LATE-GLACIAL ALPINE GLACIER ADVANCE AND EARLY HOLOCENE TEPHRAS, NORTHERN BRITISH COLUMBIA

by

Thomas Ryan Lakeman B.Sc., University of Alberta, 2004

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In the Department of Earth Sciences

© Thomas Ryan Lakeman 2006 SIMON FRASER UNIVERSITY Fall 2006

All rights reserved. This work may not be reproduced, in whole or in part, by photocopy or other means, without permission of the author, except for scholarly, non-profit use.

APPROVAL

Name:

Thomas Lakeman

Degree:

Master of Science

Title of Thesis:

Late-Glacial Alpine Glacier advance and early Holocene Tephras, Northern British Columbia

Examining Committee:

Chair:

Dr. Derek Thorkelson Professor, Department of Earth Sciences

Dr. John Clague Senior Supervisor Professor, Department of Earth Sciences

Dr. Brent Ward Supervisor Associate Professor, Department of Earth Sciences

Dr. Brian Menounos Supervisor University of British Columbia

Dr. Peter Bobrowsky External Examiner Geological Survey of Canada

Date Defended/Approved:

November 10, 2006

DECLARATION OF PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection (currently available to the public at the "Institutional Repository" link of the SFU Library website <www.lib.sfu.ca> at: http://ir.lib.sfu.ca/handle/1892/112) and, without changing the content, to translate the thesis/project or extended essays, if technically possible, to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain shall not be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use, of any multimedia materials forming part of this work, may have been granted by the author. This information may be found on the separately catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this author, may be found in the original bound copy of this work, retained in the Simon Fraser University Archive.

Simon Fraser University Library Burnaby, BC, Canada

Revised: Fall 2006

ABSTRACT

Two related studies in northern British Columbia are presented. The first documents moraines in Finlay River area that record an advance of alpine glaciers. A minimum age of 9230 radiocarbon yr BP and the relation of moraines to ice-stagnation deposits suggest the advance is Younger Dryas in age. The advance demonstrates Younger Dryas glacier expansion differs in magnitude in western Canada, suggesting a complex glacier response to late-glacial climate change.

The second study describes four early Holocene tephras. Two phonolitic tephras, older than 9180 radiocarbon yr BP, were found in sediments from Finlay River and Dease Lake areas. Their source may be a large volcano in northwest British Columbia. Two other tephras were recovered from Bob Quinn Lake. A lower basaltic tephra was produced by an eruption near Iskut River 8400 radiocarbon yr ago. The upper phonolitic tephra is 6000-7000 radiocarbon yr old.

Keywords: Cordilleran Ice Sheet, Younger Dryas, British Columbia, tephras, northern Cordilleran volcanic province.

ACKNOWLEDGEMENTS

This project was supported by NSERC grants to John Clague and Brian Menounos, and student grants from the Geological Society of America and the Northern Scientific Training Program. I am grateful to John Clague and Brian Menounos for the opportunity to work in northern British Columbia and for their encouragement, support, and mentorship over the past two years. Valuable comments from Brent Ward regarding fieldwork, research articles, and aerial photographs are gratefully acknowledged. Gerald Osborn (University of Calgary) provided samples for microprobe analysis, helpful discussions, and financial support for fieldwork in the Dease Lake area. Duane Froese and Britta Jensen provided laboratory assistance at the University of Alberta and advice on interpreting microprobe data. Ian Spooner (Acadia University) and David Mazzucchi (University of Victoria) provided samples for microprobe analysis. I thank Ben Edwards (Dickinson College) for discussions of Quaternary volcanism in northern British Columbia, Yukon, and Alaska. Rolf Mathewes (Simon Fraser University) provided access to his laboratory.

Denny Capps (Simon Fraser University) assisted in the field. Melanie Grubb assisted with splitting, logging, and sampling cores in the sedimentological laboratory at the University of Northern British Columbia and provided information on late-glacial moraines in the southern Coast Mountains. Kim Menounos and Milo are gratefully acknowledged for hospitable accommodation and exceptional meals during my endless visits to the University of Northern British Columbia. Simon and Darrel provided safe floatplane and helicopter transport, respectively, in the field.

I thank Janice Brahney, Denny Capps, Jesse Dykstra, Michelle Hansen, Greg Hartman, Marit Heideman, Joe Koch, Robin McKillop, John Orwin, Jon Reidel, Dan Shugar, and Kenna Wilkie for their friendship and humour over the past two years. I am very grateful to my family for their continuing support and encouragement. Finally, I would like to thank Chantel Nixon for her love and advice; she continues to amaze and inspire.

TABLE OF CONTENTS

APPROVALii
ABSTRACTiii
ACKNOWLEDGEMENTSiv
TABLE OF CONTENTS
LIST OF FIGURESvii
LIST OF TABLESix
CHAPTER 1: Introduction1
CHAPTER 2: Late-glacial advance of alpine glaciers in the Finlay River area: Implications for ice sheet retreat and the nature of late-glacial climate change in northern British Columbia
Abstract
Introduction4
Study area7
Methods
Early deglaciation in the Finlay River area9
Late-glacial moraines10
Description10
Relative age11
Late-glacial advance11
Deglaciation following the late-glacial advance12
Deglacial landforms and sediments12
Pattern and style of ice retreat15
Age of the moraines16
Discussion17
Pattern and style of deglaciation17
Finlay advance19
Correlative landforms and deposits20
Late-glacial climate of northern British Columbia22
Regional synthesis
Conclusions24

CHAPTER 3: Early Holocene tephras in northwest British (C olumbia 41
Abstract	
Introduction	41
Methods	
Geomorphic and stratigraphic setting	
Composition and age	45
Source of tephras	
Finlay tephras	47
Bob Quinn tephras	
Conclusions	51
CHAPTER 4: Conclusions	64
REFERENCES	66
APPENDIX A: Map of glacial landforms and deposits	See CD inside back cover
Instructions	
APPENDIX B: Equilibrium line altitude reconstructions	
APPENDIX C: Lake sediment core data	81
APPENDIX D: Microprobe data	97

LIST OF FIGURES

Figure 2.1	Map of British Columbia showing its major physiographic regions28
Figure 2.2	Hillshaded digital elevation model of the study area29
Figure 2.3	Generalized ice flow directions in northern British Columbia at the
	maximum of the Fraser Glaciation30
Figure 2.4	Distribution of late-glacial moraines in the study area and location of
	cored lakes
Figure 2.5	Aerial photograph mosaic of late-glacial landforms in Geese Creek
	valley
Figure 2.6	A) Aerial photograph of Cushing Lake. B) Photograph of late-glacial
	lateral and medial moraines
Figure 2.7	Aerial photograph of Katharine Lake
Figure 2.8	Aerial photograph mosaic of late-glacial landforms in Thudaka Creek
	valley
Figure 2.9	Aerial photograph of late-glacial landforms in Finlay River valley and
	its tributaries
Figure 2.10	Hillshaded digital elevation model of the study area showing the pattern
	of ice flow during the late-glacial advance
Figure 2.11	A) Rock avalanche debris damming Rock Fall Lake. B) Aerial
	photograph of rock avalanche debris. C) Exotic, rounded granite
	boulder sitting on top of rock avalanche debris
Figure 2.12	Aerial photograph mosaic of late-glacial landforms in Chukachida
	River valley
Figure 2.13	Stratigraphic logs and radiocarbon ages from Red Barrel, Cushing, and
	Sandwich lakes40
Figure 3.1	Location of volcanic centres and complexes forming the northern
	Cordilleran volcanic province
Figure 3.2	Map of part of northern British Columbia showing locations of large
	volcanic complexes, sampled lakes, and occurrences of the Finlay and
	Bob Quinn tephras

Figure 3.3	Stratigraphic and magnetic susceptibility logs, and radiocarbon ages for	
	cores collected from Red Barrel, Cushing, Little Glacier, and Bob	
	Quinn lakes5	58
Figure 3.4	A) Sediments from Red Barrel Lake showing the upper and lower	
	Finlay tephras. B) Glass shards from the upper and lower Finlay	
	tephras5	;9
Figure 3.5	A) Sediments from Bob Quinn Lake showing the upper and lower Bob	
	Quinn tephras. B) Glass shards from the upper and lower Bob Quinn	
	tephras6	50
Figure 3.6	Plot of $K_2O + Na_2O$ vs. SiO ₂ for the Finlay and Bob Quinn tephras and	
	rocks from several volcanic complexes in northwest British Columbia6	51
Figure 3.7	Oxide variation diagrams showing compositions of the Finlay and	
	upper Bob Quinn tephras, Sheep Track Pumice (Mount Edziza), and a	
	postglacial phonolitic flow on Hoodoo Mountain	52
Figure 3.8	Oxide variation diagrams showing compositions of the lower Bob	
	Quinn tephra and rocks from the Iskut River volcanic field, including the	
	Iskut River volcanic centre	53

LIST OF TABLES

Table 2.1	Radiocarbon ages from the Finlay River area	27
Table 3.1	Average major element composition of glass shards from the Finlay	
	and Bob Quinn tephras	.52
Table 3.2	Average major element composition of Holocene scoria and pumice	
	from Mount Edziza	53
Table 3.3	Radiocarbon ages from the Finlay River, Dease Lake, and Iskut River	
	areas	54
Table 3.4	Average whole-rock major element compositions of postglacial	
	phonolitic flows at Hoodoo Mountain and Holocene basalt flows in the	
	Iskut River volcanic field	55

•

CHAPTER 1:

Introduction

Knowledge of Quaternary paleoenvironments provides a framework for testing relations between various components of the Earth system, including the atmosphere, oceans, glaciers, ecosystems, and sedimentary environments. Quaternary paleoenvironmental research in British Columbia has focused mainly on physical environments and ecosystems of the Late Wisconsinan (25,000-10,000 years ago) and the Holocene (10,000 years ago-present). Researchers have used a variety of methods, including geomorphology, stratigraphy, radiocarbon dating, tephrochronology, paleolimnology, microfossil and macrofossil analyses, computer modeling, and geochemical analyses of ice core records to determine former climates, atmospheric and oceanic circulation patterns, sea levels, and ecosystems, among others. Much of the body of paleoenvironmental research in British Columbia has been in the southern third of the province. In contrast northern British Columbia has received little attention. In this thesis, I present and discuss the results of two paleoenvironmental studies in northern British Columbia.

Chapter 2 presents evidence for a late-glacial advance of alpine glaciers in the Finlay River area of northern British Columbia. The advance built large, well preserved, lateral and terminal moraines at the mouths of many high-elevation tributary valleys in the watershed. Deglacial landforms and sediments, which constrain the style, pattern and timing of contemporaneous ice sheet retreat, are mapped and described in detail. Terrestrial plant matter in sediment cores recovered from lakes dammed by late-glacial moraines provides minimum limiting ages for construction of the moraines and for

1

regional deglaciation. The style of deglaciation in the study area is described and compared to that in other areas of British Columbia. The magnitude and scale of the lateglacial advance are discussed in the context of other advances of the same or similar age in western North America.

Chapter 3 describes and interprets four, previously unrecognized tephras found in lake sediment cores from northern British Columbia. The grain size, colour, thickness, glass shard morphology, phenocryst mineralogy, major element composition, distribution, and age of the tephras are described, and their possible sources are discussed. The tephras, which are early Holocene in age, are phonolitic to basaltic in composition, and are products of eruptions in the northern Cordilleran volcanic province.

Chapter 4 consists of general conclusions from the two studies and suggestions for future work in the region. The final part of the thesis includes four appendices: A - amap of all glacial landforms and deposits in the study area; B - a description of the method used to reconstruct past glacier equilibrium line altitudes and the results of the analysis; C - a summary of all lake core data; and D - a summary of tephra and rock microprobe data.

CHAPTER 2:

Late-glacial advance of alpine glaciers in the Finlay River area: Implications for ice sheet retreat and the nature of late-glacial climate change in northern British Columbia

Abstract

Large, sharp-crested lateral and terminal moraines record a significant late Pleistocene advance of alpine glaciers in the Finlay River area of northern British Columbia. The moraines are regional in extent and character, and appear to record climatic deterioration near the end of the last glaciation. Lateral moraines are bulky and up to 120 m high. Terminal moraines are up to 9 km beyond Little Ice Age deposits and terminate between 1100 and 1200 m above sea level. Several lateral moraines are crosscut by lateral meltwater channels, which record downwasting of trunk valley ice of the northern Cordilleran Ice Sheet. Other lateral moraines merge with ice-stagnation deposits in trunk valleys. These relationships confirm the interaction of advancing alpine glaciers with the regionally decaying Cordilleran Ice Sheet and verify a late-glacial age for the moraines (i.e. younger than 15,000 ¹⁴C yrs BP). Sediment cores were collected from eight lakes dammed by the late-glacial moraines. Two phonolitic tephras occur in basal sediments of several lakes, demonstrating that the moraines are the same age. Radiocarbon dating of plant macrofossils from sediment cores provides a minimum limiting age of 9230 ± 50^{14} C yr BP for abandonment of the moraines. The moraines record a regional alpine glacial advance, here named the Finlay advance, which is probably correlative with the Younger Dryas chronozone (11,000-10,000 ¹⁴C yr BP). The Finlay advance correlates with other advances in western Canada dated to the

Younger Dryas. Moraines of similar size and regional extent have not been identified elsewhere in the Canadian Cordillera. The different response of alpine glaciers in western Canada to Younger Dryas cooling indicates differing rates and magnitudes of late-glacial climate change, different styles of deglaciation, different temperature and precipitation gradients, and variable effects of remnant ice masses on local atmospheric circulation.

Introduction

Little is known about the decay of the northern half of the Cordilleran Ice Sheet, which covered an area of nearly 500,000 km² in northern British Columbia and southern Yukon Territory (Clague, 1989; Jackson et al., 1991; Ryder and Maynard, 1991; Bobrowsky and Rutter, 1992; Clague and James, 2002). The northern part of the ice sheet probably began to decay about 16,000-15,000 ¹⁴C yr BP, when glaciers with source areas in the northern Coast Mountains retreated from the Queen Charlotte Islands (Blaise et al., 1990). By 13,000 ¹⁴C yr BP, the ice sheet had retreated from Hecate Strait and its outlet glaciers terminated along the mainland coast and in fiords (Clague, 1985; Barrie and Conway, 1999). Similarly, glaciers in southeast Alaska had retreated from the continental shelf by 13,500 ¹⁴C yr BP (Mann and Hamilton, 1995). The eastern margin of the ice sheet had withdrawn from the northern Rocky Mountains by 13,500-12,500 ¹⁴C yr BP, although alpine glaciers persisted in the northern Rocky Mountains after the ice sheet decayed (Bednarski, 1999, 2000, 2001). Deglaciation was probably complete in northern British Columbia before 9500 ¹⁴C yr BP (Clague, 1981). Other than the broad constraints on deglaciation provided above, the timing and pattern of ice sheet decay are unknown in northern British Columbia. Importantly, nothing is known about the effects of lateglacial climatic oscillations, such as the Younger Dryas (11,000-10,000 ¹⁴C yrs BP; Alley, 2000), on remnants of the Cordilleran Ice Sheet in British Columbia.

The Younger Dryas, which began 11,000 ¹⁴C yrs ago and lasted about 1300 calendar years, was a severe cold period at the end of the last glaciation (Alley, 2000). Abundant evidence suggests widespread Northern Hemisphere, and possibly global, cooling of the atmosphere and oceans during the Younger Dryas (Mayewski et al., 1993; Peteet, 1995; Mikolajewicz et al., 1997; Steig et al., 1998), with the greatest temperature depressions in the North Atlantic region (Alley, 2000). The cause of Younger Dryas cooling continues to be a matter of debate (Broecker, 2003, 2006), but the favoured hypothesis involves disruption of North Atlantic Deep Water formation by a large influx of meltwater from North America, with attendant reduction in the poleward flux of ocean heat (Broecker et al., 1989; Lehman and Keigwin, 1992; Bjorck et al., 1996; Fanning and Weaver, 1997; Clark et al., 2001, 2002; Teller et al., 2002, 2005; Broecker, 2003, 2006). Meltwater discharges from the Baltic Ice Lake and the Barents Sea Ice Sheet have also been suggested as a possible triggering mechanism (Bjork et al., 1996).

A change in ocean circulation and cooling of climate in the northeast Pacific Ocean coincident with the Younger Dryas have been documented in north-coastal British Columbia and adjacent Alaska (Engstrom et al., 1990; Mathewes, 1993; Mathewes et al., 1993; Peteet and Mann, 1994; Hu et al., 1995, 2002; Patterson et al., 1995; Hansen and Engstrom, 1996; Hendy et al., 2002; Hetherington and Reid, 2003; Lacourse, 2005). Glacier advances of Younger Dryas age have been identified in the central and southern Coast Mountains of British Columbia (Clague, 1985; Friele and Clague, 2002a), the southern Canadian and northern American Rocky Mountains (Reasoner et al., 1994; Osborn and Gerloff, 1997), the northern Cascade Range of Washington (Kovanen and Easterbrook, 2001; Riedel et al., 2003), and southwestern Alaska (Briner et al., 2002).

The Younger Dryas, however, was not the only cold interval during the lateglacial period. Advances several hundred years to more than 1000 years earlier than the Younger Dryas have been identified in southwest British Columbia (Armstrong, 1981; Saunders et al., 1987; Clague et al., 1997; Friele and Clague, 2002b) and in the southern Canadian and northern American Rocky Mountains (Osborn and Gerloff, 1997). Their regional climatic significance, however, remains unknown.

The Finlay River area of north-central British Columbia (Fig. 2.1) contains large, sharp-crested lateral and terminal moraines that record a resurgence of alpine glaciers during final decay of the Cordilleran Ice Sheet. The moraines are regional in extent, appear to be of equivalent age, and record significant climatic deterioration during late-glacial time (i.e. younger than 15,000 ¹⁴C yr BP; Clague, 1981). This paper documents and discusses these moraines and related deglacial sediments and landforms. The objectives are to: 1) describe the late-glacial moraines, 2) infer the pattern of deglaciation in the area, 3) present information on the age of the advance that constructed the moraines, 4) discuss the paleoclimatic significance of the moraines, and 5) compare the inferred late-glacial climate of the Finlay River area to that of other areas in the Canadian Cordillera where late-glacial moraines have been identified. The paper considers the relation of late-glacial alpine glacier resurgence in northern British Columbia and late-glacial advances elsewhere in the Canadian Cordillera.

6

Study area

The Finlay River watershed is located in north-central British Columbia, in the rain shadow of the northern Coast Mountains (Fig. 2.1). The study area comprises approximately 3200 km² of mountainous terrain straddling the northern Omineca and southern Cassiar mountains (Fig. 2.2). The Continental Divide runs through the centre of the study area, separating Pacific from Arctic drainages. Finlay River flows north and then east into the northern Rocky Mountain Trench, which borders the study area to the east. Chukachida River drains the western part of the study area and flows into Stikine River on Spatsizi Plateau west of the map area.

Climate in the study area is continental, with mean annual temperatures ranging from 0° C to -2° C and average annual precipitation ranging from 400 to 500 mm (Environment Canada, 2002). Most moisture is derived from the Pacific Ocean approximately 600 km to the west. White and black spruce (*Picea glauca, Picea mariana*), subalpine fir (*Picea engelmannii*), lodgepole pine (*Pinus contorta*), and aspen (*Populus tremuloides*) dominate vegetation at low elevations in the study area (Meidinger and Pojar, 1991).

The highest peaks exceed 2500 m above sea level (asl), and local relief is up to 1400 m. Small cirque glaciers are restricted to sites above 1800 m asl on the flanks of a few of the highest peaks (Fig. 2.2). The study area was extensively glaciated during the Pleistocene. Cirques, broad U-shaped valleys, and arêtes formed during repeated, lengthy periods of alpine glaciation. The Cordilleran Ice Sheet also covered the area

7

repeatedly during the Pleistocene, but probably for much shorter intervals than alpine glaciers.

Methods

Glacial landforms and deposits were mapped on Province of British Columbia aerial photographs flown in 1986 and 1999. The photographs have nominal scales of 1:60,000 and 1:35,000, respectively. Mapped features were entered into a GIS, and checked during an aircraft-supported field survey in 2005 (Appendix A). Identification of large moraine complexes; meltwater channels; ice-contact deltas, fans, and a landslide; eskers; and glaciolacustrine sediments enabled a detailed reconstruction of latest Pleistocene glacier activity and the regional pattern of deglaciation. Equilibrium line altitudes of former glaciers were estimated to determine their paleoclimatic significance using the accumulation area ratio (AAR) method (Porter, 1975; Appendix B).

Sediment cores were collected from eight lakes impounded by late-glacial moraines to constrain the time of deglaciation. The cores were collected from lake ice in January 2005 and from the floats of a De Havilland DHC-2 Beaver in July 2005, using a percussion coring system (Reasoner, 1993). The cores were transported to the University of Northern British Columbia, where they were split, logged, photographed, analyzed for bulk physical properties (grain size, magnetic susceptibility, and organic content), and sampled for terrestrial macrofossils and tephras. Terrestrial macrofossils extracted from the cores were radiocarbon dated at IsoTrace Laboratory (University of Toronto) and Beta Analytic Inc. by accelerator mass spectrometry. Two tephras were found in most cores. The major element compositions of glass shards, which were isolated from the tephras using a heavy liquid separation procedure, were determined using the electron microprobe at the Department of Geology and Geophysics, University of Calgary (Chapter 3). The radiocarbon ages and tephras provide constraints on the absolute age of the late-glacial moraines and the time of deglaciation in the study area.

Early deglaciation in the Finlay River area

During the Fraser Glaciation, the northern half of the Cordilleran Ice Sheet was fed from accumulation centres located over the northern Coast, the Skeena, and the northernmost Cassiar mountains (Fig. 2.3; Mathews 1980; Ryder and Maynard, 1991; Stumpf et al., 2000; McCuaig and Roberts, 2002). Radial flow from the northern Skeena Mountains directed ice north into the Cassiar Mountains and Liard Plateau, east into the northern Rocky Mountains and foothills, and south into the Omineca Mountains and Nechako Plateau (Mathews, 1980; Ryder and Maynard, 1991; Bobrowsky and Rutter, 1992; Bednarski, 1999, 2000, 2001; Stumpf et al., 2000; McCuaig and Roberts, 2002). The Skeena Mountains also fed glaciers flowing west along major valleys through the northern Coast Mountains (Ryder and Maynard, 1991). Smaller ice divides over the northern Coast Mountains and northernmost Cassiar Mountains directed ice westward onto the continental shelf and north into the Yukon, respectively (Ryder and Maynard, 1991).

The Finlay River area was covered by ice flowing from the northern Skeena Mountains (Fig. 2.3; Mathews, 1980; Ryder and Maynard, 1991). Ice flow through the study area at the last glacial maximum may have been relatively unobstructed by topography. This condition, however, was probably short-lived, and for much of the

9

Fraser Glaciation, mountain ranges and valleys in the study area controlled the pattern of ice flow. Numerous meltwater channels traversing alpine ridges and valley sides record drawdown of the ice sheet during initial deglaciation. At this time, glaciers continued to flow north and east from the northern Skeena Mountains along major valleys through the study area.

Late-glacial moraines

Description

Large, regionally extensive lateral and terminal moraines provide evidence for an advance of alpine glaciers in the Finlay River area during late-glacial time (Fig. 2.4). The moraines are bulky, sharp-crested, up to 120 m high (Figs. 2.5 and 2.6), and extend up to 9 km beyond Little Ice Age terminal moraines (Fig. 2.7), which, in contrast, are much smaller (Fig. 2.8). Most of the late-glacial terminal moraines terminate between 1100 and 1200 m asl. Two or three nested moraines are present in most areas, indicating multiple episodes of moraine construction. The moraines are distributed uniformly throughout the study area (Fig. 2.4). Morphologically similar moraines occur north and west of the study area in the Cassiar Mountains, but were not investigated in this study.

Lateral moraines are common in valleys below high cirques (Fig. 2.4). Associated terminal moraines are broad, undulating to flat surfaces (Fig. 2.8). More commonly, however, terminal moraines are weakly developed or absent altogether (Fig. 2.5). Some terminal moraines may have been eroded as deglaciation progressed, but this explanation cannot explain their widespread absence in the study area, especially given the presence of nearby, well preserved lateral moraines. Lateral moraines with no associated terminal moraine commonly merge with ice-stagnation deposits, such as icecontact alluvial fans, kames, eskers, and kettles that cover trunk valley floors (Fig. 2.9). Some lateral moraines curve at the mouths of tributary valleys, suggesting that tributary and trunk glaciers coalesced (Fig. 2.9). Lateral meltwater channels, formed during downwasting and retreat of trunk glaciers, crosscut many of the lateral moraines (Fig. 2.5).

