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ABSTRACT

The developrient of Regular Solutlon theory for
binary and ternary nixtures is discussed and the rea-
sons for its failure are noted.

The thernodynamic properties of ternary nonﬁolar
nirxtures have been predicted using a modified version
of the solubility parameters for the mixed solvents.
Excellent agreenent hetween theoretical and experimen-
tal properties is observed for dilute ternary nixtures.
The theorv has elso been extended to the concentrated
solutions but not with nuch success, and the nrobable
reasons for phis failure are also noted.

The "scéled particle”" theory of fluids is used in
calculating the partial molal entronv of solution of
solid solutes and has been foynd to be in excellent
agreement with the experimental results from different

sources,
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INTRODUCTION

The properties of nonelectrolyte solutions are of
great interest to chemical engineers for whom they
represent design data and to chemists for whon they
represent, & source of information  about internol-
ecular forces and the thermodynamic hehaviour of mol-
ecules in sdlutions. From either point of view the
ainm is to develop methods that will be able to predict
the proverties of solutions either from the results of
a few measurements on solutions or more hopefully fron
the vroperties of pure conmponents.

Since the early twentieth century, manyv sttennts
have been nade to develon theories of the solutions of
nonelectrolytes but the rniost widelyv used and the most
successful theory in its linited field is the Regular
Solution theory. This theory was first develoned by
Hildebrand to calculete the thernodynamic pronerties
of solutions of nonelectrolyvtes. It is one of the sim-
plest theories pronosed on this subject and over the
decades it has been the basis of many discussions and
many improvenents on the theories of solutions. 1In
Chepter I we shall discuss the different asnects of
Reguler Solution theory and its linitations.

The rost attractive syvstems for studvine on the
basis of Regular Solution theory ere the three comron-

ent systers whose corinonents have alnost sinilar nolsar
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volumes. In such cases the effects of molar volune dis-
parities of the comnonents on the free energy of nixing
would be negligible. The extension of the Regular Sol-
ution theory, which was originally develoned for binary
systens, to ternary systens assumes that the ternary
systeris may be considered as a pseudo-binary systen

of one solute snd one nmixed solvent whose solubilityv
pareneter is given by the volume fraction avereage of

the solubility varameters of the commonents of the mixed
solvent.l Although the resultant splubilityv equation

is & very simple one, unfortunately it has been observed
from solubility studies of solid solutes in nixed sol-
vents (all three components are nonelectrolytes) that
the experimental seturation solubility is always greater
then the predicted value. In earlier studies of the
partial molal volumes of Br2~ in CClu - n'C7F16 and
in CCly - c-CyCl,Fg nixed solvents, it was shown that
the pertiel nolal volume of Br2 is less than the cal-
culated vealues derived from the assumption that the
solubility parameter of the mixed solvents is given by
the volune fraction average of the solubilitv parameters
of the components of the nixed solvent. Such an assump-
tion about the solubility varameter of the nixed sol-
vents implies that the distribution of components of

the nixed solvents sround the solute molecule depends
upon the volume frection of the cormonents and not on

the intersctions of the solute molecules with the



-3 -
individual comnonents. In this thesis it is pronosed
to study the efrect of solute - pure solvent interec-
tions on the solubility studies of solid solutes in

the nmixed solvents. A detailed account of the studies
of iodine, stannic iodide and other solid solutes in
nixed solvents will be presented, and a theory devel-
oped which allows the ratio of the '"nearest neieshbours”
mixsd solvent comnonent molecules around the solute
nolecules to be calculated. This new tern, denoted

as the "effective volume fraction," is introduced to
represent the nearest environnent of the solute mole-
cule in the mixed solvents.

This "effective" volume fraction essentially in-
plies a preferential solvation of the solute nolecules
by one solvent partner in the mixed solvent. By making
allowances for this preferential solvetion of the sol-
ute molecule, it will be shown that the Regular Solu-
tion theory can be successfully applied to expnlain all
the available data on the solutions of the nonnolar
solid solutes in nonpolar mixed solvents.

In Chapter II of this thesis we shall discuss the
different aspects of the three component syvstens.

The other interesting phenomenon to study is the
effect of solvent-solute volume disparityv in the bin-
ary svstens because it is well known that if the sol-
vent-solute volume disnarity is too large, the entropy

of mixing of supercooled liquid (the assurnied standard
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state of the solids in the Regular Solution theory)
solute and the liquid solvents sre no longer zero and
Regular Solution theory can not be avnlied successfully
in these cases. It is difficult to calculate the nag-
nitude of the excess entropy because it hes been observed
that for spherical solid solute molecules such as tetre-
phenyl tin the usually ﬁsed "Flory-Huggins" entronv
of nixing to take account of the volume disparity between
solute and solvent are usually unreliable. To examine
the effect of the solvent-solute volume disparity on
the solubilities of the solids, we have carried out the
solubility studies along with the experimental deter-
mination of the pertial molel volume of tetra  perfluoro
‘phenyl tin ( Sn(C6F5)4 ) whose molar volume is
404 .4 cc in different organic solvents of molar volunmes
around 100 cc. .

In this thesis we shall also vresent a method to
calculate partial molal entrovny of nixing solid solutes
in liquid solvents. This method will be developed from
the scaled perticle theory of dense fluids and it will
also be shown that this method can successfully be applied
in predicting the partial nolal entropies of iodine,
stannic iodide, tetraphenyl tin, slong with tetra
perfluorophenyl tin. We developed this method to
calculete partial molal entropy because, as mentioned
esrlier, the Resular Solution theorv usuallv can not

cope with svstems such as ours and the Florv-Hugeins
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entropy term is unreliable.
In Chapter III1 we shall discuss the scaled narticle
theory and its application in deriving the »roperties

of pure liquid and binary liquild mixtures.



Chapter - I

Regular Solution Theory
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Any complete understanding of mixtures of nonelec-
trolvtes must need a clear solution of the problens
involving intermolecular forces in the theory of the
liquid state. To date there exist only apnproxinate
treatments but it is surprising that these theories
can be applied more successfully in forrmulating the
theory of solutions than one would expect from the dreas-
tic approximations involved in them. Or conversely
it could be said that the empirical success of the theo-
ries o' the solutions may not be used to justify the
theories of the liquid state or of intermolecular forces
frorn which the postulated theoryv has been derived.

Under these circuristances we shall discuss the theories
on the liquid state and intermolecular forces very brief-
ly and the main tovpic of our discussion in this chapter
will be the Regular Solution ?heory which, as scottl 1]
wrote in 1956, "...offers a useful initial anproach to

a very wide area of solution like a small-scale map for

a verv broad long distence air view of the subcontin-
ent."

The success of Regular Solution theorv lies in its
ability to predict the excess free energy of nmixing
and hence the saturstion solubilities within a few per-
cent of the experimental values. However the theory
is not accurate in predicting many other thernodynanic
properties such as the heat of solution or the volune

change upon nixing.



Intermolecular Forces

The properties of solutions devend uvon the nature
of the interasctions between the various tyvpes of nole-
cules, both like and unlike, in the solution. Two com-
rnonly used potential functions for the interactions of
spherical molecules ere Lennard-Jones (L-J) potentialggj
ij.es 12-6 potential and exp-6 potentiel. The Lennard-

Jones potential is defined as

U(x) = ef(r, )12 - 2(r r)° (1a)

or &s

U(x) = el(o/)* - 2(0 )% (1)
The exp-6 potential is defined as
u(r) = 240 exf-alr = o) my] - (r, )5 (2)

In both of these expressions ¢ represents the
depth of the potential well, 1r 1is the distance and r,
is the separation at which the minirmum in the potentisl
ocecurs. The ¢ 1in the equstion (1b) is the distance
at which the potential is zero (see Figure 1). The g4
in the equation (2) is the steevness of the exponential

repulsion and is usually ebout 13.5.
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Figurel.l The parameters used in expressing
the pair potentials.

The 12-6 potential has only two adjustable para-
meters whereas the exp-6 potential has three. One nod-
ification of the L-J potential is the Kihara core po-
tentisl in which the point center of the L-J potential

is replaced by a hard core. The potential is given by

U(r) = el (r 0012 - 2(r_/0)%7 ()

where d is the shortest distance between hard cores
and T is its value at the potential ninimum. The

net effect of the Kihare core votential is to nake the
attractive energy a nildly steeper function of r and

the repulsive energy a much steeper function in compar-

ison to L-J potential.
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For interactions between unlike molecules,
the following commonly used rules are available: the

geometric mean rule for the energy parameters is

K
€1 4 = (e 165,)% (4)

and the arithmetic combining rule for the distance par-

ameters is

= Ity + ryy

Ty = ——%—— or oy =911 * 949 (5)

In using these "combination rules" one must rememn-
ber that in the cases where the motential functions
for the components of & solution have different shapes,
the relations of this kind cannot give full information

on the interactions betweenptheuunlikeﬂmoleculesggj

Recent publications[u—gj along with earlier reviews
by LondonElO] MargenauEll] and Rowlinson[lgj sunmarise

our present knowledge about the intermolecular forces.
As more kinds of information on internolecular forces
become available, it seems that the simple analytical
potential expressions as discussed above are not ade-
quate in describing the intermolecular interaction, even.
for the spherical moleculesﬁlB’IMJ

Another imvortant aspect of the intermnolecular
notentiel is the nonadditivity of the internoleculsr E
forces (which has been known for a long time) vet the

most usual method of describing the intermolecular en-

ergy of & group of molecules is to assume that the
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intermolecular energy may be represented by the sun
of the peir energies, i.e.

U(r, .) (6)

ij

a
It
ol
e ~1

< 1

or in other words the contribution of the trinlet inter-
action term in the total intermolecular enereyv is very
smell., There has been a recent revival of interest
concerning the contribution of the trinlet interaction
energies ( in excess over the sum of the pair energies
in equation (6) ) to the total interaction of a group
of molecules. The main problem with the triplet inter-
action term is the uncertainty about the magnitude of
this contribution to the total energy: the estimate for
argon may vary from less that 1% to as high as 15%[1M’15]
For liquids there is no definéte way of deciding wheth-
er the contribution of the trinlet interaction term will
be negligible or not. But from the phvsical nictures
it seems, as mentioned by Hildebrand et al.Elg] that
the different orientations in the licuid state "largely
elinminates this factor for large number of atoms 8as
closely packed as in a liquid;" and throughout all our
discussion we shall,assumevthat the contribution due
to the triplet interaction term is negligible.
Information about internmolecular forces can be
obtained from qusntum mechanical calculations, fron

molecular bean scstterineg exverinents, from the meas-
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urement of transport properties in the gaseous state
and the nmeasurement of the equilibrium thernodvnanic
properties of liquids and geases. Information
about intermolecular forces can also be obtained from
the heat »f veporisation data and from the measurenent
of the <§%>V of nornal liquidsE21’22] The last two
sources of informetion will be discussed because of the

use of these properties in Regular Solution theory.

Heat of Vaporisation

Hildebrand and Wood[23] showed that the potential
energy of liouid can be expressed in terns of its mol-

ecular pair potential and its distribution function as

2
E = E%E;_ u(r) g(r) re dr (7)

-~

where 'No is Avogadro's number when the equation (7)
is written for one mole of liquid, E 1is the total
potential energy per nole of liquid, vy 1is the nmolar
volume, end g(r) is the radial distribution function
of the liquid.

They exvressed U(r) in terns of an n-6 notent-

i8]l defined as

u(r) =L - K (8)
r r
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Substituting the equation (8) in the equsation (X)

one obhtains

g = 2™, { - kf-lm—} dr (9)

vV

Hildebrand, Wakeham and Boyd (21] svaluatea k, J
and N for mercury by Settiﬁg E = _AEVap’ the heat of
vaporisation, and by using the experimentally deter-
mined value for g(r), they obtained the values for k,
J end n which are in remarkably good agrecnent with
these values deternined from the other sources. This
agreenent has a considerable significance in formulat-
ion of the Regular Solution theory because in this the-
ory the interaction terms are described in terms of

the cohesive energy density, where the cohesive energy

density 1s defined as the heat of veaporisation divided

by the molar volurie at the same (extrapolated) temperature.

Measurenients of the <%%>V of normal liguids
Further evidence sbout the intermolecular potent-
ial energies are obtained from the behaviour of a van

der Viaals liquid, for which

@5} ——‘?-2- (10)

Comparing eaquetion (10) with the thermodynanic

equection of state
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one obtains

@), 3D,

Smith and Hildebrand 2] qeternmined <§%€%7 for
different liquids and they observed that VQ(%%>T de-
creases for C—C6FllCF3 with increasing temverature.
Similar phenomenon was also observed by Scott et alE25]
1 [26]

for CClu e This drifting was correlated by Fran

by writing E = éﬁ for dilute vapors. This allows one
v
to write

Vn+1<§§> =n V! AEVap = constant (13)
dV, T

for dilute vapors.

From the equation (13) a definition of n cen also

AEVa
be found as n 1is the ratio of <%%>T to < 7 p> of

the liquid. Smith and Hildebrand found that n has

value larger than unity for the liquids they studied.

Potential enerries hetween unlike molecules

The van der \Jaals constant a <for one mole of
binary mixture and the constants for the pure coripon-

ents are related by
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a = X3y + 2x1x2a12 + a, (14)
where a12 is the interaction between the unlike nol-
ecules and the X's are the mole fractions.

Wiriting 1

— 2
ayn = (alae) (15)
and then substituting equation (15) in equetion (14)
one obtains
_ % 32
a = (xla1 + X5a, ) (16)

The velidity of the geonetric mean assunption in
the equetion (15) was tested by Hildebrand and carter(27]
by measuring the <§%>V of the three pure liquids and
of their binary liquid nixtures. The calculated values

for g from the equation (15) were within 1% of the

12
experimental values for i, (Another interesting
discussion about the geometric mean assumption is given
by BarkerLMJ) The potential energies between the un-
like nmolecules will be considered in the latter nart of
this chapter. In this section we discussed the impor-

tence of the thermodynamic measurenents in relation to

the intermoleculsr forces.

Liquid State

In the beginning of this chanpter we mentioned the
two approximations that are involved in formulating

any theory of solutions: one involves use of a formal
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expression for the intermolecular potential function
(as has been discussed above) and the other involves
the approximations in the liquid state theory used.
Detailed discussion and the extensive review of
the theories of liquids and dense gases which will be
beyond the scope of this chapter may be found else-
whereE28;BO] but there are mainly two approaches to
the forrmilation of the liquid state. One apnroach is
the formal approach used by lMayer, Kirkwood and others.
This approach is based on the use of a radial distrib-
ution function. At present the most promising and in-
teresting theories based on this approach are the Scaled
Particle theo?y and the perturbation theory of Barker
and Henderson[ 29 j‘. - The Scaled Particle theory
will be discussed in a later chapter.
The other approach is to use theories based on en-
pirical mathematical models. The most commonly used
model theories are cell theory[33] and the significant
structure theoryEBg] Both these theories have been wide-
ly used in celculating the pronerties of liquids[29’31’32]
But as our nain topic of discussion is the Regular ﬁj
Solution theory and its apnlications, and as the Regular i
‘Solution theory is based on the assumption of '"maximun |
randomness, " the whole idea of a model approach is un-
acceptable because all the theories hased on the model

approach assune some sort of "quasi-lattice" order in

the liquid state.
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The controversy over the properties and the "struc-

ture" of liquids has been best surnarised in an article
written by Eyring, Hildebrand and Ricel 227 in 1963,

Hildebrand[Bu] in the book nemed Regular Solutions also

discussed the experimentel evidence in favour of the
"maximum randomness™ in the liquids, Considering thet
our interest is to apply the Regular Solution theory in
the studies of solutions of nonelectrolytes, we shall

accept the formal avproach in the following discussion.

Regular Solutions

The nane "Regular Solution" was first proposed by
Hildebranal °7 in 1929 in describine the solubilities
of iodine in different nonvolar solvents, In 1931,

G. scatchardl 27) put forward a theory to evplain the
behavior of such repguler solutions. This theory of
Scatchard is known as the Regular Solution theory. A
regular solution may be defined as

«e.0ne involvine no entrony change when a small

amount of its component is transferred to it

from an ideal solution of the same composition,
the total volume remaining unchanged.[38]

Some Important Therriodvnanic Relations
1D

Before discussing the different aspects of the
Regular Solution theory it seens importent to specify

some of the notation and thernodynamic relations which



- 18 -
will be used frequently in this thesis.
The following superscripts will be used to disting-

uish the state and the kind of process:

g = gas i = ideal
1 = liquid e = excess over ideal
solutions
o = standserd state. m = nixine or in nixed
(in this discus- solvent
sion the stan-
dard state is r = regular
always pure lin-
uiad)

The following notations will he used for the therm-

odynamic functions:

F = Gibbs free energy P = pressure
A = Helmholtz free vV = volune
energy
E = energy £ = fugacity
H = enthalpy T = temperature in

degrees ahsolute
S = entropy
The thermodynanic reletions which will be needed

frequently are:

F=H-TS, A=E~-TS =F - PV, E=H ~ PV,

The other importent thermodynanic relations are

given in Appendix Al.l.

TIdeal Solution

The concept of ideal solution serves the same pur-

pose in the studies of real solutions as the concept
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of ideal gas does in the studles of real gases. Per-
haps very few solutions are ideal, which is not surpris-
ing, but the advantage of introducing the concepnt of
ideal solution in thermodynanic studies of solutions is
that it is thermodynamically well-defined. ' An ideal
solution[39] is defined as one in which the fugacity

of each component is prbportional to the mole fraction
of thet component in the solution and this pronortion-
ality is obeyed over the conmplete composition ranege of

the solution., So according to this definition the fug-

acity of conmponent 1, fi, of an ideal solution is given
by .
i _ c0
fl = fl Xy (20)

o . . ' .
where fl is the proportionality constant for a given
tenperature and pressure. If we can proceed over the

whole rasnge of concentration to x, =1, £ anpears

1
as the fugacity of the pure comnonent 1.

From the definition of ectivity, a , we obtain

i
. f
at =1 (21)
1 £0
1
If the fugacities csn be replaced by vapor pres-
"sures then we may write equation (21) as
i
Py
o = Xl (22)
P1

which is Raoult's Law for - solutions.
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The free energyv change for an ideal solution can

be derived from equation (21) as

o—_
F1 = RT 1n xq (23a)
o—_
F2 = RT 1n X, (23b)
_ i _ o =1 _ O
= nl(Fl Fl) + nQ(Fz F2)
= anT 1n X, + neRT 1n X, (23c)

If the equations (23a) and (23b) hold over a range

of temperature and pressure, the following occurs:

e

From the

=i o)
sf = -{B(Fla% Fl)} = -R'1n x; (242)
P,x
—1 o
o _ Fe"F)} -
82 = { = -R 1n X, (241p)
AF¥>
= - NoT P,x
= -R(n; 1n x; + n, 1n x,) (25)

thernodynanic relation

H=TF + TS (26)
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we obtain

Aﬁ:lL = Aﬁ; = amM = 0 (27)

Similarly for the volume chenge on mixing we find

. =1 o}
1 1 2P T x
2
. i o}
gL _ yO _ d(Fz - Fe)} _
V2 V2 = { ST - = 0 (28b)
2
M AFM} _
AV = ST 0 (29)

T,x

Thus the thermodynanic prOpertiés of en ideal solu-
tion formed from liquid components can be stipulated as
follows:

(1) There is no volume change on nixing for an

ideal solution;

there is no heat of mixineg for an ideal solu-

——
N
—

tion;
(3) the entropv of mixineg for a binary ideal solu-

tion is given by

M _
AS T = —R(an In x; + nyR 1In x2)

In this section we have defined the ideal solution
from the thermodynanic point of view and we will use

this definition for the ideal solution throushout this
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0 XA 1
Figl 2,

Mole fraction of A in a
hypothetical ideal mix-
ture of A and B - partial
and total pressure of A
and B.

Fig.1.3.

Partial and total
pressure for a nonideal
mixture of A and B
with y > 1.

Pressure

Partial and total pressure
of a nonideal solution of A
and B with v < 1.
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discussion.

Nonideal or Resal Solution

In the esrlier section we defined an idesl solution
as a solution for which the activity of a component in
the solution is equal to the nole fraction of that com-

ponent in the solution such that

But for nost of the solutions, this is not the case,
and for convenience we define a term called activity

coefficient (see Appendix Al.l) as

a4 a, .

Y, = —— and Yo = —= (30)
1 Xq 2 X

So for an ideal solution,

Yy = 1 and Y, = 1 (31)

Again from the equation the partial molal free en-

ergy of nmixing may be written as

_ = _ 0
AFl = F1 F1 RT 1n aq RT 1n Xy + RT 1n Yq (32a)

il
il

= o

= - =RT =
AF, =F, - F, 1n &, RT 1n x, + RT 1n Yo (32b)
AFy = RT(X1 ln a; + %, 1n a2)

= RT(xl In x; + %, 1n x2)+RT(x1 Iny; + x, 1ny2) (33)
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In equations (32a), (32b) and (33) we see that the
first terms in the right hand side are ideal free ener-
gies of nixing so the second terms are the excess over
the ideal free energies of nixing and they ere known
as the "excess" free energies of nmixing. So the excess

free energy of mixing is defined as

F,{ = RT in \a1 (34a)
FL = RT 1n Y (34b)
2 2
FY = RT(x, 1n y. + x. 1n Ya) (35)
1 1 2 2

Similarly other excess properties may be defined
with reference to the ideal solutions.

The positive value of the excess free energy of
nixing, i.e. vy, 1s greater than unity, and is known
as & positive devistion from Raoult's Law. Similarly
the negative value of the excess free energy of nixing,
i.e« vy, is less than unity, and is knovn &s a negative
deviaetion from Raoult's Law.

In Figures 2-4 we show the different thermodvnamic
properties of ideal and non-ideal solutions for mixtures

of hypothetical liquids A and B.

Solubility of Nonelectrolytes and Recular Solution
Theory

In this section we limit our discussion to the

solubilities of nonelectrolytes because the long-range

nature of the electrostatic forces yields problems which
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ere beyond the scope of this thesis.

Primary consideration will be aiven to nixtures of
two or more liguids. For mixtures with a solid as the
solute we shall aessume that the stendard state of the
solids is the hypothetical supercooled liauid of the
solid at that temperature.

As mentioned earlier, Hildebrend in 1929 drew at-
tention to the very significant similarity in behavior
of a class of nonidesl solutions which he naned regular
solutions. The absence of any specific interesctions *T

|
|
|

|

e

is the nost important feature of these solutions. The
pure conponents of & regular solution have the proper-
ties of simple fluids or liquids.

The difference between a regular solution and an
ideal solution is that for a reguler solution the heat |
of mixing has a positive value whereas for ideal solutfj
ion the heat of mixing is zero. As mentioned earlier W
the entropy of mixing foraregulser solution is equal tovpj

the ideal entropy of mixing.

Heat of !lixing end Hildebrend-Scatchard Equation

The first attenpt to celculate the chenge in en-
tropy or enthelvy when two liquids are mixed, was nade
by ven Laar in 1906 but it was not very successful.

In 1931, G. Scatchard[37] published a mnaper where
he derived an equation to csalculate AE% or energy

change on nixing two liquids at constant volume. To

do so he assuned
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(1) The mutual energy of two molecﬁies denpends
only upon the distance between them and their
relative orientetion and not at all on the
nature of the other molecules between or around
then, or on tenmperature;

(2) the distirbution of the nolecules in position
end in orientation is randor, i.e. it is not
dependent on the temwverature or on the nature
of other molecules present;

(3) the change of volume on nixing is zero.

These assumptions allowed him to write the '"cohes-

ive energy" of a mole of liquid nixture,

2,2 2.2
g o SaaVaty FeCX KV U, O KoV

(36)
M lel -+ XEVé

For pure liquids -E = Cllvl’ etc, For liquids the

vapor is nearly ideal at ordinary temperature so -E

cen be identified with the enerey of veporization pg’eP

AP
or Cll=——%$—. In terms of the volume fractions equa-

tion (36) becones

- = 2 2
By = (xgVy + %V )(Cp 8,7 + 201 ,8,8, + Cpp8,°) (37)

. - N,V,
where &, = NV, T+ Wavs

So the energy of nixing is given by

and SO onh.

M _
pET = E - x;E; - x,E,

il

App(xyVy + x,V,)8, 8, (58)
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where A12 = Cll + 022 - 2012-

Then it is assumed that

Crp = (C110pp)% (39)
1
or Ajp = (Cqy = Cyp)® (40)
v
and substituting Ciy = %EL in equation (38) the enerey
i

change on nixing becones

aEY = (x,V, + x,V, {(?E > <§%%>%}@1@2 (41)

The squsre root of the "cohesive energy" density, i.e.
CQE4> is called the "solubility psrameter" and is

denoted by 6. So equation (24) nay be written as

M _
AET = (x. V., + x VE)(al - 52)@1@2 (42)

1'1 2

As eaustion (42) was derived from the assumption that
the volume change on nixing is zero, AEm in eouation
(42) 1is actually AE?.

