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ABSTRACT

Two related studies in northern British Columbia are presented. The first
documents moraines in Finlay River area that record an advance of alpine glaciers. A
minimum age of 9230 radiocarbon yr BP and the relation of moraines to ice-stagnation
deposits suggest the advance is Younger Dryas in age. The advance demonstrates
Younger Dryas glacier expansion differs in magnitude in western Canada, suggesting a
complex glacier response to late-glacial climate change.

The second study describes four early Holocene tephras. Two phonolitic tephras,
older than 9180 radiocarbon yr BP, were found in sediments from Finlay River and
Dease Lake areas. Their source may be a large volcano in northwest British Columbia.
Two other tephras were recovered from Bob Quinn Lake. A lower basaltic tephra was
produced by an eruption near Iskut River 8400 radiocarbon yr ago. The upper phonolitic

tephra is 6000-7000 radiocarbon yr old.

Keywords: Cordilleran Ice Sheet, Younger Dryas, British Columbia, tephras, northern

Cordilleran volcanic province.
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CHAPTER 1:

Introduction

Knowledge of Quaternary paleoenvironments provides a framework for testing
relations between various components of the Earth system, including the atmosphere,
oceans, glaciers, ecosystems, and sedimentary environments. Quaternary
paleoenvironmental research in British Columbia has focused mainly on physical
environments and ecosystems of the Late Wisconsinan (25,000-10,000 years ago) and the
Holocene (10,000 years ago-present). Researchers have used a variety of methods,
including geomorphology, stratigraphy, radiocarbon dating, tephrochronology,
paleolimnology, microfossil and macrofossil analyses, computer modeling, and
geochemical analyses of ice core records to determine former climates, atmospheric and
oceanic circulation patterns, sea levels, and ecosystems, among others. Much of the body
of paleoenvironmental research in British Columbia has been in the southern third of the
province. In contrast northern British Columbia has received little attention. In this
thesis, I present and discuss the results of two paleoenvironmental studies in northern
British Columbia.

Chapter 2 presents evidence for a late-glacial advance of alpine glaciers in the
Finlay River area of northern British Columbia. The advance built large, well preserved,
lateral and terminal moraines at the mouths of many high-elevation tributary valleys in
the watershed. Deglacial landforms and sediments, which constrain the style, pattern and
timing of contemporaneous ice sheet retreat, are mapped and described in detail.
Terrestrial plant matter in sediment cores recovered from lakes dammed by late-glacial

moraines provides minimum limiting ages for construction of the moraines and for
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regional deglaciation. The style of deglaciation in the study area is described and
compared to that in other areas of British Columbia. The magnitude and scale of the late-
glacial advance are discussed in the context of other advances of the same or similar age
in western North America.

Chapter 3 describes and interprets four, previously unrecognized tephras found in
lake sediment cores from northern British Columbia. The grain size, colour, thickness,
glass shard morphology, phenocryst mineralogy, major element composition,
distribution, and age of the tephras are described, and their possible sources are
discussed. The tephras, which are early Holocene in age, are phonolitic to basaltic in
composition, and are products of eruptions in the northern Cordilleran volcanic province.

Chapter 4 consists of general conclusions from the two studies and suggestions
for future work in the region. The final part of the thesis includes four appendices: A —a
map of all glacial landforms and deposits in the study area; B — a description of the
method used to reconstruct past glacier equilibrium line altitudes and the results of the
analysis; C —a summary of all lake core data; and D — a summary of tephra and rock

microprobe data.



CHAPTER 2:

Late-glacial advance of alpine glaciers in the Finlay River area:
Implications for ice sheet retreat and the nature of late-glacial climate

change in northern British Columbia

Abstract

Large, sharp-crested lateral and terminal moraines record a significant late
Pleistocene advance of alpine glaciers in the Finlay River area of northern British
Columbia. The moraines are regional in extent and character, and appear to record
climatic deterioration near the end of the last glaciation. Lateral moraines are bulky and
up to 120 m high. Terminal moraines are up to 9 km beyond Little Ice Age deposits and
terminate between 1100 and 1200 m above sea level. Several lateral moraines are
crosscut by lateral meltwater channels, which record downwasting of trunk valley ice of
the northern Cordilleran Ice Sheet. Other lateral moraines merge with ice-stagnation
deposits in trunk valleys. These relationships confirm the interaction of advancing alpine
glaciers with the regionally decaying Cordilleran Ice Sheet and verify a late-glacial age
for the moraines (i.e. younger than 15,000 **C yrs BP). Sediment cores were collected
from eight lakes dammed by the late-glacial moraines. Two phonolitic tephras occur in
basal sediments of several lakes, demonstrating that the moraines are the same age.
Radiocarbon dating of plant macrofossils from sediment cores provides a minimum
limiting age of 9230 + 50 C yr BP for abandonment of the moraines. The moraines
record a regional alpine glacial advance, here named the Finlay advance, which is
probably correlative with the Younger Dryas chronozone (11,000-10,000 **C yr BP).

The Finlay advance correlates with other advances in western Canada dated to the



Younger Dryas. Moraines of similar size and regional extent have not been identified
elsewhere in the Canadian Cordiliera. The different response of alpine glaciers in
western Canada to Younger Dryas cooling indicates differing rates and magnitudes of
late-glacial climate change, different styles of deglaciation, different temperature and
precipitation gradients, and variable effects of remnant ice masses on local atmospheric

circulation.

Introduction

Little is known about the decay of the northern half of the Cordilleran Ice Sheet,
which covered an area of nearly 500,000 km? in northern British Columbia and southern
Yukon Territory (Clague, 1989; Jackson et al., 1991; Ryder and Maynard, 1991;
Bobrowsky and Rutter, 1992; Clague and James, 2002). The northern part of the ice
sheet probably began to decay about 16,000-15,000 e yr BP, when glaciers with source
areas in the northern Coast Mountains retreated from the Queen Charlotte Islands (Blaise
etal., 1990). By 13,000 "“C yr BP, the ice sheet had retreated from Hecate Strait and its
outlet glaciers terminated along the mainland coast and in fiords (Clague, 1985; Barrie
and Conway, 1999). Similarly, glaciers in southeast Alaska had retreated from the
continental shelf by 13,500 "*C yr BP (Mann and Hamilton, 1995). The eastern margin of
the ice sheet had withdrawn from the northern Rocky Mountains by 13,500-12,500 e yr
BP, although alpine glaciers persisted in the northern Rocky Mountains after the ice sheet
decayed (Bednarski, 1999, 2000, 2001). Deglaciation was probably complete in northern
British Columbia before 9500 '*C yr BP (Clague, 1981). Other than the broad constraints

on deglaciation provided above, the timing and pattern of ice sheet decay are unknown in



northern British Columbia. Importantly, nothing is known about the effects of late-
glacial climatic oscillations, such as the Younger Dryas (11,000-10,000 *C yrs BP;
Alley, 2000), on remnants of the Cordilleran Ice Sheet in British Columbia.

The Younger Dryas, which began 11,000 **C yrs ago and lasted about 1300
calendar years, was a severe cold period at the end of the last glaciation (Alley, 2000).
Abundant evidence suggests widespread Northern Hemisphere, and possibly global,
cooling of the atmosphere and oceans during the Younger Dryas (Mayewski et al., 1993;
Peteet, 1995; Mikolajewicz et al., 1997; Steig et al., 1998), with the greatest temperature
depressions in the North Atlantic region (Alley, 2000). The cause of Younger Dryas
cooling continues to be a matter of debate (Broecker, 2003, 2006), but the favoured
hypothesis involves disruption of North Atlantic Deep Water formation by a large influx
of meltwater from North America, with attendant reduction in the poleward flux of ocean
heat (Broecker et al., 1989; Lehman and Keigwin, 1992; Bjorck et al., 1996; Fanning and
Weaver, 1997; Clark et al., 2001, 2002; Teller et al., 2002, 2005; Broecker, 2003, 2006;
Tarasov and Peltier, 2005, 2006; Meissner and Clark, 2006; Peltier et al., 2006).
Meltwater discharges from the Baltic Ice Lake and the Barents Sea Ice Sheet have also
been suggested as a possible triggering mechanism (Bjork et al., 1996).

A change in ocean circulation and cooling of climate in the northeast Pacific
Ocean coincident with the Younger Dryas have been documented in north-coastal British
Columbia and adjacent Alaska (Engstrom et al., 1990; Mathewes, 1993; Mathewes et al.,
1993; Peteet and Mann, 1994; Hu et al., 1995, 2002; Patterson et al., 1995; Hansen and
Engstrom, 1996; Hendy et al., 2002; Hetherington and Reid, 2003; Lacourse, 2005).

