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Abstract

k Nearest Neighbors (kNN) is one of the most widely used supervised learning
algorithms to classify Gaussian distributed data, but it does not achieve good
results when it is applied to nonlinear manifold distributed data, especially
when a very limited amount of labeled samples are available. In this paper,
we propose a new graph-based kNN algorithm which can effectively handle
both Gaussian distributed data and nonlinear manifold distributed data.
To achieve this goal, we first propose a constrained Tired Random Walk
(TRW) by constructing an R-level nearest-neighbor strengthened tree over
the graph, and then compute a TRW matrix for similarity measurement
purposes. After this, the nearest neighbors are identified according to the
TRW matrix and the class label of a query point is determined by the sum of
all the TRW weights of its nearest neighbors. To deal with online situations,
we also propose a new algorithm to handle sequential samples based a local
neighborhood reconstruction. Comparison experiments are conducted on
both synthetic data sets and real-world data sets to demonstrate the validity
of the proposed new kNN algorithm and its improvements to other version
of kNN algorithms. Given the widespread appearance of manifold structures
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in real-world problems and the popularity of the traditional kNN algorithm,
the proposed manifold version kNN shows promising potential for classifying
manifold-distributed data.

Keywords:
k Nearest Neighbors, Manifold Classification, Constrained Tired Random
Walk, Semi-Supervised Learning

1. Introduction

k Nearest Neighbors (kNN) [9, 37, 52, 53] is one of the most popular
classification algorithms and has been widely used in many fields, such as
intrusion detection [27], gene classification [26], semiconductor fault detec-
tion [18], very large database manipulation [23], nuclear magnetic resonance
spectral interpretation [24] and the prediction of basal area diameter [31],
because it is simple but effective, and can generally obtain good results in
many tasks. One main drawback of the traditional kNN is that it does not
take the manifold distribution information into account and this can cause
bias which results in bad performance. It becomes even worse when there
are only a very small amount of labeled samples available. To address this,
an example is shown in figure 1(a), in which there are two one-dimensional
manifolds (the outer arch and the interior reflected S ) which correspond to
two classes, respectively. Each class has only 3 labeled samples, indicated by
the colored triangles and circles. Black dots are unlabeled samples. Figure
1(b) - (d) show the 1NN, 2NN and 3NN classification results produced by the
traditional kNN, respectively. We can see that although the data have ap-
parent manifold distribution, the traditional kNN incorrectly classifies many
samples due to ignoring the manifold information.
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(a) Toy manifold data set (b) k=1

(c) k=2 (d) k=3

Figure 1: Results of traditional kNN classification with k=1, 2, 3 on manifold distributed
data, in which the colored shapes (red triangles and green dots) are labeled samples and
the black dots are unlabeled samples.

To improve the performance of the traditional kNN, some new kNN algo-
rithms have been proposed. Hastie et. al. [17] proposed an adaptive kNN al-
gorithm which computes a local metric for each sample and uses Mahalanobis
distance to find the nearest neighbors of a query point. Hechenbichler and
Schliep [19] introduced a weight scheme to attach different importance to
the nearest neighbors with respect to their distances to the query point. To
reduce the effect of unbalanced training set sizes of different classes, Tan [39]
used different weights for different classes regarding the number of labeled
samples in each class. There are also some other improvements and weight
schemes for different tasks [8, 10, 12, 16, 25, 32, 51].

However, none of these new kNN algorithms takes manifold structure
into consideration explicitly. For high-dimensional data, such as face images,
documents and video sequences, the nearest neighbors of a point found by
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traditional kNN algorithms can be very far in terms of the geodesic distance
between them, because the dimension of the underlying manifold is usually
much lower than that of the data space [2, 36, 41]. There have also been at-
tempts to make kNN adaptive to manifold data. In Turaga and Chellappa’s
paper [46], geodesic distance is used to directly replace standard Euclidean
distance in traditional kNN, but geodesic distance can be computed with
good accuracy only if the manifold is sampled with sufficient points. Fur-
thermore, geodesic distance tends to be very sensitive to short-circuit phe-
nomenon. Li [30] proposed a weighted manifold kNN using Local Linear
Embedding (LLE) techniques, but LLE tends to be unstable due to local
changes on the manifold. Percus and Olivier [34] studied the general kth

nearest neighbor distance metric on close manifold, but their method needs
to know exactly the analytical form of the manifold and thus is unsuitable
for most real-world applications.

