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ABSTRACT 

This paper aims to introduce the essence of dependence in modem finance, especially in 

the field of insurance and credit modelling, and to study the copulas as a tool to model 

dependence. In particular, the paper assembles the similarities in the statistical properties in 

actuarial science and credit modelling, and demonstrates some common copula applications in 

both of the fields. Also an empirical study is conducted to specifically investigate the sensitivity 

of default risk associated with the first-to-default (FTD) credit swap with respect to the change of 

copula dependence structure together with other changing parameters. The results reveal 

important implications for investment activities, risk modelling, and future dependence modelling 

with copulas. 

Keywords: dependence in modern finance; credit modelling; copulas; risk modelling 



EXECUTIVE SUMMARY 

Traditional portfolio analysis has an emphasis on diversification, and independence can 

be assumed. However, an increasing number of insurance products and innovative credit 

derivatives call for the study of correlation. When elliptical distribution and linearity are not 

guaranteed, the conventional correlation measure fails to provide a complete risk profile. 

Recently, more studies are directed to study the dependence modelling. Copulas provide a 

structure to model the multivariate outcomes, and are recognized as an increasingly important 

tool in dependence study. 

Correlation will probably become a notable risk in addition to market risk, credit risk and 

other significant risks in risk management. Correlation derivatives have been newly emerged and 

will certainly become a new asset class - one of the major waves in derivatives. It is worthy is to 

study dependence modelling in order to better understand correlation, which is also important for 

various fields. 

This paper provides intensive discussions on the important role of dependence in the 

modern credit modelling and insurance applications, various copulas and their initial and current 

applications in credit modelling and actuarial science, as well as some implications based on the 

empirical experiment conducted by the author. 

In this paper, the focus is modelling credit basket derivatives with copulas. We provide 

insights from the actuarial science perspective for better understanding in copulas, and for 

seeking possible benefits that can be brought into the credit industry. 
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INTRODUCTION 

Credit derivative market has experienced a rapid growth in recent years; more complicated credit 

derivative products are emerging and are used to manage the most important dimension of 

financial risk - credit risk. While the most important instrument in the current credit derivatives 

market is still the credit default swaps , which essentially provides insurance against a single 

reference credit(Land0 2004), many new products are now associated with a basket of credit risk. 

For example, First-to-default swaps, or more generally, Nth-to-default swaps, extends a single 

name swaps to a portfolio level. Correlation must come into play in pricing these portfolio-base 

credit products, and techniques to model correlation in a credit risk framework have quickly 

become an issue. J.P. Morgan's CreditMatrics and Credit Suisse Financial Product's CreditRisk' 

are the two especially influential benchmarks among various new approaches to model basket 

credit risk (Gordy 1998). 

While CreditMatrics provides a "mark-to-market" methodology, CreditRisk+, on the other 

hand, is rather mathematical oriented: it focuses only on the default risk, which is analogical to 

"death" in an insurance setting, and applies mathematical tools borrowed from insurance theory 

(Bonilla et al. 2000). In fact, insurance theory, or actuarial techniques in particular, has provided 

valuable insights for credit modelling and the financial risk management as a whole along the 

history. Tapiero(2004 p.7-8) indicated that actuarial science is "in effect one of the first 

applications of probability theory and statistics to risk analysis": Tetens and Barrios, already in 

1786 and 1834 respectively, were attempting to characterize the 'risk' of life annuities and fire 

insurance and on that basis establish a foundation for present-day insurance. Indeed, 

mathematical theory of insurance has laid foundation not solely to an insurance setting, but also 



has brought significant benefits to different branches in financial management development. 

Immunization, for example, which was first introduced by Redington, an actuary in 1950s to 

balance insurance surplus and liability, has become a widely used technique to control interest 

risk (Poitras 2005). In credit modelling, reduced-fondintensity models rely on Poisson default 

time process as the basic structure and they share many features with the common models in the 

actuarial literature. When it comes to model dependence, copulas, which are first introduced by 

an actuary named Sklar(1959), serves an increasingly important role to present association 

between underlying risk variables. 

The similarity in statistical properties in life insurance and credit risk modelling, such as the 

typical skewness in default distributions and the same type of survival function first inspired me 

the idea of this paper. For dependence modelling in particular, actuarial science might have 

potential value to add to current credit modelling, while the rapid growth in credit risk 

management might inject new insights into the actuarial field. This paper will focus on the 

important role of dependence structure in modern finance, and introduce copulas as a useful 

measure for dependence. Also, we illustrate some applications of copulas to handle multivariate 

outcomes in the framework of actuarial science and credit risk modelling. 

The paper proceeds as follows: in Section 2, we explain why we should be concerned about 

dependence from insurance and credit modelling perspective, and why we need to develop 

advanced dependence models. To make the effect of dependence more intuitive, we construct two 

simplified examples to demonstrate how correlation can affect the whole picture of credit default 

distribution and thus the credit product value. We also indicate the most common pitfall in 

understanding correlation and dependence in modem finance. In Section 3, we focus on copulas 

as an approach to construct dependence: we define the most common copulas and some related 

properties. In Section 4, we give some applications of copulas in insurance and credit risk 



management with an intention to emphasize the similarities between the two fields. Then, we use 

an empirical example to show how to fit copulas to real data. In addition, we point out some 

advantages and prospects of using copulas to model dependence. In Section 5, we conduct an 

empirical study to reveal some important implications by applying conventional copulas in credit 

modelling. We make the conclusion in Section Six. Appendix A provides some simulation 

algorithms to construct copulas we use in our paper; programming codes used to produce to result 

for the empirical study in Section Five are enclosed in Appendix B. 



2 DEPENDENCE 

2.1 Dependence in Insurance and Credit Modelling 

Dependence in insurance: joint-life or multiple-life insurance or annuity policies are traditional 

products that draw attentions from actuaries to model dependence. For example, a life insurance 

written on a couple with children is priced as a function of default dependence rather than the 

individual survival functions. Empirical studies show that the "broken heart" syndrome or generic 

factors has significant effect. For instance, Frees et a1.(1995) found that accounting for 

dependency in mortality produced about a 3% to 5% reduction in the joint-and-last-survivor 

annuity values when compared to standard models that assume independence1. Also under 

competing risk model (e.g. a single life contract can be subjected to multiple sources of default 

such as heart decease, cancer, accident and so on), independence between competing risks is a 

conventional assumption but its reliability has been questioned by many practitioners and 

academicians such as Carriere (1994) and Seal (1977); multiple decrement theory has a need to 

adjust for dependence in competing risk. Moreover, common shock, or event risk, such as 

hurricane and earthquake, causes further concern in default dependence and is recently an 

intensive study subject. Innovative insurance products, such as the ones to mitigate operational 

risk, require understanding in multi-dimensional outcomes from financial systems. 

Dependence in credit modelling: dependence modelling in credit risk framework has a bit shorter 

history than that in actuarial science. It hasn't been intensively studied until the recent years when 

credit correlation products, including synthetic Collateralized debt obligation (CDO), Nth-to- 

default (NTD) and credit link note (CLN), started to emerge and increase rapidly. Similar to the 

1 Free et al(1995) used Frank's copula to model dependence in mortality 



one in actuarial science, dependence structure in credit modelling concerns about the probability 

of the credit references defaulting together, which is crucial for both investors, who need to be 

compensated by additional risk, and dealers, who need to properly manage overall portfolio risk. 

2.2 Essence of Dependence Structure 

There are a number of reasons for us to worry about dependence structure. First, we have 

witnessed rapid growth in derivatives in terms of both magnitude and complexity. New complex 

products in insurance and finance result in portfolios with complex dependence structure. CDOs 

or synthetic CDOs are examples of financial products that require fully understanding in 

dependence between different tranches for both issuer and investors. Neglecting or 

misunderstanding the dependence structure can result in underestimation of portfolio risk. For 

example, JP Morgan used to under-priced its basket credit swaps as a result of improper 

understanding of risk associations. To make the effect of dependence more intuitive, we create 

two simplified example in Section 2.3 to illustrate how inter relation between underlying risks 

can have significant impact on default distribution and returns required different risk class 

investors. 

In addition, the risk-based return required by investors cannot be simply determined by the 

traditional risk measurement such as correlation matrix. Correlation measure has been serving the 

central role in portfolio theories for decades, yet, it is not a satisfactory dependence measure to 

capture the observed advanced dependence structures. In Section 2.4 we include an example 

suggested by Embrecht et a1 (2002) to illustrate this point in detail. Also in Section 2.4, we clarify 

the common conceptual pitfall between correlation and dependence. 

Furthermore, the multivariate normal return distribution has been used as a conventional 

dependence structure, due to its analytical tractability and small number of parameters required 



(Wang 1997). However, the development in the derivatives market certainly has an increasing 

need for multivariate models with more flexibility than the multivariate normal distribution. 

Normality assumption is typically not adequate in modelling life and credit defaults. In insurance, 

deaths or claims are rare events with long-tailed distributions, and so are credit defaults and other 

extreme events. Normal distribution does not provide an adequate approximation to these data 

sets. Similar claims can be found from work by Johnson and Kotz (1973) and Johnson, Kotz and 

Balakrishnan (1997). 