Glacier advances of Younger Dryas age have been identified in the central and southern



Coast Mountains of British Columbia (Clague, 1985; Friele and Clague, 2002a), the
southern Canadian and northern American Rocky Mountains (Reasoner et al., 1994;
Osborn and Gerloff, 1997), the northern Cascade Range of Washington (Kovanen and
Easterbrook, 2001; Riedel et al., 2003), and southwestern Alaska (Briner et al., 2002).

The Younger Dryas, however, was not the only cold interval during the late-
glacial period. Advances several hundred years to more than 1000 years earlier than the
Younger Dryas have been identified in southwest British Columbia (Armstrong, 1981;
Saunders et al., 1987; Clague et al., 1997; Friele and Clague, 2002b) and in the southern
Canadian and northern American Rocky Mountains (Osborn and Gerloff, 1997). Their
regional climatic significance, however, remains unknown.

The Finlay River area of north-central British Columbia (Fig. 2.1) contains large,
sharp-crested lateral and terminal moraines that record a resurgence of alpine glaciers
during final decay of the Cordilleran Ice Sheet. The moraines are regional in extent,
appear to be of equivalent age, and record significant climatic deterioration during late-
glacial time (i.e. younger than 15,000 '*C yr BP; Clague, 1981). This paper documents
and discusses these moraines and related deglacial sediments and landforms. The
objectives are to: 1) describe the late-glacial moraines, 2) infer the pattern of deglaciation
in the area, 3) present information on the age of the advance that constructed the
moraines, 4) discuss the paleoclimatic significance of the moraines, and 5) compare the
inferred late-glacial climate of the Finlay River area to that of other areas in the Canadian
Cordillera where late-glacial moraines have been identified. The paper considers the
relation of late-glacial alpine glacier resurgence in northern British Columbia and late-

glacial advances elsewhere in the Canadian Cordillera.



Study area

The Finlay River watershed is located in north-central British Columbia, in the
rain shadow of the northern Coast Mountains (Fig. 2.1). The study area comprises
approximately 3200 km? of mountainous terrain straddling the northern Omineca and
southern Cassiar mountains (Fig. 2.2). The Continental Divide runs through the centre of
the study area, separating Pacific from Arctic drainages. Finlay River flows north and
then east into the northern Rocky Mountain Trench, which borders the study area to the
east. Chukachida River drains the western part of the study area and flows into Stikine
River on Spatsizi Plateau west of the map area.

Climate in the study area is continental, with mean annual temperatures ranging
from 0° C to —2° C and average annual precipitation ranging from 400 to 500 mm
(Environment Canada, 2002). Most moisture is derived from the Pacific Ocean
approximately 600 km to the west. White and black spruce (Picea glauca, Picea
mariana), subalpine fir (Picea engelmannii), lodgepole pine (Pinus contorta), and aspen
(Populus tremuloides) dominate vegetation at low elevations in the study area (Meidinger
and Pojar, 1991).

The highest peaks exceed 2500 m above sea level (asl), and local relief is up to
1400 m. Small cirque glaciers are restricted to sites above 1800 m asl on the flanks of a
few of the highest peaks (Fig. 2.2). The study area was extensively glaciated during the
Pleistocene. Cirques, broad U-shaped valleys, and arétes formed during repeated,

lengthy periods of alpine glaciation. The Cordilleran Ice Sheet also covered the area



repeatedly during the Pleistocene, but probably for much shorter intervals than alpine

glaciers.

Methods

Glacial landforms and deposits were mapped on Province of British Columbia
aerial photographs flown in 1986 and 1999. The photographs have nominal scales of
1:60,000 and 1:35,000, respectively. Mapped features were entered into a GIS, and
checked during an aircraft-supported field survey in 2005 (Appendix A). Identification
of large moraine complexes; meltwater channels; ice-contact deltas, fans, and a landslide;
eskers; and glaciolacustrine sediments enabled a detailed reconstruction of latest
Pleistocene glacier activity and the regional pattern of deglaciation. Equilibrium line
altitudes of former glaciers were estimated to determine their paleoclimatic significance
using the accumulation area ratio (AAR) method (Porter, 1975; Appendix B).

Sediment cores were collected from eight lakes impounded by late-glacial
moraines to constrain the time of deglaciation. The cores were collected from lake ice in
January 2005 and from the floats of a De Havilland DHC-2 Beaver in July 2005, using a
percussion coring system (Reasoner, 1993). The cores were transported to the University
of Northern British Columbia, where they were split, logged, photographed, analyzed for
bulk physical properties (grain size, magnetic susceptibility, and organic content), and
sampled for terrestrial macrofossils and tephras. Terrestrial macrofossils extracted from
the cores were radiocarbon dated at IsoTrace Laboratory (University of Toronto) and
Beta Analytic Inc. by accelerator mass spectrometry. Two tephras were found in most

cores. The major element compositions of glass shards, which were isolated from the



tephras using a heavy liquid separation procedure, were determined using the electron
microprobe at the Department of Geology and Geophysics, University of Calgary
(Chapter 3). The radiocarbon ages and tephras provide constraints on the absolute age of

the late-glacial moraines and the time of deglaciation in the study area.

Early deglaciation in the Finlay River area

During the Fraser Glaciation, the northern half of the Cordilleran Ice Sheet was
fed from accumulation centres located over the northern Coast, the Skeena, and the
northernmost Cassiar mountains (Fig. 2.3; Mathews 1980; Ryder and Maynard, 1991;
Stumpf et al., 2000; McCuaig and Roberts, 2002). Radial flow from the northern Skeena
Mountains directed ice north into the Cassiar Mountains and Liard Plateau, east into the
northern Rocky Mountains and foothills, and south into the Omineca Mountains and
Nechako Plateau (Mathews, 1980; Ryder and Maynard, 1991; Bobrowsky and Rutter,
1992; Bednarski, 1999, 2000, 2001; Stumpf et al., 2000; McCuaig and Roberts, 2002).
The Skeena Mountains also fed glaciers flowing west along major valleys through the
northern Coast Mountains (Ryder and Maynard, 1991). Smaller ice divides over the
northern Coast Mountains and northernmost Cassiar Mountains directed ice westward
onto the continental shelf and north into the Yukon, respectively (Ryder and Maynard,
1991).

The Finlay River area was covered by ice flowing from the northern Skeena
Mountains (Fig. 2.3; Mathews, 1980; Ryder and Maynard, 1991). Ice flow through the
study area at the last glacial maximum may have been relatively unobstructed by

topography. This condition, however, was probably short-lived, and for much of the



Fraser Glaciation, mountain ranges and valleys in the study area controlled the pattern of
ice flow. Numerous meltwater channels traversing alpine ridges and valley sides record
drawdown of the ice sheet during initial deglaciation. At this time, glaciers continued to
flow north and east from the northern Skeena Mountains along major valleys through the

study area.

Late-glacial moraines

Description

Large, regionally extensive lateral and terminal moraines provide evidence for an
advance of alpine glaciers in the Finlay River area during late-glacial time (Fig. 2.4). The
moraines are bulky, sharp-crested, up to 120 m high (Figs. 2.5 and 2.6), and extend up to
9 km beyond Little Ice Age terminal moraines (Fig. 2.7), which, in contrast, are much
smaller (Fig. 2.8). Most of the late-glacial terminal moraines terminate between 1100
and 1200 m asl. Two or three nested moraines are present in most areas, indicating
multiple episodes of moraine construction. The moraines are distributed uniformly
throughout the study area (Fig. 2.4). Morphologically similar moraines occur north and
west of the study area in the Cassiar Mountains, but were not investigated in this study.

Lateral moraines are common in valleys below high cirques (Fig. 2.4).
Associated terminal moraines are broad, undulating to flat surfaces (Fig. 2.8). More
commonly, however, terminal moraines are weakly developed or absent altogether (Fig.
2.5). Some terminal moraines may have been eroded as deglaciation progressed, but this
explanation cannot explain their widespread absence in the study area, especially given

the presence of nearby, well preserved lateral moraines. Lateral moraines with no
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associated terminal moraine commonly merge with ice-stagnation deposits, such as ice-
contact alluvial fans, kames, eskers, and kettles that cover trunk valley floors (Fig. 2.9).
Some lateral moraines curve at the mouths of tributary valleys, suggesting that tributary
and trunk glaciers coalesced (Fig. 2.9). Lateral meltwater channels, formed during
downwasting and retreat of trunk glaciers, crosscut many of the lateral moraines (Fig.