In this paper, we propose a novel graph-based kNN algorithm which can
effectively handle both traditional Gaussian distributed data and nonlinear
manifold distributed data. To do so, we first present a manifold similarity
measure method, the constrained tired random walk, and then we modify
the traditional kNN algorithm to adopt the new measuring method. To deal
with online situations, we also propose a new algorithm to handle sequential
samples based on a local neighborhood reconstruction method. Experimental
results on both synthetic and real-world data sets are presented to demon-
strate the validity of the proposed method.

The remainder of this paper is organized as follows: Section 2 reviews the
tired random walk model. Section 3 presents a new constrained tired walk
random walk model and Section 4 describes the graph-based kNN algorithm.
Section 5 proposes a sequential algorithm for online samples. The simulation
and comparison results are presented in Section 6, followed by conclusions in
Section 7.

2. Review of tired random walk

Assume a training set XT = {x1, x2, ..., xl−1, xl} ⊂ Rd contains l labeled
samples and the class label of xi is yi , yi ∈ {1, 2, ..., C} ; i = 1...l, where
d is feature length and C is class number. There are also n − l unlabeled
samples to be classified, XU = {x1, x2, ..., xn−l}. Denote X = XT ∪ XU =
{x1, x2, ..., xn} and y = (y1, y2, ..., yl). We also use X for the sample matrix,
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whose columns are the samples in X . We use ‖·‖ to denote the Frobenius
norm.

In differential geometry studies, a manifold can be defined from an intrin-
sic or extrinsic point of view [3, 38]. But in data processing studies, such as
dimension reduction [5, 33, 35] and manifold learning [1, 47, 48], it is helpful
to consider a manifold as a distribution which is embedded in a higher Eu-
clidean space, i.e. adopting an extrinsic view in its ambient space. Borrowing
the concept of intrinsic dimension from [4], we give a formal definition of a
manifold data set as follows.
Definition: A data set is considered to be manifold distributed if its intrin-
sic dimension is less than its data space dimension.
For more information on the intrinsic dimensions of a data set and how it can
be estimated from data samples, we refer readers to [4, 35]. To determine
whether a data set has manifold distribution, one can simply estimate its
intrinsic dimension and compare it with the data space dimension, i.e. the
length of a sample vector.

Similarity measure is an important factor while processing manifold dis-
tributed data, because on manifolds traditional distance metrics (such as
Euclidean distance) are not a proper measure [54, 56, 57]. Recent studies
have also proved that classical random walk is not a useful measure for large
sample cases or high-dimensional data because it does not take any global
properties of the data into account [29]. The tired random walk (TRW)
model was proposed in Tu’s paper [42] and has been demonstrated to be
an effective measure of nonlinear manifold [49, 55], because it takes global
geometrical structure information into consideration.

Recall that on a weighted undirected graph, the classical random walk
transition matrix is P = D−1W , where W is the graph adjacency matrix
and D is a diagonal matrix with entries Dii =

∑n
j=1Wij. Now imagine that

a tired random walker walks continuously through edges in a graph, but it
becomes more tired after each walk and finally stops after all energy is ex-
hausted, i.e. the transition probability of the random walk reduces with a
fixed ratio (e.g. 0.01) after each walk and finally approaches 0. After t steps
the tired random walk transition probability matrix becomes (0.01P )t. Now
considering figure 2, the tired random walker starts from vertex i and its
destination is vertex j on the graph, walking with a strength reduction rate
α ∈ (0, 1). Then it may walk through any path that connects vertices i and j,
with an arbitrary number of steps before its strength is used up. For example,
the tired random walker can walk through path i → A → j, or i → B → j.
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It can also walk through i → B → C → j, or even i → B → C → B → j,
because while at vertex C, the probability of walking to B is much larger
than that to j. But all these walking paths reflect the underlying geometrical
structure of the graph, hence the distribution of the data. Therefore, a good
similarity measure between vertex i to j should take (globally) all possible
paths and an arbitrary number of steps (can potentially be infinite) into con-
sideration, rather than only considering (locally) a single path or a single step
as the classical random walk [29] does. This makes a fundamental difference
between the tired random walk and classical random walk and entitles the
tired random walk to be more robust and effective, especially for manifold
distributed data, as will be demonstrated in the experimental section. Math-
ematically, the accumulated transition probability of the tired random walk
between vertex i and j is (PTRW )ij =

[∑∞
t=0 (αP )t

]
ij

. For all vertices, the

accumulated transition probability matrix becomes PTRW =
∑∞

t=0 (αP )t. As
the eigenvalue of P is in [−1, 1] and α ∈ (0, 1), the series converges and the
tired random walk matrix is

PTRW =
∑∞

t=0
(αP )t = (I − αP )−1 (1)

Figure 2: Tired random walk on weighted undirected graph.