Relative age

Based on the distribution of meltwater channels, I infer that a labyrinth of active (i.e. non-stagnant), but decaying glaciers in trunk valleys in the study area formed the digitate margin of the retreating northern Cordilleran Ice Sheet when the tributary valley moraines were being constructed (Fig. 2.10). Trunk glaciers in the Finlay, Toodoggone, and Chukachida River valleys were sourced in the Skeena Mountains. The large trunk glacier in the Chukachida River valley diverged into several smaller trunk glaciers situated in the Geese Creek, Cushing Creek, and intervening valleys (Fig. 2.10). Abandoned fragments of Cordilleran ice occupied many north-south trending valleys in the study area, such as Belle, Midas, Mulvaney, Junkers, and Jack Lee Creek valleys (Fig. 2.10). Crosscutting lateral meltwater channels (Fig. 2.5) and the spatial association of the moraines with sediments deposited during final wastage of the Cordilleran Ice Sheet (Fig. 2.9) demonstrate that the moraines were built during final deglaciation of northern British Columbia and are thus late Pleistocene in age.

Late-glacial advance

There are few exposures in tributary valleys that contain lateral and end moraines, and no stratigraphic evidence was found to unequivocally demonstrate that alpine glaciers advanced during late-glacial time. However, some alpine glaciers clearly constructed moraines in areas that had previously been deglaciated (Fig. 2.8), which is strong evidence for an advance of alpine glaciers during or after retreat of the ice sheet. Elsewhere, alpine glaciers constructed lateral moraines abutting active but decaying ice in trunk valleys (Figs. 2.5 and 2.9). The moraines record a discrete advance and not a stillstand during separation of tributary alpine glaciers from trunk glaciers, because the size and character of the moraines can only be explained by abundant remobilization of late-glacial sediments (e.g. the Red Barrel moraines; Fig. 2.8). Equilibrium line altitudes calculated for alpine glaciers that did not coalesce with remnant Cordilleran ice in trunk valleys, at the time of moraine construction, suggest that snowline was 1650-1750 m asl compared to approximately 1900-1950 m asl during the Little Ice Age (Appendix B). No stratigraphic or geomorphic evidence was found for a late-glacial resurgence or thickening of remnant tongues of the northern Cordilleran Ice Sheet in trunk valleys.

Deglaciation following the late-glacial advance

Deglacial landforms and sediments

Trunk glaciers in the Toodoggone and Finlay River valleys were up to 200-300 m thick and thinned eastward and northward, respectively, at the time of the late-glacial advance. Ice thicknesses were estimated from the elevations of lateral meltwater channels crosscutting late-glacial moraines and from the elevations of terminal moraines that were constructed against trunk ice by resurgent tributary glaciers. Hummocky terrain and large meltwater channels in the Finlay River valley adjacent to the Rocky Mountain Trench and large kettles and eskers farther up-valley record final wastage of the Finlay trunk glacier following the late-glacial advance. The terminus of the Finlay trunk glacier was likely a narrow lobe of thin stagnant ice that reached into the northern Rocky Mountain Trench at the time of the late-glacial advance (Fig. 2.10). Two tributary glaciers deposited kame terraces against the decaying trunk glacier in the Finlay River valley (Fig. 2.9). These kame terraces suggest that the Finlay trunk glacier was 60-80 m thick at the time the tributary glaciers abandoned their moraines. Following the advance, large eskers and numerous kettles formed in the Finlay and Toodoggone River valleys. In addition, abundant subglacial meltwater channels were cut into the valley sides along Toodoggone River.

Elevations of lateral meltwater channels crosscutting moraines show that the trunk glacier in Geese Creek valley was up to 200 m thick at the time of the late-glacial advance. Resurgent alpine glaciers constructed lateral moraines, but terminal moraines are absent and were probably not built because active ice occupied the adjacent trunk valley (Fig. 2.5). The Geese Creek trunk glacier thinned to the east where it overtopped a low pass and terminated against resurgent alpine glaciers in the northwest tributary of Thudaka Creek (Fig. 2.5). Shortly after the advance, several eskers and ice-contact alluvial fans were deposited in Geese Creek valley below lateral moraines lying in adjacent cirques and tributary valleys (Fig. 2.5).

The trunk glacier in Cushing Creek valley was up to 200 m thick at the time of the late-glacial advance. It thinned eastward and terminated near Thudaka Creek (Fig. 2.10). As the trunk glacier retreated, a large rock avalanche fell from the north flank of Mount Cushing onto the glacier terminus (Fig. 2.11). The glacier diverted the blocky debris downvalley, preventing it from being deposited where trunk ice remained. Exotic,

rounded, granite cobbles and boulders are present in the rock avalanche debris and were deposited by the trunk glacier where it abutted the rock avalanche (Fig. 2.11). Farther west in the valley, numerous eskers were deposited during final wastage of the trunk glacier.

Advancing alpine glaciers constructed moraines against abandoned fragments of the Cordilleran Ice Sheet in many north-trending valleys in the study area, including Belle, Midas, Mulvaney, Junkers, and Jack Lee Creek valleys (Fig. 2.10). Lateral meltwater channels crosscutting the late-glacial moraines indicate that trunk glaciers in these valleys were up to 250 m thick during the late-glacial advance. Late-glacial terminal moraines built by alpine glaciers are well preserved on trunk valley floors. Lateral and subglacial meltwater channels abut several ice-contact deltas that prograded into lakes dammed by abandoned Cordilleran ice in north-trending valleys and by trunk glaciers in the Toodoggone and Chukachida River valleys. Meltwater from retreating alpine glaciers and stagnating Cordilleran ice deposited large ice-contact alluvial fans in the Chukachida River valley (Fig. 2.12).

Alpine glaciers occupied most of Thudaka Creek valley and its tributaries during the late-glacial advance (Fig. 2.10). A large lobe of the Cordilleran Ice Sheet did, however, cover a section of Thudaka Creek valley north of Red Barrel Lake where three tributary valleys converge (Fig. 2.8). The western margin of the Cordilleran lobe coalesced with an eastward-flowing Cordilleran trunk glacier in an adjacent valley at the time of the late-glacial advance (Fig. 2.10). Karne terraces and meltwater channels mark the eastern limit of the Cordilleran lobe, and demonstrate that it terminated just up-valley of the moraine that impounds Red Barrel Lake (Fig. 2.8). The Red Barrel moraines have

14

no crosscutting features recording interaction between the alpine glacier and the adjacent Cordilleran lobe. During final deglaciation, the Cordilleran lobe impounded a small glacial lake in the westernmost tributary of Thudaka Creek (Fig. 2.8). It also may have temporarily dammed two other tributaries, but meltwater probably flowed freely under or around the thin glacier terminus during most of the late-glacial advance (Fig. 2.8). Following the advance, alpine glaciers abandoned their moraines and the Cordilleran lobe stagnated.

Pattern and style of ice retreat

Landforms and sediments in the study area suggest that the northern Cordilleran Ice Sheet thinned early during deglaciation but retained an active network of trunk glaciers at its periphery prior to the late-glacial advance (Fig. 2.10). However, some trunk valleys in the study area, such as lower Thudaka Creek valley, had become ice-free prior to the advance (Fig. 2.8). The thickness and geometry of glaciers in trunk valleys at the time of the late-glacial advance can be reconstructed from abundant, well preserved, lateral meltwater channels that crosscut many late-glacial moraines (e.g. Geese Creek valley; Fig. 2.5). The lateral meltwater channels indicate that trunk glaciers thinned and retreated rapidly following the late-glacial advance. Eskers and deeply incised, subglacial meltwater channels in many of the major valleys record stagnation and final wastage of trunk glaciers. Alpine glaciers abandoned their moraines and retreated back into cirques following the advance. Some alpine glaciers constructed small moraines during retreat, but recessional moraines are uncommon.

Age of the moraines

Two black phonolitic tephras occur near the contact between inorganic and overlying organic-rich sediments in sediment cores collected from Katharine, Red Barrel, and Cushing lakes (Fig. 2.13). Red Barrel and Cushing lakes are impounded behind late-glacial terminal and lateral moraines, respectively (Figs. 2.6 and 2.8), whereas Katharine Lake lies on the distal side of a late-glacial terminal moraine (Fig. 2.4). The tephras comprise fine sand to silt-sized mineral grains and glass shards. They are coarser than the bounding sediments and lie within 2-4 cm of one another in the cores (Fig. 2.13). A radiocarbon age of 8960 ± 80^{14} C yr BP was obtained on a piece of wood 2 cm above the upper tephra in a core from Red Barrel Lake (Fig. 2.13; Table 2.1). Unidentified plant material 1 cm above the upper tephra in Cushing Lake returned an age of 9180 ± 80^{14} C yr BP (Fig. 2.13; Table 2.1).

A sediment core from Deep Lake contains one phonolitic tephra near its base. This lake is located in a cirque that supported the glacier that constructed the terminal moraine impounding Red Barrel Lake (Fig. 2.8). A core from Black Lake, which is dammed by a late-glacial alluvial fan, also contains a single basal phonolitic tephra. The occurrence of phonolitic tephras in basal sediments from five lakes in the study area indicates that deglaciation was complete by no later than 9180 \pm 80 ¹⁴C yr BP. This age is also a minimum for construction and abandonment of the late-glacial moraines.

Another minimum date for deglaciation is a radiocarbon age of 9230 ± 50^{14} C yr BP, obtained from basal sediments in a core from Sandwich Lake (Fig. 2.13; Table 2.1). Sandwich Lake lies within a lateral meltwater channel at the same elevation as adjacent

meltwater channels that crosscut late-glacial lateral moraines. The radiocarbon age is thus a minimum limiting age for abandonment of the moraines.

Data from the Rocky Mountains to the east provide a maximum age constraint on the late-glacial advance in the Finlay River watershed. Bednarski (1999, 2000, 2001) obtained three surface exposure cosmogenic ages on striated rock surfaces high in the northern Rocky Mountains. He concluded from the three ages that the northern Cordilleran Ice Sheet withdrew from the northern Rocky Mountains before 14,000-13,000 cal yr BP, which corresponds to approximately 13,500-12,500 ¹⁴C yr BP. Ice cover in the Finlay River area at that time must have been greater than during the lateglacial advance, because the exposure ages were obtained on high ridges that had been covered by ice flowing east from the Skeena ice divide 200-300 km to the west and 150 km west of the Finlay River area (Fig. 2.3; Mathews, 1980; Ryder and Maynard, 1991). Thus, the Finlay advance happened after the Cordilleran Ice Sheet withdrew from the northern Rocky Mountains, sometime after 13,000 ¹⁴C yrs BP.

Discussion

Pattern and style of deglaciation

The Finlay advance occurred when valley glaciers were present at intermediate and high elevations in the northern Omineca and southern Cassiar mountains. At the same time, remnant tongues of decaying Cordilleran ice flowing from the northern Skeena Mountains occupied many trunk valleys in the study area (Fig. 2.10). The advance occurred at a time of deglaciation that Fulton (1967, 1991) termed the *transitional upland phase*, when downwasting of the ice sheet uncovered upland areas, but regional ice flow continued in valleys. In the Finlay River area, drawdown rapidly transformed the ice sheet into a labyrinth of rapidly ablating valley glaciers. Under this scenario, the regional equilibrium line was sufficiently low that alpine glaciers could persist at intermediate to high elevations. These alpine glaciers later advanced and constructed large moraines when equilibrium line fell to 1650-1750 m asl. It is possible that alpine glaciers completely disappeared prior to the late-glacial advance, but this scenario seems unlikely given the size of the moraines and the glaciers that constructed them. Following the advance, a large and rapid rise in equilibrium line forced alpine glaciers to retreat and trunk glaciers to stagnate as the latter became detached from their source areas in the northern Skeena Mountains. By approximately 9500 ¹⁴C yrs BP, glaciers in northern British Columbia were likely no more extensive than today (Clague, 1981).

The pattern of deglaciation in the Finlay River area, excluding final stagnation of trunk glaciers, appears to differ from that documented in southern British Columbia by Fulton (1967, 1991). Fulton concluded that upland areas in southern British Columbia appeared through the ice sheet first due to downwasting and complex frontal retreat. Cirques at intermediate and, locally, high elevations on the southern Interior Plateau were deglaciated during late-glacial time. In contrast, ice persisted in high mountain valleys in the northern Skeena, Omineca, and Cassiar mountains while the ice sheet downwasted. The alpine physiography of the study area and its proximity to major ice accumulation areas in the northern Skeena Mountains are probably the reasons alpine glaciers persisted at intermediate to high elevations during late-glacial time. Temperature and precipitation regimes favourable for glacier growth or persistence during rapid latest Pleistocene climatic amelioration may also partly account for widespread persistence of alpine glaciers in northern British Columbia.

Finlay advance

The size and regional extent of the Finlay moraines imply that regional climatic deterioration was important in triggering the late-glacial advance in the study area. Apart from Crowfoot moraines in the Canadian Rocky Mountains (Reasoner et al., 1994), no other large concentration of late-glacial moraines has been identified in the Canadian Cordillera.

A drop in equilibrium line altitude in the Finlay River area to 1650-1750 m asl allowed alpine glaciers to advance and construct lateral and terminal moraines in high tributary valleys and in areas where trunk glaciers were stagnant or absent (Figs. 2.8 and 2.9). Trunk glaciers did not subsequently override and remove late-glacial moraines because the trunk glaciers were lower than both the equilibrium line altitude and the adjacent moraines. The complex geometry of the trunk glacier network and the distance of these glaciers from major source areas in the northern Skeena Mountains likely attenuated the effects of positive mass balance that would have otherwise led to their thickening and advance. Ice in the northern Skeena Mountains may have thinned so much earlier during deglaciation that accumulation centres were unable to nourish their distal, complex, valley glacier network when alpine glaciers advanced in the Finlay River area.

The large size of the lateral moraines requires explanation, given that the length of time available for their construction is no more than 1000 years, assuming, as seems likely, that the Finlay advance occurred during the Younger Dryas chronozone, 11,000-

10,000 ¹⁴C yr BP. The size of the lateral moraines is perhaps a result of the large amount of sediment available to the glaciers at the time of the advance. As mentioned above, alpine glaciers at intermediate and high elevations survived initial downwasting and retreat of the Cordilleran Ice Sheet with attendant transport and deposition of large amounts of supraglacial and subglacial debris. In particular, rockfall and landslides from freshly deglaciated cirque headwalls probably contributed large amounts of debris, which was transported down-glacier and deposited in the moraines.

Correlative landforms and deposits

Younger Dryas glacier advances have been identified at many sites in western North America, including the central and southern Coast Mountains of British Columbia (Clague, 1985; Friele and Clague, 2002a, 2002b), the southern Canadian Rocky Mountains (Reasoner et al., 1994), southwestern Alaska (Briner et al., 2002), the northern Cascade Range (Kovanen and Easterbrook, 2001; Riedel et al., 2003), and other areas in the western United States (Gosse et al., 1995; Menounos and Reasoner, 1997; Owen et al., 2003; Licciardi et al., 2004). Friele and Clague (2002a, 2002b) documented a Younger Dryas advance of the glacier that occupied the Squamish River valley in the southern Coast Mountains, 50 km north of Vancouver, British Columbia. Some valley glaciers on the west side of the Coast Mountains reached fiord heads at this time (Clague, 1985; Friele and Clague, 2002a). East of the crest of the southernmost Coast Mountains, glaciers were restricted to cirques and high valleys with accumulation areas above about 2000 m asl (Souch, 1989; Friele and Clague, 2002a). Clague (1985) reported a Younger Dryas advance of a tidewater glacier in the central Coast Mountains near Terrace, British Columbia, however, its climatic significance is uncertain. Crowfoot moraines record small Younger Dryas glacier advances in the Canadian Rocky Mountains (Reasoner et al., 1994). They commonly lie immediately outside Little Ice Age moraines or have been incorporated into them, thus Crowfoot glaciers were comparable in extent to those of the Little Ice Age (Reasoner et al., 1994; Osborn and Gerloff, 1997; Osborn et al., 2001). The small size of Crowfoot glaciers suggests that they had decayed significantly from their maximum Late Wisconsinan limits and, in some cases, may have formed in cirques that had been completely deglaciated prior to the onset of the Younger Dryas (Reasoner et al., 1994; Osborn and Gerloff, 1997; Osborn et al., 2001). Briner et al. (2002) suggested that the late-glacial Mount Waskey advance in the Ahklun Mountains of southwestern Alaska might be Younger Dryas in age, based on cosmogenic surface exposure ages of boulders on moraines. During this advance, resurgent valley glaciers constructed large terminal and lateral moraines several kilometres downvalley of modern glacier termini. The Mount Waskey moraines are about 80 km inside the maximum limit of Late Wisconsinan glaciation in the region, indicating that the advance occurred after substantial deglaciation during late-glacial time.

Late-glacial advances prior to the Younger Dryas have been documented at several localities in the Canadian Cordillera. Clague et al. (1997) presented evidence for two late-glacial advances of a lobe of the Cordilleran Ice Sheet in southwest British Columbia, both of which occurred before the onset of the Younger Dryas. Saunders et al. (1987) reported contemporaneous advances in the Chilliwack River valley, southwest British Columbia. A correlative advance or stillstand of the trunk glacier in Squamish River valley is marked by an end moraine at Porteau Cove, 15 km south of Squamish (Friele and Clague, 2002b).

21

Other undated late-glacial moraines and deposits have been documented elsewhere in the North American Cordillera. Some moraines in the Canadian and American Rocky Mountains pre-date the Crowfoot advance and record local stillstands or advances during the late-glacial interval (Reasoner et al., 1994; Osborn and Gerloff, 1997). Undated moraines have been reported from at least four sites in northern British Columbia: the Tuya-Teslin area (Watson and Mathews, 1944), Level Mountain (Hamilton, 1981), the Atlin area (Tallman, 1975), and the Omineca Mountains (Roots, 1954). Late-glacial advances and stillstands of the northern Cordilleran Ice Sheet have been reported from several valleys of southern Yukon Territory (Hughes, 1990; Jackson et al., 1991; Bond, 2004; Kennedy and Bond, 2004; Bond and Kennedy, 2005).

Late-glacial moraines in the Cassiar Mountains near Dease Lake are similar in size and character to the Finlay moraines (T. Lakeman, unpublished data). Many of the valley glaciers that constructed the moraines coalesced with trunk glaciers that were part of the northern Cordilleran Ice Sheet. Sediment cores recovered from lakes inside the moraines in the Dease Lake area contain the same phonolitic tephras as lake cores from the Finlay River area (Chapter 3). The presence of the same tephras in the two areas some 250 km apart suggests that the moraine complexes are correlative and are the product of the same late-glacial climate event.

Late-glacial climate of northern British Columbia

Paleoecological data from north-coastal British Columbia record regional climate change during deglaciation. The most pronounced and consistent change in the records is the Younger Dryas climate deterioration (Engstrom et al., 1990; Mathewes, 1993; Mathewes et al., 1993; Hetherington and Reid, 2003; Lacourse, 2005). Mathewes (1993) and Mathewes et al. (1993) documented a late-glacial shift from closed forest to open, herb-rich parkland at two sites near Cape Ball, Graham Island; the parkland persisted from about 10,700 to 10,000 ¹⁴C yr BP. Lacourse (2005) presented similar evidence for Younger Dryas climatic cooling from northern Vancouver Island. Mathewes et al. (1993) showed that waters on the central British Columbia continental shelf were cooler from 11,100 to 10,200 ¹⁴C yr BP than either earlier or later, based on abundances of the coldwater benthic foraminifera, *Cassidulina reniforme*, in several marine sediment cores. Similarly, Hecate Strait was cooler from 10,900 to 10,300 ¹⁴C yr BP than at times immediately earlier or later, based on the absence of most bivalves, except species tolerant of low sea surface temperatures (Hetherington and Reid, 2003). Engstrom et al. (1990) reported that pine parkland on Pleasant Island, southeastern Alaska, was replaced by shrub- and herb-dominated tundra about 10,800 ¹⁴C yr BP; tundra persisted in the area to about 9800 ¹⁴C yr BP.

These studies document a return to cool and wet conditions in northern British Columbia and southeast Alaska during the Younger Dryas. The records show no evidence of a comparable late-glacial climate oscillation either before or after the Younger Dryas. Thus, the Younger Dryas was likely the most significant event of its kind in northern British Columbia during the late glacial period.

Regional synthesis

Consideration of available paleoecological data from northern British Columbia and southeast Alaska indicates that the Finlay moraines record a regional advance of alpine glaciers during the Younger Dryas chronozone. Differences in the magnitude of the advances in the Finlay River area and elsewhere in the Canadian Cordillera point to variable responses of glaciers to climate change during terminal Pleistocene deglaciation.

The Finlay moraines indicate that the timing and pattern of ice sheet retreat were important in determining glacier extents at the onset of late-glacial climate deterioration. Different styles and rates of deglaciation were probably primary mechanisms causing varied glacier responses to late-glacial climate change. Generally larger advances in coastal and northern alpine areas near former accumulation centres or ice divides where extensive ice persisted early during deglaciation (e.g. the Squamish and Finlay advances) support this assertion. Near-complete deglaciation of the southern Canadian Rocky Mountains by Younger Dryas time and perhaps relatively less precipitation may explain the comparatively smaller Crowfoot advances. Different temperature and precipitation gradients and the variable effects of remnant, large ice masses on local atmospheric circulation may have also contributed to the complexity in glacier fluctuations during deglaciation in western North America.

Conclusions

Glaciers flowing from the northern Skeena Mountains covered the Finlay River area of northern British Columbia at the climax of the Fraser Glaciation. Large alpine glaciers persisted at intermediate and high elevations early during deglaciation as the Cordilleran Ice Sheet decayed by downwasting and frontal retreat.

Large terminal and lateral moraines were constructed in tributary valleys in the Finlay River area during a regional late-glacial advance of alpine glaciers following early deglaciation. The advance occurred when regional equilibrium line altitudes fell to 16501750 m asl and it coincided with final decay of a network of remnant, thin tongues of the northern Cordilleran Ice Sheet in trunk valleys. Trunk glaciers were below both resurgent alpine glaciers and the lowered regional equilibrium line altitude that allowed alpine glaciers to advance. The late-glacial moraines are well preserved and clearly record interaction between alpine glaciers and decaying trunk glaciers. The large size of the moraines is probably due the abundance of sediment available for transport during deglaciation.

Two phonolitic tephras slightly older than 9180 ± 80 ¹⁴C yr BP occur in the study area and closely delimit the time of abandonment of the late-glacial moraines. A radiocarbon age of 9230 ± 50 ¹⁴C yr BP from a meltwater channel cut during retreat of trunk glaciers from the area confirms a late-glacial age for the moraines. The advance likely occurred after the Cordilleran Ice Sheet had withdrawn from the northern Rocky Mountains ca. 13,000 ¹⁴C yr BP.

The widespread distribution of the Finlay moraines points to regional climatic deterioration as a likely trigger for the late-glacial advance of alpine glaciers. Paleoecological records from northern British Columbia indicate that the most severe cold interval during late-glacial time coincided with the Younger Dryas chronozone. Therefore, it is likely that the late-glacial moraines in the Finlay River area record a regional advance of alpine glaciers during that time.

Younger Dryas and older glacier advances in the southern Coast Mountains of British Columbia, the southern Canadian Rocky Mountains, southwestern Alaska, the northern Cascade Range, and other areas in the western United States differ in size, suggesting variable glacier responses to late-glacial climate change. The different responses probably reflect different styles of deglaciation, different temperature and precipitation gradients, differing rates and magnitudes of late-glacial climate change, and variable effects of remnant ice masses on local atmospheric circulation. The stochastic nature of rapid changes in the atmosphere and oceans at the end of the last glaciation probably accounts for the sporadic occurrence and variable scale of Younger Dryas glacier advances in western North America.

Location (latitude, longitude)	¹⁴ C age ¹ (years BP)	Calibrated age range ² (years BP)	Laboratory number ³	Dated material	Depth in core (cm)
	3930 ± 80	4100-4580	TO-12469	Conifer needle	60.5
	3920±60	4160-4520	TO-12470	Twig	82.5
Red Barrel Lake	5240 ± 70	5890-6210	TO-12471	Spruce terminal bud	98.5
(M 620.44 021 NI 620.04 /C)	7250 ± 70	7950-8190	TO-12472	Twig	115.0
	8270±90	9030-9460	TO-12473	Conifer needle	121.5
	8960 ± 80	9780-10,250	TO-12474	роом	139.5
Cushing Lake (57°35.607' N, 126°54.450' W)	9180 ± 80	10,220-10,560	TO-12475	Terrestrial plant matter	77.5
Bronlund Lake (57 ⁰ 25.463' N, 126 ⁰ 35.460' W)	8270 ± 50	9090-9430	Beta-202608	Conifer needles	89.5
Sandwich Lake (57 ⁰ 01.565' N, 126 ⁰ 29.747' W)	9230 ± 50	10,250-10,550	Beta-202609	Wood	93.5

Table 2.1. Radiocarbon ages from the Finlay River area.

