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ABSTRACT 

The application of data mining techniques, particularly classification of spatio-temporal 

3D functional magnetic resonance images has received growing attention in the litera-

ture.  Spatio or spatial component as well as temporal component are factors of high 

importance in determining and recognizing brain state in response to external stimuli.  

Structural and functional brain data have been hugely collected, in an attempt to im-

prove brain cognitive abilities and processing capabilities, as well as advancement in 

medicine, health, education, Brain Computer Interface and games.  A particular spatio- 

and spectro-temporal brain data (STBD), functional Magnetic Resonance Imaging 

(fMRI), provides a comprehensive detail of brain activation when a certain stimulus is 

presented to the subject resulting from the changes of oxygen level in the blood vessel 

of the brain.  This oxygen difference between active neurons and inactive neurons is 

captured in sequence, and the images generated from this (the fMRI) are composed of 

tens of thousands of individual voxels.  These massive voxels are the features to this 

thesis, which became one of the challenges that had to be faced, in addition to the com-

plex format of the data itself.    

To some extent, conventional machine learning techniques has successfully 

process and classify fMRI data.  However, these techniques are only best at dealing spa-

tial data, which completely neglect the temporal information that this data has.   

Thus, this study proposes and presents a novel computational model that specifi-

cally process spatial and temporal information of fMRI data, which make use of the 

newly proposed NeuCube model as its foundation.  The derived model, denoted as 

NeuCubeB utilized the 3D evolving SNN architecture of NeuCube in mapping and 

learning the data.  The model learns from the data; then creates and updates connections 

between the neurons based on their weights.  These connections represent chains of neu-

ronal activities which could be reproduced even when only part of the stimuli data is 

presented, therefore making the NeuCube connections as an associative memory.  The 

model can be used not only to classify brain activation patterns, but also to determine 

functional trail from the data i.e. to identify brain areas that receive the most activation 

from the stimulus.  

There are two case studies presented in the thesis involving different set of fMRI 

data which are in different format.  The dataset is used and experimented by many re-
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searchers, which utilized different types of conventional machine learning techniques.  

In NeuCubeB, the fMRI features (voxels) are modelled and studied as both spatial and 

temporal information involving phases of data reading, mapping, and encoding, before 

they are transferred to initialization and unsupervised learning stage.  Connectivity of 

neurons in the network could be visualized and studied.  The visualization can reveal 

crucial spatio-temporal relationship unseen from the data that are completely ignored by 

the standard classifiers.  For both experiments involving two different sets of fMRI data, 

NeuCubeB model results in better classification accuracy as compared to the standard 

classifiers.  From this result, it can be concluded that NeuCubeB model is not vulnerable 

to noise, that normally reside in fMRI data.  In addition the result can be further inter-

preted to better understand the brain activation under which the brain data is collected.  

However, these results and interpretations could still be improved, and further explora-

tion on the subject matter is indeed a huge research prospect.   
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1 Chapter 1 

INTRODUCTION 

1.1 BACKGROUND 

The human brain is the command centre for the complex network of nerves and cells 

that carry signals to and from the brain to various part of the human body.  For instance, 

when a person looks at a picture, a particular region in the brain will be activated.  In 

order to capture the spatio temporal activation, brain imaging technique, in particular 

functional magnetic resonance imaging (fMRI) technique, is often used.  The technique 

which detects metabolic activity of brain areas (not neuronal firing itself) is widely 

available and it allows subjects to be examined noninvasively.  More precisely, fMRI 

measures the blood oxygen level (oxygenated haemoglobin to deoxygenated haemoglo-

bin) at many individual locations within the brain. This neural activity is widely be-

lieved to influence the level of oxygen in the blood and is known as blood oxygen level 

dependent (BOLD) response (Mitchell, et. al. 2004).   

Images generated from this technique are constructed from two components – 

spatial/spectral (or spatio) and temporal components.  Spatial component is identified as 

a volume of a brain that can be further sub-divided into smaller three-dimensional (3D) 

cuboids, known as voxels (volume element).  In addition, temporal component is the 

time acquired scanning the whole volume of a brain.  The combination of these spatial 

and temporal data of the brain images will be the main characteristics to be investigated 

in this study.   Apart from fMRI, electroencephalogram (EEG), diffusion tensor imaging 

(DTI), magnetoencephalography (MEG) and near-infrared spectroscopy (NIRS) are also 

known as spatio- and spectro-temporal brain data (STBD).  These are largely collected 

and available for researchers in the field of medicine, health, cognitive sciences, educa-

tion and Brain Computer Interface (BCI) to take advantage of. 

STBD in particular fMRI, is not only large, consisting millions of data points, 

but also has complex structure both in space and time.  To deal with such complex and 

massive data points, a new computational framework is needed in order to process and 

understand this data, which was only partly solved previously by using standard ma-

chine learning techniques.  In recent years, spiking neural networks (SNN) that have the 
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same working principle as STBD in terms of its spiking activity is anticipated to be 

suitable for the creation of a computational framework for learning and understanding 

of fMRI as well as other brain data.  A newly proposed architecture called NeuCube 

(Kasabov, 2014) that is based on a 3D evolving SNN (eSNN) is developed to map and 

learn STBD, thus to better understand the data.   

eSNN architecture (Wysoski, Benuskova, & Kasabov, 2006) was inspired by the 

Evolving Connectionist System (ECoS) (Kasabov, 1998) principles that evolves its 

structures incrementally in time, i.e. in its neurons and neurons connections.  Besides 

the fact that ECoS could perform training very fast, it is also capable of processing large 

amount of spatio-temporal data, and it has structures that can accommodate new fea-

tures to be added in at a later stage of the learning process.  The advantages that ECoS 

and eSNN have to offer make NeuCube the best architecture to map, train and learn 

STBD.  Previous experiments involving the use of NeuCube in modeling and learning 

spatio-temporal stroke data (Kasabov et al., 2014) has produced high accuracy in pre-

dicting stroke occurrences, thus inspiring more studies to experiment with other variants 

of STBD. 

Undeniably many efforts have been performed to model and process fMRI or 

other spatio-temporal data but classical machine learning often neglect the temporal 

component that this data has.  We believe that beside the spatial component of fMRI 

that holds so much information about the brain, the other equally important component 

i.e. temporal component is also very crucial and very much desired in making accurate 

decisions. 

1.2 MOTIVATION 

As have been pointed out in recent publications (Gerstner, Sprekeler, & Deco, 2012; 

Poline & Poldrack, 2012; Van Essen et al., 2012), an integrated model that could model 

and analyze brain data is very much required, and machine learning is one of the ap-

proaches mentioned.  Methods such as Support Vector Machine (SVM), Multilayer Per-

ceptron neural networks (MLP), Gaussian Naive Bayes and many more have been used 

successfully in processing static brain data (Mitchell et al., 2003; Rustandi, 2007a, 

2007b; Wang, Hutchinson, & Mitchell, 2003), but unfortunately they are not efficient in 

capturing and processing complex spatio-temporal relationship of STBD.  These meth-

ods also could not hold prior knowledge about the brain in the models.  In addition to 

these efforts, researchers have also developed modeling paradigm that could provide 
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accurate structural and functional brain models (e.g. Izhikevich & Edelman, 2008; 

Markram, 2006; Toga, Thompson, Mori, Amunts, & Zilles, 2006).  However they still 

could not be used for machine learning and pattern recognition of STBD, which specifi-

cally could handle fMRI data modeling and processing that would facilitate researchers 

to find efficient solutions to important problems such as detecting fMRI cognitive func-

tions accurately and interpreting the data model. 

Thus there is a significant gap to develop a computational framework that have a 

generic spatial structure of an approximate map of the human brain in certain coordinate 

system (e.g. MNI or Talairach); that could also map the spatial location(i.e. voxel coor-

dinates) of the incoming brain data; that later on could represent and process the voxels 

as train of spikes and STBD; and finally that have brain-like learning rules to learn the 

STBD and evolve when new STBD patterns are presented into the framework.  Follow-

ing the principle of brain cognitive development, evolving is in terms of learning and 

recognizing new STBD patterns and adding those patterns into the model.  In addition, 

the framework preserves a spatio-temporal associative memory (i.e. in its neuron con-

nections) that can be inferred for new knowledge discovery. 

We also believed that the temporal order of fMRI data acquire significant mean-

ings to the interpretation and understanding of the brain data.  Thus, a framework that 

can handle this temporal information is very much required i.e. to be able to train the 

data according to their temporal order, in which the output of the post-synaptic neurons 

will be greatly influenced by the characteristics of the neurons before them.  At the end 

of the neurons computations, it is hoped that the framework is able to produce more ac-

curate results as compared to the temporal-ignorant classifiers that disregard the se-

quence of the data. 

On top of this, conventional classifiers developed so far are incapable of han-

dling large and noisy data, unable to deal with stochastic and dynamic processes while 

ignoring several equally important parameters required in the computations of spiking 

neurons (Kasabov, 2010).  These variables include the probability of synapses to accept 

spikes and the emission of neurotransmitters (Lauger, 1995), synaptic scaling, STDP 

and synaptic redistribution (Abbott & Nelson, 2000), physical properties of neurons’ 

connections (Huguenard, 2000), new information about neuronal information process-

ing in biological neural networks (Gerstner & Kistler, 2002) and gene and protein ex-

pression (Kojima & Katsumata, 2008).   

This research addresses this challenge with the development of such framework 

that is based on recently proposed SNN-based architecture – NeuCube (Kasabov, 2014).  
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Because of the complexity of the fMRI data itself (having spatio and temporal informa-

tion) together with the fact that it is big in nature (thousands of features but with low 

number of samples), there are chances that NeuCubeB could provide an environment 

that could better process and analyze the fMRI data.  The analysis is critical in such a 

way that it could map the brain data, convert the voxel intensity values into spikes and 

STBD patterns, learn the STBD patterns, classify and visualize the connections between 

neurons after the learning process.   

1.3 RESEARCH OBJECTIVES 

This research has the following objectives: 

a. To develop a new methodology for spatio-temporal fMRI data processing 

b. To develop a novel fMRI mapping strategy 

c. To analyze the neurons connectivity 

d. To conduct practical experiments on benchmark datasets 

e. To classify the dataset into predefined classes and to compare the findings with 

performance of other existing well known methods 

f. To share research outcomes through presentations and publication of related re-

search community 

1.4 SPECIFIC RESEARCH QUESTIONS 

Aligned with the research objectives, the specific research questions of this study are as 

follows: 

1.  How to map the spatial location of the benchmark fMRI dataset into the Neu-

CubeB architecture?  NeuCubeB (Kasabov, 2014) was predefined as having 1,471 

neurons constructed in 3-dimensional Talairach coordinate system.  It is crucial 

to bear in mind that brain data from different subject will definitely have differ-
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ent brain sizes and structures, i.e. mapping of these brains will impose different 

spatial estimation.   

2. Can the learning of large and spatio-temporal fMRI data in the NeuCubeB be 

better and improved compared to other standard machine learning techniques? 

3. What can be learned from the connectivity of neurons in the NeuCubeB before 

and after the training?  Which part of the brain region will be more activated 

when a certain stimulus is presented to the subject?  Different task will stimulate 

neurons in different locations to spike, thus more neurons connections will be 

created.     

 

In brief, this research intends to develop a computational model that could map, 

learn and mine spatio-temporal brain data specifically fMRI, in which the model is de-

veloped, based on the new proposed NeuCubeB architecture.  This research also aims to 

achieve better classification result and better understanding of the fMRI data. 

1.5 THESIS STRUCTURE 

The thesis is organized in eight chapters and will be explained briefly as the following:  

CHAPTER 2  This chapter explains literatures on the backbone and the inspira-

tion of the NeuCubeB, which is SNN.  Components of SNN that will also be discussed 

include: models of neurons, available encoding methods that can be used to transform 

voxels intensity values into spikes and, models of learning.  Other related principles that 

will be introduced in the chapter include eSNN, liquid state machine (LSM) and avail-

able SNN tools and applications.   

CHAPTER 3  This section starts with an introduction to imaging techniques, 

followed by reviews in detail of fMRI as one of the imaging techniques that provide im-

ages of brain structure in great resolutions, continued with existing methods for fMRI 

data analysis and finally briefly explains of feature selection. 

 

CHAPTER 4  A review on the existing techniques that have been applied to the 

benchmark StarPlus dataset is presented in this chapter.   A preliminary result involving 
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standard classifiers, which are Support Vector Machine (SVM) and Multiple Linear Re-

gression (MLR), tested on the dataset is also discussed later in the chapter. 

 

CHAPTER 5  This chapter explains the NeuCube based methodology used in 

the research.  It includes the architecture and principles of the generic NeuCube which 

include the unsupervised and supervised mode of learning.  There will also be reviews 

on the three levels that define the architecture: the input module (lowest level), the 

NeuCube module (the middle level) and the output module (the highest level).   

 

CHAPTER 6  The first case study is presented in this chapter which involves 

the use of StarPlus data as the input to the NeuCubeB.  The steps in conducting the ex-

periment i.e. data mapping, data encoding, data learning, data classification and result 

analysis are explained. 