Finally yet importantly, strong future trend in modelling dependent risk is reflected in 

regulation documents. For example, the recommendation of incorporating insurance to mitigate 

operational risk in the New Base1 Capital Accord signals the potential need to better study 

dependent risk. Traditionally, diversification is used to guarantee independency. This assumption, 

however, seems to be further violated as the complexity of insurance and reinsurance products 

increases. Suppose insurance contracts are written on operational risks for different companies, 

the tendency that these companies subject to the common exogenous "shocks" thus encounter 

operational failure simultaneously is significant. Also, a specific contract written on several 

business lines inside a corporation can induce challenge for issuer because of the great likelihood 

of failure dependence. Indeed, the inability to clearly define underlying risk variables and 

quantify their dependence is one of the biggest difficulties for current issuers to write insurance 

policies on operational risk. For credit risk in the Basel framework, securitization is recognized as 

a risk management technique to enhance risk diversification but is not yet fully contemplated by 

the new Accord (BIS, 2003). Securitization is at a relatively early development stage and the 

nature of it determines the importance to develop advance modelling of dependence structure. 

Therefore, more advanced dependence modelling is required to support the development in 

portfolio products and integrated risk management techniques. 



2.3 Examples-Dependence Matters 

We construct two simplified examples to show how dependence between the underlying 

references changes the default distribution, risk allocation and required returns. 

Example 1: Suppose XI, X2..  . X5 are five identical Bernoulli variables and it takes value 1 if risky 

security i (i=l.. .5) defaults in one year and 0 otherwise. Prob(Xi =1) =0.2. p is the pair-wise 

correlation and we let p take value2 : -0.25,0, 0.5 and 1. 

Figure 2-1 Distribution of Default with different p 
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Figure 1 graphically shows the default distribution for the corresponding correlation p. One can 

see that as p goes up, the probability that the firms default all at the same time goes up. The use of 

a discrete distribution here amplifies the effect of the extreme correlation. Notice that when p=l, 

2 Note that p takes value between a lower bound and an upper bond. The upper bound is 1 and the lower 
bound is equal to -p/(l-p) which is -0.25 in our example. 



the five references either all default together or do not default at all3. Why would this matter? 

We provide the second example to mathematically illustrate how this can significantly change the 

risk allocation and required returns among investors. 

Example 2: Suppose an agency combines three of the risky securities in example l(each has face 

value 100) and issues a CDO -Senior, Mezzaznine and subordinated one-year bond with face 

value 140, 90 and 70, respectively to investors with different risk appetite. Assume the 

continuous interest rate is 0.06 and recovery rate is 0.4, we can calculate the price and yield for 

the two extreme cases where p=O and p=l respectively4. 

Return required by different classes of investors is the "YIELD" shown in Table 1. There 

are two important implications: 1.When defaults correlat'ion increases from 0 to 1, the yields on 

the three bonds increase dramatically because the risk profile of each tranche is no longer simply 

depending on individual defaults - correlation adds risk in each tranche and investors demand 

higher returns. 2. When correlation increases dramatically, the most risky tranche or Subordinated 

bonds become relatively less risky and more risks are transferred to higher tranches. Notice that 

in Case 11, the Mezzaznine and Subordinated bond holders require almost the same yield. Loosely 

speaking, if defaults tend to happen at the same time, all the bond holders suffer and the more 

senior one are not much better-off. Kakodkar et al(2003) in their paper formally define investors 

in Subordinated bonds are long correlation and investors in Senior bonds are short correlation. 

In a continuous case, as we can see in our empirical study in Section Five, the result will not be as 
extreme as this 

For the payoff of Bond I at year 1, we use the formula Min Max AT - B, ,0 , B, [ [ :,- I-] 
provided by Robert(2006 pp.845) where 4 is the maturity value of the asset pool, gi is the 

promised payment of Tranche i. The formula implies that bond i takes the leftover of the claims 
after the more senior bonds J= 1.. .i-1 



Table 2.1 Example 2 Comparison of Cases 

Case I Defaults are uncorrelated (p=O) 
Paid-off at time 

Default PROB Senior Mezzaznine Subordinated 
0 0.32768 140 90 70 

Risk-neutral price5 129.99666 70.20590904 25.4592857 
 YIELD^ 0.0741337 0.248377189 1.011414705 

Case I1 Defaults are perfectly correlated (p=l) 
Paid-off at time 

default PROB Senior Mezzaznine Subordinated 
0 0.8 140 90 70 

Risk-neutral Price 128.08 67.80705 52.7388 
YIELD 0.088988 0.283 144 0.283 144 

-- 

2.4 Caution about Dependence 

A caution is worthy being addressed: in the last two examples, we use (linear) correlation as 

a measure to describe the association between risks. That is, dependence is simplified by using a 

single statistic summary in our over-simplified examples. In fact, dependence is more than a 

correlation matrix. 

We sometimes see that in some literature, people use the word "correlation" to cover any 

notion of dependence. This is a common mistake in modern finance and insurance. Correlation 

describes the degree of linearity only, and is an incomplete measure for dependence. For 

example, a zero correlation doesn't imply independency - something we are all familiar in a 

statistical sense. But when it comes to practice in finance, correlation becomes the most 

Risk-neutral Price = E*[payoff*discount rate] = xi payoff(i) * prob(payoff(i))*discount rate(time 1) 
Solved from equation: Risk-neutral Price = face value * eA(-FIELD*l) 



misunderstood concept (Embrecht et a1 2002). One explanation we would suggest is that 

traditional financial theories such as CAPM and APT have greatly influenced out mind-set and 

we easily suppose ourselves in a financial world where returns are multivariate normally 

distributed and linearly related. However, without these assumptions, we can no longer rely on 

correlation as a measure for dependence. 

Embrecht et a1 (1999) demonstrates this pitfall by using two sets of bivariate random 

variables (X,Y) from two distributions that have identical Gammar(3,l) marginal distributions 

and identical correlation p = 0.7 but different dependence structures7. 

Figure 2-2 The Realization of (X, Y) in the Two Models 

Gaussian Gumbel 

Figure 28 provides a quantitative way of showing the different dependence between X and Y in 

two models, which implies correlation alone cannot tell such distinction in dependent structure. 

To emphasize the important implication of this for practice, Embrecht et a1 (1999) suggest 

readers consider X and Y are insurance loses for two lines of business, and the second model 

Embrecht et. a1.(1999) use the Gaussian Copula for the first set of (X,Y) and Gumbel Copula for the 
second set, and these two types of copulas have quite different tail dependence 

The results can be produced by using simulation with Archimedean Copulas (see Embrecht et. a1.(1999) 
for more details) 



reveals more dangerous signal to the insurer as the extreme events have greater tendency to 

happen together. 

The conceptual distinction between correlation and dependence is extremely important for 

future dependence study. The misuse of correlation to describe dependence is problematic in the 

case where non-linear derivative products or products associated with non-elliptical distributions 

are involved. 

2.5 Techniques to model dependence 

Linear correlation (or Pearson's correlation) is the most popular use in practice as a measure 

for dependence (Embrecht et a1 2001). However, as we just indicated, the invariance property of 

Pearson's correlation is useful only under strictly increasing linear transformation. Knowing that 

Pearson's correlation fails to summarize dependence for non-elliptical distributions and it is 

unrealistic to assume elliptical distributions for many financial variables, and that even when 

jointly elliptical distribution can be safely assumed problems such as heavy tailed data will make 

the use of linear correlation lack of sense, academics and practioners actively seek for advanced 

techniques to model dependence. In 1986, the article "The Joy of Copulas" (Genest and MacKay 

1986) raised the awareness of the appealing practical usage of copulas and since then, copulas 

were no longer limited in probability study and have quickly come a main tool by academics and 

practioners in various industries to model dependence. 



3 COPULAS 

3.1 Brief historical background - Copulas 

A copula is a function representing relationships among multivariate outcomes. To study 

multivariate outcomes is a basic problem in statistic science and copulas are not the earliest 

technique. In the late 1 9 ~  century, Francis Galton initiated the regression analysis, which was 

considered the fundamental contribution to understanding multivariate relationships (Frees et 

al. 1997). Regression analysis opened the study of multivariate analysis and was widely applicable 

to understanding the effect of explanatory variables. However, a limitation it has is that all the 

independent variables are regressed on one dimension of the outcome (dependent variable), but 

this kind of relationship is sometimes not the primary interest (such as when two lives are 

subjected to a failure in actuarial science). Academics tried to understand the distribution of 

several outcomes - a multivariate distribution. Hoeffding (1940 & 1941) first extended the 

univariate distribution to the full multivariate one. The name Copula first appeared in 1959 was in 

fact inherent such an idea to link individual marginal function to a joint distribution. 

Abe Sklar (1959) shows that any multivariate distribution can be written as 

The function C is called copula. F, (x,), F, (x,), ..., Fp (x,) are marginal functions evaluated 

at xl ,x,,..., xp . Note that any arbitrary marginal distribution function is a uniform random 

variable U (i.e. Fl (x,) = u, , . . . , F, (x, ) = up) so they always fit in a copula representation. 

Sklar also shows if the marginal distributions are continuous, then there is a unique copula 

representation 



Copula has been studied in the probability literature for about 40 years (Schweizer 1991), so 

even it as a method to understand multivariate distributions has a relatively short history in the 

statistic literature (most of the applications have arisen in the last decade (Frees et al. 1997) , its 

well-studied prosperities in the probability literature quickly become recognized as desirable 

features to model dependence in different branches in risk management. The range of copula 

applications include management science (e.g. Clemen(1999) suggests copulas to portray 

uncertain in decision and risk analysis as an alternative to the conventional marginal-and- 

conditional approach9), credit modelling( e.g. Li(1997,1998) et a1 first introduced copula in 

correlation trading), failure of paired organs in health science, and human mortality in actuarial 

science. 

