.0231 0.0207 0.0215 0.0210 0.0215 0.0009
10 1 2 1 0 1 0 2 0.0238 0.0214 0.0233 0.0216 0.0222 0.0225 0.0010
11 2 1 0 1 1 1 1 0.0468 0.0847 0.1961 0.0775 0.1849 0.1180 0.0678
12 2 1 1 0 0 1 1 0.2098 0.0750 0.0705 0.2153 0.1217 0.1385 0.0706
13 2 2 0 0 0 0 0 0.1731 0.1632 0.2694 0.1857 0.1961 0.1975 0.0421
14 2 2 1 1 0 0 0 0.1435 0.1504 0.1133 0.1401 0.1433 0.1381 0.0144
15 0 0 0 0 1 1 2 0.0590 0.0583 0.0601 0.0587 0.0572 0.0587 0.0011
16 0 0 1 1 1 1 2 0.0651 0.0656 0.0654 0.0644 0.0666 0.0654 0.0008
17 2 0 0 0 1 0 2 0.0526 0.0605 0.0546 0.0536 0.0576 0.0558 0.0032
18 2 0 1 0 0 1 2 0.0615 0.0618 0.0692 0.0626 0.0587 0.0628 0.0039
19 0 2 0 1 0 0 0 0.0730 0.0599 0.1034 0.0718 0.0931 0.0803 0.0176
20 0 2 1 1 1 0 0 0.0373 0.0516 0.0853 0.0899 0.0516 0.0632 0.0231
21 2 0 0 1 0 1 0 0.1250 0.1255 0.1215 0.1144 0.1155 0.1204 0.0052
22 2 0 1 0 1 0 0 0.2034 0.1961 0.2131 0.2183 0.2273 0.2117 0.0122
23 0 2 0 1 1 1 2 0.0350 0.0345 0.0342 0.0359 0.0336 0.0346 0.0009
24 0 2 1 0 0 1 2 0.0411 0.0436 0.0383 0.0425 0.0408 0.0413 0.0020
25 0 0 0 0 0 0 1 0.0657 0.0586 0.05673 0.0608 0.0566 0.0578 0.0020
26 0 0 1 1 0 0 1 0.0661 0.0658 0.0661 0.0661 0.0626 0.0653 0.0015
27 1 1 0 0 1 1 0 0.2143 0.1601 0.2127 0.1792 0.1247 0.1782 0.0377
28 1 1 1 1 1 1 0 0.2143 0.2026 0.0822 0.1234 0.2183 0.1682 0.0617
29 0 1 0 0 1 0 0 0.0567 0.0536 0.0455 0.0641 0.0464 0.0533 0.0077
30 0 1 1 0 0 1 0 0.0794 0.0945 0.0871 0.0676 0.078 0.0814 0.0101
31 1 0 0 1 0 0 1 0.0525 0.0529 0.0591 0.0570 0.0556 0.0554 0.0028
32 1 0 1 1 1 0 1 0.0587 0.0583 0.0610 0.0603 0.0611 0.0599 0.0013
33 0 1 0 1 0 1 1 0.0440 0.0449 0.0454 0.0482 0.0453 0.0456 0.0016
34 0 1 1 0 1 0 1 0.0534 0.0514 0.0518 0.0530 0.0530 0.0525 0.0009
35 1 0 0 1 1 1 0 0.0808 0.0977 0.1143 0.1192 0.0940 0.1012 0.0156
36 1 0 1 0 0 1 0 0.0614 0.1121 0.1873 0.2095 0.1848 0.1510 0.0621
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Table A.3: 36 run design matrix and simulation results of Graves’ method
Design matrix Simulation results
Run d m w \4 N B P C A Ygrl Ygr2 Ygr3 Ygra Ygrs Ygr sdgr
1 1 1 0 0 0 06 0 2 1 00006 00658 0.0494 0.0672 0.1594 0.0865 0.0433
2 1 1 1 1 0 0 0 2 2 00708 00909 01151 00455 00593 00763 0.0273
3 02 2 0 0 1 1 1 1 1 02135 02132 02122 02160 02165 02143 0.0019
4 2 2 1 1 1 1 0 1 2 0139 01394 01372 01379 01385 0.1384 0.0009
5 1 2 0 0 1 0 0 2 2 009! 00618 01077 01119 0.0484 0.0840 0.0280
6 1 2 1 0 0 1 0 2 0 00912 00589 00691 01410 01771 0.1074 0.0502
7 2 1 0 1 0 0 1 1 2 01212 01234 01212 01259 01257 0.1235 0.0023
& 2 1 1 1 1 ©0 1 1 0 0118 01124 00895 0.1042 0.1113 0.1071 0.0111
9 1 2 0 1 0 1 1 1 0 0025 00815 0081 01272 0.0468 0.0744 0.0384
v 1 2 1 0 1 0 1 1 1 00232 00238 00287 00218 00342 0.0263 0.0051
12 1 0 1 1 1 0 2 0 01212 01220 01214 01567 01230 0.1289 0.0155
12 2 1 1 0 o0 1 1 2 1 02150 02289 02145 02116 02131 0.2166 0.0070
13 2 2 0 0 0 0 0 O 2 01565 02174 02167 0.2011 0.1943 0.1972 0.0249
4 2 2 1 1 0 0 0 0 0 0138 01413 01182 01379 01344 0.1341 0.0092
5 ¢ 0 0o 0 1 1 1 2 2 00599 00596 0.0589 0.0602 0.0583 0.0594 0.0008
6 0 0 1 1 1 1 0 2 0 00648 0.0657 0.0667 0.0637 0.0644 0.0650 0.0012
7 2 0 0 0 1 0 0 0 0 01116 00768 00624 0.0597 0.0742 0.0769 0.0207
18 2 0o 1 0 0 1 0 0 1 01003 02114 01685 0.0775 0.0887 0.1293 0.0580
9 ¢ 2 0o 1 0 0 1 2 0 00368 00367 00370 00351 00341 0.0359 0.0013
20 0 2 1 1 1 0 1 2 1 00416 0.0415 0.0390 00415 0.0415 0.0410 0.0011
2202 0 0 1 o0 1 1 2 1 01163 01162 0.1178 01185 0.1158 0.1169 0.0012
2 2 0 1 0 1 0 1 2 2 0209 02073 02074 02067 0.2095 0.2080 0.0013
22 0 2 0 1 1 1 0 0 1 00349 00354 00369 00367 0.0347 0.0357 0.0010
24 0 2 1 0 0 1 1 0 2 00408 00413 00439 00416 0.0432 0.0422 0.0013
25 0 0 0 0 O 0 0 1 0 00591 00595 00591 00569 0.0607 0.0591 0.0014
26 0 0 1 1 0 0 0 1 1 00666 00645 00629 00662 0.0671 0.0655 0.0018
27 1 1 0 0 1 1 1 0 0 00336 00327 00364 00348 00368 0.0348 0.0018
28 1 1 1 1 1 1 0 0 1 00408 0.0427 0.0393 00434 0.0438 0.0420 0.0019
29 0 1 0 0 1 0 0 1 1 00452 00453 0.0446 0.0453 0.0429 0.0447 0.0010
3 0 1 1 0 0 1 0 1 2 0051 00507 00533 00524 00534 00522 0.0012
33 1 0 0 1 0 0 1 0 1 0050 0053 00567 00578 0.0603 0.0569 0.0025
32 1 0 1 1 1 0 1 0 2 0050 00582 0.0640 00610 0.0559 0.0596 0.0031
33 0 1 0 1 0 1 1 0 2 0038 00463 00514 00438 0.0484 0.0457 0.0048
3 0 1 1 0 1 0 1 0 0 0056 00513 00539 00530 00523 0.0524 0.0010
3% 1 0 0 1 1 1 0 1 2 00618 00638 0058 00643 0.0543 0.0605 0.0042
3 1 0 1 0 0 1 1 1 0 00763 00665 00740 0.0734 0.0659 0.0712 0.0047
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Appendix B