Because PTRW takes all the possible paths into account, it captures the
global geometrical structure information of the underlying manifold and thus
is demonstrated to be more effective and robust to describe manifold simi-
larity.
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3. A constrained tired random walk model

In this section, we further extend the model into a constrained situation.
For classification purposes, we find that labeled samples provide not only
class distribution information, but also constraint information, i.e., samples
which have the same class labels are must-link pairs and samples which have
different class labels are cannot-link pairs. In most of the existing supervised
learning algorithms, only class information is utilized but constraint infor-
mation is discarded. Here we include constraint information into the TRW
model by modifying the weights of graph edges between the labeled samples,
because constraint information has been demonstrated to be useful for per-
formance improvement [11, 15, 45, 58]. Class information will be utilized in
the next section for the proposed new kNN algorithm.

We first construct an R-level nearest-neighbor strengthened tree for each
labeled sample xi ∈ XT as follows:

(i). Set xi as the first level node (tree root node, r = 0) and its k nearest
neighbors as the second level nodes.

(ii). For each node in level r − 1, set its nearest neighbors as its level r
descendants. If any node in level r appears in its ancestor level, remove
it from level r.

(iii). If r < R, go to (ii).

where R is a user-specified parameter to define the depth of the tree. Then
for each pair of samples (xi, xj), the corresponding graph edge weight is set
according to the rules in Table 1. σ is the Gaussian kernel width parameter

Table 1: Constrained graph construction

Steps
1 Wij = 1 if xi, xj ∈ XT and have same class label.
2 Wij = 0 if xi, xj ∈ XT and have different class labels.

3 Wij = exp
(
−‖xi − xj‖2/2σ2

)
if at least one of xi, xj is unlabeled.

4 Wij = (1 + θrij)Wij , 1 ≤ r ≤ R, if xi is a node in level r − 1 and xj
is a child of xi in level r in the strengthened tree.

and θ is the strengthening parameter. Note that for the Gaussian kernel, step
1 is equivalent to merging the two same-label samples together (0 distance
between them) and step 2 is equivalent to separating the two different-label
samples from each other to infinitely far (infinite distance between them).
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The connections from a labeled sample to its nearest neighbors are strength-
ened by θij in step 4. This can spread the hard constraints in steps 1 and
2 to farther neighborhoods on the graph in a form of soft constraints and
thus causes these constraints to have a wider influence. The motivation of
constructing the strengthened tree is inspired by the neural network reser-
voir structure analysis techniques, in which information has been shown to
spread out from input neurons to interior neurons in the reservoir following
a tree-structure path [43].

The selection of parameter θ is based the following conditions

• the strengthened weight should be positive and less than the weight of
the must-link constraint.

• the strengthening effect should be positive and decays along the strength-
ened tree level.

Mathematically, the conditions are{
0 < Wij + θijWij < 1

0 < θr+1
ij < θrij

(2)

As a result, θ should be

0 < θij < min

(
1−Wij

Wij

, 1

)
= θ̄ (3)

In all our experiments, we used a single value of θ = 0.1θ̄, which gives good
results for both synthetic and real-world data.

4. A new graph-based kNN classification algorithm on nonlinear
manifold

Here we present a graph-based kNN algorithm for nonlinear manifold
data classification. The procedure of the algorithm is summarized in Table
2.

Specifically, given PTRW matrix, the TRW weight between sample xi and
xj is defined as

w̄ij = w(xi, xj) =
(PTRW )ij + (PTRW )ji

2
(4)

8



Table 2: A graph-based kNN algorithm

Steps
1 Input X = XT ∪ XU , y and k.
2 Construct a constrained graph according to Table 1
3 Compute the PTRW using equation (1)
4 Evaluate samples’ similarity according to equation (4)
5 Find nearest neighbors of an unlabeled sample using equation (5)
6 Determine the class label according to equation (6)