3.2 Types of Copulas 

For simplicity, we show different types of copula in two-dimensional cases without losing 

generality. We can always extend a bivariate copula to a multi-dimensional one. 

3.2.1 Elliptical Copulas 

Gaussian copula is the most common and straightforward type. It has the form: 

~ ( u ,  v; p) = 4p (4-1 ( 4 , 4 - '  (v)) 

Where 4 denotes the standard normal distribution and 4, ( x ,  y) denotes the bivariate normal 

distribution with correlation p between marginal functions. 

Similarly, Student t-copulas have the form: 

C(U,V;P.Y) = tp,,(t,-l(U),ty-l(v)) 

Marginal-and-conditional approach is a short-cut to mean specifying a joint distribution as a products of 
random variables and conditional distributions 



Where t denotes the t-distribution with y degree of freedom and t,,y (x, J J )  is the bivariate t- 

distribution with correlation p and y degree of freedom. 

The key difference between the Gaussian copula and the Student t-copula is that Gaussian 

copula has neither upper nor lower tail dependence, while the Student t-copula posses tail 

dependent in both tails. More detailed of this aspect can be seen in Section 5 in this paper. 

3.2.2 Archimedean Copulas 

The class of elliptical copulas provides a rich source of multivariate distributions. However, 

elliptical copulas do not provide closed form expressions and their symmetry nature is not 

appropriate for many insurance and finance applications. A useful class of copula functions called 

Archimedean copulas, which has the general form: 

C, (u, v; a) = )-I ()(u) + )(v)) for u , V E  (oJ] 

Where 4 denotes a generator of the copula Co , which is in fact a distribution function(Genest 

and McKay, 1986); a is the dependence parameter. 

There are different choices for the generator 4 so as to yield different families of copulas to 

model specific feature of dependence. We can start with the simplest case when 4 = -In t 

And 

C, (u, v)  = )-' ()(u) + )(v)) = exp{- (ln(u) - ln(v))} = exp(ln(uv)) = uv 

which encounters the joint distribution of u and v when they are independent. Indeed, to choose 

generator 4 = -In t gives the independence copula family. Other common 

generators(summarized in Table 2) might give less intuitive natural probabilistic interpretation 



but the inverse of them lead to meaningful distributions to form a copula expression( see last 

column in Table 2) 

Table 3.1 Archimedean Copulas 

Family Generator 
4 (t) 

Bivariate Copula 

ch.4 
Inverse 
Generator 
(Laplace 
Transform) 
z(s)  = 4-I (s)  

Laplace 
Transform 
Distribution 

Positive stable 

Logarithmic series 
distribution on the 
positive integers 

Gamma 

CCO: Clayton(1978), Cook-Johnson(l981), Oakes(1982) 
The above common-used copulas have different emphasis on tail dependence. For example, 

Gumbel copula(CGH) can be used to model upper tail dependent and Clayton copula(Ccco) to 

model lower tail dependence. 

3.2.3 Marshall-Olkin Copulas 

The bivariate Marshall-Olkin copula takes the form 

C(u, v) = uv r n i n ( ~ - ~  , v - ~ ? )  = m i n ( ~ ' - ~ v ,  uv'-@~ ) 

This is the bivariate Marshall-Olkin copula, and it can be naturally extended to the Marshall- 

Olkin n-copula. There are great computation advantages in simulation; algorithms are provided 

by various related paper (For example, Embrecht et a1 2003) 

3.2.4 Bounds 

Perfect positive and negative dependences, the two extreme cases, would produce simple 

forms of copula that also provide the lower bound and upper bound for any copula. 



C(u, v)=min(u, v) for perfect positive dependence 

C(u, v)=max(u+v- l,0 ) for perfect negative dependence 

Which are Frechet (1951) bounds: C(u,v)=max(u+v-l,O ) I C(u,v) I rnin(u,v) . The 

multivariate extension of Frechet bounds is given by Dall' Aglio(1972). 

3.3 Correlation Measurement 

Spearman's p and Kendall's z probably can be used as the best alternatives to the linear 

correlation coefficient. Both can be defined using a copula function only as follows 

Spearman's correlation coefficient 

And Kendall's correlation coefficient 

r = ~ r { ( x ,  -xI*)(x2 -xZf)  > O} - ~ r { ( x ~  -<)(x2 -x;) c O] 

=45  1 C(u,v)dC(u,v)-1 

Where (xl, x2) and (xl*, x2* ) are independent copies from random variables (xl,xz).'O Either a 

common Spearman's p or Kendall's z can be used as a standard base to compare between results 

using different copula functions. 

3.4 Mixed copulas 

We can use the mixture of joint distribution to adjust, up or down, the Kendall's tao. For 

instance, if we feel that a correlation given by a common mixture joint distribution function F 

lo This is defined in the measure of concordance 



would is too strong, we can mix F with an independent joint distribution function G. if the 

opposite is the case, we can mix F with a comonotone joint distribution function G'. 

Assume that joint distribution functions FxI and GxI xk have the same marginals 

F , . F Then the mixed joint distribution is 
K 

(l-qlFx, xk(t17...7tk)+qGxl x,(tl , . ' . , t ,) ,(o<q<1)3 

Also, r(X, ,  X I )  = (1 - q)rF (X, , XI)  + qtG (X, , X, ) where tF and rG denote the Kendall's r 

implied by the joint cdf s F and G, respectively. 



4 APPLICATIONS OF COPULAS 

In this section, we describe some useful applications of copulas, in particular within 

insurance and credit risk modelling framework. We focus on these two areas for the following 

reasons: recently there is an increasing need to model dependence in insurance and credit risk 

modelling, and actuaries and risk specialists strive to understand multivariate outcomes associated 

with financial security systems and financial derivatives. Moreover, there are great similarities in 

fundamental mathematics and statistics in the two areas. Compared to credit risk modelling, 

actuarial science has a long history modelling dependence. Though not using copula directly, 

some conventional approaches within actuarial science framework have nice properties that well 

support copula as a dependent structure. On the other hand, the recent intensive study in 

modelling credit risk dependence might inject new blood in the traditional insurance approach. 

We believe that the interactive study of these two should enhance the dependence modelling to 

both and other areas in risk management. 

4.1 Some underlying mathematic functions and models 

Actuarial Science and credit risk modelling share notable underlying mathematical 

principles. It is very important to understand the basic mathematics in order to better develop 

knowledge in copulas. And we believe that the mathematical base shared by the two areas of 

study of dependence will help the interactive study in the both areas, which in term, enhances 

their own empirical applications. 

Distribution Functions 

Default probability density distribution: f ( t )  = h-' i.e. Exponential Distribution 



Default cumulative density distribution: F ( t )  = P ~ ( X  I t )  = 1 - e-h 

Survival function: S(t)  = 1 - ~ ( t  ) 

Force of mortality (Bower et al, 1997, chapter 3) or Hazard rate function (Lando, 2005, chapter 

Compounding Method/Mixture Models 

Compounding method is considered one of the two main methods for specifying a family of 

copulas to model multivariate distributions in the current actuarial literature(Free et al. 1997), 

while mixture models is one of the two underlying models to measure dependence in credit risk 

applications. 

There is a long history of using compound distributions for risk classification in actuarial 

science, particularly in the credibility framework (Free et al. 1997). The basic idea is that for a 

given underlying variable or a vector of variables, the distributions conditioned on the common 

variable are independent even their unconditional distributions are not independent. Similarly, in 

credit risk literature, Frey et a1(2001),for example, define Mixture Models based on the same 

principle: Bernoulli default probabilities Yil Qi are conditionally independent given a set of 

economics factors Qi. 

We use the following example to illustrate the compounding method, and will use the result 

later. In actuarial science and intensity credit modelling, the conventional default mode with a 

given hazard rate or default intensity y (i.e. the conditional exponential distribution) is: 

P ~ ( X  < xly)= l-e-'" 

And a specified distribution for y ,where y - Gamma(a, 1). Then the unconditional default 

distribution is: 



A Pareto distribution. 

Another common compound distribution is the Poisson mixture distribution: an 

unconditional distribution of a Poisson distribution with underlying gamma-distributed 

parameters gives a negative Binomial distribution. This is the approach underlying 

CreditRisk'(Credit-Suisse-Financial-Products 1997). Default correlations in CreditRisk'are 

assumed to be driven by a vector of K "risk factorsV(a set of common economic 

factors) y = ( y, , ..., y, ) ' . Conditional on y , default of individual obligators are independently 

Bernoulli-distributed. Further assume a vector of "factor loadings" (scaled factors to represent the 

sensitivity to each risk factor) w = (w,, ..., w , ) ' w i t h x  w, = 1. The conditional probability p,( y ) 

of drawing a default for obligor i is a function of the rating class rc(i) of obligator i, risk factors 

y and w: 

- 
Assume that individual defaults rates are constant. CreditRisk* we have E [pi(y)] = prc,i, 

For a single obligator i, the moment generatingfunction (pgf)ll of the Bernoulli ( pi (y) ) is 

And because pi (y) is small (default is a rare event), we can write 

G; ( z  l Y) = exp{ln [I+ P, (Y)(z -011 =12exp(pi(y)(z -1)) 

The pgf of the sum of obligator defaults is the product of the individual pgfs'3 

CreditRisk+ uses the pgf to calculate defaults , instead of calculating the distribution of default directly. 
'' For small A, In(l+A)-A 



In CreditRisk', the k element in the vector x(risk factor) has Garnma(1, 02J distribution. To get 

the unconditional pgf, we integrate out the x: 

This form of pgf implies that the total number of defaults is a sum of k independent negative 

binomial variables. 