¹ Laboratory-reported errors are 1-sigma. ² Calibrated ages determined using the program OxCal v4.0 Beta, which uses the IntCal04 calibration curve (Reimer et al., 2004). ³ The range represents the 95% confidence interval (± 2 sigma). ³ Beta - Beta Analytic Inc.;TO - IsoTrace Laboratory (University of Toronto).

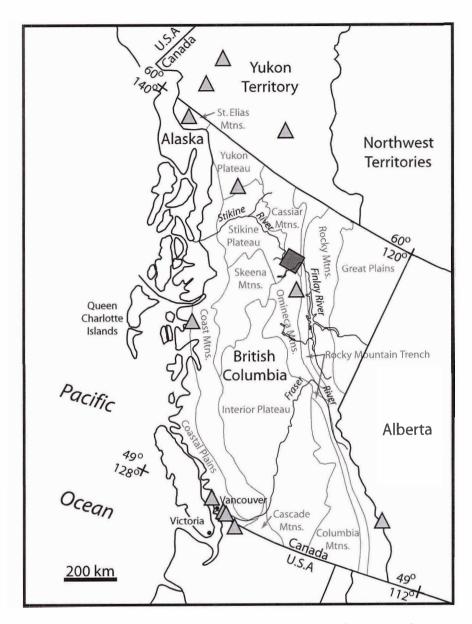
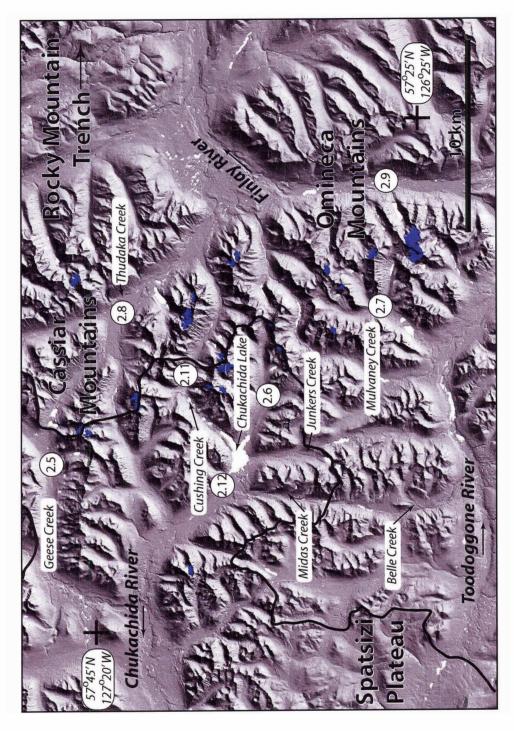



Figure 2.1. British Columbia showing its major physiographic regions (based on Mathews, 1986). Grey box indicates study area. Triangles mark sites where late-glacial glacier advances have been identified.

line delineates watershed divide between Pacific and Arctic drainages. Present-day glaciers are shown in Figure 2.2. Hillshaded digital elevation model of the study area. Numbers indicate figure locations. Bold blue. Hillshade map was produced with permission using digital elevation data from the Province of British Columbia, Base Mapping and Geomatic Services Branch.

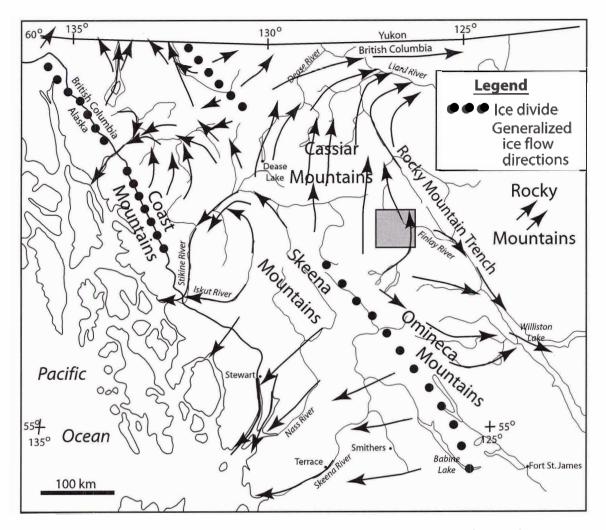


Figure 2.3. Generalized ice flow directions in northern British Columbia at the maximum of the Fraser Glaciation. Grey box indicates study area. Modified with permission from Ryder and Maynard (1991), with data from Bednarski (1999), Stumpf et al. (2000), and McCuaig and Roberts (2002).

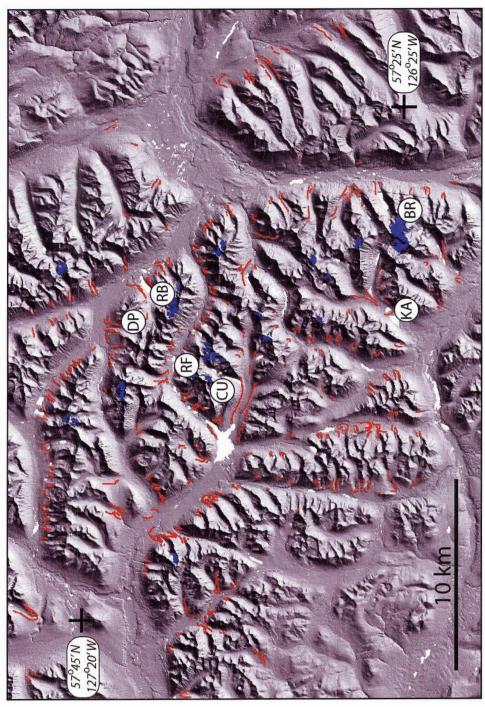
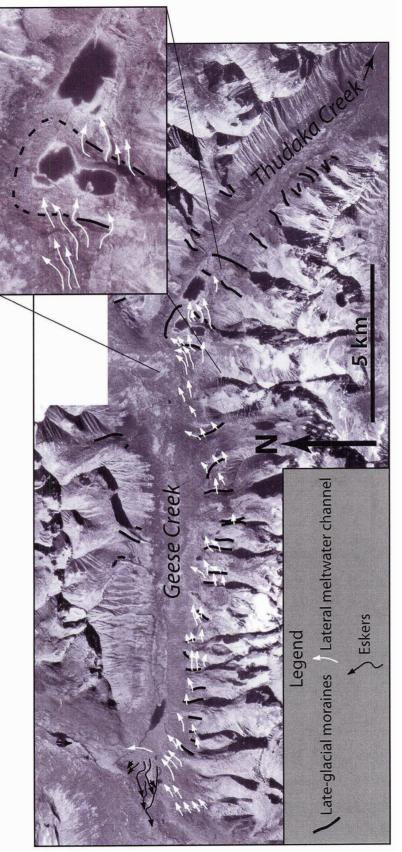



Figure 2.4. Distribution of late-glacial moraines (orange) in the study area and location of cored lakes: Deep Lake (DP), Red Barrel Lake (RB), Rock Fall Lake (RF), Cushing Lake (CU), Katharine Lake (KA), and permission using digital elevation data from the Province of British Columbia, Base Mapping and Geomatic Services Branch. Bronlund Lake (BR). Present-day glaciers are shown in blue. Hillshade map was produced with

demarcate the margin of a trunk glacier. The channels crosscut lateral moraines constructed by resurgent alpine glaciers. and 004; reproduced with permission of British Columbia Ministry of Agriculture and Lands, Base Mapping and Geomatic alpine glaciers; note deep lateral meltwater channels cut into lateral moraines. Aerial photographs 15BC86082-002, 003, Inset shows the approximate terminus of the trunk glacier in Geese Creek valley when it was in contact with resurgent Figure 2.5. Aerial photograph mosaic of late-glacial landforms in Geese Creek valley. Ice-marginal meltwater channels Services Branch.

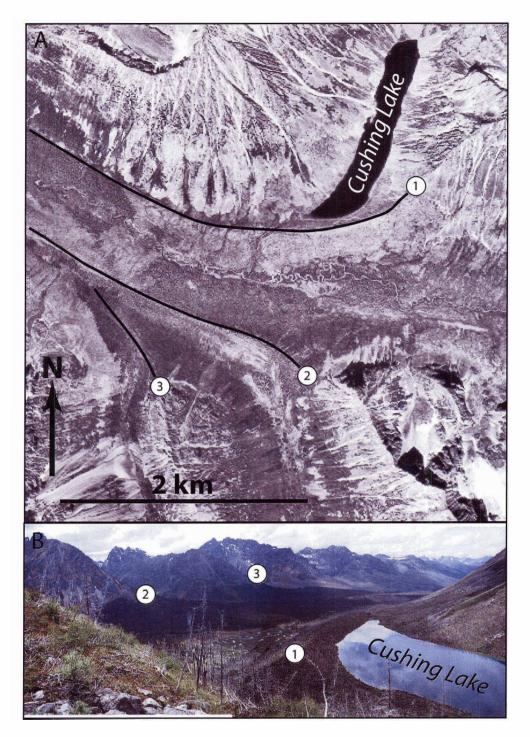


Figure 2.6. A) Aerial photograph of Cushing Lake, which is dammed by a late-glacial lateral moraine, labeled 1. B) Photograph of late-glacial lateral and medial moraines looking west downvalley towards Chukachida Lake (Fig. 2.2). Moraines 2 and 3 are labeled on both photgraphs. Aerial photgraph 15BCB99017-131; reproduced with permission of British Columbia Ministry of Agriculture and Lands, Base Mapping and Geomatic Services Branch.

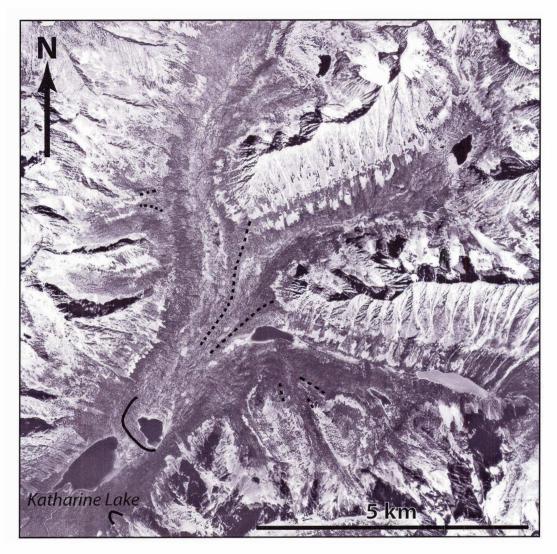


Figure 2.7. Aerial photograph of Katharine Lake, which lies on the distal side of a late-glacial terminal moraine (solid black line) 9 km downvalley from the source cirque. Several recessional lateral and medial moraines are marked by dashed black lines. Aerial photograph 15BCB99016-134; reproduced with permission of British Columbia Ministry of Agriculture and Lands, Base Mapping and Geomatic Services Branch.

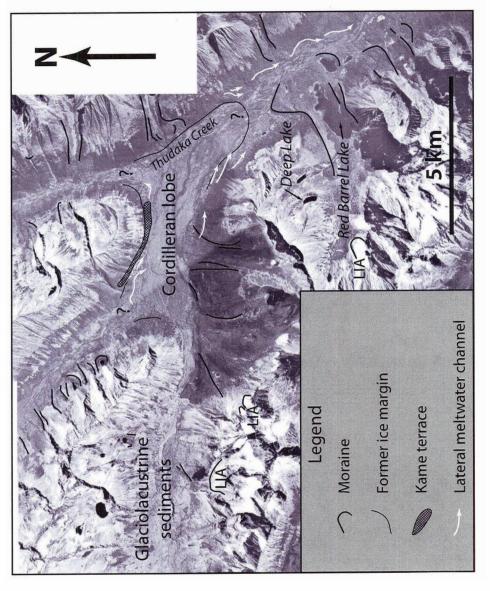
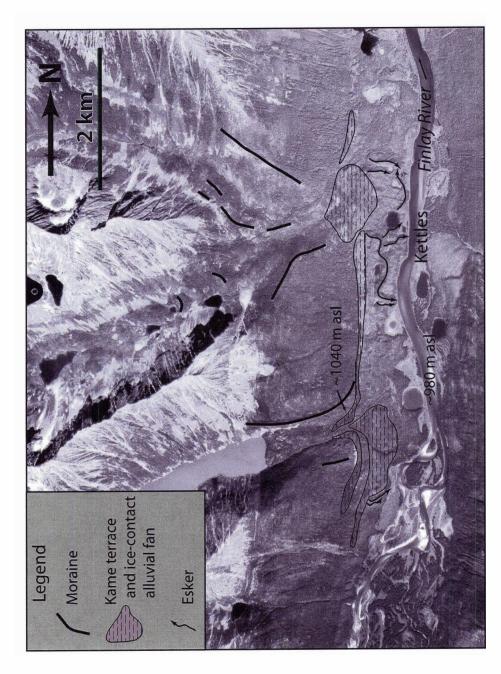
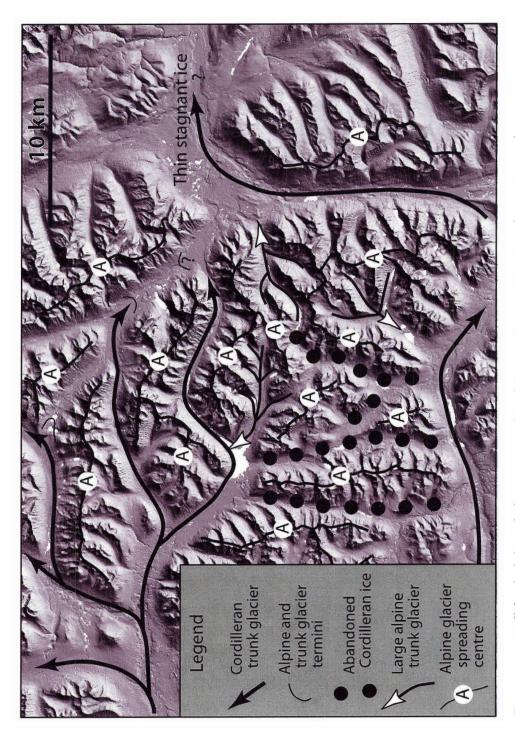




Figure 2.8. Aerial photograph mosaic of late-glacial landforms in Thudaka Creek valley. LIA - Little Ice Age moraine. Aerial photographs 15BCB99018-097, 164, 165, 166, and 167; reproduced with permission of British Columbia Ministry of Agriculture and Lands, Base Mapping and Geomatic Services Branch.

15BCB99016-137; reproduced with permission of British Columbia Ministry of Agriculture and Figure 2.9. Aerial photograph of late-glacial landforms in Finlay River valley and its tributaries. When alpine glaciers abandoned their lateral moraines, they built kame terraces and icecontact alluvial fans against trunk ice in the Finlay River valley. Aerial photograph Lands, Base Mapping and Geomatic Services Branch.

the late-glacial advance. Hillshade map was produced with permission using digital elevation data from Figure 2.10. Hillshaded digital elevation model of the study area showing the pattern of ice flow during the Province of British Columbia, Base Mapping and Geomatic Services Branch.

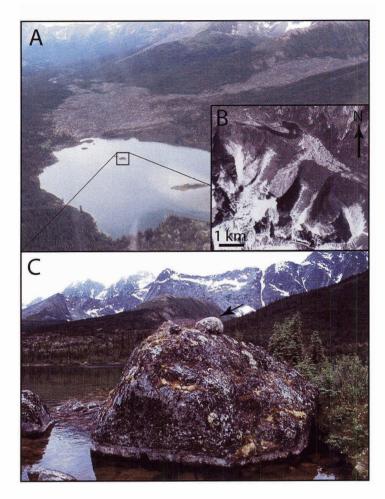
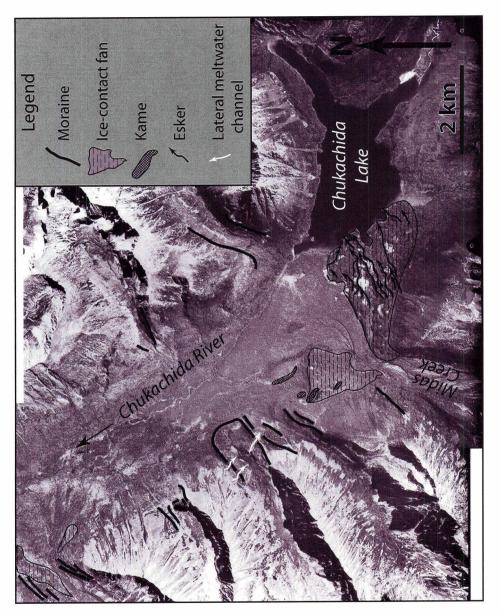



Figure 2.11. A) Rock avalanche debris damming Rock Fall Lake. Box indicates location of C. B) Aerial photograph of rock avalanche debris. C) Exotic, rounded granite boulder (arrowed) sitting on top of rock avalanche debris that was redeposited by the trunk glacier in Cushing Creek valley. Aerial photograph 15BCB99018-046; reproduced with permission of British Columbia Ministry of Agriculture and Lands, Base Mapping and Geomatic Services Branch.

are preserved on the fan surface. Aerial photographs 15BCB99018-50 and 51; reproduced with permission of British Columbia deposited by meltwater derived from stagnating ice and ice-dammed lakes in Midas Creek valley. Eskers, kettles, and kames Figure 2.12. Aerial photograph mosaic of late-glacial landforms in Chukachida River valley showing a large ice-contact fan Ministry of Agriculture and Lands, Base Mapping and Geomatic Services Branch.

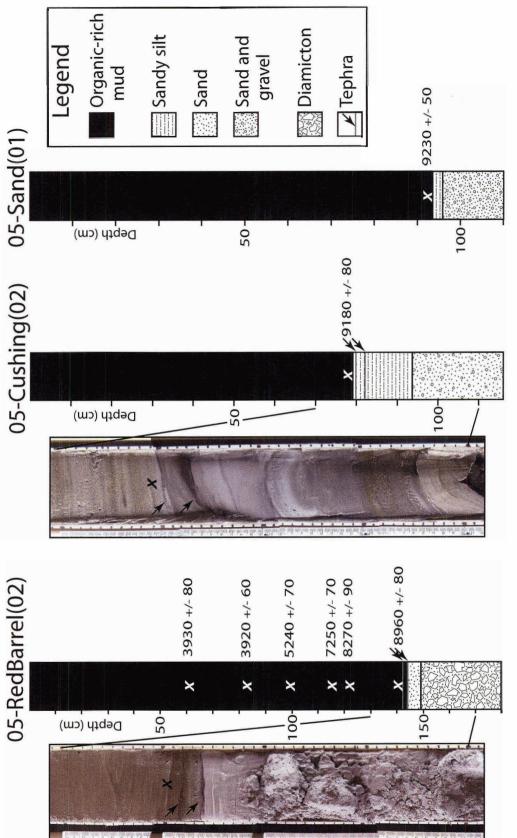


Figure 2.13. Stratigraphic logs and radiocarbon ages from Red Barrel, Cushing, and Sandwich lakes. Tephras are thin black laminae delineated by arrows in the core photos. White and black X's are locations of radiocarbon ages.

CHAPTER 3:

Early Holocene tephras in northwest British Columbia

Abstract

Four, previously undocumented tephras have been found in sediment cores recovered from alpine and sub-alpine lakes up to 250 km apart in northwest British Columbia. Two black phonolitic tephras, each 5-10 mm thick occur within 2-4 cm of one another in basal sediments from seven lakes in the Finlay River and Dease Lake areas. They are slightly older than 9180 ± 80^{14} C yr BP (10,220-10,560 cal yr BP) and likely originate from two closely spaced eruptions of one or two large volcanoes in the northern Cordilleran volcanic province. The Finlay tephras occur at the transition between deglacial sediments and organic-rich postglacial mud in the lake cores, and thus closely delimit the termination of the Fraser Glaciation in northern British Columbia. Sediments in Bob Quinn Lake, which lies on the eastern edge of the northern Coast Mountains, contain two additional black tephras that differ in age and composition from the Finlay tephras. The lower Bob Quinn tephra is 3-4 mm thick, basaltic in composition, and is derived from an eruption in the Iskut River volcanic field about 8400 ¹⁴C yr ago (9400 cal yr BP). The upper Bob Quinn tephra is 12 mm thick, phonolitic in composition, and probably 6000-7000 ¹⁴C yr old. The four tephras are valuable chronostratigraphic markers for future paleoenvironmental studies in northern British Columbia.

Introduction

The northern Cordilleran volcanic province consists of over 100 late Cenozoic volcanic centres in northwest British Columbia, Yukon, and Alaska (Fig. 3.1; Edwards

and Russell, 1999, 2000). The dominant volcanic rocks are alkali olivine basalt and hawaiite, but highly alkaline rocks such as nephelinite, basanite, peralkaline phonolite, trachyte, and comendite are locally common (Edwards and Russell, 2000). Volcanic centres range from small cinder cones to large shield volcanoes and have a broad range of eruptive styles. Cinder cones consisting of basalt and hawaiite are most abundant (Edwards and Russell, 2000). Large volcanic complexes, including Hoodoo Mountain, Mount Edziza, Level Mountain, and Heart Peaks, are shield and composite volcanoes with numerous cinder cones (Fig. 3.1). They are, by far, the largest volcanoes in the northern Cordilleran volcanic province and show the greatest range in petrology (Edwards and Russell, 2000).

Several postglacial (i.e. younger than 10,000 yr BP) lava flows have been identified and mapped in northwest British Columbia (Read et al., 1989; Souther, 1992; Villeneuve et al., 1998; Edwards et al., 1999, 2000, 2002; Russell and Hauksdóttir, 2000). Distal tephras related to this volcanic activity have not been reported, even though some of the Holocene eruptions were large and thick tephra deposits have been found near several volcanoes and cinder cones (Read et al., 1989; Souther, 1992; Villeneuve et al., 1998; Edwards et al., 1999, 2000, 2002; Russell and Hauksdóttir, 2000).

Four, previously undocumented, early Holocene tephras are reported in this paper. They occur in sediment cores from lakes up to 250 km apart in northwest British Columbia (Figs. 3.1 and 3.2). Two phonolitic tephras are present in lake sediments in the Finlay River and Dease Lake areas (Fig. 3.3). Sediment cores recovered from Bob Quinn Lake contain two additional tephras that are basaltic and phonolitic in composition (Fig. 3.3). The objectives of this paper are to: 1) describe the geomorphic and stratigraphic setting of the tephras, 2) document their distribution, 3) characterize the morphology and major element composition of their glass shards, and 4) discuss their importance for future paleoenvironmental studies in the region.

Methods

Eighteen sediment cores were collected from twelve lakes in three areas of northwest British Columbia using a percussion coring system (Reasoner, 1993). Sediment cores were recovered from lake ice in January 2005 and February 2006, and from the floats of a De Havilland DHC-2 Beaver in July 2005. Red Barrel, Cushing, Katharine, Deep, Black, Bronlund, Rock Fall, and Sandwich lakes were cored in the Finlay River area; of these, Red Barrel, Cushing, Katharine, Deep, and Black lakes contain tephras (Fig. 3.2). Little Glacier, Hungry, and Sister lakes were cored in the Dease Lake area; tephra was found in sediments from Little Glacier and Hungry lakes (Fig. 3.2). Bob Quinn Lake, at the eastern edge of the northern Coast Mountains, was also cored; it too contains tephras (Fig. 3.2). All lake names, except Bob Quinn Lake, are informal. Sediment cores were transported to the University of Northern British Columbia in Prince George where they were split, logged, photographed, and analyzed for bulk physical properties (organic matter, magnetic susceptibility, and grain size). Lithologic and magnetic susceptibility logs for selected cores are presented in this chapter, whereas lithologic, magnetic susceptibility, and percent organic matter logs for all the cores taken in this study are presented individually in Appendix C. Samples of terrestrial plant macrofossils and tephras were extracted from the cores. Plant macrofossils were washed in distilled water, air-dried, and stored in glass vials.

Radiocarbon ages were determined by accelerator mass spectrometry at IsoTrace Laboratory (University of Toronto) and Beta Analytic Inc.

Glass shards were separated from tephras using a heavy liquid separation procedure at the Department of Earth and Atmospheric Sciences, University of Alberta. The mineralogy of glass shard phenocrysts was determined by thin section analysis. The shards, together with shards from previously identified Holocene scoria and tephra deposits on Mount Edziza were analyzed using a JEOL JXA-8200 electron microprobe in the Department of Geology and Geophysics, University of Calgary to determine their major element compositions. Analyses were performed with the microprobe operating at 15 keV accelerating voltage, a 10μm beam diameter, and a 10 ηA beam current. A reference sample of Old Crow tephra (UT1434, University of Toronto) was analyzed repeatedly to track changes in the analytical accuracy of the microprobe. Data were corrected and normalized to 100% on a water free basis and are shown in Tables 3.1 and 3.2. Uncorrected values from individual glass shard analyses are presented in Appendix D.