Since AVM is very small, then

E _,E _ _ E E ‘a
F= = A, = E, - TS5 (43)
By definition ASE = 0 for regular solution, so
P o= EF = pE!] (44)

Conbining equetion (41) with eaquation (44), one obtains

P - (xlv1 + %V, 52 (45)



- 28 -
The corresponding partial molel free energy for a solute

is

=B _ - 02 _ 2
F, = RT 1n y, = V;87(6, 5,) (46)
where Yo is the activity coefficient of solute 2, or
AF, = RT 1n a_ = RT 1n x, + v985(s. - 5.)° (47)
2 2 2 2°1Y71 2
Rearranging equation (47), one obtains
3 o >
In a, = 1n %, + =% @1(51 - 52) (48)
where as is the activity for solute 2.

Hildebrand and ‘Jood derived the same equation by
integrating the intermolecular potential between vairs
throughout the liquid with the aid of a continuous dis-
tribution functionl23]

In equetion (48), we see that the Scatchard-Hilde->,
brand equetion is velid only for the solutions for which
the excess free energies are positive, i.e. those solu;/a
tions which show positive deviations from Raoult's Law.
This is.the direct consecuence of the geometric meen
assuniption in equation (39).

Hildebrand and WOOd[QB]

derived an equation sinmil-
ar to equetion (41) for heat of nixing by inteereting
the intermolecular pair vpotentials throushout the licuid
using a continious distribution function.

In a pure ligquid of sphericsally symmetrical mole-

cules, a sprericel shell of radius r around a desie-
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nated central molecule and thickness dr will contain ;
%Mnrgg(r)dr molecules where g(r) is the radial dis-
tribution function. The potential eneregy, E, of pure

liquid of N molecules in volume V 1is given by

2
_ enN 2
E =55 ) r° dr
2 ©
=n QQNO I U(r) g(r) re ar (49)

where U(r) 1is the pair potential at a distance r, N

o}
is Avogadro's number, and n 1is the number of moles.
Similarly for a binary mixture of liquids contain-
ing n, moles of type 1 and n, moles of type 2, the
potential energy of the mixture of total volume
v, =nV, +nV, = (n1 + n2) (xlv1 + x Vg) (50)
is given by
2
E_ = (n{V, + nV,) 21N {-—l— I U,.g r? dr
m 11 V2 ol P 11°11
1
2
2% @ &
2 I 2 _g_f 2 } .
+ 7 | UipBip T dr + 5 Upnbpp T dr (51)
1 2 V2

‘The energy of two unmixed comvonents is given by

2 { I 2
E. +E (n vV, +n vg) Ullgll r< dr

1 s = 2nNO

2 f oty r dr } (52)
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Therefore the energy of mixing is

M
AE" = E - E; - Ej

2
®
2 {__; I 0 2
(nlvl + n2V2)2ﬂNo 2 Ull(g11 - gll) r< dr
1

I

o
3
2 I 0.2 ( o I o
+ 72 Upp(Bpp = 85p)T7dr + 8,8, V.V, Ujp8qpr dr
o
1 o 2 1 o .2 3
2 I Upq8qq7 dr + 2 I UpolonT d£> } (53)
1 o

M
The AE in equation (53) is the energv of mixing
at constant volunie end the terms in the brackets in

equation (53) can be identified with Scatchard's (C11 +

C - 2C term in equation (38).

12)
Next Hildebrand et al. wrote the intermolecular

22

peir potential as

j U(r)g(r)rgdr = -k J.&Lﬁl dr + j j 5%%% dr (54)

From the discussion of the interniolecular forces
given earlier Jj, the coefficient of the repulsive in-
teraction can be exvressed in terms of k and the eouil-

ibriun distence, (see Appendix Al.2) as

. _ 6 n-6
J=g5 ()7 k (55)
(where r_ is the equilibrium distance)

Substituting enuetion (55) in ecustion (54), one

obtains
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j U(r)g(r)rgdr = =k { - I 5&%1 dr

+-g r n—6 I g(r) dr } (56)

S

It was then assumed[uoj‘that g's are functions |

where ¢ is the collision diameter of

wl%

r
of 5 or
o

rolecules, This assumption cen be justified from the
observation by Hildebrand et al. thet the distribution
functions of different specles can be suverimposed when

cormpared at equal degree of expansion by vplottine g(r)

r ‘4z .

versus , where r is the position of the first

r max :
max

maxinum. As o and r  are proportional to L and

if the substances have same type of notentiel, then

g(r) =eg(rsp) =ely)s v=¢ (57)

substituting eauation (57) in equestion (56) one

obtains
I U(r)g(r )r dr = k { -1 I Y) dy
n(o n > J > } (56)
Assuming r,=o (59) \.

end then substituting o for T, in equation (58) one

obtains
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f U(r)g(r)r dr = %3{-I gé%l dy + % I ig{% dy } (60)

Substituting equation (60) into equation (53) and
then assuning that each radial distribution function

is indevendent of composition of the solution, i.,e.

g0,(r) = g;,(r)s  eos(r) = gyy(r) (61)

the expression for the energy of mixing, AEM , of a

regular solution nay be rewritten as

M 2k, o
AE" = 2mN_ (nlv1 + nQVQ)Qlég {

5
ViValogq + 0p5)

k k2

- : 3 72 2)3}{'Jg;%)dy + %f%%%%dy} (62)

2]
vl(eo11 V2(202

Equation (61) is the msthematicel statement of
Scatcherd's assunption that "...the distribution of the
molecules in mosition and in orientaetion is random, 1i.e.
it is not dependent on...the nature of other rolecules
present (in & reguler solution)."

Returning to eocuation (62), the velues for k

(4]

12
cen be found in London's relation

(63e)

where 1I's are the ionization potentials.
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Substituting equetion (63a) into eauation (62),

M 2 {
AE" = 2nN_ (n,V, + n Vo) 842,

11 2011)3
i 1 1 1
_ 4T ,%T,.%k,%k,"? L1 Ko }
5 2 5
V1V2(Il + 12)(011 +- 022) v, (2022)
1 6

- —— 1 gly) ady (63b)

I { ;ﬁ' nyn 2 }

The equation (63b) will reduce to Scatchard's equa-

tion if one assumes "cohesive energy densities", ('s,
as
- Vap
Ciq = /vy
N
- [ {4 L ) et o (642),
11 1
- Vap
Cop = / Vs
— QTTNO { }
2 (LY e (e
9222
2T %I 5 1 3
C., = =2, k, %k,*
12 3 (I, + I,) "1 72
8V1V2( 11 ¥ O 2) 1 2

f{—ﬂ' ng}dy (64c)

Geometric IMfesn Assunntion

Before discussine the other asnects of the Regul-

ar Solution theory, it 1s important to consider the
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reliability of the geometric mean assumption given in

equation (39), i.e.

Cio =4 C11Co0

and its effect on the magnitude of the interaction con-

stant, A, in equation (39).

Fron equation (64c) we see that

R 3, 3
1’2 Y71 2 (o11 + 022)
I { “ﬁ - n— } dy }
2 _ I,1-
or 012 = c..C (65)

[(Il + IE)/ 2]2 [(011 + 022)/ 2] 11722

From equation (65) we see that if

I, =1, and 017 = %o (66)
then only
C120 = «/Cll 00
For a number of systems these conditions are not j

satisfied. For exanple, hydrocarbons and fluorocarbons
have ionization potentials about 10 ev and 16 ev respec-
tively end it is now generally accepted[ulj that systems
such as hydrocarbon-fluorocarbon nixtures do not obey

geometric mean assunptions. ReedEuE] in an attenvt to
account for the large excess free energies which have

been observed for hyvdrocarbon-fluorocerbon mixtures,
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reexanined the role of the differences in ionizetion
potentials and the collision diameters of the compon-

ents in the geometric assumptions. He wrote
_ _ _ IRRY:
Bpp = C1+Cpp=2C p = (81-6,)"+288,(1-1,1 ) (67)

where

and

f = { 2C’J.%:l-02§ }3

o

Reed estimated that, for hydrocarbon-fluorocarbon
mixtures, f; 1is about 0.97 and fO is about 0.995.

So for & = 7.5 and &, = 6.0 call/zcm.'B/z4 the second
term in equation (67) becomes about 3 cal er 2 which
when coupled with nolar volume from 100 to 200 cm3 can
produce an energy of mixing at constant volume as much
as 150 cal mole_1 in excess of that predicted from equa-
tion (38).

The consideration of the difference in lonization
potentials offers a satisfactory explanation for the
anonalously large heat of mixing end excéss free energy
of mixing observed for hydrocarbon-fluorocarhon ﬁixt-
ures. It would predict for other solutions sinilar
anomalies  which are not observed experimentally, eg.
CCl, @and I- have ionization potentials :of.11.0 and 9.7
ev respectively but their nixtures with fluorocarbons
show excess free energy in good apreement with equation

(38) with no need for a correction term. On the other
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hand it has s8lso been reported[ABJ that for a benzene-
toluene mixture, where the differences in lonization
potential of the conponents are not very large, the
values of 012 calculated from experimentally deter-

mined AEg are consistently lower than values calcul-

ated from § and § Recent measurements[uaj of

1 2 *
activity coefficients of hydrocarbon solutes in alkane
solvents such as n—-C24H50 , n'C3OH62 and n-036H74 ,
by gas-liquid partition chromatography, also indicate
that for aromatic hyvdrocarbons, the & value of the
solvent n-CEOH62 has to be changed fronm 7.730 to
6.850 to fit the experimental values for activity coef-
ficients whereas for alkane hydrocarbdns no such adjust-
nent is needed.

Hudson and McCoubrey[553 exariined the effect of

the differences in the collision diameters of molecules

on the geometric mean assunption. Assuming that T, =

1
12 they rewrote the equation (65) as
2.2
2 _ %11%2
012 (68)

= 5
(o11 + 055/ 2)

They used the equation (68) to calculate the crit-
ical temmerature for the binary linuid mixture of c-C6H12
- c-C6F12 and obtained a better egreement with the

experimental values.
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Vitoria snd Welkleyl 23] looked into the effects
of the differences of the molar volumes upon Clg's of
tetraphenyl tin - organic solvents mixtures. They wrote

equation (68) as

Cip =k Cp4C (69)

' i
where _ 6 V1V2 2
k_ =1{ 2°—3 T
( + V,7)

(61 = 62)2 es
2 _ .2 .2
(61 - 62) =8, 8,° - 2D8,5,,
or, 5,2 + 8,2 ~( 8, - 5,)°
! ) 1 )
b= 55,5 (70)
192 '

where b, in the left hand side of the equation, was
calculeted fromn the saturation solubilities. They found
that for tetrephenyl tin kc is much smeller than unity
but b 1is nearly equal to unity if excess entropy of
mixing is included in writing the saturation solubility
equation. Or in other words the experimentelly deter-
nined b indicetes thet the effects of solvent-solute
molar volume disparity on the geometric meen assunption
is much smaller for the systems conteining tetraphenyl
tin as solute than one would have exnected from equa-

tions such as the eouation (69).
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In conclusion, though the geometric mean assunpt-
jon is based on a narrow theoretical basis, this assunp-
tion when used in the form of solubility parameters has

been proven to be quite useful in calculating the ther-

modynanic properties of the solutions of nonelectrolytes.

Deternination of "Solubility Parameter"

The Regular solution theory requires § to be a

/

gself-consistent parameter. The § value has been calc-
ulated for a large number of substag;qf either
(1) from the relation § = égz}ﬁ which is usual-
ly used for substances whiﬁh are liquid at
room tenperature, or
(2) by determining saturation solubility, i.e. x

2

and then substituting x in the equation (48),

2
provided 61 is kngwn.
The 62 value for Snlu was deternined by E. B. Snith
eand J. Walkley'[MBJ from its solubility in a lerge nun-
ber of orgsnic solvents. In Table 1 62 value for SnIu
is given to show that there exist a reasonable consis-
tency 1in 62 when determined from saturation solubility.
The "solubility parametér" can also be caleculated
from thevcalorimetric heat of vaporization. At low
vapour pressure, the vapour in equilibrium with liaquid
is essentially ideal and ~E can be replaced by AEN;y

the energy of vaporization, which in turn ocan be replaced

by AHV - RT where AHV' is the heat of vaporization.
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Table I.1; Solubility parameter for SnI4 - calculated from
saturation solubility data[45]
Solvent Solubility 51 for 62 for
lOOXé solvent SnI4
CCl, 1.459 8.6 11.6
51C1, 0.382 7.6 11.4
CC12F.CF2C1 0,128 7.5 11.8
C6H6 2.181 9.2 11.8
c—C4014F6 0.0337 7.1 11.9
n—C7F16 0.001 5.9 12.0
H-C 2.50 . .6
C6 5CH 507 8.9 11
(toluene)

- 2
' s are expressed in cal.% cm., 3
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So
5 = (an’ - rr, v)E (71)

R. L. Scott proposed an empirical rule for heat of
vaporization at 2987 K and at boiling point of the lig-

uid which is given below.

MHJgg (caly mole) = 2950 + 23.7T, + 0.027,2  (72)

AH% (cal/ mole) = 17.0T, + O.OOgTB2 (73)

B

TB is the boiling point of the liquid. It should be
mentioned here that § calculated from equation (71)
mav not be appropriate for solids because of the long

extranolation involved in such cases.

Volume Change on Mixing

It has been assumed before that the volume change
on mixing is zero for regulsr solution, or in other words/
the heat of mixing can be identified with the energy of
nixing. So Xgax or nole fraction of comnonent 2 at
which the heat of mixing will be meximum can be calcul-

ated from equation (11).

ma,x
2

are given in Teable 2. These values are taken from ref-

The experinentel and the predicted values for x

erence [467. It is clear from Table 2 that the calc-

ma X
2

the experimentel value., One of the reasons, as supgest-

ulated value of x nulte often does not egree with

ed by G. Scatchard&h7] is that the Ay™ or the volume
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Observed and predicted values for X,

- 41 -

max

(i.e., mole fraction of component 2 at which the heat

of mixing is meximum).

M o) max
System V1 V2 HmaX T A X5
ce cc cal/mole obs. calc'd
n~Celyy
+ 132 109 53 293 0.63 0.53
c=CgH o
iso—08H18
+ 166 294 55 293 0.42 0.43
hexadecane
n-CeFqy
+ 205 131 516 298 0.52 0.55
n-CeH,
C6H6
+ 89 109 182 298 0.53 0.47
c~CgHyp
CCl4
+ 97 109 40 298 0.47 0.438
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change on nixing is never zero for a regular solut;on. \
So 1t becomes necessary to convert the experimentsl
numbers which are usually determined et constant pres-
sure to the constant volume nunbers.

The method of making these therriodynamic correc-
tions was first outlined by G. Scatchard&u7] His equa-
tions were derived fromva two-step process, @& nmixing of
two components at constant volume followed .by an expan-

sion or contraction of the nmixture (as the cese nay be)

to recover the pressure, i.e. the initial nressure. He

obtained the constant volume functions AA%, AS¥ and
AE% by expanding the constant pressure functions AAg,
Asg and AEg in the form of a Tayvlor series expsnsion
around M= v 4 AVE as
M M AN L E 2IN [ Ey2
AAPZAAV‘@'V>V E_%@E (V") "g (74)
OISV oV VU=V otV
M_ M E
st = asl - D) v (75)
A%
M_ .M E
AEP~AEV+{T@—‘T’>V-P}V (76)
M M .
AFP and AHP are obtained by adding APV to equaftion
'(74) and equation (76) respectively. As the initiel end

final pressures are the same, APV is nerely PAVM, or

M
P

Dg + PAVY = AA\D}I - =i (a1 (77)

o AF 5BV

= AA
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AH

U=
=
&=

_ ) _ M E
= AEp - PV® = ARy T@.@Vv

i
5
1
=3
w|Q
<

(78)

The o and B in equation (78) ere the coeffic-
jents of thermal expansion and isotherrnal conpressibil-
ity of the mixture, respectively.

Rearranging the equation (78), one obtains

AEM = aH E

M
Vv P

- T (%—) \ (79)

So the knowledge of ¢ and p allows one to coripare

M
P

From equation (77) we also see thet the difference

experimentally determined aAH with celculated AE% .

between AF% and ,AAg is dependent on (VE)2 and not
on v or as long as vE s smell, the difference |
between AFg end AA% is small. It has been obser&éd

that Regular Solution theory predicts free enerey of -
nixing within a few percent of the experimental values ‘
whereas for themheat and the entropy of mixing the agree%

ment between the exverimental and the predicted values

is not very goodll’19’43]

HMagnitude of Volume Change at Constant Pressure

VE

, the excess volume of mixing, is given by an

exact thermodynamnic relation as
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Ve - (35
T
and writing
s E E
Fo o= Av(T:V)
and ir VE® is small (vF)2
E
Av(T:V) s OT
E F AL
3P T <gP T
For regular solutions 35 =

of pressure. So equation

1

T Ve,

(vh?

can be neglected to make

PPy

0, end it is independent

(80) becomes

E E 7
vE = G—?—DT = G%) @a—\%),r = (BV)y G%DT

u

-

compressibility, etc. of the unmixed initial state of

the system. Now if Eg = Em

energy of the mixture and <%%> is replaced by n(

where

energy density,

- Eu where Em is the

equation (81) becones

FE

(80)

(81)

in equation (8l) corresponds to the pressure, volune,

)

n is the retio of internasl pressure to cohesive

| E E B - E
7 = o0, {Ge, - o) - o0 LA e

and N

4 n
Assuning m u

are the

sane for the mixtures and

the unrixed comnonents and then invoking the condition

E

_ B
that SV = (0 and AEV =}

E

, V~ can be written as



v = nsr” (83a)

Partial rnolal volume in dilute solutions

0f special interest are the partial nolal volunes
of solutes in the highly dilute solutions. Different-

iatiation of enquation (83a) in the limit as x. - 0

2
yields the equation
T
E _ = o _ £ %1% g
Vo =V, -V, =n.8,F, = T2 Fy (83b)
1
Recalling equation (46)
Ve = - 0; 2 2
Vo = 1B RT In v, =n,8,V;8,%(6; - 6,) (83c)

In Table 3 a comparison between experimentel and pre-

dicted values for the partial molal volumes are given,

Tablel.d
+ ~ o X7 _E '_'E
Solute  Solvent Vg, Vg(obs) Ve(obs) Ve(calc'd)
- [ 49]

I, n-C.Fic 59 100 cc 41 60

Br,, " 51 73 cc 21 24,7 [50]
Ve(calc'd) in Teble 3 was calculated from equation
(82¢c). It should be mentioned here that though for Br

2
the agreement between the calculated value and experiment-

al value is not bad, the equations (83a,b,c) are very
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approximete equations. But these equations can explain

the results qualitatively.

Entropy of mixing molecules of unequal size r84-91]

So far we haeve assumed that a solution is ideal
if the heat of mixing is zero ( see equation (47) ).
But it has been known since 1933 that the entropy of
nixing unequal molecules may not be ideel even if the
heat of solution and the volume chenge on mixing are
Zero.

Je He Hildebrand[51]

derived the expression for
the entropy of mixing of unequal molecules from the

"free volune theory" point of view as

f f
M _ X 1V1 X2V2
AST = =R X, 1n 7 F X 1n 7 7 (84)
lel + X2V2 lel + x2V2 ,

.~

for one nole of solution formed at constant pressure.

By differentieting equation (84),

- X V] xp(V5 - V)
AS, = -R in 7 7+ 7 7 (85)
lel + x2V2 xlvl -+ x2V2
v, vi '
Then he assumed that -vl =._%. So equation (85) becones
2 V2
AS; = -R[ 1n &, + @2(1 - T]E) ] (86a)
— Vs
Similerly, AS, = -R[ 1n §, + @1(1 - V’) ] (86b)
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When V., ~ V., the equation (86b) becones

1 2’

AS. = =R 1n x (87)

2 2

Adding equation (87) to the heat of mixing term as der-

ived previously, the equation (47) becomes

v

T _ ‘ 2 o, 2 2
F. = RT1 = _— -
AF, na,, RT[ln@2 + @1(1 Vl)] + V8, (51 59) (88)
If X, < X, such that X, = 1, then
x.V
1°1
$ = ~ 1 (89)
1 lel + x2V2
§2 =X szzgx V. X$V2 (90a)
11 22 1
V2 '
1n @2 = 1n X, + 1n VI (90Db)
So equation (88) can be written as
s \ v
- 2 2 2 2
In a; = 1n x, + 1n T + (1 - Vq) + (8, - 52) (s1)

Entronv of solution of a solid

In deriving the Regular Solution theory, it has
been aessumed that the mixing is "random.ﬁ% It is pos-
sible to determine the partial molal entropy change of
solid solute for a very dilute solution from the temp-

erature dependence of the saturation solubility and can
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be compared with the predicted values., It is related
to the temperature coefficient of the solubility by

means of the thermodynamic equation

3 (Fp = F3)
{ Y s

- Fz)} {a in 2} (92)
o) ln X 37T —F P
Fo=Fg,

!l
1
n

I

The second factor on the right hand side of the equation

(92) is Just the change of solubility with temperature

at constent pressure if F, - F; = 0, in the first fac-
tor, F2 - Fg = RT 1n(£§), where f2 is the fugacity

, , fi
of the solute in the solution and f°5 1is that in the

2
solid state. If the solid state is the pure solute

S

(i.e. if no solid solution is formed), f2

is indepen-

dent of x2 and so it can be written as
- F5) In f,
a ln X5 < } RT {g in x }
2°P,T

: in x
— =5 _ o)
or Sy = Sp = R {:—"In“‘T'}

{a In ag} ( )
° e 04
Sat.p © 1 XJp

{%—%%%%?}P T is the Henry's Lew correction factor; it
2 3

is close to unityv for a dilute solution of solids.
Since at seturation solubility, Py = Fg the heat of

solution nay be written as

3 1n x
S In T T

S

H, - Hy = U(S, - s3 s®) =P\T{ (95a)

Sat.p
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The alternate forn of equafion (95a),

3ln x H, - H

2 _ 2 2
ST ST T2 (95D)
RT
is the "van't Hoff equation" end is extensively used to
calculate the heat of solution of a dilute solute.
Equetion (94) gives the entrovny of solution at

constant pressure but Repular Solution theory is main-
ly concerned with constant volume quantities. So equa-
tion (95) has to be converted to the constant volume

entropy chenge. From equation (79),

—_ ' —_ iy
(Se - SS)V = (32 - S;)P - <%%>v v (96)

at X, - O where a &end B8 of the mixture aporoach

the values of the pure solvent.

Discussion

From the Regular Solution theory, it is expected
that when ASX , i.e. (§é - Sg)V is plotted against

=R 1n x a straight line should be obtained whose

2 ]
slope is exvected to be equel to unity and the inter-
cept to be equal to the entropy of fusion of the solid
solute at that temperature.
E. B. Smith end J. Walkley! %) plotted (5, - s9)p
= s
and (S, - S2)V apainst -R In x, for SnI, and they

obtained a straight line which had a unit slope and a
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correct intercept. J. H. Hildebrand plotted (Eé - SS)V
versus =R 1n X, for iodine. He obtained a streight

line but the slope was 1.10 and the intercept was dif-
ferent from the expected value., It should be mentioned

here that there are uncertainties involved regarding the

deternination of Vg of a s0lid with high melting noint.

o
2

hypothetical liquid supercooled below melting point.

\ of a solid at any témperature is the volume of the

Usueally it involves a long extrapolation.

In the case of non-violet solution of iodine, the
entropy of solution should not be expected to be idesal
as it hes been suggested that the change of colour of
the iodine solution from the violet to the non-violet
is due to the fornetion of "cherge-transfer" corplex.

As expected, the agreemnent between the calculated

- s - sy
(8, - 85)y from -R In x, end experimental (5, - S2)Vg

becomes worse when the difference between the molar

volurie becones larger as in the case of tetraphenyl tin

[53,54]

in ordinary nonpolar solvents or bromine in

[50]
n—C7Fl6 .

Regarding V as predicted by eacuation (83), it

2 ’
has been mentioned hefore that this is only an avnprox-

inate equation and is only qualitative in nature. It
predicts the increase of 72 of solute with the increese

of (6, - 62)2 value which has been verified by E. B.

1
Smith and J. Walkley[ng and 4. Vitoria end J. Welkley

[53,54] by plotting V against 51 of the solvent.