In addition to these two compounding distributions, Frailty models, raised within 

compounding methods, are traditionally used in multivariate survival analysis. Vaupel el 

at.(1979) defined frailty in terms of the force of mortality h. h(t) is extended to h(t, Z)to include a 

frailty of Z, which can be used to reflect different individual mortality rates as a result of genders, 

smoking habits and so on. They also refer to mixture of power distributions in current statistical 

literature (Joe 1997) and are one important type of mixture models. 

Consider a specific hazard function of h(t, 2): h(t, Z) = ebb(t) = @(t)  ; y = eb 

Where b(t) is the "baseline" hazard function p-vector of regression parameters. By integrating and 

exponentiating the negative hazard, we can get the famous Cox(1972) proportional hazards 

model: 

s ( t l y ) =  exp 1 d ( h ( t , z ) d s } =  exp l y b ( t ) d s } =  (exp 1 l b ( t ) d s  b y  = B ( r ) '  

Here, 

l3  This is according to the important property of pgf: if n variable are independent, the pgf of the sum of 
these n variables are equal to the product of the n pgfs. 



is the survival function corresponding to the baseline hazard, and the survival function is 

condition on y. y is called frailty because larger y implies smaller survival function. 

For bivariate frailty models14: 

P~(T, 2 f J 2  2 f 2 l ~ ) =  P~(T, 2 tlly)pr(~Z 2 tzly)= Sl, ( t l l ~ ) ~ ,  (t2ly)= ~ , ( t l ) ~ ~ , ( t , ) ~  

The (unconditional) bivariate survival function is 

P~(T, 2 1, ,T2 2 t 2 )  = J B1 (tl Y B2 (t2 Y f y  @)dl 

= E~ {B, (4 ) ~2 (t2 )Y (4.2) 

This result is important, as Marshall and Olkin(1988) showed that all frailty models of the form 

(4.2) could be easily written as copulas. More details will be shown in the next section. 

Common Shock Model 

In both actuarial and intensity credit modelling literature(For example, see Bower chapter9.6 

or Joe 1997), one underlying approach is that a default is assumed to be governed by Poisson 

process which means the default time follows exponential distribution with a default intensity h. 

When joint defaults are of interest, different varieties of common "shock" variables that follow 

independent Poisson process islare added to the process to introduce independence. This is the 

idea from Marshall-Olkin(l967). 

Consider two references A and B are subject to shocks, and the shocks follow three 

independent Poisson processes with parameters hl, h2 and h122 0, where each respectively denote 

the shocks effect only A , only B or both. We know that the Poisson process implies exponential 

distribution of default time, thus the joint survival time function of xl and xz is 

l4 Same for multivariate frailty models; we use bivariate cases for simplicity 



If we let 8, = - and 6, = then exp {4,x1} = S, (x ,  )-" and 
4 +42 4 +A2 

Also, we let C(u,  v )  = S(xl , x,) which denotes the survival copula. Then 

C(u, v )  = uv rnin(u-@I, v-O2 ) = rn in (~~-@~v ,  ) 

Which is the bivariate Marshall-Olkin copula shown previously. 

4.2 Applications of Copulas in Actuarial Science 

Epidemiological and actuarial sciences have a relatively long history of application of 

copulas, particularly in joint mortality study, compared to other fields including credit modelling. 

The first but indirect application of copulas in joint-life models appeared in Clayton's work "A 

Model for Association in Bivariate Life Tables" (1978). The two main methods for specifying a 

family of copulas, Archimedean approach obtained from frailty models, and compounding 

approach, are originated in epidemiological and actuarial studies. 

4.2.1 Survival of Joint lives 

a)Consider two lives X,  and X ,  that follow exponential distributions with the common 

underlying parameter y. Note that their distributions are not independent unconditionally, but are 



independent if conditioned on y (i.e. X I  1 y and X , ly are independent). From the result (4. l), the 

joint distribution of X I  and X 2  ist6 

F (X, ,X2)  = ( X I )  + F2(X2) - 1 + [(1 - ( X , ) ) - l l a  + (1 - ~ ~ ( X ~ ) ) - l l ~  - 1). 

Note that the joint distribution F(x,,x,) can be written as a function completely of F, (x ,  ) 

and F2 ( x ,  ). This feature is appealing because if we let u, = F, (x,  ) and u,  = F2 (x, ) where u, 

and u,  are realized uniformed random variables, the above equation yields the following copula 

function: 

c(u, ,u2) = u, + u2 - 1 + [(1 - u, ) - I i Y  + (1 - u2))-Iia - l r a  

An important implication here is that compounding method is a useful way to build a copula. 

Also, consider another example in b). 

b) For the same pair of lives X ,  and X ,  we can also use Cox proportional hazards function to 

model conditional survival rates. From result (4.2), the (unconditional) bivariate survival function 

is 

16 F(xl,x2) = R(Xl < xl ,X2< XI)  =1- R(XI > XI)-  R(XZ> XZ)+ F'r(Xl > XI,XZ> X Z )  = 1- ( l + ~ ~ l h . ) ~ ( - a )  -(l+x~lh.)~(-a)+ ( l + ( ~ ~ + x ~ ) l h . ) ~ ( -  
a) 

l7 Laplace transformation E, { e ~ ~ ( - ~ ) }  = exp(-sa ) ; y is modelled as a positive "stable distribution" 



Compare this to the bivariate Copulas in Table 2, one can recognize this is in form of the Gumbel 

Copula. 

In fact, this is a special case19 for constructing copulas due to Marshall and Olkin(1988). 

They showed that all frailty models of the form 

can be easily written as Archimedean copulas by using the Laplace transforms of y, defined by 

Z(S) = E , C Y  

Where is the z ( 9  is the Laplace transform of y. Because z [- ln B, (t)] = Si (t) 

and Bi (t) = exp{-? [s, (t)]] , (3) can be written as 

z ( i l  (s, (x1 )) + + t1 ( s P  (xp 1)) (4.4) 

Where z-' serves as the generator 4 for an Archimedean copula. Again, we have shown that 

compounding models can be used generate copulas of interest. 

4.2.2 Competing Risks 

A theory in actuarial science is called Multiple Decrement Theory, which deals with the 

study of the lifetime distribution of a system subject to several competing causes (see, for 

example, Bower et al. 1997, Chapter. 10 and 11). For example, a person dies as a result of one of 

the following possible causes: heart disease, cancer, and accident and so on. The default time T is 

rnin(T,, T,, ..., Tp ) and each element denotes one of p competing causes. It becomes increasing 

unrealistic to assume T's are statistically independent, and to account for dependence in this 

18 S, (1,) = exp(- {- In B, ( t i ) y )  for i=1,2 

l9 By take all latent variables Y, = Y, = ... = Yp = Y 



scenario, one can apply copulas. If we assume that causes of death are independent given a frailty 

y, we have 

Pr(T > t I y) = Pr(min(T, , T,, ..., Tp ) > t )  

By Integrating over y and taking the Laplace transformation, we can obtain (4.3) thus reach the 

same result in (4.4). 

4.2.3 Common shock 

Bowers(1997,p274-275) demonstrates how to use common shock approach to model joint 

life distribution where the independence between the two lives are not assumed to be 

independent. 

If T ( x )  and T ( y )  denote two future lifetime random variables that, if no common shocks, 

are independent; that is 

S ~ ( ~ ) ~ ( ~ )  ( s ,  t )  = Pr(T(x) > s n T(  y) > t )  

= STcx) ( s )ST (~ )  ( t )  

In addition, if there is a common shock random variable, Z, that can affect the joint distribution of 

the time-until-death of lives ( x )  and (y). This common shock random variable is independent of 

T ( x )  and T ( y )  and has an exponential distribution; that is 



The random variable z can be pictured as some kind of catastrophe events that leads to default. 

The random variable of interest in building models for life insurance or annuities to ( x )  and (y) 

are T* (x) = min [ ~ ( x ) ,  Z] and T* (y)  = min [ ~ ( y ) ,  Z] . The joint survivals function of 

Tc(x)and Tc(y)  is 

w* w (s, t )  = Pr {min [ ~ ( x ) ,  Z ]  > s n min [T ( y), Z ]  > t] 

Note that the final like follows from the independence of [T(x) ,T(~) ,z] .  Here, the bivariate 

Marshall-Olkin copula can be applied. 

4.3 Applications of Copulas in Credit modelling 

Previous work in credit modelling literature has been focusing on individual credit risk; 

however, as credit products rapidly develop at a portfolio level, more efforts are put into the study 

of dependence. Currently there are two underlying models to measure dependence in credit risk 

applications: Mixture Models, which has already been discussed earlier in this paper, and Latent 

variable models, extended thefirm-value model(Merton) to a multi-default latent variable models, 

is specified as follows(Frey et a1 2001) 

Given random vector X = (x,, ..., x,) ' with continuous marginal distributions Fi and 

thresholds D,,,,,Dm define := 11, <41 . Default probability of counterparty i given by 
I - 



pi := Pr(x = 1) = Pr(Xi I D,)  = I;I (D,) and (Xi ,  Di),sism denotes a latent variable model 

The most widely used applications KMV (KMV Corporation 1997) and CreditMatrics 

(RiskMetrices 1997) are examples of latent variable models. 