Note that while the similarity measure defined by matrix PTRW between
two samples is not necessarily symmetric ( P is not symmetric and thus its
matrix series PTRW is also not symmetric), the weight defined in equation
(4) is indeed a symmetric measure. For each unlabeled sample x ∈ XU , we
could find its k ≤ l nearest neighbors from XT by

xi = arg max
xj∈XT

w(x, xj) (5)

Instead of counting the number of labeled samples from each class in the
classical kNN, we sum the TRW weights of the labeled samples of each class
and the class label of the unlabeled sample x is determined by

y = arg max
c=1,2,...,C

∑k

i=1
w(x, xi)I(yi = c) (6)

It is worth mentioning that because the proposed semi-supervised mkNN
utilizes class label information only in the classifying stage and it uses the
same k value equally for all classes, mkNN naturally lacks the so-called class
bias problem in many semi-supervised algorithms (such as [20, 28, 44, 59])
that is due to the influence of unbalanced labeled samples of each class in
XT and needs to be re-balanced by various weighting schemes [50, 59]. Fur-
thermore, with the algorithm described in the next section, mkNN imme-
diately becomes a supervised classifier and enjoys the advantages of both
semi-supervised learning (classifying abundant unlabeled samples with only
a tiny number of labeled samples) and supervised learning (classifying new
samples immediately without repeating the whole learning process).

5. A sequential method to handle online samples

For one single unlabeled sample, if we compute its TRW weights using
equation (1) and (4), we have to add it to X and recompute the matrix PTRW .
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As a result, the computational cost for one sample is too high. Actually
this is the so-called transductive learning problem1, a common drawback
of many existing algorithms [7, 13, 21, 22]. To attack this problem, we
propose a new method based on rapid neighborhood reconstruction, in which
a local neighborhood is first constructed in sample space and then the TRW
weights can be reconstructed in the same local neighborhood with very trivial
computational cost.

Given a new sample x, it has been shown that x can be well reconstructed
by its nearest neighbors on the manifold if there are sufficient data points
sampled from the manifold [6, 36, 40]. Thus, it is also reasonable to assume
that the neighborhood relationships, hence the weights of sample x in equa-
tion (4), have the same geometrical distribution as the sample distribution.
So, to compute the weights of x without explicitly recomputing matrix PTRW

in equation (4), we first find x’s k nearest neighbors2 in X , written as Xk

which contains these k nearest neighbors in its columns, and then minimize
the local reconstruction error by solving the following constraint quadratic
optimization problem

min ‖x−Xkz‖2

s.t. z ≥ 0; zT e = 1
(7)

1Transductive learning is an opposite concept to inductive learning. Inductive learning
means the learning algorithm, such as SVM, learns a model explicitly in data space that
partitions the data space into several different regions. Then the model can be applied
directly to unseen samples to obtain the class labels. On the other side, transductive
learning does not build any model. It performs one-time learning only on a fixed data
set.Whenever the data set changes (for example, existing samples are changed or new
samples are added.), the whole learning process has to be repeated again to assign new
class labels.

2One should note that finding nearest neighbors in X is quite different from that in
XT . The former is the basis of many nearest-neighbor operations (such as constructing
nearest-neighbor graph in [36, 41] and the R-level strengthened tree in Section 3 of this
paper) and the latter is the basis of the classical kNN classifier. Because X contains many
instances, which are sampled densely from the underlying data distribution, an instances’s
local neighborhood in X is usually very small and thus Euclidean distance is still valid
in this small range for that any manifold can be locally well approximated by Euclidean
space [3]. However, instances in XT are very few and usually not densely sampled from
the manifold and nearest neighbors in XT can be very far. Thus Euclidean distance is no
longer suitable for measuring the closeness of the points in XT . This is why we need other
new similarity (or closeness) measure methods, which is one of the main contributions of
this paper.
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where e is a vector with all entries being 1. Note that the entries of z are
nonnegative and the sum of all entries must be 1, so z is expected to be sparse
[28]. Problem (7) is a constrained quadratic optimization problem and can
be solved very efficiently with many publicly available toolboxes. We use
the OPTI optimization toolbox3 to solve this. After obtaining the optimal
z, the TRW weights between x and its nearest labeled samples in Xk can be
computed by solving the following optimization problem

min
∥∥w̄ − W̄ T

k z
∥∥2

s.t. w̄ ≥ 0
(8)

where W̄k = (w̄1, w̄2, ..., w̄k) and w̄i contains the weights between sample xi
in Xk and its k nearest neighbors in X.

This process is illustrated in Figure 3. Figure 3(a) corresponds to equation
(7) which computes z and Figure 3(b) corresponds to equation (8) which
computes w̄.