Simulation Study Result

Table B.1: 9 run simulation results of MH

Design matrix

Simulation results

Run d m Ymh) Ymh2 _ Ymh3 ___ Ymha Ymh5 Tmh 8dmn
1 0 0 0.0642 0.0550 0.0627 0.0546 0.0638 0.0601 0.0048
2 1 0 0.0560 0.0544 0.0522 0.0562 0.0574 0.0553 0.0020
3 2 0 0.0541 0.0482 0.0545 0.0625 0.0570 0.0553 0.0051
4 0 1 0.0474 0.0453 0.0466 0.0482 0.0472 0.0469 0.0011
5 1 1 0.0352 0.0363 0.0347 0.0349 0.0346 0.0351 0.0007
6 2 1 0.0382 0.0338 0.0395 0.0371 0.0355 0.0368 0.0022
7 0 2 0.0367 0.0370 0.0367 0.0329 0.0370 0.0361 0.0018
8 1 2 0.0211 0.0210 0.0230 0.0216 0.0206 0.0215 0.0009
9 2 2 0.0308 0.0230 0.0292 0.0452 0.0210 0.0298 0.0095

Table B.2: 9 run simulation results of Slice sampling
Design matrix Simulation results

Run d m Ysi1 Ysi2 Ysi3 Ysla Ysl5 Ust sdsi
1 0 0 0.0580 0.0596 0.0584 0.0591 0.0587 0.0588 0.0006
2 1 0 0.0565 0.0563 0.0565 0.0561 0.0544 0.0560 0.0009
3 2 0 0.0573 0.0547 0.0542 0.0549 0.0557 0.0553 0.0012
4 0 1 0.0450 0.0455 0.0451 0.0447 0.0445 0.0450 0.0004
5 1 1 0.0349 0.0348 0.0357 0.0353 0.0338 0.0349 0.0007
6 2 1 0.0379 0.0379 0.0343 0.0353 0.0371 0.0365 0.0016
7 0 2 0.0355 0.0342 0.0347 0.0344 0.0351 0.0348 0.0005
8 1 2 0.0206 0.0205 0.0207 0.0205 0.0210 0.0207 0.0002
9 2 2 0.0260 0.0608 0.0236 0.0287 0.0564 0.0391 0.0180
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Table B.3: 9 run simulation results of Graves’ method