4.3.1 CreditMetrics and KMV 

Model Calibration 
In both KMV (KMV-Corporation 1997) and CreditMetrics (RiskMetrics-Group 1997), the latent 

variables Xi are assumed a linear function of risk factors O and idiosyncratic effects E i. 

The p-dimensional random vector 43 are assumed to be N ,  (0,G) . El , .  . . , Em are assumed iid 

N (0,l) ,which are also independent of O . w,, , denotes the weights for reference i and factor j. 

pi , ,,C ,,and Di are chosen so that pi equals average historical default frequency for companies 

with a similar credit quality20. 

The mathematical concept of exchangeability can be used to prove that KMV and 

CreditMetrics are equivalent (see, for example Frey et al. 2001 for more details), as are all latent 

variable models that use the Gaussian dependence structure for latent variables, regardless of how 

marginals are modelled. 

Li(1999) is amongst the first ones to indicate that both the KMV and CreditMetrics are 

implicitly based on a Gaussian copula. He summarizes how CreditMetrics calculates joint default 

probability of two credits A and B. He uses the actuarial symbols q~ and qs to denote the one-year 

20 They use different methods to group companies by credit quality :threshold Di is chosen that pi equals 
average default probability of companies with same" distance to default" as company i in KMV-model; Di 
is chosen that pi equals average default probability of companies with same rating class as company I in 
CreditMetrics model. 



default probabilities for A and B respectively (originally denotes as pi in CreditMetrics and KMV 

models). Assume q~ and q~ both follow standard normal distribution(Z-Norma1(0,1)), then 

If p is the asset correlation, the joint default probability for credit A and B is 

Where 4 denotes the standard normal distribution and Q2 (x, y)  denotes the bivariate normal 

distribution with correlation p between marginal functions. 

Equation (*) is mathematically equivalent to 

c ( u = 4 A , v = 4 B , ~ = ~ ) = ~ ( ~ 1 ( u ) . ~ 1 ( v ) > ~ )  (""1 

This is a bivariate normal copula shown in section 3.2. Thus, we can conclude that CreditMetrics 

uses a bivariate normal copula function with the asset correlation as the correlation. The 

procedure can be generalized to multiple credit references. That is, using asset correlations, we 

can construct high dimensional normal copula functions to model the credit portfolio of any size. 

Note that we can reach the same result if the margins , qA and qs ,are exponentially 

functions(which is the quite often the case in intensity credit modelling). The copula function (**) 

becomes 

c ( ~  = q A , v = q g , p =  Y )  = A ( F - ~ ( U ) . F - ~ ( V ) , Y )  

Where F(.)denotes the exponential margin. This is in fact the copula suggested by the Model of 

Li (CreditMetrics Monitor 1999), where defaults are interpreted in terms of default time instead 

of some threshold while pi is chosen in the same way as in the CreditMetrics model. The model of 

Li can also be seen as equivalent to both CreditMetrics and KMV since the exponentially 



distributed survival times in this model are joined together by a Gaussian copula to form a 

multivariate distribution with exponential margins. 

4.3.2 First-to-Default Valuation 

Li(1999) suggests some numerical illustrations in his paper "On Default Correlation: A 

Copula Function Approach". One is to apply the Gaussian copula to the joint default times in the 

valuation of a first-to-default contract. Assume there are n credits, and the joint distribution of the 

survival times is 

F(tl, t ,?. . . ,4) = 4n (4-I (F(t1)) ,4-l  (F( t , ) )  4-I ( F G J ) )  

Where 4, is the n dimensional normal cumulative distribution function with correlation 

coefficient m a t r i x x  . After simulating a series of n random variables from a u-dimensional 

normal distribution (via Cholesky decomposition or common factor approach), we can simply 

invert the exponential function which Li assumes for individual default time function to get the 

default time tl , t,, ..., t, . The complete algorithm is given in Appendix A. 

The default time of the first-to-default contract is T= rnin(T,, T,, ..., Tn ) , given a fixed 

parameter. That is, we can write the survival function of this contract 

Pr(T > t  I y) = Pr(min(T, , T, , ... , Tn) > t )  

= P ~ ( T ,  > t  I y ) . . . ~ r ( ~ ,  > t  I y )  

= exp(-n yt) 

Where y is the default intensity and it is assumed to be the same number for each credit 

reference by Li. Note that this is exact the same as the case of competing risk in the insurance 

framework we showed before, except that the (conditional) marginal distributions to model 

individual default time are different. 



We can also apply the common shock approach to model the first-to-default contract, or 

more generally, the k-to-default contract. Same as above, let the first-to-default time be 

T=min(T,,T2, ..., T,) 

Where A = in + x(;) if we assume a bivariate symmetric dependence structure2 with 

idiosyncratic shock intensity a and the joint shock intensity x. 

4.3.3 Remarks 

A Gaussian copula provides an easy way to construct high dimensional dependence in terms 

of simulation procedure and parameter input. However, the occurrence of many joint large 

movements of defaults is a rare even, and this casts some doubt on the use of Gaussian copula as 

the dependence structure for latent variable models. A t-copula might be an alternative to a 

Gaussian one. Moreover, the analogy between mixture models and latent variable models might 

suggest the more flexible copulas can be applied to model dependence in different credit 

portfolios. It has been shown that mixture models and latent variable models have very similar 

underlying mathematical structure despite differences on the surface (Gordy 1998): 

CreditMetrics and KMV models can be mapped to mixture models (with some restriction on the 

former model) .Frey and McNeil(2001) has shown that they can be written as a Bernoulli 

mixture model: 

Using the same notations as in CreditMetrics and KMV model calibration, for the mixing 

factors we take Y = O , 

21 Due to the lack of appropriate data available for the estimation of higher order shock intensities, it is 
often assumed that a model specification with bivariate dependence only, i.e. a model where at most two 
simultaneous defaults are possible. Another assumption to assume equal intensities ,for the joint defaults of 
two firms(referring to bivariate symmetric dependence) 



P 

Clearly Y] I Y -Bernoulli(Q,) where Q, = ) ( D  - w Y )  1 0 . 
j=1 I 

Thus, Qi has a probit-normal distribution: 4-' ( Q )  - N ( p ,  0 2 )  . 

We can recall that the Bernoulli mixture model is the structure underlying CreditRisk' as we 

discussed previous in compounding methodlmixture models. Also, it underlies the latent variable 

as we just showed. As compounding method is considered one of the two main approaches to 

specify copulas in current actuarial literature to model dependence, further study in mixture 

models in credit risk framework might introduce more suitable structure to model default 

correlation additional to the Gaussian standard framework. 

4.4 Fitting Copulas to Data 

We can use Maximum likelihood Estimation (MLE) to fit copulas to data. There are two 

stages (i)fitting the marginal distributions and (ii) fitting a copula to the data. 

We use an empirical study by Frees and Valdez(1998) to demonstrate how to fit the bivariate 

copula to real data, which comprise 1,500 general liability random claims provided by Insurance 

Services Office, Inc.. Note that data is not limited to a bivariate fashion but can contain 

multivariate variables representing different lines of business, credit entities, market risks and so 

on. 

In this case, each claim contain two components: an indemnity payment (the loss, XI) and an 

allocated loss adjustment expense (ALAE, X2)., and some loss XI is censored due to the 

insurance policy limit. The objective is to describe the joint distribution of losses(X,) and 

expenses(X2). The first step is to determine the appropriate marginals. Frees and Valdez(1998) 

supposed a Pareto marginal distribution and the quality of the fit can be examined with a 



graphical comparison of the fitted distribution function against their empirical versions such as 

Kaplan-Meier empirical distribution. 

The second step is to fit a copula to the data. We need to choose a copula function before the 

parameter estimation. A useful statistic tool is the quantile-quantile (q-q) plot, based which the 

copula function that gives the closet agreement between nonparametric and parametric quantiles 

is usually picked. After identifying the best two or three copula function, which is the Gumbel 

and Frank copulas in this example, we need to fit this copula using MLE. To estimate all the 

parameters in the marginal and joint functions, we need the following partial derivatives: 

Similarly, Cl and C, which are the first partial derivatives for the copula and Cl, which is the 

Where 8 takes value of zero if the loss variable(X1) is not censored and it takes value of one for 

censored data. The parameter estimates are then determined by maximizing the likelihood for the 

entire dataset 

To compare the goodness-of-fit of the two copulas, we can compute Akaike's Information 

Criteria(A1C): 

AIC= 2 [-ln(maximized likelihood)] + 2 p  

Where p is the number of model parameters. The copula function that minimizes the AIC is 

preferred. 



Once we know the copula C(xl,x2),i.e. the joint distribution of (xl,xz) , we can go on to 

calculate the expected value of any known (increasing) function g(xl,x2), which, for example, can 

take a specific form for a reinsurer's payment. 

4.5 Desired Properties of Copulas 

The significant advantage of copulas over the conventional correlation as a dependence 

measure is that,'linear correlation is invariant only under strictly increasing linear transformation 

while copulas preserve the dependence structure in any increasing transformation. For example, if 

X1 and X2 are two random variables and gl and g2 are two arbitrary strictly increasing functions, 

correlation(X1 , X2) will not be necessarily equal to correlation(gl(X), gz(Xz)) but there will be 

copula(X1 , Xz) =copula(gl(X), g2(X2)).in the later case, X1 and X2 "moved together" is captured 

by the copula, regardless of the scale in which each variable is measured. This is useful because 

the increasing complexity of financial products seriously destroy the linear relationship 

assumption between financial assets, which have made the traditional correlation coefficient less 

and less appropriate for modem portfolio management. And the increasing emerging portfolio 

level products and the unrealistic independence assumption are calling for the development of 

dependence techniques. Copulas provide a much more flexible structure for dependence in many 

situations. 