(a) Computing reconstruction weight z
using equation (7)

(b) Computing TRW weight w̄ using
equation (8)

Figure 3: The process of computing sequential TRW weight.

It is easy to see that the optimal solution of problem (8) is simply the
result of a nonnegative projection operation

w̄ = max(0, W̄ T
k z) = W̄ T

k z (9)

3OPTI TOOLBOX: http://www.i2c2.aut.ac.nz/Wiki/OPTI/
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The second equation holds because both W̄k and z are nonnegative and
therefore their multiplication result is also nonnegative.

One should note that with this sequential learning strategy, the proposed
mkNN can be treated as an inductive classifier, whose model consists of
both the PTRW matrix and the data samples that have been classified so far.
Whenever a new sample arrives, the model can quickly give its class label by
the three steps in Table 3, without repeating the whole learning process in
Table 2.

Table 3: The procedure of sequential manifold kNN algorithm

Steps
1 Input X = XT ∪ XU , PTRW , x and k.
2 Find x’s k nearest neighbors in X
3 Use equations (7) and (8) to compute its TRW weights
4 Use equation (6) to classify it

6. Experimental results

In this section, we report the experimental results on both the synthetic
data sets and real-world data sets. The comparison algorithms include tradi-
tional k nearest neighbors (kNN), the weighted k nearest neighbors (wkNN)
and the geodesic kNN (gkNN) proposed by Pavan and Rama[46], as well as
our manifold k nearest neighbors (mkNN). For kNN and wkNN, the only pa-
rameter is k. For gkNN and mkNN, there is one more parameter for each, i.e.
the number of nearest neighbors for computing geodesic distance in gkNN
and the kernel width σ in mkNN. We tune these two parameters by grid-
search and choose their values to produce the minimal 2-fold cross validation
error rate.

6.1. Experimental results on synthetic data sets

We first conduct experiments on three synthetic data sets shown in Figure
4 to demonstrate the superiority of mkNN over other kNN algorithms. For
each data set in Figure 4, the three red triangles and the three green dots are
the labeled samples of the two classes, respectively. Note that all three data
sets contain some ambiguous points (or bridging points) in the gap between
two classes, making the classification even more challenging. Experimental
results on these data sets are shown in Figures 5 to 7.

12



(a) data set 1 (b) data set 2 (c) data set 3

Figure 4: Three synthetic data sets, in which the colored shapes are labeled samples and
the black dots are unlabeled samples

(a) kNN (b) wkNN

(c) gkNN (d) mkNN

Figure 5: Experimental results on synthetic data sets. (a)-(d): results of kNN, wkNN,
gkNN and mkNN on data set 1.
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(a) kNN (b) wkNN

(c) gkNN (d) mkNN

Figure 6: Experimental results on synthetic data sets. (a)-(d): results of kNN, wkNN,
gkNN and mkNN on data set 2.
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(a) kNN (b) wkNN

(c) gkNN (d) mkNN

Figure 7: Experimental results on synthetic data sets. (a)-(d): results of kNN, wkNN,
gkNN and mkNN on data set 3.

From these results, we can see that because kNN uses Euclidean distance
to determine the class label and Euclidean distance is not a proper similar-
ity measure on the manifold, the results given by traditional kNN are quite
erroneous. By introducing a weight scheme, wkNN can perform better than
kNN, but the improvement is still quite limited. gkNN has much better re-
sults because geodesic distance on the manifold is a valid similarity measure.
However, as mentioned in Section 1, graph distance tends to be sensitive
to short-circuit phenomenon (i.e. the noise points lying between the two
classes), thus gkNN still misclassifies many samples due to the existence of
noisy points. In contrast, mkNN achieves the best results, because TRW
takes all the possible graph paths into consideration, thus it embodies the
global geometrical structure information of the manifold and can be much
more effective and robust to noisy points.
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Figure 8 plots the mean error rate of each algorithm over 10 runs on
these data sets, as k changes from 1 to 10. In each run, k labeled samples
are randomly selected from each class and the rest of the samples in the data
set are treated as unlabeled samples to form the testing set.

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Figure 8: Experimental results on synthetic data sets. Mean error rate on the ordinate
and k on the abscissa.