 

CHAPTER 7  Another experiment is carried out using different set of fMRI data 

which is in a different format from the StarPlus.  The same steps are applied to the data, 

but with different mappings, which represents a new challenge to the research.  The rea-

son is because of the NII format, which in principal is associated with NIfTI-1 data for-

mat.  This file type is defined in a 4-dimensional data structure to save the volumetric 

spatio-temporal fMRI data.  The results of the experiment are discussed at the end of the 

chapter. 

CHAPTER 8  This chapter explains the conclusions and future direction of the 

study. 

1.6 THESIS CONTRIBUTION 

The following diagram shown in Figure 1-1 summarizes the contributions of this re-

search, in terms of the proposed model, datasets used and the problems to be solved.  

The newly proposed NeuCubeB framework is experimented using two different sets of 

data namely StarPlus and Haxby.  From the figure, the first crucial step in solving the 

problem i.e. to understand the data is to map the selected voxels (both voxel coordinates 

and values) into the 3D SNN cube to ensure that the spatial locations are maintained.  

This will be the first contribution of the study.  Selected voxels are transformed into 

spike trains using AER algorithm and are then propagated continuously (i.e. according 
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to their temporal order) into the evolving cube via the input neurons.  These spike se-

quences are trained using the unsupervised Spike Timing Dependent Plasticity (STDP) 

learning rule and the temporal relationship between the data are encoded to the connec-

tion weights.  The spike sequences are then fed into a supervised dynamic evolving 

Spiking Neural Networks (deSNN) learning rule.  An output neuron is created and its 

connection weights are calculated for the incoming new data (i.e. test data).  These gen-

erated weights are compared with the weights generated during the unsupervised learn-

ing.  In short, the same neurons are spiking to evoke the same temporal connectivity 

generated during the unsupervised learning (Izhikevich, 2006).  Accordingly, in this 

study, the output neurons learned to classify the spike patterns of fMRI data for both 

mentioned datasets and this would be the second contribution.  And finally, for the third 

contribution, this study presented spatio-temporal neurons connections based on the 

fMRI data spiking activity which are displayed using blue line and red line to denote 

positive spikes and negative spikes respectively. 

 

 

Figure 1-1 :  A visual summary of contributions of the thesis in terms of data mapping, 
classification and connectivity visualization. 
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1.7 PUBLICATION 

Murli, N., Kasabov, N., &Handaga, B. (2014, January) Classification of fMRI Data in 

the NeuCubeB Evolving Spiking Neural Network Architecture.  In Neural Information 

Processing (pp. 421-428). Springer International Publishing 
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ing Spatio-Temporal Data Machines Based on the NeuCube Neuromorphic Framework: 
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1.8 CHAPTER SUMMARY 

This chapter introduces and describes the study which includes the general view of the 

problem, the objectives, the motivations for carrying out this study, and the specific re-

search questions need to be answered and justified throughout the whole study period.  

It also reviews the structure of the thesis i.e. the topics that will be covered in the other 

chapters of the thesis.  Thesis contributions and publication are also outlined.   

In the next chapter, a review on spiking neural networks, which is the most im-

portant model used in this whole study, is discussed in detail.  Topics of spiking neurons 

that will be the focus of the chapter include neuron models, in particular Hodgkin-

Huxley, Leaky Integrate-and-Fire, Izhikevich, Spike Response, Thorpe and Probabilistic 

Spiking neuron models; and learning models specifically SpikeProp, One-Pass Algo-

rithm and Spike Time Dependent Plasticity.  The principles of Liquid State Machine are 

also discussed in the later chapter, together with a review on applications and tools of 

SNN. 
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2 Chapter 2 

REVIEW OF SPIKING NEURAL NETWORKS 

This chapter reviews the basis of spiking neural networks (SNN).  It will discuss the 

fundamental components of SNN that includes data encoding methods, neuron models 

and learning algorithms.   

2.1 INTRODUCTION TO SPIKING NEURAL NETWORKS 

The human brain is made approximately of 86 billion cells known as neurons (Koch & 

Reid, 2012) which are connected together in a vast and complex network.  These neu-

rons are of various types, shapes and functions, and communicate with other neurons 

mostly through the generation and propagation of output or action potentials (or better 

known as spikes).  Generally a typical neuron (Figure 2-1) is made of dendrites that act 

as the collecting points for inputs and propagate them to the cell body/soma.  The soma 

acts as the central processing unit that actually computes all the inputs and makes deci-

sion either to generate an output or not.  Meanwhile the axon acts as the link to transfer 

output signals to other neurons.  Communicating neurons are linked together through a 

synapse in which the sending neuron is called as pre-synaptic neuron and the receiving 

neuron is called as post-synaptic neuron.  

Most biological neurons are capable of generating spikes when the average po-

tential of the membrane reaches its normal resting state (i.e. threshold).  The study of 

artificial neural networks (ANN) in computer science is in general inspired by the struc-

tures and functions of these biological neurons (Arbib, 1995; Hodgkin & Huxley, 1952; 

Kandel, Schwartz, & Jessel, 2000).  Currently most developed artificial neurons are 

very simple as compared to its biological counterpart.  For instance, the well-known 

McCulloch-Pits neuron model (McCulloch & Pitts, 1943) has either active or inactive 

state (binary states), in which a simple threshold function is used to compute the neuron 

state, based on the weighted sums of other neurons connected to it.  Another example is 

the one modelled by Hebb (Hebb, 1949) which define neuron’s synapse to increase 

when the pre-synaptic and post-synaptic elements tend to be coactive (Arbib, 1995).  

Then followed by the development of Rosenblatt perceptron neuron model (Rosenblatt, 
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1961) which is having synchronous inputs and generating real-valued output between 0 

and 1, computing the average firing rate of the neuron. 

 

 

Figure 2-1: Biological neuron (Hemming, 2003) (left) and artificial neuron model 
(right) 

 

Generally each neuron in ANN, e.g. in a multilayer perceptron network, will fire 

in each propagation cycle, thus resulting in a deterministic system i.e. the new state and 

output of a neuron is computed from the state-transition and output function.  Despite 

its’ simplicity, this model has successfully solved complex problems in many studies 

such as for data classification, information retrieval and time series data prediction.   

However, several limitations of the model have been pointed out for instance in 

(Li, 1994; Sharma, Rai, & Dev, 2012) that include the network being a black box, 

greater computational burden for the machine and only good at solving certain complex 

numerical computation of linear/nonlinear equations.  The ANNs developed so far are 

not suitable in handling computation of large scale and noisy data, as well as stochastic 

and dynamic processes (Kasabov, 2010).  Other than the parameters already recognized 

from the ANNs, several other equally important variables need to be considered in the 

computation of spiking neurons (Kasabov, 2010) such as the probability of synapses to 

accept spikes and the emission of neurotransmitters (Lauger, 1995), synaptic scaling, 

STDP and synaptic redistribution (Abbott & Nelson, 2000), physical properties of neu-

rons’ connections (Huguenard, 2000), new information about neuronal information 

processing in biological neural networks (Gerstner & Kistler, 2002) and gene and pro-

tein expression (Kojima & Katsumata, 2008). These few examples of concerns are the 
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parameters defined for the third generation of neural networks or better known as SNN, 

which is made up of artificial neurons that use spikes trains to represent and process in-

formation.   

Models of spiking neurons can be traced back to (Lapicque, 1907) and many 

variations of SNN models have been proposed since then, such as Hodgkin & Huxley 

model (Hodgkin & Huxley, 1952), Spike Response models (Gerstner & Kistler, 2002; 

Gerstner, Kreiter, Markram, & Herz, 1997; Gerstner, 1995), Integrate-and-Fire models 

(Gerstner & Kistler, 2002; Maass & Bishop, 1999), Izhikevich model (Izhikevich & 

Edelman, 2008; Izhikevich, 2004, 2007) and others (Brette et al., 2007; Thorpe, 

Delorme, & Van Rullen, 2001).  It is then further developed with evolving connectionist 

paradigm and evolving spiking neurons (eSNN) (Kasabov, 2007) that learn data incre-

mentally in a one-pass propagation by creating and combining the spiking neurons. 

Although the computational model is still considered simple as compared to the 

biological neuron, it provides significantly more realistic computation than the first and 

second generation of neural networks.  The models from the first and second generation 

disregard the time (i.e. either through an assumed synchronization or through an as-

sumed stochastic asynchronicity (Maass, 1997) whereas this timing information plays a 

major role in the networks of spiking neurons. To demonstrate a spiking neuron model 

(Figure 2-1), similar to its biological counterparts, each neuron will receive inputs from 

a number of pre-synaptic-neurons.  Through each synapse, which has its own weight, 

these inputs are weighted and summed.  If the summation of Post-synaptic Potential 

(PSP) exceeds certain threshold, an output spike will be emitted and propagated by us-

ing a transfer/activation function, to another connected post-synaptic neurons via the 

axon.  The transfer function that could be used includes a step, sigmoid or hyperbolic 

tangent function. 

In spiking neurons architecture, there are three important elements that have to 

be taken care of: data encoding method, spiking neuron model and learning algorithm.  

Each of these elements will be elaborated in the next few sub topics. 

2.2 DATA ENCODING METHODS 

Since data in SNN are communicated in terms of spike and spike sequence, a method 

that can represent/encode data into spikes is of a substantial step in creating spiking neu-

rons architecture.  The two main categories of neuron encoding schemes are rate code 

and pulse code that generate different spike characteristics. 
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2.2.1 Rate Code 

Rate encoding or also known as firing rate is to encode the spikes based on the average 

number of spikes (or spikes count) over time i.e. how many spikes are emitted within a 

time encoding window.  There are three different views of rate code, referring to differ-

ent averaging methods: an average over time (single neuron, single run); or an average 

over several experiment repetitions (single neuron, repeated runs); or average over a 

populations of neuron (several neurons, single run) (Gerstner & Kistler, 2002).   

The study of rate encoding has started with Adrian (1926) in which he showed 

that as the force applied to the muscle increased, the frequency of neurons being emitted 

was also increased.  In the experiment, identical stimulus is presented to a muscle and 

the neuronal responses are recorded and these neuronal responses are in terms of spikes 

count.  The measured spikes are those emitted within a specified time window that starts 

at stimulus onset and ends at stimulus termination.  

The rate is calculated by dividing the number of spikes (���) emitted in the du-

ration (�) with	�, as presented in Equation 2.1.  However this encoding scheme was 

only suitable for stimulus which requires slow reaction of the organisms.  This slow re-

action was usually found in lab experiments, but not in the real biological brain func-

tions.  Real biological brain functions usually happen in much faster duration.  In addi-

tion, any regularities found, will be considered as noise.  

 

� = ����          (2.1) 

 

The second view of rate code involves averaging the spikes over several experi-

ment runs which are best suited for stationary and time-dependent stimulus.  The same 

stimulus is repeated and the neurons’ activity is recorded as spike density of Peri-

Stimulus-Time Histogram (PSTH) (Gerstner & Kistler, 2002).  As shown in Equation 

2.2, it is defined as � ("; " + ∆") to be the total number of spikes in all runs; starting 

from stimulus sequence time,	"; and	∆" is in the range of 1 or few milliseconds; divided 

with the number of repetitions & which is then further divided with length of 

val		∆".  However, this approach was obviously not suitable for neurons encoding in the 

brain i.e. certain reaction has to be taken immediately and not after some repetitions of 

stimulus.  Yet, in a situation where a population of independent neurons receives the 
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same stimulus, the mean firing rate is easier to record from a single neuron and average 

over ' repeated runs. 

 

((") = )∆� �*(�;�+∆�)         (2.2) 

 

The third view rooted from the notion of neurons population explained earlier 

which define rate code as the average of spikes over several neurons i.e. neurons with 

the same characteristics and which respond to the same stimulus.  As explained in 

Gerstner & Kistler (2002) the rate	,(")		with units -.)	is computed as in Equation 2.3 

where ' is the population size of neurons, �
��("; " + ∆") is total number of spikes 

emitted between "	and " + ∆"  in the neuron population and ∆" is a small time interval.   

 

,(") = )∆� �/01(�;�+∆�)2 	= )∆� 3 ∑ ∑ 5(�.�6	(7)7 )	�618∆11 2     (2.3) 

 

This approach solves the issue raised in the first approach, i.e. calculating the 

average in a single-neuron level; however it is barely realistic to calculate the average of 

spikes from a population of neurons with the same properties and connections. Never-

theless, the rate code is still practical in modeling the spikes in many brain areas and has 

been used in many successful experiments. 

2.2.2 Pulse Code 

Another encoding approach is based on the exact timing of the spikes or better known 

as pulse or spike code.  The idea of spike time in describing input stimulus has been the 

interest of many researchers such as in (Optican & Richmond, 1987; Lestienne, 1996; 

Mainen & Sejnowski, 1995; Thorpe, Fize, & Marlot, 1996).  In particular, the first spike 

carries the most significant information and carries the most weight compared to the 

later spikes in the sequence (Thorpe et al., 1996).  Based on this theory, there are two 

versions of encoding techniques have been derived which are Rank Order Coding 

(ROC) (Thorpe & Gautrais, 1998) and Population Rank Order Coding (POC) (Bohte, 

Kok, & Poutrã, 2002). 