Geomorphic and stratigraphic setting

Sediment cores from the Finlay River and Dease Lake areas were collected from lakes dammed by moraines built during a late-glacial advance of alpine glaciers in northwest British Columbia (Chapter 2). Two tephras were found in most of the cores near the contact between older inorganic silt, sand, and gravel, and younger organic-rich mud (Fig. 3.3). This facies boundary records the transition from deglacial sedimentation to organic-rich postglacial sedimentation, and marks the termination of the late-glacial advance (Chapter 2) and the Fraser Glaciation in northern British Columbia. The tephras are black, range in thickness from less than 5 mm to 10 mm, and occur within 2-4 cm of one another in the cores (Fig. 3.4a). The two tephras from the Finlay River and Dease Lake areas are equivalent and are referred to hereafter as the Finlay tephras.

Bob Quinn Lake cores contain two tephras that are different from the Finlay tephras (Fig. 3.3). The lower Bob Quinn tephra is 3-4 mm thick and lies about 5 cm above a contact between organic-rich mud and underlying inorganic silt (Fig. 3.5a). A second tephra, 12 mm thick, lies 40 cm above the lower tephra, within organic-rich mud (Fig. 3.5a).

Composition and age

The two Finlay tephras have fine sand and coarse silt textures. Glass shards in the two tephras are similar in morphology. They are dominantly blocky in shape and have spherical vesicles; needle-shaped shards with lineated, lensoid vesicles are also present but are less common (Fig. 3.4b). Phenocrysts in glass shards of both tephras are dominantly plagioclase with subordinate orthopyroxene. Both tephras are phonolitic to trachytic in composition and rich in FeO (Figs. 3.6 and 3.7; Table 3.1). The two tephras have nearly identical major element composition, indicating that they are likely derived from the same source.

Terrestrial plant macrofossils directly overlying the upper Finlay tephra yielded ages of 8960 ± 80^{14} C yr BP (9780 -10,250 cal yr BP) and 9180 ± 80^{14} C yr BP (10,220-10,560 cal yr BP) (Fig. 3.3; Table 3.3). The two tephras are thus early Holocene in age, deposited immediately after deglaciation (Clague, 1981).

The lower Bob Quinn tephra has a medium-coarse sand texture. Glass shards are blocky and needle-shaped, up to 5 mm in length, and contain plagioclase, clinopyroxene, and minor orthopyroxene phenocrysts (Fig. 3.5b). Most of the blocky shards contain spherical vesicles, whereas the needle-shaped shards have lineated, lensoid vesicles (Fig. 3.5b). The lower tephra is trachybasaltic in composition with 11-12 wt. % FeO (Figs. 3.6 and 3.8; Table 3.1).

The upper Bob Quinn tephra has a silty fine sand texture. Glass shards have spherical vesicles and are dominantly blocky in shape (Fig. 3.5b). Phenocrysts in glass shards are dominantly plagioclase; pyroxene and potassium feldspar crystals are also present, although rare. The tephra is phonolitic in composition, like the Finlay tephras (Fig. 3.6). However, it has about 2% less SiO₂, 1.5% more Al₂O₃, and more TiO₂, CaO, and MgO than the Finlay tephras (Fig. 3.7; Table 3.1).

Terrestrial plant macrofossils directly above and below the lower Bob Quinn tephra yielded ages of 8450 ± 50^{14} C yr BP (9320-9540 cal yr BP) and 8370 ± 40^{14} C yr BP (9270-9500 cal yr BP), respectively (Fig. 3.3; Table 3.3). The calibrated age ranges overlap and indicate that the tephra was deposited about 8400^{14} C yr ago (9400 cal yr BP). The upper Bob Quinn tephra has not been directly dated, but its stratigraphic position suggests an age of 6000-7000¹⁴C yr BP (Fig. 3.3).

Sources of tephras

Based on their distributions, thicknesses, and compositions, the tephras likely were erupted from one or more volcanic centres in the northern Cordilleran volcanic province (Figs. 3.1 and 3.2). Highly alkaline rocks with compositions similar to the phonolitic tephras documented in this study are characteristic of the northern Cordilleran volcanic province (Fig. 3.6; Edwards and Russell, 1999, 2000). Tephras derived from volcanoes in the Wrangell volcanic belt and Aleutian Arc, for example Dawson tephra (Westgate et al., 2000) and White River tephra (Lerbekmo and Campbell, 1969; Lerbekmo et al., 1975; Clague et al., 1995), are dominantly rhyolitic, indicating that those regions are unlikely source areas for the tephras in northern British Columbia (Preece et al., 1992, 1999; Richter et al., 1995; Mangan et al., 2003). Late Pleistocene tephras from Mount Edgecumbe, southeastern Alaska (Fig. 3.1), range in composition from basaltic to rhyolitic, and all but one are local in extent (Heusser, 1960; McKenzie, 1970; Yehle, 1974; Riehle et al., 1992). The only Edgecumbe tephra of regional extent is dacitic in composition and approximately 11,300 ¹⁴C yr old (Riehle et al., 1992; Begét and Motyka, 1998), older than the tephras of this study. Nevertheless, possible, unidentified volcanic centres in southeast Alaska and northwest British Columbia that are presently below sea level or covered by glaciers cannot be ruled out as possible sources for the Finlay and Bob Quinn tephras.

Finlay tephras

The two Finlay tephras are distributed across northwest British Columbia and possibly extend into the northern Rocky Mountains. Based on their distribution, thickness, and major element composition, the likely source is one of the large shield or composite volcanoes in northwest British Columbia, specifically Hoodoo Mountain, Mount Edziza, Level Mountain, or Heart Peaks (Figs. 3.1 and 3.2). Some cinder cones in the northern Cordilleran volcanic province erupted following deglaciation during the late Pleistocene or early Holocene, but they are too small to account for the thickness and distribution of the Finlay tephras.

The major element compositions of the Finlay tephras are most similar to those of whole-rock samples from Hoodoo Mountain (Figs. 3.6 and 3.7; Tables 3.1 and 3.4), a large composite volcano with a long history of phonolitic and trachytic eruptive activity dating from 85,000 to 9000 yr BP (Edwards, 1997; Edwards et al., 2002). Two phonolitic lava flows on the south flank of Hoodoo Mountain are estimated to be postglacial in age, based on ⁴⁰Ar/³⁹Ar dates of 10,000-9,000 yr BP (Villeneuve et al., 1998; Edwards et al., 1999; 2002) and observations that the flows have not been glaciated (Edwards et al., 2002). The average whole-rock chemistry of the two postglacial phonolitic flows is similar to the glass composition of the Finlay tephras (Figs. 3.6 and 3.7; Tables 3.1 and 3.4). No pyroclastic deposits or tephras are known to be associated with the eruptions that produced these lava flows (Edwards et al., 2002). The core from Bob Quinn Lake, which is only 60 km northeast of Hoodoo Mountain and lies along the trajectory that any ash plume would take moving from that volcano to the Finlay River and Dease Lake areas (Figs. 3.1 and 3.2), does not contain the Finlay tephras. The base of that core, however, is about 1000 years younger than the Finlay tephras. The compositional data indicate that Hoodoo Mountain is the most likely source for the Finlay tephras, but other possible sources must be considered.

Mount Edziza is another large volcanic complex in the northern Cordilleran volcanic province and a possible source of the Finlay tephras. It is a broad plateau consisting of multiple, large, ice-covered composite cones and numerous small cinder cones (Figs. 3.1 and 3.2; Souther, 1992). The volcanic complex has a diverse suite of

rocks ranging from basaltic to peralkaline felsic in composition (Souther, 1992). These rocks are generally less alkaline than the Finlay tephras, although some are similar composition (Figs. 3.6 and 3.7; Tables 3.1 and 3.2). Comenditic trachyte pumice of the Sheep Track Member of the Big Raven Formation is postglacial in age and covers an area of about 40 km² on the west flank of Mount Edziza (Souther, 1992). The pumice is white, markedly richer in SiO₂, and poorer in FeO than the Finlay tephras (Fig. 3.7). Older formations of possible late Pleistocene to early Holocene age are dominantly basaltic and limited in extent (Souther, 1992). However, their absolute ages and chemical compositions are poorly known, therefore Mount Edziza cannot be ruled out as a possible source for the Finlay tephras.

Level Mountain and Heart Peaks are large volcanic complexes similar in size and chemistry to Mount Edziza and Hoodoo Mountain (Figs. 3.1 and 3.2; Casey, 1980; Hamilton, 1981, 1991; Souther and Yorath, 1991; Edwards and Russell, 2000). They have received little scientific study, and it is not known whether Holocene deposits are present and, if they are, whether they are extensive. Consequently, further field and laboratory investigations are required to assess whether the Finlay tephras originated from Level Mountain or Heart Peaks.

Bob Quinn tephras

The age and composition of the lower Bob Quinn tephra strongly suggest that it is derived from the Iskut River volcanic field. This volcanic field consists of eight volcanic centres situated between Iskut and Unuk rivers, approximately 40 km southwest of Bob Quinn Lake (Figs. 3.1 and 3.2). The presence of large, needle-shaped glass shards in the tephra indicates that Bob Quinn Lake is near the source of the eruption. Volcanism in the Iskut River volcanic field ranges in age from approximately 70,000 to 150 yr BP (Russell and Hauksdóttir, 2000). Read et al. (1989) demonstrated that two basalt flows temporarily dammed Iskut River during the early Holocene. The flows originate from the Iskut River volcanic centre, about 4 km east-southeast of Iskut Canyon (Fig. 3.2; Read et al., 1989; Russell and Hauksdottir 2000). Read et al. (1989) reported ages of 8730 \pm 600 ¹⁴C yr BP from charcoal underlying one of the basalt flows and 8780 \pm 150 ¹⁴C yr BP from plant material bounding basaltic tephra that mantles nearby slopes (Table 3.3). The major element composition of whole-rock samples collected from the Iskut River volcanic field is similar to that of the lower Bob Quinn tephra (Figs. 3.6 and 3.8; Tables 3.1 and 3.4).

The upper Bob Quinn tephra is similar in composition to the Finlay tephras and to whole-rock samples from Hoodoo Mountain and Mount Edziza (Figs. 3.6 and 3.7; Tables 3.1, 3.2, and 3.4). Its composition is closest to that of the two postglacial phonolitic lava flows on Hoodoo Mountain, but the ages of the flows must be better constrained to confirm the tentative correlation made here.

The areal distributions of the upper and lower Bob Quinn tephras are poorly constrained. The lower Bob Quinn tephra probably extends along Iskut River, south of Mount Edziza, based on its affinity to the Iskut River volcanic field. However, it may not be present much farther east in northern British Columbia because of its coarse grain size and limited thickness. The upper Bob Quinn tephra may extend farther east than the lower tephra based on its grain size and thickness.

Conclusions

Four, previously unrecognized tephras are reported from northern British Columbia. Their distribution and major element composition indicate sources at one or more volcanic centres in the northern Cordilleran volcanic province. Two phonolitic tephras in the Finlay River and Dease Lake areas are products of two closely spaced eruptions shortly before 9180 ± 80 ¹⁴C yr BP (10,220-10,560 cal yr BP). The Finlay tephras are regional in extent and occur at the transition from deglacial sedimentation to deposition of organic-rich Holocene mud. They closely delimit the time of terminal Pleistocene deglaciation in northern British Columbia and the termination of a regional, late-glacial glacier advance. Cores from Bob Quinn Lake also contain two tephras, but they are different in age and composition from the Finlay tephras. A lower basaltic tephra at Bob Quinn Lake is 8400 ¹⁴C yr old (9400 cal yr old) and is likely derived from the Iskut River volcanic centre, which is one of eight volcanoes forming the Iskut River volcanic field. The upper phonolitic tephra at Bob Quinn Lake is 6000-7000 ¹⁴C yr old; its source is unknown.

The Finlay and Bob Quinn tephras are valuable chronostratigraphic markers for future paleoenvironmental studies in northern British Columbia.

													·		
	Ľ	ower Finlay tephra	ay teph	Ira	ļ		Up	per Finl	Upper Finlay tephra	ra		ddN	Upper Finlay tephra (?)	y tephra	(<u>;</u>) E
	•	UA1	l65		168	UA1143*	143*	UA1164	164	UA1169	69	UA1	UA1166 U	UA1	167
sio ₂		60.66 2.20	(0.26)		(0.96) (0.5 c)	62.57	(1.13)	60.46	(0.31)	60.39	(0.48) (0.02)	60.45 0.20	(0.37)	60.52 (0.3	(0.38) (0.22)
0 ² 0	0.67 (0.41)	07.0	(0.02)		(0.14) (0.02)	17.00	(0.03)	0.20	(0.02)	0.22	(50.0) (90.0)	0.20	(0.03)	0.21	(0.02)
Al ₂ O ₃		70.01	(0.17) (417)	10.91 70.7	(76.0)	0./I	(10.0)	16.60	(070)	10.48	(0.25)	06.01	(01.0)	05.01	(0.17)
FeU(t)		/.83	(0.17)	0.95 010	(1.46)	21.8 22.0	(17.0)	7.92	(57.0)	8.0/	(cc.0)	68./	(0.20) (0.02)	8.03	(0.28)
MnO		0.20	(70.0)	0.18	(006)	0.23	(50.0)	0.21	(70.0)	0.22	(70.0Z)	0.22	(0.03)	0.21	(0.03)
CaO		1.17	(0.03)	1.36	(0.42)	1.24	(0.08)	1.15	(0.06)	1.17	(0.06)	1.17	(0.03)	1.12	(0.13)
MgO		0.01	(0.01)	0.15	(0.19)	0.01	(0.01)	0.01	(0.01)	0.01	(0.01)	0.01	(0.01)	0.01	(0.01)
Na_2O		8.57	(0.23)	8.01	(0.77)	6.06	(1.55)	8.56	(0.37)	8.54	(0.21)	8.74	(0.27)	8.52	(0.51)
K ₂ 0		4.83	(0.10)	5.21	(0.49)	4.47	(0.08)	4.88	(0.08)	4.91	(0.07)	4.82	(0.13)	4.81	(0.07)
H ₂ O(d)		0.56	(0.74)	0.48	(0.67)	1.46	(1.20)	1.55	(0.55)	0.00	(69.0)	0.24	(0.65)	0.11	(1.01)
_ د	14	18		17		18		20		20		19		20	
	Lower Bob	Upp	Upper Bob												
	Quinn tephra		Quinn tephra												
	UA1163	UA1	UA1162												
SiO,	47.45 (0.28)	58.48	(1.43)	~											
Tio2			(0:30)												
Al_2O_3	16.93 (0.27)	-	(0.29)	_											
FeO(t)			(0.78)	-											
MnO	0.18 (0.03)			_											
CaO				-											
MgO			(0.27)	-											
Na_2O		7.79		-											
K ₂ 0			(0.51)	-											
H ₂ O(d)	0.98 (0.51)	o	(1.00)	_											
c	24	25													
Notes:	-														

Table 3.1. Average major element composition of glass shards from the Finlay and Bob Quinn tephras.

All analyses normalized to 100% on a water-free basis. UA1162 - laboratory number (University of Alberta); standard deviation in parentheses; n - number of analyses; FeO(t) - total iron oxide as FeO; H₂O(d) - water by difference. *Samples UA1143 and UA1144 were run prior to recalibration of the microprobe and are therefore not comparable to the other analyses.

Table 3.2. Average major element composition of Holocene scoria and pumice from
Mount Edziza.

		She	Sheep Track Member	k Memb	er			Holo	Holocene Cinder Cones	nder Cor	les	
					Sheep Track	Track	Williams	ams	Englacial	acial	Cinders on	rs on
	Sh	eep Tra	Sheep Track Pumice	e	Pumice (?)	<u>ie (?)</u>	Cone	e	cinders	lers	tundra	dra
	UA11	55	UA1	156	UA1	UA1157	UA1	149	UA1	UA1150	UA11	53
SiO	62.84	(0.28)	63.01	(0.19)	62.52	(0.33)	51.41	(0.24)	49.81	(1.01)	51.08	(0.32)
LIO	0.21	(0.03)	0.22	(0.03)	0.21	(0.02)	2.48	(0.11)	2.79	(0.07)	2.67	(0.07)
ALO2	18.13	(0.10)	18.20	(0.12)	17.99	(0.13)	15.85	(0.13)	15.32	(0.16)	15.81	(0.18)
FeO(t)	4.67	(0.06)	4.53	(0.11)	4.68	(60.0)	11.24	(0.18)	12.41	(0.29)	11.51	(0.20)
MnO	0.14	(0.03)	0.13	(0.02)	0.13	(0.02)	0.19	(0.02)	0.18	(0.03)	0.19	(0.02)
CaO	66.0	(0.05)	0.97	(0.04)	0.98	(0.03)	7.11	(0.15)	7.93	(0.81)	7.18	(0.14)
MaO	0.11	(0.01)	0.11	(0.03)	0.11	(0.02)	3.21	(0.12)	3.73	(0.60)	3.27	(0.10)
O eN	7.69	(0.29)	7.49	(0.16)	8.00	(0.24)	5.98	(0:30)	5.77	(0.29)	5.90	(0.23)
Y Y	5.22	(0.14)	5.34	(0.13)	5.38	(0.16)	2.53	(0.13)	2.06	(0.41)	2.39	(0.08)
H_O(d)	-0.71	-0.71 (0.75)	1.52	1.52 (0.39)	-0.70	(0.48)	0.53	0.53 (0.36)	0.44	0.44 (0.61)	0.32	0.32 (0.78)
u	18		18		15		17		20		20	

Notes:

All analyses normalized to 100% on a water-free basis. UA1150 - laboratory number (University of Alberta); standard deviation in parentheses; n - number of analyses; FeO(t) - total iron oxide as FeO; H₂O(d) - water by difference.

3930 ± 80 3920 ± 60 3920 ± 60 Red Barrel Lake 5240 ± 70 (57 ^o 40.623' N, 126 ^o 44.029' W) 7250 ± 70 8270 ± 90		TO-12469 TO-12470 TO-12471	Conifer needle Twia		
		TO-12470 TO-12471	Twig	60.5	this study
		TO-12471	'n	82.5	this study
			Spruce terminal bud	98.5	this study
8270 ± 90		TO-12472	Twig	115.0	this study
		TO-12473	Conifer needle	121.5	this study
8960 ± 80	007/01-08/6	TO-12474	Wood	139.5	this study
Cushing Lake 9180 ± 80 (57°35.607' N, 126°54.450' W)	0 10,220-10,560	TO-12475	Terrestrial plant matter	77.5	this study
8450 ± 50	9320-9540	Beta-216498	Mood	206.5	this study
(56 ⁰ 58.573'N, 130 ⁰ 15.623'W) 8370 ± 50) 9270-9500	Beta-216499	Terrestrial plant matter	207.5	this study
lskut River 8730 ± 600	0 8390-11,630	ż	Charcoal	a	Read et al.
(56 [∨] 41.448′N, 130 [∨] 36.748′W) 8750 ± 150	0 9540-10,200	۶۶U-۶۶	ذ		(1989)

Table 3.3. Radiocarbon ages from the Finlay River, Dease Lake, and Iskut River areas.

Laboratory-reported errors are 1-sigma. ² Calibrated ages determined using the program OxCal v4.0 Beta, which uses the IntCal04 calibration curve (Reimer et al., 2004). The range represents the 95% confidence interval (± 2 sigma). ³ Beta - Beta Analytic Inc.; SFU - Simon Fraser University; TO - IsoTrace Laboratory (University of Toronto).

	Hoodoo				Iskut River vo	skut River volcanic centres			
	<u>Mountain</u>	Iskut River	Tom MacKay Ck.	Snippaker Ck.	Cone Glacier	Cinder Mountain	King Ck.	Second Canyon	Lava Fork
SiO,	60.12 n/a	48.53 (0.55)	48.08 n/a	48.36 (0.43)			49.44 n/a	46.10 n/a	
Tio,	0.29 n/a	2.30 (0.07)	2.30 n/a			2.41	2.24 n/a	2.57 n/a	
Al,02	16.81 n/a	16.61 (0.30)	15.57 n/a	16.65 (0.35)		16.11	16.58 n/a	14.90 n/a	
Fe,O,	4.59 n/a	2.97 (0.68)	3.26 n/a	3.32 (1.35)	4.48 (1.77)	3.95 (0.81)	2.77 n/a	4.30 n/a	3.53 (1.01)
FeO	3.26 n/a	8.76 (0.62)	8.51 n/a			9.25	_	8.29 n/a	
MnO	0.19 n/a	0.18 (0.01)	0.18 n/a			0.25	0.18 n/a	0.18 n/a	
CaO	1.68 n/a	9.07 (0.19)	10.03 n/a			6.67	_	10.25 n/a	
MgO	0.21 n/a	6.48 (0.36)	7.83 n/a	6.48 (0.47)		3.36	6.01 n/a	9.26 n/a	
Na,O	7.74 n/a	3.63 (0.16)	2.90 n/a			4.55	3.76 n/a	2.85 n/a	
к, [°]	5.03 n/a	1.04 (0.14)	0.94 n/a			2.43	1.38 n/a	0.91 n/a	
P,O,	0.06 n/a	0.43 (0.05	0.38 n/a			1.39		0.39 n/a	
H,Ô(ď)	1.22 n/a	0.30 (0.05)	0.70 n/a		0.26 (0.12)		0.53 n/a	0.62 n/a	0.18 (0.06)
'n	n/a	80	-	5	13	6	-	٢	7
Notes: Data from from The (analyses; H	otes: Data from Hoodoo Mountain reprinte from The Canadian Mineralogist from analyses; H_O(d) - water by difference.	otes: Data from Hoodoo Mountain reprinted with perm from The Canadian Mineralogist from Russell and analyses; H ₂ O(d) - water by difference.	ermission from the Bul and Hauksdottir (2000)	letin of Volcanolog . All analyses are n	Jy from Edwards et ormaized to 100%	nission from the Bulletin of Volcanology from Edwards et al. (2002). Data from the Iskut River volcanic field reprinted with permission I Hauksdottir (2000). All analyses are normaized to 100% on a water-free basis. Standard deviation in parentheses; n - number of	e Iskut River vok andard deviatio	canic field reprinted w on in parentheses; n - 1	vith permission number of

Table 3.4. Average whole-rock major element compositions of postglacial phonolitic flows at Hoodoo Mountain and Holocene basalt flows from several volcanic centres in the Iskut River volcanic field.

55

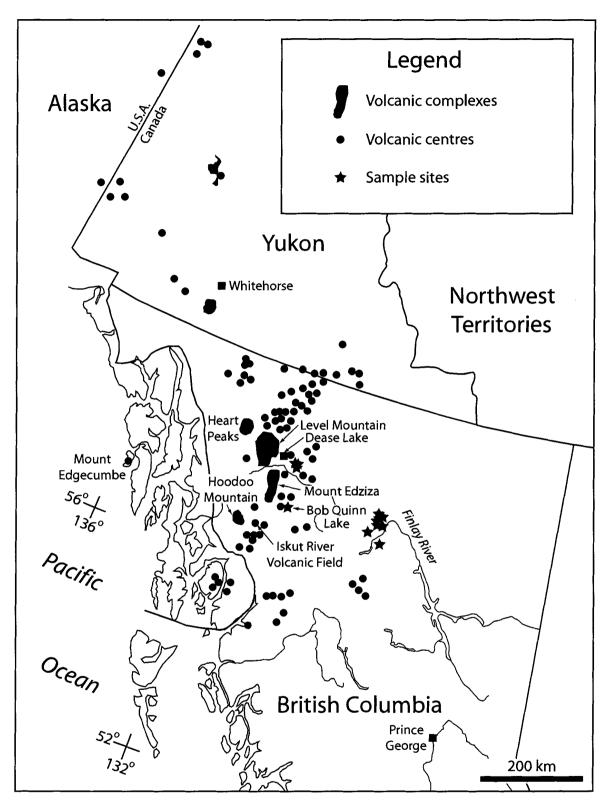


Figure 3.1. Location of volcanic centres and complexes forming the northern Cordilleran volcanic province and sample sites. Modified with permission from Edwards and Russell (2000).