2
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The application of the simple Regular Solution
theory to nixtures of unequal mnolecules reises a few
yet-unsolved problems, perticularly when the entropyv
of nixing unequal molecules is &almost invariably non-
ideal, even 1if the rniolecules are spherical end heave
their bonds highly covalent. Equation (86b) which
is known as the "Flory-Hugﬁins term'" is often used to
calculate (Eé - Sg)V but there are doubts about its
reliability.[53’54]

This problen will be discussed in more detail in

later chapters.
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Chanter - IT

Solubility Studies in Mixed Solvents
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Hildebrand and Scott[56:I calculated the heat of
nixing for three component systenis followine the sin-
ilar procedure used by scatcharal 371 for binary nonelec-
trolvte systems. They wrote the cohesive energy ner

rnole of a ternary nixture as

2 2 2
~E, =XV, + x,V, + x VB)(Cll 17 T Cop®p” + Cy3ls
3.3 3 %
+2058,8, + 20,58, 85 4+ 2Cy3%, 3) (1)

where X's, &'s, and V's have the meaning of nole
fraction, volume fractions and volumes, and C's are
the cohesive energy densities.

In equation (1), C's are the constants of binary
syvsternnis and there are not constants devending on all
three components simultaneously. This is the direct
consequence of the assumption that the energy of three
sets of rnolecules can be represented bv the sum of the
three pairs taken independently.

Recalling that -E = C,.V etc., the heat of

11 11°1
nixing, AHM , may be written as

M _
AH™ = Em - xlEl - x2E2 - X3E3

= (xlvl + X,V + X V3)

x (A 3, + (2)

5 8
128183 T A 3R 85+ AR 8)



where
Ajp = Cpq+ Cpp- 2Cy 5 (3a)
Aoz _ o 4+ 0.~ 2c (3b)
22 35 23
A = - 15
31 033+ Cll 2031 | (3c)

The A's are the interaction constants of three
separate binary systems; so the ternary systens may be
completely described if all three two-conmvonent systems

are known.,

Differentiasting equation (2), one obteins peartial

rmolal heats of mixing:

= 2 2
Ay = V[ A L85 + Aq385 +( Byp+ Asy- A23) ] (4a)
= 2 2

AHy = V[ A 587 + Aozl +( Aot Aps= AlB) ] (4b)
= 2 2 _

MHy = V5[ A 587 + Bpzds +(‘A13+ s Ary) ] (4c)

If the assumption thet the interaction enerey be-
tween the unlike psir is the geometric meen of that

between the like pairs, then

- - 2 (5)
A, (6. aj)

and the equations (4a,b,c) reduce to

Aﬁl =V, [ ( 61— 52)¢2+ (51— 53)@3 ]2 (6a)

v, [ ( 8,- 51)¢1+ (62 - 53)¢3]2 (6b)

n
it

AH, = vy [ ( 85~ 8,08+ (85 - 51)¢3]2 (6c)
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The equations (6a,b,c) can be rearranged in different
ways:

(i) Each of the equations may be rearraenged in
such & way as to show that the heest of mixine of liquia
2 with liquids 1 and 3 is equivalent to the heat of
mixing of 1liquid 2 with & hypothetical 1liquid whose 3

is the volume fraction average of 1 and 3.

= 2 .2
A, = v?(ag - am) 388 (7)
S S
where s - 6161 + §363 (&)
(o] S S
8] + §3
and
- S S
2, =8+ §3 (9)

The equations (7), (8), and (9) can be resrranged

o

further in terms of the volume fractions Qi of com-

ponent 1 and 3 in pure nixed solvents when comoonent 2

has not yet been added, such that
80 + 85 =1 (10)

whereas analysis of the equations (7), (8), and (9)

yields
§m + @2 =1
or
@i + @S + @§ =1 (11)

The transformetion of the equations (7), (8), and

(9) in-terms of equation (10) can be done in a nuch



- 56 -
simpler manner in the following way:

From equation (7),

_ 2
A, = V. (3 5, - @mam)

e 2'"'m" 2
s s
+
or 55 -6 §161 §363
m-m m @m
= @ial + @%aB (12)

Now there exists a reletionship between the ég's

in pure mixed solvents and éi's in three component

systemns such that

3. @
13-4 2
5 = 70 1 8, (13)
1 3 '
or
_ =0 s
8, = @1(1 - @2) (14)

) (15)

Substituting él and &_'s from the equations (14)

3

and (15) in equation (12) one obtains

¢ 6 = @1(1 @2)51 + ¢3(1 §2)63
_ -0 _ S o) _ %S
= 876, - 856, + ¢363 @253
e o] _ 5935 _ 59%S 6
= 806, + 836, - 87056, - 3323 (16)

Again if one defines ém in terms of ég and ég then

_ o} o}
% am(l) = ém(élél + @BaB)
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_ _ &S o] 0
= (1 @2)(6161 + ¢353)
— o] (o] - 0zS _ OQS

2,6, + §363 @1@251 ¢3 253 (17)

As equations (16) and (17) are identical and @m 's
in both the equetions are the same, & (1) =6~ or &_
for a mixed solvent cen be defined in terms of the vol-
ume freactions of component 1 and 3 in pure nixed solvent

such that

_ 20 e}
6m = 6161 + §363 (18)
such that
0 o _
@1 -+ @B = ]

(ii) An alternate transformnetion of the equations
(6a,b,c) leads to the partial molal heat of mixing as
a function of the § of the pure substance and the

averege & of the ternary mirture:

= _ 55y _ &S _ &S 2
AH, = V[ 52(1 @2) 878, @353 ]
— _ &S _ 8S _ &S 2
= Vol 65 = 856, = 276, - 2565 ]
=V 6. -5 1° (19)
ol P
where
— _ .S S S
5 = 878, + 28, + ¢353

Activity Coefficient in Repular Ternary Svstens

For reguler solutions, the entropy is ideal and

the activity coefficients are directly related to the
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partial molal heats of mixing. Hence for the equations

(7) and (19), one may write,

pzH, Vv
_8 Yo 2 _ o
In v, =g =57 &, (6, - &)
v
=_% (6 _3 )2 (20)

or the saturation solubility of the solute 2 can be

fornulated as

In al = 1In X + =— &

2 2 RT "m

2
5 = by (21)

where ag is the ideal solubility of component 2.

In this chapter we investigate the relationship
o = @?61 + @%63 and other excess thermodynamic prop-
erties of component 2 in mixed solvents. Our investi-
gation suggests that such a relationshin of 8. can
only be assumed if we are alldwed to define an "effec-
tive volume fraction" term. This re-definition arises
due to the fact that the solvent molecule environment
around a solute molecule 1is not adequately described
by the simple volume fractions, so that one has to take ac-
count of the possibility thet the solute may be nref-

erentially solvated by e particular solvent partner.

In order to emphasize this preferentiel solvation, we
first chose benzene as a mixed solvent pertner in +the ben-

zene-iodine-cyclohexane system. Later we determined
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the solubility of stannic iodide in benzene - c-CéH12
mixtures. We selected 12 and Snl4 as solutes and
C6H6 - C—C6Hl2 as the solvents because of the fact
that all necessary thermodynamic data for these systems
are avallable and the binary systems of each solute in
[69,70,71-73]

each solvent are well studied.

Experimental

Temperature Control

The temperature of the bath in which the saturated
solutions were prepared was controlled by means of a
contact thermoregulator and an electronic relay box
~ both supplied by Fisher Scientific Co. Ltd.

A Beckmann thermometer was inserted in the bath to
determine any femperature fluctuations.

Thé_thermoregulator was connected to an electronic
relay box as was a heéting coil. In addition to the
heating coil and thermoregulator, one pump for circu-
lating water and a cooling coll were immer;ed in the bath.
The cooling coil was cdnnected to the cold water supply
in the laboratory, which is sufficiently cold to keep
temperature of the bath at 20°¢ (the lowest temperature
used in this experiment). The temperature of the bath
was held within + 0.01°C of the desired value.

For the determination of the partial molal volume

of the solute a toluene regulator instead of thermo-

regulator was used. No fluctuation of the liquid level
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in the stem of the dilatometer was observed using a
cathetometer.

Determination of the solubility:

The method used in determining the saturation
solubility was a simple and quick one. The procedure
can be described in the following way:

The solvent and excess solute were placed in 50
ml flask along with a small teflon-coated magnet bar,
The flask was placed at the side wall of the thermo-
stated bath. A Fisher “"Thermix" magnetic stirrer was
placed outside the bath in contact with the side wall.
With such an arrangement the solution can be stirred
as long as needed. Usually the solution was stirred for
24 hours and the solution allowed to settle for further
12 hours. Then the flask was opened and the required
amount of solution was taken out by means of a volume-
tric pipet. Two test solutions were pipetted out.

Then the flask was closed again and the whole proced-
ure was repeated. This procedure was repeated for
each solvent-solute system at one temperature, until
three consecutive self-consistent pairs of values were
found.

The amoung of solute in the solution was measured
spectroscopically at an appripriate absorption peak of
the solute (12 : 520 mH; SnI4 : 320 mp; and Sn(C6F5)4

: 267 md). A Beer's law calibration plot was constructed
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for each solute, using known quantities solute in diff-
erent solvent mixtures.
The saturated solution of solute pipetted out
(1-2 ml) was too concentrated for direct spectroscopic
studies. Each sample removed from the dissolution cell
was diluted (usually 1 : 250 for I, and 1 : 500 for

Snl, and Sn(C6F5)4) with c-C H,, and then the optical

4
density of the diluted solution was measured at the
absorption peak of the solute using a Cary - 14 spec-
trometer.

The accuracy of this technique was verified by
comparing the solubility data obtained by this method
with available solubility data obtained by other means.
A comparison of the solubility of 12 determined spec-

troscopically with the solubility of 12 determined by

means of chemical analysis (titration) is given below.

Solvent Temperature X5 Xo
(spectro- (titra-
scopic method) tion)

O 0450
. CgHg 25°C 0.0481 0.430L 7%

n-heptane 25°¢ 0.00675 0.00579L7°]

The general consistency of the final results also con-
firmed the accuracy of this technique (the percentage

average error in the saturation solubility is + 1%).
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The spectroscopic analysis is simpler in tech-
nique and guicker in determining the amount of solute
in solution than any other method of chemical analysis.

The solvents were spectroscopic grade (supplied
by Pisher Scientific Co. Ltd.) and were used without
further purification.

A typical experimental result: - Saturation solubility

of 12 in a benzene - cyclohexane mixed solvent at 2500.
Volume fraction of benzene in solute-free mixed

solvent = O.7604

Number of Saturation solubility of I
observation in gms/liter of solvent.

1 110.2

2 109.5

3 * 107.5

4 107.5

5 j 109.5

6 109.0

Average = 108.9

+ 0.9%
or, the saturation solubility of I, = 103.9 + 0.9 gms/liter

I

Average error

of solvent.

Effect of average error onf}m

(a) Effect of positive error on gp

Saturation solubility of 12 = 108.0 + 0.9 gms/liter of

solvent
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or, X, = 0.0392

Writing the saturation solubility as
i 2
In a5 = 1n x5 + (V,/RT) (6, =6 ,)
we obtain,
i

bm = 62 + [(VZ/RT) (1n a5 - 1ln xg)]

1/2

(where 52 = 14.1, V, = 59 cc and 1ln aé = --1.355)‘:110:l

2
or, bm = 9.75

(b) Effect of negative deviation on o

Saturation solubility of I, in gms/liter of solvent
= 108.9 - OI9
0.0385

or, X,
or, o =9.73
5, determined from the average saturation solubility
= 9.74. So, we see that a 1% average error affects
bm for the benzene - 12 - cyclohexane system by one in
second decimal place, so that the effect is one in
thousand. }

The effect of + 1% error on § for the benzene -
SnI4 - cyclohexane system will be much smaller because
for Snl,, (VZ/RT)]'/2 = 1.98 in comparison to (V2/RT)1/2
= 3,168 for I,.
-Determination of partial molal volume

The common method of determining partial molal
volume, by determining the density of solution of known
composition, requires that the density be measured with
an accuracy difficult to obtain with volatile compounds;

moreover the method 1s inaccurate if the solution is
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dilute[95]. We, therefore, adopted a simple dilato-
metric method, which has been applied successfully
previously for measuring the partial molal volume of
iodine, [95] stannic iodide[52] and tetraphenyl tin[54].
The two dilatometers which were built by Dr. M. Vitoria[54]
consisted of cylindrical glass bulbs -- one being of
150 ml capacity, the other of 10 ml capacity to conserve
solvent. The stem of the dilatometer is calibrated
capillary of uniform internal diameter of 0.2 cm[54].

The dilatometer bulb was placed in the thermostated
water bath whose temperature was kept constant at 25
+ 0.01°C. A weighed amount of solute was sealed into
a long thin-walled capillary, narrow enough to slip
down through the stem into the bulb. This was broken
under the solvent by a glass ball sealed in the dila-
tometer and the solute was dissolved by carefully shaking
the glass ball. The rise of the liquid level in the
capillary was determined by using a cathetometer, after
equilibrium of the solution was reached. A correction
was made for the amount of glass added and the partial
molal volume of the solute was calculated from the
_expression

v, = (TTrQALMZ) /i,

where r is the radius of the capillary, A4 is the cor-

rected rise in the liquid level, W, is the weight of

the solute and M2 is the molecular weight of the solute. A
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typical experimental result along with error analysis

[71]

is given below

A typical experimental result:

Composition of mixed solvent:

o)

QBenzene = Ql = 0.69217
0

$ = &Y = 00,3073

Wt. of glass = 0.0324 gm

Wt. of glass + I, = 0.0456 + 0.0001 gms

so, wt. of I, = 0.0141 + 0.0001 gms.

Total rise of liquid level = 0.565 + 0.001 cm.
Rise due to glass = 0.453 + 0.002 cm.

(Density of glass was taken as 2.26 + 0.01 gm/cc[72].)
Rise due to I, in solution = 0.112 # 0.003 cm.

Partial molal volume of I, = 72

I

63.3 + 1.7 cc.
Results I

Saturation solubility, entropy of solution (ng),
partial molal volumes and other relevant data for 12
in C6H6 - c-C6H12 are given in Table II.1l. In Figure
II.1 we give =R 1n X, versus g (volume fractions of
benzene) plots at 20°, 25° and 30°C. In Figure II.2
we plot the excess quantities

A my _ m 1 3
R( 1n x2) = R[ 1n X5 (@l 1n x5 + @B 1n x2) ]

and

Vg(excess) = Vg - (@lV% + @3vg)
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Assymetry of both the excess curves was noted.
In Table 1I.5 we give the saturation solubility
and other relevant data for SnI4 in benzene - c¢-CcH,,.
In Figure II19 we plot -R 1n x, (for sal,)
against Qg (volume fraction of benzene) at 25°¢.

The saturation solubility of naphthalene in
CH212 - c—C6H12 mixed solvent determined spectroscopi-
cally is given in Table II,10. The saturation solu-
bility of Sn(C6F5)4 determined spectroscopically is
given in Table II1I.4 and the partial molal volumes of
Sn(C6F5)4 in different organic solvents are given in

Table III.5.



Discussion

In terms of Regular Solution theory, the saturation
solubility of iodine in the mixed solvent and iodine in

pure C-C6H12 solvent are given by

. \Y
i VYo .2 3 2 m
Ina, =¢% & ° (8, - 6.)° + 1n X, (22)
in al =‘zg 5.2 (6, - 6 )2 + 1n x2 (23)
2  RT °3 2 3 2

where subscript m refers to the particular property
or quantity of the mixed solvent for 12 in CeHg -

c-C6H12 system, subscript 1 always refers to benzene,

2 +to iodine and 3 to c-C6H12 .

_ .0 o
6m = Qlél + §363

xg is the saturation mole fraction solubilitv of 2

-~
in the mixed solveht; similarly xg is the saturation

mole fraction solubility of 3 in pure solvent 3 (here
c-CgH, , ) For a dilute solution as in the case of I,
in c—C6H12 or I, in CgHg - c-C6H12 mixed solvent,

the iodine mole fraction solubhilities are of the order

of 1077, and 85

to 1. So equstions (22) and (23) cen be rewritten as

and @i can be assumed to be equal

{-Bz(ln al - 1n xg)}%

V2 2 =06, - by
- (0] (o]
=6, - (@151 + 4’?363)
_ o
(8, = 85) - 2.(6, - 65) (24)

~
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Similarly for iodine in the pure solvent 3,

(25)

{ RT (1n ag - 1n xg)% } =6, - b

)

Dividing equation (24) by equation (25) and then rear-

ranging, one obtains

i ms _ i 3\ %
(1n a; - 1n xg) = (1n a, - 1n x2)2

) 1 33,0 f %17 585
(1n 8,2 - 1In XE)?QJ_ {'5—2‘—_——5—3-} (26)

Equation (26) implies that a linear relationship

i my & o .
exists between the (1ln as - In x2)° and @, for which
the Intercept value at &. = O can be compared to an

1
experimental quantity and for which the ratio of the

slope: intercept may be compared with 5i's.

(@]

1n xM¥ d
- 1n xg) and ¢,

The relationship between (1n a%

for iodine in C6H6 - c—C6H12 is shown in Fipure II.3

1
and (1n ag - 1ln xg)? and @i i.e. volume fraction of

benzene for SnI4 in Celly - c-C6H12 is shown in Fig-
ure II.10. Assuming that an expected linear provnortion-
ality exists, the best intercept value for iodine in
.C6H6 - c-C6H12 mixed solvent obtained by drawine the

best line is 1.755 which compares badly with the exper-

i
2

analysis of the plot in Figure IT.3 suggests that the

imental velue of 1.835 for (1n a. - 1n Xg)% . An

relationship is not in fact linear. On the contrary,

if a smooth curve is drawn through the experinmental
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points, then the intercept of the plot compares favour-

ably with the exnected value. The above anelysis rests

on the velidity of the assumption that g = 3% . + 3%

171 573

but not on any assumption of the actual § values,

In Table II.2 ém for C6H6 - C—C6Hl2 mixed solvent in

C6H6 - 12 - c—C6H12 system calculated from the solu-
bility relationship, equation (22), and those calculated

according to the relationship 6m = §05 + for

(o]
197 + 305

63 = 8,2 and 61 (for benzene) of both 9.2 and 9.99,

are compared. The former 51 value being the thermo-
i

dynanic (%E ® value, the latter being derived fronm

the experimental saturation solubility of lodine in
pure benzene. The first set of the calculated 6m/
values are quite incompatible with the 5m(experiment-
al) and the latter are only in moderate agreement.
The disagreement between the calculated 5m's and the
experinental & values suggests either that a pair-
wilse additivity approximation does not hold, or that
the nearest solute neighbours of solute in the nixed
solvent are probably not reflected by the volume frac-
tions comnosition of the bulk solvent mixture.

In analysing the first éssumption, we see that in
the absence of dinole interactions and molar volume dif-
ference of the solute and solvents, this assunption is

sinilar to the one that 1is usually made in formulating

the additivity rule for dispersion or van der Waals
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forces in calculating intermolecular forces. Although
it has been shown by Axilord and Teller[59:60] (and
later by Jansen and co-workers[61'63]) that the additiv-
ity rule for van der Waals or dispersion forces are only
approximate but the magnitude of the contribution of
the nonadditivity to the total intermolecular forces
and their importance are not very clear at present.
Anyway it seems that at room temperature, phe contribu-
tion due to the nonadditivity is negligible provided
no dipole and steric interactions are present. A sim-
jlar conclusion was drawn by Hildebrand et al.[19]

The second assumption originates from the earlier
assuniption that the partial heat of mixing of liquid 2
with liquids 1 and 3 is equivalent to the heat of mixing
of liquid 2 with a hypothetical new liquid whose § 1is
the volume fraction average of 1 and 3 in solute free
pure mixed solvents. In a previous work [64]concerning
the partial molal volume of bromine in 0014- 0"04012F8
a preferential contact between bromine and 0014 was
needed to explain the experimental results. Christian
et al!65;66]in their studies of the effect of the sol~
vents on the formation of electron donor-acceptor com=-
"plexes, proposed a "distribution coefficient'" of the
acceptor and donor in the solvents., This idea was in-
troduced in order to correlate the variation of equilib-
rium constant of donor acceptor complexes with solvents.

In other words for e given donor and acceptor, the nun-
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ber of donor molecules around the acceptor molecules
depends upon the ability of solvent to solvate the ac-

ceptor, provided the number of the neerest nelghbour

of the acceptor does not change. The distri-
bution coefficlent, KA i of acceptor in a solvent
k]

i with respect to a reference solvent, ref , was
. [66]
written as ref .ref

YD v

KA,i T A (27)
Yo Vi

where Yp 's are the activity coefficlients of component
of acceptor in reference solvent and the solvent 1,

Vref 1s the molar volume of reference solvent, and V;

is the rnolar volume of solvent i .
Christiaen defined y's of the solute (here accep-

tor) from Reguler Solution theory as

V
ref _ D 2
Yo =Rt (8pepr = 8p) (28)

where Vo is the molar volume of D , and §'s are the
solubility perameters.
Defining the distribution coefficients of the donor

in terms of the equations (27) and (28), Christian was

able to correlste Keq for pyridine-iodine in various
nonpolar solvents with the distribution coefficient KD i
2
[67,68]

Murrell et al. introduced the idea of a "well
defined solvation shell'" which is supvosed to form around

the acceptor molecule in the solution. The formation of an
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electron donor acceptor complex in solution results in
the eliminstion of the solvent molecules of the so-called
"yvell defined solvation shell."

These experimental results definitely indicate
that in three component systems there is & preferential
solvation around the solute by one of the solvents, or
in other words the volume fractions of comnonents 1 and
3 in pure mixed solvent do not adequately define the
environment eround the solute molecules inthenixed sol-
vent. Considering the possibility that there may be
some preferential solvation effect around the solute
molecule, we selected~benzene es one of the component§
of the mixed solvent, because of the well-known "like-
ness" of iodine for benzene (iue to the formation of
electron donor acceptor complex between benzene and
iodine.[69’7o])

The reletive number of n;arest neighbour molecules
of a particular solvent around a solute nolecule in the

three component system can be calculated from the ex-

perimental & fron the equations

L L

6m(expt) = 8,8, + @555
(30)
and _ * %
8, + @5 =1

it . .
where & 's are now defined as the effective volune
fractions, which are the measure of the relative nunber
of benzene and cvclohexane molecules around the ilodine

solute molecule.
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We may also define the "effective volume fractions"
Q* in terms of the relative number of solvent

molecules around the solute molecule as

3

3
_Q_l_._-l\r_l_\f_l:ﬁﬁ_ég:_@lg_l
3 L3

N 2

$ 2
1882 = 63
- QO 62 -~ 61 2 (31)
)
when
0 o _
Ql + @B =1
and
L3 ¥*
8, + 85 =1 . (32)

Although we have not been able to justify this
type of gfinition for 3* from the complete mathema-
tical derivations, it can be clearly seen that equations
(31) and (32) are based upon Phe interaction constants
for 1-3 and 2-3 systems given in the saturation solu-
bility equation for two component systems. These equa-
tions say that the ratio of the 1 and 3 types of the
nearest neighbour molecules is the bulk solvent mixture
ratio weighted by the respective heats of mixing of
iodine in pure solvents. The total effect of the "ef-
fective volume fraction" 3"  defined by equations (31)
and (32) is the minimization of partiel molal excess
free energy of component 2 in the three component sys-

tems. As we are uneble to justify these eaquations fron

the mathematical derivations of an established eauation,
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these equations can be Justified from experimental re-
sults from different sources and from the effects of
these equations on other thernodynamic properties of
three conponent systems. From the physical siegnificance
of the "preferred environment around the solute mole-
cule" (i.e. 2) we expect thet the numbers of the pre-
ferred molecules, in this case benzene, in the solution
rmust be greater than the number of molecules of compon-
ent 2 in the solution. As In this section we are deal-
ing with very dilute solutions of component 2, where
the composition of three component are such that the
nunber of "preferred molecules" are always g;eater than
the solute molecules, we need not mention these restric-
tions. But for nondilute solutions, as will be discussed
later, this restriction will play a very important role
in determining the thermodynamic »nroperties.

Using - &,, 6, &nd 65 values of 14.1, 9.99 and
8.2 respectively for iodine in benzene-cyclohexane mixed

solvent, we calculated 6; from the relationship

3# #* #*
6. = &.6, + 3.8

m = 2181 T %385 (32)

These ' are given ! in Table II.2. Clearly 5; 's sre in

 excellent agreement with 6m(experimental). In Figure

i
II.3 the (1n-§§)% versus &,
X5 1

excellent lineer relationship is seen to exist, the

is also plotted. An

intercept of 1.85 agreeing well with the experimental

value 1.835 and fron the ratio of the slone - to inter-
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cept, &, iscalculated as 9.9, in exact self-consistent
agreement with the value previously used.

In Figure II.4 and II.5 we plotted both =R 1n xg
and partial molal volume against @i. These plots are

in sharp contrast with the dependence of -R In X5 and

vg on Ql‘ The Figures II.4 end II.5 suggest alriost

linear dependence of _R 1n Xg and Vg on @i values,
such that
m __ . # 1 * 3
R1n x; = &R In X; + 85R In x7 (34)
and
=M %=1 *#_3
Ty = 81V + 8577 (35)

Although Figures II.4 and II.5 suggest a linear

m =M
o and V2 ’

will see in a later section of this chapter that equa-

relationship between @i and -R 1ln x we
tions (34) and (35) are mere%y limiting cases of more
rigorous equations.