2.5).

Relative age

Based on the distribution of meltwater channels, I infer that a labyrinth of active
(i.e. non-stagnant), but decaying glaciers in trunk valleys in the study area formed the
digitate margin of the retreating northern Cordilleran Ice Sheet when the tributary valley
moraines were being constructed (Fig. 2.10). Trunk glaciers in the Finlay, Toodoggone,
and Chukachida River valleys were sourced in the Skeena Mountains. The large trunk
glacier in the Chukachida River valley diverged into several smaller trunk glaciers
situated in the Geese Creek, Cushing Creek, and intervening valleys (Fig. 2.10).
Abandoned fragments of Cordilleran ice occupied many north-south trending valleys in
the study area, such as Belle, Midas, Mulvaney, Junkers, and Jack Lee Creek valleys
(Fig. 2.10). Crosscutting lateral meltwater channels (Fig. 2.5) and the spatial association
of the moraines with sediments deposited during final wastage of the Cordilleran Ice
Sheet (Fig. 2.9) demonstrate that the moraines were built during final deglaciation of

northern British Columbia and are thus late Pleistocene in age.

Late-glacial advance
There are few exposures in tributary valleys that contain lateral and end moraines,

and no stratigraphic evidence was found to unequivocally demonstrate that alpine
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glaciers advanced during late-glacial time. However, some alpine glaciers clearly
constructed moraines in areas that had previously been deglaciated (Fig. 2.8), which is
strong evidence for an advance of alpine glaciers during or after retreat of the ice sheet.
Elsewhere, alpine glaciers constructed lateral moraines abutting active but decaying ice in
trunk valleys (Figs. 2.5 and 2.9). The moraines record a discrete advance and not a
stillstand during separation of tributary alpine glaciers from trunk glaciers, because the
size and character of the moraines can only be explained by abundant remobilization of
late-glacial sediments (e.g. the Red Barrel moraines; Fig. 2.8). Equilibrium line altitudes
calculated for alpine glaciers that did not coalesce with remnant Cordilleran ice in trunk
valleys, at the time of moraine construction, suggest that snowline was 1650-1750 m asl
compared to approximately 1900-1950 m asl during the Little Ice Age (Appendix B). No
stratigraphic or geomorphic evidence was found for a late-glacial resurgence or

thickening of remnant tongues of the northern Cordilleran Ice Sheet in trunk valleys.

Deglaciation following the late-glacial advance

Deglacial landforms and sediments

Trunk glaciers in the Toodoggone and Finlay River valleys were up to 200-300 m
thick and thinned eastward and northward, respectively, at the time of the late-glacial
advance. Ice thicknesses were estimated from the elevations of lateral meltwater
channels crosscutting late-glacial moraines and from the elevations of terminal moraines
that were constructed against trunk ice by resurgent tributary glaciers. Hummocky
terrain and large meltwater channels in the Finlay River valley adjacent to the Rocky

Mountain Trench and large kettles and eskers farther up-valley record final wastage of
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the Finlay trunk glacier following the late-glacial advance. The terminus of the Finlay
trunk glacier was likely a narrow lobe of thin stagnant ice that reached into the northern
Rocky Mountain Trench at the time of the late-glacial advance (Fig. 2.10). Two tributary
glaciers deposited kame terraces against the decaying trunk glacier in the Finlay River
valley (Fig. 2.9). These kame terraces suggest that the Finlay trunk glacier was 60-80 m
thick at the time the tributary glaciers abandoned their moraines. Following the advance,
large eskers and numerous kettles formed in the Finlay and Toodoggone River valleys.

In addition, abundant subglacial meltwater channels were cut into the valley sides along
Toodoggone River.

Elevations of lateral meltwater channels crosscutting moraines show that the trunk
glacier in Geese Creek valley was up to 200 m thick at the time of the late-glacial
advance. Resurgent alpine glaciers constructed lateral moraines, but terminal moraines
are absent and were probably not built because active ice occupied the adjacent trunk
valley (Fig. 2.5). The Geese Creek trunk glacier thinned to the east where it overtopped a
low pass and terminated against resurgent alpine glaciers in the northwest tributary of
Thudaka Creek (Fig. 2.5). Shortly after the advance, several eskers and ice-contact
alluvial fans were deposited in Geese Creek valley below lateral moraines lying in
adjacent cirques and tributary valleys (Fig. 2.5).

The trunk glacier in Cushing Creek valley was up to 200 m thick at the time of the
late-glacial advance. It thinned eastward and terminated near Thudaka Creek (Fig. 2.10).
As the trunk glacier retreated, a large rock avalanche fell from the north flank of Mount
Cushing onto the glacier terminus (Fig. 2.11). The glacier diverted the blocky debris

downvalley, preventing it from being deposited where trunk ice remained. Exotic,
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rounded, granite cobbles and boulders are present in the rock avalanche debris and were
deposited by the trunk glacier where it abutted the rock avalanche (Fig. 2.11). Farther
west in the valley, numerous eskers were deposited during final wastage of the trunk
glacier.

Advancing alpine glaciers constructed moraines against abandoned fragments of
the Cordilleran Ice Sheet in many north-trending valleys in the study area, including
Belle, Midas, Mulvaney, Junkers, and Jack Lee Creek valleys (Fig. 2.10). Lateral
meltwater channels crosscutting the late-glacial moraines indicate that trunk glaciers in
these valleys were up to 250 m thick during the late-glacial advance. Late-glacial
terminal moraines built by alpine glaciers are well preserved on trunk valley floors.
Lateral and subglacial meltwater channels abut several ice-contact deltas that prograded
into lakes dammed by abandoned Cordilleran ice in north-trending valleys and by trunk
glaciers in the Toodoggone and Chukachida River valleys. Meltwater from retreating
alpine glaciers and stagnating Cordilleran ice deposited large ice-contact alluvial fans in
the Chukachida River valley (Fig. 2.12).

Alpine glaciers occupied most of Thudaka Creek valley and its tributaries during
the late-glacial advance (Fig. 2.10). A large lobe of the Cordilleran Ice Sheet did,
however, cover a section of Thudaka Creek valley north of Red Barrel Lake where three
tributary valleys converge (Fig. 2.8). The western margin of the Cordilleran lobe
coalesced with an eastward-flowing Cordilleran trunk glacier in an adjacent valley at the
time of the late-glacial advance (Fig. 2.10). Kame terraces and meltwater channels mark
the eastern limit of the Cordilleran lobe, and demonstrate that it terminated just up-valley

of the moraine that impounds Red Barrel Lake (Fig. 2.8). The Red Barrel moraines have
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no crosscutting features recording interaction between the alpine glacier and the adjacent
Cordilleran lobe. During final deglaciation, the Cordilleran lobe impounded a small
glacial lake in the westernmost tributary of Thudaka Creek (Fig. 2.8). It also may have
temporarily dammed two other tributaries, but meltwater probably flowed freely under or
around the thin glacier terminus during most of the late-glacial advance (Fig. 2.8).
Following the advance, alpine glaciers abandoned their moraines and the Cordilleran lobe

stagnated.

Pattern and style of ice retreat

Landforms and sediments in the study area suggest that the northern Cordilleran
Ice Sheet thinned early during deglaciation but retained an active network of trunk
glaciers at its periphery prior to the late-glacial advance (Fig. 2.10). However, some
trunk valleys in the study area, such as lower Thudaka Creek valley, had become ice-free
prior to the advance (Fig. 2.8). The thickness and geometry of glaciers in trunk valleys at
the time of the late-glacial advance can be reconstructed from abundant, well preserved,
lateral meltwater channels that crosscut many late-glacial moraines (e.g. Geese Creek
valley; Fig. 2.5). The lateral meltwater channels indicate that trunk glaciers thinned and
retreated rapidly following the late-glacial advance. Eskers and deeply incised,
subglacial meltwater channels in many of the major valleys record stagnation and final
wastage of trunk glaciers. Alpine glaciers abandoned their moraines and retreated back
into cirques following the advance. Some alpine glaciers constructed small moraines

during retreat, but recessional moraines are uncommon.
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Age of the moraines

Two black phonolitic tephras occur near the contact between inorganic and
overlying organic-rich sediments in sediment cores collected from Katharine, Red Barrel,
and Cushing lakes (Fig. 2.13). Red Barrel and Cushing lakes are impounded behind late-
glacial terminal and lateral moraines, respectively (Figs. 2.6 and 2.8), whereas Katharine
Lake lies on the distal side of a late-glacial terminal moraine (Fig. 2.4). The tephras
comprise fine sand to silt-sized mineral grains and glass shards. They are coarser than
the bounding sediments and lie within 2-4 cm of one another in the cores (Fig. 2.13). A
radiocarbon age of 8960 + 80 *C yr BP was obtained on a piece of wood 2 cm above the
upper tephra in a core from Red Barrel Lake (Fig. 2.13; Table 2.1). Unidentified plant
material 1 cm above the upper tephra in Cushing Lake returned an age of 9180 + 80 4C
yr BP (Fig. 2.13; Table 2.1).