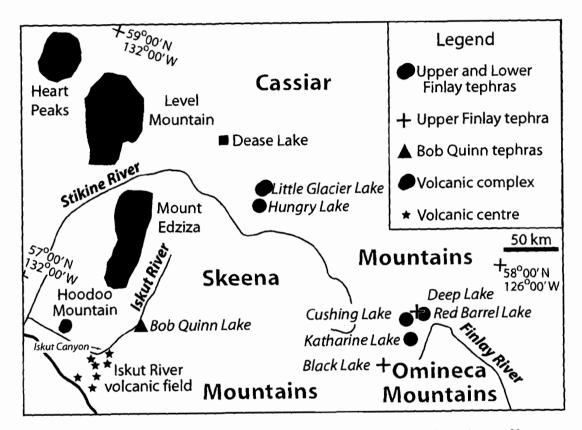
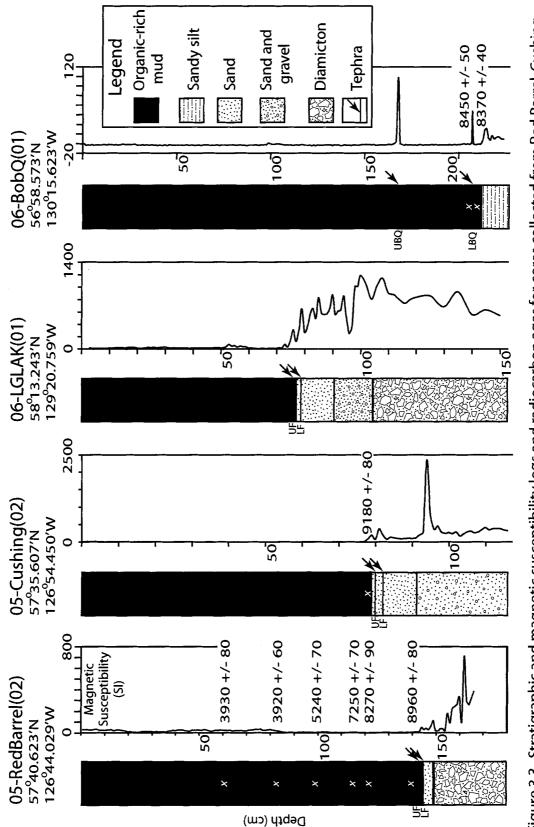



Figure 3.2. Map of part of northern British Columbia showing locations of large volcanic centres, sampled lakes, and occurrences of the Finlay and Bob Quinn tephras.

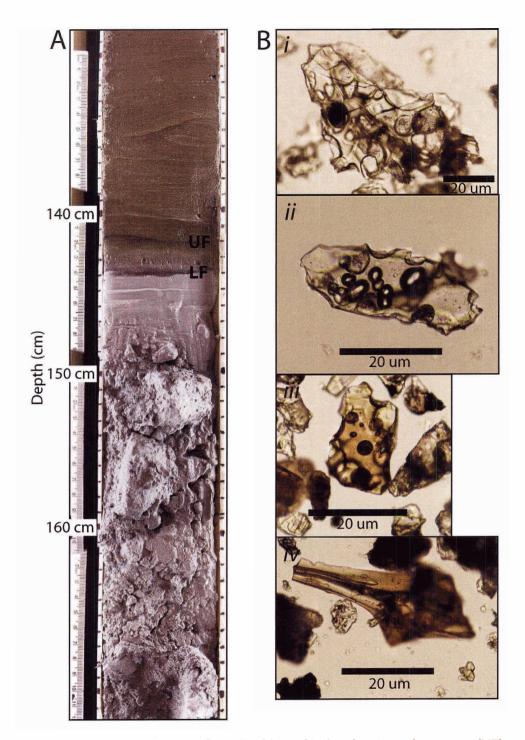


Figure 3.4. A) Sediments from Red Barrel Lake showing the upper (UF) and lower (LF) Finlay tephras. B) Glass shards from the upper (*i*, *ii*) and lower (*iii*, *iv*) Finlay tephras. Shards are dominantly blocky with spherical vesicles, but needle-shaped shards with lineated, lensoid vesicles are also present.

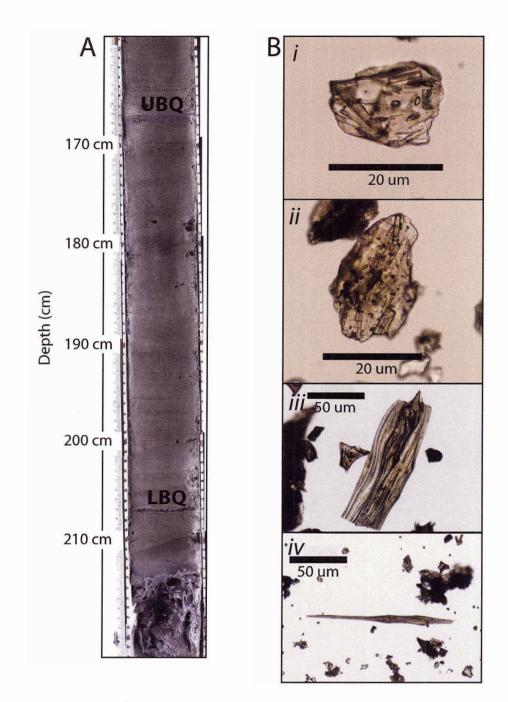


Figure 3.5. A) Sediments from Bob Quinn Lake showing the upper (UBQ) and lower (LBQ) tephras. B) Glass shards from the upper (*i, ii*) and lower (*iii, iv*) Bob Quinn tephra. Shards in the upper tephra are dominantly blocky with spherical vesicles. Shards in the lower tephra are dominantly elongate and needle-shaped with lineated, lensoid vesicles.

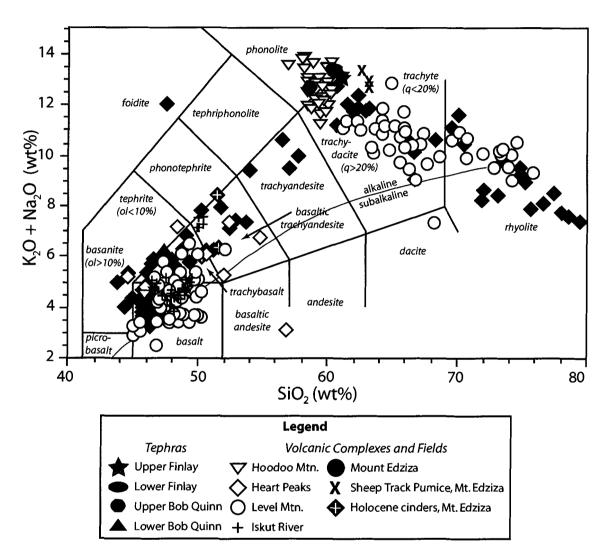
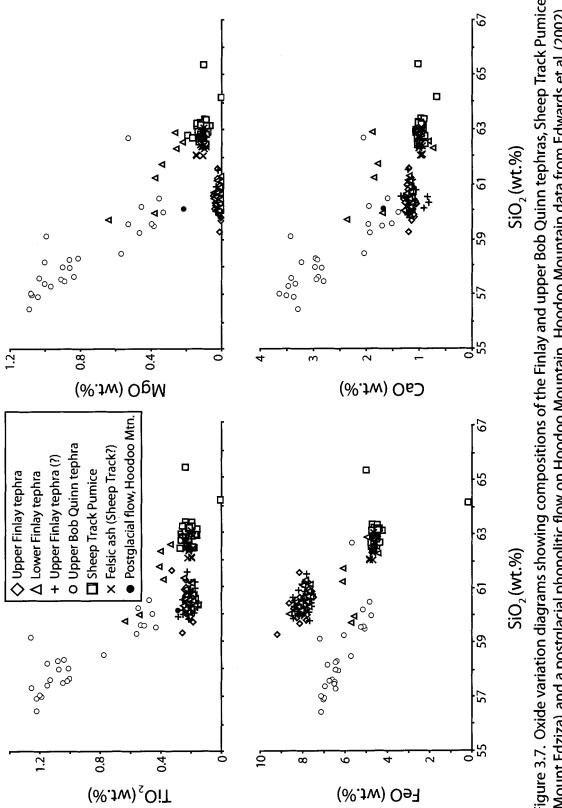
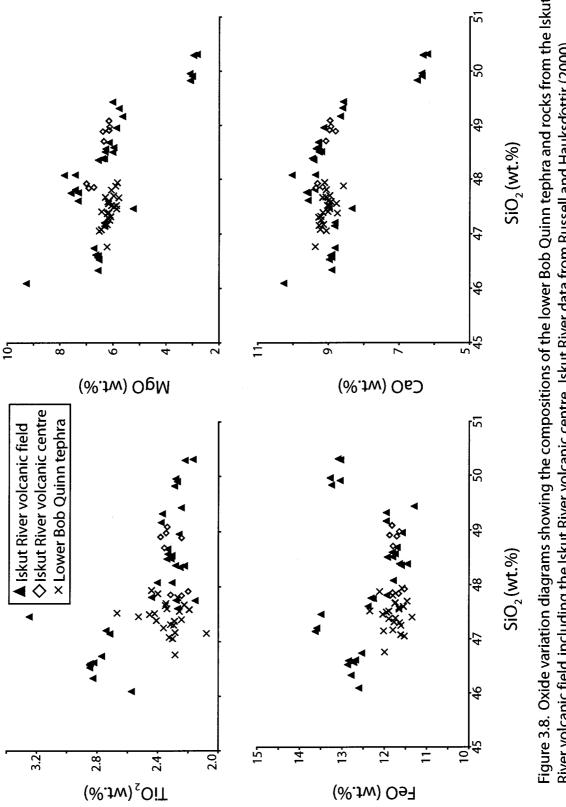




Figure 3.6. Plot of $K_2O + Na_2O vs. SiO_2$ (LeBas et al., 1986) for average values of the Finlay and Bob Quinn tephras and rocks from several volcanic complexes in northwest British Columbia. Modified with permission from Edwards and Russell (2000).

CHAPTER 4:

Conclusions

The Finlay moraines of northern British Columbia are late-glacial in age, bracketed by a radiocarbon age of 9230 ± 50^{-14} C yr BP and cosmogenic surface exposure ages of about 13.000 ¹⁴C yr BP. They record a regional advance of alpine glaciers during terminal deglaciation of the Canadian Cordillera, which likely coincided with Younger Dryas cooling documented in north-coastal British Columbia. Lateral meltwater channels crosscut late-glacial moraines and record interaction between advancing alpine glaciers and the decaying Cordilleran Ice Sheet, which occupied trunk valleys in the study area. Comparison of the Finlay advance to other, probably correlative, late-glacial advances, such as the Crowfoot advance in the southern Canadian Rocky Mountains, demonstrates variable glacier responses to late-glacial climate change in western North America. The style of deglaciation in the Finlay River area was a significant factor in preserving large alpine glaciers at intermediate and high elevations. These remnant glaciers later advanced when regional equilibrium line fell to 1650-1750 m asl. Differing temperature and precipitation gradients, differing rates and magnitudes of late-glacial climatic change, and the effects of remnant ice masses on local atmospheric circulation also contributed to the complexity of documented late-glacial glacier advances in western North America.

Two, early Holocene phonolitic tephras occur in sediment cores retrieved from lakes nearly 200 km apart in the Finlay River and Dease Lake areas. They lie at the transition from deglacial sediments to postglacial organic-rich mud in the cores. The Finlay tephras are new chronostratigraphic markers for northwest British Columbia. Their probable source is Hoodoo Mountain, a large volcano of the northern Cordilleran volcanic province. However, Mount Edziza, Level Mountain, and Hearth Peaks cannot be excluded as sources. Two other tephras occur in sediments retrieved from Bob Quinn Lake. The lower Bob Quinn tephra is basaltic and was deposited ca. 8400 ¹⁴C yr ago by an eruption in the Iskut River volcanic field. The upper Bob Quinn tephra is phonolitic and may originate from Mount Edziza or Hoodoo Mountain. Although the tephra is early Holocene, its exact age is unknown. The Bob Quinn tephras serve as valuable late Quaternary marker horizons in the Iskut River area.

Future studies in the region should include efforts to better date the Finlay moraines and the timing of ice sheet retreat in northern British Columbia, and attempts to recover new paleoclimatic records. Bednarski's (1999, 2000, 2001) cosmogenic surface exposure ages from the northern Rocky Mountains provide the first estimates of the time of deglaciation at the eastern margin of the Cordilleran Ice Sheet. More cosmogenic and radiocarbon ages are needed to establish the timing and regional pattern of ice retreat in northern British Columbia. Additional paleoclimatic data from north-coastal British Columbia and northwestern Alberta are needed to evaluate existing late glacial climate records and to improve understanding of late Pleistocene-Holocene climate change in this large, poorly studied region.

More sediment cores from lakes in northern British Columbia will better constrain the age and distribution of the tephras identified in this study and may identify the source vents for the eruptions that produced them. It is likely that additional tephras will be found.

REFERENCES

- Alley, R.B. 2000. The Younger Dryas cold interval as viewed form central Greenland. Quaternary Science Reviews, 19: 213-226.
- Armstrong, J.E. 1981. Post-Vashon Wiconsin glaciation, Fraser Lowland, British Columbia. Geological Survey of Canada, Bulletin 322.
- Barrie, J.V., and Conway, K.W. 1999. Late Quaternary glaciation and postglacial stratigraphy of the northern Pacific margin of Canada. Quaternary Research, 51: 113-123.
- Bednarski, J.M. 1999. Preliminary report on mapping surficial geology of Trutch map area, northeastern British Columbia. *In* Current Research 1999-A. Geological Survey of Canada Paper. pp. 35-43.
- Bednarski, J.M. 2000. Surficial geology, Trutch, British Columbia. Geological Survey of Canada, Open File 3885.
- Bednarski, J.M. 2001. Drift composition and surficial geology of the Trutch map area (94G), northeastern British Columbia. Geological Survey of Canada, Open File 3815.
- Begét, J.E., and Motyka, R.J. 1998. New dates on late Pleistocene dacitic tephra from the Mount Edgecumbe volcanic field, southeastern Alaska. Quaternary Research, 49: 123-125.
- Björck, S., Kromer, B., Johnsen, S., Bennike, O., Hammarlund, D., Lemdahl, G.,
 Possnert, G., Rasumussen, T., Wohlfarth, B., Hammer, C., and Spurk, M. 1996.
 Synchronized terrestrial-atmospheric deglacial records around the North Atlantic.
 Science, 274: 1155-1160.

- Blaise, B., Clague, J.J., and Mathewes, R.W. 1990. Time of maximum Late Wisconsin glaciation, west coast of Canada. Quaternary Research, **34**: 282-295.
- Bobrowsky, P., and Rutter, N.W. 1992. The Quaternary geologic history of the Canadian Rocky Mountains. Géographie physique et Quaternaire, **46**: 5-50.
- Bond, J. 2004. Late Wisconsinan McConnell glaciation of the Whitehorse map area (105D), Yukon. In Yukon Exploration Geology 2003. Edited by D.S. Emond and L.L. Lewis. Yukon Geological Survey, pp. 73-88.
- Bond, J.D., and Kennedy, K.E. 2005. Late Wisconsinan McConnell ice-flow and sediment distribution patterns in the Pelly Mountains, Yukon. *In* Yukon Exploration Geology 2004. Edited by D.S. Emond, L.L. Lewis, and G.D. Bradshaw. Yukon Geological Survey, pp. 67-82.
- Briner, J.P., Kaufman, D.S., Werner, A., Caffee, M., Levy, L., Manley, W.F., Kaplan,
 M.R., and Finkel, R.C. 2002. Glacier readvance during the late glacial (Younger
 Dryas?) in the Ahklun Mountains, southwestern Alaska. Geology, 30: 679-682.
- Broecker, W.S. 2003. Does the trigger for abrupt climate change reside in the ocean or in the atmosphere? Science, **300**: 1519-1522.
- Broecker, W.S. 2006. Was the Younger Dryas triggered by a flood? Science, **312**: 1146-1148.
- Broecker, W.S., Kennett, J.P., Flower, B.P., Teller, J.T., Trumbore, S., Bonani, G., and Wolfli, W. 1989. Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold episode. Nature, **341**: 318-321.

- Casey, J.J. 1980. Geology of the Heart Peaks Volcanic Centre, northwestern British Columbia. M.Sc. thesis, Department of Geology, University of Alberta, Edmonton, Alberta.
- Clague, J.J. 1981. Late Quaternary geology and geochronology of British Columbia. Part
 2: Summary and discussion of radiocarbon-dated Quaternary history. Geological
 Survey of Canada, Paper 80-35.
- Clague, J.J. 1985. Deglaciation of the Prince Rupert Kitimat area, British Columbia. Canadian Journal of Earth Sciences, **22**: 256-265.
- Clague, J.J. 1989. Quaternary geology of the Canadian Cordillera. *In* Quaternary Geology of Canada and Greenland. Edited by R.J. Fulton. Geological Survey of Canada, Geology of Canada, no. 1, pp. 15-96.
- Clague, J.J., and James, T.S. 2002. History and isostatic effects of the last ice sheet in southern British Columbia. Quaternary Science Reviews, **21**: 71-87.
- Clague, J.J., Evans, S.G., Rampton, V.N., and Woodsworth, G.J. 1995. Improved age estimates for the White River and Bridge River tephras, western Canada. Canadian Journal of Earth Sciences, **32**: 1172-1179.
- Clague, J.J., Mathewes, R.W., Guilbault, J.-P., Hutchinson, I., and Ricketts, B.D. 1997.
 Pre-Younger Dryas resurgence of the southwestern margin of the Cordilleran ice sheet, British Columbia, Canada. Boreas, 26: 261-278.
- Clark, P.U., Marshall, S.J., Clarke, G.K.C., Hostetler, S.W., Licciardi, J.M., and Teller, J.T. 2001. Freshwater forcing of abrupt climate change during the last glaciation. Science, 293: 283-287.

- Clark, P.U., Pisias, N.G., Stocker, T.F., and Weaver, A.J. 2002. The role of the thermohaline circulation in abrupt climate change. Nature, **415**: 863-869.
- Edwards, B.R. 1997. Field, kinetic and thermodynamic studies of magmatic assimilation in the northern Cordilleran volcanic province, northwestern British Columbia. Ph.D. thesis, Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia.
- Edwards, B.R., and Russell, J.K. 1999. Northern Cordilleran volcanic province: A northern Basin and Range? Geology, **27**: 243-246.
- Edwards, B.R., and Russell, J.K. 2000. Distribution, nature, and origin of Neogene-Quaternary magmatism in the northern Cordilleran volcanic province, Canada. Geological Society of America Bulletin, **122**: 1280-1295.
- Edwards, B.R., Russell, J.K., Anderson, R.G., Villeneuve, J., and Hastings, N. 1999.
 Punctuated, peralkaline, subglacial volcanism at Hoodoo Mountain volcano, northwestern British Columbia, Canada. Abstracts, American Geophysical Union, Fall Meeting, San Francisco, California, V12A-02.
- Edwards, B.R., Anderson, R.G., Russell, J.K., Hastings, N.L., and Guo, Y.T. 2000. The Quaternary Hoodoo Mountain Volcanic Complex and Paleozoic and Mesozoic basement rocks, parts of Hoodoo Mountain (NTS 104B/14) and Craig River (104B/11) map areas, northwestern British Columbia. Geological Survey of Canada, Open File Map 3721, scale 1:20,000.
- Edwards, B.R., Russell, J.K., and Anderson, R.G. 2002. Subglacial, phonolitic volcanism at Hoodoo Mountain volcano, northern Canadian Cordillera. Bulletin of Volcanology, **64**: 254-272.

- Engstrom, D.R., Hansen, B.C.S., and Wright, H.E., Jr. 1990. A possible Younger Dryas record in southeastern Alaska. Science, **250**: 1383-1385.
- Environment Canada. 2002. National climate data and information archive [online]. Available from http://www.climate.weatheroffice.ec.gc.ca [Cited 9 September 2006].
- Fanning, A.F., and Weaver, A.J. 1997. Temporal-geographical meltwater influences on the North Atlantic Conveyor: implications for the Younger Dryas. Paleoceanography, 12: 307-320.
- Friele, P.A., and Clague, J.J. 2002a. Younger Dryas readvance in Squamish river valley, southern Coast mountains, British Columbia. Quaternary Science Reviews, 21: 1925-1933.
- Friele, P.A., and Clague, J.J. 2002b. Readvance of glaciers in the British Columbia CoastMountains at the end of the last glaciation. Quaternary International, 87: 45-58.
- Fulton, R.J. 1967. Deglaciation studies in Kamloops region, an area of moderate relief, British Columbia. Geological Survey of Canada, Bulletin 154.
- Fulton, R.J. 1991. A conceptual model for growth and decay of the Cordilleran ice sheet. Géographie physique et Quaternaire, 45: 281-286.
- Gosse, J.C., Evenson, E.B., Klein, J., Lawn, B., and Middleton, R. 1995. Precise cosmogenic ¹⁰Be measurements in western North America: Support for a global Younger Dryas cooling event. Geology, 23: 877-880.
- Hamilton, T.S. 1981. Late Cenozoic alkaline volcanics of the Level Mountain Range, northwestern British Columbia: geology, petrology, and palaeomagnetism. Ph.D. thesis, Department of Geology, University of Alberta, Edmonton, Alberta.

- Hamilton, T.S. 1991. Level Mountain. *In* Volcanoes of North America. *Edited by* C.A.Wood and J. Kienle. Cambridge University Press, New York, pp. 121-123.
- Hansen, B.C.S., and Engstrom, D.R. 1996. Vegetation history of Pleasant Island, southeastern Alaska, since 13,000 yr BP. Quaternary Science Reviews, 46: 161-175.
- Hendy, I.L., Kennett, J.P., Roark, E.B., and Ingram, B.L. 2002. Apparent synchroneity of submillennial scale climate events between Greenland and Santa Barbara Basin, California from 30-10 ka. Quaternary Science Reviews, 21: 1167-1184.
- Hetherington, R., and Reid, R.G.B. 2003. Malacological insights into the marine ecology and changing climate of the late Pleistocene – early Holocene Queen Charlotte Islands archipelago, western Canada, and implications for early peoples. Canadian Journal of Zoology, 81: 626-661.
- Heusser, C.J. 1960. Late Pleistocene environments of North Pacific North America. American Geographical Society, Special Publication 35.
- Hu, F.S., Brubaker, L.B., and Anderson, P.M. 1995. Postglacial vegetation and climate change in the northern Bristol Bay region, southwestern Alaska. Quaternary Research, 43: 382-392.
- Hu, F.S., Lee, B.Y., Kaufman, D.S., Yoneji, S., Nelson, D.M., and Henne, P.D. 2002.
 Response of tundra ecosystem in southwestern Alaska to Younger-Dryas climatic oscillation. Global Change Biology, 8: 1156-1163.
- Hughes, O.L. 1990. Surficial geology and geomorphology, Aishihik Lake, Yukon Territory. Geological Survey of Canada, Paper 87-29.

- Jackson, L.E., Jr., Ward, B., Duk-Rodkin, A., and Hughes, O.L. 1991. The last Cordilleran Ice Sheet in southern Yukon Territory. Géographie physique et Quaternaire, **45**: 341-354.
- Kennedy, K.E., and Bond, J.D. 2004. Evidence for a late-McConnell readvance of the Cassiar Lobe in Seagull Creek, Pelly Mountains, central Yukon. *In* Yukon Exploration Geology 2003. Edited by D.S. Emond and L.L. Lewis. Yukon Geological Survey, pp. 121-128.
- Kovanen, D.J., and Easterbrook, D.J. 2001. Late Pleistocene, post-Vashon, alpine glaciation of the Nooksack drainage, North Cascades, Washington. Geological Society of America Bulletin, **113**: 274-288.
- Lacourse, T. 2005. Late Quaternary dynamics of forest vegetation on northern Vancouver Island, British Columbia, Canada. Quaternary Science Reviews, **24**: 105-121.
- LeBas, M.J., LeMaitre, R.W., Streckeisen, A., and Zanettin, B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, **27**: 745-750.
- Lehman, S.L., and Keigwin, L.D. 1992. Sudden changes in North Atlantic circulation during the last glaciation. Nature, **356**: 757-762.
- Lerbekmo, J.F., and Campbell, F.A. 1969. Distribution composition and source of White River ash, Yukon Territory. Canadian Journal of Earth Sciences, **6**: 109-116.
- Lerbekmo, J.F., Westgate, J.A., Smith, D.G.W., and Denton, G.H. 1975. New data on the character and history of the White River volcanic eruption, Alaska. *In* Quaternary Studies. Edited by Suggate, R.P., and Cresswell, M.M. The Royal Society of New Zealand, Wellington, pp. 203-209.