Also, copulas are nicely incorporated with the association measures Spearman's correlation 

coefficient and Kendall's correlation coefficient. Schweizer and Wolff(1981) showed that two 

these two standard nonparametric correlation measures could be expressed solely in terms of the 

copula function(see 3.3 in this paper). This implies that these measures are not affected by 

nonlinear changes of scale 



Furthermore, historically many multivariate distributions have been developed as immediate 

extensions of univariate distributions, examples being the bivariate Gamma, the bivariate Pareto 

and so on (Frees et a1 1998). Drawbacks of these approaches include: (i) measure of association 

often appear in the marginal distribution,(ii)extensions to more than just the bivariate case are not 

clear and (iii) one needs a different family for each marginal distribution. A construction of 

multivariate distributions based on copulas does not suffer from these drawbacks. 

In addition to an intuitively appealing structure, copulas offer analysts some technical 

convenience. For example, Clemen et al(1999) suggests copula as an alternative to the 

conventional approach in management science and decision making to specify a joint distribution, 

claiming the benefit that " it only requires marginal distributions and measures of dependence 

among variables" . Also, it provides the possibility to build a variety of dependence structure 

based on existing parametric or non-parametric models of the marginal distributions. Moreover, 

the relative mathematical simplicity and the natures of copula construction can ease the 

simulation techniques implemented in a spreadsheet thus enhance the practical attractiveness. For 

example, copulas can be used to build large simulation models for long time horizons. 

4.6 Simulations 

Simulation is a widely used tool for summarizing the distribution of stochastic outcomes. 

The copula construction allows us to simulate outcomes from a multivariate distribution easily. 

Appendix A provides algorithms for some of the copulas we use in the previous cases. 



5 NUMERICAL TESTING AND IMPLICATIONS 

In this section, we use the First-to-default (FTD) credit swap as the underlying credit 

instrument to illustrate the role of correlation, and the choice of dependence structures22 in 

determining the portfolio risk profile. 

5.1 Definition and the Calibrated Model 

The credit instrument we use to demonstrate relationship between risk and dependence is 

the First-to-default (FI'D) credit swap. FTD is a type of basket credit derivatives. Payment would 

be made to the swap holder when any one of the references in the basket defaults within the 

specified period. For example, a 5-year FTD credit swap will default as long as one of its 

references defaults within 5 years. Note that the meaning of default varies with contents. That is, 

different credit derivatives have different definitions for default. For example, for Last-to-default 

credit swaps, default occurs when all the references in the basket default before expiry. For 

CDOs, senior bonds do not necessarily default when bonds in lower tranche defaults. 

The comparisons will be made to see the interactive effects due to the change in the number of 

references in the basket and the change of correlation rho that underlies the copulas within the 

two copula frameworks. We will construct additional portfolios to comparisons, based one a 

starting, or benchmark basket. We call it the base portfolio, B, which contains 5 similar risky 

bonds~references~~. 

22 We would use Gaussian and T-copula that are easier to implement and are currently widely used in 
modelling dependence in basket credit derivatives. 

23 Risk level is gauged by the magnitude of the credit spreads data from JP Morgan. That is, the larger the credit spread, 

the risky the referencehond would be defined 



Model calibration: 

1. The credit default function is modelled by the common exponential function with hazard 

rate A : f ( t )  = hi?-h and S ( t )  = e-" 

2. With the conventional assumptions (risk-neutral, no arbitrage etc.), and assume interest 

rate is deterministic (i.e. no interest rate risk), we have this equation for a 5-yr first-to-default 

credit swap 

E* [ ~ ~ ( p a ~ m e n t  to the swap holder ) ]  = E*  con continuous payment from the swap holder ) ]  

Which equals the risk-neutral price of the swap. 

3. To formulate the above equality, we have 

5 5 

[ (1 - R)  * e-" * Aehdt = 1 spread * e-" * eAtdt 

5 5 

Take out the constants in the integrals, (1 - R)A f e-" * e"dt = spread f e-" * ehdt 

Or, (1 - R)A = spread 

4. When we know the spread term structure and the recovery rates , we can extract the 

hazard rate based on the above equation 

5. For the base credit basket, B, we will have a term structure of for each of the 5 

underlying bonds 

6. The survival times of bonds are tl, tz,,,,t5. The most widely used dependence structures, 



Gaussian copula and T-copula, in the current industry are used in our analysis. 

a) Under the Gaussian Copula structurez4: 

Where zi = F - ' ( u ~ )  for i=l ,  2.. . 5. F is the cumulative exponential function. 

b) Under the T-Copula structure: 

Where zi = F - ' ( u ~ )  for i=l ,  2.. . 5.  F is the cumulative exponential function. 

1 p ... p 

And in both cases, the correlation matrix is 

P P ... 

7. Motel-Carol ~ i m u l a t i o n ~ ~  is used to calculate the default probabilities and/or swap prices 

in each of the cases. As we know, Gaussian and T copulas do not give us close form solution, in 

order to obtain the expected number of defaults and the expected swap price, we take the average 

of default probabilitylswap price on each trial. Programming is written to calculate the prices and 

default probabilities for all the constructed FTD baskets under the Gaussian and T copula 

dependence structures. Programming codes are given in Appendix B. 

24 This is the model of Li in section 4.3.1 
25 Simulations are based on the pre-determined Halton Sequence of random numbers, so for the same 
number of simulations, the random numbers used are the same. This leads to better comparison between the 
two dependence structures. 



5.2 Descriptions of Portfolios in Analysis 

Before going into the copula approach to model the joint distribution thus dependence, 

we need to make some sense about the individual credit default probability. That is, the marginal 

function of a single risky reference in basket B. 

As the bonds in basket B are at the similar risk level, we can roughly assume they 

individually have the same default probability p. The default time is modelled by the exponential 

function, which is given in the above model calibration part. The default probability within 5 

years is Prob(T<5)=1-S(5) = l-e?& = 1-.7225 = 0.2775 26 . Note that this is the individual 

default probability. In the rest of the paper, the default probability refers to the default of the FTD 

default, which is prob[ any(t, , t ,  , ..., t, ) if t, < 51. 

If we picture the default of the FTD credit basket as a binomial case bin (n, p= 0.2775), a 

single trial would be a bond either defaults or does not default in 5 years; for a basket of 5 

independent risky bonds (i.e. if an independence assumption is imposed on the basket B), n=5 and 

the probability of FTD default in 5 year is 0.803126'~. If the basket has 40 similar risky 

independent bonds, then n=40 and the binomial distribution can be approximated by a normal 

distribution with 1 1.l( np=O.2775 "40). and variance 8.0198 (np(1-p)=0.2775 *(1 -O.2775)*40 ). 

Therefore, the probability of no default occurring in 5 years is approximately: 

That is, a FTD credit swap is almost defaulting for sure, given a portfolio that contains 40 

similar risky independent bonds. 

26 Survival probabilities for this typical risky bond over 5 years are: 0.9664,0.9148,0.8530,0.7856, and 
0.7225 respective1 y. 
27 1-prob(no default)=l-C(5,0)*(1-0.2775)A5=0.803 126 



Note that this is based on the independence assumption, which means rho is zero28. 

Certainly this is not the focus of our paper, but it is very important for our later comparisons, 

where we vary the correlations in constructions of Gaussian and T-copulas. We will later find the 

probability calculated under the dependent assumption gives the minimum survival rate, or the 

upper bound for default probability paths under Gaussian copula dependence structure. The 

correlation will "help" to decrease the overall portfolio default risk. From the FTD issuer's point 

of view, FTD is long ~or re la t ion~~ .  We will fully demonstrate this point in later analysis. 

Next we construct more baskets by adding references to the basket B. To ease the 

recognition of the level of risk associated with different baskets, we use red baskets to denote a 

set of relatively high risky portfolios, and use green baskets for the relatively low risk ones. 

To construct the green baskets, we add 5, 15,25, and 35 risky bonds3' into the based 

basket B; call these baskets,, red(lO), red(20), red(30), and red(40),respectively. For example, 

red(1 O)=base basket B + 5 risky bonds. Also to Construct red baskets: : add 5, 15,25, and 35 

low risk bonds3' into the based basket B; call these baskets green(lO),green(20), green(30), and 

green(40),respectively. For example, green(lO)=base basket B + 5 low risky bonds. 

By imposing Gaussian and T copula dependence structures on two sets of baskets, we 

have 4 default probability paths. In the following section, we will first look at the four paths 

together, and then we separately analyses green and red baskets. 

28 Note that independence always lead to zero correlation; however, the other way around is not true unless 
the multivariate distribution is a normallGaussian one. 
29 Note that this is similar to the CDO equity tranche investors, who are long correlation. We mentioned 
this point in Section 2.3 
30 Similar risk level as the references in basket B 
31  Almost default-free in 5 years 



5.3 Experiments, Results and Discussions 

Figure 5-1 Baskets with vaned size when rho=0.7 

FIGURE 1. Gaussian & TS copula_rh0=.7 
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# of references in the basket 
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We first focus on the green baskets. 