From the results in Figure 8 we can see that mkNN performs significantly
better than other version of kNN algorithms. It is interesting to note that
on these manifold distributed data sets, while the mean error rates of kNN
and wkNN have no obvious reduction as k increases, the mean error rates
of gkNN and mkNN decrease quickly. This indicates that gkNN and mkNN
are able to exploit the information contained in the labeled samples in a
more efficient way, because they take the manifold structure information
into account. Again, mkNN achieves the lowest error rate.

In order to demonstrate the effectiveness of the weight reconstruction
method, we run the algorithm on these data sets to reconstruct each sample
and its TRW weight using its k nearest neighbours with equation (1.7) and
(1.8), respectively. The relative mean square error (RMSE) of the recon-
struction result is computed by

RMSE(T,R) =
‖T −R‖2

‖T‖2
× 100%

where T is the ground truth and R is the reconstructed result. The results
are shown in Table 4. From these results we can see that the reconstruction
method in equation (7) and (8) can produce a very accurate approximation
to the true samples and weights, respectively, on nonlinear manifold data
sets.
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Table 4: Reconstruction error of the synthetic data sets (%).

data set 1 data set 2 data set 3

RMSE(X, X̂) 0.0724 0.2734 0.1606

RMSE(PTRW , P̂TRW ) 0.5075 1.0524 1.9061

6.2. Experimental results on real-world data sets

We also conduct experiments on six real-world data sets from the UCI
data repository, which contains real application data collected in various
fields and is widely used to test the performance of different machine learning
algorithms4. The information on these six data sets is listed in Table 5 (n:
number of samples; d: feature dimension; C: class number).

Table 5: Information on the experimental data sets.

usps segmentation banknote pendigits multifeature statlog

n 9298 2086 1348 10992 2000 6435

d 256 19 4 16 649 36

C 10 6 2 10 10 6

On each data set, we let k change from 1 to 10. For each k, we run
each algorithm 10 times, with a training set containing k labeled samples
randomly selected from each class and a testing set containing all the rest
samples. The final error rate is the mean of the 10 error rates and is shown
in Figure 9.

From Figure 9, we can see that the proposed mkNN outperforms the
other algorithms in terms of both the accuracy and stability of performance.
The error curves of mkNN decrease much more quickly than that the other
algorithms, which indicates that mkNN is able to utilize fewer labeled sam-
ples to achieve better accuracy. This is very important in applications where
there is a very small amount of labeled samples available, because labeled
samples are usually more expensive to obtain, i.e. they need to be annotated
by human with expert knowledge and/or special equipment and take a lot of
time. Therefore, it is of great practical value that a classifier is capable of ac-

4UC Irvine Machine Learning Repository: http://archive.ics.uci.edu/ml/.
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curately classifying abundant unlabeled samples, given only a small number
of labeled samples.

From Figure 9, we can also conclude that: (1) by introducing a weight
scheme in the traditional kNN algorithm, weighted kNN (wkNN) can gen-
erally outperform traditional kNN; (2) the performance of geodesic kNN
(gkNN) has a relative large improvement to both kNN and weighted kNN
for most cases, because geodesic distance is a valid measure on manifold; (3)
the manifold kNN (mkNN) almost always achieves the smallest error rate,
because the constrained TRW is a more effective and robust measure of the
global geometrical structure on manifold and, meanwhile, mkNN can take
both the class information and constraint information into account.
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(a) usps (b) segmentation

(c) banknote (d) pendigits

(e) multifeature (f) satlog

Figure 9: Experimental results on six real-world data sets. Mean error rate on the ordinate
and k on the abscissa.
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6.3. Experimental results of the comparison with other traditional supervised
classifiers

We conduct experiments to compare the performance of the proposed
manifold kNN algorithm with other popular supervised classifiers on the six
real-world data sets. The baseline algorithms are: Support Vector Machine
(SVM)5, Artificial Neural Networks (ANN), Naive Bayes (NB) and Decision
Tree (DT). The configurations of the baseline algorithms are: radial basis
kernel for SVM; three-layer networks trained with back-propagation for ANN;
kernel smoothing density estimation for NB; binary classification tree and
merging-pruning strategy according to validation error for DT. We adopt
a grid-search strategy to tune the parameters of each algorithm and the
parameters are set to produce the lowest 2-fold cross validation error rate.

To examine the capability of classifying plenty of unlabeled samples with
only a few labeled samples, we randomly choose three labeled samples from
each class to form the training set and the remaining samples are treated
as unlabeled samples to form the testing set. Each algorithm runs 10 times
and the final result is the average of these 10 error rates. The experimental
results (mean error ± standard deviation) are shown in Table 6.