It is useful to examine the @i term for other
systems., /e consider data for the solubility of iodine
in a nixed benzene - carbon tetrachloride solvent re-
ported by S. E. Wood et all7?] The (in al - 1n Xg)%

versus é* plot is given in'Figure IT.6. The linearity

1
is seen to be excellent and the intercent (1n ag - 1n xg)
= 1.785 is in good sgreement with experimentsl

value 1.80. In this calculation superscript and sub-
script 1 stend for benzene, 2 for iodine and 3 for

CClu « Xg i.e. mole frection saturation solubility
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of iodine in CCl, was taken from Wood's data.) 8

(for CClu ) was calculated from x3 From the slope

5 e
we again find that for iodine solute the "best"

8 paremeter for benzene is of value 9.99. In Table

II.3 we conpare the experimental 6m value with those

values calculated using both volume fraction and effec-

tive volume fraction terms. The latter data show an

excellent agreement with the experimental velue. In

Figure II.7 we plot 1n Xg against § and @i and

¥* , the experimental deta appears to be addi-

1
tive in terms of the saturation solubility of iodine

using @

in two pure solvents. Clearly this linear dependence
of both 1n xg and Vg upon @i , with the inference
of "zero excess property of mixing term" is a special
case of a more generalized forrulation of Regular Solu-
tion theory, which will he discussed later. In this
section we are more interested in examining the velid-
ity of the definition of Q*'s. As mentioned above, we
chose benzene as one component of our solvent nixture
because of the electron donor acceptor interaction be-
tween benzene and iodine. The enhencement of the 6,
paraneter for benzene from 9.2 to 9.99 reflects this.
So fer, we have limited our discussion to systems

where the solute has a special liking for one solvent,

thus enlerging the effect of preferentiel solvation.

Now we examine the cases where no such special inter-

actions such as the electron donor acceptor interaction
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exist. This is the case with lodine in a nmixed CClu -
[74]

n-C7F16 solvent - only two data points exist for

this system. The agreement between equation (26) and

" the above data is exarined by recognizing that the

(1n ag

ing the saturation solubility of the solute in the pure

1
- 1n xrgn)2 reletionship can be predicted know-

solvent, the ideal saturation solubility and the three

6; values. In Figure II.8 this relationship is plotted

for the iodine - CClu -n-C7F16 systen and it is seen
that data points lie on the observed line only if they

are plotted sgainst @i value.

From the above discussions, it is clear that if

5 eand §

1 are adjusted with respect to a constant

3

) value from the saturation solubility for 2 in 1 and

2
2 in 3, no forther adjustment of paraneters is needed

for three component systems. Besides we also showed the
importance of é* in calculating the saturation solu-
bility and Vg of 2 in a mixed solvent. To verify
these statements we changed the solute from iodine to
gtannic iodide -- but we keen the mixed solvents as
venzene - c-CgH,, mixture. The reason for this can

be found in the fact that for SnILL , i.e., solu-

8,
bility paremeter of benzene, calculated from the sat-

uration solubility data, assuming § (solubility para-

2
meter of staennic iodide) equal to 11.8, was found to

1
be 9.24 in (cal/cm%f an excellent agreerment with the

6 value 9.2, calculated from the heat of vaporization

1
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ms 2 3#*
1n Xg) versus @1 ) is found to be 0.38 which 1is
in good agreement with the value 0.376, calculated for
the slope from equation (26) with 61 = 9.24 | 5y =

1
11.8 and 63 = 8.5 (cal/cmz).z3 In the case of SnIu in
Cglg = c=CgH,, nixed solvent, we see that we definite-
ly need & preferential solvation around the Snln mole-
cule by one of the solvents, i.e. benzene, even though
there are no specific interactions between.SnI4 and
benzene molecules. But because of the close proximity
of 6, and 63 values, the actual preferential sol-
ubility is much less than that in the case of 12 in
benzene - c-C6H12 or 12 in benzene - CClu nixed
solvents.
In Figure II.11 we plot 1ln x

2

. - - ] -
SnIu in benzene c C6H12 . Unlike 12 in benzene

c-Cgly, or I, in benzene - CCly » the experimental

in xg is not linearly devnendent on §i ,

cates that the "excess property of mixing" is no long-

’ *
versus §1 for

which indi-

er zero for this systen.
Finally we test the validity of the definition of
§* 's from the expected linearity of 5m(experimental)

end % or @i because if

_ .0 o)

o

_ O
= 3,8, + (1 - @1)53

_ O
= @1(51 - 53) + 63 (36)
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data. Whereas for iodine-benzene system, as mentioned
earlier, 6, for benzene had to be shifted to 9.99
(assuming that the solubility parameter of iodine is
. equal to 14.1) to take account of the electron donor
acceptor interaction between benzene and 1odine.
From the saturation solubllity of stannic iodide in
cyclohexane, 63 (i.e..the solubility paranmeter of
cvclohexane) was found to be 8.50 incomparison to 8.2
calculated from the heat of vaporization data.

In Table II.5 we have given the saturation solu-

1
5
- 1n xg) of

bility along with the values for (1ln ag

SnIu in five mixed solvents at 25° C. In Table II.6
we conmpare 5m(experimental) calculated from the satur-
ation solubilities of SnIu in the mixed solvents as-

suning 6§, = 11.8 with 5m(calc’d) calculeted from the

2
relationship

o
I
o

6

and 3 o o

5 @1 6, + @B 63

*
Clearly 6m velues are in much better agreement with

the experimental 5 values than Sm calculated fron

the simple volune fractions. In Figure II.10 (1n ag -

1
my s . .
1in xg) for SnI, in CgHg - c-CgH,, 1is plotted against
both @1 and @i . Again we see that an excellent lin-

; 1
ear relationship exists between the (1ln a; - 1n xg)g

3¢ N
and &, rather than @1 . The slope line ( (1n ag -
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or if

_ oLy ot
s(expt) = 8776, + 85 65
_ Ot
=&, (51 + 63) + 65 (37)

then one should expect a straight line when 5n1(exper-
jmental) 1s plotted either arainst Qg* or @? , with
an intercept equal to 63 and a slope equal to (51 -
63) . In Figure II.12 we plot & (experimental) against

Ot
&

g (volume fraction of benzene) and @l , for 12 in

benzene - C-C6H12 svstem. Clearly ém(experimental)
3¢
when plotted against @l is in much better agreement

with the expected line than when plotted against @1 -

In Figure II1.13 5m(experimental) for Cglg - CCly

mixed solvent in C6H6 - 12 - CCl4 system is plotted

o o¥*
1 1

Figure II.l4 5m(experimental) for C6H6 - C-C6H12

against § and 3§ (volume fraction of benzene) ,and in

mixed solvent in C6H6 - SnIu - c-C6H12 is plotted

O O
1 1

From both of the figures, it is clear that 5m(exper-

against @& and % (volume fraction of bhenzene).
imental) is better described in terms of Q*'s rather
than ¢,, OT in other words, an assumption of preferen-
tial solvation of solute by one solvent is definitely
needed to describe the different vroperties of solutes
in mixed solvents. By'"describing" we mean to correlate
the solubility and therrmodynanmic pronerties of solute
with those properties of solute and solvents in two

gomponent systems containing solute 2 and solvent 1,

and solute 2 snd solvent 3.
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Excess Properties of Mixing for Dilute Solutions

Introduction

In prewvious sections, we have attemoted to show
that Regular Solution theory may he usefully employed
to interpret the solubility properties of a dilute sol-
ute in mixed solvents. e also tried to show that there

is needed a tern called the "effective volune fraction,"
3

®; , to define the irmmediate environment of solute rol-

ecules in a mixed solvent, We also showed that in sone
cases there exist linear relationships between 1n xg ,

3
Vg , and &; such as

Ly g% 1n 0

in x2 3

m _ 3%

and
—=n __ =1 -)(-—3
V2 = §1V2 ~+ QBVé

(the notetions are the same as in previous section ).
The relationship between 8, and §* satisfies
the condition that a mixed solvent may be considered
as a hypothetical solvent whose solubility paraneter
(here 6m ) is the volume fraction aversge of the two
pure components. The other two relationships, although
very attractive at first glance, do have a very linmited
applicability because, as suggested earlier, these two
relationships hold because of the "zero excess property
of mixing." In this section we will derive the excess

properties with respect to the binary syvstems, and from



- 82 -
the Regular Solution theory we will try to predict these
excess quantities. We shall also try to show that Qz
is needed to define the excess pnroperties and the volune
fraction of the mixture, where the maximum of the "ex-
cess properties" would be observed.

The main purpose of this chapter is to genereslize
the solubility relationships for three comnnonent systens
end so derive the limiting conditions where the satur-
ation solubilities of the solute in mixed solvents can
depend lineerly on, say, Qi « In the first part of
this section we 1limit our discussions to very dilute
solutions such that
V

2 2
+—= (6, - 8,)

i m
1n a2 = 1n x2

i.e. the §,. (de the volume fraction of the solute)in

2
the solution spproaches zero.

Theory

J e ]

Excess Saturation Solubility

Having established the definition of Qz and the
importance of this term in three component systems, we
now turn to the generalized properties of solubility
relationships for three component systeris. In all the
discussions in the previous section we limited ourselves

to the case where 61 < 62 > 65 « TFor those cases where
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6, > 85 > 63 , at certain volume fraction of @? , the
6m value becomnes equal to the 62 value {(of the solute)
and the partial molal heat of solution of component 2
then becomes zero and the saturation solubility of the
solute ( X ) is equal to the ideal solubilityv ( ag )

of the solute. All the derivations discussed in the
previous section are applicable where 61 > 62 > 63 as
long as the solubility of component 2 is very small,
i+§§—~1.

We shall accept that the saturation solubility of

i.e. where %

some dilute solute 2 In a solvent S may be written

with the usual Regular Solution notations as

i 2
In x, = 1n a; - A(62 - GS) (38)
where V2§82
A =
RT
Vo

|

(for a dilute solution) (39)
RT
For the cases where the solvent is a binary nix-

ture of corponents 1 and 3, we then assune

(o]
.+ §353 =8 (40)

If one writes the saturation solubility of compon-
ent 2 in mixed solvent in terms of the saturation solu-
bility of the solute in pure solvents 1 end 3, as done

in equation (34), then
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me.y _ .0 1 0 3
1n x2(1) = &, In x3 + QB In x3 (41)

Substituting equation (38) into equation (41) for
the case for which 6S = 61 or 53 then
My.y _ i 2 o)
1n x2(1) = 1n aj - Al 6,° - 262(§161 + §363)

(42)

Again substituting equation (40) into equation (38) we

find

1n xg = 1n ag - A(s, - 6m)2
= i _ 2 _ 2
= 1n a; - A(s, 26,6, + 6.°) (43)

Again substituting equation (40) into equation (42) and
then comparing equation (42) with equation (43) we see

that
2 (o] 2 (¢} 2 I
m Qlél + §363 (45)

I

6

a requirenent which is obviously in contradiction with
the condition given in equstion (40) for 5., ¢

In equation (41) we used the notation 1n xg(i) to
identify this as the "thermodynsanic" saturation solubil-
ity in nixed solvent, relative to the saturstion solu-
bilities of & solute in two nure solvents.

The thermodvnanic justification of this notation
is based on the fact that the pertial nolar excess free
enereyv 1s elso zero with resmect to thaet of the solute

in t he pure solvents. (Note that 1n xg(i) is not



- 85 -
in a; which is the ideal solubility of solute irrespec-

tive of solvents.) So we cen define the excess satur-

ation solubility sas
m ., _ m, . m
a( In x, ) =1n x2(1) - 1n x, (46)

Using equation (41), we see that A(ln xg) can be

evaluated from the experimentally determined quantities

1

in X5 in x2 end 1n x© It can also be determined

2 2 °
from the Regular Solution theory. Equation (38) is
defined in terms of the pure solvents 1 and 3, and the

mixed solvents, m , as

A(1n xg) = @?A(ln x%) + @;A(ln Xg)

2
- A6, = &)

2 2 2
+ §353 -5, ) (47)

A(@lél

i.e.
% A(1n xg) = @lQB(al - 53)2 (48)

So far we have not used the effective volume frac-
tions, but if one writes the 1n xg(i) in terms of the
effective volume fraction, then

1 my o ¥ )
T A (1n xg) = @lQB(él - 53)

(49)
To be rigorous, even if we allow ourselves to use
the "effective volune fraction" terms in defining the

6, , end if we recorgnize that the effective volune
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fraction describes only the immediate solvent environ-
ment of the solute molecule, we nust still define the
1n Xg(i) in terms of 8° 's and not & 's hecause the
- "ideal" t?rm must refer to the composition of the bulk

solvent, as in equation (41). So, writing 5, @s

_ 3* §')('
b = 2969 T 2384

in the expression for Aln X2

2 ?
my _ 1 3y _ 2
A(1n xg) = A(%, 1n x5 + ¢ 1n xg) A(a2 ~8.)
one obtains the excess saturation solubility as
1 m _ 2 2 2
5 0(In x,) = [ 8,8, + 25857 - by
- - 50
26,(8,6 + 3585 - 8,) ] (50)

In equation (50) one (can. clearly see that we have

made #* *®
ém = §161 + @BGB
and not
5. = 8%, + 3%

m 171 373

The notation of subscript 2% hsas been used to
denote that the possibility of the immediate solute 2
environment is different from the "average" bulk sol-

vent environnent.

Ixcess Volure of !fixing

For a very dilute solution of non-electrolyvtes

one may calculate the partial molal volume of solute
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from Regular Solution theoryE78] vie nay write for a

very dilute solution

....E_._. o _ -
V, =V, - Vg =n3p,F

E
2

where 72 is the pertial molal volumie of the solute in
solution, Vg is the reference volune of the solute,
n; is the ratio of the internal pressure of the sol-
vent to its cohesive energy density, and Bi is the
coefficient of isothermal compressibility of the pure

solvent, 1 .

From the Regular Solution theory,

=B _ 0
F. = V2(62 - 6.

2
2 1)

or we may obtain a very useful equation such as

== o _ o} 2

v, - Vg5 "/niBiVQ(GQ -5,) (51)
or[ 78] = o) aiTVg 2

Yo m V2 =2 (8, - 83) (52)

i
where ay is the coefficient of thermal expansion.

As mentioned eerlier, equations (51) and (52) were
derived as approximate equations and their applicability
is far less than the appliceability of Regular Solution
theorybin predicting the excess free energy of mixing.

Remenbering the limitations of these equations, we now

define 8 tern hy 88
=1 o}
i_Va -V
AV -
Vo
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or
i_ 2
Ay = n;8;(85 = 6;) (53)
So far the expressions for vg have been written for
binary systems. For the mixed solvents, the vpartial
molal volume of solute, Vé , 1s given by
= =0 _ 0 2
Vg - Vs V2nm8m(62 6m)
or, M Vg - Vg '2 (54
Ay = o = 0,8, (6, = &) )
Vo

In the following derivations, we will assume that
3#
only & 's describe 6m correctly rather than §'s.

Now we define eanother term A¥’1’3

in terns of
the properties of the solute in each of the pure sol-

vents as
M)l)B

1
Ay

_ )
= 8,0y + §3AV (55)

or we may define the excess partial molal volume of mix-
ing for solute 2 in a mixed solvent system with respect
for the excess partial molal volume of solute (2) in

pure solvents, i.e.

=E,M _ o, M M,1,3
Ve = SV (ay - a7 700) (56)

Substituting the resvective equations in equation

(55) we obtain

A%:l,B _ §1[n151(51 - 62)2] + @B[nBBB(al - 63)2](57)
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or using the assumption that

a.T
_ 1
NiBy = 5.2
i
or o

we obtain M,1

5 _
By = (8n)8) + 2058 )8,°

- gag[él(al) + o552 3)]T

+ (alal + §3a3)T (59)

We may similarly rewrite the equation (56) as

E,M

AV’ =n 8 T + a,T (60)

6—(
m-2 2 m

We may further assume that the mechenicel properties of
the mixed solvent may be expressed in terms of those of

*
the pure solvents by

DBy = 8048 T8 Tz8 (61)

* Probably a riore reasonable approximation would be to

write 1 B in the following manner:

npBy = (218, + 2585)(8 ) + &n)

- _ 2 2
= &;m8, + &,n,8, (QB ngp, + ¢, n183)
Neglecting the higher terms in §'s we obtein equation
(61) o
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and

Ay = Bjaq + 350y (62)

Besides equation (61) and (62), we also assume that

2 _ 2 2
NBbm = anlslél + @3n36363 (63)

Substituting equations (61), (62) and (63) in equation

(56), the excess terns, i.e. Avg’M , becomes

<E,M  _ oq a3
AV, 28 TV2[ (@1-6—1 + ¢36—3-)J (64)

If we do not choose to use ai's, then the excess
volune, Avg’M becomes nore comnnlex (see Apvendix

ATI.l for derivations) and is given by

=5 ,M

()
8y =V { 26,0 (81ny8 + 85058-)8

~(8,0,846, + ¥5058-65)]
2 2
+ (@1n18161 + ¢3n36363 )
2
- (anlsl + @BnBBB)am } (65)
As seen in equation (65) we have not assumed thet

2 _ 2 2
NBmbm T ¥1PqBg8 F Q3n36363

( as in equation (63) ) which is probably an incorrect

assunption.

The exvression AV (eypt) can be written as

Mexpt) = 75N - (8,75 - ¢ V3) (66)
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In the following discussion we will refer to AV?’M
(calc'd) as it is given in equation (65) and not as in
equation (64).

In our above discussion of the volume of mixing
term we have developed both equation (64) and (65) with-

out defining &

m » 1-¢. these equations are indenendent

of the definition of 8§, . In these equations, eny
derivation of 5m can be substituted as long as the
solution is dilute in solute. But, as we have mentioned
earlier, 5m's are better described by g* values. In
further discussions on excess volumes we will use only
6.'s celculated from Q*'s.

m

Discussion

vVie shall first discuss those systemns in which the
solute solubility paremeters are creater than those of

either component nmixtures, i.e. &, < § We

1 2 3 *
see from the equation (48) that the magnitude of the

> b

excess tern, i.e. %A(ln xg), is governed by the square
of the difference of the solubility parameters of the
conponents of the mixed solvents. The maxinum value

for the excess term will occuf at

2[4 (1n x0)7

_ _ _ 20
a@f 0= (1 2@1) at §. = él(max)

or
Ql(max) = 0.5 (67)
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Similarly, the excess term %A*(ln xg) in equa-
tion (44) will have its maximum value displaced from
_ _ 2 2
&, = 0.5 by the relative (62 63) and (52 - 51)
#*
values. (See the definition of & values.) It can
be shown that the vosition of this maximum, given by
1 ¥ m

algp (1n x5)] _

0 at Qg = Qg(max) (68)

o
3%,

can be forrmulated as & simple analytical expression, viz.

(6, - 85)° - -1
Ql(max) = { 2 3)“ ol } (69)

(See Appendix AII.2 for the derivation.)

From the equation (69) we see that in those caseé

¥ =3
1%

with the implication that there is no preferential sol-

where |6, - 63| = [8, - 64| , (i.e. for which &

vation of the solute molecules by either of the solvent
molecules) the equation reduces to &(max) = 0.5 1in
agreement with the position of miximum for the %A(ln xg)
term. We also see from equation (69) that for a solute
in & mixed solvent whose omponents are of widely dispar-
ate & such that |6, - 63| > |6, - 8,] , & consider-
able shift in &(max) will occur for these equations.
In Figure II.15, wve 1liustrate the three excess funct-
jons, equation (48), equation (49) and equation (50).
for hypothetical systems with a solute of 5, = 14 in

a nnixed solvent of components =12 and §_ =6 .

64 3
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We ignore the possibility of the likely imniscibility
of the solvent mixtures., From the equation (69), the
position of the maximum of the %A*(ln xg) curve will
be shifted to §,(max) ~ 0.5 . The position of the
maximum of the excess %A(ln xg) does not appear cap-
able of any simple formulation but it is seen to be

at a position § =~ 0.1 . We further see from Figure
IT1.15 the considerably larger value of the excess func-
tion for the -%A(ln Xg*) formulation over the whole
range of solvent composition.

In Pigure II.16, we present the excess saturation
solubility terms A(1ln xg) and A(1ln xg*) for the
systen of solute iodine in mixed benzene-cyclohexéne
solvent. In Figure I1I.17 we present similer plots of
excess properties of iodine in benzene - CClu mixed
solvents. Both these systems.were discussed earlier,
particularly with respect to equation (22). As cormmen-
ted earlier, this equation depends quite critically
on the use of §1 or Q: in the expression for am .
The agreement between the experimental curves and the
calculated excess curves A(ln xg*) rather than
A(1n Xg) curve observed in Figures II.16 and II.l7
again érgues well for the use of the effective volume
fractions in the description of G It 1s obvious
from the data presented in Figure II.1l5 that A*(ln xg)

curve will fit the experimental data no better than

does A(1ln xg curve, because for both these curves
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the maximum value of the excess properties is the same
even if §(max)'s are different.
Earlier it was shown that for both these systens,
the experimental data obey the relationship

m #* 1 * 3
1in x2 Ql 1in x2 + QB In x2

I

rather than

m _ ,O 1
in x2 = §1 1n x2 3 5

Recognizing that the saturation solubility in the

mixed solvent is glven by

v°
i m 2 2
In a, = 1n x, + —= (6, - &)
2 2 RT 2 m
1r is writt =5 5 that th
S S wr en as § = @151 + 353 we see at the
magnitude of any divergence from the 1n xg versus §1

linearity will be equal to the excess saturation sol-
ubility term, A(ln Xg*) and not A(ln xg) because

the &, (experimental) is not described by Qiél + §%63 .
Similarly, the nonlinearity of 1n Xg versus QI plot
will be of the magnitude of the excess A*(ln xg) tern.
The excess ternm A*(ln xg) seernis to be very small for
the two systems with iodine as solute. Hence the lin-
earity observed in 1n xM

2
IT.4 and II.6) for iodine in benzene~cyclohexane and

*
versus §1 plots (Figures

iodine in benzene - carbon tetrachloride mixed solvents,

is due to the negligible magnitude of the excess tern,
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as concluded earlier. (See equation (45).) In these

cases, 6m2 = ggalz + ¢;532 is a fair assumption.

In Figure II.18 we plot A(ln xg) , A*(ln xg) and
m

o)

For SnIu , although (53 - 51)2 is smaller than that

A(1ln x for SnI) in benzene - e=CgH, 5 mixtures.

for iodine, the Vg of SnIu is almost three times
bigger than Vg of iodihe (cf. 151 cc for SnIu to
59 ce for iodine). This makes the magnitude of excess
terms bigger for SnIu in benzene - c-C6H12 systens

than for iodine in benzene - c-C6H12 system. This

explains the nonlinearity of 1n xg (for SnIh) on Q: .
In the case of Snl), , we tried to denonstrate the effect
of Vg of solute on the excess property -- because

at the same temperature, the excess of solubility of
two solutes in mixed sol#ents depends sinmultaneously
on the Vg of the solute and the square of the differ-
ence of the solubility parameters of the solvents.

Next we consider the system iodine ( 6, = 14.1 )
in the mixed solvent CClh ( b, = 8.6 ) plus n—C7F16
(85 = 5.6 ) which offers a greater test for the proposed
theory. This system has a large niscibility gap and on-
ly two data points exist for the mixtures. It has been
shown earlier that this system was best exvressed by the
Q* formulation for 6y ° In Figure I1.19 we show the

.
excess saturation solubility curves aA(1ln xg) , A (1In xm)

2
and A(1ln xg*) and in Figure II.20 we nlot the 1n xg
oo 1 3
against Ql and §1 , where 1n X5 and 1n X; are the
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actual experimental values. It 1s seen in Fieure II.19
that the available experimental date points lie well
on the A(ln xg*) curve. Again the A*(ln Xg) curve
for this system is of small magnitude and consequently
the two data points lie on a linear 1n Xg versus Q:

plot as seen in Figure II.S5.