- Licciardi, J.M., Clark, P.U., Brook, E.J., Elmore, D., and Sharma, P. 2004. Variable responses of western U.S. glaciers during the last deglaciation. Geology, **32**: 81-84.
- Mangan, M.T., Waythomas, C.F., Miller, T.P., and Trusdell, F.A. 2003. Emmons Lake
 Volcanic Center, Alaska Peninsula: Source of the Late Wisconsin Dawson tephra,
 Yukon Territory, Canada. Canadian Journal of Earth Sciences, 40: 925-936.
- Mann, D.H., and Hamilton, T.D. 1995. Late Pleistocene and Holocene paleoenvironments of the north Pacific coast. Quaternary Science Reviews, 14: 449-471.
- Mathewes, R.W. 1993. Evidence for Younger Dryas age cooling on the North Pacific coast of America. Quaternary Science Reviews, **12**: 321-331.
- Mathewes, R.W., Heusser, L.E., and Patterson, R.T. 1993. Evidence for a Younger Dryas like event on the British Columbia coast. Geology, **21**: 101-104.
- Mathews, W.H. 1980. Retreat of the last ice sheets in northeastern British Columbia and adjacent Alberta. Geological Survey of Canada, Bulletin 331.
- Mathews, W.H. 1986. Physiographic map of the Canadian Cordillera. Geological Survey of Canada, Map 1701A, scale 1:5 million.
- Mayewski, P.A., Meeker, L.D., Whitlow, S., Twickler, M.S., Morrison, M.C., Alley,R.B., Bloomfield, P., and Taylor, K. 1993. The atmosphere during the YoungerDryas. Science, 261: 195-197.
- McCuaig, S.J., and Roberts, M.C. 2002. Topographically-independent ice flow in northwestern British Columbia: Implications for Cordilleran Ice Sheet reconstruction. Journal of Quaternary Science, 17: 341-348.

- McKenzie, G.D. 1970. Some properties and age of volcanic ash in Glacier Bay National Monument. Arctic, **23**: 46-49.
- Meidinger, D., and Pojar, J. 1991. Ecosystems of British Columbia. British Columbia Ministry of Forests, Victoria, British Columbia.
- Meissner, K.J., and Clark, P.U. 2006. Impact of floods versus routing events on the thermohaline circulation. Geophysical Research Letters, **33**: Art. No. L15704.
- Menounos, B., and Reasoner, M. A. 1997. Evidence for cirque glaciation in the Colorado Front Range during the Younger Dryas Chronozone. Quaternary Research, **48**: 38-47.
- Mikolajewicz, U., Crowley, T.J., Schiller, A., and Voss, R. 1997. Modelling teleconnections between the North Atlantic and North Pacific during the Younger Dryas. Nature, **387**: 384-387.
- Osborn, G., and Gerloff, L. 1997. Latest Pleistocene and early Holocene fluctuations of glaciers in the Canadian and northern American Rockies. Quaternary International, 38/39: 7-19.
- Osborn, G.D, Robinson, B.J., and Luckman, B.H. 2001. Holocene and latest Pleistocene fluctuations of Stutfield Glacier, Canadian Rockies. Canadian Journal of Earth Sciences, **38**: 1141-1155.
- Owen, L.A., Finkel, R.C., Minnich, R.A., and Perez, A.E. 2003. Extreme southwestern margin of the late Quaternary glaciation in North America: Timing and controls. Geology, 31: 729-732.
- Patterson, R.T., Guilbault, J.P., Thomson, R.E., and Luternauer, J.L. 1995. Foraminiferal evidence of Younger Dryas age cooling on the British Columbia shelf. Géographie physique et Quaternaire, 49: 409-427.

- Peltier, W.R., Vettoretti, G., and Stastna, M. 2006. Atlantic meridional overturning and climate response to Arctic Ocean freshening. Geophysical Research Letters, **33**: Art. No. L06713.
- Peteet, D. (Editor). 1995. Global Younger Dryas? Quaternary Science Reviews, 14.
- Peteet, D.M., and Mann, D.H. 1994. Late-glacial vegetational, tephra, and climatic history of southwestern Kodiak Island, Alaska. Ecoscience, 1: 255-267.
- Porter, S. C. 1975. Equilibrium line altitudes of late Quaternary glaciers in the Southern Alps, New Zealand. Quaternary Research, 5: 27-47.
- Preece, S.J., Westgate, J.A., and Gorton, M.P. 1992. Compositional variation and provenance of late Cenozoic distal tephra beds, Fairbanks area, Alaska. Quaternary International, 13/14: 97-101.
- Preece, S.J., Westgate, J.A., Stemper, B.A., and Péwé, T.L. 1999. Tephrochronology of late Cenozoic loess at Fairbanks, central Alaska. Geological Society of America Bulletin, 111: 71-90.
- Read, P.B., Brown, R.L., Psutka, J.F., Moore, J.M., Journeay, M., Lane, L.S., and Orchard, M.J. 1989. Geology of parts of Snippaker Creek (104B/10), Forrest Kerr Creek (104B/15), Bob Quinn Lake (104B/16), Iskut River (104G/1) and More Creek (104G/2). Geological Survey of Canada, Open File 2094.
- Reasoner, M.A. 1993. Equipment and procedure improvements for a lightweight, inexpensive, percussion core sampling system. Paleolimnology, 8: 273-281.
- Reasoner, M.A., Osborn, G., and Rutter, N.W. 1994. Age of the Crowfoot advance in the Canadian Rocky Mountains: A glacial event coeval with the Younger Dryas oscillation. Geology, 22: 439-442.

- Reimer P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C., Blackwell,
 P.G., Buck, C.E., Burr, G., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks,
 R.G., Friedrich, M., Guilderson, T.P., Hughen, K.A., Kromer, B., McCormac, F.G.,
 Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver,
 M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. 2004.
 IntCal04 terrestrial radiocarbon age calibration, 0 26 cal kyr BP. Radiocarbon, 46: 1029-1058.
- Richter, D.H., Preece, S.J., McGimsey, R.G., and Westgate, J.A. 1995. Mount Churchill, Alaska – Source of the late Holocene White River ash. Canadian Journal of Earth Sciences, **32**: 741-748.
- Riedel, J.L., Clague, J.J., Scott, K.M., and Swanson, T. 2003. Late Fraser alpine glacier activity in the North Cascades, Washington. Geological Society of America, Abstracts with Programs Vol. 35, pp. 216.
- Riehle, J.R., Mann, D.H., Peteet, D.M., Engstrom, D.R., Brew, D.A., and Meyer, C.E.
 1992. The Mount Edgecumbe tephra deposits, a marker horizon in southeastern
 Alaska near the Pleistocene-Holocene boundary. Quaternary Research, 37: 183-202.
- Roots, E.F. 1954. Geology and mineral deposits of Aiken Lake map-area, British Columbia. Geological Survey of Canada, Memoir 274.
- Russell, J.K., and Hauksdóttir, S. 2000. Estimates of crustal assimilation in Quaternary lavas from the northern Cordillera, British Columbia. The Canadian Mineralogist, **39**: 275-297.
- Ryder, J.M., and Maynard, D., 1991. The Cordilleran Ice Sheet in northern British Columbia. Géographie physique et Quaternaire, **45**: 355-363.

- Saunders, I.R., Clague, J.J., and Roberts, M.C. 1987. Deglaciation of Chilliwack River valley, British Columbia. Canadian Journal of Earth Sciences, **24**: 915-923.
- Souch, C. 1989. New radiocarbon dates for early deglaciation from the southeastern Coast Mountains of British Columbia. Canadian Journal of Earth Sciences, 26: 2169-2171.
- Souther, J.G. 1992. The Late Cenozoic Mount Edziza Volcanic Complex, British Columbia. Geological Survey of Canada, Memoir 420.
- Souther, J.G., and Yorath, C.J. 1991. Neogene assemblages. *In* Geology of the Cordilleran Orogen, Canada. *Edited by* Gabrielse, H., and Yorath, C.J. Geological Survey of Canada, Geology of Canada, no. 4, pp. 373-401.
- Steig, E.J., Brook, E.J., White, J.W.C., Sucher, C.M., Bender, M.L., Lehman, S.J., Morse,
 D.L., Waddington, E.D., and Clow, G.D. 1998. Synchronous climate changes in
 Antarctica and the North Atlantic. Science, 282: 92-95.
- Stumpf, A.J., Broster, B.E., and Levson, V.M. 2000. Multiphase flow of the late
 Wisconsinan Cordilleran ice sheet in western Canada. Geological Society of America
 Bulletin, 112: 1850-1863.
- Tallman, A.M. 1975. Glacial and periglacial geomorphology of the Fourth of July Creek valley, Atlin region, Cassiar district, northwestern British Columbia. Ph.D. thesis, Michigan State University, East Lansing, Michigan.
- Tarasov, L., and Peltier, W.R. 2005. Arctic freshwater forcing of the Younger Dryas cold reversal. Nature, 435: 662-665.

- Tarasov, L., and Peltier, W.R. 2006. A calibrated deglacial drainage chronology for the North American continent: Evidence of an Arctic trigger for the Younger Dryas. Quaternary Science Reviews, 25: 659-688.
- Teller, J.T., Leverington, D.W., and Mann, J.D. 2002. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Science Reviews, 21: 879-887.
- Teller, J.T., Boyd, M., Yang, Z., Kor, P.S.G., and Fard, A.M. 2005. Alternative routing of Lake Agassiz overflow during the Younger Dryas: New dates, paleotopography, and a re-evaluation. Quaternary Science Reviews, 24: 1890-1905.
- Villeneuve, M.E., Whalen, J.B., Edwards, B.R., and Anderson, R.G. 1998. Time-scales of episodic magmatism in the Canadian Cordillera as determined by 40Ar-39Ar geochronology. Geological Association of Canada – Mineralogical Association of Canada, Annual Meeting, Program with Abstracts, Quebec City, Quebec, A192.
- Watson, K. de P., and Mathews, W.H. 1944. The Tuya-Teslin area, northern British Columbia. British Columbia Department of Mines, Bulletin 19.
- Westgate, J.A., Preece, S.J., Kotler, E., and Hall, S. 2000. Dawson tephra: A prominent stratigraphic marker of Late Wisconsinan age in west-central Yukon, Canada. Canadian Journal of Earth Sciences, 37: 621-627.
- Yehle, L.A. 1974. Reconnaissance engineering geology of Sitka and vicinity, Alaska, with emphasis on evaluation of earthquake and other geologic hazards. United States Geological Survey, Open File Report 74-53

APPENDIX A:

Map of glacial landforms and deposits (See CD inside back cover)

Instructions

The appended compact disc (CD) contains an Adobe PDF file that contains a hillshaded digital elevation model (DEM) map of glacial landforms and deposits in the Finlay River area. The map is part of NTS 94/E. The file can be viewed using the program Adobe Acrobat. The hillshaded map was produced with permission using digital elevation data from the Province of British Columbia, Base Mapping and Geomatic Services Branch.

APPENDIX B:

Equilibrium line altitude reconstructions

I estimated equilibrium line altitudes of former alpine glaciers in the Finlay River area using the accumulation area ratio (AAR) method of Porter (1975) and assuming an accumulation area ratio of 0.60. An accumulation area ratio of 0.60 means that the accumulation area of the glaciers that constructed the late-glacial moraines was 60% of the total glacier area.

The margins of three former alpine glaciers that did not coalesce with trunk valley ice were estimated from lateral and terminal moraines and trimlines. The former glacier surfaces were reconstructed by drawing contour lines perpendicular to the lateral moraines and trimlines. The hypsometry of reconstructed glacier surfaces was calculated in a GIS, and the equilibrium line altitudes were then estimated using the accumulation area ratio of 0.60. The reconstructions indicate that the regional equilibrium line altitude was 1650-1750 m asl at the time the late-glacial moraines were constructed.

Little Ice Age equilibrium line altitudes were calculated using the same procedure. For Little Ice Age glaciers, however, the ground surface was used to approximate the former glacier surfaces, which is reasonable given the position of Little Ice Age moraines near present-day glacier margins. The equilibrium line altitude during the Little Ice Age was determined to be 1900-1950 m asl.

APPENDIX C:

Lake sediment core data

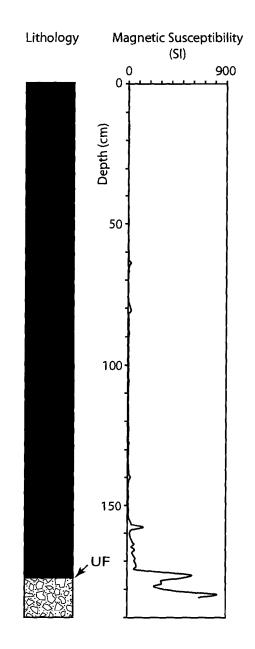
Appendix C: Legend

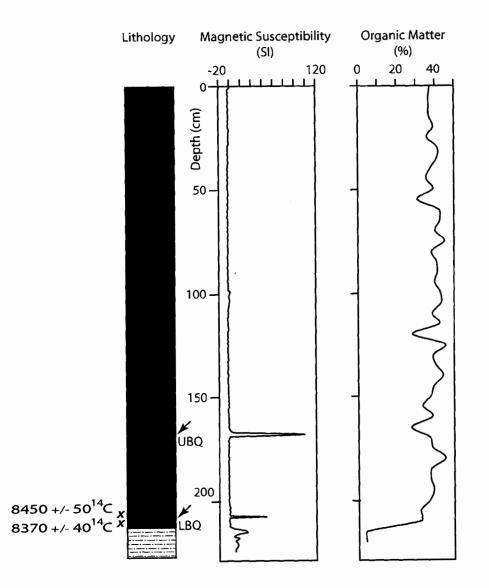
Organic-rich mud

Sandy silt

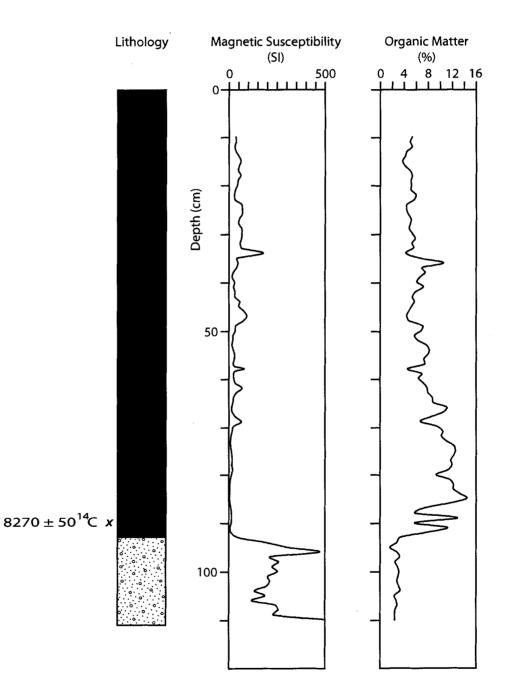
Sand

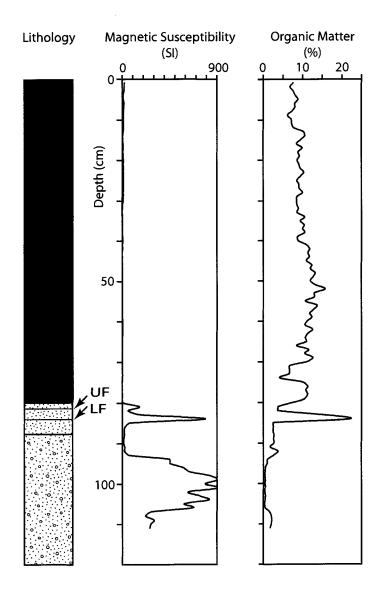
Sand and gravel

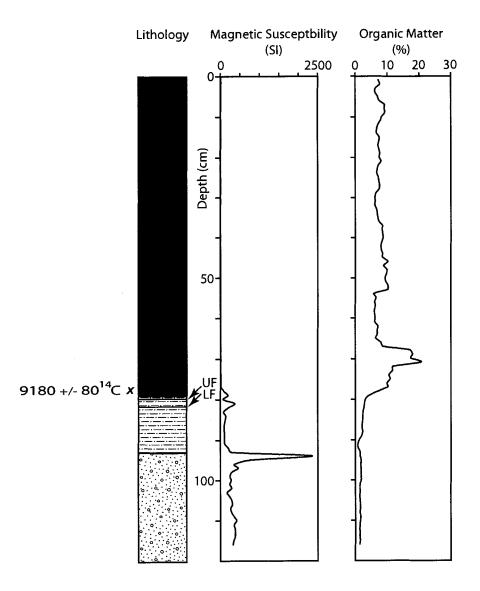

Diamicton


Tephra

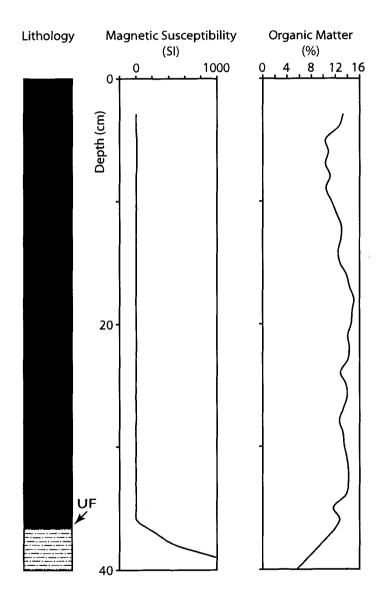
- UF Upper Finlay tephra
- LF Lower Finlay tephra
- UBQ Upper Bob Quinn tephra
- LBQ Lower Bob Quinn tephra

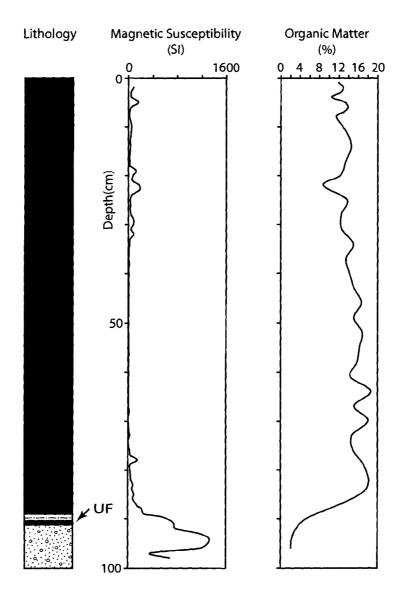

Black Lake Core: 05-Black(01) Location: 57[°] 13.686' N, 127[°] 03.115' W

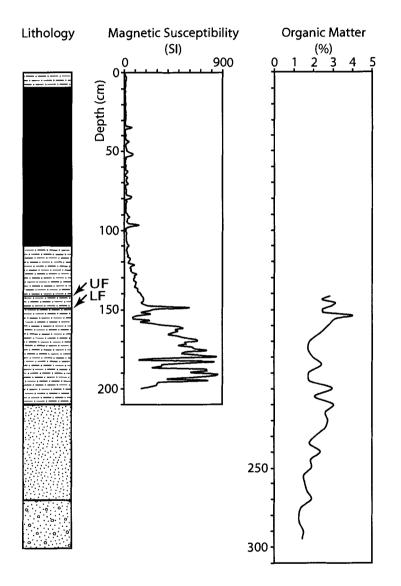

Bob Quinn Lake Core: 06-BobQ(01) Location: 56° 58.573' N, 130° 15.623' W

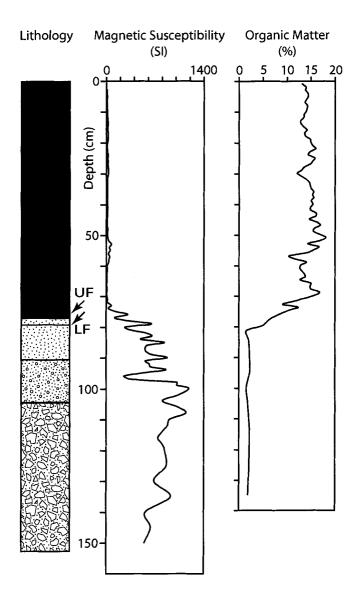

Bronlund Lake Core: 05-Bron(01) Location: 57°25.463' N, 126°35.460' W

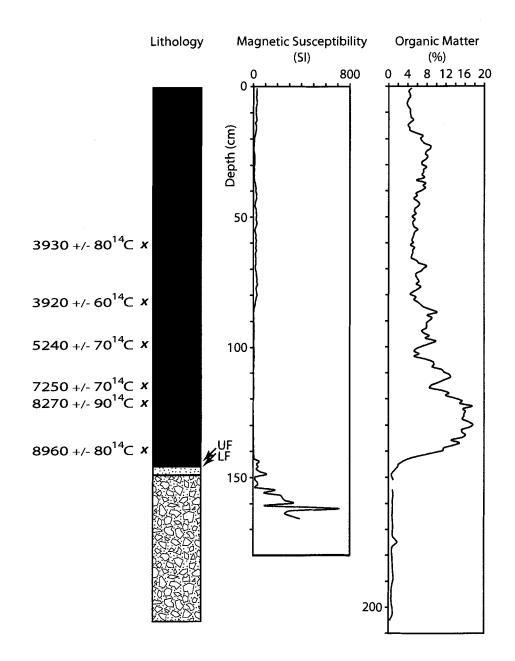

Cushing Lake Core: 05-Cushing(01) Location: 57° 35.541′ N, 126° 54.566′ W

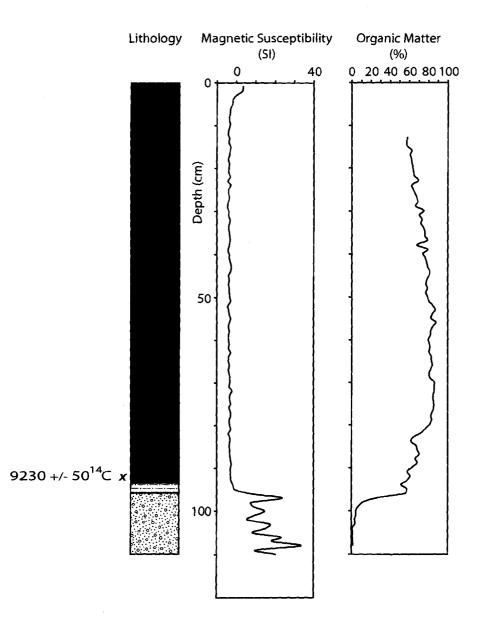

Cushing Lake Core: 05-Cushing(02) Location: 57°35.607' N, 126° 54.450' W

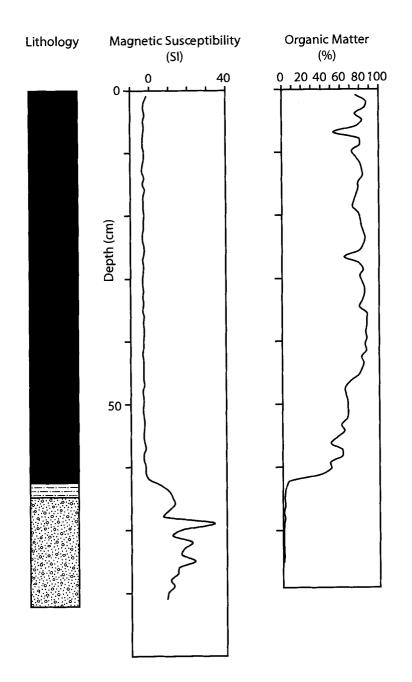

Deep Lake Core: 05-Deep(01) Location: 57°40.943' N, 126°46.372' W

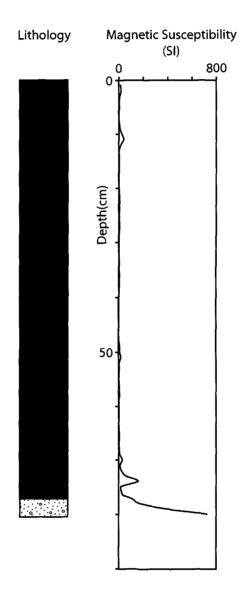

Hungry Lake Core: 06-Hungry(01) Location: 58° 04.325' N, 129° 18.970' W


Hungry Lake Core: 06-Hungry(02) Location: 58° 04.325' N, 129° 18.970' W


Katharine Lake Core: 05-Kath(01) Location: 57°26.643' N, 126°48.582' W


Little Glacier Lake Core: 06-LGLAK(01) Location: 58° 13.243' N, 129° 20.759' W


Red Barrel Lake Core: 05-RedBarrel(02) Location: 57°40.623' N, 126°44.029' W


Sandwich Lake Core: 05-Sand(01) Location: 57°01.565' N, 126°29.747' W

Sandwich Lake Core: 05-Sand(02) Location: 57°01.555′ N, 126°29.753′ W

Sister Lake Core: 06-Sister(01) Location: 58°07.568' N, 129°20.506' W

APPENDIX D:

Microprobe data

Anaylysis number	Sample number	SiO ₂	TIO ₂	Al ₂ O ₃	FeO(t)	MnO	CaO	ОбМ	Na ₂ O	K ₂ 0	Total
32	UA1144_1	61.571	0.676	19.240	5.784	0.125	2.242	0.668	3.725	4.748	98.779
33	UA1144_2	56.465	1.461	19.149	7.429	0.187	5.396	1.971	4.106	3.154	99.318
34	UA1144_3	63.302	0.255	20.198	3.920	0.131	1.103	0.223	6.328	4.365	99.825
38	UA1144_7	63.272	0.811	18.712	6.080	0.135	2.313	0.595	2.082	3.515	97.515
39	UA1144_8	59.871	0.840	19.078	6.254	0.150	2.799	0.859	3.632	4.924	98.407
6	UA1144_9	59.500	006.0	18.831	6.151	0.153	2.541	0.922	3.637	5.084	97.719
41	UA1144_10	61.260	0.744	19.468	5.752	0.172	2.251	0.619	3.771	5.149	99.186
42	UA1144_11	63.913	0.755	19.063	6.277	0.155	2.324	0.594	1.049	3.059	97.189
4	UA1144_13	62.970	0.207	17.504	8.076	0.199	1.251	0.006	3.654	4.539	98.406
45	UA1144_14	57.375	1.278	17.890	8.607	0.178	4.443	1.490	3.065	3.570	97.896
49	UA1144_18	60.861	0.704	19.034	5.385	0.146	2.280	0.703	4.658	5.008	98.779
50	UA1144_19	67.188	0.437	18.249	1.527	0.059	2.603	0.072	2.629	5.321	98.085
51	UA1144_20	63.343	0.094	19.960	0.794	0.028	1.366	0.041	6.726	5.363	97.715
52	UA1144_21	64.665	0.132	19.387	1.642	0.079	1.332	0.119	5.332	5.661	98.349
190	UA1144_23	60.469	0.767	18.870	6.212	0.101	2.639	0.790	5.109	4.784	99.741
191	UA1144_24	63.994	0.015	21.115	1.403	0.014	1.564	0.058	5.840	5.436	99.439
192	UA1144_25	64.342	060.0	20.707	1.642	0.039	1.607	0.128	6.238	5.336	100.129
193	UA1144_26	60.150	0.617	19.352	5.874	0.144	2.275	0.644	4.667	4.744	98.467
*35	UA1144_4	61.578	0.501	16.913	5.007	0.134	1.416	0.270	0.480	2.826	89.125
*36	UA1144_5	60.597	0.731	17.868	5.665	0.149	2.064	0.587	3.154	4.567	95.382
*37	UA1144_6	61.349	0.816	18.238	6.167	0.133	2.291	0.598	1.808	3.455	94.855
*43	UA1144_12	61.906	0.838	18.248	6.373	0.152	2.375	0.606	0.621	2.004	93.123
*48	UA1144 17	62.174	0 501	17 054	5619	0.006	1 208	0 2 0 2	1 207	1071	CC1 CO

* Indicates analyses that were excluded from average major element calculations on the basis of their low total weight percents or differing oxide values.