Table 6: Experimental results on real-world data sets (error rate: %)

SVM ANN NB DT mkNN

usps 77.35±4.6 40.96±4.3 34.73±4.9 73.96±8.4 19.37±3.9

segmentation 66.54±8.7 42.54±3.8 50.83±4.3 49.55±2.6 24.18±4.5

banknote 70.01±14.7 23.03±6.2 28.37±7.8 44.43±0.4 9.73±6.9

pendigits 49.41±12.3 44.02±27.4 42.36±6.2 80.83±11.3 12.51±2.3

multifeature 82.89±6.4 50.53±24.2 26.89±2.9 76.14±2.9 15.36±2.3

satlog 57.26±17.1 30.15±4.9 28.81±5.9 72.55±13.5 21.07±8.0

From these results, we can see that mkNN significantly outperform these
traditional supervised classifiers, given only three labeled samples per class.
Similar to traditional kNN, traditional supervised classifiers are incapable of

5For SVM we use the libsvm toolbox: https://www.csie.ntu.edu.tw/~cjlin/

libsvm/. Other algorithms we use MATAB toolbox.
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exploiting the manifold structure information of the underlying data distri-
bution, thus their accuracies are very low while the labeled sample number
is very small. Furthermore, when the labeled samples are randomly selected,
their positions vary greatly in data space. Sometime they are not uniformly
distributed and thus cannot well cover the whole data distribution. As a
result, the performance of traditional classifiers also varies greatly. In con-
trast, because mkNN adopts tired random walk to measure manifold sim-
ilarity which reflects the global geometrical information of the underlying
manifold structure and is robust to local changes. [42], it can achieve much
better results.

To further investigate the performance of these algorithms under the con-
dition of providing different number of training samples, we carry out exper-
iments with different training set sizes. For each data set, we let k varies
from 1 to 40 (k = 1, 3, ..., 39) and randomly choose k labeled samples from
each class to form the training set. The rest of the data set are treated as
unlabeled samples to test each algorithm’s performance. For each k, every
algorithm runs 10 times on each data set. The mean error rate and standard
deviation of the 10-run results are shown in Figures 10 and 11, respectively.

From Figure 10 we can see that while the labeled sample number is small,
the error rates of the traditional algorithms are very large (as also indicated
in Table 6 which contains the results of the three labeled samples per class).
As the number of labeled sample increases, the error rates decrease. This
trend becomes slower after 15 labeled samples per class. The proposed mkNN
achieves the lowest error rate for both situations of small and large number
of labeled samples. The improvement is especially obvious and significant
when the labeled samples number is small. From Figure 11, we can also see
that the performance of mkNN is also relatively steady for most cases. One
should note that on the left of each plot in Figure 11, the small standard
deviation values of decision tree (DT) and SVM are due to the fact that
their error rates are always very high in each run (e.g. the error rates of
SVM on data set usps concentrate closely around 95).
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(a) usps (b) segmentation

(c) banknote (d) pendigits

(e) multifeature (f) satlog

Figure 10: Experimental results on six real-world data sets. Mean error rate on the
ordinate and labeled samples number per class on the abscissa.
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(a) usps (b) segmentation

(c) banknote (d) pendigits

(e) multifeature (f) satlog

Figure 11: Experimental results on six real-world data sets. Standard deviation of error
rates on the ordinate and labeled samples number per class on the abscissa.
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6.4. Experimental results of time complexity

To examine the effectiveness and efficiency of the proposed sequential
learning strategy in Section 5, we conduct experiments on three real-world
data sets banknote,satlog and pendigits to show the difference of mkNN’s
performance with and without sequential learning algorithm. Each data set
is divided into three subsets: training set, validation set and online set. The
training set is fixed to contain 10 labeled samples per class. We conduct 10
experiments, with the online set size changes from 100 to 1000 with step size
100. The validation set contains the rest of the samples. First, mkNN runs
on training set and validation set to learn the class distribution. Thereafter,
at each time a sample is drawn from the online set as a new coming sample.
For sequential mkNN, the previous learning result is used to classify the new
sample according to equation (7) and equation (8). For standard mkNN, the
new sample is added to the validation set and the whole learning process is
repeated to classify the new sample. The experimental results6 are shown in
Figure 12.