From the saturation solubility equation

o)
i m 2 2
In a- =1n x, - <= (&, - &)
2 2 RT 2 m
_ 40 o _
with the assumption that 6y = @161 + §363 it is ess

i1y shown that (see Appendix AII.3)

3 1n x® 6, = &
_____._2.. = 0 where $ = Qm'a'x = (—————22 ) (70)
o 1 1 6, = &
a@l 1 >

This latter relation is seen to predict a maximum
value of %; which is meaningful (i.e. 0 < &, <1 )

only if &; > 8, > &, (1,3 =1,3 1 #J ). In other

words, in the cases where 6&; > 6, > 6j and 8, =
égai + anj , at certain volume fractions of the ith

and Jth component of mixed solvent, & ~ will be equal

to &, and consequently xg = a; ; 1.e. in that mix-

ture, 1ln xg will be a maximum. Or the volume fraction

of component 1 of mixed solvent at which 6m = § is

2 ?
the §Tax ‘

Similarly if one defined L in terms of "effec-

in equation (70).

tive volune" fractions, the position of the maximum is
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given by
m
d 1n x ms 8, =~ &
__T_g =0 where Q* X = ..._2__._._2 (71)
1 6, - 6
*max o) o)
or converting &, to &, values, i.e. Ql(max,*) )

one obtains (see Appendix AII.3 for derivation)

65~ = 6
30(max,*) = 02 (72)

The equations (71) and (72) are again only valid
it 5., > 8

i 2
we also see

> bj . Comparing equation (70) with (72)

o0,max

1 =1 (73)

@i(max,*) +

For the systems where [§, - 8;| = [6, - 63| , Ql(max)‘=
Ql(max,*) = 0.5 ., Such a behavior pattern is shown in

Figure II.21 for naphthalene (52 = 10 ) in hypothetical

solvent mixtures (1) 8, = 12°, 53 =8 and (ii) aiaz
14 63 =6 . In this plot we only give %A(ln xg)

+*
term because ‘52 - 51| = |52 - 53| , end g, eand 8,

are equal over the conplete range of composition. All

three excess solubility equations reduce to '%A(ln xg)

'l ]
form. In Figure 1II.22, we plot ( 1n ag - 1ln xg) ag-
* -
ainst }@1 . It 1s seen that at a; = xg (1.e. the max-

* -
imum solubility) &, = gf — gz = Qi,max which is in

agreement with the discussion given above., Furthermore,

we can see from the relationship
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1
i mz _ i 3\
(1n a; - 1n x2) = (1n ay - 1n x2)
. 5., - &
* i_ y(_1 )
+ Ql(ln a; - 1ln XQ)(52 — 63)

that this relationship is valid only over the range

8 =0 to & = 8,°" The range 2,°™F <2 s 1

can be determined if the reference state is changed from
the saturation solubility of solute 2 in pure solvent

3, (i.e. Xg ) to saturation solubility of solute 2 in
pure solvent 1 (i.e. X; ). The relationship then can

be rewritten as

. 1 Y
1 Fl 2

(1n a,

m _ i 1
- 1n x2) = (1n ay - 1n x )

2

% i m 715 63 - 61
- QB(ln 3.2 - 1n X2) (—6—2—-_—51)

[

The appropriate plots for naphthalene in two hypothetical
solvent mixtures are given in Figure IT.23. As
|6, = 8,1 =16, - 63| , the symmetry of these plots is
retained.

In Figure II.23 we exanine the three excess satur-
ation solubility terms A(ln Xg) , »¥(1n xg) and
A(1n Xg*) for another hypothetical svstem for which
6, = 11.7 (e.g. Snly ) in mixed solvents whose com-
ponents have 6, = 5.6 and 65 = 14.0 , The consider-
able asymnetry due to the large difference in the

|62 - 61| and |62 - 63| term is aAalso shown in Figure
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II.24 where (1n ag - In xg)

o, i m\ 3
1 and Ql ; only the plot of (1n Ch 1in x2)2 against
Qi is linear. The purpose of these hyvothetical $ys-

tens and the plots is to show the effect of the differ-

is plotted against both

#*
$

ence between [52 - 51| and |52 - 53| on the differ-
ent properties of mixed solvents.

So far we have only discussed the excess satura-
tion solubilities. In the remaining part of this dis-
cussion we will consider the excess volume of mixing,
AvE , and the effect of the "effective" volumne fractions
on this quantity.

In the derivation of the equations describing the
excess volume of nixing, we mentioned that basic equa-
tions as derived from the Regular Solution theory are
only approximate. In general for single conponent sol-
vent systems both equation (5{) and equation (52) are
found to predict Vé values in good agreement with the
experimental data. But our calculations on excess vol-
ume of mixing are comnpletely dependent on the ability
of these basic equations to predict the partial molal
volune of solute in a one-component solvent.

Earlier, we have shown (éee Figure II.5) that the
partial molal volume data for iodine, i.e. 'Vg , in
C6H6 - c-C6H12 nixed solvent system was a good linear
function of the "effective" volume fractions of the

nixed solvent ( cf. equation (35) ). In Figure II.25

=M
we plot V, for bromine in mixed cCly - c-C6H12 sy s-
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tem. Althoughthe experimental scatter for this systeﬁ
is large, it would appear that there occurs a large
deviation from the linearity for vg even as a func-
tion §T (i.e. the effective volume fraction of CCly ).

In Figure II.26 we plot the excess function AVE’M

for
iodine in CgHg - c-CgH;, mnmixture and compare it with
the experimental values; AVE’M(expt) in equation (66).
The experimental data compare extremely well with the
calculated line which has been calculated writing 5m =
§:61 + §;63 « We plot the excess volume of nixing terms
for bromine - CClA - C'C4012F6 mixed solvent in Fig-
ure IX1.27. The theoretical expression appears to un-
derestimate the magnitude of the excess term. For bro-
mine in nixed CClA - n--C7F16 solvent the theoretical
AVE term is of a magnitude far greater than that found

from the experimental data. Ve give data for all these

systerns in Table II.7 . It is worth noting that AVE’M
(expt) value 1s very dependent upon the accuracy of the
E,M

72 values of the solute in each pure solvent and AV2
(calec'd) value is very dependent upon the accuracy of
equation (51) in predicting the partial molal volume of
the solute. In deriving the éxcess tern (calculated)

we used equation (51) to describe 'V% and Vg where
for experimental AV?’M we used experimentally deter-
mined 'V% and 'Vg . In Table II.8 we compare the cal-
culated and experimental 'Vg's in different solvents.
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From Table II.8 we see that for Br2 in n'C7F16 ,
the calculated 72 is equal to 77.08 cc/mole in com-
parison to the experimental value 71.8 cc/mole, whereas
for Br, in cc1, the calculated and experimental
values are in good agreement. As equation (51) predicts
bigger Vg than the experimental 'Vg for bromine in
n-C7F16 , this error wiil be manifested in all quantit-
jes derived from equation (51) for this system; for Br2
in 0'04012F6 , the Vg(calc'd) = 60469 cc in comparison
to the ‘Vg(expt) = 64,3 cc, 1.e. the equation (51) pre-
dicts a lower value for Vg for Br, in c¢-CyCl,Fg

whereas for Br, in n-C7F16 , 1t predicts a higher val=-

E,M
2

( equation (65) ) because of the inadequacy of equation

ue. Or in other words errors introduced in AV

(51) will have the opposite sign (which has been observed)

for Br2 in CClA - C'CACIQE6 and Br, in CClA -

2
n-C7F16 . In one case equation (65) overestimates the
excess term whereas in the other case it underestimates.
As the basic theoretical expression ( viz. equa-
tion (51) ) is inadequate in predicting the partial
nolal volume of solute in pure solvent, any extensive

comparison of the calculated and experimental excess

tern, AV?’M , 1s not worth while,
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Concentrated Solution

So far we have limited our discussion to the di-

m
2

of the . solute is so small that the volume fraction

lute solution such that §. -0 , i.e. the solubility

of the solute in the solution is negligible, a condition
satisfied in the earlier discussion because in all the
cases discussed earlier; Qg < 0.01 and the basic sol-

ubility equation

. \'
i_ m 2 2 2
In a; = In x, + zm 3,7(6, - &) (74)
reduces to R v
i _ m 2 2
In aj = 1n X, + 77 (52 - am) (75)
m

as §2 - 0 ’ Qm -1 .

But there are cases where the solubility of the
solute is high enough to make" ég 4 0 such that
éi + Qg + @; =1 + In this section we shall discuss
a few of these cases. !Most of the experimental data
available ere for the solute naphthalene in different
organic solvents, and hence our discussion will be limited

to the case of naphathalene . in different mixed sol-

vents.

Notation
Before discussing the problemns associated with
concentrated solutions, we must first describe some of

the notation we shall use in this section.
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We shall use the superscript o , such as xg

and 82

i » in the following discussion to denote these

two quantities in solute-free (or pure) mixed solvents

such that
o o _
xy + Xz = 1 (76)
o o _
§1 f §3 =1 (77)

We shall also use the superscript s , such as

S

X; and §§ , to denote these quantities in the satur-

ated solutions such that

s m s _

x] + x5+ x3 =1 . (78)
s m s _

§1+§2+§3-1 (79)

(for solute we shall use superscript m to be consis-
tent with earlier discussion). Comparing equations
(76) and (77) with (78) and (29), one sees that there

exist relationships such that

s s
4 &
S R T L (80)
5° 30 2
1 3
s S
1 X 1 m (81)
—_ =< =] - X
+© %° 2
1 3
which connect xg's and Qg with xi and éi respec-

tively.
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Results: Naphthalene in CCl4 - c-C6H12 mixed solvent

The solubility of naphthalene in CCl4 - c-C6H12
mixed solvent was studied by Heric et al.[79] from 10°
to 70°C. They used a "static method" to determine the
saturation soludility. Unfortunately no data was re-
ported at 25°C. For that reason, we plotted their
results of the mole fraction saturation solubility of
naphthalene, X5y in a particular solvent against the
absolute temperature (see Figure 11.28) and the satura-
tion solubility at 298°K. was read from the plot. The
mole fraction saturation solubility of naphthalene cal-
culated in this manner is given in Table II1.9 along with
the mole fractions and the volume fractions of CCl4 (sub-
script 1) and c-CcHy 5 (subscript 3) in a solute free
pure mixed solvent denoted with subscript o.

(Y

Naphthalene in methylene iodide - c—C6H12 mixed solvent

In Table 1I1.10 we show the saturation solubility
of'naphfhalene in methylene iodide -~ cyclohexane mixed
solvents. These solubilities were determined by J. LeeESO]
in this laboratory.

In Figure I1I.2%a we plof the mole fraction of naph-
thalene in saturated solution against the xi, i.e. the
mole fraction of methylene iodide in pure mixed solvents.
By pure mixed solvent we meant solute free mixed solvent

o] o _
such that Xy + X, = 1
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similarly
o o _
Ql + §3 =1

In Figure 11.29b we plot =-1n xg

mixed sz2lvent against

of naphthalene

in the methylene iodide - c-C6H

(0]
1 .

12
®

Discussion

As mentioned earlier and can be seen in Tables
I1.8 and II.9, in the cases of naphthalene ég can no
longer be assumed zero., For dilute solutions, we have

assuned §2 - O for all the expressions -- the excess

terms and even the linear relationship between (1n a; -

1n xg) versus ég « Clearly those expressions are no
longer valid in these cases,

The obvious difficulty in calculating the thermo-
dynamic properties for the concentrated solutions arises
due to the fact that §g 7L O There is another prodb-
lem associated withnaphthalene: there is no definite

value for the ideal solubility of naphthalene to be found
in the literature. The values reported by different

authors range from 0.298 to 0.322 depending upon the
[81,82]

source of data.

1

We decided to calculate a5 for nanthalene by

other meens. Recalling the original equation for the

solubility in mixed solvent, i.e.

i m v ng 2
1n ay = in X, )

((s2 -8
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it is seen that for the cases where 6i > 52 > 6, , 1.6
the solubility parameter of the solute lies between the
solubility parameter of the two solvents, at certain
mixed solvent composition, 6y = 52 and the solubility
of solute in that mixture becomes equal to the ideal
solubility of the solute. We choose naphthalene as sol-
ute in methylene iodide.- c-C6H12 nixed solvent because
the solubility parameter of naphthalene 62 ) 1lies in
between the solubility parameters of methylene iodide
( 51(therm) = 11.8) and that of c~CgH,, 51(therm) =
8.2 ), Therefore this particular system satisfies the
condition § If the Regular Solution the-

> 86, > 6

1 2 3 °*
ory 1s applicable to this system, then we should be able

to determine ag for naphthalene by determining the sol-

ubility of naphthalene for the complete range of CH,I, -
c-C6H12 nixed solvent compos}tion. From Figure II1.28

where the saturation mole fraction solubility of naphthal-
o

l 1

is 0.300 which

m
ene in CH212 - c—C6H12 X5 s is plotted against &

we see that the maximum value for xg

is in excellent agreement with the range 0.298 to 0,322,

(the reported values for a;' are found in the liter-
ature[81’82]) Considering that the uncertainty involved

i
2
long extrapolation involved in these cases, we decided

in calculating a from the thermal data because of the

1
2

further discussions., So far as we know, this is the

to use xg(max) = 0.300 as the g for haphthalené in

only case where the xg(max) for a simple solid solute
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in a mixed solvent system such that 51 > 52 > 53

goes to ideal solubility. The only other studies re-
ported in systems where 61 > 62 > 63 are those for

the solubility of phenanthrene in CH212 - c—C6H12

mixed solvent. This work was done by Scott et alLSB]

in 1952, Although they observed the exvected enhance-
ment of the solubility of phenanthrene, the solubility

in the best solvent mixture fell short of the ideal.
Phenanthrene and naphthalene have soiubility parameters
similar to one another, i.e. 9.8 for phenanthrene and g.g
for naphthalene , but the nature of their interaction
with cvclohexane is very different. Scott et al. found
that the solubility parameter of C-C6H12 has to be
shifted from 8.2 (the thermodynamic value for C—C6H12 )
to 7.0 to satisfy the solublility equation for phenanthrene
in cyclohexane, whereas for naphthalene inc-C6H12 ,
although a re-evaluation of & solubility parameter for
cyclohexane is needed, the magnitude of shift from 8.2

to 7.66 is much smaller than that for phenanthrene in
cyclohexane., At present, the reason for this lack of
agreement between the predicted and experimental values
for the solubility of phenanthrene in the best solvent
mixture is not clear.

A close examination of the phase diagram for the
binary system of methylene iodide - cyclohexane as giv-
en by Gordon and Scott reveals that at 298 °K there is
a definite miscibility gap in the methyvlene iodide -

(r
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cyclohexane system when xg lies between 0.28 and 0.58.
Thus the stoichiometric composition of the best solvent
mixture for phenanthrene lies close to the CH212 -
c-CgH,, solvent-solvent critical temperature and com-
position., From this observation Scott et al[83] sugges-
ted that there is an extensive "clustering" around the
phenanthrene molecule iﬁ its best solvent mixture and
this clustering is the reason for the apparent lack of
agreement between the ideal solubility and the maximum
solubility of phenanthrene in its best solvent mixture.
It is true that there is a solvent-solvent miscibility
gap when the mole fraction of cyclohexane in pure mixed
solvent lies between 0.28 and 0,58. But we also observed
that the solvent-solvent miscibility gap disappears in the
presence -of naphthalene in the ternary systems of
CH, I, - naphthalene - c-C6H12: Besides, for naphthal-
ene, the stoichiometric composition of the best solvent
nixture is also near to the solvent-solvent critical
composition and temperature. But our observation that
the maximum solubility of navhthalene in the best solvent
mixture is equal to the ideal solubility of napthalene,
suggests that the "clustering“ as mentioned by Scott
cannot be a main factor for the discrepancies observed
in the case of phenanthrene in CH2I2 - c-C6H12 mixed
solvents.

Subsequently we established that in the case of

naphthalene,xg(max) in the best solvent can be used
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safely to replace ai for naphthalene in further calc-

2
ulations. Using aé = 0.300 , we calculated 6m s &

Tor systems with naphthalene as solute. In

1 ’
and 63
Table II.1ll we give the experimental 5, 's for CCl, = nap
hthalene = - c-C6H12 and in Table II.l2 we show the ex-
perimental 5m values fpr CHQIQ—:naphthalene - c-C6H12.
In these calculations the 62 value for naphthalene was
teken as 9,9 -- the thermodynamic solubility parameter

for naphthalene,

Next we chose to calculeate & for the nixed sol-

m
vent. We showed earlier that 6m can be calculated
_ 40 o
such that
@‘1’ + @% =1
or # o # + @* .
6m = @161 363
such that #* #*
Ql + @B =1
3* 3*
and Ql and §3 are defined as
#* o} 1\ 2
f1_f1 (8 - )
¥ o) 2

In Table II.13 we compare the 5m calculated from
the experimentsl saturation solubility of naphthalené
with the & written in terns of @i and in terms of

3
&

*
, for CClu - c-C6H12 system. Clesrly 6 (writ-
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ten in terms of Qi's) is in better agreement with the
6m(experimenta1) -- a situation we also faced in dilute
solutions. But we also see in the Table II.13 that the
'agreement between the experimental L and the 5;
(calculated from Q*'s) are not so good for the nixed
solvent in which the concentration of carbon tetrachlo-
ride 1s very small, Froﬁ the definition of "effective"
volume fraction, we clearly see that in the case of
carbon tetrachloride -naphthalene - cyclohexane systen,
carbon tetrachloride is a preferred solvent for naph-
thalene than cyclohexane. e also see that in the case

of the mixed solvent where @2 = 0.1575 , the volume

fraction ofnaphthalene, Qg , In solution is greater

S
2 ’

in the solution -- a situation we did not cone across

than the volume fraction, & of carbon tetrachloride

in the case of dilute solution. This phenomenon becomes
more prominent for naphthalene in CH.I

272
solvents., In Table ITI.l4 we conpare 5m(expt) with

c-C6H12 mixed

6m(calc'd) and 6;'5. We see in Table II.l14 that 8
calculated from the experimental solubility of gaphthal_
ene agrees with 6; (calculated from Q*'s) when the
volume fraction of nmethylene iodide in pure mixed sol-
vent is greater than 0.403, We also see in Table IT.1l4
that at very low concentration of methylene iodide am's
(calculated from @i ).rather than 6;'5 ( calculated
from Q*'s) is in much better agreement with 6m(expt).

But in most of the cases where @i < 0.403 we see that
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b,(expt) lies between & 's (calculated from &° ) and
5;'5 ( calculated from §* o Or in other words we could
say there is a minimum value for the volume fraction
of CH,I, up to which the "effective" volume fractions
concept is acceptable. But if the volume fraction of
methylene iodide is less than that ninimun value, the
nearest neighbour of thé solute is neither defined by
the "effective" volume fractions Q* nor by & 's,
The reason why $ 's do not adequately describe the
nearest environment of the solute has been discussed
earlier.

For concentrated solutions, it seems that there
exists a ninimum value for the number of moles of the
preferred solvents which must exist in the solution
so that the nearest neighbours of the solute in a nmixed
solvent may be adequately described by the effective
volume fractions. At present we were not able to pre-
dict this minirmum value for the preferred solvent but
from the experimental results it is clear that @i (the
volume fraction of the preferred solvent in the solution)
mist be greater than the @S (the volume fraction of
the solute in solution). In Table II.13 we compare
the 5m(experimental) with both I and 6; for CClM -
naphthalene --c-C6H12 system. The situation is analysed
in more detail in the case of methylene iodide -naphtha =~

lene - cyclohexane because more experimental data are

available for this system. In Table II.14 6m(expt)
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is compared with 5m(calc'd) and 5; e In Table IT.14

s
1

s
2

is less than @S sy b

we also glve the values of § and § for this systen.,

It can be seen that when Qi

. ¥*
(expt) 1is less than 5 but greater than em(calc'd).

m

However Gm(expt) 1s adequately described by 6; when

§i = QS . For the methylene iodide- naphthalene - cyclo-
hexane system, the experimental results suggest that

the mininum value for 22 in the solution must be equal
to one 1if the nearest iZighbour environment of the sol-
ute nay be adequately described by the "effective" vol-

ume fraction term. When §i < QS , neither éi nor

+*
§1 describes the immediate environment of solute cor-
I‘ectly .
Next we looked into the problem of the square root

1
plot, i.e. (1n aé - 1n xg)Q versus Qi (or 3. ) as

1)
described in Sections 1 and 2 of this chapter. As men-

Py
tioned in those sections (1n aé - 1n xg)2 and @I

have a linear relationship if and only if &, - O , i.e.

very dilute solution. For concentrated solution such

. 1
relationships may be found between (1n a; - 1n xgl)2

¥*
versus §1 e A very similar relationship is derived by
following the same procedure as before., Writing the
solubility equation for component 2 in a mixed solvent

in terns of Regular Solution theory we find

. v
1n at = 1n x® + -2 §m2(

)
6. - &)
2 2 RT m

2
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or

. 1 V. 1
i mE _ (' 2\F .
(In a; - In %)% = (g5) "¢, (8, - 8,.)

V
(2)*

8, [(6, - 8,) + @f(ae-ag](ez)

Eouetion (82) was derived by writing

5. = 32

(o]
m 187 + (1 - @1)53

Similarly the solubility equation for comnonent 2 in

a pure solvent 1 is

. vV,
i _ 1 2 2 2
In aj = 1n x; + ¢ &, (61 - 62)
or . 1 VA 1
i _ 1I\8 _ 2\3 2 )
(In a7 - 1n x3)" = (g5) @1(51 - 62) (83)

Dividing equation (82) by equation (83) we obtain

=

(1In al

i m
- 1n x,) % 8, - &
2 2;=—E 1+§O._1_._.__2 (84)
i 112 $ 56, - &8
(1n a, - 1n xg) 1 2 1

where Ql in equations (83) and (84) is the same and
denotes the volume fraction of component 1 in the sat-
urated solution of solute 2 in pure solvent 1j @1 is
a constant in equation (84) because it is the vroperty
of the binary system containing components 1 and 2 only.
Equation (84) can be plotted two ways:

(1) If we assune %T is constant and 8w~ @

%l-z 1 or equation (84) reduces to
1

1 ’
then
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1 mE 1 1,%
(1n ay - 1n x2) = (1n a; - 1n x2)

2 0% ~ %

i 1
- 1n x ) 3. — <

+ (1n a,

(85)
Equation (85) is the same as equation (26) in section
1 of this chapter except’that in the derivation of equa-~

tion (26) we assumed@ §,_ - O and in the case of equa-

2

tion (85) we assumed that %T ~ 1 .

In Teble II.15 we show the ratio %T for carbon
tetrachloride-~ naphthalene - cyclohexane and
CH212 - naphthalene - cyclohexsne systems. For the
CClu— naphthalene - cyclohexane systen, %T is very
close to unity and we should expect a straight line for
this system when (1ln ag - 1n xg)% is plotted against
either @; or Q; because equations (84) and (85)

3 3

can be derived in terms of QB by writing 6m = @161 +
¥* . 1
§363 . In Figure II.30 we plotted (1n a; - 1n xg)z

for the 0014- naphthalene - c-CgH;, system against

3*
both Qg and @3 . As is found in the case of dilute

solutions, we see that for concentrated solutions,

1
(1n a; - 1In Xg)z versus Qg plot is far from a straight

line, i.e. no linear relationshin exists between

1
(1n a; - 1n xg)z and é; . But in Figure II.30 there
. . _!__
exists a linear relationship of (1n a; - 1n xgl)2 ver-
+*
sus §3 -- with a slope equal to 0.41, compared to

0.39, the expected value for the slope. The intercept
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i m *
of (1ln a5 = 1n x2) versus §3 plots was made equal
to the expected value. In Figure II.30 we show a sinm-
_ilar plot for CH,I,~ naphthalene - c-CgH,, systen.
For this system, with &, > &, > 63 , we observe that

. 1

when 6, =6, , (1n a; - 1n xg)2 is zero and we ob-
tain two straight lines -- one with the saturation sol-
ubility of component 2 in pure solvent 1 as reference
state, and the other with the saturation solubility of
component 2 in pure solvent 3 as the reference state.
These: types of systems, where 6, > 6, > 63 , have been
discussed earlier in terms of dilute solutions and we
find that the same thing can be said about the concen-
i
2—J
and found that the slopes of the

trated solutions. In Figure II.30 we plotted (1ln a

% #*
1n xg)2 against &

>

best line drawn through the experimental points are
«1.19 and 1.40 which compare fairly well with the calc-
ulated values -1.18 and 1.45 respectively..

The first set of the calculated and experimental values

1
2

the second set of values for slopes are with xg as the

reference state. In that part of the plot we assume

%L is equal to one instead of $a equal to one. In
3

¢

Table II.15, we show the ratio of -%L and -%L for this
1 3

systern. It is seen that -%f is very close to unity and

for the slopes are with x as the reference state and

: *
so we obtain a straight line up to §3 = 0.4 when

1. 1n x is plotted against Q*

2 >
II.31. It can also bee seen. from Table IT.15 that -%%

(1n a

1
2)2 as in Figure
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is not equal to unity for cases where Q; < 0.4 and in
Figure II.31 the agreenent between the experimental noints

and the calculated line is not good in the region § A

<
3
But in general we see that in a fair approximation, %%

is equal to unity, and there exists a linear relation-
. 1 *

ship between (1n a; - 1n xgl)2 and & even for the

concentrated solution.

(i1) Equation (84) can also be rewritten as

(1n a;

noji=

- 1n x%) . 1
2 1 ( i my =

=%— (1ln a; - 1In x,.)