In ROC, spikes are ordered according to its arrival, in which the first spike 

which arrives will be the first in the population, followed by the second spike and so on.  
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To demonstrate this coding scheme, for neurons A, B, C, D and E in Figure 2-2, the 

spikes are ranked as C > E > D > A > B. 

 

 

Figure 2-2: Ranking of spikes in a population of neurons applied in ROC method 

 

In contrast, POC is generated based on the firing time identified and calculated 

using intersection of sensitivity profiles such as Gaussian function (Bohte, Kok, et al., 

2002).  In this scheme, a single input value	9 is distributed into multiple input neurons or 

input spikes	: which has its own firing time.  Equation 2.4 is the Gaussian function 

used to calculate the firing time for the input neuron, where its centre ;�	and its width <	are calculated in Equation 2.5 and Equation 2.6 respectively.  [=>��, =>
�].[=>��, =>
�] 

is the maximum and minimum range of input variable and	@ (values between 1.0 and 

2.0) controls the width of each Gaussian receptive field. 

 

A(�) = 	 )B√DE FGHI(JGKL )I       (2.4) 

 

;� 	= 	 =>�� +	D�.MD 	 . �O/J.�OPQ�.D        (2.5) 

 

 < = 	 )R 	 . �S/J.�OPQ�.D         (2.6) 

 

As demonstrated and explained in (Abdul Hamed, 2012; Schliebs, Defoin-Platel, 

& Kasabov, 2009) as shown in Figure 2-3, the input value is 0.7 with five firing times 

generated, where @ = 2 and input interval  [=>��, =>
�] is [−2.0,2.0].   
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Figure 2-3: Illustration of population rank order coding (Abdul Hamed, 2012; Schliebs, 
Defoin-Platel, & Kasabov, 2009) 

 

Both ROC and POC have been successfully implemented in many experiments, 

for instance stroke classification and prediction (Kasabov et al., 2014), visual pattern 

recognition (Dhoble, Nuntalid, Indiveri, & Kasabov, 2012; Thorpe, Delorme, & Van 

Rullen, 2001; Wysoski et al., 2006), feature and parameter optimization (Schliebs, 

Defoin-Platel, & Kasabov, 2009), string pattern recognition (Abdul Hamed, Kasabov, 

Michlovský, & Shamsuddin, 2009), audio recognition (Wysoski, Benuskova, & 

Kasabov, 2007b), text-independent speaker authentication (Wysoski, Benuskova, & 

Kasabov, 2007a).  

2.3 NEURON MODEL 

There is a wide range of already established mathematical spiking neuron models that 

imitate the biological neurons to some extent which serve different functions and needs.  

The following subsections, will discuss some regular spiking neuron models.   

2.3.1 Hodgkin-Huxley Model (HHM) 

This model was introduced by Hodgkin and Huxley (Hodgkin & Huxley, 1952) who 

conducted the experiment on the giant axon of a squid.  From the experiment, they have 

concluded that there are three ion channels in the neuron, which are Sodium ('W), Po-

tassium (&) and leakage (X) channel with resistance.  To calculate the total of ionic cur-

rent	=���, which is the sum of all participating channels; the formula in Equation 2.7 and 

2.8 are used.  In Equation 2.7, YZ		represents all channels involved, [Z	represents the 

equilibrium potential and \> is the membrane potential.  In addition, as elaborated by 
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(Gerstner & Kistler, 2002; Nelson & Rinzel, 1995) three gates of type “]" and one gate 

of type “ℎ” are used to control the Sodium channel; and four gates of type “�” to con-

trol the Potassium channel.  These gating variables are calculated using Equation 2.9, 

2.10 and 2.11 where the transition rate for each gate from non-permissive to permissive 

states are represented by	`>(\), `a(\) and `�(\) and transition rate for each gate 

from permissive to non-permissive states are represented by @>(\), @a(\) and @�(\).   
 

=��� =	∑ =ZZ  = ∑ YZ(Z \> −	[Z)      (2.7) 

 

 =��� =	Y2
]Mℎ(\> − [2
) + Y �b(\> − [ ) + Yc(\> − [c)  (2.8) 

 

 
>	� = `>(\)(1 − ]) − @>(\)]      (2.9) 

 

 
a	� = `a(\)(1 − ℎ) − @a(\)ℎ      (2.10) 

 

 
�	� = `�(\)(1 − �) − @�(\)�      (2.11) 

 

This neuron model only describe the channels and flow of ions in the neuron in 

generating spikes, which is far from the complex biological neuron, thus bearing several 

weaknesses as reviewed by Meunier & Segev (2002) which include ignored events that 

may affect neuron’s computation (Strassberg & Defelice, 1993) and inaccurate predic-

tion of the inactivation of the Sodium channel (Bezanilla & Armstrong, 1977).  Despite 

HHM’s limitation, it has become the fundamental and starting point for the develop-

ment of many other simplified neuron models that will be discussed in the following 

sub topics. 

2.3.2 Leaky Integrate-and-Fire Model (LIFM) 

As compared from HHM that deals with ion channels and ion flows, LIFM view neuron 

as a leaky integrator, which will output a spike if the input voltage reaches a threshold 

and then reset to a resting state. Modelled by a differential equation, integrate-and-fire 

neuron which can be traced back from (Lapicque, 1907) is represented by a basic circuit 

that combine a capacitor (e) and a resistor (f) to produce current (=(")).  Equation 
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2.12 is the standard form of LIFM in which g(")	is the membrane potential and h> = fe is the neuron’s membrane time constant. 

 

h> 	i	� = 	−g(") + 	f=(")       (2.12) 

 

Spikes are described as the formal events (Gerstner & Kistler, 2002) indicated 

by a firing time "(�) defined by a threshold value (Equation 2.13) and the potential will 

be reset to a new value		g� < k (Equation 2.14). 

 

"(�): gm"(�)n = 	k        (2.13) 

 

o9]�→�(7);�q�(7) g(") = 	g�       (2.14) 

 

This model is viewed as the best-known instance of spiking neuron model be-

cause of its simplicity and low in computational cost. 

2.3.3 Izhikevich Model (IM) 

In IM (Izhikevich, 2003), a simple spiking neuron is formulated by combining biologi-

cally plausibility of HHM and computational efficiency in LIF neurons.  The model is 

defined as in Equation 2.15 where �	is the membrane voltage, g is a recovery variable 

used to adjust	�, =(") is input currents, and W and r are adjustable parameters. 

 

	s	� (") = 0.04�D + 5� + 140 − g + =(")     (2.15) 

 	i	� (") = W(r� − g)        (2.16) 

 

A threshold value is set to 30 mV and if the voltage		� is bigger than this thresh-

old, � and g		are reset (Equation 2.17). 

 

9v� ≥ 30	]V, "ℎF� z � = {g = g + �|      (2.17) 
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2.3.4 Spike Response Mode (SRM) 

In SRM, the neuron’s membrane potential is summarized in terms of response kernel as 

described in Equation 2.18 (Gerstner & van Hemmen, 1992).  It is based on the inte-

grated effects of the incoming spike arriving on the neuron		9 with its neuron 

tial	g�("), and the emission of spike from the neuron if	g�(") reaches a threshold k	(Gerstner, 1998). The potential g�(") is the total of the influence of the spikes from 

pre-synaptic neurons and the spike from its own.   

 

g�(") = ∑ }�~" − "�(�)��P(7)∈ℱP + ∑ ∑ ������~" − "�(�)��6(7)∈ℱ6�∈�P   (2.18)

  

Although it uses the same concept as the LIFM, the threshold k in SRM is ad-

justable, which is increased (or decreased) after each spike occurrence.  In this model, 

"�(�)	 is the firing time of the last output spike, }� 	is a kernel function that describes spike 

emissions after action potential exceeds the threshold k and its after-potential spikes, ��� 
is a kernel function that describes the response of the post-synaptic neuron when receiv-

ing the spike from pre-synaptic neuron � ∈ �� and ��� is the response weight. 

2.3.5 Thorpe Model (TM) 

Inspiring from the integrate and fire capabilities of a neuron, TM describes that the first 

incoming spike carries the most information, because of the argument that the brain 

only can process one spike from each neuron at one particular processing step (Thorpe 

et al., 1996).  In this model the relation between stimulus saliency and spike relative 

timing plays a major role i.e. the first spike in the population is the most important in 

defining meaningful information.  The membrane potential g�(") is summarized as in 

Equation 2.19 which will be reset to 0 after each spike emission.  In the equation,	��� is 

the weight of the pre-synaptic neuron, :��		is modulation factor within the 

val	[0,1], and		���F�(�)	is the spike rank of neuron	�.  The threshold k = {g>
� where 0 < { < 1 and g>
� is maximum potential that a neuron can reach.  Simulation soft-

ware of this model, SpikeNET (Delorme & Thorpe, 2003), has successfully simulated 

and modelled millions of LIF neurons.  
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g�(") = �																																										0			9v	v9�F�∑���:�����	
�(�)Fo-F |     (2.19) 

2.3.6 Probabilistic Spiking Neuron Model (pSNM) 

The pSNM (Kasabov, 2010) is a further extension of LIFM that include three other 

probability parameters which are: a probability that a spike will arrive at post-synaptic 

neuron �� from pre-synaptic neuron		�� , ((��,�(")), a probability that a synapse contrib-

utes to a spike potential after it receives spike from neuron		�� , ((��,�(")), and a prob-

ability that neuron �� generates an output spike if the total post-synaptic potential (PSP) 

reaches the threshold ((�(")).  A simplified representation of pSNM with one synaptic 

connection together with the probability parameters is shown in Figure 2-4.   

 

 

Figure 2-4: Simplified representation of pSNM with all probabilistic parameters and one 
synaptic connection 

 

The state of post-synaptic neuron �� is described as the total of inputs received 

from all ] synapses i.e. the post-synaptic potential (����(")).  The model is calculated 

using Equation 2.20 where		F� = 1 if spike is emitted from neuron	�� and		F� = 0 if oth-

erwise;	A ~(��,�(")� = 1 with a probability	(��,�("), and 0 otherwise; 	v ~(��,�(")� = 1	if 
the synapse contributes to the potential with a probability		(��,�(") and 0 

wise;		��,�(") is the connection weight; 	"� is the time of the last spike emitted by 

ron		��; and }(" − "�) is the decay.   

 

����(") = 	 � � F�A ~(��,�(" − ()� v ~(��,�(" − ()���),..,>����,.,�
��,�(") 

  +	}(" − "�)       (2.20) 
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If all probability parameters are equal to 1, the model is simplified to be similar 

to some well-known spiking neuron models, such as LIFM (Gerstner & Kistler, 2002). 

2.4 LEARNING 

As compared to typical neural computational models, spike precise timing is one of the 

most important factors in SNN data coding and computation (Bohte, 2004; Maass, 

1998) in order to generate efficient processing of information in the neural system.  As 

explained earlier, information is represented and encoded into spikes which are very 

dependent on the exact firing timing, thus make learning in SNN is a very complex 

process.  In general, learning is defined as the process of parameter adaptation and 

learning rule is defined as the procedure of adjusting the connection weights.  It is di-

vided into reinforcement, supervised and unsupervised learning similar to the learning 

in traditional neural networks.  The next few sections discuss the learning algorithms 

already designed for SNN in which some of them have been reviewed by Kasinski & 

Ponulak (2006).    

2.4.1 SpikeProp 

Similar to backpropagation algorithm (Rumelhart, Hinton, & Williams, 1986) designed 

for traditional ANN, SpikeProp (Bohte, Kok, & Poutre, 2000) is designed to determine 

a set of desired firing times ("�	) of all output neurons, at the post-synaptic neurons for a 

given set of input pattern.  This is achieved by applying the error function		[	 in the par-

ticular least mean squares error function as presented in Equation 2.21, i.e. to minimize 

the error of squared difference between training output times "� and desired output 

times		"�	 .  Nevertheless, two assumptions are mentioned: each neuron can fire only 

once in each processing step and the time course of the neuron’s membrane potential 

after the firing is ignored.  Weight ���Z		connecting pre-synaptic neuron and post-

synaptic neuron is determined to minimize the error (Equation 2.22) in which } is the 

learning rate. 

 

[ = )D∑ m"� − "�	nD�         (2.21) 
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����Z =	−} ����P6�         (2.22) 

 

2.4.2 One-Pass Algorithm 

In one-pass learning algorithm (Seguier & Mercier, 2002), new output neuron is pro-

duced for each training sample.  This output neuron is saved in the neuron repository 

together with the trained threshold values and the weight patterns.  A new trained neu-

ron is created if the weight pattern differs from a neuron in the repository.  On the other 

hand, the trained neuron is merged with a neuron in the repository if their weight pat-

terns are similar.  The weight pattern and the threshold values of the merged neurons are 

modified to the average value.  The trained network is said as capable to learn new 

samples incrementally without having to retrain the trained samples (Schliebs, Defoin-

Platel, & Kasabov, 2009). 