Table B1. Major element composition of glass shards in the lower Finlay tephra from core 05-RedBarrel(02).

98

Total	97.674	•	•	•	•	•	•	•	•	•	•	Ŧ	•	Ť	Ť	-	-	Ť	-	
K ₂ 0	4.710	4.745	4.774	4.842	4.785	4.789	4.742	4.865	4.756	4.963	4.818	4.894	4.627	4.825	4.771	4.836	5.043	4.746	5.288	5.649
Na ₂ O	5.683	5.799	5.736	5.807	5.682	5.727	5.760	5.815	5.993	5.864	5.604	6.244	6.063	6.176	6.158	6.040	6.002	5.836	5.329	5.925
MgO	ı	0.040	0.022	0.018	•	•	0.006	0.022	0.003	0.009	ı	ı	0.005	0.001	0.013	0.022	0.011	0.001	0.491	0.062
CaO	1.138	1.167	1.183	1.123	1.171	1.159	1.176	1.112	1.117	1.202	1.155	1.133	1.192	1.196	1.187	1.162	1.184	1.238	1.718	0.906
MnO	0.221	0.216	0.200	0.206	0.161	0.196	0.205	0.181	0.235	0.194	0.186	0.178	0.197	0.186	0.216	0.218	0.199	0.199	0.139	0.107
FeO(t)	7.931	8.053	7.823	8.449	8.455	8.324	8.010	8.082	8.312	7.967	8.263	8.061	7.956	8.307	8.181	8.154	8.315	8.269	5.066	3.461
Al ₂ O ₃	16.831	16.619	16.137	16.627	16.841	16.736	16.820	16.934	16.920	16.552	16.364	16.940	17.038	16.864	16.675	16.836	16.624	16.711	19.325	19.184
TIO ₂	0.220	0.199	0.193	0.192	0.213	0.182	0.230	0.203	0.248	0.188	0.188	0.147	0.175	0.170	0.191	0.184	0.189	0.227	0.477	0.133
sio ₂	60.940	60.689	60.554	60.873	60.496	60.395	61.300	61.303	60.893	60.646	61.149	61.175	61.442	61.096	61.803	61.785	61.133	61.166	60.697	63.285
Sample number	UA1165_1	UA1165_2	UA1165_3	UA1165_4	UA1165_6	UA1165_7	UA1165_8	UA1165_9	UA1165_10	UA1165_11	UA1165_12	UA1165_13	UA1165_15	UA1165_16	UA1165_17	UA1165_18	UA1165_19	UA1165_20	UA1165_5	UA1165_14
Anaylysis number	269	270	271	272	274	275	276	277	278	279	280	281	283	284	285	286	287	288	*273	*282

Table B2. Major element composition of glass shards in the lower Finlay tephra from core 06-LGLAK(01).

* Indicates analyses that were excluded from average major element calculations on the basis of their low total weight percents or differing oxide values. - Inidcates analyses with values below detection.

Table B3.	Table B3. Major element co	ent composition of glass shards in the lower Finlay tephra from core 05-Cushing(01).	on of glas	ss shards	in the lo	wer Finl	ay tephr	a from c	ore 05-C	ushing((11).
Anaylysis number	Sample number	siO ₂	TiO ₂	Al ₂ O ₃	FeO(t)	MnO	CaO	MgO	Na ₂ O	K ₂ 0	Total
328	UA1168_1	61.242	0.193	17.032	8.416	0.267	1.210		6.039	4.834	99.233
329	UA1168_2	60.702	0.220	16.061	8.623	0.258	1.231	0.040	6.075	4.587	97.797
330	UA1168_3	61.090	0.234	16.894	8.216	0.202	1.204	٢	5.859	4.771	98.470
331	UA1168_4	60.199	0.212	16.320	8.935	0.217	1.275	0.012	5.859	4.780	97.809
333	UA1168_6	61.480	0.167	16.460	8.426	0.223	1.182	0.028	6.007	5.034	99.007
335	UA1168_8	61.042	0.169	16.910	8.573	0.207	1.135	0.007	5.863	4.854	98.760
336	UA1168_9	59.654	0.626	18.754	5.904	0.089	2.330	0.628	4.979	4.786	97.750
337	UA1168_10	60.767	0.238	16.379	8.056	0.164	1.162	ı	5.242	4.939	96.947
338	UA1168_11	60.475	0.537	17.996	5.817	0.134	1.687	0.376	5.673	5.695	98.390
339	UA1168_12	61.163	0.208	16.696	8.139	0.208	1.195	0.012	6.053	4.867	98.541
340	UA1168_13	63.866	0.256	16.784	5.224	060.0	1.894	0.261	5.142	5.798	99.315
341	UA1168_14	60.614	0.181	16.761	8.386	0.229	1.167	ı	5.684	4.856	97.878
342	UA1168_15	60.586	0.231	16.590	8.392	0.226	1.163	ı	6.075	4.862	98.125
343	UA1168_16	61.775	0.378	17.455	6.390	0.185	1.847	0.372	4.662	5.812	98.876
344	UA1168_17	62.460	0.406	17.008	6.378	0.169	1.779	0.336	4.827	5.759	99.122
345	UA1168_18	62.630	0.328	18.783	4.666	0.112	0.817	0.215	4.629	5.961	98.141
346	UA1168_19	63.018	0.398	18.992	4.645	0.132	0.738	0.253	4.941	5.900	99.017
*332	UA1168_5	54.811	1.867	16.813	10.070	0.172	5.277	2.154	4.789	3.471	99.424
*334	UA1168_7	63.682	0.139	19.204	2.120	0.065	0.858	0.132	5.505	6.612	98.317
*347	UA1168_20	67.376	·	19.335	0.460	0.008	0.942	·	6.196	5.715	100.032

* Indicates analyses that were excluded from average major element calculations on the basis of their low total weight percents or differing oxide values. - Inidcates analyses with values below detection.

Table B4. Major element composition of glass shards in the upper Finlay tephra from core 05-RedBarrel(02).

Total	100.031 97 575	97.402	97.063	97.666	98.557	98.156	97.356	97.964	98.446	98.015	97.847	98.168	98.814	97.505	99.476	98.908	97.115	97.809	98.917	960.66	97.078	91.786	91.100
K ₂ 0	4.705 4.468	4.394	4.273	4.222	4.345	4.398	4.505	4.402	4.387	4.400	4.470	4.304	4.431	4.364	4.394	4.407	4.368	4.708	4.816	4.887	4.755	2.830	3.165
Na ₂ O	8.399 4 194	3.607	3.855	2.578	3.887	4.043	4.062	4,118	3.889	3.943	3.643	3.861	4.200	3.918	4.289	3.848	4.076	5.562	5.807	5.938	5.266	1.344	1.600
MgO	0.018	0.027	0.021	0.013	0.033	,	0.006	0.015	ı	0.003	0.005	0.015	0.023	ł	0.005	0.024	0.013	0.026	,	0.014	0.005	0.023	0.046
CaO	1.209 1 218	1.265	1.221	1.304	1.222	1.161	1.235	1.298	1.224	1.260	1.199	1.271	1.066	1.062	1.228	1.296	1.304	1.312	1.174	1.252	1.254	1.158	1.126
MnO	0.197 0.261	0.216	0.243	0.231	0.280	0.260	0.230	0.256	0.179	0.252	0.239	0.226	0.200	0.232	0.223	0.203	0.196	0.250	0.228	0.222	0.206	0.185	0.219
FeO(t)	8.256 8 256	8.576	8.437	8.805	8.493	8.414	8.413	8.286	8.255	8.589	8.353	8.269	8.556	8.445	8.757	8.161	8.416	8.921	8.613	8.951	8.156	7.862	7.669
Al ₂ O ₃	16.666 17.026	17.022	16.801	17.411	17.215	17.174	16.831	17.007	17.195	16.819	17.171	17.119	17.167	17.037	17.247	17.382	16.674	16.286	16.659	16.633	16.581	17.141	16.460
TiO ₂	0.203	0.227	0.222	0.240	0.260	0.255	0.200	0.249	0.228	0.274	0.247	0.260	0.272	0.282	0.215	0.196	0.216	0.221	0.199	0.219	0.196	0.256	0.233
SiO ₂	60.378 61 879	62.068	61.990	62.862	62.822	62.451	61.874	62.333	63.089	62.475	62.520	62.843	62.899	62.165	63.118	63.391	61.852	60.523	61.421	60.980	60.659	60.987	60.582
Sample number	UA1143_1 UA1143_2	UA1143_3	UA1143_4	UA1143_5	UA1143_6	UA1143_7	UA1143_8	UA1143_9	UA1143_10	UA1143_11	UA1143_14	UA1143_15	UA1143_16	UA1143_17	UA1143_18	UA1143_19	UA1143_20	UA1143_21	UA1143_22	UA1143_23	UA1143_24	UA1143_12	UA1143_13
Anaylysis number	12	14	15	16	17	18	19	20	21	22	25	26	27	28	29	30	31	185	186	187	188	*23	*24

* Indicates analyses that were excluded from average major element calculations on the basis of their low total weight percents or differing oxide values. - Inidcates analyses with values below detection.

.

conduction Cond											
1	Sample number	siO ₂	TiO ₂	AI ₂ O ₃	FeO(t)	MnO	CaO	MgO	Na ₂ O	K ₂ 0	Total
¥	UA1164_1	60.266	0.177	16.782	7.687	0.176	1.141	0.012	5.762	4.907	96.910
₹	1164_2	59.907	0.211	16.017	8.851	0.191	1.264	0.016	5.544	4.802	96.803
¥	1164_3	60.318	0.173	16.857	7.890	0.222	1.112	0.043	5.822	4.666	97.103
₹	1164_4	60.333	0.200	16.636	8.119	0.209	1.230	0.037	6.163	4.829	97.756
₹	1164_5	60.808	0.190	16.761	8.191	0.182	1.166	0.030	5.901	4.669	97.898
¥	1164_6	59.820	0.213	16.413	8.377	0.237	1.136	0.005	5.781	4.853	96.835
¥	1164_7	59.877	0.182	16.686	8.298	0.189	1.103	0.016	6.000	4.769	97.120
R	1164_8	60.672	0.230	16.808	8.122	0.198	1.130	0.021	6.329	4.898	98.408
Y	1164_9	59.956	0.201	16.529	8.383	0.214	1.078	ı	5.759	4.810	96.930
A	1164_10	60.433	0.227	16.551	8.381	0.219	1.096	0.012	5.605	4.759	97.283
۲	1164_11	60.162	0.164	16.888	7.965	0.184	1.037	0.005	5.997	4.861	97.263
A	1164_12	59.475	0.203	16.567	8.048	0.203	1.069		6.340	4.844	96.749
R	1164_13	60.316	0.200	16.296	8.164	0.226	1.055	0.019	6.141	4.990	97.407
Y	1164_14	60.494	0.184	16.724	8.458	0.210	1.156	0.033	5.732	4.886	97.877
R	1164_15	60.790	0.190	16.762	8.170	0.237	1.168	0.006	5.669	4.779	97.771
A	1164_16	60.114	0.205	16.702	8.011	0.255	1.183		5.410	4.739	96.619
A	1164_17	60.437	0.226	16.829	8.177	0.210	1.099	·	5.604	4.777	97.359
A	1164_18	59.794	0.181	16.783	8.171	0.186	1.093	0.017	5.616	4.752	96.593
۲	JA1164_19	60.874	0.226	16.588	7.953	0.243	1.130	0.021	5.433	4.700	97.168
A	JA1164_20	60.116	0.205	16.613	7.989	0.200	1.131	ı	5.785	4.784	96.823

Table B5. Major element composition of glass shards in the upper Finlay tephra from core 06-LGLAK(01).

- Inidcates analyses with values below detection.

Anaylysis number	Sample number	SiO ₂	TIO ₂	Al ₂ O ₃	FeO(t)	MnO	CaO	MgO	Na ₂ O	k ₂ 0	Total
354	UA1169_1	61.540	0.240	16.985	7.897	0.182	1.119	0.012	5.821	4.839	98.635
355	UA1169_2	60.891	0.205	16.835	8.315	0.211	1.177	•	5.746	5.011	98.391
356	UA1169_3	61.083	0.203	17.003	8.429	0.216	1.158	0.022	5.979	5.058	99.151
357	UA1169_4	61.423	0.225	16.694	8.375	0.229	1.176	ı	6.027	4.891	99.040
358	UA1169_5	60.626	0.210	16.706	8.113	0.211	1.181	0.029	5.754	4.877	97.707
359	UA1169_6	61.292	0.214	17.256	8.423	0.221	1.151	0.003	5.836	4.841	99.237
360	UA1169_7	60.822	0.228	16.806	8.623	0.211	1.252	0.010	6.039	4.870	98.861
361	UA1169_8	61.010	0.190	16.781	7.880	0.191	1.130	0.020	5.802	4.966	97.970
362	UA1169_9	60.605	0.224	16.573	8.758	0.223	1.178	0.031	5.824	4.760	98.176
363	UA1169_10	61.234	0.171	16.563	8.631	0.165	1.273	0.006	6.019	4.907	98.969
364	UA1169_11	61.112	0.227	16.697	7.984	0.226	1.218	0.007	5.626	4.784	97.881
365	UA1169_12	61.358	0.203	16.738	8.283	0.246	1.253	ı	5.774	4.989	98.844
366	UA1169_13	61.009	0.184	17.164	8.604	0.252	1.153	4	6.275	4.937	99.578
367	UA1169_14	61.109	0.244	16.758	8.596	0.205	1.193	0.027	5.917	4.836	98.885
368	UA1169_15	61.477	0.201	17.248	8.776	0.230	1.114	0.011	6.028	5.034	100.119
369	UA1169_16	61.192	0.197	16.766	8.206	0.246	1.098	0.002	6.093	4.869	98.669
370	UA1169_17	60.761	0.192	16.874	8.549	0.210	1.057	ı	5.811	4.908	98.362
371	UA1169_18	63.134	0.330	15.975	8.650	0.243	1.209	0.020	5.692	4.905	100.158
372	UA1169_19	61.046	0.185	16.629	8.441	0.199	1.072	ı	6.048	4.945	98.565
373	UA1169_20	59.678	0.251	16.563	9.561	0.210	1.191	0.008	5.892	4.883	98.237

Table B6. Major element composition of glass shards in the upper Finlay tephra from core 05-Cushing(01).

- Inidcates analyses with values below detection.

Anaylysis number	Sample number	si0 ₂	TiO ₂	AI ₂ O ₃	FeO(t)	MnO	CaO	MgO	Na_2O	K ₂ 0	Total
289	UA1166_1	61.377	0.213	17.122	7.976	0.229	1.150	0.019	6.179	4.849	99.114
290	UA1166_2	61.341	0.166	17.070	8.238	0.241	1.176	0.012	6.003	4.658	98.905
291	UA1166_3	61.529	0.214	16.678	7.931	0.221	1.151	0.008	6.076	4.867	98.675
292	UA1166_4	61.216	0.201	16.466	8.017	0.211	1.121	0.009	6.121	4.761	98.123
293	UA1166_5	60.525	0.150	16.873	8.314	0.238	1.137	0.005	5.919	4.865	98.026
294	UA1166_6	61.783	0.160	17.077	8.021	0.256	1.142	0.011	6.252	4.840	99.542
295	UA1166_7	61.213	0.249	16.904	8.107	0.162	1.148	I	6.462	4.830	99.075
296	UA1166_8	61.196	0.177	16.835	8.177	0.187	1.149	0.027	6.105	4.735	98.588
297	UA1166_9	60.572	0.215	16.452	8.458	0.286	1.123	0.001	5.738	4.974	97.819
298	UA1166_10	59.988	0.278	16.394	8.731	0.218	1.204	0.013	6.002	4.842	97.670
299	UA1166_11	61.153	0.170	16.986	8.462	0.198	1.195	ł	5.876	4.812	98.852
300	UA1166_12	60.889	0.211	16.589	8.623	0.238	1.175	ı	6.160	4.951	98.836
301	UA1166_13	60.645	0.208	16.669	8.541	0.197	1.182	0.018	6.081	4.875	98.416
302	UA1166_14	60.300	0.225	16.555	8.512	0.234	1.191	0.004	6.102	4.722	97.845
303	UA1166_15	61.155	0.217	16.523	8.029	0.226	1.188	0.016	5.436	4.346	97.136
304	UA1166_16	61.087	0.178	16.698	8.067	0.215	1.199	ı	6.043	4.907	98.394
305	UA1166_17	61.023	0.251	16.669	8.147	0.202	1.201	ı	5.952	4.897	98.342
306	UA1166_18	61.032	0.199	16.882	8.344	0.207	1.190	0.018	5.864	4.881	98.617
307	UA1166_19	61.529	0.195	16.981	7.883	0.188	1.115	0.005	6.048	4.827	98.771

Table B7. Major element composition of glass shards in the upper Finlay tephra from core 06-Hungry(02).

⁻ Inidcates analyses with values below detection.

Anaylysis number	Sample number	sio ₂	TIO ₂	Al ₂ O ₃	FeO(t)	MnO	CaO	MgO	Na_2O	к ₂ 0	Total
308	UA1167_1	62.054	0.178	17.230	8.541	0.181	1.230	0:030	6.427	4.808	100.679
309	UA1167_2	61.052	0.212	16.954	8.100	0.200	1.195	ı	6.676	4.875	99.264
310	UA1167_3	60.483	0.166	16.901	8.408	0.214	1.160	0.027	5.075	4.758	97.192
311	UA1167_4	60.611	0.222	16.507	8.423	0.216	1.199	I	5.838	4.788	97.804
312	UA1167_5	60.829	0.203	16.774	8.742	0.246	0.819	ı	5.945	4.788	98.346
313	UA1167_6	61.726	0.242	16.817	8.685	0.217	0.924	0.014	6.462	4.845	99.932
314	UA1167_7	61.430	0.238	16.648	8.772	0.208	0.849	ı	5.997	4.821	98.963
315	UA1167_8	61.114	0.199	17.043	8.186	0.285	1.115	t	5.393	4.814	98.149
316	UA1167_9	60.887	0.191	16.632	8.186	0.196	1.133	ı	5.401	4.720	97.346
317	UA1167_10	60.937	0.236	16.683	8.728	0.215	1.144	0.025	5.678	4.747	98.393
318	UA1167_11	61.250	0.251	16.972	8.479	0.204	1.143	I	6.372	4.785	99.456
319	UA1167_12	61.176	0.167	16.640	8.303	0.175	1.109	0.009	5.415	4.804	97.798
320	UA1167_13	61.039	0.211	16.856	8.784	0.229	1.147	ı	5.895	4.749	98.910
321	UA1167_14	61.157	0.217	16.926	8.556	0.211	1.140	ı	5.971	4.998	99.176
322	UA1167_15	61.251	0.196	16.991	7.838	0.168	1.055	ı	6.024	4.706	98.229
323	UA1167_16	61.770	0.224	16.842	8.093	0.206	1.162	0.003	5.976	4.898	99.174
324	UA1167_17	60.768	0.191	16.708	7.955	0.235	1.153	ı	5.877	4.879	97.766
325	UA1167_18	61.182	0.225	16.909	8.339	0.266	1.204	0.022	5.881	4.794	98.822
326	UA1167_19	61.275	0.230	16.677	8.829	0.226	1.169	0.009	5.505	4.834	98.754
327	UA1167_20	61.549	0.234	17.153	8.091	0.169	1.348	0.020	5.859	4.738	99.161
	; ; ;			i	i						ļ

Table B8. Major element composition of glass shards in the upper Finlay tephra from core 06-Hungry(01).

- Inidcates analyses with values below detection.

2(01).	Total	98.699	99,666	99.517	99.228	990.66	98.694	99.194	98.414	97.623	98.149	98.457	99.123	99.676	99.177	98.862	98.976	98.425	99.031	99.071	99.016	98.552	98.330	99.214
00-BOD(K ₂ 0	0.877	0.879	0.925	1.060	0.969	0.894	0.988	0.923	0.937	1.065	1.038	0.937	0.978	0.980	0.961	0.993	0.888	0.976	1.017	0.886	0.949	1.057	0.966
om core	Na ₂ O	3.568	3.478	3.675	3.587	3.572	3.499	3.714	3.573	3.314	3.615	3.618	3.539	3.516	3.623	3.394	3.531	3.511	3.612	3.604	3.480	3.545	3.570	3.621
tepnra n	MgO	6.122	6.275	6.411	5.938	6.122	6.048	6.478	6.125	6.078	5.763	5.817	6.014	5.949	6.041	5.997	6.104	6.062	6.140	5.737	6.380	6.218	5.785	5.798
nniny	CaO	8.823	9.052	8.989	8.909	8.704	9.099	9.004	8.623	9.150	8.815	8.458	8.961	8.955	9.155	8.966	9.077	8.881	9.202	9.099	9.148	9.146	8.844	9.053
wer bob	MnO	0.187	0.164	0.177	0.155	0.165	0.128	0.156	0.156	0.188	0.222	0.168	0.221	0.191	0.176	0.217	0.187	0.146	0.164	0.165	0.160	0.198	0.134	0.158
in the lo	FeO(t)	12.066	12.264	11.842	11.931	12.106	12.012	12.000	12.277	12.264	12.396	12.509	12.363	12.485	12.245	12.221	12.180	11.919	12.091	12.211	12.053	12.423	12.728	12.054
s snards	Al ₂ O ₃	17.263	17.184	17.398	17.317	17.420	17,404	17.201	17.204	17.216	16.546	16.678	16.935	17.169	17.063	16.979	16.965	17.212	17.057	17.020	17.351	16.908	16.206	16.900
n or glas	TiO ₂	2.166	2.219	2.236	2.331	2.239	2.333	2.288	2.256	2.232	2.484	2.366	2.402	2.448	2.300	2.243	2.387	2.305	2.276	2.331	2.304	2.051	2.626	2.426
ent composition of glass shards in the lower bob Quinn tephra from core Uo-bobQ(UT).	siO ₂	47.627	48.151	47.864	48.000	47.769	47.277	47.365	47.277	46.244	47.243	47.805	47.751	47.985	47.594	47.884	47.552	47.501	47.513	47.887	47.254	47.114	47.380	48.238
lable by. Major element co	Sample number	UA1163_1	UA1163_2	UA1163_3	UA1163_4	UA1163_5	UA1163_6	UA1163_7	UA1163_8	UA1163_9	UA1163_10	UA1163_11	UA1163_12	UA1163_13	UA1163_14	UA1163_15	UA1163_16	UA1163_17	UA1163_18	UA1163_19	UA1163_20	UA1163_21	UA1163_22	UA1163_23
lable by.	Anaylysis number	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	420	421	422

Table B9. Major element composition of glass shards in the lower Bob Quinn tephra from core 06-BobO(01).