- Gaussian-green baskets --a - T-green baskets 

a) The solid green line indicates the default probabilities32 under the Gaussian and the 

dash one under T dependence structure. As we can see, when low risk bonds are added, the risk 

of the portfolio merely changes regardless the dependence structure. This is important because 

investors may have an intuition that "they are more likely to get paid by a FTD credit swap based 

on 40 bonds than one based on 5 bonds.", which, however, is not true this kind of case. On the 

other hand, within the company itself, with such illusion, people in the marketing department may 

be willing to accept a higher selling price of a FTD swap when additional underlying references 

are included by the pricing department but these bonds actually do not bring in additional default 

risk thus not requiring for a higher price. 

- 

32 Note that in the case of FTD, default probability is an increasing function of the price; in other words, 
the default probability reflects the same trend graphically as price does. 



Note that in this case we have fixed rho and have varied the number of references in the 

basket to see the effect on the default probability. We can also vary rho and to see how default 

probabilities associated with green portfolios would respond to the changes in rho. 

Figure 5-2 Compare green(I0) to )portfolio B and with various rhos 

FIGURE 2-a. Gaussian 
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FIGURE 2-b.T, copula 
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b) A very important implication is that, default probabilities are strictly decreasing when 

rho increases from zero to one. And this is always the case in all the scenarios we create in this 



paper, regardless the number of references, a Gaussian or a T-copula, or the total default risk 

underlying the portfolios. This fact is quite intuitive. Recall the simplified example 1 in Section 

2.3: when there is a perfect correlation (one defaults implies all default in that case), the 

probability of zero defaults of the five Bernoulli variables becomes very high (0.Q and this 

"takes away" the probability of defaulting. The higher the correlation, the harder for default to 

occur, since default would require all of the variables default at the same time - when the 

marginal default rate is low, this has very low chance to happen. Similarly, for a FTD credit 

swap, higher correlation makes greater chance of no defaults, which is desired for the issuer (he 

or she does not need to make payments to the swap holder). Therefore, the issuer of the FTD 

credit swap is in a long position of default correlation between the underlying references. This is 

crucial for pricing and other practical issues: correlation can take significant effect in the 

determination of risk profile of the whole portfolio, and thus the risk compensated returns. As we 

will see later, correlation can significantly dominate the whole portfolio's overall risk, either in 

the case of a Gaussian or a T-copula. For example, for two portfolios with the same number of 

similar risky assets, different default correlations between assets can lead to significant deviations 

in default probabilities. A misunderstanding in correlation can lead to a mis-price in derivatives 

thus open an arbitrage opportunity to sophisticated traders. 

When we compare the green(l0) basket to the base basket B, under either of the 

dependence structure, we see that the two probability paths are almost overlapping. Combining 

with result we discussed in a), certain small number of additional low risk bonds will not increase 

the default risk to the FTD swap under either of the dependence structures. 

c) The next question would be, what happens if we add a large number, say 35, of low 

risk bonds to the base basket B, when rho is changing. 



When we compare the green(40) basket to the base basket B, under the T-copula 

dependence structure, we see that the two probability paths are almost overlapping(same as in b 

we just discussed). However, under the Gaussian copula dependence structure, default 

probabilities start to deviate from about rho=.7. 

For small rho values, the deviation of default paths under the Gaussian case can be 

explained by this: Gaussian copula doesn't have tail dependence, and while there is no 

significant correlation effect that makes the outcome tend to be the two extreme values33, 

defaults tend to more evenly possible over five years. This means more random individual 

defaults take place before expiry, which makes the FTD go default. These additional defaults are 

not significant in the green (10) case because the additional five references are low risk 

associated. However, when the number of these references, even low risk, increases to 35, their 

appearance in the basket will contribute effective credit risk to the portfolio. This contribution of 

credit risk is off-set by the correlation effect the additional references bring in when correlation is 

sufficient, and we can see the two probability paths in Figure 3-a are still overlapping within rho 

value between 0.7 and 1. However, as the correlation decreases, the benefit of correlation created 

by these additional references starts to lose and cannot beat the additional default risk they bring 

in, and the FTD default risk increases to a higher level. 

33 Quartiles that are about two standard deviation from the expected default time. 



Figure 5-3 Compare green(40) to ) portfolio B and with various rhos 

FIGURE 3-a. Gaussian copula 
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FIGURE 3-b. T, copula 

rho 

The probability paths in Figure 3-b are still overlapping, as a T-copula has tail 

dependence that "keeps" certain portion of extreme probabilities on the two tails, and the upper 

tail effect decreases the default rates in the range of expiry. The extreme value effect serves 

somehow like the correlation, which amplifies the probability of no default on the upper tail. 



d) We see that default probabilities are generally higher in the Gaussian case from the 

figures above except when rho is close to one. The reason we would suggest is that, the T-copula 

has tail dependence, which "moves" more probabilities to the two tails on the joint default 

distribution; this means greater probabilities of defaulting early, or defaulting later (i.e. no 

default). Since the base portfolio B has a joint default time distribution whose mean is to the left 

of the expiry, the greater the probability in the upper tail would lead to a smaller expected default 

rate of a FTD swap expiry (See Figure 5-3 below: the black line indicates the expiry in this case, 

and it is on the right to the mean of the joint default distribution). Thus, we observe T-copula 

gives smaller default rates, except for rho =: 1. When rho is close to 1, the correlation effect is 

sufficiently large to prevent early defaults, which brings the mean of the joint default time 

distribution to the right of the expiry (See Figure 5-3 below: the grey line indicates the expiry in 

this case, and it is on the left to the mean of the joint default distribution). In this case, T-copula 

has a fatter lower tail, which results in slightly higher default rates. 

Figure 5-4 Mean of the Joint distribution to the left or to the right of the expiry 



Next, let us focus on the red baskets. 

Figure 5-5 Basket B, red(l0) and green(l0) with various rho 

FIGURE 4-a Gaussian & TS copula 
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e) The red(l0)  basket gives higher default probabilities compared to the green(l0) 

basket: while a small number of additional low risk bonds do not change the risk profile of the 

FTD swap(as discussed in a) ), even 5 additional risky bonds can add significant risk to the basket 

B . This meets our intuition: the more risky bonds included, the higher chance of default 

occurring. 

We also observe that default risks are higher when Gaussian copula is used. Does this 

apply to all rhos, and all portfolio sizes? 



Figure 5-6 Red baskets with various # of references and rhos 

FIGURE 5. Gaussian & TS copula 
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This figure reveals several interesting implications. 

f) Under both copulas, we see that the paths are relatively flat when rhos are closed to 0 

or 1, except a jump between red (10) and red (20). This is probably because when there is a 

perfect correlation, correlation effect dominates and it maintains a low default rate until the 

default risk is cumulative enough to take the control. After sufficient number of reference added, 

correlation is brought in by more and more references, and because rho is one, the correlation 

effect is strong enough to prevent further default rate increment. Therefore, default rates stay 



fairly constant after 15 references are added (i.e. red (20)). When correlation is zero, the portfolio 

default probability is dominated by the underlying total credit risks and is not benefited from 

correlation. After 15 references are added (i.e. red (20)), the portfolio is almost default for sure. 

This reconciles the probability we calculated in Section 5.2, where we use a normal distribution 

to approximate the probability of no default in a binomial distribution, and this probability is 

about zero with large baskets. A zero correlation does not imply independency, and this is part of 

the explanation for why under a T-copula, the default rates do not go to 1 with rho= 0. But for 

Gaussian copula, the construction of dependence with zero rho seems to have a similar result as 

independence thus we can get the result as the binomial case. 

g) We see that Gaussian copula does not always imply higher default probabilities even 

when rho is not close to 1. The default probabilities completely reverse at the two extreme rho 

values: Gaussian leads to the highest default rates when correlation is zero, and the lowest one 

when correlation is 134. That is, the two paths under Gaussian bound all the possible probability 

paths when rho is at the minimum and maximum, respectively. Within the middle, whether or not 

Gaussian copula gives higher default rates depend on the number of risky references (i.e. the 

underlying total default risk). The different default probabilities implied by the two copulas can 

be again explained by the location of the mean of the joint default, seasonings similar to d) above. 

If correlation is large enough, default risk, even very significant in an absolute sense, will not 

determine the portfolio risk. Significant correlation dominates the whole and a very positive 

correlation leads to low expected rate of default of a FTD swap. Given a low mean that is to the 

left of the expiry, a copula structure with a fatter lower tail will result in higher default rates. In 

contrast, if correlation effect is not significant, the default risk associated with the portfolio itself 

will directly determine the portfolio risk. If the references are risky such as our Basket B, the 

34 We use .999 for the approximation for the perfect correlation, since rho=l fails to produce a positive 
definite matrix required by Cholesky factorization in the programming 



mean of the default time distribution will locate to the right of the expiry, and a copula that has a 

fatter upper tail generally imply lower default rates(of a FTD swap). 

h) We see bigger variation in default probability paths via Gaussian dependence structure 

when rho changes. We know in statistics, a wider confidence interval means a greater uncertainty 

in making the inference to the population parameter. Similarly, a wide range of variation in 

default paths under Gaussian implies that, if we do not know the correlation rho or make a wrong 

estimation in it, the mis-calculation part in price is greater in the case of Gaussian, compared to a 

T-copula . This means a greater modelling risk associated with a Gaussian copula used to model 

dependence in this case. 