2.4.3 Spike-Time Dependent Plasticity (STDP) 

Another well-known unsupervised learning paradigm inspired by the Hebbian learning 

principle is STDP (Bell, Han, Sugawara, & Grant, 1997; Bi & Poo, 1998; Markram, 

Lubke, Frotscher, & Sakmann, 1997) in which the synaptic weights are adjusted based 

on the temporal order of the incoming spike (pre-synaptic) and the output spike (post-

synaptic).  This synaptic weight adjustment determines synaptic potentiation known as 

long term potential (LTP) if the synaptic weight is increasing (positive change) and syn-

aptic depression known as long-term depression (LTD) if the synaptic weight is de-

creasing (negative change).  A particular connection is said to potentiate if a pre-

synaptic spike arrives before a post-synaptic spike; and is said to depress if it arrives 

after a post-synaptic spike (Markram et al., 1997). 

STDP is expressed in terms of STDP learning window �("��
 − "����) in which 

the difference between arrival time of the pre-synaptic spike and the arrival time of 

post-synaptic spike will determine the synaptic weight (Equation 2.23).  In the 

tion,	h+	and h. refer to the pre-synaptic and post-synaptic time interval; and ,+		and ,.		refer to the maximum fraction of synaptic adjustment if "��
 < "���� approaches to 

zero. 
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�m"��
 − "����n = 	�,+		F�(	(
����.����1�8 )												9v"��
 < "���� ,

,.		 F�( ~− ����.����1�G � 9v"��
 > "���� , |  (2.23) 

 

2.4.4 Spike-Driven Synaptic Plasticity (SDSP) 

SDSP, a variant of Spike Timing Dependent Plasticity (STDP), is a semi-supervised 

learning rule (Fusi, Annunziato, Badoni, Salamon, & Amit, 1999) that directs the 

change of the synaptic plasticity \�� of a synapse �� depending on the spike’s time of 

the pre- and post-synaptic neurons.  If a pre-synaptic spike arrives at the synaptic termi-

nal while the post-synaptic neuron’s membrane potential is higher than a given thresh-

old value (i.e. normally shortly before a post-synaptic spike is emitted), the synaptic ef-

ficacy is increased (potentiation).  However, when a pre-synaptic spike arrives at the 

synaptic terminal while the post-synaptic neuron’s membrane potential is low (i.e. nor-

mally shortly after a spike is emitted), the synaptic efficacy is decreased (depression).  

Where ∆"��Z is the pre- and post-synaptic spike time window, this synaptic change can 

be expressed as: 

 

∆\�� 	= 		�
���1(����1)�� ∆"��Z	,			9v"��
 < "����
����(����1)�� ∆"��Z	,			9v"���� < "��
 |    (2.24) 

 
SDSP introduces a dynamic ‘drift’ of the synaptic weights either to be ‘up’ or 

‘down’, depending on the value of the weight itself (Kasabov, Dhoble, Nuntalid, & 

Indiveri, 2013).  If the weight is higher than the threshold value, then the weight is 

slowly driven (by the learning algorithm) to a fixed high value.  On the contrary, the 

weight is slowly driven to a fixed low value if the weight is lower than the threshold 

value.  These two values represent the two stable states and at the end of the learning 

process, the final weights can be encoded with 1 single bit (Mitra, Fusi, & Indiveri, 

2009). 
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2.5 LIQUID STATE MACHINE 

Two major types of reservoir computing is liquid state machine (LSM) (Maass, 

Natschlager, & Markram, 2002) and echo state network (Jaeger & Haas, 2004).  LSM 

consists of many randomly interconnected recurrent neurons where each neuron re-

ceives input from other neurons in different times.  This computational model is in-

spired from the idea of water ripples (output), which are generated after certain objects 

(input) are dropped on the still water.  In an ideal setting, LSM that is constructed with a 

precise mathematical framework, promises universal computational power, for real-time 

computing on analogue function in continuous time.  LSM is characterized as a model 

for adaptive computational system, which provides a method for employing randomly 

connected circuits, a theoretical context where various processors increase the computa-

tional power of a circuit and a method for multiplexing different computations within 

the same circuit (Maass, 2010). 

During LSM simulation, the synaptic weights, neurons connectivity and neurons 

parameters are predefined and predetermined.  Referring to Figure 2-5, the continuous 

stream of input (e.g. trains of spikes)	g(") is transmitted into liquid and will cause the 

neurons to respond and generate the liquid activity. The state of the liquid	�(")	that can 

be recorded at different time points is simply the current output of some operator or fil-

ter that maps input functions g(") onto function	�(").  This state is then passed to the 

memory-less readout function v that will transform into output	�(").   
 

 

Figure 2-5: The LSM architecture consists of three main layers: input neuron layer, liq-
uid state layer and readout function layer. 
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This computational model is capable of generating different responses from dif-

ferent input patterns (separation property) that depends on the complexity of the liquid. 

In addition, it also has ‘approximation property’ that depends on the adaptation ability 

of the readout function that can distinguish responses, their generalization and relation 

with the given output (Grzyb, Chinellato, Wojcik, & Kaminski, 2009).  Any statistical 

analysis or classifier can be used to define the readout function.  As the inputs received 

can be in the form of continuous stream of data, it can be used to solve spatiotemporal 

problems such as in patterns recognition (Goodman & Ventura, 2006; Schliebs, 

Nuntalid, & Kasabov, 2010), optimization (Yanduo & Kun, 2009) and classification 

problem (Ju, Xu, & VanDongen, 2010) 

2.6 APPLICATION OF SNN AND TOOLS 

Viewed as biologically more plausible model of distributed computation, SNN has been 

applied in numerous real world applications from various fields either in an unsuper-

vised or in a supervised learning mode.  The following few subtopics will discuss the 

applications according to the learning paradigms. 

2.6.1 SNN applications with supervised learning paradigm 

Spiking networks trained according to the supervised paradigm have also been used in a 

number of studies such as in medical field which involve medical data for instance EEG 

signals and fMRI data as well other medical related data (Ghosh-Dastidar & Adeli, 

2007, 2009; Kasabov et al., 2014; McGinley et al., 2010; Nuntalid, Dhoble, & Kasabov, 

2011), human movement pattern recognition (Dhoble et al., 2012) that conducted the 

experiment using different types of SNN classifiers, speech patterns recognition 

(Hopfield & Brody, 2000; Verstraeten, Schrauwen, Stroobandt, & Van Campenhout, 

2005; Wysoski et al., 2007a), pattern recognition (Abdul Hamed et al., 2009; Goodman 

& Ventura, 2006) and, spike patterns classification (Ponulak & Kasinski, 2010; 

Schliebs, Defoin-Platel, Worner, & Kasabov, 2009).  Apart from that, SNN has also 

been applied in robot movement control (Joshi & Maass, 2004; Pearson et al., 2007; 

Rocke, McGinley, Morgan, & Maher, 2007; Trhan, 2010), in economics particularly as 

a prediction tool (Reid, Hussain, & Tawfik, 2014; Sharma & Srinivasan, 2010; Yang & 

Zhongjian, 2011) and in general image processing (Meftah, Benyettou, Lezoray, & 
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Qing Xiang, 2008; Meftah, Lezoray, & Chaturvedi, 2013; Perrinet & Samuelides, 2002; 

Wysoski et al., 2006).   

2.6.2 Applications Using Unsupervised Learning Paradigm 

SNN is also trained to learn in an unsupervised mode such as for data clustering and 

classification (Bohte, La Poutre, & Kok, 2002), image processing and recognition 

(Masquelier & Thorpe, 2007; Perrinet, Samuelides, & Thorpe, 2004; Srinivasa & Cho, 

2014; Thorpe et al., 2001), sensory recognition models (Finelli, Haney, Bazhenov, 

Stopfer, & Sejnowski, 2008; Martinez & Hugues, 2004), hand writing recognition 

(Querlioz, Bichler, & Gamrat, 2011), remote sensing classification (Cawley et al., 2011; 

Silva & Wilcox, 2007; Silva, 2009; Tao & Michel, 2005), feature extraction (Lemoine 

& Maida, 2013) and robot controller (Xiuqing Wang, Hou, Zou, Tan, & Cheng, 2008). 

Other than the typical artificial intelligence or engineering application of SNN, 

there are other research areas that can take advantage of spiking neurons in particular in 

modeling and analyzing the structures of biological neurons (Nakagawa et al., 2014; 

Ponulak & Kasiński, 2010).  In fact, many efforts have been conducted to model the 

spiking neurons in hardware based with neuromorphic circuits (Furber, 2012; Indiveri et 

al., 2011; Lichtsteiner & Delbruck, 2005; Querlioz et al., 2011) for better analysis and 

processing of the neuron functions. 

2.6.3 SNN Tools 

There are many spiking neuron simulators that have been implemented to better simu-

late, analyze and visualize neuronal networks, including in large-scale networks.  One 

of the most comprehensive spiking neuron simulator is Brian (Goodman & Brette, 

2009).   It can be used to simulate both integrate-and-fire and Hodgkin-and-Huxley neu-

ron models which can be defined directly by their equation.  Neurons connectivity can 

be defined directly or with predefined functions including the transmission delay.  It is 

more flexible particularly in dealing with non-standard neuron models.  Another com-

prehensive simulator, NEST (Diesmann & Gewaltig, 2002), is dynamic, and can be de-

fined in any size and structure, i.e. not limited to the exact architecture of individual 

neurons.  Other characteristics of NEST include the provision of more than 50 neuron 

models, more than 10 synapse models that comprise different variants of STDP, allow-
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ing neuron state and connectivity modification at any time during the simulation and is 

fast and memory efficient.  General Neural Simulation System (GENESIS) is a general 

purpose of simulator developed to simulate sub-cellular processes, complex models of 

individual neurons, simulations of large networks, and systems-level models. In addi-

tion, NEURON (Carnevale & Hines, 2006) provides a spiking neurons environment for 

modeling single neurons as well as networks of neurons.  Users can easily create and 

manipulate neuron model with different complexity through the graphical user interface 

provided.  And lastly neuroConstruct (Gleeson, Steuber, & Silver, 2007), is another 

SNN simulator that is developed to simplify the development of complex networks of 

biologically realistic neurons.  Several important characteristics include the integration 

with other simulators such as GENESIS and NEURON, the creation of neurons in a 

three-dimensional space for more realistic view and the connectivity between neurons 

can be specified for the networks. 

2.7 CHAPTER SUMMARY 

This chapter has reviewed the principles of SNN extensively including the encoding 

methods, neuron models and learning models.  In addition, liquid state machine as one 

of the reservoir types used in the architecture is also presented.  The areas where this 

spiking neuron networks can be applied are also described, as well as examples of tools 

that can be used to visualize and simulate the network. 

The next chapter provides a review on NeuCube architecture: the architecture 

that will be used in the study.  The chapter starts with a general introduction of Neu-

Cube and continues with the three levels defining the architecture.   
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3 Chapter 3 

REVIEW OF THE NEUCUBE ARCHITECTURE 

The general principles of NeuCube architecture (Kasabov, 2012) is shown in Figure 3-1.  

It is a three-dimensional evolving spiking neural networks architecture developed as a 

basis of constructing a concrete model to map, learn and understand spatio-temporal 

brain data (STBD) that may include fMRI, EEG and other brain data as well as SSTD. 

The architecture consists of four integrated modules:  input encoding module, NeuCube 

module, output module and gene regulatory networks (GRN) module.  These modules 

work in an integrated manner, where different modules may have different types of neu-

rons and different types of learning rules.   

Based on the modules stated before, NeuCube architecture is divided into three 

levels: GRN (lowest level); NeuCube (middle level) and Output (highest level).  As the 

name suggest, NeuCube module is the core processing module in this architecture.  

NeuCube receives control parameters from the lowest level (GRN) and these parameters 

will affect how the NeuCube behaves, and in return spiking activity of neurons influ-

ence the genes.  On the other half of the architecture, neurons in the Cube are connected 

with those neurons in the highest level (Output module) so that whatever state that the 

Cube is, interpretation/classification can be made and this state influence further activity 

of the NeuCube.  Thus, the NeuCube structure and functionality evolves over time.  

Neurons and learning rules of different types can be used in different levels of the archi-

tecture. 

For any NeuCube model developed, there are two stages of learning involved: 

unsupervised training and supervised training.  During unsupervised training, STBD is 

entered into appropriate locations in the Cube over time and the neurons’ connection 

weights are calculated and initialized.  In the next stage (supervised learning) the same 

STBD used for training are propagated in the trained Cube and into the Output module.  

This is to determine the class of the trained data into already predefined classes.  Since 

neurons from middle level are connected to every neuron at the highest level, feedback 

connection can be created for reinforcement learning.  
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Figure 3-1: General architecture of NeuCube that consists of four integrated modules: 
Input, NeuCube, GRN and Output module 

3.1 LOWEST LEVEL: THE INPUT MODULE 

In the lowest level (Input), continuous SSTD is converted into trains of spikes and 

mapped into corresponding areas in the NeuCube.  Conversion of data into spikes can 

be achieved by using techniques such as Population Rank Coding and Address Event 

Representation (AER).   