From these results, we can see that while the classification accuracy of
standard mkNN and sequential mkNN are comparable, the time cost of se-
quential mkNN reduces dramatically for online classification (e.g., for satlog
data set, to classify 1000 sequentially coming samples, standard mkNN takes
about 9100 seconds but sequential mkNN uses only about 14 seconds to
achieve a similar result). Therefore, the sequential algorithm has great merit
in solving the online classification problem and can be potentially applied to
a wide range of transductive learning algorithms to make them inductive.

We also conduct experiments to compare the time complexity of all the
baseline algorithms with the proposed mkNN on these three data sets. Each
data set is split into training and testing parts three times independently,
with splitting ratios 10%, 25% and 50%, respectively. For each split, every
algorithm runs 10 times and the mean time cost is recorded. Table 7 shows
the experimental results (the second column shows the splitting ratio).

6The configuration of our computer: 16GB RAM, double-core 3.7GHz Intel Xeon CPU
and MATLAB 2015 academic version.
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(a) Satlog data set

(b) Banknote data set

(c) Pendigits data set

Figure 12: Experimental results of the comparison between standard mkNN and sequential
mkNN to classify online samples real-world data sets.

From this table we can see that the algorithms fall into two categories
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Table 7: Comparison of overall time for training and testing on three data sets (sec)

data (%) SVM DT ANN NB kNN wkNN gkNN mkNN

10 0.01 0.14 0.23 0.09 0.03 0.02 1.23 0.19

banknote 25 0.01 0.19 0.24 0.09 0.04 0.03 1.23 0.20

50 0.02 0.29 0.27 0.08 0.05 0.05 1.26 0.20

10 0.47 0.43 0.59 7.14 0.13 0.14 31.99 6.01

satlog 25 1.78 1.16 1.58 7.56 0.24 0.29 32.55 6.08

50 5.12 3.11 4.01 7.61 0.31 0.40 32.82 6.30

10 0.44 0.78 0.70 8.70 0.22 0.28 149.14 25.27

pendigits 25 0.86 2.28 2.65 8.46 0.41 0.59 146.89 26.11

50 1.55 6.09 5.06 6.93 0.54 0.80 145.71 25.35

according to their time costs: one category contains SVM, DT, ANN, kNN
and wkNN, whose time costs are closely related with the training data set
size. Another category includes NB, gkNN and mkNN, whose time costs de-
pend more upon the overall data set size. SVM, kNN and wkNN are generally
faster than others. Although mkNN is the second slowest one, it is still much
faster than gkNN and its overall time does not prolong as the training set size
increases. It should be mentioned that although the classification accuracy of
mkNN is much better than kNN and other traditional supervised classifiers,
the computational complexity of mkNN is also higher (O(n3)) than tradi-
tional kNN (O(n)). Directly computing PTRW matrix is time cost, since it is
not symmetrical, positive definite matrix and thus a LU decomposition has to
be used. One way to speed-up matrix inverse is to convert PTRW to a symmet-
rical, positive definite matrix and then adopt the Cholesky decomposition,
whose computational cost is just a half of the LU decomposition [14]. Not-

ing that PTRW = (I − αD−1W )
−1

= D1/2
(
I − αD−1/2WD−1/2

)−1
D−1/2 =

D1/2R−1D−1/2, where R = I − αD−1/2WD−1/2 is a symmetrical, positive
definite matrix7, we can first inverse matrix R using Cholesky decomposition
and then compute PTRW with very small computational cost. Our following
work will be focused on the further reduction of computational complexity.

7R is apparently symmetrical because W is symmetrical (Let W = (W +WT )/2 if W
is not symmetrical). We prove its positive definiteness. Because the spectral radius of
PTRW is in (0, 1) and PTRW is similar to R−1, so spectral radius of R−1 is in (0, 1). So
all eigenvalues of R are positive. Therefore R is a positive definite, symmetrical matrix.
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7. Conclusions

In this paper we proposed a new k nearest-neighbor algorithm, mkNN, to
classify nonlinear manifold distributed data as well as traditional Gaussian
distributed data, given a very small amount of labeled samples. We also
presented an algorithm to attack the problem of high computational cost for
classifying online data with mkNN and other transductive algorithms. The
superiority of the mkNN has been demonstrated by substantial experiments
on both synthetic data sets and real-world data sets. Given the widespread
appearance of manifold structures in real-world problems and the popularity
of the traditional kNN algorithm, the proposed manifold version kNN shows
promising potential for classifying manifold-distributed data.
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