@m §1 2 2

. 1 é
; 1 _ mz.0 ~1 3
{ 1n as 1n x2) QB 3;—:—31 (86)

1

+
2]

Equation (86), which is written in terms of the
same notation as in equation (84), implies a linear
relationship exists for a concentrated solution between
(In aé - 1n xg)%/ ¢, and @% for which the slope should
be equal to

i
2

817 %5
R

1 36 -
5 (In a 3

m
ln x.)
1 2

N

1l

and the intercept at Q% 0O would be equal to

)%5 - 85
b5 = 6,

1 i m
EI (1n a; - 1n x,

N

Both slopes and intercept can be compared with the ei-

perimental values.
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Equation (86) is a direct consequence of the Reg-
ular Solution theory for a ternary system and so far no
additional assumption has been made, even though it is
more rigorous than the equation (85). From our earlier
experience, we know that 6m(expt) is better described
by 6; instead of 6m « If the solubility equation
for conmponent 2 in a mixéd solvent is written in terms

3
of 8, instead of & , equation (86) beconmes

: 1
(1In a> - 1n xM)®
D o) q 1 m
Ca --31 (1n a; - 1n x2)

6
)
—2 (87

The only difference between equations (86) and (87)

is that equation (87) implied a linear relationship

*
between (1ln ar (not 82 as in

2 3 3
the case of equation (91) ) for which slope and inter-

my &
- 1n x,)" /8 gnd ¢

cepts are the same as for equation (86).

1 1
In Figure II.32 we plot (1n a; - 1n xg)g/ém a-
. o *
gainst QB and QB for the CCl, -naphthalene - c~CgHyn

systenm. In Figure II.33 we show the same plot for the

01212 -~ naphthalene - c-C6H12 System.

For the naphthalene in CCl4 - c-C6H12 systen, we
connpare the theoretical line against the experimental
points and the agreement between the experimental points
and the theoretical values is good when plotted against

+*
) and not »QO « But the agreement is not so good for

3 3
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naphthalene in nethylene iodide - c-C6H12 « This is not

surprising because as we said earlier, neilther 3° nor

5
#*
§3 describes the nearest solute environment correctly

s s
when §1 5 *

that agreement between the expected line and the exner-

is less than 3 In Figure I1.33 we see
imental point is good for the mixed solvents concent-
rated in methylene iodidé and is bad for mixed solvents
dilute in methylene iodide -- & situation whieh concurs
with our earlier discussion on 5m's for concentrated
solutions.

$

As in the solubility equations, § and @m's

1 73
are retained and no attempt to calculate excess proper-
ties for concentrated solution is made because_the equa-
tions cannot be derived in terms of the properties of
the pure solvent as was done in the case of dilute sol-

utions. So we 4id not try to vlot any excess proper-

ties for the concentrated solutions.,

Conclusion

In general 1t is seen that the presently available
experinental data is well interpreted by this extension
of the Regular Solution theory to two component solvent
systens. The postulated "preferential solvation"™ of the
solute by one component of the solvent mixture is well
borne out for dilute solutions. For the concentrated
solutions of a solute in a two component solvent mixture

we showed that there exists a minimum value for the
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number of molecules of the preferred solvent which must
exist in the solution in order to observe the full ef-

fect of the "preferential solvation" in the studies of

the solubility of solute 2 in the two component solvent
systens.

The relationship between (1n aé - 1ln Xg)% and
Ql or @: for dilute three component systems, depends

only upon the definition of & All systems consid-

m [ J

ered as dilute solutions show that the expected linear-
3

ity is found only if Ql , the effective volume frac-

tion term, is used. For the concentrated three compon-

ent systems, the linear relationship exists between

X 1 . 1
(1n ag - 1n xg)e/ém , instead of (1n a; - 1n xg)2 ,

and @2 or Q: . For concentrated solutions we also
show that, in certain cases, a linear relationship can
be observed hetween (1ln aé - 1ln xg)% and @i or Q: .
However, this linear relationship between (1ln aé -

1n xg);‘2= and @2 or Q; depends upon the validity of

the assﬁmption that the volume fraction of the mixed

solvent in the saturated solution of the solute 2 in

the mixed solvent is equal or approximately equal to

the volume fraction of the reference solvent in the sat-

urated solution. Ve also see that, for a concentrated

solution, the above-mentioned linear relationship exists

between Q*'s instead of &° . |
The necessity of using the effective volume frac-

tion, which reflects the interaction of the solute mol-
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ecule with its immediate solvent environment, is again
shown by the three excess saturation solubility terms
for the dilute solution of 2 in two component nmixed
solvents. (We have not derived any expression for ex-
cess satursation solubility terms for concentrated sol-
ution of 2 in two component mixed solvent.) If we con-
trast the A(ln Xg) and.the A(1n Xg*) terms (i.e.
in eaéh the thermodynamic reference state is Ql , the
bulk solvent volume fraction), we note that the magni-
tude of the excess term arises mainly from the need to

¥#*

define 6m using Ql .
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Table IT.1l

Saturation solubility and partial molal volune of
jodine in a nixed benzene-cyclohexane solvent:

All data at 25° C.

Volurne fraction Saturation ZXEntrony of Partial Molal

of benzene, Solubility Solution Volune,
ln xo -1

@1 -R 1n Xo R{alnT cc mole
0 9.3845 22.201 68.2
0.2551 7 .9684 20.835 65.5
0.5093 7.1384 18.245 64 .4
0.6927 6.5758 18.000 63.3
0.7604 6.449 17.710
0.8657 6.250 16.623 62,9

1.00 6.0318 16.30 62.4
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Table II.2

Jodine in benzene-cyclohexane solvent:

All date at 25°C.

Volume fraction bm bm 5
of benzene, using usig
) (E}Cpt) 3 *g
1 1 &,
0.2551 8.92 8.46 8.92
0.5093 9.36 9.12 9.41
0.6211 9.56 9.32 9,57
0.6804 9.62 9,42 9.66
0.7604 9.74 9.56 9.75
0.8451 9.85 9.71 9.84
0.8657 9.86 9.75 9.86

( & values used in this calculation are:

61 = 6benzene = 9.99
85 = 8i0qine = 14-1
6, = = 8.2 )

3 6c“061*112
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Table II.3

Jodine in benzene - carbon tetrachloride solvent:

A11 data at 25° C.

Volune fraction & 6 5

of benzene, &, (exg) usingmiS1 using @?
0.1219 8.75 8465 8.78
0.2068 8.96 8.78 8,96
0.4456 9.39 g.22 9.45
0.5210 9.42 9.26 9.49
0.8157 9.82 9.70 9.81
0.8858 9.89 9.82 9.88

( 8 wvalues used in this calculation are:

61 = Spenzene = 2+99
62 = 6iodine = 141
[ = 8,45

=9
3 CClu

)
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Table 1I.4

tetrachloride solvents:

All data at 25 ° C.

(1In x

(In x

2)
ol

Solvent

Benzene-Cyclohexane

Benzene - Carbon Tetra-

chloride Solvent

1n xg

(expt)

in x2

> |

1n x0)

m
I1n x2

(expt)

m
X

In ~

(20x3) |

0.25651
0.5093
0.6211
0.6804
0.7604
0.8451

0.8657

4,0224
3.5944
3.4119
3.3359
3.2475
3.1577
3.1471

4.,2925
3.8635
3.6749
3.5748
3.4399
3.2970

3.2622

4,0125
35733
3.4224
35.3502
3.2609
31732
3.1555

0.1219
0.2068
0.4456
0.5210
0.8157

0.88568

4,2037
4,0521
3.5691
3.5469
3.1970

3.1353

4,3310
4,2060
3.7804&
37431
363087
5.1955

4,2063
4,0306
345532
3.5217
3.1956

3.1319
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Table II.S

.SnI4 in benzene - c-CcH,, mixture:

(a5 for snI, = 0.113124; 4, for snr, = 11.8[247)

Volune fraction Saturation

of benzene, &, s;}ubilfgy -1in Xg (lnag—lnxg)%
Xy X 10 |
0 0.7279 4,9236 1.6653
0.165 0.9896 4,6166 1.5704
0.26 1.01131 4,4991 i.5525
0.378 1.3475 4,3078 1.4688
0.585 1.608 4,1311 1.4074
0.76 1.8546 3.9878 1.3555

1 2.181024]
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Table II.6

_Solubility parameters of C6H6 - C_C6H12 nixed
solvents for C6H6 - SnI4 - C-C6H12 systenms:
Volune fraction 5 = 5 =
of benzene 8, mo OE
. - (o) | . o S
1 1 T 5 t 585
0 - 9.24 - -
0.165 0.25 8.678 8.620 8.686
0.26 0.3677 8.765 8.70 8.772
0.378 0.5012 8.89 8.87
0.5850 0.70 9,013 8.93 9.016
0.76 0.84 9.116 9.05 9.129
1 - 8.5
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1

Table II.7
AVE in mixed solvents:
12 in C6H6 - c-C6H12: Br2 in CCl4 - cC4012F6:
Volume AVE AVE | [vorune AVE AVE
fract. fract. -1 -
benzene ce molél ce molél o1 cc mole cc mole
(calc'd) (expt) h (calc'd) (expt)
002551 "1008 "1.19 000525 -0098 _1 052
0.5093 ~1.34 -},16] {0.108 -1.18 -1.30
0.6211 ~1.13 -1.18} ]10.1615 -1.33 -4 ,06
006804: -1005 "'0.98 0028 "’1.4‘9 -2018
006924 -1 .OO -O 088 0072 -1 0154 -1046
008654. -0048 -0.53
Br2 in CCl4 - n—C7F16:
B B
Volune AV 1 AV 1
fract. |cc mole™ " |cc mole ~
CCl,, (calc'd) (expt)
00031 "5004 -0045
00063 —5.29 -0069
00122 "6.38 -3084
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Table 1I1.8

Partial molal volume of solute in pure solvents:

Solute Solvent V,(expt) V,(calc'd)
cc/mole cc/mole
12 C6H6 62.4[64] 63.3
Br, ccl, 24.1 53.68
. Br2 c—-C4Cl2F6 64.5£643 60.69
[e4] .
Br, n—C7F2 71.8 , 77.08

( &8 for benzene was assuned to be eaqual to 9.99)
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Table II.9

Saturation solubility of naphthalene in CCl4 - c=CgH,
mixed solvent at 298 ox.L79]

Volune fract. Volume fract. Volume fract.

of CCly 1in of CCl, in of naphthalene 6m
solute-free solution, in solution,
solvent,
s m (expt)
89 b 2
1 0.7085 0.2915 8.45
0.5518 0.4117 0.2538 8.22
0.3637 0.,2379 0.2413 8.05
0.1575 0.1271 0.193 7.85

0 0 0. 1.587[80] 7.66
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Table II.10

Saturation solubility of naphthalene in CH212 - C_C6H12

nixed solvent at 25 ° C:

Mole fraction volune fraction saturation
of methylene of Io 1in solubility
iodide in pure pure mixed of naphthalene
nixed solvent, solvent,
xi §§ ~1n xg
0 0 1.9440
0.12 0.097 1.5997
0.185 0.1443 1.4872
0.25 0.196 1.3509
0.37 0.301 1.2765
0.48 0.408 1.2174
0.541 0.47 1.2063
0.67 0.604 1.2344
0.75 0.695 1.2694
0.85 0.805 1.3168

1.0 1.0 1.4569
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Table IT,11

Solubility parameters of nixed solvents in the

ccl4f naphthalene - c—C6H12 system£79]

Volune fraction effective vol. am 6m = *6m =
of CCl, , fraction of (expt) 595, + 8.6, +
(o] CCl ¥* #*

3 4 3 o
1 1 303 $365
0.1575 0.3138 7.85 7.76 7 .89
0.3637 0.5831 8.05 7.93 8.1
0.5518 0.7508 8,22 8.08 8.24

( 8 values used in this calculation are:

b5 = 8 paphthalene™ 99

53 = Be-ggH,, = 7.66 )



6§ wvalues for C

...]_32..
Teble ITI.12

2

CH2I2- naphthalene - c-C6H12 system:

H 12 - c-C6H12 mixed solvent for

X?_luc:z% I}‘Iraction Q* LI, m . m
(1.e. :812) 3 (expt) 2981+ i3, +
$367 $363
1 - 7.66 - -
0.903 0.8224 8.11 8.03 8.34
0.8557 0.7469 8433 8.21 8.63
0.8067 0.6749 8.47 8.39 8.90
0.699 0.5361 9.03 8.80 9.43
0.597 0.4243 9.51 9.20 9.85
0.53 0.3594 10.06 9.46 10.11
0.396 0.2460 10.50 9.97 10.54
0.305 0.,1792 10.77 10.31 10.80
0.197 0.1088 11.03 10.73 11.06
0.0994 0.052 11.20 11.10 11.28
0 - 11.48 - -
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Table IT.13

expt
_6& P por CCl, - c-CcH,, 1n CCl, - naphthalene

4
S
c-C.H system, along with Ny values:
6712 NS
o m s *®
LB L7 I P I S n? (1nat- 1y
— lnas-1nx,)
. 2 2
(:L.e.QCCL) (expt) Ng T
1 0.2915 0.7085 8.45 - 2.,4305 0.6610
0.1575 0,193 0.1271 7.85 7.89 0,8350 0.9382
0.3637 0.2413 0.2379 8,05 8.11 1,2501 0.8463

0.5518 0.2538 0.4117 8.22 8.245 2,0578 0.7664
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Table II.l4

.6g§th) for CH212 - 0-06H12 in CH212 - naphthalene
- c-C()-H1-2 system along with %é' :
3% 5 5
(s : | Qg Qi (o mt) " .Ez (lna%-lnxg)%
CHo o) *P N3 m
1 0.3198 | 0.6802 | 11.45 - 3.23 0.7201
0.924 0.,3387 | 0.6116 | 11.20 | 11.28} 2,.7394 0.8144
0.803 0.3456 { 0.5255| 11.03 | 11.06 | 2,3089 0.7174
0.695 0.3542 | 0.4488| 10.77 | 10.80 { 1.9241 0.6561
0.604 0.3579 | 0.3878 | 10.50 | 10,54 } 1.6453 0.3988
0.47 0.3592 | 0.3012 | 10.06 {10.11 | 1.2733 0.1784
0.403 0.3505 | 0.,2617 9.51 9.85 | 1.1337 0.0752
0.301 0.3247 | 0.2033 9.03 9.43 1 0.9507 0.2718
0.1933 | 0.2750 | 0.1401 8.47 8.90 0;7737 0.3961
0.1433 | 0.2571 | 0.1065 8.33 8.63 { 0.6290 0.,9133
0.097 0.2275 | 0.0749 8.11 8.34 | 0.4999 0.,5947
- 0.1587 - 7.66 - I 1.0225
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Table IT.15

and CH212-
CCl4 - naphthalene
o $
L2 = (1,2)
1-
0.1575 1.1397
0.3637 1.0709
0.5598 1.0532
§1(1,2)

is the volume fraction of

4

1
haphthalene - c-C6H12

systens:

- navhthalene - c¢-C_.H
6712

CH212 ~ naphthalene- c-C6H12:

B[R (L) |2 (2.
1 3

0 - -
0.097 1.1342 0.9182
0.1443 1.0907 0.8830
0.1933 1.0659 0.8618
0.301 0.9928 0.8027
0,403 0.9549 0.7720
0.47 0.9422 0.7617
0.604 | 0.9440 0.7632
0.695 0.9404 0.7676
0.803 0.9621 0.7778
0.9006 0.9722 0.7860
1l - -

golution of 2 in solvent 1.

1 in the saturated
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Figure II1.1. Saturation solubility

of iodine plotted as =R 1ln x2, as/(
a function of the volume - .

fraction of benzene in mlxed/ /
benzene - cyclohexane

solvent. /O/ /
A: 20° /O /O
B: 25°C o ©

O
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Figure II.2. Excess saturation solubility term

(Aln xg) and excess partial molal volume term (Avg)
plotted as a function of benzene volume fraction in

the mixed benzene-cyclohexane solvent. Data at 25°C.
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Figure I1.4. Saturation solubility

. . . I q
of iodine in mixed C6H6 c C6H12//
solvent ( plotted as R 1n X5) E{;}

as a function of the "effectiv

volume fractionﬁ of benzerie.
Data at 25°C.
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Figure IT.8. TIodine in mixed carbon tetrachloride
perfluorocheptane solvent. Data points plotted against
simple volume fraction of carbon tetrachloride in mixed
solvent (B) and against "effective volume fraction"

of carbon tetrachloride ((®). Solid line represents
the theoretical (1n ag - 1n xg) versus §, or éi

relationship. Data at 25.0°C.
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Figure II.8
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Figure I1.9. Saturation solubility of SnIu in

mixed benzene-cyclohexane solvent plotted (as 1n xg)

as a function of volume fraction of benzene. Data

at 25°C.
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Figure IT.10. SnIy in benzene-cyclohexane nixed

i
2
function of volume fraction of benzene ( ® ) and as a

1
solvent. Y (i.e. (1In a- - 1n xgl)z ) plotted as a

function of effective volume fraction of benzene (13 ).

Data at 25° C.
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Pigure II.11. Saturation@

solubility of SnI4 in
C6H6_- c-C6H12 mlxed
solvent plotted against the
weffective volumeé?féctidﬁ#
of benzene.

08
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Figure II1.13. 6m(experimental) for benzene-cyclo-

hexane in henzene - SnIu - cyclohexane systen. Plotted
as a function of volume fraction of benzene (© ) and

"effective volume fraction" of benzene (® ). Solid

line represents theoretical 6m versus §$ or Qz .

Data at 25° C.
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Excess saturation
solubility terms.
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Curve B - %( Aln Xg)
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Curve A - ;( Aln

1 . m
Curve C - K(A& 1n x2)

for solute o, (=14) in
mixed solvent 61=12
63=6
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Figure IT.16. Excess saturation solubility term

for iodine in a mixed benzene-cyclohexane solvent,

25° C.

m
Curve A: A(ln Xy

Curve B: A(1n xg)
e

curve C: A" (1n 2)

Exverimental data 0]
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Figure II1.17. Excess saturation solubility curve

for iodine in mixed benzene - carbon tetrachloride

solvent. 25°C.

Curve A: A(ln xg*)

o)

Curve B: A(1ln X,

Experimental data points O
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Figure IT.18. HXxcess saturation solubility curve

for SnI4 in benzene-cyclohexane nixed solvent.

Curve A: Aln xg*
#* m

Curve B: A 1ln x2

Curve C: Aln Xg

0] experimental points.

All data at 25° C.
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Figure I71.19. Excess saturation solubility term

for iodine in a mixed carbon tetrachloride - per-

fluoroheptane solvent. 25°C.
m
Curve A: A(ln xz*)
Curve B: A(ln xg)

Experimental data points
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n—-C7F16 mixed solvent plotted ( as
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FPigure II.21. Excess saturation solubility curves,

A(1n xg*) for naphthalene(a2 = 10) in hypothetical

mixed solvents.

Curve A: 61 = 3 =

Curve B: 61 = 3
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Figure IT.22. (1ln a;

* .
effective volume fraction §1 for naphihalene in

1
- 1n xg)g plotted against

hypothetical mixed solvents.

I

Curve A:

6; 8§, = 14,

64 3

Curve B: 61'= 8; & 12.

3

¥ 2 s

(for this system &, 1)
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Figure 1I1.23: Excess saturation solubility for SnI4
(& = 11.7) in hypothetical mixed solvent (61 = 5.6;
6 = 14.0).

5

Curve A: A(ln xg*); Curve B: A*(1ln x?);

Curve C: A(ln xg)
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1
Figure II.24. (1n a; - 1n xg)2 plotted as a

% .
function of &, (linear plot A) and as a function
of &, (curve B) for stannic iodide (6, = 11.7)

in hypothetical mixed solvent &, = 5.6 85 = 14.0.
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Figure II.26. Excess volume of mixing function -AVE

for iodine in a mixed C6H6 - c-C6H12 solvent, as a
function of volume fraction Ql (assuming effective

volume fraction definition for 5m). Data at 25°C.

Full curve - calculated from equation (65).

Experimental data points (according to equation (66))
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Figure ITI.27. Excess volume of mixing tern -AVE for

bromine in a nixed CCl, - c¢-C,Cl Fo solvent, 25°C,

plotted against volume fraction of CClA .

Theoretical curve - full line - assuming effective

volunme fraction definition of am .

Experimental date points [0)
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Figure 11.28 Saturation solubility of naphthalene

in CCl4 - c—C6H12 mixed solvent of different composition,
plotted ( as xg) as a function of temperature.
Curve A: pure 0014

. o _
Curve B: &1 = %ccy) = 0.5518

Curve C;: $° = &
CClh = 0.3637
$

1

o - 3

1 ' CC14= 0.1575
Curve E: pure c-C6H12

Curve D:

( All data taken from the reference- 79)
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CHyI,
Figure 11.29b. Saturation solubility of naphthalene

plotted ( as -1n xg') as a function of volume fraction of
methylene iodide in solute-free methylene iodide -
cyclohexane mixed solvent. Data at 25°¢C.
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Pigure IT.30. Naphthalene in carbon tetrachloride -

cyclohexane mixea solvent. Y (i.e. (1r£ a,i;;,:
1
in xg)f ) plotted as a function of volume fraction

of cyclohexane ( Q ) and the effective volume frac-

tion of cyclohexane (@ ). In this plotting it has

been assuned that T{%‘l—?)' ~ 1 « (see Table IT.15
k]

and Table II.9) Data at 25° C.
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Figure IT.3l.Naphthalene in methylene iodide -

cyclohexane nixed solvent. Y (i.e. (1n ag -

in xg)% ) plotted as a function of volume fraction
of cyclohexane ( @ ) and effective volume fraction
of cyclohexane ( @ ). In this plot it has been
assumed that ETT%%§7 and 3;%%:37 are equal to
unity. (see Table II.1l5 and Table ITI.10) All data

at 25° C.
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Figure II.32. Naphthalene in carbon tetrachloride -

cyclohexane mixed solvent. Y/% (i.e. (1n ag -

1n xg)g/ém ) plotted as a function of volume fraction
of cyclohexane ( ® ) and as a function of "effective
volume fraction" ( @) of cyclohexane. Data at 25°C.

(see Table II.13)
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Figure I1.33.Ndphthalene in methylene iodide -

cyclohexane nixed solvent. Y,8 (i.e. (1n ag -

in xg)%/ém ) plotted as a function of volume fraction
of cyclohexane ( O ) and as a function of effective
volune fraction of cyclohexane (® )« (see Table

ITI.15) All data at 25° C,
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Chapter - III

Calculation of Entropy of Solution from Scaled Particle Theory
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The scaled particle theory of fluids is essential-
1y an equilibrium theory concerned with the prediction
of the bulk thermodynamic proverties of fluids over
the whole existence region of the fluid. The classic-
al hard sphere consists of "identical" vparticles or
nolecules which are rigid spheres of diameter a , obey-
ing classical mechanical laws. Two such molecules in-
teract with one another only when they collide elastic-
ally. The importance of this model is due to the con-
siderable mathematical simplification in the many-body
problem resulting from its use, as well as 1ts useful-
ness in describing the behaviour of real fluids under
extrene conditions. Thus, at very high temperatures,
when the average kinetic energv of the gas molecule is
mich egreater than the minirmum value of the intermolec-
ular potential energy, the hard core (of diameter a )
of this potential energy is important in determining
the properties of the fluid. At very high density, on
the other hand, the attractive part of a more realis-
tic intermolecular potential can be thought of as a
smooth averege potentiesl not greatly affecting the prop-
erties of the fluid.

The scaled particle theory was first develoned by

6
Reiss, Frisch and Lebowitz[9 ]

in 1959 and is mainly
concerned with hard smheres. Since then a number of
papers and a couple of reviews have concerned thenselves

with various ldealised systems such as hard snheres,



- 191 -

hard discs and one dimensional systems, as well as real
fluids, particularly with attempts to provide numerical
results which can be compared with the experiments.
' The scaled particle theory is a formal theory in
the same sense as cluster theory, the radial distribu-
tion function, and the Percus—Yeric&lgégory. The scaled
particle theory has been.used to calculate heat of va-
porization, surface tension, and heat capacities of real
fluids.[97'103] Scaled particle theory can also be ap-
plied to fused saltgl,104-100] Besides, scaled particle
theory does not need any adjustable parameters if the
hard core diameter of the molecule is known. For sin-
ple nonpolar liquids, the heat of vaporization can usu-~
ally be used to calculate the hard sphere diameter.
Hard snhere diemeters calculated this way can be used
to calculate other thermodynamic properties of real
liquids and usually the calculated thermodynamic prop-
erties egree well with the experinental vealues when
compared.