Design matrix Simulation results
Run d m Ygr1 Ygr2 Ygr3 Ygra Ygr5 Ygr sdgr
1 0 0 0.0585  0.0576 0.0580 0.0622 0.0602 0.0593 0.0019
2 1 0 0.0552 0.0529 0.0572 0.0556 0.0517 0.0545 0.0022
3 2 0 0.0797 0.1558 (0.0788 0.1210 0.0981 0.1067 0.0324
4 0 1 0.0434 0.0465 0.0452 0.0447 0.0451 0.0450 0.0011
5 1 1 0.0366 0.0354 0.0353 0.0368 0.0347 0.0357 0.0009
6 2 1 0.2121 0.1576 0.0779 0.1694 0.1756 0.1585 0.0494
7 0 2 0.0374 0.0334 0.0378 0.0342 0.0335 0.0352 0.0022
8 1 2 0.0207 0.0220 0.0213 0.0236 0.0220 0.0219 0.0011
9 2 2 0.1114 0.1742 0.1649 0.1162 0.1193 0.1372 0.0298
Table B.4: 9 run simulation results of EE-MH
Design matrix Simulation results
Run d m Yeemhl Yeemh?2 Yeemh3 Yeemhda Yeemhbd Yeemh $deemh
1 0 0 0.0575 0.0603 0.0594 0.0608 0.0609 0.0598 0.0014
2 1 0 0.0543 0.0577 0.0556 0.0575 0.0546 0.0559 0.0016
3 2 0 0.0543 0.0598 0.0551 0.0544 0.0571 0.0561 0.0023
4 0 1 0.0478 0.0477 0.0468 0.0444 0.0475 0.0468 0.0014
5 1 1 0.0371 0.0360 0.0388 0.0372 0.0364 0.0371 0.0011
6 2 1 0.0348 0.0388 0.0346 0.0368 0.0379 0.0366 0.0018
7 0 2 0.0362 0.0363 0.0367 0.0365 0.0373 0.0366 0.0004
8 1 2 0.0208 0.0209 0.0217 0.0220 0.0224 0.0216 0.0007
9 2 2 0.0225 0.0221 0.0225 0.0218 0.0214 0.0221 0.0005

Table B.5: 9 run simulation results of EE-Slice

Design matrix Simulation results
Run d m Yeesll Yeesl2 Yeesl3 Yeeslq Yeesls Yeesl Sleest
1 0 0 0.0587 0.0570 0.0584 0.0571 0.0586 0.0579 0.0008
2 1 0 0.0563 0.0554 0.0565 0.0570 0.0539 0.0558 0.0012
3 2 0 0.0560 0.0569 0.0540 0.0545 0.05648 0.0553 0.0012
4 0 1 0.0439 0.0438 0.0441 0.0447 0.0457 0.0444 0.0008
5 1 1 0.0339 0.0349 0.0346 0.0346 0.0331 0.0342 0.0007
6 2 1 0.0355 0.0362 0.0371 0.0352 0.0351 0.0358 0.0008
7 0 2 0.0345 0.0359 0.0344 0.0342 0.0353 0.0349 0.0007
8 1 2 0.0207 0.0212 0.0210 0.0210 0.0205 0.0209 0.0003
9 2 2 0.0226 0.0226 0.0228 0.0295 0.0228 0.0241 0.0031




Table B.6: Simulation time of five algorithms in the 9 — run simulation study

APPENDIX B. SIMULATION STUDY RESULT

Run MH Slice Graves EE-MH EE-Slice
1 155/0.25m  37s/0.62m 16s/0.26m 715 s/11.91m 974 5/16.24m
2 155/0.25m  40s/0.66m  16s/0.26m 725 s/12.08m 985 s/16.41m
3 15s/0.25m  42s/0.69m  16s/0.26m 732 s/12.20m 993 s/16.55m
4 22s/0.37m  49s/0.82m  23s/0.39m 974 5/16.23m 1247s/20.78m
5  225/0.37m  54s/0.90m  23s5/0.39m 994 s/16.57m  1251s/20.85m
6  225/0.37Tm  59s/0.98m  23s/0.39m 999 s/16.65m  1278s/21.30m
7 30s/0.49m  59s5/0.98m 31s/0.5lm  1236s/20.6lm  1509s/25.15m
8  30s/0.49m  69s/1.16m 31s/0.5lm  1254s/20.90m  1524s/25.41m
9  30s/0.50m  76s/1.27m  31s/0.5lm  1266s/21.09m  1569s/26.15m
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