A sediment core from Deep Lake contains one phonolitic tephra near its base.
This lake is located in a cirque that supported the glacier that constructed the terminal
moraine impounding Red Barrel Lake (Fig. 2.8). A core from Black Lake, which is
dammed by a late-glacial alluvial fan, also contains a single basal phonolitic tephra. The
occurrence of phonolitic tephras in basal sediments from five lakes in the study area
indicates that deglaciation was complete by no later than 9180 + 80 '*C yr BP. This age
is also a minimum for construction and abandonment of the late-glacial moraines.

Another minimum date for deglaciation is a radiocarbon age of 9230 + 50 C yr
BP, obtained from basal sediments in a core from Sandwich Lake (Fig. 2.13; Table 2.1).

Sandwich Lake lies within a lateral meltwater channel at the same elevation as adjacent
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meltwater channels that crosscut late-glacial lateral moraines. The radiocarbon age is
thus a minimum limiting age for abandonment of the moraines.

Data from the Rocky Mountains to the east provide a maximum age constraint on
the late-glacial advance in the Finlay River watershed. Bednarski (1999, 2000, 2001)
obtained three surface exposure cosmogenic ages on striated rock surfaces high in the
northern Rocky Mountains. He concluded from the three ages that the northern
Cordilleran Ice Sheet withdrew from the northern Rocky Mountains before 14,000-
13,000 cal yr BP, which corresponds to approximately 13,500-12,500 *C yr BP. Ice
cover in the Finlay River area at that time must have been greater than during the late-
glacial advance, because the exposure ages were obtained on high ridges that had been
covered by ice flowing east from the Skeena ice divide 200-300 km to the west and 150
km west of the Finlay River area (Fig. 2.3; Mathews, 1980; Ryder and Maynard, 1991).
Thus, the Finlay advance happened after the Cordilleran Ice Sheet withdrew from the

northern Rocky Mountains, sometime after 13,000 (e yrs BP.

Discussion

Pattern and style of deglaciation

The Finlay advance occurred when valley glaciers were present at intermediate
and high elevations in the northern Omineca and southern Cassiar mountains. At the
same time, remnant tongues of decaying Cordilleran ice flowing from the northern
Skeena Mountains occupied many trunk valleys in the study area (Fig. 2.10). The
advance occurred at a time of deglaciation that Fulton (1967, 1991) termed the

transitional upland phase, when downwasting of the ice sheet uncovered upland areas,
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but regional ice flow continued in valleys. In the Finlay River area, arawdown rapidly
transformed the ice sheet into a labﬁnth of rapidly ablating valley glaciers. Under this
scenario, the regional equilibrium line was sufficiently low that alpine glaciers could
persist at intermediate to high elevations. These alpine glaciers later advanced and
constructed large moraines when equilibrium line fell to 1650-1750 m asl. It is possible
that alpine glaciers completely disappeared prior to the late-glacial advance, but this
scenario seems unlikely given the size of the moraines and the glaciers that constructed
them. Following the advance, a large and rapid rise in equilibrium line forced alpine
glaciers to retreat and trunk glaciers to stagnate as the latter became detached from their
source areas in the northern Skeena Mountains. By approximately 9500 '*C yrs BP,
glaciers in northern British Columbia were likely no more extensive than today (Clague,
1981).

The pattern of deglaciation in the Finlay River area, excluding final stagnation of
trunk glaciers, appears to differ from that documented in southern British Columbia by
Fulton (1967, 1991). Fulton concluded that upland areas in southern British Columbia
appeared through the ice sheet first due to downwasting and complex frontal retreat.
Cirques at intermediate and, locally, high elevations on the southern Interior Plateau were
deglaciated during late-glacial time. In contrast, ice persisted in high mountain valleys in
the northern Skeena, Omineca, and Cassiar mountains while the ice sheet downwasted.
The alpine physiography of the study area and its proximity to major ice accumulation
areas in the northern Skeena Mountains are probably the reasons alpine glaciers persisted
at intermediate to high elevations during late-glacial time. Temperature and precipitation

regimes favourable for glacier growth or persistence during rapid latest Pleistocene
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climatic amelioration may also partly account for widespread persistence of alpine

glaciers in northern British Columbia.

Finlay advance

The size and regional extent of the Finlay moraines imply that regional climatic
deterioration was important in triggering the late-glacial advance in the study area. Apart
from Crowfoot moraines in the Canadian Rocky Mountains (Reasoner et al., 1994), no
other large concentration of late-glacial moraines has been identified in the Canadian
Cordillera.

A drop in equilibrium line altitude in the Finlay River area to 1650-1750 m asl
allowed alpine glaciers to advance and construct lateral and terminal moraines in high
tributary valleys and in areas where trunk glaciers were stagnant or absent (Figs. 2.8 and
2.9). Trunk glaciers did not subsequently override and remove late-glacial moraines
because the trunk glaciers were lower than both the equilibrium line altitude and the
adjacent moraines. The complex geometry of the trunk glacier network and the distance
of these glaciers from major source areas in the northern Skeena Mountains likely
attenuated the effects of positive mass balance that would have otherwise led to their
thickening and advance. Ice in the northern Skeena Mountains may have thinned so
much earlier during deglaciation that accumulation centres were unable to nourish their
distal, complex, valley glacier network when alpine glaciers advanced in the Finlay River
area.

The large size of the lateral moraines requires explanation, given that the length of
time available for their construction is no more than 1000 years, assuming, as seems

likely, that the Finlay advance occurred during the Younger Dryas chronozone, 11,000-
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10,000 *C yr BP. The size of the lateral moraines is perhaps a result of the large amount
of sediment available to the glaciers at the time of the advance. As mentioned above,
alpine glaciers at intermediate and high elevations survived initial downwasting and
retreat of the Cordilleran Ice Sheet with attendant transport and deposition of large
amounts of supraglacial and subglacial debris. In particular, rockfall and landslides from
freshly deglaciated cirque headwalls probably contributed large amounts of debris, which

was transported down-glacier and deposited in the moraines.

Correlative landforms and deposits

Younger Dryas glacier advances have been identified at many sites in western
North America, including the central and southern Coast Mountains of British Columbia
(Clague, 1985; Friele and Clague, 2002a, 2002b), the southern Canadian Rocky
Mountains (Reasoner et al., 1994), southwestern Alaska (Briner et al., 2002), the northern
Cascade Range (Kovanen and Easterbrook, 2001; Riedel et al., 2003), and other areas in
the western United States (Gosse et al., 1995; Menounos and Reasoner, 1997; Owen et
al., 2003; Licciardi et al., 2004). Friele and Clague (2002a, 2002b) documented a
Younger Dryas advance of the glacier that occupied the Squamish River valley in the
southern Coast Mountains, 50 km north of Vancouver, British Columbia. Some valley
glaciers on the west side of the Coast Mountains reached fiord heads at this time (Clague,
1985; Friele and Clague, 2002a). East of the crest of the southernmost Coast Mountains,
glaciers were restricted to cirques and high valleys with accumulation areas above about
2000 m asl (Souch, 1989; Friele and Clague, 2002a). Clague (1985) reported a Younger
Dryas advance of a tidewater glacier in the central Coast Mountains near Terrace, British

Columbia, however, its climatic significance is uncertain. Crowfoot moraines record
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small Younger Dryas glacier advances in the Canadian Rocky Mountains (Reasoner et
al., 1994). They commonly lie immediately outside Little Ice Age moraines or have been
incorporated into them, thus Crowfoot glaciers were comparable in extent to those of the
Little Ice Age (Reasoner et al., 1994; Osborn and Gerloff, 1997; Osborn et al., 2001).
The small size of Crowfoot glaciers suggests that they had decayed significantly from
their maximum Late Wisconsinan limits and, in some cases, may have formed in cirques
that had been completely deglaciated prior to the onset of the Younger Dryas (Reasoner
et al., 1994; Osborn and Gerloff, 1997; Osborn et al., 2001). Briner et al. (2002)
suggested that the late-glacial Mount Waskey advance in the Ahklun Mountains of
southwestern Alaska might be Younger Dryas in age, based on cosmogenic surface
exposure ages of boulders on moraines. During this advance, resurgent valley glaciers
constructed large terminal and lateral moraines several kilometres downvalley of modern
glacier termini. The Mount Waskey moraines are about 80 km inside the maximum limit
of Late Wisconsinan glaciation in the region, indicating that the advance occurred after
substantial deglaciation during late-glacial time.