To summarize the implications of our experiment: a first-to-default credit swap is long 

correlation from the issuer's point of view. This might somehow seem contradictive to the 

conventional view on correlation, within which we try to diversify the portfolio so as to eliminate 

the correlation between assets thus decrease the portfolio variance. But for FTD swap issuer, they 

gain benefit from higher default correlation between underlying references in the basket. That is, 

the default probability of FTD swap decreases as correlation goes up, which means the issuer has 

less chance to make the payment to the swap holders. Thus, correlation is a significant factor in 

determining the default probability, and in term, in determining the swap price. The study of 

correlation is important because results can be also applied to other credit instruments. For 

example, CDOs. The equity tranche bond holders are in the same position as the FTD swap 

issuers, who are long correlation. On the other hand, the senior tranche bond holders are short 

correlation. Therefore, correlation can do either good or bad to the risk level depending on the 

content. Both issuers and investors have to properly understand correlation in their risk analysis. 

To model correlation, we can use copulas to construct the joint default distribution of the 

underlying references. From our experiment, we see that the portfolio default risk is sensitive to 



the copula dependence structure chosen, and such difference in default probability either can be 

off-set or be amplified by the change in other factors such as the correlation rho, number of 

references included, and the portfolio's default risk level. 

Correctly understand the risk nature of the portfolio is the first step, as we can see in our 

comparison between the green and red credit baskets. Further analysis based on the different mix 

of portfolios lead to very different modelling and pricing implications. For example, the tail 

dependence introduced by the T-copula has two-side effects, based on the underlying default risk 

and the correlation. 

In addition, we need to understand the mutual effect of the tail dependence, the 

correlation and the portfolio's own default risk. They can together make a compound effect, or 

they can balance each other. For example, the positive correlation values close to 1 usually have 

dominative effect in determining default risk. Unless the portfolio itself has very strong default 

tendency, the strong positive correlation can prevent individual defaults by holding them to 

default later all together. However, when correlation gets weaker, this effect no longer dominates 

the true default risk imbedded in the portfolio. The tail effect together with the correlation effect 

can reverse the default levels implied by a Gaussian and a T-copula. 

Therefore, for credit derivatives at a portfolio level, individual default risks are 

unquestionably the major risk factor. However, it is more important to look at them as a whole, 

which requires a dependence structure imposed on individual defaults. Risk analysts should be 

particularly aware of this when manage portfolio risk. 



CONCLUSION 

The increasingly important role of dependence in financial instruments is calling for 

advanced correlation measure and copulas have quickly become a popular tool for it in various 

situations. In insurance and credit instrument industries in particular, have shown significant 

effects in studying copulas and their applications of pricing insurance/reininsurance products, 

synthetic CDOs and so forth. We have narrowed our focus on these two areas because of their 

fundamental similarities in terms of some empirical natures and thus the mathematical modelling. 

Indeed, our paper has shown that they share some basic important properties that allow 

development in common copula functions. We believe the interactive study of the two will bring 

benefits to their own future studies and applications. Moreover, the knowledge of copulas will 

enhance the study in other risk management branches such as value-at-risk, stress testing and 

dynamic financial analysis. It is certainly that the appealing properties of copulas to model 

dependence will be more and more recognized and applied in practice. 

At the end, this paper provides an interesting experiment to reveal several important 

implications to managing portfolio risk, which requires careful analysis on different risk factors - 

bringing in additional risk does not necessarily increase the overall portfolio risk . The choice of 

copulas with different correlation parameters provides different dependence in conjunction of 

pricing models. In the current credit instrument industry, elliptical copulas are widely used, or 

implicitly used. Will we apply more forms of copulas in credit modelling in the future? And as 

we have shown in Section 5, portfolio risk can be very sensitive to the dependence structure and 

the parameter inputs. The choice of copulas and the estimation of parameters play an crucial role. 

We believe the topic of copulas and copulas as a structure to model dependence will no doubt be 

more hotly discussed in the coming years. 



APPENDICES 

Appendix A -Simulations for Some Common Copulas 

i) Gaussian Copula & Monte Carlo Simulation 

Procedure: 

Step 1. Specifylestimate the symmetric and positive definite correlation matrix 

Step 2. Use Cholesky Decomposition to determine A such that C =AAT 

Step 3. Generate a vector of independent standard normal deviates, zT = {z,, ..., z,,] 

Step 4. Impose the dependence structure by calculating the correlated vector of standard normal 

deviates x = A Z ~ ,  X - N (0, ) 

Step 5. Set ui =$ (xi)  . This yields a realization of the uniform random vector, 

U, uT = { U, . . . U, ) with a Gaussian Copula dependence structure. 

Step 6. Find the simulated correlated default time for every issuer: zi = P' (ui). ; F is an 

arbitrary marginal default time distribution 

ii)T-Copula & Monte Carlo Simulation 

Procedure: 

Step 1-3 are same as above 



Step 4. Simulate a random variate s from x', independent of { I , ,  ..., z,] 

d v  
Step 5. Set y =-x 

6 
Step 6. Set ui =t, (xi) . This yields a realization of the uniform random vector, 

U, uT ={ul . . . U, ) with a T-Copula dependence structure 

1 

Step 6. Find the simulated correlated default time for every issuer: 5 = F- ('i ). F is an 

marginal default time distribution 

iii)Exponential dependence Simulation 

Procedure: 

tT = {t , ' . . . ,  t m )  with 
Step 1. Simulate a vector of independent exponential shock arrival times 

given parameter {47"'7 k](/l, 'k = F-'("k)' F is an exponential marginal default 

time distribution 

Step 2.Simulate an n-vector {"'." Tnl of joint exponential default times by considering, for 

i~ {1,2, ..., 
each reference , the minimum of the relevant shock arrival times: 

=min{tk : l i k < m , a i k  = 1 }  

ai* = 1 k €  {1,2, ..., 
Where is a matrix such that if shock m} , modelled through the Poisson 

A i~ {1,2, ..., process N* with intensity * , leads to a default of reference , and 

aik = 0 otherwise. 

Step 3. Generate a sample {vl'"" from the (survival) default time copula C' by setting, for 

i~ {1,2, ..., n} 



Step 4. Find the simulated correlated default time for every issuer: zj = p l ( v i )  F is an arbitrary 

marginal default time distribution 

iv)Multivariate Outcomes from Archimedean Copula Simulation 

Procedure: 

T 

Stepl.Generate a vector of uniform variables U ={ul . . . U") 

Step2.Set XI = P'(u,) 

Step3.For k=2,. . .,p,recursively calculate the xk as the solution of 

For example, in the context of Frank's copula for p=2: 

u2 = e-aul 

We calculate X2 as the solution of -1 

- u2e -a - e-aul 
U*2 - (1 - u*2 ) 

That is, calculate X2 = FZ-I (u.2 where u2 + e-aul (1 - u , ~ )  

Genest(1978) gave this algorithm. 



Appendix B - Programming Codes 

%Main Script File 

%Gaussian V.S. T copula 

%5-yr FTD Swap 

clear all; 

load data; 

%for the third index 

%index 1 denotes low risk port 

%index 2 denotes median risk port 

%index 3 denots high risk port 



%INPUTS 

R=.4;% recover rate 

r=O.O5:%interest rate 

%to obtain the correlated matrix 

corrMatrix=rho*( 1 -eye(assetNo,assetNo))+eye(assetNo,assetNo); 

%to obtain the spot lemdas 

%based on the exponential default model 

%lemmda=spread/(l -R) 

spotlemmdaMatrix=spreadMatrix/(l -R); 

%to obtain the forward lemdas 

for i=l:assetNo 

for t=lA 

fwdlernmdaMatrix(i,t)=spotlemmdaMatrix(i,t+ l)*(t+ 1)-spotlemmdaMatrix(i,t)*(t); 

end 

end 



yo *************** 

% Gaussian Copula 

yo *************** 

%to simulate a simNo-by-assetNo matrix of normaVGaussian variates 

% gevMatrix=randn(simNo,assetNo); 

Quasi~RanSeqce=Halton~vector(simNo,assetNo); 

%to obtain the correlated normaVGaussian variates by using Cholesky 

%decomposition 

%That is, Gaussian Copula dependence structure 

corrgevMatrix=normcdf(Quasi~RanSeqce*chol(corrMatrix)); 

% %for a single reference, marginal default profanity over 5 years 

surProb=exp(-[1,2,3,4,5]. *spotlemmdaMatrix(5,:)) 

[price 1 ,Prob-default 1 ,vector-FTPtao 1 ,taoMatrix 11 =PRICE(corrgevMatrix,spotlemmdaMatrix,fw 

dlernmdaMatrix, simNo,assetNo,r,R); 



price 1 

Prob-default 1 

figure( 1) 

scatter(taoMatrixl(:, l),taoMatrix 1 (:,2),'.'); 

title('F1GURE 3-c.Gaussian-B basket'); 

xlabel('defau1t time-firml'); 

ylabel('defau1t time-firm2'); 

yo *************** 

% T-Copula 

yo *************** 

deg=5; 

%to simulate a vector of chi-square random variates 

S=chi2inv(rand(simNo, l),deg); 

for i=l: sirnNo 

fac(i, 1 :assetNo)=sqrt(deg./S(i)*ones( 1 ,assetNo)); 



end 

figure(2) 

scatter(taoMatrix2(:, l),taoMatrix2(: ,2),'.'); 

title('F1GURE 3-c.T-B basket'); 

xlabel('defau1t time-firml'); 

ylabel('probabi1ity-firrn2'); 
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