3.1.1 Population Rank Coding 

As shown in Figure 2-3, continuous input data is encoded into spikes in such a way that 

the input variable is entered into a population of neurons that release spikes based on 

their receptive fields.  For instance, one channel of EEG data is mapped into several 

pre-synaptic input neurons in which each of these input neurons hold a spike, which is 

calculated based on the intersection of Gaussian function.  If for example there are 16 

channels of EEG data to be encoded and each channel is to be mapped into a population 

of 5 receptive fields.  Thus, there will be a total of 80 pre-synaptic input neurons to be 

processed.  While this figure is still acceptable to be processed by the NeuCube, encod-

ing of fMRI STBD which consists of thousands of voxels may involve a lot of computer 

processing time and power.   
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3.1.2 AER Data Encoding 

There are a few encoding techniques can be used to convert the continuous data into 

spikes sequences.  For this model, the encoding technique used is AER which is based 

on the difference between two consecutive voxel values of the same input variable.  If 

the difference is greater than certain threshold value, a spike will be generated. 

Depending on the type of data to be measured, whether it is continuous brain 

data or other continuous data such as ecological/medical/etc., the location of converted 

data will be determined differently.  Different mapping will be used for different types 

of SSTD.  Trains of spikes sequences are continuously entered into the middle level 

based on their temporal order.   

3.2 MIDDLE LEVEL: THE NEUCUBE MODULE 

The most important processes take place in the middle level of the architecture or the 

NeuCube level.   

3.2.1 The NeuCube Structure 

As shown in Figure 3-1, NeuCube is a 3D SNN structure of approximate map of brain 

areas following the standard Talairach Atlas.  For many years, the standard 1998 Ta-

lairach Atlas brain (Talairach & Tournoux, 1988) has served as the casual standard for 

reporting brain activation locations in the functional and structural brain mapping stud-

ies.  They have created a co-planar 3D stereotaxic atlas of the human brain that can be 

used to study it from different subjects and collected using different methods.  A soft-

ware called Talairach Daemon (Figure 3-2) is publicly available for download can be 

used to calculate (�, �, �) Talairach coordinates of any given point on the brain image 

together with its corresponding Brodmann area.  By using this software, brain areas can 

be labelled accordingly in different visualization colours as depicted in Figure 3-3. 
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Figure 3-2: The Talairach Daemon Software for brain areas visualization. 
(http://www.talairach.org/applet/) 

 

 

Figure 3-3: The Talairach atlas with lobe labels (illustrated with patterned colour fills), 
gyral structures (illustrated with bold colour outlines), and several Brodmann areas (il-
lustrated with solid colour fills) (Lancaster et al., 2000). 
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Following this template, NeuCube is developed using the 1 cm3 resulting in 

1,471 distinct �, �, � coordinate locations.  These coordinates are mapped approximately 

into the 3D cube of spiking neurons of the NeuCube structure.  However different map-

ping resolution is also possible to define the structure e.g. 1 mm3 may result in 

2,000,000 and more of coordinate locations.  While Talairach template is derived from 

the analysis of a single brain, another template which is referred to as Montreal Neuro-

logical Institute (MNI) coordinates is derived from the average of MRI data across indi-

viduals, for instance MNI152 and MNI1305 (Evans et al., 1993).  Another well-known 

brain template is proposed by the International Consortium for Brain Mapping (ICBM) 

and its few releases include ICBM452, ICBMChinese56, ICBM AD for Alzheimer Dis-

ease and ICBM MS for Multiple Sclerosis (Toga et al., 2006).  

The NeuCube initial structure is preliminarily defined based on the available 

data and the problem being considered.  Regardless of data type whether it is spatio-

temporal based or vector based, each data/pixel/voxel will be mapped in the NeuCube 

according to its appropriate spatial location and not just on random allocation.   For in-

stance, tapping a finger or any body movement will trigger motor cortex, and thus these 

data will be spatially mapped into the neurons in the NeuCube that correspond to the 

motor cortex, i.e. somewhere around the parietal lobe.  Neurons in this area will be 

heavily connected (as compared to other areas of the brain) and these connections will 

be initialized using small-world connection (SWC) paradigm. The main reason for sug-

gesting a type of small-world connectivity for the NeuCube initial structure is derived 

from the fact that clusters of neurons correspond to structural and functional areas re-

lated to the brain data across time (Bullmore & Sporns, 2009).  The creation of an ap-

propriate initial structure of the NeuCube is significant in order for the model to learn 

the spatio-temporal data and to capture functional connectivity properly (Honey, Kotter, 

Breakspear, & Sporns, 2007).  It is also means that the higher the connectivity between 

the neurons indicates that the brain areas are more densely interconnected and are closer 

to each other (Braitenberg & Schüz, 1998). 

Based on evolving connectionist system standards (Kasabov, 2007), new neu-

rons are created if existing neurons could not accommodate the new data coming in to 

the NeuCube and the new connections, connecting new neurons with the existing neu-

rons, are created using the same small world connectivity principle.  Current NeuCube 

implementation has leaky-integrate-and-fire model (LIFM) of spiking neurons with re-

current connections.  Input features are propagated through the SNN where STDP unsu-

pervised learning is applied.  Probabilistic neuron model with probabilistic parameters 
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attached to the connection, the synapse and the output of the spiking neurons are also 

shown in Figure 3-1.  The networks accumulate all input spike trains temporal informa-

tion and convert them into dynamic states that can be classified over time.  The recur-

rent reservoir creates unique accumulated neuron spike time responses for different 

classes of input spike trains (Kasabov, 2014). 

3.2.2 The Neuron Model 

Basically, any spiking neuron model could be used in the NeuCube.  The current Neu-

Cube development uses LIFM spiking neuron model.  In LIFM (Gerstner, 1995; 

Gerstner & Kistler, 2002; Gerstner, 2001), an output pulse (a spike) is emitted from a 

neuron whenever several pre-synaptic pulses arrived at the neuron in a short interval of 

time, and when at a certain point of time	"�(�), the total voltage from the pulses exceeds 

the threshold value, θ.  In this case, with every input spike at time " multiplied to the 

synaptic weight, the neuron is said to have increased its PSP or also known as mem-

brane potential g(") up until it reaches a threshold �	and thus a spike is emitted.  Fol-

lowing the biological neuron, after a neuron spikes, the neuron’s membrane potential is 

in its refractory period and the voltage is reset to zero.  Figure 3-4 illustrates the spiking 

neuron and its functionality.   

 

 

Figure 3-4: (a) Schematic representation of LIFM of a spiking neuron and (b) Function-
ality of LIFM in which the red line represents the membrane potential, the middle row 
represents the output spikes and on top is the input train of spikes. 

 

The total probabilistic spiking neuron ����(") of neuron �� 	is calculated using 

the following formula (Kasabov, 2010): 

 



33 

 

����(") = 	∑ (����,..,� ∑ F���),..,> v)((��,�(" − ())vD(��,�(" − ())	��,�(") + }(" −"�))          (3.1) 

 
 

where: F� = 1, if a spike has been emitted from neuron �� , otherwise F� = 0; 

v) ~(��,�(")� = 1 with a probability (��,�("), otherwise v) ~(��,�(")� = 0; vD(��,�(") = 1 

with a probability (��,�("), otherwise vD(��,�(") = 0; "� is the time of the last spike emit-

ted by neuron ��; and		}(" − "�) is decay in the ����.  The probabilistic model will be 

simplified when all or some of the probabilistic parameters are fixed to ‘1’ and this will 

resemble the well-known IFM. 

Besides connection weights	��,�(")	a probabilistic spiking neuron model 

(Kasabov, 2010) has the following three probabilistic parameters:  

 

o A probability (��,�(") that a spike emitted by neuron ��		will reach neuron �� at 

atime moment " through the connection between ��	and		��.  If 	(��,�(") = 1	the 

probability for propagation of spikes is 100%.  Otherwise	(��,�(") = 0, i.e. no 

connection and no spike propagation exist between neurons ��	and		��.  
 

o A probability (��,�(")	for the synapse -�,� to contribute to the ����(")		after it has 

received a spike from neuron	�� .  
 

o A probability	(�(") for the neuron ��		to emit an output spike at time " once the 

total ����(")		has reached a value above the PSP threshold (a noisy threshold). 

3.2.3 The Learning Rule 

The current implementation uses STDP learning rule that make use of Hebbian plastic-

ity (Hebb, 1949) in the form of long-term potentiation (LTP) and depression (LTD).  

Synapses’ weight is increased or decreased based on the timing of post-synaptic action 

potential in relation to pre-synaptic action potential.  If pre-synaptic neuron fires first, 

the connection weight between the two neurons increases (the difference in the spike 

time between the pre-synaptic and post-synaptic neurons is negative), otherwise it de-

creases.  Through STDP, connected neurons learn consecutive temporal associations 

from the data and new connections are also evolved. Pre-synaptic activity that comes 
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first before post-synaptic firing can encourage LTP, and reversing this temporal order 

causing LTD.  

3.2.4 The Evolvability of the NeuCube 

Neurons in a functional or structural brain areas are densely interconnected and the 

nearer these area are, the more the connectivity between them occur (Braitenberg & 

Schüz, 1998).  These structural and functional connectivity of the brain, either measured 

through MRI (Chen, He, Rosa-Neto, Germann, & Evans, 2008) or EEG and MEG 

(Stam, 2004), manifests small-world organization.  Hence, this is the key inspiration for 

proposing a type SWC for the initial structure of NeuCube, where neurons clusters rep-

resent structural and functional areas related to the brain data (Bullmore & Sporns, 

2009).   

Following ECoS principles (Kasabov, 2007), the NeuCube structure also 

evolves during the training through the creation of new neurons and new connections.  

New neurons are created to accommodate data that is not possible to accommodate in 

the existing neurons and these new neurons are connected with the rest of the neurons 

following initially the SWC principle.  Moreover, ECoS could perform training very 

fast and is capable of processing large amount of spatio-temporal data.  The advantages 

that ECoS and deSNN (which will be elaborated in the next section) have to offer make 

NeuCube the best architecture to map, train and learn STBD. 

3.3 HIGHEST LEVEL: THE OUTPUT MODULE 

After the data have been trained in the middle level of the architecture, the patterns gen-

erated are learned to be associated with known classes defined in the Output Module.  

Feedback connections from the Output Module to the NeuCube are possible to establish 

reinforcement learning.  In the current implementation, all spiking neurons in the Neu-

Cube are connected to each of the output neurons.  The classifier used is dynamic evolv-

ing Spiking Neural Networks (deSNN). 
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3.3.1 Dynamic evolving spiking neural networks (deSNN) 

The deSNN (Dhoble et al., 2012) training algorithm utilizes both RO and SDSP tempo-

ral learning rules.  While RO learning determines the initial connections weights values 

for a STPR of AER dataset, SDSP/STDP adjusts these connections in an unsupervised 

manner utilizing the drift parameter, D, which is based on the following spikes as part 

of the same spatio-temporal pattern.   

In Rank Order (RO) (Thorpe & Gautrais, 1998) learning rule, the rank of the 

first incoming spikes on the synapse is very important where inputs priority is estab-

lished based on the order of the spike arrival on that particular synapse.  The main ad-

vantages of this learning rule are:  it is fast and one-pass learning (uses the order of the 

incoming spikes as additional information); and is asynchronous data entry (synaptic 

inputs are accumulated into the neuronal membrane potential in an asynchronous way).  

For each training sample, only neuron with the highest PSP value has its weight up-

dated.   

	���>
� =	∑]����	
�(�)��,�      (3.2) 

 

Where mod is a modulation factor; � is the index for the incoming spike at syn-

apse	�, 9 and ��,� is the corresponding synaptic weight; ���F�(�)	is the order of the spike 

at the synapse �, 9 among all spikes arriving from all ] synapses to neuron	9.  For the 

first spike, the value for ���F�(�)		is 0 and it increases according to the input spike or-

der.  An output spike is generated by neuron 9 if the ���(9, ") becomes higher than a 

threshold	����a(9).  This threshold is calculated as a fraction of e ∈ [0.1] of the maxi-

mum PSP, generated with a propagation of the training sample into the updated weights.   

 

����a = 	e	. 	���>
�        (3.3) 

 

In each training of an input pattern of a classifier, the connection weights are 

calculated based on the order of the incoming spikes (Thorpe & Gautrais, 1998; 

Wysoski, Benuskova, & Kasabov, 2010): 

 

∆��,�(") = 	]����	
�	(�,�(�))       (3.4) 
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RO learning in eSNN involves the adjustment of the connection weight of each 

synapse only once i.e. based on the rank of the first spike arrival on this synapse, which 

may be appropriate for static pattern recognition, but not efficient for complex SSTD 

like fMRI and EEG (Kasabov et al., 2013).  For these type of data, the connection 

weights need to be further adjusted based on the following spikes arriving on the same 

synapse over time, and this is where dynamic synapses are introduced, by implementing 

SDSP (Fusi et al., 1999).  