Late-glacial advances prior to the Younger Dryas have been documented at
several localities in the Canadian Cordillera. Clague et al. (1997) presented evidence for
two late-glacial advances of a lobe of the Cordilleran Ice Sheet in southwest British
Columbia, both of which occurred before the onset of the Younger Dryas. Saunders et al.
(1987) reported contemporaneous advances in the Chilliwack River valley, southwest
British Columbia. A correlative advance or stillstand of the trunk glacier in Squamish
River valley is marked by an end moraine at Porteau Cove, 15 km south of Squamish

(Friele and Clague, 2002b).
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Other undated late-glacial moraines and deposits have been documented
elsewhere in the North American Cordillera. Some moraines in the Canadian and
American Rocky Mountains pre-date the Crowfoot advance and record local stillstands or
advances during the late-glacial interval (Reasoner et al., 1994; Osborn and Gerloff,
1997). Undated moraines have been reported from at least four sites in northern British
Columbia: the Tuya-Teslin area (Watson and Mathews, 1944), Level Mountain
(Hamilton, 1981), the Atlin area (Tallman, 1975), and the Omineca Mountains (Roots,
1954). Late-glacial advances and stillstands of the northern Cordilleran Ice Sheet have
been reported from several valleys of southern Yukon Territory (Hughes, 1990; Jackson
et al., 1991; Bond, 2004; Kennedy and Bond, 2004; Bond and Kennedy, 2005).

Late-glacial moraines in the Cassiar Mountains near Dease Lake are similar in
size and character to the Finlay moraines (T. Lakeman, unpublished data). Many of the
valley glaciers that constructed the moraines coalesced with trunk glaciers that were part
of the northern Cordilleran Ice Sheet. Sediment cores recovered from lakes inside the
moraines in the Dease Lake area contain the same phonolitic tephras as lake cores from
the Finlay River area (Chapter 3). The presence of the same tephras in the two areas
some 250 km apart suggests that the moraine complexes are correlative and are the

product of the same late-glacial climate event.

Late-glacial climate of northern British Columbia

Paleoecological data from north-coastal British Columbia record regional climate
change during deglaciation. The most pronounced and consistent change in the records is
the Younger Dryas climate deterioration (Engstrom et al., 1990; Mathewes, 1993;

Mathewes et al., 1993; Hetherington and Reid, 2003; Lacourse, 2005). Mathewes (1993)
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and Mathewes et al. (1993) documented a late-glacial shift from closed forest to open,
herb-rich parkland at two sites near Cape Ball, Graham Island; the parkland persisted
from about 10,700 to 10,000 C yr BP. Lacourse (2005) presented similar evidence for
Younger Dryas climatic cooling from northern Vancouver Island. Mathewes et al. (1993)
showed that waters on the central British Columbia continental shelf were cooler from
11,100 to 10,200 e yr BP than either earlier or later, based on abundances of the cold-
water benthic foraminifera, Cassidulina reniforme, in several marine sediment cores.
Similarly, Hecate Strait was cooler from 10,900 to 10,300 H4c yr BP than at times
immediately earlier or later, based on the absence of most bivalves, except species
tolerant of low sea surface temperatures (Hetherington and Reid, 2003). Engstrom et al.
(1990) reported that pine parkland on Pleasant Island, southeastern Alaska, was replaced
by shrub- and herb-dominated tundra about 10,800 **C yr BP; tundra persisted in the area
to about 9800 '“C yr BP.

These studies document a return to cool and wet conditions in northern British
Columbia and southeast Alaska during the Younger Dryas. The records show no
evidence of a comparable late-glacial climate oscillation either before or after the
Younger Dryas. Thus, the Younger Dryas was likely the most significant event of its

kind in northern British Columbia during the late glacial period.

Regional synthesis
Consideration of available paleoecological data from northern British Columbia
and southeast Alaska indicates that the Finlay moraines record a regional advance of

alpine glaciers during the Younger Dryas chronozone. Differences in the magnitude of
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the advances in the Finlay River area and elsewhere in the Canadian Cordillera point to
variable responses of glaciers to climate change during terminal Pleistocene deglaciation.
The Finlay moraines indicate that the timing and pattern of ice sheet retreat were
important in determining glacier extents at the onset of late-glacial climate deterioration.
Different styles and rates of deglaciation were probably primary mechanisms causing
varied glacier responses to late-glacial climate change. Generally larger advances in
coastal and northern alpine areas near former accumulation centres or ice divides where
extensive ice persisted early during deglaciation (e.g. the Squamish and Finlay advances)
support this assertion. Near-complete deglaciation of the southern Canadian Rocky
Mountains by Younger Dryas time and perhaps relatively less precipitation may explain
the comparatively smaller Crowfoot advances. Different temperature and precipitation
gradients and the variable effects of remnant, large ice masses on local atmospheric
circulation may have also contributed to the complexity in glacier fluctuations during

deglaciation in western North America.

Conclusions

Glaciers flowing from the northern Skeena Mountains covered the Finlay River
area of northern British Columbia at the climax of the Fraser Glaciation. Large alpine
glaciers persisted at intermediate and high elevations early during deglaciation as the
Cordilleran Ice Sheet decayed by downwasting and frontal retreat.

Large terminal and lateral moraines were constructed in tributary valleys in the
Finlay River area during a regional late-glacial advance of alpine glaciers following early

deglaciation. The advance occurred when regional equilibrium line altitudes fell to 1650-
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1750 m asl and it coincided with final decay of a network of remnant, thin tongues of the
northern Cordilleran Ice Sheet in trunk valleys. Trunk glaciers were below both
resurgent alpine glaciers and the lowered regional equilibrium line altitude that allowed
alpine glaciers to advance. The late-glacial moraines are well preserved and clearly
record interaction between alpine glaciers and decaying trunk glaciers. The large size of
the moraines is probably due the abundance of sediment available for transport during
deglaciation.

Two phonolitic tephras slightly older than 9180 + 80 *C yr BP occur in the study
area and closely delimit the time of abandonment of the late-glacial moraines. A
radiocarbon age of 9230 + 50 '*C yr BP from a meltwater channel cut during retreat of
trunk glaciers from the area confirms a late-glacial age for the moraines. The advance
likely occurred after the Cordilleran Ice Sheet had withdrawn from the northern Rocky
Mountains ca. 13,000 *C yr BP.

The widespread distribution of the Finlay moraines points to regional climatic
deterioration as a likely trigger for the late-glacial advance of alpine glaciers.
Paleoecological records from northern British Columbia indicate that the most severe
cold interval during late-glacial time coincided with the Younger Dryas chronozone.
Therefore, it is likely that the late-glacial moraines in the Finlay River area record a
regional advance of alpine glaciers during that time.

Younger Dryas and older glacier advances in the southern Coast Mountains of
British Columbia, the southern Canadian Rocky Mountains, southwestern Alaska, the
northern Cascade Range, and other areas in the western United States differ in size,

suggesting variable glacier responses to late-glacial climate change. The different
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responses probably reflect different styles of deglaciation, different temperature and
precipitation gradients, differing rates and magnitudes of late-glacial climate change, and
variable effects of remnant ice masses on local atmospheric circulation. The stochastic
nature of rapid changes in the atmosphere and oceans at the end of the last glaciation
probably accounts for the sporadic occurrence and variable scale of Younger Dryas

glacier advances in western North America.
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Figure 2.1. British Columbia showing its major physiographic

regions (based on Mathews, 1986). Grey box indicates study area.
Triangles mark sites where late-glacial glacier advances have

been identified.
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Figure 2.6. A) Aerial photograph of Cushing Lake, which is dammed by a
late-glacial lateral moraine, labeled 1. B) Photograph of late-glacial
lateral and medial moraines looking west downvalley towards
Chukachida Lake (Fig.2.2). Moraines 2 and 3 are labeled on both
photgraphs. Aerial photgraph 15BCB99017-131; reproduced with
permission of British Columbia Ministry of Agriculture and Lands, Base
Mapping and Geomatic Services Branch.
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Figure 2.7. Aerial photograph of Katharine Lake, which lies on the distal side
of a late-glacial terminal moraine (solid black line) 9 km downvalley from the
source cirque. Several recessional lateral and medial moraines are marked by
dashed black lines. Aerial photograph 15BCB99016-134; reproduced with
permission of British Columbia Ministry of Agriculture and Lands, Base
Mapping and Geomatic Services Branch.
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Figure 2.11. A) Rock avalanche debris damming Rock
Fall Lake. Box indicates location of C. B) Aerial
photograph of rock avalanche debris. C) Exotic,
rounded granite boulder (arrowed) sitting on top of
rock avalanche debris that was redeposited by the
trunk glacier in Cushing Creek valley. Aerial
photograph 15BCB99018-046; reproduced with
permission of British Columbia Ministry of
Agriculture and Lands, Base Mapping and Geomatic
Services Branch.
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CHAPTER 3:

Early Holocene tephras in northwest British Columbia

Abstract

Four, previously undocumented tephras have been found in sediment cores
recovered from alpine and sub-alpine lakes up to 250 km apart in northwest British
Columbia. Two black phonolitic tephras, each 5-10 mm thick occur within 2-4 cm of one
another in basal sediments from seven lakes in the Finlay River and Dease Lake areas.
They are slightly older than 9180 = 80 "*C yr BP (10,220-10,560 cal yr BP) and likely
originate from two closely spaced eruptions of one or two large volcanoes in the northern
Cordilleran volcanic province. The Finlay tephras occur at the transition between
deglacial sediments and organic-rich postglacial mud in the lake cores, and thus closely
delimit the termination of the Fraser Glaciation in northern British Columbia. Sediments
in Bob Quinn Lake, which lies on the eastern edge of the northern Coast Mountains,
contain two additional black tephras that differ in age and composition from the Finlay
tephras. The lower Bob Quinn tephra is 3-4 mm thick, basaltic in composition, and is
derived from an cruption in the Iskut River volcanic field about 8400 *C yr ago (9400 cal
yr BP). The upper Bob Quinn tephra is 12 mm thick, phonolitic in composition, and
probably 6000-7000 **C yr old. The four tephras are valuable chronostratigraphic

markers for future paleoenvironmental studies in northern British Columbia.

Introduction
The northern Cordilleran volcanic province consists of over 100 late Cenozoic

volcanic centres in northwest British Columbia, Yukon, and Alaska (Fig. 3.1; Edwards
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and Russell, 1999, 2000). The dominant volcanic rocks are alkali olivine basalt and
hawaiite, but highly alkaline rocks such as nephelinite, basanite, peralkaline phonolite,
trachyte, and comendite are locally common (Edwards and Russell, 2000). Volcanic
centres range from small cinder cones to large shield volcanoes and have a broad range of
eruptive styles. Cinder cones consisting of basalt and hawaiite are most abundant
(Edwards and Russell, 2000). Large volcanic complexes, including Hoodoo Mountain,
Mount Edziza, Level Mountain, and Heart Peaks, are shield and composite volcanoes
with numerous cinder cones (Fig. 3.1). They are, by far, the largest volcanoes in the
northern Cordilleran volcanic province and show the greatest range in petrology
(Edwards and Russell, 2000).

Several postglacial (i.e. younger than 10,000 yr BP) lava flows have been
identified and mapped in northwest British Columbia (Read et al., 1989; Souther, 1992;
Villeneuve et al., 1998; Edwards et al., 1999, 2000, 2002; Russell and Hauksdottir,
2000). Distal tephras related to this volcanic activity have not been reported, even though
some of the Holocene eruptions were large and thick tephra deposits have been found
near several volcanoes and cinder cones (Read et al., 1989; Souther, 1992; Villeneuve et
al., 1998; Edwards et al., 1999, 2000, 2002; Russell and Hauksdottir, 2000).

Four, previously undocumented, early Holocene tephras are reported in this paper.
They occur in sediment cores from lakes up to 250 km apart in northwest British
Columbia (Figs. 3.1 and 3.2). Two phonolitic tephras are present in lake sediments in the
Finlay River and Dease Lake areas (Fig. 3.3). Sediment cores recovered from Bob Quinn
Lake contain two additional tephras that are basaltic and phonolitic in composition (Fig.

3.3). The objectives of this paper are to: 1) describe the geomorphic and stratigraphic
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setting of the tephras, 2) document their distribution, 3) characterize the morphology and
major element composition of their glass shards, and 4) discuss their importance for

future paleoenvironmental studies in the region.

Methods

Fighteen sediment cores were collected from twelve lakes in three areas of
northwest British Columbia using a percussion coring system (Reasoner, 1993).
Sediment cores were recovered from lake ice in January 2005 and February 2006, and
from the floats of a De Havilland DHC-2 Beaver in July 2005. Red Barrel, Cushing,
Katharine, Deep, Black, Bronlund, Rock Fall, and Sandwich lakes were cored in the
Finlay River area; of these, Red Barrel, Cushing, Katharine, Deep, and Black lakes
contain tephras (Fig. 3.2). Little Glacier, Hungry, and Sister lakes were cored in the
Dease Lake area; tephra was found in sediments from Little Glacier and Hungry lakes
(Fig. 3.2). Bob Quinn Lake, at the eastern edge of the northern Coast Mountains, was
also cored; it too contains tephras (Fig. 3.2). All lake names, except Bob Quinn Lake, are
informal. Sediment cores were transported to the University of Northern British
Columbia in Prince George where they were split, logged, photographed, and analyzed
for bulk physical properties (organic matter, magnetic susceptibility, and grain size).
Lithologic and magnetic susceptibility logs for selected cores are presented in this
chapter, whereas lithologic, magnetic susceptibility, and percent organic matter logs for
all the cores taken in this study are presented individually in Appendix C. Samples of
terrestrial plant macrofossils and tephras were extracted from the cores. Plant

macrofossils were washed in distilled water, air-dried, and stored in glass vials.
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Radiocarbon ages were determined by accelerator mass spectrometry at IsoTrace
Laboratory (University of Toronto) and Beta Analytic Inc.

Glass shards were separated from tephras using a heavy liquid separation
procedure at the Department of Earth and Atmospheric Sciences, University of Alberta.
The mineralogy of glass shard phenocrysts was determined by thin section analysis. The
shards, together with shards from previously identified Holocene scoria and tephra
deposits on Mount Edziza were analyzed using a JEOL JXA-8200 electron microprobe in
the Department of Geology and Geophysics, University of Calgary to determine their
major element compositions. Analyses were performed with the microprobe operating at
15 keV accelerating voltage, a 10um beam diameter, and a 10 nA beam current. A
reference sample of Old Crow tephra (UT1434, University of Toronto) was analyzed
repeatedly to track changes in the analytical accuracy of the microprobe. Data were
corrected and normalized to 100% on a water free basis and are shown in Tables 3.1 and
3.2. Uncorrected values from individual glass shard analyses are presented in Appendix

D.

Geomorphic and stratigraphic setting

Sediment cores from the Finlay River and Dease Lake areas were collected from
lakes dammed by moraines built during a late-glacial advance of alpine glaciers in
northwest British Columbia (Chapter 2). Two tephras were found in most of the cores
near the contact between older inorganic silt, sand, and gravel, and younger organic-rich
mud (Fig. 3.3). This facies boundary records the transition from deglacial sedimentation

to organic-rich postglacial sedimentation, and marks the termination of the late-glacial
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advance (Chapter 2) and the Fraser Glaciation in northern British Columbia. The tephras
are black, range in thickness from less than 5 mm to 10 mm, and occur within 2-4 cm of
one another in the cores (Fig. 3.4a). The two tephras from the Finlay River and Dease
Lake areas are equivalent and are referred to hereafter as the Finlay tephras.

Bob Quinn Lake cores contain two tephras that are different from the Finlay
tephras (Fig. 3.3). The lower Bob Quinn tephra is 3-4 mm thick and lies about 5 cm
above a contact between organic-rich mud and underlying inorganic silt (Fig. 3.5a). A
second tephra, 12 mm thick, lies 40 cm above the lower tephra, within organic-rich mud

(Fig. 3.5a).

Composition and age

The two Finlay tephras have fine sand and coarse silt textures. Glass shards in the
two tephras are similar in morphology. They are dominantly blocky in shape and have
spherical vesicles; needle-shaped shards with lineated, lensoid vesicles are also present
but are less common (Fig. 3.4b). Phenocrysts in glass shards of both tephras are
dominantly plagioclase with subordinate orthopyroxene. Both tephras are phonolitic to
trachytic in composition and rich in FeO (Figs. 3.6 and 3.7; Table 3.1). The two tephras
have nearly identical major element composition, indicating that they are likely derived
from the same source.