From the scaled particle theory Reiss et aE?6lb-

tained an expression for an equation of state for herd

sphere fluids as follows:

_ okT(1 + Y + Y°)
(1 -7)
where P 1s pressure, p 1s the number density -g ’

T 1is temperature in absolute scale, k 1is Boltzmann's



constant, and

An exactly similar equation for P ( as in equa-
[1087]

tion (1) ) was obtained by E. Thele and M. S. Wer-

[107]

theim by simultaneous solution of the Percus-Yerik

equation and the Ornstein-Zernike compressibility equea-
[119]

tion. Besides, this equation is in remarkable agree-

ment with the machine calculations of W. W. Wood and

120]

J. D. Jacobsong and of B. J. Alder and T. E. Wain-

E126]

wright The virial development

P = pKT(1 + B (2)

™)
n+1°P

e

1

where the Bn's are the virial coefficients of equation

(1) vields: (see H. L. Frisch in reference [100])

P 2

T + 192 + 317t 4+ . . . (3)

=1+ 4Y + 10Y
Equation (3) compares favourably with the exact virial
series

L
pkT

2 4 18.36 Y2

=1 + 4y + 10Y
+ (28.3 & 1.3)Y4 + .. . (4)

Comparing equation (3) with equation (4) one sees that

the first three coefficients are exact in equation (3)
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but the fourth is in error dy 3% while the fifth lies
within 5% of the uncertainty596’97]

Attenpts to extend the scaled particle theory to
.real fluids in an effort to derive their equation of
state has not met with the same success and this aspect
of the theory 1is still under develomment. The most
notable contribution in ﬁhis field is the perturbation
theory of Henderson and Barker[122’124’114’125] where
they treated the soft part of the intermolecular poten-
tial of fluid molecules as a small perturbation to the
hard sphere systen.

Recently Lebowitz et alE112’113] obtained an ex-

pression for the equation of state for hard sphere mix-

tures:
mgP =6 { 1T-E; 53 } + 18 { )2 }
+ 18 (5)
{ _ )3}
§L's in equation (5) are defined as
m
1 < 2/
€, =% ni;1 py(2R;) (6)

where m 1s the nunbher of components of the mixtures.
Ri is the radius of the fluid particles of 4ith com-
ponent. |

The scaled particle theory as developed by Reiss

and his coworkers has been used by different authors
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to calculate different thermodynamic properties of fluids
end fluid mixtures. Pierotti[115'6] used the scaled par-
ticle theory for predicting the solubility, the heat
of solution and the partial riolar volume of simple gases
in nonpolar solvents eand in water. Yosim used the sane
theory to calculate the excess entrony of nixing of sin-
ple nonpolar liquids. The method used by Yosimtlo}]
to calculate the excess entropy of nmixine of two fluids
was derived from the entrony of mixing of two rieid
sphere fluids, each at the volume of the corresponding
liquid component and the resultant nmixture of the hard
spheres at the volurie of the mixture of two real 1lig-

uids. Snider et al£118]

(117l

used Longuet-Higgins' and Wi-
don's model to calculate the excess thermodynanic
functions of 10 equimolar mixtures of nonpolar liquids
and found that the agreement between the calculated vel-
ues and the experimental values was generally good.
Longuet-Higegins' and “Jidom's model may be considered as
en inprovement of the theory develoned by Reiss et alE96]
as this riodel has finite configurational internal ener-
gy but the effects of the configuretional internal ener-
gy on the entropy change are expected to be either can-
celled out or to be very small with resnect to this as-
suniption. We will use the scaled particle theory to

calculate the partial molar entroony change of & solid

solute dissolved in nonpolar solvents.



-195 -

Method of Calculation of Partial ifolal Entroony of

Solution

As our interest lies in calculating the partial
.molal entropy change of a s0lid solute when dissolved
in solution, i.e. (§2 - sg) , we will devise a ther-
modynanic cycle to dissolve the solid solute in the
solution. The thermodyﬁamic cycle we will use in the
following discussion consists of six steps. These steps

can be described in the following manner:

Step I. Pure solid solute at room tempersture is con-
verted to supercooled liquid at that temperature. Un-
fortunately, we cannot use the scaled particle theory
in calculating the entropy change involved in this step
as it i1s well known that scaled particle theory can not
be extended to the solid states and it does not describe
correctly the melting process of solids (even in a sim-
ple case like the melting of solid argonLlO?J). We
decided, therefore, to use the experimental value tfo
calculate the entropy chenge involved in this step.
This can be calculated by the usual thermodynamic pro-
cedure. Let the entropy change involved inbthis step
be denoted AS% where the superscript refers to the
step number, in this I because this entropy chanee
refers to the entrOpy'change involved due to Step I.
Subscript 2. refers to the solute, our usual notation

for solute.
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I
2

fusion of the solute at room tempersture., From usual

Therefore, we see that AS is the entropy of

thernodynamic relations we find

I _ f
885 = ny(8S50g)
=n (Asf - ACS™% 1 El‘%?) (7)
2 mpt D 29
where Asipt is the entropy of fusion at the melting

point, T is the entropy of fusion at 298¢

. f
mpt ° AS298

K; ACS-£ is the difference of the heat capacities

between solid and liquid solute; and n, is the number
of moles of solid solute.

Besides the obvious problem of the nonapplicability
of the scaled particle theory in describing the »nrocess
of melting, there is another reason for introducing
Step I. In most of the so0lid solubilities studies, the
supercooled liquid of the solid solute exﬁrapolated to
the temperature at which the exveriment was performed
is the standard state for these studies and all the

therrnodynamnic data for the solid solutes were collected

with respect to this standard state.

Step IIL The liquid solvent and the ligquid solute cre-
ated in Step I are separately "discharged" at constant
volumne to hard spheres.

Let the entropy change of this step be denoted by
ASII '

.
9
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IT _ _ IT IT
ASTT = (nlAScharg(l) + n2AScharg(2)) (8)
‘where n's are the number of moles, AS is the
charg

entropy change due to charging of the hard spheres to

real liquids.

Step III. The hard sphere fluids produced in Step II

are now vaporized at that temperature. If the vapor

of the hard sphere gases at that temnerature is assumed
to be ideal such that P%V° = RT , then the entropy
change of this step can be calculated from the scaled
particle theory. Yosim obtained the entropy of vapor-

ization of hard sphere fluids at the boiling point of

- 10
the corresponding liquid as [ 3]
Ve 3cRnal(2ve_, - ca?)
ASVap .y = n.R 1n bpt + 1 bpt = (9)
bpt(1) + (vt . - ca?) 2(vh .~ cald)
bpt i bpt i

where V%pt is the volume of the liquid at the boiling
voint, C 1is iﬂgg where N, is Avogadro's number, a
is the hard sphere diameter of the liauid, and .V%pt
is the volune of the substancé in the gas phase and the
gas obeys the ideal gas law.

From the therrnodyvnamic relationshivp, the entrony

of vaporization at 298° X is given by

an 10— RH()
( bpt(i) ~ cay)

ASVap,298 =

T
- ¢t 8 1 —]3’5-'9 (10)
3 P 29
2(V£%t(i) - cai)
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where Ty 1s the boiling point and ACg-g is the differ-
ence of the heat capacities of liquid and vepor vhase.
In writing equation (10), we assumed thet the ACg-g
‘is independent of the temperature.

The Acg—g for liouids can also be calculated

from the scaled particle theory of the fluids. The

- 1027
act-8 [102]

is given by
D 24 N

2
1+ Yi + Yi

Act™8 - _R + RTy >
(1 - Yi)

p

(11)

where a, is the coefficient of thermal expansivity of

the liquid, and

Ho\W

v, =—1 (12)
177

Therefore, combining equations (10) and (11),

S = - S, VEpt(1) , 2chnye (gvéptgl) cas)
1 3 Vx, 3
Bpt(1) ~ €21 Bpt(1) ~ ©81)
vE

Bgtgl} Bpt(2)

nlACp(l) 1n 5G + n2R In -, o

5 Bpt(2)
+ G V%pt _ cag) - n.aCY"8 1n “Bpt(2

2(v*> Eot(2) - ag)2 7P =9

ngACp(g) 1n —gggigl- (12)

The reason we used Q@ for the real liquid (i.e. the

coefficient of the thernal expansivities of the liquid)

end not a hard sphere liaquid is due to the fact that
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we are calculating the heat of vaporization at the boil-
ing point and as we are using the experimentally deter-
nined V , we have to use o, to be consistent in

Bpt

out calculations.

Sten IV. The ideal hard sphere gases produced in Step
IIT are mixed at constent pressure. If we assume that
the nmixing is ideal then the entropy of this step is

given by v
AS = -an 1n Xy - n,R 1n X, (14)

where x's are the mole fractions.

Step V. The mixture of the hard spheres 1is compressed

to the volume of the solution 'Vg « The entropy of this
step can be derived from Lebowitz's eaquation of state

for a mixture of hard svheres and is given by (see Ap-

pendix AIII.1)

Ve
as’ = -R(n, + n2){ 1n 3:2983
Vg,298 - c(nla1 + nya )
- 3 <c[3x3 3 4 x X (6a 3&1L 4 + 6af a,)

+xx(6a33—3a3)++6a12)+3x ]

- 6cVL[x a + XX (alag + a a,) + xlag]

[VL ,298 c(xlal + X, )] -2 > } (19)



- 200 -
Step VI. The compressed nmixtures of the rigld spheres
are "recharged," i.e, the internolecular attractive
potential is brought back and the repulsive potential
~is changed to thet of the solution. Then, the entropy

change of this step is

VI

_ VI
AS'T = (n1 + nQ)AS

charg(1,2)

Since we are interested in nonpolar liauids, it is reas-
onable to assume that the entrony change due to charg-
ing and discharging is very small and the difference
between charging pure cbmponents and solution will be

very small, or in other words we can assume

T IV _ - II 1T
ASTT = ASTT = -nlAScharg(l) - nQAScharg(Q)

VI _
= (ny + 0,)88 Garg(1,2) = O (16)

The excess entropy is defined as

where 2S™  1s the total entropy of mixing. Collecting
all the entropy changes involved from Step I to Step

VI and subtracting from then the ideal entropy of solu-
tion, one obtains the excess entropy of the mixing, ASE

as
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E _ I
AS” = nyAST + iR 1In v%pt(l) + n,R 1n v%pt(z)
3 >
- ;R 1In (VLpt(l) 1) - nR 1n(vt Bpt(2) - cag)
3 oyt a2
3cRn a1(2 ) T
Bpt(1) ~ L~g §Et§1}
+ V-{, a})g - nlACp(l) 1n 29
Bpt(1) ~ 1
3
3Canaz(QVLpt(z) caz) 1-g TBptéQ)
+ VL 3)2 - nQAC (1) In 55
Bpt(2) ~ @2
-~ 4R 1n Vg ,208 = By R 1n Vg’298 + n Rln[VL ,208 =

c(n1 2 + n a3)]

+ nERln[Vg,egé - é(nla; + n,a )]

+--:2L—(n1 + ng){c[Bx?ai + x§x2(6a Baua + 6a3 g)
+ x1x2(6aiag - Baiag + 6a a 6cVL[x aj + xlag

+ x,%(a; a )]}[VL 298 = c(x;a 3 + X,a )] q17)

If the solution is dilute with respect to component 2,
i.e. solute, then any term involving X1X, OT any high-
er power of X, cen be neglected and equation (17)

simplifies to

ASE = ngASI + n.R 1n V8

1 1,Bpt + n, R 1n V&

2,Bpt

- - 3
n,R 1n(v€,Bpt cal) n,R ln(VL 5 ,Bpt " cae)

3n1cRa3(2VL Bpt ~ ca%)
(7L

+-

Bpt(1) ~ %)
+ BnecRag(EVLpt(g) g) - 1ACL(1) 1n _Eg%§ll
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+ n;R In{ Vg c(nlaf + n a3) ]
+ n R 1nf Vé (nlaf + nya ) ] (18)

TV ; 70
Substituting Vg = anl + n2V2 where V 's are the

partial molal volume and then differentiating equation

(18) with respect to n and then converting the equa-

2

tion for 1 mole of mixture, i.e. N1 + N, =1, one

obtains the excess partial molal entronv of cormnonent

2 as

=5 _ g 3 =1
#5, =R InvVE . oy - R ln(V‘f' Fot(2) - cal) + 45
> -
+ seRaz(2Vy Bpt(2) ;ag) - act (2) in —ngpt
P
(Vips(z) = ©3) |
i 3
V, - ca
2 2
- R 1In V - X.R
298(s) 1 x£71 + xévg - c(xl % + x,a )
7 3
V, - ca
+ ng — _? 1 3 3
X,V + x,V, - c(xlal + x2a2)
+ R ln[VL - c(x >+ x a3)] (19)

Equation (19) is further simplified for a very
dilute solution as we are interested in a very dilute
solution where X, 1is of the order of 1077,

For a very dilute solution, 'Vl or the partial

molal volume of solvent in the solution can be taken

as equal to Vi or the molal volure of pure solvent
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at that temperature, and as dilute solution X5 is very

small, equation (19) beconmes
=E _ =L _ 3
AS; =457 + R 1n V%pt(E) R ln(V%pt - cae)

+ BCRag(EV%pt(e) - cag)/ (V%pt(e) - cag)2

T
1-g Bpt§22
- ACP(Q) 1n 59 - R 1n Vg98(s)

V., - ca?
+ R 2 L
> >
X,V + XV, - c(xla1 + x2a2)
) 3 3
+ R In[ (x,V, + x2Vé) c(xla1 + xeae) ] (20)

As we have assumed before, the vapor hehaves as
an ideal gas so that v®  or the volune in the gas phase
can be calculated frorn the ddeal gas law, i.e. PV = RT .

Equation (20) gives the entropy of solution at
constant pressure. This equation was applied to calcu-
late Agg or the partial molal entrony of solute at
constant pressure for I, , Snl, , Sn(C6H5)4 and
Sn(C6F5)4 in the following solvents: (i) Cs, , (ii)
toluene, (iii) CCl,F.CF,Cl, (iv) ccly, , (v) m-xylene,
(vi) iso-octane, (vii) 02H2012 .

For Sn(GFs)ino experimental values for ASI are
known. However the difference between the experinental
and theoretical ASS values for Sn(Qﬁgﬁ%in a reange

of solvents should be a constant value (i.e. the value

of ASI which is given by

p _ I
(ASQ)expt - (Asg)theor aS
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The other solid solute which has been studied
is “%tetra perfluorophenyl tin , and for this con-
pound no literature value for boiling noint is evail-
table. Also the value for entropy of fusion at room

tenperature is not known. For this solute we decided
Iv \

to calculate only A82 + A82 and subtract it from the
experimental value of Asg « This should give a value
for Asg + AsgII , which would be constant for a par-

ticular solute.

P

In Table III.28l11 the calculated wvalues for ASQ

are conpared with the experimental values.
In Pable II1.1 we give the values of hard sphere

dismeters used in this calculation.

Discussion

From the date presented in Table I1I1.2, it can be
seen that egreement between the calculated values and
expeririental values for I, and Snl) 1is extrenely

good. These are the only two solid solutes for which

all the necessary data are available -- particularly
heet of vaporization, entropy of fusion, Acg—s , i.e.

the difference of heat capacities of solid and liquid
state of the solute. For Sn14 , the entrooy of fusion

at 298" K was tesken as 9.1 eu as calculated by Hilde-
brand et al. Yor iodihe this value was calculeted fron
the data given by Hildebrand et al.and found to be 8.4 eu.

Hildebrand's Regular Solution theory (see Chapter I)
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deals with the entropy of mixing at constent volume which
is related to the entropy of nixing at constant nressure

(which we are interested in) by the eaquation

SV _ P oE
ASy = 855 - @%V V2 (21)

where Asg is the partiél nolal entropy of solution

at constant volume, Asg is that at constant nressure,
<§%;l¢ is the isochore of the solvent at constant vol-
une, and Vg is the excess partisl molal volume of the
solute in solution.

It is clear that this method can be used to cal-
culate Asg because 8ll other quantities in equation
(15) are usually obtained from the experimental results.
Or, if the scaled particle theory predicts Asg cor-
rectly, then one is assured of obtaining a correct value
for Agg as long as equation (21) is valid. 1In the
case of iodine, it has been observed that when ASV

2

is plotted against -R 1ln X, one obtains a straight

line whose intercept is equal to 9.1 eu and slope 1is
equal to 1.1 in conmparison to the expected values 8.4
end 1.0 respectively. Or in other words, although the
Agg's are nearly ideal for iodine as shown by J. Hild-
ebrand et al., the excess entrony even at constant vol-
une is not exactly zerb. As mentioned earlier, we are
not dealing with Agg . In the case of iodine it is

shown in Table IV.2 that the agreement between the ex-
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mixing can be applied to tetraphenyl tin - organic sol-
vent systems. In Table III.2 we give the value of ASg
for Sn(C6H5)4 calculated in this fashion in different
-organic solvents. Except for the toluene - Sn(C6H5)4

sy sten, Agg values determnined in this fashion are reas-
onably self-consistent even though we assumed in Step

IV that the entropy of hixing two i1deel hard sphere gases
is ideal.

The ability to predict such a large excess entrony
in this case in an interesting feature of the entrony
cycle we have used to calculate partial molal entropy
of the solute because in this calculation the effect of
the volume disparity between the solvent and solute

does not need to be considered.

For iSn(C6F5)4 , as mentioned earlier, we calculated

K53 + #5;0 by subtracting as™T + as]V + a5y + asy!

from the experimental Agg « The calculated values for

Ag% + Eﬁgl for Sn(C6F5)4 in different solvents are

also given in Table III.2. As before, AEI + AEII

2 2
s solute should be constant irrespective of the solvents.

for

This is observed in the case of Sn(C6F5)4 for differ-
ent organic solvents as shown in Table III.2.

Considering that no allowance for volume difference
on the entropy of mixing was made in this calculation,
it is interesting to néte that the entropy cycle we used
here may be applied successfully in cases where the

ratio of the solute-solvent molar volume is as large
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as five. Considering the success of applying this en-
tropy cvele in predicting such a laree excess entrovny,
it seens that for svhericel molecules the large excess
.entropy of mixing may not be due to molar volume differ-
ences alone.
Going back to Table 1Il.2 again, we can see that

for tetraphenyl tin the .ASI

2
dure described above is reasonably constant except for

calculated bv the proce-

toluene, where the calculated excess entropy is rniuch
larger than the experimental one. We have no definite
idea as to why the toluene - SnPh4 system[?ggﬁates to
such a large extent. It has been suggested that SnPh4
forms a complex with benzene, although no such studies
have been reported for the toluene - SnPh4 system; it
may be that SnPh4 also forms a conplex with tolueﬂ;.
In that case these calculations do not have any nean-
ingful significance hbecause they are based on the assunp-
tion that molecules interact according to the hard sphere
potential and the "charging" and "dischareing" proces-
ses have almost negligible effect on the entropy of the
‘solution. This is not the case where more specific
interactions are present.

For =~ ‘tetra perfluoréphehyl tin the situation
becomes nore complicated. As mentioned earlier the

f IIT
298 + 483 is not known. So
f IIT  por

Z
we looked for a constant value of A8298 + A82

SnPf4 by the method described earlier. The calculated

entrony change for AS
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perimental Agg and the Agg calculated from the scaled
particle theory ere in good agreenent, it is clear from
equation (15) that Agg's have to be in good agreement,
frovided equation (15) is valid.

The difference hetween the method described here
to calculate the entropy of the mixing and Regular Sol-
ution theory is that in fhis method we assumed that the
entropy of mixing is ideal when two ideal hard sphere
gases are nmixed, whereas in Regular Solution theory it
was assumed thet the entropy of mixing is ideal when
two liquids are nmixed. As mentioned earlier, the two
solid solutes which have been studied extensively in
terns of the Regular Solution theory do seem to have
a verv small excess entropy.

But for tetraphenyl tin, the excess entropy of
mixing is quite large and as shown by Vitoria and Walk-
le§?4éhe Regular Solution theory breaks down for tetra-
phenyl tin - organic solvent systems due to the large
excess entrovy of mixing. %We were unable to calculate
the Agg for Sn(C6H5)4 in different solvents due to
the unavailability of necessary data to calculate the
T

entropy of fusion for Sn(C6H5)4 at 298° K, i.e. Aﬁé .
But as Agg
of the solvents, we shall be able to calculate Agg by
subtracting (A—S-gI + A'S'%II + a5V 4 A'S'g + Aﬁgl)

the experimental AES -- and this value for A§£

be a constant if this method of calculating entropy of

is constant for the solute irrespective

fronm

should
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f ITTI
values of A$298 + A82

come to be constant within a
few per cent ( which can be cosidered to be good).

But as there is exact method by which AS£98 can be
seperated from AS£98 + AS£II , this procedure is not
very helpful in calculating the excess partial molal
entropy of mixing of Sn(C6F5)4 in organic solvent.

v

Conclusion

In this chapter we showed that the scaled particle
theory can be used in calculating the partial melal entropy
of mixing of a solute and we also showed-that the calcu-.
lated values of ASg are in good agreement with the expe-
rimental values. But as the major contributions in calcu-
lating Agg come from AS£98 ( the entropy of fusion

v

at 289°K) and from A82 (-R 1n x2), a more critical

test of the method of calculation will be the comparision
of calculated and experimental values of excess partial
molal entropies. For solids , we shall compare the calcu-
lated and the experimental values of [Agg] where

excess

is define as Agg + R 1n X5+ We subtracted

because AS%98 cannot

=P
[ASQ]excess

f =P
AS298 from rASz]excess

be calculated from the scaled particle theory and moreover
its contribution to Agg is_quite lgrge ( approximately

8 eus ). In table TIII.3, we give both calculated and
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] - 5"
excess 298
It can be seen from Table II1I.3 that the calculated

experimental values for [ §§ for I, and

SnI4.
- values are not widely different from the experimental
values. Within the limits of the assumption of a hard
sphere interaction potential and the uncertainty involved
in calculating hard sphere diametersEllS], the results
can be considered to be good. These results could prob-
ably be improved by using a more realistic interaction
potential. Until a rigorous method is developed using
the scaled particle theory approach for a realistic in-
teracting potential allowing the equation state to be
formulated, no real improvement is possible.[llSJ
After completion of this work, a paper was published

1[126], where they used the perturbation

by Benson et a
theory as developed by Barker and Henderson[zg} to cal-
culate the heat of mixing and the entropy of mixing for
nonelectrolyte solutions. They showed that the perturbation
of hard sphere potemtial does not affect the entropy of
mixing, i.e. the entropy of mixing of two nonelectrolyte
liquids in absence of any specific interactions is equal

to the entropy of two hard sphere fluids -- a conclusion
similar to our assumption that the entropy change during

the "charging" and "discharging" processes cancel out

each other.
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Table 11,1

Hard sphere diameters of different solvents and solutes:

(see Appendix AIV,.,1l for the methods of calculation)

a X 10'8 a a a
values used AHV8 o g B g
in this - - -
calculation x 10 x 10 x 10
cm cm cm
- 4 .61 -
12 4.61‘ 4 461
SnI4 5.34 5.34 -
sn(CgHg) ), 9.039 - 9.039 -
Sn( C6F5)4 9,37 - 9,37
c--C6H12 5645 5,45 - 5.37
CC14 5.23 5.23 5.14
CC12F.CF201 5.55 5.65 5.47
CQH4012 4,89 4,89 4,83
i—C8H18 \ 6295 6.295 6.23
CH2012 4,48 4,48 4,31
toluene 5.46 5.46 5.42
m-xylene 077 9.77 5.75
032 4,42 4,42 4,33

( aAV's are the hard spherediameters calculated fronm
the heat of vaporization data by Snider-Harrington's
equation; a, are the hard sphere diameters calculated
from thermal expansivities data; aB 's are the hard

sphere diameters calculated from the coefficient of

isothermal corpressibility data)
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Table ITIL.2

P

A82

System

Asg(calc'd)

C-C6H12 - 12
CClu - 12

CCl F.CFQCl - I

2
082 - I

2

2
i-octane - 12
CClu - SnIu
tmumm-&ﬂ4

CClgF.CF2

c-C6H12 - SnPhu

Cl - Sn14

f
A8298

n
CClu - SnPhA

toluene -~ SnPhu

CC1,F.CF

n
5 201 - SnPhA\

I IIT

- - n u
¢ C6H12 SnPfh +
toluene - SnPfA' L

isooctane -~ SnPf4 "oy

+

22.28
21.2

24,99
18.09
23.45
18.85
18.%4

2h.77
23,07

19.59

19.145
25.0

4,0k

9.31

5.55

5.8

for different nonpolar binary mixtures:

ASE ex
ASz(exp)

0
22.2[11 J

21.9 1103
oy 110]

18.g- 1103

23.3[1101

lgof;B?]
17.4[5?]

25,4521

30,87 0]
- 8 )

26.77[54]

161 2%

33'9%54]
8

28,38

24, 34)

33,41
24 ,10)

30,22
2l ,65)

23,2 )
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Table - TII1.3

A comparision of excess partial molal entropy of

solution for solid solue calculated by means of equation-

(20) of chapter III with those determined experimntally.