As in the learning phase of eSNN, for each training input pattern, a new output 

neuron 9 is created and its connection weights ��,� to the input (feature) neurons are ini-

tially calculated as ��,�(0) based on the order of the incoming spikes on the correspond-

ing synapses using the RO learning rule.  Once a synaptic weight ��,� is initialized 

(based on first spike arriving at synapse	�), the synapse becomes dynamic and adjusts its 

weight through SDSP algorithm.  It increases its value with a small positive value (posi-

tive drift parameter) at any time " a new spike arrives at this synapse and decreases its 

value (negative drift parameter) if there is no spike at this time.  The deSNN training 

algorithm is as follows: 

Table 3-1: deSNN training algorithm 

The deSNN Training Algorithm  

input:  Spike trains, Set deSNN parameters (including: Mod, C, Sim, and the SDSP parame-

ters) 

for every input spatio-temporal spiking pattern	�� 	do 

Create a new output neuron 9 for this pattern and calculate the initial values of connection 

weights ��,�(0)		using the RO learning formula (Equation 3.4). 

Adjust the connection weights ��,�		for consecutive spikes on the corresponding synapses 

using the SDSP learning rule formula (Equation 2.24). 

Calculate ���>
�  using formula (Equation 3.2). 

Calculate the spiking threshold of the 9"ℎ neuron using formula (Equation 3.3). 

if (the new neuron weight vector ��,�	is similar in its initial ��,�(0)) then 

     merge the two neurons (as a partial case only initial or final values of the connection 

weights can be considered or a weighted sum of them) 

else 

Add the new neuron to the output neurons repository. 

end if 

end for (Repeat for all input spatio-temporal patterns for learning) 
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3.4 NEUCUBEB STRUCTURE FOR SPATIO-TEMPORAL MODELLING AND 

PATTERN RECOGNITION OF BRAIN SIGNALS 

3.4.1 Spatio-Temporal Brain Data (STBD) and Spatio-Temporal Pattern Recognition 

(STPR) 

The most common types of spatio-temporal data collected including in the field of 

Neuroinformatics (e.g. fMRI and EEG), engineering (e.g. audio and video data), ecol-

ogy (e.g. species establishment), environment (e.g. pollution and volcanic formation), 

medicine (e.g. risk of a disease and recovery data), economics (e.g. financial time series 

data), bioinformatics (e.g. gene and protein expression data), etc.  These data are charac-

terized by a strong temporal (time) as well as spatial (space) components.  The most 

common types of STBD collected at the cognitive level are fMRI, EEG and MEG; and 

these data can be very complex and very hard to interpret. 

An fMRI with the use of MRI scanner can capture images of brain activity, 

which is based on the brain areas that receive the most activation, either stimulated ex-

ternally or internally (Mitchell et al., 2003).  Active brain areas have higher level of 

oxyhemoglobin than less active areas.  In a single experiment run, a whole-brain func-

tional image is acquired in terms of slices (e.g. 21) and each slice is captured in a single 

time moment, defined as the sampling or repetition time (TR).  Brain slices captured 

within each TR will be the sample to be modelled, mapped and learned overtime in the 

NeuCubeB. 

NeuCubeB has brain-inspired eSNN architecture is anticipated to be a promising 

paradigm able to handle the complex STP of fMRI data.  The data which is represented 

in many dimensions, i.e. in space, time, frequency and phase, and is usually collected in 

large volumes, acquires so much knowledge to be extracted.  Not just only to recognize 

the simple brain state, either active or inactive, the pattern presented in the brain data 

could also be used to recognize the other complex physiological as well as psychologi-

cal state of the brain.  Conventional classifiers, such as SVM, MLP and other well 

known classifiers, are sufficiently capable of handling static pattern recognition, but not 

for dynamic and spatio-temporal brain processes and recognition.  A computational 

model which is capable of STPR of fMRI and other STBD such as EEG and MEG is 

very much required.  This NeuCubeB model will be further elaborated in the next sec-

tion as well as in Chapter 6. 
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3.4.2 The NeuCubeB Template 

Figure 3-5 shows the 1,471 NeuCubeB neurons structure displayed in blue dots.  

The cyan dots represent the mapped fMRI data just in time before the initialization 

process starts (left) while the yellow dots represent the mapped fMRI after the initializa-

tion process (right).   

 

 

Figure 3-5: Approximate mapping of 1,471 NeuCube neurons displayed in dark blue 
dots.  The cyan and yellow dots are the fMRI input data before initialization (left) and 
after initialization (right) respectively. 

 

In general, the NeuCube architecture is able to receive and process STBD such 

as fMRI and EEG as well as other type of spatio-temporal data like sound, image, 

weather and stroke data.  With fMRI data, this mapping technique is required to deter-

mine which NeuCubeB neurons will be the input neurons and which fMRI data are to be 

considered as part of the input neurons.  The mapping technique which is one of the 

novel contributions of this study will be elaborated in detail in Chapter 6. 

3.5 CHAPTER SUMMARY 

This chapter describes the NeuCube architecture that was proposed to be a unifying ap-

proach for STBD and other spatio-temporal data learning.  NeuCube allows for the 

combination in one model of various brain data, information and knowledge related to a 

single subject or to a population of subjects.  It can be used not only to discover func-

tional connectivity from data, but also as a predictive system of brain activities.  In addi-
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tion to this, further analysis of the internal structure of the model after learning process 

can reveal important spatio-temporal relationships ‘hidden’ in the data.  

In the next chapter, a review on the fMRI is presented.  Topics discussed will in-

clude the general definition of fMRI, other imaging techniques, existing methods for 

fMRI data analysis and feature i.e. voxel selection in processing the vast and noisy 

fMRI data. 
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4 Chapter 4 

REVIEW OF FUNCTIONAL MAGNETIC RESONANCE IMAGING (fMRI) 

This chapter reviews the type of data that will be used in the study, which is known as 

fMRI.  fMRI is composed of voxels, in its smallest form, that will be used as features to 

be experimented and studied.  These voxel values are in fact the intensities of the fMRI 

images that actually reflect the brain functional activities in different parts of the brain.  

Thus, these values can be directly exploited as features for classification purposes 

(Mitchell et al., 2003, 2004; Mourão-Miranda, Bokde, Born, Hampel, & Stetter, 2005).  

The chapter will start with types of brain imaging techniques used in the medical field 

and continue with functional magnetic resonance imaging in a greater detail, in the next 

sub-section.  Then readers will be presented with previous studies and methods for clas-

sifying fMRI data, mainly using conventional classifiers and several studies on selecting 

relevant features as samples for the experiment.  

4.1 INTRODUCTION TO IMAGING TECHNIQUES 

Neuroimaging produces images of the structure or activity of the brain or other parts of 

the nervous systems that let physicians and researchers observe activation of the brain 

or other nerves.  Some may refer neuroimaging as imaging technique that focuses only 

on human brain.  The images are used not only to diagnose and assess brain diseases but 

also used to study how the brain works, to study which brain regions are activated when 

certain stimulus are presented to the subject and to investigate which brain locations are 

affected psychologically (involved with emotion and feelings of the subject) and other 

functions that may be of potential practice in the future.  There are a few safe neuroi-

maging techniques that are widely available in many hospitals and research facilities 

around the globe, which include Magnetic Resonance Imaging (MRI) and functional 

MRI (fMRI), Computed Tomography (CT), Positron Emission Tomography (PET), 

EEG, MEG and NIRS. 

In contrast to PET and CT scans that expose subjects with short-lived radioac-

tive material and x-rays respectively, MRI/fMRI, EEG, MEG and NIRS measure the 

brain activity without having to expose patients with radiation or injecting substance to 
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patients’ blood flow.  However, modalities such as EEG and MEG lack the capability of 

detecting spatial location of activation area accurately.  NIRS have lower signal-to-noise 

ratio but are however highly correlated with fMRI measurement (Cui, Bray, Bryant, 

Glover, & Reiss, 2012) and thus gaining the attention for researchers as a complement 

to fMRI. 

4.2 FUNCTIONAL MAGNETIC RESONANCE IMAGING (fMRI) 

fMRI can be used to visualize hemodynamic response in relation to neurons’ activities 

in certain part of the brain (Buxton, Uludağ, Dubowitz, & Liu, 2004).  This hemody-

namic response is indicated by the increasing amount of blood flow to that particular 

activated neurons area.  The components of hemodynamic response include the changes 

in the oxyhemoglobin and deoxyhemoglobin concentration, in the cerebral blood vol-

ume (CBV) per unit of brain tissue and in the cerebral blood flow rate.  There are differ-

ent fMRI techniques that can capture the functional signals generated from the different 

components of hemodynamic response.  One of the most common techniques is based 

on the concentration of oxyhemoglobin-deoxyhemoglobin component and it is known 

as blood-oxygen-level-dependent (BOLD) technique (Ogawa, Lee, Kay, & Tank, 1990).   

While MRI provides structural mapping of a brain, fMRI imaging technique 

combined with blood-oxygen-level-dependent (BOLD) technique (Ogawa et al., 1990), 

produced a better set of brain images, i.e. with excellent temporal as well as spatial in-

formation.  In addition to structural mapping, fMRI generates functional mapping of the 

brain that actually takes advantage of iron in the blood-carrying-oxygen and blood-

vessels-dilation physiological principle that occurs in activated regions.  It is used to 

measure neural activity changes in the brain resulting from stimuli triggered externally  

or internally (Haxby et al., 2001).  More precisely, fMRI measures the ratio of oxygen-

ated haemoglobin to deoxygenated haemoglobin in the blood with respect to a control 

baseline, at many individual locations within the brain. It is widely believed that blood 

oxygen level is influenced by local neural activity, and hence this blood BOLD response 

is generally taken as an indicator of neural activity (Mitchell et al., 2004). 

fMRI imaging technique is non-invasive and radiation-free thus providing a safe 

environment to the subjects involved.  The images are recorded in sequence either verti-

cally or horizontally (Figure 4-1), and over time, in a matrix of intensity values. They 

are captured in slices through the organs; generally in 8 or 16-bit (Figure 4-1 right).  
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There are a number of common formats in which the images are saved such as in 

DICOM, ANALYZE, NIFTI format or in raw voxel intensity values in MATLAB.   

 

 

Figure 4-1: Brain images in vertical and horizontal slice: in sagittal, coronal and axial 
views (left).  Slices of brain taken over time i.e. 32 images for a volume of brain (im-
ages are viewed using FSLView (FSLView, 2012) software (right). 

 

The images are constructed from two components – spatial/spectral (or spatio) 

and temporal.  The first component is identified as the volume of a brain that can be fur-

ther sub-divided into smaller 3D cuboids, known as voxels (volume element).  In a typi-

cal fMRI study, a series of brain volumes are collected in quick succession and the 

value of BOLD response at all points in a 3D grid are recorded.  A general 3D brain im-

age typically contains 10,000 to 15,000 voxels, and each voxel consists of on the order 

of hundreds of thousands of neurons.  Spatial image resolutions can be set either to have 

low or high resolution.  As in Figure 4-2 while high-resolution image provides more 

accurate information (e.g. voxels with dimensions of 1 mm x 1 mm x 1 mm) more CPU 

processing power is required and is not feasible at the moment.  Typical spatial resolu-

tion is 3 mm x 3 mm x 5 mm, corresponding to image dimensions in the order of 64 x 

64 x 30 (Lindquist, 2008) and still this resolution is relatively high compared to other 

imaging techniques.   

The temporal component is acquired while scanning the whole volume of a brain 

that will take a few seconds to complete.  In a single run of an experiment, 100 or more 

brain volumes are usually scanned and recorded for a single subject doing a particular 
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sensorimotor or cognitive task.  Temporal component depends on the time between ac-

quisitions of each individual image, or the time of repetition (TR).  In a typical experi-

ment, TR ranges from 0.5 to 4.0 seconds and TR values in the range of 2 seconds are 

generally considered adequate (Lindquist, 2008). 

The combination of this spatial and temporal information of the brain images 

will be the main concern investigated in this study.    

 

 

Figure 4-2: Surface renderings of 3D brain images.  Small voxels (left, with 1 mm x 1 
mm x 1.5 mm) versus large voxels (right, with 7 mm x 7 mm x 10 mm) (Smith, 2004) 

4.3 EXISTING METHODS FOR fMRI DATA ANALYSIS 

Choosing the best technique for fMRI data analysis is still a question that needs to be 

answered properly.  There are many variables that have to be considered, for instance 

the weak signal of voxel of interest, the voxels being distributed among various spatial 

locations of the brain, different brain mapping of different brain sizes and spatially dis-

tributed noise.  A popular analysis approach is pattern classification, where the brain 

patterns are observed to forecast the task being performed by the subject.     

Naturally, brain activities are captured as fMRI data in a spatio-temporal format.  

In conducting the analysis, researchers often treat fMRI data classification either in uni-

variate or multivariate; linear or non-linear; or as static or spatio- temporal approach.   