Terrestrial plant macrofossils directly overlying the upper Finlay tephra yielded
ages of 8960 + 80 *C yr BP (9780 -10,250 cal yr BP) and 9180 =+ 80 “C yr BP (10,220~
10,560 cal yr BP) (Fig. 3.3; Table 3.3). The two tephras are thus early Holocene in age,

deposited immediately after deglaciation (Clague, 1981).
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The lower Bob Quinn tephra has a medium-coarse sand texture. Glass shards are
blocky and needle-shaped, up to S mm in length, and contain plagioclase, clinopyroxene,
and minor orthopyroxene phenocrysts (Fig. 3.5b). Most of the blocky shards contain
spherical vesicles, whereas the needle-shaped shards have lineated, lensoid vesicles (Fig.
3.5b). The lower tephra is trachybasaltic in composition with 11-12 wt. % FeO (Figs. 3.6
and 3.8; Table 3.1).

The upper Bob Quinn tephra has a silty fine sand texture. Glass shards have
spherical vesicles and are dominantly blocky in shape (Fig. 3.5b). Phenocrysts in glass
shards are dominantly plagioclase; pyroxene and potassium feldspar crystals are also
present, although rare. The tephra is phonolitic in composition, like the Finlay tephras
(Fig. 3.6). However, it has about 2% less SiO,, 1.5% more Al,O3, and more TiO,, CaO,
and MgO than the Finlay tephras (Fig. 3.7; Table 3.1).

Terrestrial plant macrofossils directly above and below the lower Bob Quinn
tephra yielded ages of 8450 = 50 1*C yr BP (9320-9540 cal yr BP) and 8370 + 40 1*C yr
BP (9270-9500 cal yr BP), respectively (Fig. 3.3; Table 3.3). The calibrated age ranges
overlap and indicate that the tephra was deposited about 8400 "*C yr ago (9400 cal yr
BP). The upper Bob Quinn tephra has not been directly dated, but its stratigraphic

position suggests an age of 6000-7000 '*C yr BP (Fig. 3.3).

Sources of tephras
Based on their distributions, thicknesses, and compositions, the tephras likely
were erupted from one or more volcanic centres in the northern Cordilleran volcanic

province (Figs. 3.1 and 3.2). Highly alkaline rocks with compositions similar to the
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phonolitic tephras documented in this study are characteristic of the northern Cordilleran
volcanic province (Fig. 3.6; Edwards and Russell, 1999, 2000). Tephras derived from
volcanoes in the Wrangell volcanic belt and Aleutian Arc, for example Dawson tephra
(Westgate et al., 2000) and White River tephra (Lerbekmo and Campbell, 1969;
Lerbekmo et al., 1975; Clague et al., 1995), are dominantly rhyolitic, indicating that those
regions are unlikely source areas for the tephras in northern British Columbia (Preece et
al., 1992, 1999; Richter et al., 1995; Mangan et al., 2003). Late Pleistocene tephras from
Mount Edgecumbe, southeastern Alaska (Fig. 3.1), range in composition from basaltic to
rhyolitic, and all but one are local in extent (Heusser, 1960; McKenzie, 1970; Yehle,
1974; Riehle et al., 1992). The only Edgecumbe tephra of regional extent is dacitic in
composition and approximately 11,300 *C yr old (Riehle et al., 1992; Begét and Motyka,
1998), older than the tephras of this study. Nevertheless, possible, unidentified volcanic
centres in southeast Alaska and northwest British Columbia that are presently below sea
level or covered by glaciers cannot be ruled out as possible sources for the Finlay and

Bob Quinn tephras.

Finlay tephras

The two Finlay tephras are distributed across northwest British Columbia and
possibly extend into the northern Rocky Mountains. Based on their distribution,
thickness, and major element composition, the likely source is one of the large shield or
composite volcanoes in northwest British Columbia, specifically Hoodoo Mountain,
Mount Edziza, Level Mountain, or Heart Peaks (Figs. 3.1 and 3.2). Some cinder cones in

the northern Cordilleran volcanic province erupted following deglaciation during the late
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Pleistocene or early Holocene, but they are too small to account for the thickness and
distribution of the Finlay tephras.

The major element compositions of the Finlay tephras are most similar to those of
whole-rock samples from Hoodoo Mountain (Figs. 3.6 and 3.7; Tables 3.1 and 3.4), a
large composite volcano with a long history of phonolitic and trachytic eruptive activity
dating from 85,000 to 9000 yr BP (Edwards, 1997; Edwards et al., 2002). Two
phonolitic lava flows on the south flank of Hoodoo Mountain are estimated to be
postglacial in age, based on Y Ar/*° Ar dates of 10,000-9,000 yr BP (Villeneuve et al.,
1998; Edwards et al., 1999; 2002) and observations that the flows have not been glaciated
(Edwards et al., 2002). The average whole-rock chemistry of the two postglacial
phonolitic flows is similar to the glass composition of the Finlay tephras (Figs. 3.6 and
3.7; Tables 3.1 and 3.4). No pyroclastic deposits or tephras are known to be associated
with the eruptions that produced these lava flows (Edwards et al., 2002). The core from
Bob Quinn Lake, which is only 60 km northeast of Hoodoo Mountain and lies along the
trajectory that any ash plume would take moving from that volcano to the Finlay River
and Dease Lake areas (Figs. 3.1 and 3.2), does not contain the Finlay tephras. The base
of that core, however, is about 1000 years younger than the Finlay tephras. The
compositional data indicate that Hoodoo Mountain is the most likely source for the
Finlay tephras, but other possible sources must be considered.

Mount Edziza is another large volcanic complex in the northern Cordilleran
volcanic province and a possible source of the Finlay tephras. It is a broad plateau
consisting of multiple, large, ice-covered composite cones and numerous small cinder

cones (Figs. 3.1 and 3.2; Souther, 1992). The volcanic complex has a diverse suite of
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rocks ranging from basaltic to peralkaline felsic in composition (Souther, 1992). These
rocks are generally less alkaline than the Finlay tephras, although some are similar
composition (Figs. 3.6 and 3.7; Tables 3.1 and 3.2). Comenditic trachyte pumice of the
Sheep Track Member of the Big Raven Formation is postglacial in age and covers an area
of about 40 km® on the west flank of Mount Edziza (Souther, 1992). The pumice is
white, markedly richer in SiO,, and poorer in FeO than the Finlay tephras (Fig. 3.7).
Older formations of possible late Pleistocene to early Holocene age are dominantly
basaltic and limited in extent (Souther, 1992). However, their absolute ages and chemical
compositions are poorly known, therefore Mount Edziza cannot be ruled out as a possible
source for the Finlay tephras.

Level Mountain and Heart Peaks are large volcanic complexes similar in size and
chemistry to Mount Edziza and Hoodoo Mountain (Figs. 3.1 and 3.2; Casey, 1980;
Hamilton, 1981, 1991; Souther and Yorath, 1991; Edwards and Russell, 2000). They
have received little scientific study, and it is not known whether Holocene deposits are
present and, if they are, whether they are extensive. Consequently, further field and
laboratory investigations are required to assess whether the Finlay tephras originated

from Level Mountain or Heart Peaks.

Bob Quinn tephras

The age and composition of the lower Bob Quinn tephra strongly suggest that it is
derived from the Iskut River volcanic field. This volcanic field consists of eight volcanic
centres situated between Iskut and Unuk rivers, approximately 40 km southwest of Bob
Quinn Lake (Figs. 3.1 and 3.2). The presence of large, needle-shaped glass shards in the

tephra indicates that Bob Quinn Lake is near the source of the eruption. Volcanism in the
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Iskut River volcanic field ranges in age from approximately 70,000 to 150 yr BP (Russell
and Hauksdottir, 2000). Read et al. (1989) demonstrated that two basalt flows
temporarily dammed Iskut River during the early Holocene. The flows originate from the
Iskut River volcanic centre, about 4 km east-southeast of Iskut Canyon (Fig. 3.2; Read et
al., 1989; Russell and Hauksdottir 2000). Read et al. (1989) reported ages of 8730 + 600
14C yr BP from charcoal underlying one of the basalt flows and 8780 + 150 '*C yr BP
from plant material bounding basaltic tephra that mantles nearby slopes (Table 3.3). The
major element composition of whole-rock samples collected from the Iskut River
volcanic field is similar to that of the lower Bob Quinn tephra (Figs. 3.6 and 3.8; Tables
3.1 and 3.4).