		•	5 98.462	•	•			-		-	-	-	-	-	-	-	-	-	5	_	-		
	-,	7	24.495	7	7	1	7	7	-,	7	•	•		•	•	- /		•	•		•	•	
Na ₂ O	5.939	4.706	5.782	5.436	5.463	5.313	5.333	5.154	5.853	5.368	5.217	5.742	5.527	5.520	5.405	6.139	5.983	5.451	5.266	5.548	5.778	3.216	2.83(
MgO	0.466	0.982	0.857	0.821	0.904	0.807	0.893	0.854	0.384	1.031	1.015	1.087	0.351	1.069	1.064	0.328	0.393	0.952	0.998	0.447	0.887	0.963	0.507
CaO	1.940	3.158	2.832	2.856	2.925	2.939	2.944	2.897	1.711	3.335	3.357	3.284	1.587	3.486	3.580	1.395	1.513	3.419	3.315	1.927	2.804	3.321	1.982
MnO	0.135	0.149	0.110	0.139	0.160	0.107	0.125	0.133	0.116	0.160	0.120	0.178	0.139	0.115	0.126	0.136	0.098	0.152	0.177	0.137	0.127	0.151	0.136
FeO(t)	6.372	7.042	6.613	6.821	6.775	6.655	6.716	6.714	5.352	7.303	6.944	7.476	5.048	7.287	7.373	4.998	5.349	6.667	7.254	5.365	6.827	7.315	5.741
Al ₂ O ₃	18.312	17.934	18.190	18.334	18.506	18.199	18.230	18.401	19.079	18.079	17.790	18.196	18.638	18.147	17.794	18.414	18.620	17.864	18.026	18.451	18.316	18.215	18.461
TiO ₂	0.560	1.129	1.070	0.986	1.012	1.032	1.001	1.070	0.434	1.210	1.111	1.219	0.472	1.180	1.182	0.453	0.528	1.235	1.145	0.543	1.045	1.222	0.592
sio ₂	60.199	57.808	58.513	57.436	57.997	58.647	58.269	58.517	60.460	57.156	57.313	57.093	60.856	57.395	56.935	60.590	59.939	57.148	57.863	60.335	58.189	58.065	61.113
Sample number	UA1162_1	UA1162_2	UA1162_3	UA1162_4	UA1162_5	UA1162_6	UA1162_7	UA1162_8	UA1162_9	UA1162_10	UA1162_11	UA1162_12	UA1162_13	UA1162_14	UA1162_15	UA1162_16	UA1162_17	UA1162_18	UA1162_19	UA1162_20	UA1162_21	UA1162_22	UA1162_23
Anaylysis number	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	424	425	426

Table B10. Major element composition of glass shards in the upper Bob Quinn tephra from core 06-BobQ(01).

Total	100.337	99.837	99.179	98.887	99.113	99.406	98.741	99.258	100.339	99.823	98.590	99.201	99.808	99.861	99.612	101.375	100.439	99.648	96.875	98.417
K ₂ 0	5.430	5.347	5.169	5.151	5.288	5.341	5.324	5.145	5.240	5.288	4.758	5.361	5.445	5.175	5.399	5.334	5.297	5.223	5.243	5.448
Na ₂ O	5.563	5.468	5.694	5.010	5.025	5.328	4.987	5.113	5.776	5.480	5.322	5.339	5.206	5.357	5.321	5.559	5.449	5.284	4.707	2.491
OgM	0.091	0.122	0.101	0.093	0.114	0.118	0.113	0.101	0.089	0.127	0.118	0.093	0.100	0.095	0.112	0.084	0.126	0.114	0.108	0.098
CaO	1.051	1.012	0.961	0.972	1.069	1.014	1.005	1.010	0.911	1.010	1.022	1.068	0.939	0.979	0.974	0.972	0.959	1.055	0.987	1.010
MnO	0.151	0.146	0.149	0.146	0.155	0.188	0.117	0.167	0.141	0.161	0.151	0.126	0.115	0.136	0.091	0.109	0.118	0.100	0.161	0.111
FeO(t)	5.032	4.901	4.948	4.947	4.822	4.942	4.842	4.933	4.965	5.052	4.835	4.827	5.063	4.941	4.878	4.901	4.897	4.883	4.539	5.156
Al ₂ O ₃	18.704	18.572	18.459	18.312	18.646	18.400	18.512	18.570	18.797	18.561	18.348	18.371	18.708	18.531	18.750	18.999	18.766	18.588	17.971	18.925
TiO2	0.180	0.212	0.272	0.235	0.237	0.238	0.192	0.195	0.189	0.227	0.235	0.196	0.262	0.189	0.212	0.163	0.215	0.224	0.211	0.231
si0 ₂	64.135	64.057	63.426	64.021	63.757	63.837	63.649	64.024	64.231	63.917	63.801	63.820	63.970	64.458	63.875	65.254	64.612	64.177	62.948	64.947
Sample number	UA1155_1	UA1155_2	UA1155_3	UA1155_4	UA1155_5	UA1155_6	UA1155_7	UA1155_8	UA1155_9	UA1155_10	UA1155_11	UA1155_13	UA1155_14	UA1155_15	UA1155_16	UA1155_18	UA1155_19	UA1155_20	UA1155_12	UA1155_17
Anaylysis number	132	133	134	135	136	137	138	139	140	141	142	144	145	146	147	149	150	151	*143	*148

* indicates analyses that were excluded from average major element calculations on the basis of their low total weight percents or differing oxide values.

Table B11. Major element composition of Sheep Track Pumice, Mount Edziza.

mber	si0 ₂	TiO ₂	AI ₂ O ₃	FeO(t)	MnO	CaO	MgO	Na_2O	K ₂ 0	Total
	62.956	0.188	18.262	4.626	0.142	0.900	0.083	4.896	5.215	97.268
	63.070	0.226	18.386	4.414	0.150	0.916	0.062	5.231	5.176	97.631
	62.722	0.258	18.131	4.799	0.106	0.913	0.129	5.080	5.351	97.489
	63.101	0.232	18.283	4.664	0.064	0.967	0.091	5.117	5.413	97.932
	62.382	0.154	18.152	4.658	0.123	0.983	0.108	4.935	5.230	96.725
_	63.030	0.251	18.371	4.689	0.159	0.936	0.115	5.216	5.311	98.078
_	62.689	0.200	18.304	4.685	0.133	0.968	0.082	5.012	5.169	97.242
0	63.052	0.210	18.201	4.739	0.153	0.928	0.082	4.966	5.420	97.751
-	62.546	0.249	18.313	4.667	0.121	0.938	0.187	5.021	5.410	97.452
12	63.090	0.193	17.894	4.918	0.150	0.991	0.136	5.056	5.322	97.750
13	62.760	0.168	18.304	4.722	0.129	1.019	0.074	5.097	5.291	97.564
14	62.960	0.192	18.287	4.695	0.142	0.998	0.096	5.260	5.264	97.894
15	63.030	0.187	18.223	4.655	0.139	0.966	0.127	5.042	5.161	97.530
16	62.419	0.259	18.410	4.521	0.134	1.023	0.160	5.209	5.166	97.301
17	62.817	0.250	18.278	4.535	0.098	1.002	0.134	5.130	4.911	97.155
18	62.741	0.202	18.185	4.602	0.123	0.949	0.114	5.036	5.213	97.165
19	62.172	0.209	18.166	4.777	0.114	0.882	0.107	5.059	5.436	96.922
UA1156_20	62.926	0.231	18.307	4.718	0.125	0.955	0.084	5.348	5.168	97.862
2	64.339	0.003	19.224	0.227	0.014	0.671	0.000	6.893	5.725	97.096
JA1156_9	60.273	0.227	17.681	4.586	0.110	0.864	0.096	5.073	5.224	94.134

Table B12. Major element composition of Sheep Track Pumice on flank of Tenana Cone, Mount Edziza.

* Indicates analyses that were excluded from average major element calculations on the basis of their low total weight percents or differing oxide values.

or element composition of white ash (Sheep Track Pumice?) beneath till, south side of Buck	
Table B13. Major element composition of white ash (S	Ridge, Mount Edziza.

Anaylysis number	Sample number	sio ₂	TIO ₂	Al ₂ O ₃	FeO(t)	MnO	CaO	MgO	Na ₂ O	K ₂ 0	Total
380	UA1157_1	62.944	0.218	18.345	5.095	0.134	0.980	0.139	5.516	5.686	99.057
381	UA1157_2	63.211	0.194	18.185	5.119	0.127	0.948	0.142	5.791	5.580	99.297
382	UA1157_3	63.355	0.243	18.223	4.848	0.121	0.992	0.115	5.360	5.479	98.736
383	UA1157_4	63.840	0.236	18.421	4.968	0.085	0.954	0.110	5.763	5.468	99.845
384	UA1157_5	63.704	0.184	18.652	5.016	0.152	0.980	0.098	5.534	5.342	99.662
385	UA1157_6	64.035	0.230	18.617	4.862	0.183	1.036	0.101	5.536	5.132	99.732
386	UA1157_7	64.049	0.228	18.804	4.945	0.122	0.996	0.119	5.586	5.300	100.149
387	UA1157_8	63.621	0.184	18.179	4.857	0.131	1.047	0.095	5.400	5.357	98.871
388	UA1157_9	63.172	0.193	18.410	4.945	0.138	0.962	0.102	5.785	5.585	99.292
389	UA1157_10	63.905	0.232	18.695	4.967	0.135	1.022	0.108	5.364	5.516	99.944
390	UA1157_11	64.196	0.231	18.485	4.761	0.125	0.962	0.104	5.599	5.246	99.709
391	UA1157_12	63.873	0.214	18.436	4.976	0.099	1.021	0.097	5.751	5.553	100.020
392	UA1157_13	63.892	0.194	18.290	4.882	0.167	0.961	0.097	5.201	5.398	99.082
393	UA1157_14	63.873	0.211	18.496	4.929	0.134	1.014	0.085	5.734	5.437	99.913
394	UA1157_15	64.196	0.198	18.407	4.861	0.153	0.948	0.104	5.514	5.188	99.569

Anaylysis number	Sample number	si0 ₂	TiO2	Al ₂ O ₃	FeO(t)	MnO	CaO	MgO	Na ₂ O	k ₂ 0	Total
66	UA1149_1	51.525	2.482	15.975	11.682	0.232	7.018	3.247	4.198	2.504	98.863
67	UA1149_2	51.616	2.566	16.132	11.579	0.186	6.955	3.136	4.093	2.446	98.709
70	UA1149_5	51.572	2.521	16.135	11.542	0.173	7.106	3.135	3.964	2.529	98.677
17	UA1149_6	52.173	2.519	15.957	12.057	0.221	7.123	3.238	3.889	2.447	99.624
72	UA1149_7	52.056	2.315	15.759	11.745	0.181	7.159	3.170	4.090	2.541	99.016
73	UA1149_8	51.952	2.460	16.000	11.473	0.179	7.120	3.172	4.248	2.556	99.160
74	UA1149_9	51.102	2.538	15.938	11.649	0.200	7.089	3.077	4.261	2.522	98.376
75	UA1149_10	51.835	2.519	16.009	11.637	0.183	7.100	3.296	4.245	2.339	99.163
76	UA1149_11	51.822	2.522	16.110	11.840	0.158	7.101	3.252	4.156	2.465	99.426
77	UA1149_12	51.695	2.525	16.071	11.580	0.227	7.226	3.244	4.147	2.474	99.189
78	UA1149_13	51.743	2.552	16.019	11.880	0.152	7.290	3.228	3.461	2.583	98.908
80	UA1149_15	51.834	2.298	16.306	11.782	0.165	7.069	3.255	4.432	2.433	99.574
81	UA1149_16	51.717	2.433	16.045	11.725	0.176	6.890	3.299	4.118	2.550	98.953
82	UA1149_17	51.757	2.586	16.038	11.974	0.195	7.157	3.254	3.969	2.556	99.486
83	UA1149_18	51.741	2.284	16.315	11.781	0.189	7.041	3.283	4.085	2.522	99.241
84	UA1149_19	51.555	2.285	16.105	11.886	0.159	7.205	3.279	4.197	2.456	99.127
85	UA1149_20	52.182	2.602	15.898	11.222	0.163	6.611	2.788	4.247	2.925	98.638
*68	UA1149_3	63.734	0.331	19.685	2.345	0.070	1.585	0.118	5.471	5.250	98.589
6 9*	UA1149_4	62.293	0.126	21.859	1.599	0.078	3.185	0.067	6.150	3.946	99.303
62*	UA1149_14	3.959	0.309	1.992	0.584	0.030	0.701	0.286	3.440	2.185	13.486

* Indicates analyses that were excluded from average major element calculations on the basis of their low total weight percents or differing oxide values.

Table B14. Major element composition of Holocene scoria on the west flank of Williams Cone, Mount Edziza.

Anaylysis number	Sample number	SiO ₂	TiO ₂	Al ₂ 0 ₃	FeO(t)	MnO	CaO	MgO	Na_2O	K ₂ 0	Total
92	UA1150_1	48.724	2.863	15.381	13.475	0.163	9.258	4.871	3.818	1.348	99.901
93	UA1150_2	48.481	2.832	15.422	13.618	0.227	9.330	4.883	3.886	1.354	100.033
94	UA1150_3	50.879	2.752	15.566	13.040	0.147	1.771	3.711	4.124	2.063	100.053
95	UA1150_4	50.893	2.693	15.536	12.567	0.144	7.335	3.351	4.034	2.390	98.943
96	UA1150_5	50.318	2.845	15.643	12.910	0.126	7.722	3.440	3.982	2.176	99.162
97	UA1150_6	50.288	2.765	15.752	12.710	0.178	7.505	3.465	4.186	2.248	99.097
98	UA1150_7	50.552	2.672	15.501	12.744	0.181	7.628	3.428	4.022	2.154	98.882
66	UA1150_8	50.744	2.728	15.338	12.904	0.172	6.823	3.168	4.015	2.372	98.264
100	UA1150_9	50.818	2.887	15.625	13.036	0.236	7.348	3.218	4.225	2.464	99.857
101	UA1150_10	49.799	2.682	15.534	13.304	0.157	8.012	3.702	4.051	1.961	99.202
102	UA1150_11	49.852	2.710	15.754	12.624	0.158	8.112	3.707	3.960	1.894	98.771
103	UA1150_12	48.166	2.693	15.593	13.245	0.216	9.385	4.743	3.439	1.325	98.805
104	UA1150_13	47.593	2.780	15.411	13.229	0.174	9.314	4.752	3.459	1.250	97.962
105	UA1150_14	51.093	2.888	15.367	12.630	0.188	7.225	3.194	3.942	2.424	98.951
106	UA1150_15	51.327	2.760	15.566	12.963	0.221	7.129	3.315	4.213	2.306	99.800
107	UA1150_16	50.865	2.819	15.498	12.690	0.203	7.878	3.406	4.031	2.302	99.692
108	UA1150_17	50.556	2.767	15.515	12.970	0.204	7.752	3.619	3.891	2.181	99.455
109	UA1150_18	51.185	2.839	15.670	12.562	0.175	7.251	3.228	4.063	2.386	99.359
110	UA1150_19	50.869	2.668	15.705	12.690	0.201	7.289	3.389	4.184	2.332	99.327
111	UA1150_20	50.805	2.847	15.201	13.039	0.187	7.805	3.605	3.821	2.139	99.449

Table B15. Major element composition of Holocene scoria from englacial cinders, Mount Edziza ice cap.

Anaylysis number	Sample number	sio ₂	TiO ₂	AI ₂ 0 ₃	FeO(t)	MnO	CaO	MgO	Na ₂ O	K ₂ 0	Total
112	UA1153_1	51.894	2.580	16.185	12.337	0.187	6.993	3.272	3.991	2.489	99.928
113	UA1153_2	51.394	2.732	16.171	11.981	0.197	7.218	3.343	4.234	2.340	99.610
114	UA1153_3	51.333	2.734	15.978	11.972	0.198	7.216	3.147	4.213	2.402	99.193
115	UA1153_4	51.466	2.618	16.135	12.093	0.199	7.279	3.276	3.913	2.211	99.190
116	UA1153_5	51.694	2.666	16.098	11.653	0.175	6.992	3.211	4.050	2.412	98.951
117	UA1153_6	51.783	2.716	16.263	12.026	0.179	7.121	3.272	4.074	2.370	99.804
118	UA1153_7	51.279	2.701	16.087	11.992	0.222	7.211	3.398	4.031	2.254	99.175
119	UA1153_8	52.411	2.609	16.319	12.209	0.155	7.101	3.354	4.183	2.503	100.844
120	UA1153_9	50.939	2.700	16.193	11.686	0.154	7.133	3.042	4.231	2.295	98.373
121	UA1153_10	51.663	2.652	16.121	11.977	0.146	7.027	3.038	4.108	2.440	99.172
122	UA1153_11	51.172	2.723	15.575	12.423	0.165	7.279	3.397	4.108	2.391	99.233
123	UA1153_12	51.218	2.660	15.992	11.791	0.204	7.154	3.322	3.820	2.444	98.605
124	UA1153_13	51.646	2.569	15.945	11.858	0.225	7.221	3.218	3.723	2.335	98.740
125	UA1153_14	50.582	2.727	15.436	12.159	0.218	7.246	3.247	3.879	2.315	97.809
126	UA1153_15	51.712	2.532	15.649	11.629	0.203	7.024	3.279	4.076	2.457	98.561
127	UA1153_16	51.201	2.753	16.266	12.150	0.181	7.443	3.374	4.151	2.348	99.867
128	UA1153_17	51.835	2.618	16.169	12.281	0.177	7.092	3.252	4.342	2.480	100.246
129	UA1153_18	52.326	2.602	16.100	12.116	0.208	7.157	3.217	4.355	2.344	100.425
130	UA1153_19	51.308	2.682	16.127	12.341	0.190	7.325	3.359	3.776	2.471	99.579
131	UA1153_20	51.818	2.694	16.009	11.697	0.205	6.924	3.162	3.968	2.305	98.782

Table B16. Major element composition of Holocene scoria overlying tundra, north end of Mount Edziza ice cap.

Anaylysis number	Sample number	si0 ₂	TiO ₂	Al ₂ O ₃	FeO(t)	MnO	CaO	MgO	Na ₂ O	K ₂ 0	Total
6	Old Crow std	72.619	0.249	12.870	1.586	0.070	1.403	0.242	3.463	3.632	96.134
10	Old Crow std	71.733	0.319	12.521	1.678	0.088	1.333	0.266	1.901	3.522	93.361
11	Old Crow std	74.271	0.267	12.793	1.687	0.061	1.357	0.237	1.869	3.340	95.882
86	UT1434_OldCrow_std_1	73.290	0.287	13.091	1.715	0.026	1.438	0.238	2.579	3.680	96.344
87	UT1434_OldCrow_std_2	73.888	0.304	13.000	1.767	0.052	1.342	0.284	2.637	3.686	96.960
88	UT1434_OldCrow_std_3	73.955	0.244	13.085	1.771	0.051	1.416	0.225	2.621	3.516	96.884
89	UT1434_OldCrow_std_4	73.466	0.265	12.943	1.752	0.058	1.201	0.243	2.435	3.636	95.999
06	UT1434_OldCrow_std_5	72.914	0.274	12.996	1.781	0.075	1.447	0.287	2.502	3.773	96.049
16	UT1434_OldCrow_std_6	73.795	0.287	12.996	1.731	0.011	1.375	0.289	2.514	3.518	96.516
159	UT1434_OldCrow_std_7	73.451	0.277	12.821	1.623	0.070	1.313	0.260	2.479	3.528	95.822
160	UT1434_OldCrow_std_8	73.653	0.284	12.764	1.756	0.054	1.328	0.279	2.441	3.625	96.184
161	UT1434_OldCrow_std_9	74.516	0.289	13.173	1.815	0.074	1.428	0.248	2.814	3.734	98.091
162	UT1434_OldCrow_std_10	72.705	0.253	12.919	1.734	0.049	1.296	0.247	2.373	3.667	95.243
163	UT1434_OldCrow_std_11	72.098	0.286	12.524	1.706	0.051	1.320	0.244	1.586	3.456	93.271
164	UT1434_OldCrow_std_12	73.334	0.212	12.110	1.436	0.059	1.070	0.177	2.097	3.727	94.222
194	UT1434_OldCrow_std_13	72.660	0.294	12.791	1.654	0.067	1.370	0.242	2.403	3.574	95.055
195	UT1434_OldCrow_std_14	73.173	0.273	12.995	1.840	0.051	1.459	0.243	2.591	3.605	96.230
196	UT1434_OldCrow_std_15	72.357	0.286	12.632	1.542	0.055	1.108	0.252	2.101	3.556	93.889
197	UT1434_OldCrow_std_16	72.236	0.248	12.569	1.687	0.070	1.146	0.286	1.951	3.546	93.739
198	UT1434_OldCrow_std_17	72.144	0.267	12.523	1.651	0.078	1.097	0.274	2.780	3.274	94.088
199	UT1434_OldCrow_std_18	72.354	0.256	12.645	1.750	0.081	1.095	0.256	2.897	3.450	94.784
263	UT1434_OldCrow_std_19	71.250	0.295	12.564	1.678	0.042	1.349	0.239	2.025	3.594	93.036
264	UT1434_OldCrow_std_20	72.741	0.321	12.649	1.648	0.056	1.361	0.251	2.547	3.709	95.283
265	UT1434_OldCrow_std_21	71.482	0.238	12.592	1.689	0.080	1.262	0.241	2.011	3.480	93.075
266	UT1434_OldCrow_std_22	72.080	0.267	12.388	1.705	0.066	1.327	0.253	2.181	3.569	93.836
267	UT1434_OldCrow_std_23	73.073	0.274	12.896	1.693	0.044	1.249	0.275	2.528	3.515	95.547
268	UT1434_OldCrow_std_24	71.567	0.273	12.727	1.613	0.013	1.295	0.267	2.226	3.423	93.404

Table B17. Major element composition of glass shards in Old Crow tephra standard.

τi
2
—
<u>~~</u>
<u> </u>
đ
- - - - -
a stanc
_
ι, Ο
v tephr
<u> </u>
<u> </u>
ਰਾ
Ľ
-
~
5
9
Š.
\mathbf{U}
Old Cro
2
$\overline{}$
\mathbf{O}
1
S
σ
<u> </u>
g
_
5
ŝ
S
σ
-
5
÷
0
Ξ.
_
ō
. —
Ē
siti
ositi
ositi
positi
npositi
mpositi
ompositi
compositi
compositi
it compositi
nt compositi
ent composition of glass
nent compositi
Ĕ
Ĕ
Ĕ
Ĕ
Ĕ
or element compositi
or eleme
Ĕ
or eleme
or eleme
cont.). Major eleme
cont.). Major eleme
cont.). Major eleme
cont.). Major eleme
cont.). Major eleme
cont.). Major eleme
cont.). Major eleme
cont.). Major eleme
cont.). Major eleme
or eleme

Anaylysis	Sample number	SiO ₂	TiO ₂	AI ₂ O ₃	FeO(t)	MnO	CaO	MgO	Na_2O	K ₂ 0	Total
348	UT1434_OldCrow_std_25	73.969	0.255	13.016	1.759	0.018	1.422	0.302	3.389	3.607	97.737
350	UT1434_OldCrow_std_27	73.697	0.291	12.974	1.700 1.84	0.089	1.382	0.277	2.775	3.551	96.876
351	UT1434_OldCrow_std_28	72.214	0.283	12.868	1.74	0.072	1.272	0.271	2.397	3.565	94.682
352	UT1434_OldCrow_std_29	73.562	0.256	13.249	1.694	0.074	1.454	0.239	2.699	3.692	96.919
353	UT1434_OldCrow_std_30	71.621	0.283	12.872	1.703	0.038	1.37	0.22	3.151	3.519	94.777
414	UT1434_OldCrow_std_31	71.867	0.25	12.553	1.687	0.004	1.38	0.231	2.378	3.267	93.617
415	UT1434_OldCrow_std_32	70.018	0.273	12.287	1.679	0.039	1.351	0.259	1.597	3.482	90.985
416	UT1434_OldCrow_std_33	72.198	0.264	12.371	1.871	0.008	1.324	0.275	2.24	3.46	94.011
417	UT1434_OldCrow_std_34	72.48	0.272	12.668	1.732	0.087	1.323	0.245	2.338	3.529	94.674
418	UT1434_OldCrow_std_35	71.668	0.293	12.433	1.724	0.046	1.301	0.229	1.916	3.569	93.179
419	UT1434_OldCrow_std_36	74.272	0.296	12.982	1.702	0.037	1.347	0.249	2.812	3.702	97.399