In early years, the standard fMRI data analysis approach examines each brain 

voxel in isolation (univariate) as static data as suggested in Statistical Parametric Map-

ping (SPM) (Friston, Frith, Frackowiak, & Turner, 1995), which completely disregard 

the inherent spatio-temporal characteristics of fMRI data.  Univariate approach proc-

esses fMRI voxels as independent individuals, thus no interaction and no relationship 
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are measured among the voxels.  This approach has been experimented with Gaussian 

Naïve Bayes method (Mitchell et al., 2004; Schmah, Zemel, Hinton, Small, & Strother, 

2010).  However this approach neglects the collective information encoded by voxels 

patterns (Carroll, Cecchi, Rish, Garg, & Rao, 2009). 

Multivariate analysis on the other hand, evaluates the correlation of brain pat-

terns across the brain regions rather than examining them on a voxel-by-voxel basis. 

Haxby et al. (2001) illustrated how multi-voxel patterns of activity can be used to dis-

tinguish between cognitive states when subjects were shown faces, houses and a variety 

of object categories.  As different brain locations are triggered with the same (or differ-

ent) stimulus, experiments should consider all relevant voxels instead of just consider-

ing a single particular voxel.  This multi-voxel pattern analysis has been adapted by 

many researchers with various classifiers using either linear or non-linear classifiers: 

SVM (Cox & Savoy, 2003; Kamitani & Tong, 2005; Misaki, Kim, Bandettini, & 

Kriegeskorte, 2010; Mourão-Miranda et al., 2005), Gaussian Naïve Bayes (GNB) 

(Mitchell et al., 2003; Rustandi, 2007a, 2007b), neural networks without a hidden layer 

(Polyn et al., 2005), non-linear SVM (Fan, Shen, & Davatzikos, 2006; Misaki et al., 

2010) and neural networks with hidden layers (Hanson, Matsuka, & Haxby, 2004).  All 

these studies only consider data at a single time or time interval.  

Another fMRI classifier approach is whether they are linear or non-linear.  

While linear classifier divides the classes with a linear plane, non-linear classifier sepa-

rates the classes using a more complex function (Yourganov et al., 2014).  Works re-

lated to fMRI on linear classifier includes (Haynes & Rees, 2005; Kamitani & Tong, 

2005; Ku, Gretton, Macke, & Logothetis, 2008; Misaki et al., 2010; Mitchell et al., 

2004).  Although this approach is more biased and less flexible than the non-linear clas-

sifier, several studies suggest that they could still generate accurate results (Ku et al., 

2008; Misaki et al., 2010).  Non-linear classifier on the other hand has also produced 

good analysis (Fan et al., 2006; Schmah et al., 2010) although some other studies sug-

gest that it produces the worst result (LaConte, Strother, Cherkassky, Anderson, & Hu, 

2005; Misaki et al., 2010).  However, for robust classification, non-linear classifier re-

quires larger training set (Morch et al., 1997). 

In recent years, researchers are moving towards brain analysis that embed both 

spatial and temporal behaviour such as spatial-temporal SVM (Mourão-Miranda, 

Friston, & Brammer, 2007), Bayesian formulation(van Gerven, Cseke, de Lange, & 

Heskes, 2010) and Generalized Sparse Classifier (GSC) (Ng & Abugharbieh, 2011b).  

A research conducted by Avesani, Hazan, Koilis, Manevitz, & Sona (2011) selects a set 
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of relevant voxels using General Linear Model (GLM) and then incorporates liquid state 

machine and Multi-Layer Perceptron (MLP).  These researches focus on spatio-

temporal classification, where multiple brain volumes within a trial are treated as a 

sample.  

In conclusion, the study of fMRI characteristics and its relation with the behav-

iour of a classifier is still not well comprehended.  Typically, fMRI datasets are ill-

posed datasets that require massive computational power to process their voxels.  In ad-

dition to this, the interaction of the classifier properties with BOLD signal properties of 

fMRI is still not well and treated.  To regularize this ill-conditioned problem (i.e. lim-

ited number of samples together with severe noise), this study proposes to better exploit 

the spatio-temporal structure of fMRI data using probabilistic Spiking Neural Networks 

(pSNN) (Kasabov, 2010).  In particular, this study will employ ESNN to incorporate 

spatio-temporal characteristics of fMRI data into the classifier.   

4.4 SELECTING FEATURES OF fMRI DATA 

In a typical fMRI experiment, a sequence of images related to the subject’s brain activ-

ity every half seconds will be produced.  The experiment usually consists of a set of tri-

als and each trial produces many brain volumes over time.  Each brain volume is com-

prised of voxels in the order of thousands and these voxels’ intensities are the features 

to be classified.  Learning this brain data poses many challenges especially in terms of 

the data being extremely sparse noisy data and high dimensional.  This would cause 

over-fitting problem for the classifier.  Hence it is necessary to apply feature selection 

methods to make learning tractable and to prevent over-fitting. 

In selecting relevant features (voxels) that respond from a stimulus, it can either 

be done in a univariate or multivariate manner.  Apart from the standard univariate ap-

proach (Friston, Holmes, Worsley, Poline, Frith, and Frackowiak, 1995) multivariate 

pattern analysis approaches towards detection of ROI from fMRI data have been gain-

ing a lot of attention recently.  The advantage of multivariate method stem from the fact 

that even voxels with weak individual response may carry important cognitive informa-

tion when analysed together.    

Evolutionary feature selection is an algorithm that is based on evolutionary 

techniques.  This approach was proven effective in feature subset selection that detects 

which number and combination of individual voxels that carry information relevant to a 

stimulus (Åberg, Löken, & Wessberg, 2008).  These voxels are used as features in mul-
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tiple linear regression (MLR) classifier and they proved that even the simple classifica-

tion scheme can detect and distinguish relevant cortical information in noisy fMRI data.  

Although it considers voxels in multivariate way (analyse voxels collectively), voxels 

are only on a single volume and not tested on multiple volumes over time.   

Another approach uses particle swarm optimization (PSO) based fMRI brain 

state classification algorithm, specifically designed to efficiently extract a subset of 

voxels optimal for classification task (Niiniskorpi, Bj, & Wessberg, 2009).  PSO is a 

stochastic optimization method (Kennedy & Eberhart, 1995) loosely based on the be-

haviour of swarming animals such as fish and birds.  A number of particles, represent-

ing potential solution to the problem, are released in the search space of potential solu-

tions.  Each particle has a position and a velocity, and is free to fly around the search 

space.  And in the case of feature selection, this standard PSO is modified as proposed 

by Wang, Yang, Teng, Xia, & Jensen (2007) and not only achieves high performance 

scores but also identifies functionally relevant ROI (Niiniskorpi et al., 2009). 

In addition, methods that simultaneously select relevant voxels have been pro-

posed which extend traditional classifiers by incorporating sparse regularization, which 

controls over fitting by encouraging zero weights to be assigned to irrelevant voxels 

(Carroll et al., 2009; Ryali, Supekar, Abrams, & Menon, 2010; Yamashita, Sato, 

Yoshioka, Tong, & Kamitani, 2008).  And these works have been improved in the re-

cently proposed Generalized Sparse Classifiers (GSC) (Ng, Vahdat, Hamarneh, & 

Abugharbieh, 2010) that permits more general penalties, such as spatial smoothness in 

addition to it being sparse and to be seamlessly integrated.  Another improvement was 

Generalized Group Sparse Classifiers (GGSC) (Ng & Abugharbieh, 2011a) that permits 

associations between features within predefined groups to be modelled. 

4.5 CHAPTER SUMMARY 

This chapter presented a review of fMRI.  It first discussed the imaging techniques that 

exist in medical science which include fMRI, MRI, PET, EEG, MEG and NIRS.  In 

contrast to other imaging technique, the advantages offered by fMRI are: high visualiza-

tion quality of the brain coupled with good temporal characteristic; motivate researches 

in brain analysis and brain understanding.  Numerous studies have been, and still are, 

conducted to better understand the brain function: not to just detect brain disease or ill-

ness but also to have a greater understanding of how the brain works, such as to locate 

the brain area affected the most by a certain stimulus or to classify brain images as to be 
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in a certain class or the other e.g. healthy or not healthy; or doing task A or doing task B 

etc.   

In the next chapter, StarPlus data (Mitchell, 2005) downloaded from Carnegie 

Mellon University’s Centre for Cognitive Brain Imaging (CCBI) is described, used and 

tested on conventional classification models, which include SVM and MLP.  Results 

from both experiments will be explained as well.    
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5 Chapter 5 

REVIEW OF EXISTING TECHNIQUES TO STARPLUS fMRI DATA 

The document continues with the review of existing technique that has been applied to 

the benchmark dataset.   It first describes the dataset used in the study which is StarPlus 

data that are freely made available by Carnegie Mellon University (CMU).  This dataset 

is experimented using conventional classifiers, which are Support Vector Machine 

(SVM) and Multi-Layer Perceptron (MLP).  Preliminary result will also be described 

later in the chapter. 

5.1 ABOUT STARPLUS DATA 

Publicly available StarPlus dataset is utilized to evaluate the performance of the pro-

posed framework; which was used by many researchers before (Hutchinson, Niculescu, 

Keller, Rustandi, & Mitchell, 2009; Mitchell et al., 2004; Ng & Abugharbieh, 2011a; 

Shinkareva et al., 2008). 

In a StarPlus experiment, the experiment is set into 2 settings and the brain vol-

umes captured are divided into a set of trials.  In each trial, subjects are required to look 

at a Picture (or Sentence) followed by a Sentence (or Picture), and to decide whether the 

Sentence (or Picture) correctly describe the Picture (or Sentence).  In the first setting, 

the subject first sees a sentence (Semantic stimulus) such as “The plus sign is above the 

star sign” for 4 seconds followed by a blank screen for another 4 seconds and finally 

another stimulus (Picture stimulus) is displayed for the next 4 seconds, during which the 

subject must press a button for “yes” or “no”, depending on whether the sentence 

matches the picture seen or not.  Brain snapshots are taken every 500 ms (or TR is 500 

ms).  The subject then has 15 seconds of rest period before proceeding to the next trial.  

The subject is instructed to rehearse the sentence in his/her brain until the picture is pre-

sented rather than to visualize the sentence immediately.  All experiment conditions are 

labelled with 0, 1, 2 and 3 referring to Ignore, Rest, Sentence is Not Negated and Sen-

tence is Negated as tabulated in Table 5-1.  In the second experiment setting, the presen-

tation of sentence and pictures are switched, and the subject is instructed to remember 
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the picture until the sentence is presented.  For both settings, the dataset is labelled as 

SP (Sentence-Picture) and PS (Picture-Sentence). 

The brains volumes are acquired from 6 normal subjects (Mitchell et al., 2004) 

and they are labelled as data-starplus-04799-v7.mat, data-starplus-04820-v7.mat, data-

starplus-04847-v7.mat, data-starplus-05675-v7.mat, data-starplus-05680-v7.mat and 

data-starplus-05710-v7.mat.  For the preliminary test, data for a single subject data-

starplus-04820-v7.mat is chosen and analysed.  There are 54 trials in which the experi-

ment conditions are labelled as follows: 

Table 5-1: Experiment Conditions 

Condition label Experiment Condition 

0 Ignore 
1 Rest (fixation) 
2 Sentence is not negated 
3 Sentence is negated 

 

For each trial there are approximately 54 volumes snapshots x 5,015 voxels.  To 

account for delay in the hemodynamic response, only 8 volumes collected 4 seconds 

after stimulus start were used (Ng & Abugharbieh, 2011b). 

This experiment involves certain part of the brain: visual cortex for reading and 

seeing the Sentence, Broca’s area for language processing, Intra Parietal Sulcus for spa-

tial visualization, motor cortex for pressing the button and so on.  The accurate way in 

which part of the brain is activated varies across subjects, based on their mental and 

verbal abilities and also based on the experiment setting (i.e. mentally rehearsing the 

sentence until he/she sees the picture or remembering the picture as he/she reads the 

sentence and then matching the picture being shown). 