The upper Bob Quinn tephra is similar in composition to the Finlay tephras and to
whole-rock samples from Hoodoo Mountain and Mount Edziza (Figs. 3.6 and 3.7; Tables
3.1, 3.2, and 3.4). Its composition is closest to that of the two postglacial phonolitic lava
flows on Hoodoo Mountain, but the ages of the flows must be better constrained to
confirm the tentative correlation made here.

The areal distributions of the upper and lower Bob Quinn tephras are poorly
constrained. The lower Bob Quinn tephra probably extends along Iskut River, south of
Mount Edziza, based on its affinity to the Iskut River volcanic field. However, it may not
be present much farther east in northern British Columbia because of its coarse grain size
and limited thickness. The upper Bob Quinn tephra may extend farther east than the

lower tephra based on its grain size and thickness.
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Conclusions

Four, previously unrecognized tephras are reported from northern British
Columbia. Their distribution and major element composition indicate sources at one or
more volcanic centres in the northern Cordilleran volcanic province. Two phonolitic
tephras in the Finlay River and Dease Lake areas are products of two closely spaced
eruptions shortly before 9180 + 80 *C yr BP (10,220-10,560 cal yr BP). The Finlay
tephras are regional in extent and occur at the transition from deglacial sedimentation to
deposition of organic-rich Holocene mud. They closely delimit the time of terminal
Pleistocene deglaciation in northern British Columbia and the termination of a regional,
late-glacial glacier advance. Cores from Bob Quinn Lake also contain two tephras, but
they are different in age and composition from the Finlay tephras. A lower basaltic
tephra at Bob Quinn Lake is 8400 C yr old (9400 cal yr old) and is likely derived from
the Iskut River volcanic centre, which is one of eight volcanoes forming the Iskut River
volcanic field. The upper phonolitic tephra at Bob Quinn Lake is 6000-7000 *C yr old;
its source is unknown.

The Finlay and Bob Quinn tephras are valuable chronostratigraphic markers for

future paleoenvironmental studies in northern British Columbia.
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Cordilleran volcanic province and sample sites. Modified with permission from
Edwards and Russell (2000).
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CHAPTER 4:

Conclusions

The Finlay moraines of northern British Columbia are late-glacial in age,
bracketed by a radiocarbon age of 9230 = 50 '*C yr BP and cosmogenic surface exposure
ages of about 13,000 '*C yr BP. They record a regional advance of alpine glaciers during
terminal deglaciation of the Canadian Cordillera, which likely coincided with Younger
Dryas cooling documented in north-coastal British Columbia. Lateral meltwater
channels crosscut late-glacial moraines and record interaction between advancing alpine
glaciers and the decaying Cordilleran Ice Sheet, which occupied trunk valleys in the
study area. Comparison of the Finlay advance to other, probably correlative, late-glacial
advances, such as the Crowfoot advance in the southern Canadian Rocky Mountains,
demonstrates variable glacier responses to late-glacial climate change in western North
America. The style of deglaciation in the Finlay River area was a significant factor in
preserving large alpine glaciers at intermediate and high elevations. These remnant
glaciers later advanced when regional equilibrium line fell to 1650-1750 m asl. Differing
temperature and precipitation gradients, differing rates and magnitudes of late-glacial
climatic change, and the effects of remnant ice masses on local atmospheric circulation
also contributed to the complexity of documented late-glacial glacier advances in western
North America.

Two, early Holocene phonolitic tephras occur in sediment cores retrieved from
lakes nearly 200 km apart in the Finlay River and Dease Lake areas. They lie at the
transition from deglacial sediments to postglacial organic-rich mud in the cores. The

Finlay tephras are new chronostratigraphic markers for northwest British Columbia.
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Their probable source is Hoodoo Mountain, a large volcano of the northern Cordilleran
volcanic province. However, Mount Edziza, Level Mountain, and Hearth Peaks cannot
be excluded as sources. Two other tephras occur in sediments retrieved from Bob Quinn
Lake. The lower Bob Quinn tephra is basaltic and was deposited ca. 8400 *C yr ago by
an eruption in the Iskut River volcanic field. The upper Bob Quinn tephra is phonolitic
and may originate from Mount Edziza or Hoodoo Mountain. Although the tephra is early
Holocene, its exact age is unknown. The Bob Quinn tephras serve as valuable late
Quaternary marker horizons in the Iskut River area.

Future studies in the region should include efforts to better date the Finlay
moraines and the timing of ice sheet retreat in northern British Columbia, and attempts to
recover new paleoclimatic records. Bednarski’s (1999, 2000, 2001) cosmogenic surface
exposure ages from the northern Rocky Mountains provide the first estimates of the time
of deglaciation at the eastern margin of the Cordilleran Ice Sheet. More cosmogenic and
radiocarbon ages are needed to establish the timing and regional pattern of ice retreat in
northern British Columbia. Additional paleoclimatic data from north-coastal British
Columbia and northwestern Alberta are needed to evaluate existing late glacial climate
records and to improve understanding of late Pleistocene-Holocene climate change in this
large, poorly studied region.

More sediment cores from lakes in northern British Columbia will better constrain
the age and distribution of the tephras identified in this study and may identify the source
vents for the eruptions that produced them. It is likely that additional tephras will be

found.
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APPENDIX A:

Map of glacial landforms and deposits
(See CD inside back cover)

Instructions

The appended compact disc (CD) contains an Adobe PDF file that contains a
hillshaded digital elevation model (DEM) map of glacial landforms and deposits in the
Finlay River area. The map is part of NTS 94/E. The file can be viewed using the
program Adobe Acrobat. The hillshaded map was produced with permission using
digital elevation data from the Province of British Columbia, Base Mapping and

Geomatic Services Branch.
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APPENDIX B:

Equilibrium line altitude reconstructions

I estimated equilibrium line altitudes of former alpine glaciers in the Finlay River
area using the accumulation area ratio (AAR) method of Porter (1975) and assuming an
accumulation area ratio of 0.60. An accumulation area ratio of 0.60 means that the
accumulation area of the glaciers that constructed the late-glacial moraines was 60% of
the total glacier area.

The margins of three former alpine glaciers that did not coalesce with trunk valley
ice were estimated from lateral and terminal moraines and trimlines. The former glacier
surfaces were reconstructed by drawing contour lines perpendicular to the lateral
moraines and trimlines. The hypsometry of reconstructed glacier surfaces was calculated
in a GIS, and the equilibrium line altitudes were then estimated using the accumulation
area ratio of 0.60. The reconstructions indicate that the regional equilibrium line altitude
was 1650-1750 m asl at the time the late-glacial moraines were constructed.

Little Ice Age equilibrium line altitudes were calculated using the same
procedure. For Little Ice Age glaciers, however, the ground surface was used to
approximate the former glacier surfaces, which is reasonable given the position of Little
Ice Age moraines near present-day glacier margins. The equilibrium line altitude during

the Little Ice Age was determined to be 1900-1950 m asl.
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APPENDIX C:

Lake sediment core data
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Appendix C: Legend

uBQ

LBQ

Organic-rich mud

Sandy silt

Sand

Sand and gravel

Diamicton

Tephra

Upper Finlay tephra

Lower Finlay tephra

Upper Bob Quinn tephra

Lower Bob Quinn tephra
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Black Lake
Core: 05-Black(01)
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Bob Quinn Lake
Core: 06-BobQ(01)
Location:56°58.573’N, 130°15.623' W
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Bronlund Lake
Core:05-Bron{(01)
Location:57°25.463’'N, 126°35.460' W
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Cushing Lake
Core: 05-Cushing(01)
Location:57°35.541'N, 126°54.566’ W
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Cushing Lake
Core: 05-Cushing(02)
Location:57°35.607’N, 126°54.450' W
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Deep Lake
Core: 05-Deep(01)
Location: 57°40.943’N, 126°46.372'W
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Hungry Lake
Core: 06-Hungry(01)

Location:58°04.325'N, 129°18.970' W
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Hungry Lake
Core: 06-Hungry(02)
Location: 58°04.325'N, 129°18.970'W
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Katharine Lake
Core: 05-Kath(01)
Location:57°26.643'N, 126°48.582' W
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Little Glacier Lake
Core: 06-LGLAK(01)
Location:58°13.243’N, 129°20.759' W
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Red Barrel Lake
Core: 05-RedBarrel(02)
Location:57°40.623’ N, 1 26°44.029' W
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Sandwich Lake
Core: 05-Sand(01)
Location: 57°01.565’N, 126°29.747' W
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Sandwich Lake
Core: 05-Sand(02)

Location: 57°01.555’N, 126°29.753' W
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Sister Lake
Core: 06-Sister(01)
Location: 58°07.568’N, 129°20.506' W
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APPENDIX D:

Microprobe data
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