" =
;System -R ln x2 [ASQJexcess rAS2]§xcess
‘ 298 29
- T ~AST
(cale'd) (experimental)
I, - ccy 8. 46" 110] 3.3l 5041103
I, - e-CgHy, 9.38 4.50 y,upl 110]
I, - CCLFCCIF, 10,76/ 1103 5 49 5.040110]
I - CS | 5,741 1101 5 o5 y.660120]
2 2 [110] [110]
I2 - isooctane 10.19 4,71 L .86
snI, - CCl 8.50 (221 1 .35 1.670221]
y~ CCLy f5o1 Tree] .
SnIu— toluene .33 1.97 0.97
SnI,- CC1,FCCIF, 13.2592)  oup 3,050 221
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Table " III.4

Saturation solubility of Sn(C6F5)4 at different temperature.

Solvent 7oK x, x10™* <R 1n x,
cc1, 308 66.13
298 46.63 10.6628
293 . 39.23 '
c-CgHy, 308 8.18
298 4,067 15.5082
293 3.22
toluene ‘308 81.0
298 47.57 10.6234
293 40.36 )
isooctane 308 | 17.63
298 | 11.55  13.4348

293 9.322
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Table III.5

Values of VZ and A §g for Sn(C6F - organic solvent
systems:

- . -1 sP
Solvent V2 in cc.mole A32
CCl4 ~ 28.38
toluene 30.22
isooctane 415.5 29.0
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Appendix AI.l

Important Therrodvnanic Relations

n

heat capacity at constant volume

@_%)v | | (AI.1.1)

CV

i

Q
1]

heat capacity at constant pressure

P .
= @—@P (AT.1.2)
a = coefficient of thermal expansion
- 3 @—\—@P (AI.1.5)
B = coefficient of isothermal compressibility

- - % @_‘@T (AT.1.4)
@_TP)V - - @_E_I’DP @_%T =% (AI.1.5)

We also used the term "fugecity" designated by f .
The fugacity in two states A and B 1is related to

the molal free energy in these states by the eaouation

fy
5 - F, = RT In & (AT.1.6)
A

H

A sumnary of relations between thermodynamic functions

is given in Table AI.l.l.
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Activity and Choice of Standard State

The other important thermodynamic quaentity we have
used is the activity, designated as a . The activity
a of a substance in a particular solution is the ratio
of its fugacity in that solution to its fugacity in
some arhitrerily chosen standard state whiech in this
theory is always pure liquid. For standard state a0'=

1 while in any other state it is given by .

RT 1n a O =F - F°

i
T
1
T

RT 1n (f /£°) (AT.1.7)

where superscript o denotes standard state and
is the chemical potential in any given state.

Any stete can be chosen as the standard state.
Thus for aqueous solution electrolytes the infinite
dilute solution of the electrolvte is usuelly selected
as stendard state. But in this work, only the pure
liquid will be considered as the standard state. For
solid, the standard state is the pure hynothetical 1liq-
uid supercooled below the nelting point. This standard
state was accepted by Hildebrand[eu]

The edvantarge of this convention is that it yields
equations of same form for all components and avoids a
distinction between solvent and solute. To distinguish

the solute, Hildebrand[euj used subserint o . In this
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work, some notations will be used to distinguish solute
in a solution -- irrespective of whether it is a binary

or ternary nixture.

Activity of Solids

As solid solute is used in all experiments nmentioned
in this work, and as the pure liquid has been taken as
the standard state, one needs to know the actlivity of

a solid substance which is given by

4]

(AT.1.8)

Hbrﬁ

In dealing with the solubility' of solids, sometimes it
is important to know its activity referred to the hypo-
thetical liquid supercooled below the melting point.

The thermodynamic relationship

1n a5> _ { 3(F° - F9) RT} _ B2 -8 AW (AT.1.9)
3T /p 3T P RT® RT®

(where AHF

is the heat of fusion at that temperature
T ) can be integrated from temperature T to the nel-
ting point T, wunder the assumption that the heat of

fusion is constant, giving

FT - T
s _ AH m
1n a®° = =~ B TTm (AI.1.10)
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where the difference between the molal hest capacities

of liquid and solid are known then

Cg - C; = AC amd AHF

_ B
5 = AH] - ACp(Tm - T) (AT.1.11)

where AHE is the heat of fusion of the melting point;

Cg is the heat capacity of liquid;
C; is the heat capacity of the solid.

Substitution of equation (AI.l.11) in equation (AI.1l.9)

and integration of equation (90) yields

AC AC
s  -AH Ta = T pTa =T A%
ln a” = =% =T * R T - 1n 7 (AI.1.12)

Equation (AI.l.12) reduces to equation (AI.1l.l1) when
ACp is zero, or in other words, the heat of fusion is
constant, the assumption which has been Invoked in der-
iving equation (AI.l.10).

Again rewriting equation (AI.1.10), one obtains

s AHF {
R

Hl-

__1_}
Tm
S

or it Acp is zero, then plotting of 1n a” versus

1/ T should give a straight line.

’ However, if Acp is not zero and for other purnose
which will be explained later, it is advantageous to
plot log as (or log X, ) versus log T ., The lin-
earitv of such a curve can be tested in the following

manner:
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The equation (AI.l1.10) is rewritten as

F
1
BB, - 4 (AT.1.18)

Then taking the second derivative with respect to T

one obtains

5°1n a® 1 _ a AN _AC  adF
(31n T) P
. . Fo_ F
At the nmelting point, Tm ’ AHm = TASm , S0 the second

derivative would be zero (and the curve straight, at

F

least at this point) if ASm is equal to Acp . Table

ATl.l.2 compares ACp and Asg for a group of soliad

F

solutes. The ratio of ACp to ASm ranges from 0.4

to 2.1, which does not support the assumption ACp = AS,
but certainly this assumption 1s better than assunming

ACp =0 , So assuning

AR TASi ~ TAC

p
oF F
AS
1in
or (S5t Nﬁ-———l‘ and 1n a® ~ — Ing~ (AI.1.15)

m



- 2 2"3 -

Table AT.l.2

Therrnodyvnanic Functions for Fusion[24]

Substance ASF (cal/ deg) AC.. (cal, deg) AC ASF

Substance m (cal/ p (caly p/ A5y
H, 2.0 1.9 0.95
A 3435 2.16 0.65
12 9,67 3.9 0.40
88 0.75 1.6 2.1
PLI' 0047 005 loO
Sn14 10.73 5.7 0.53
82 9.63 5.6 0.59
CC14 2.4 lol 005

1

Consequently, log T instead of was used by

0 =

Hildebrand et al. for graphs but the a is corrected

ir ACp is known. In this derivation, it has been

assuned that ACp is constant which is not an exact

condition and thus even if ACp is known, the wvalues

S
2

particularly et a tenperature far below the relting

for a® are subjected to a certain degree of uncertainty
point. But it has been observed that a plot of log X

versus log T gives straight lines in the region X, <

1
- 1

[AD)]
[y

1 . r
0.1 whereas 1log x2 versus curved lines throughout,
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Table AT.l.2

[24]

Thermodynanic Functions for Fusion

F F
Substance aS, (caly deg) AC, (cal, deg) AC,/ Sy,

H, 2.0 1.9 0.95
A 3.35 2.16 0.65
I, 9.67 3.9 0.40
5g 0.75 1.6 2.1
P 0.47 0.5 1.0
sn,, 10.73 5.7 0.53
S, 9.63 5.6 0.59
cC1,, 2.4 1.1 0.5
1

Consequently, log T instead of was used hy

@ 3

Hildebrand et al. for graphs but the a is corrected
ir ACp is known. In this derivation, it has been
assunned that ACp is constant which is not an exact
condition and thus even if AC is known, the values
for ag are subjected to a certain degree of uncertainty
particularly at a tenperature far below the melting
point. But it has been observed that a plot of log X5
versus log T gives straight lines in the region X, <

0.1 whereas log X

- versus -% curved lines throuehout[.2

]
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Measures of Commosition

The composition of a solution can be expressed
in a variety of ways, e.g.

(1) concentration in grenms or moles per unit volune;

(2) the ratio of the number of moles of one com-
ponent of a binary solution to the number of moles of
the second component, i.e. %é ;

(3) mole fraction, which is the most extensively
used unit of expressing the solubility of nonelectro-

lytes in solution. The mole fraction X5 of anv con-

vonent 1 1in solution is defined as

X, = (AT.1.16)

evidently Xyt Xyt oo b x =1 (AT.1.17)

or in the case of binary solution,

1T %

I
'_i

X

and dx1 = -dx2 (AT.1.18)

(4) volune fraction & . The Qi , volume fraction

of any component, is given by

T P e A A (AT.1.19)

As mentioned earlier, the volume of a solution is not

equal to the sum of the volumes of its components but
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it is the fraction sum of its martial molar volunes.

Thus

(AI.1.20)

1Vq F XV b e X,V

If one assumes that volume change due to mixing

is small, the volume fraction %5 of the ith compon-

ent is given by

%, Vo
3 = - 01 L - (AT.1.21)
xlvl + x2V2 + eee + xiVi

where Vg is the molar volume of pure liquid common-
ents.

Throughout this work volume fraction as defined
by equation (AI.l.21) will be used instead of the vol-
ume fraction defined in terms of partial molal volunes
as in equation (AI.l.20). The advantage of using the
volune fraction as the measure of conposition of a nix-
ture is that the unit of volume fraction tekes care of
the difference in molar volumes of different components,

Since the different liaquids may have different
Acoefficients of thermal expansion, the volume fraction
will bhe slightly dependent on the temnerature, but this
dependence will be neglected in this work because the

tenperature range used in this work is very snall.
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Appendix AIl.2

Repulsive Forces

As mentioned earlier, the intermnolecular potential

may be written as

6

Ur) =js/rt-k/r (AI.2.1)

It is well known that potential energy of a molecular
pair passes through a minimum at which %% =0 .

This condition nmav be used to define a distance r,
and a ninimum (negative) energy CH Differentiation

of equation (AI,2,1) with respect to r gives

du _ nj 6k
= = - rn+1 +--I.:7 (AT.2.2)

If one sets the derivative equal to zero, the resulting

equations for r_ and €, Aare

=0 - BE (AT.2.3)
3 K 60k 3-176
eo = __Qﬁ - _—‘% = (n—6) { ——r-l—.—6 } (AI.2.4)
ro r, n-j

.which is the equation used in the text for G o*
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Appendix AII.1l

Derivation of BIxcess Volume of Mixing, AVE M

We defined

=1 0
s Vs =V
v v°
2
iFivve i
Sinmilarly, M -vrgn - Vg
AV =
O
2
— 2
or
oM _ 0 2
Vody = Von B (6, = 8p)
= o
= vg - vy (AIT.1.3)
or

- o, M
Vy =Ty + Vot

=V + Von g (5, - m)2 (ATI.1.4)

Again if we write a term V‘g’l’j such that

M,1.5 5 7L 4 5. 70
V5 = §,V; + &,;V7
& T 50 1 )
= 8.V, + 8,73 +Vo(8,05 + 8,07)
— 3
= v2 + V. (@lAv 3AV) (AII.1.5)



or from (AII.1.5),

wM,1,3 _ O _ © 1 3
v, Vy = V(8,85 + 2507)

2

Vg[nlsl(a2 - 8,)°%, + n353(62 - 63) 8]
Vg[(élnlsl + 850,85 )62
- 262“’1“15151 + 85n56555)
2 2y.
+ (§1nlslal + §3n38363 )] (ATI.1.6)

Similarly from the equation (AII.l.4),

2

= o _ 0
Vg - Vp = V2<nm5m62 - 26xnBndny
+ 1B 5 °) (AIT.1.7)
m“m°m °
Again we define Avg’M l.e. the excess term in the text
as
<BE,M _ wM,1,3 _ M
V2 = V2 V2
= -v° - >
= V2[AV (Q + §3AV (ATI.1.8)

Denoting élA% + §3A3 = A¥ 1,3 we obtain equation (56)

in the text. Substituting equation (AII.1.6) and (AII.

1.7) in equation (AII.l.8) we obtain

oM = V(8 n8, + 85n584)8,°

) 2

- 262(§1n1516 + 3 503 ndo

2
+ (§ln15151 + 85058555")

2
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Writing
nB, = &n8, + §3n353 (ATT.1.20)

and substituting (AIT.1.10) in equation (AII.1l.9),
M 0
BVp?" = VaT(aynypy + 850585)8,°

- (§1n19 + 3 n393)62

+ 2(§1n151 + QBnBsB) 58

= (anlﬁ + 9 nBBB)b
+ (8,n,8,8,% + 8505856.5) ]
vz { 2650(8 0y, + 23n385)8

= (§1n15161 + §3n35363)]

+ ¥_n

>
+ (§1n13151 D58565")

= 5m(§1n151 + QBnBBB) } (AII.l.ll)
The equation (AIT.l.1ll) is equivalent to equation (65)

in the text. Now if we assume that

2 _ 2 2
DyBpdy = Dy8187° + nyBsb

then along with the assumption made in equation (AIT.

1.10), the equation (AII.1l.9) reduces to
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=E,M _ ;0
aVa " = V28,8, (8,008, + 85n58)
- 262(§1n13161 + §3n33363)] (AIT.1.12)

Again writing 5

niBiai = aiT

or

(IiT
i

niBi05 =
and then substituting equetion (AIT.1.13) in equation
(AIT.1.12) we obtain

Qq

E,M _ .0 O oy Qev}
= 2v2s,T { Tt 4 % + by 5 (ATT.1.14)

AV2

The equation (AITI.l.14) is equivalent to equation (64)
in the text.,
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Appendix ATT.2
+#*
Derivation of &,(max) for (1/A)A (1n Xz)

m 3
£ 4 (1n xg) = 3,(1 @1)(52 - 53) (AIT.2.1)
3*
Again, & 89 (8, - 65)°
4 = (AITI.2.2)
5. 320 (5. - 8,)°
3 3 V9o 1
and #* #*
8, + @3 =1 (AII.2.3)
* o) 2
or $ $ (6, = 85)
1 - = 1 . 2 2 . (ATITI.2.4)
1-8 1-38 (52 - al)

Adding 1 in both the sides of the equation (AIT.Z2.4)

we obtain *
3 8 (6, - 8.)°
1 1 P 3
1 +——5 =1+ = 5
1-3, 1- 8 (52 - 51)

0 2 o} 2
or 1 _ (1 - Q1)(62 - 61) + §1(52 - 63)
* 2

= (AII.2.5)
1 (1~ 2)(s, - 8,)

1 -3
Dividing (AII.2.4) by (AITl.2.5),

8%(5. - 64)°
3 = 5 182 5; 5 (ATI.2.6)
(62 - 61) - Q1[(62 - 61) - (62 - 65) ]

Agein by differentiating equation (AII.2.1) with respect

to Q: , we see that the maximum value for %p*(ln xg)

will occur at
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a[lﬂ*(ln )7
A o) 0 = (1 - 28 (ATI.2.7)

* =
BQl

at Q:(max) , or % 1
Ql(max) =3 (AII.2.8)

Substituting equation (AII.2.6) in the equation (ATI.

2.8) we obtain
2 2

80(s, - 8y)

o
)2 (AII.2.9)

_ o]
= 2@1(52 - 8

Rearranging the equation (AII.2.9),

(6, = 6,)°
3. (max) = 2 1
1 T, - 55)° + (5, = 81)°

(6. = 6)° -1
{23 +1} (AII.2.10)
(62 - 61)
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Appendix AII.3

The solubility equation can be written as

1n xg = 1ln aé --;é (52 - 5m)2 (AII.3.1)
writing o °
by = 818, + 8385 . (AI1.3.2)
such that @2 N @% .
o @% =1 -8 (ATI.3.3)

Substituting equation (AII.3.3) in the equation (AII.

3.2) we obtain

- (o]
8y = @1(51 - 53) + § (AII.3.4)

3

Substituting equation (AII.3.4) in equation (AIZ.3.1),

VO

i 2
1n xg = 1n a; - ﬁ% {(62 - 63) - Qg(al - 53)}
VO
- L 2 2 ,x0
= 1n a5 - g (8- 85)°-28 (8.~ 65)(6,- 85) (AII.3.5)

+ 8506, - 53)2}
Differentiating 1n xg with respect to Qi and then

writing the condition for maximum, we obtain

d1ln xg Vg
Se ORI  meae -0

o) 2
- 2@1(51 - 53) ]
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or
max 02 ~ 62
Ql = (AII.3.6)
61 - 63

' *
similarly, if one writes & in terms of §1 , then

6, = &
Q:’max _ -2 2 (ATT.3.7)
61 - 63
Recalling the relationship between Q: and Q? , 1.e.
o) 2
82(6, - 6%)
Q; = . 01 2 2 . 5(AI1.3.8)
we obtain
o) 2
Q;,max _ 5 §1(62 - 63)2 .
o
(62 - 61) - §1[(62 = 61) = (62 - 63)
6, = O
=-6—2—_-—5é (AII.S.Q)
1 3 :
or

(@]
@1(62 - 63)(61 - 63) = (62 -8,

T80 f(s, - 856y - 85 + [(by = 8% = (5, - )71

Il
—
On
no
1
On
[

or o _ o
2.(64 - 63)(62 - 61) = (8, - 61)
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or
[P
o,max _ "2 1
@1: = 31_:_52 (AIT.3.10)

Qg's in equation (AII.3.8) to (AII.3.10) are the cor-

Q*,max N

responding Qg value of 1 .
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Aopendix AIII.1

Entropy of Compressing a !Mixture of Rigid Sopheres

For a binary nixture of hard spheres Lebowitz,
112
Helfand and Praestgagrd Jerived the following equation
of state from the scaled particle theory:
2
)

fr={ g+ o)(1+5+e%) - Bryy(a, ~a)?

+ a, + a,a

Lty +aay(Yad + ¥80)] (1 - )77 (AIIL.1.1)

.[a

where N '

and g = (N, a + N a3)/ 6V (AIII.1.3)

In the above eqﬁations, P is the pressure at
tenperature T and volume V, Kk is Boltzmann's con-
stant, p; 1s the number density N;,/V and a; is
the herd sphere diameter of 1 ,

If equations AIIl.1.2 end A.III.3 are substit-
uted in equation A.I1I.1.1 and then, rultiplying nuner-

ator and denoninator by V3 , one obtains

P = kT(BV2 + CV + D)/ (V - A)3 (AIII.?1.4)
where A = n(Nlal + N 33)/ 6
B = N1 + N2
_m > > > 2
C=35 [Nla + N N ( -2a; - 2ag + 3a1a2

o o 3
+ 3a1a2) + N2a2]



2
D =-%6 [Nfa? + NiNg(al Ba?ag + 6aiag
- azag) + NlNg(-aiag + 6a§ag
- Balag + ag) Ngag]

Thus the entropy of the compression is given by

I 2 P (A.II1.1.5)
comp

Substitution of equation AIII.1.4 1in equation
AIII.1.5 followed by integration yilelds

vV, - A

- 2 - _ 2
AS = R { B 1n v, - & + [ D - CA - 3BA

expan

+ (2C + 4BAYV, 1/ 2(V, - a)?

- [(D-cCA - 3BA2) + (2C + BA)V2]/ e(v? - a)g}(AIII.1.6)

The constants D - CA + BBA2 and 2C + 4BA are:

- Baiag + 6a )
-~ NN, (6a - Baiag
+ 6a a5) W a 6] (AIII.1.7)

and 2C + MAB = n[Na? + NN (a,al + a%a,) +NoalJAIIL.1.8)
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The compression is carried out from the volume of
the gaseous solution V1 = Vg to the volunie of the

liquid solution V., = Vg « As V is large, the sec-

2 1
ond term in equation AIII.1.6 can be neglected. Fur-
ther, in the first term A <« Vg . Equation AIII.1.6

can he converted to nole gquantities if one writes dovm

N; = Ng;(n; +n,)

where No is Avogedro's number, x's are the nole frac-

tions, and n's are the number of noles.
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Appendix AIIT.?2

Calculation of Hard Sphere Diameter

-The most important pert in any theory on hard sphere
fluids is the choice of a meaningful value for hard
sphere diemeter. 1In earlier calculations, workers have
used the equilibrium distance calculated for Lennard-
Jones potential as the hard sphere diameter which is
actually a bad choice because of the fact that the re-
pulsive part of Lennard-Jdones 6:12 potential is not as
steep as the hard sphere potential and the equilibrium
distance in that case can not be eocuated with the hard
sphere potential,

Reisggggs used hard sphere diameter calculated fram ,
surface tension, the coefficient of isothermal compres-
sibility and the coefficient of thermal expansivity of
liquids. Pierot%}1ggd Snid£;1%glculated hard sphere
diameter from the heat of vaporization of the liquids.

From scaled particle theory, the coefficient of

isothermal compressibility BL of a liquid is given by

2

B, = vi(1 - Y)”/ RT(1 + 2Y) (AITI.2.1)

Similarly the coefficient of thermal expansivity of a

liquid is given by

a, = (1 - Y2) s (1 + 2Y)° (AIIT.2.2)
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[118]

whereas Snider et al calculated heat of vaporiz-
ation of nornmal liquid from Longuet-Hipeins' model and

derived an expression

AHY 1+ Y+ ¥e
T = ( )3 + 1 (AIII.2.3)
1 - Y

The surface tension o of a liquid is related to Y es
o = aRT(2 + Y), 4v¥(1 - Y)? (ATII.2.%)

The hard sphere diameter has also been calculated fron

the viscosity of the dilute gas, (ni)gas as
5 3
(ni)gas = 1.0165Ig;f§ (m;kT/ m) (AITI.2.5)
ii

where a 1is the hard sphere diameter, m 1is the mass
and k 1is Boltzmann's constant.

In this connection it seens that the choice of the
coefficient of thermal expansivity of real liquids will
be a bad choice because the attractive forces are not
considered in the scaled particle theory of Reiss, Frisch
and Lebowitggggt they enter into the theory in the den-
sity and the thermal expansivity of the liqu£3?1]This
raises a point which was mentioned earlier, that in the
scaled particle theory, the equation of state of & reel
liquid is not known. Hence the coefficient of thermal

expensivity and the density of the liguid can not be

calculated but have to be measured,
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For the remaining three methods, there is no reason
for supposing that any particular one gives the best a
value. But if these derivations are correct, then a's
.determined bv these three methods should not be very dif-
ferent from each other. NHext the nroblem lies with the
nonspherical nmolecules and the physical meaning of g in
that case. Relss et al..suggested that if the molecules
are not too badly nonspherical, due to the effect of
rotational avefaging it is possible to have a meaning-
ful value of a .

Another aspect that has to be emphasized is that
in the sceled particle theory, a 1is treated as con-
stant and does not vary with the temperature. This
assumption leads to an incorrect temperature dependence
for a, 2102] Besides, Stillinger calculated the‘ef-
fective value of a fron the compressibility and densi-
ties of the molten salts and observed that a decreases

[ 128]

noted that the surfeace
[96]
tension equation derived by Reiss et al. also has an

with temperature. IMayer

incorrect temperature devendence. Ile suggested that

a ought to decrease with temperature rather than re-
main constant. This decrease of a with temperature
originates fromn the fect that with increasing temper-
ature, the ability of the nolecules to penetrate one
another's repulsive field is more effectively due to
the increase in the average thermal energv. A real
molecule has, in faqt, a 'soft', not a 'hard' repulsive

potential.
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But the problem still remains what numerical val-
ues can be accepted for a as a reasonable value,
We chose to calculate a values from the heat of vavnor-
ization at the boiling point where the value for heat
of vaporization is known by means of the equation of

[118]

Snider et al. Also we have celculsted a values fronm

Be
But as we ere interested in those solutes which
are solid at room temnperature and in most of the cases,

BL
of consistencv we nreferred g values calculated fron

for the rnolten solids are not known, for the sake

the heat of vaporization calculated from equation AIII.
2.3 . In the case of solutes, where heat of vaporiza-
tion data are not known, we are forced to use o cal-

culated from the a, of the molten solid above melting

1
point.

In the case where a values are available for
both heat of vaporization and the coefficient of iso-
thermal comnressibility, it can be seen ih the table
below that a values deternined bv both the methods
are conparable. So in all the following calculations
we used a values calculated from the heats of vanpor-
ization for both solvent and solute excent in such cases
as tetraphenyl tin and tetrakis pentafluoro phenyl tin

when a values are calculated from the a, The a

values in these celculations are assumed to be indepen-
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dent of the temperature because a 's are involved di-
rectly but they are involved as Y &and any change in
a will have a very smell effect on Y .,
' Also, in this calculation, we used the experinental
values for vt and a, Instead of the calculated values
due to reasons mentioned earlier.

We have rejected thé nethod of deternining a by

viscosity due to the fact that the viscosity deta gives

some very unreasonable values for a .