Each dataset (per subject per trial) comprised approximately 5,015 voxels which 

are within the 25 ROIs that are chosen by neuroscience experts which are Calcarine 

Sulcus (CALC), Bilateral Dorsolateral (BD), Frontal Eye Field (FEF), Inferior Parietal 

Lobule (IPL), Intraparietal Sulcus (IPS), Inferior Temporal Lobule (ITL), Opercularis 

(OPER), Posterior Precentral Sulcus (PPREC), Supramarginal Gyrus (SMG), Superior 

Parietal Lobule (SPL), Temporal Lobe (T), Triangularis (TRIA) and Supplementary 

Motor Area (SMA) (as in Figure 5-1).  Out of these 25 ROIs, only regions labelled as 

CALC, LDLPFC, LFEF, LIPL, LOPER, LT and LTRIA as in Table 5-2 will be consid-

ered in the classification task.   
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Table 5-2: ROIs considered in the classification task and the number of features in each 
region for subject S04820 

Label Region Main function Number of features 
CALC Calcarine Sulcus primary visual cortex  408 x 8 = 3264  
LDLPFC Left Bilateral Dorsolateral 

Prefrontal Cortex 
motor planning, working 

memory, short-term memory  
501 x 8 = 4008 

LIPL Left Inferior Parietal 
Lobule 

perception of emotions, in-
formation interpretation  

60 x 8 = 496 

LIPS Left Intraparietal Sulcus perceptual-motor coordination 
(for directing eye movements 

and reaching), visual attention, 
working memory 

155 x 8 = 1240 

LOPER Left Opercularis speech-language production 103 x 8 = 824 
LT Left Temporal Lobe auditory perception, speech 

and vision processing, mem-
ory  

484 x 8 = 3872 

LTRIA Left Triangularis  Speech-language production 175 x 8 = 1400 
 

 

Figure 5-1: 25 anatomically defined region of interest in human brain used in the study 

5.2 EXPERIMENT SETTING 

In this study, intensity value for each voxel, at each time point is treated as feature, and 

all brain volumes within the same trial of each experimental condition as sample.  In 

other words, where temporal information is disregarded, the 8 volumes (i.e. 8 time 

points) are concatenated and treated as a single sample (Ng & Abugharbieh, 2011b).  As 

in Table 5-2, for example, from the downloaded data, there are 3,264 features (408 fea-

tures x 8 time points) for CALC region and 4,008 features (501 features x 8 time points) 

for LDLPFC region.  For both SVM and MLP experiments, brain volume (i.e. in terms 
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of features or voxels) extraction procedure for SVM and MLP classifications is as fol-

lows: 

o Select trials with experiment condition labelled as 2 (Sentence is not Ne-

gated) and 3 (Sentence is Negated) (Table 5-1).  These conditions are when 

the brain is activated from seeing a Sentence or Picture stimulus.   

o Select CALC, LDLPFC, LFEF, LIPL, LOPER, LT and LTRIA regions and 

discard other voxels from other regions.  These regions receive the most ac-

tivation from the stimulus (Mitchell et al., 2004).  

o As there are 54 trials, for the first 27 trials where the first stimulus is Picture 

(i.e. PS setting), select brain volumes of 9-16 as Class 1 (Picture Class) and 

25-32 as Class 2 (Sentence Class) and for the next 27 trials where the first 

stimulus is Sentence (i.e. SP setting), select brain volumes of 25-32 as Class 

1 (Picture Class) and 9-16 as Class 2 (Sentence Class). 

o Concatenate all brain volumes within the same trial to become a sample. 

Thus the resulting matrix will be 80 samples x 3,264 features for CALC re-

gion and 80 samples x 4,008 features for LDLPFC region.  There are 40 

samples for Class 1 (subject looking at a Picture) and 40 samples for Class 2 

(subject looking at a Sentence). 

o Normalize the voxels intensity values 

o Select 50 and 100 voxels of highest priority by using Signal-Noise-Ratio 

(SNR) technique. All features from each ROI were ranked from higher pri-

ority to lower priority by selecting only the 50 and 100 most significant fea-

tures (Refer to Figure 5-2 and Figure 5-3).  This feature extraction process is 

carried out using NeuCom©. 
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Figure 5-2: 50 most significant features are selected using SNR data analysis for CALC 
region. 

 

 

 

Figure 5-3: 100 most significant features are selected using SNR data analysis for 
CALC region 
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The parameters are tuned using a blind search approach yielding the final pa-

rameter settings as the following: 

• Polynomial kernel with degree 2, 5-fold cross validation mode for SVM; 

• 80 hidden neurons and 300 training cycles for MLP. 

5.3 EXPERIMENT RESULT 

The experiment is performed to measure the classification accuracy when a subject is 

presented with a static stimuli i.e. either a subject is looking at a Picture or a Sentence 

by running a conventional classifier: SVM, or MLP.  As in Table 5-3, in general MLP 

results in the highest accuracy for every region, with the average 94% accuracy, except 

for CALC being only78%, as compared to 89% accuracy for SVM. 

 

Table 5-3: Classification accuracy percentage for each region using SVM and MLP 
classifiers (A=SVM classifier, B=MLP classifier) 

 CALC LDLPFC LIPL LIPS LOPER LTRIA LT 
Model A B A B A B A B A B A B A B 
50 fea-
tures  

89 78 91 93 90 91 95 91 91 90 93 93 98 96 

100 
features  

91 89 98 99 84 88 94 98 89 94 96 98 95 98 

 

 

Figure 5-4: Percentage of classification accuracy for 50 features selected based on SNR 
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Figure 5-5: Percentage of classification accuracy for 100 features selected based on 
SNR 

 

For comparison purposes, for the experiment involving only 50 most significant 

features (Figure 5-4), SVM produces higher classification accuracy as opposed to MLP 

in almost all regions, except for LDLPFC and LIPL regions.  This is because LIPL re-

gion involves only in the perception of emotions and in the interpretation of sensory in-

formation, whereas the experiment involves more on rehearsing and remembering.  The 

highest classification accuracy is for LT region for both SVM and MLP classifiers (98% 

and 96% respectively).  This is because LT region involves processing vision semantics 

i.e. the brain is processing information when presented with a Picture/Sentence stimuli.  

In contrast, CALC region produced the lowest accuracy for both classifiers.  This is be-

cause even though CALC is where the primary visual cortex is concentrated, the ex-

periment setting highly involve the subject to read and to remember the Picture or Sen-

tence that he/she is looking at rather than just looking at the stimulus. 

As features were increased to 100 (Figure 5-5), different patterns of classifica-

tion accuracies were generated.  Generally, MLP algorithm generated higher classifica-

tion accuracy for all ROIs, except for CALC region in which SVM outperformed the 

result (the same situation in 50 features experiment).  LDLPFC region produced the 

highest classification accuracy (98% and 99%), whereas LIPL region produced the low-

est accuracy (84% and 88%), for both SVM and MLP respectively. 

From both experiments conducted, in some situations, increasing the number of 

features does not necessarily mean the classification accuracy will be increased too, e.g. 

in the case of LIPL, for both types of classifiers.  In other region (e.g. LT), increasing 

the number of features will increase the classification accuracy for a particular classifier 
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(MLP) but will decrease the classification accuracy for another classifier (SVM).  MLP 

performed better than SVM if the number of features is increased from 50 to 100 fea-

tures for almost all ROIs with the average accuracy classification increases from 90% to 

94%. 

However, accuracy generalization could not be concluded because of the follow-

ing issues: 

 

o The experiment was conducted based on individual ROI and did not consider 

collective information on all ROIs i.e. some regions may be stimulated by 

the same task condition. 

 

o Only 50 or 100 most significant voxels were selected whereas in real situa-

tion, even voxels with the weakest intensity value (irrelevant voxels) may 

have significant impact if they are to be considered (in the classification pro-

cedure) with other voxels with the strongest intensity values. 

 
o The classification method does not allow any new knowledge discovery.   

5.4 CHAPTER SUMMARY 

This chapter discussed a preliminary experiment on the benchmark dataset using the 

standard computational intelligent techniques, SVM and MLP.  The experiment is for 2 

Class problems selected based on condition 2 (Sentence is not Negated) and condition 3 

(Sentence is Negated), provided from the StarPlus, involving 7 regions labelled as 

CALC, LDLPFC, LFEF, LIPL, LOPER, LT and LTRIA.  From these regions, 40 sam-

ples for Class 1 and 40 samples for Class 2 from each region are selected and tested. 

In general, increasing the number of features will increase the classification ac-

curacy for almost all regions except for LIPL, for both classifiers.  This is anticipated 

because the voxels that are selected for the experiment are voxels that are most active 

(selected based on SNR) i.e. 50 or 100 voxels with the highest intensity values.  Voxels 

having weak intensity values are considered irrelevant in this test.  However, for LIPL 

region, adding more active voxels add more noise rather than information thus resulting 

in lower percentage accuracies as compared to the other regions. This indicates that not 

only active voxels carry valuable information; the less active voxels also may have sig-
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nificant impact when evaluated collectively with active voxels from the same or other 

regions. 

This test is only a preliminary experiment conducted on the benchmark dataset 

downloaded from the StarPlus project.  In the next chapter, the same dataset will be 

tested on the proposed framework involving NeuCubeB structure as a reservoir, STDP 

as a learning rule and deSNN as the classifier.  deSNN classifier will be trained in a su-

pervised mode to classify the spike trains of the NeuCubeB into the pre-defined classes. 
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6 Chapter 6 

NEUCUBE BASED METHODOLOGY FOR fMRI DATA MODELLING 

This chapter explains the newly proposed methodology used in the research which is 

based on the networks of spiking neuron of the NeuCube.  Previous experiments involv-

ing NeuCube and spatio-temporal data have been conducted successfully and further 

exploration on its capability towards other STBD learning and classification are very 

much desirable.  The same architecture and principles of NeuCube which include the 

unsupervised and supervised mode of learning are used in the study.  However new 

modifications and new methods specifically in terms of data mapping, which is one of 

the main contributions in this thesis, is implemented to ensure that the intended STBD 

i.e. fMRI, could be recognized, learned and classified by the architecture.  We also pro-

posed a new method for visualization and interpretation of NeuCube-based model of the 

fMRI data.  This novel and new version of NeuCube is identified as NeuCubeB (Figure 

6-1) to represent the specific NeuCube version that purposely implemented and tested 

for fMRI brain data learning. 

The existing NeuCube is designed to model, map, learn and classify  many types 

of STD and it has been tested on stroke (Othman et al., 2014)  as well as fMRI 

(Doborjeh, Capecci, & Kasabov, 2014) and EEG data (Doborjeh, Wang, Kasabov, 

Kydd, & Russell, 2015).  In the experiment involving stroke occurrences (Othman et al., 

2014), all features of stroke (i.e. input neurons) are automatically mapped close to each 

other on a 3D SNN architecture and this architecture size is flexible according to the 

input neuron.  As for the fMRI experiment, only certain voxels are selected as input fea-

ture and they are mapped into the NeuCube 1,471 neurons, while maintaining the spatial 

information (Doborjeh et al., 2014).  In the EEG experiment, a 3D brain-like SNN ar-

chitecture is created in which input neurons are mapped to the same (�, �, �)	corre-

spondingly variables’ coordinate of the brain template to preserve the spatial informa-

tion.  As for the new version of NeuCube, it is built in a 3D brain-like architecture con-

sisting of 1,471 neurons, which is based on the 1 cm3 of the standard Talairach Tem-

plate, where all voxels will be considered as input features to the networks of spiking 

neurons.   
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The following sections describe the overall proposed definition of NeuCubeB 

and continue with the reviews on the three levels that defines the architecture.  The lev-

els are the input module, the NeuCubeB module and the output module.  In the lowest 

level (input), possible data encoding methods that may be used in the architecture are 

described.  Next, the module where most of the crucial processing is performed is ex-

plained (NeuCubeB module), especially in terms of its structure, the neuron model used, 

the learning rule employed and evolvability nature of the cube.  And finally the highest 

module is explained, which involves the output module where all the trained data in the 

NeuCubeB module is pumped into a SNN based classifier to be classified into prede-

fined classes. 

 

 

Figure 6-1:  Schematic diagram of NeuCubeB architecture involving mapping, learning 
and mining phases 

6.1 INDIVIDUAL INPUT NEURON MAPPING 

Different mapping approaches were used in previous experiments involving spatio-

temporal data of fMRI, EEG and stroke (Doborjeh et al., 2014, 2015; Othman et al., 

2014).  In this study, we proposed a new method for STBD fMRI data mapping that will 

determine the input features based on every voxels comprising a brain volume.  The 

first step in STDP NeuCubeB learning is to map each voxels’ coordinates into the Neu-

CubeB architecture.  Voxels coordinates are first extracted from the metadata of the 

fMRI data.  Since NeuCubeB architecture is built within the Talairach coordinate space, 
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it is important for the fMRI voxel coordinates to be on the same coordinate space and to 

have the same centre point.  Voxel coordinates mapping involves the following steps: 

1. Determine the mean of fMRI voxel coordinates	�����		
�
, �����		
�
		and 

�����		
�
, denoted as	�>

�, �> 
�and �>

� 

2. Determine stretch factors	��, �¡ and �¢ in each	�����		
�
, �����		
�
		and 

�����		
�
 directions respectively 

�� =	 �OPQ£�¤¥¤¦��OPQPO¤O	G	JO�/Q        (6.1) 

�¡ = 	 ¡OPQ£�¤¥¤¦�¡OPQPO¤O	G	§O�/Q        (6.2) 

�¢ =		 ¢OPQ£�¤¥¤¦�¢OPQPO¤O	.	¢O�/Q       (6.3)  

 
where �>��2
i�i¨
, �>��2
i�i¨
 and �>��2
i�i¨
		are	�, � and � minimum of 

NeuCubeB,	�>���>i>,�>���>i> and �>���>i>	are �,	�		and	� minimum of fMRI voxel 

coordinates. 

 

3. Calculate the newly mapped coordinates		��
�����	��
�
�, ��
�����	��
�
�		and		��
�����	��
�
� 
��
�����	��
�
� = �� ∗ (�����		
�
 − �>

�)    (6.4) 

��
�����	��
�
� = �¡ ∗ (�����		
�
 − �>

�)	    (6.5) 

��
�����	��
�
� = �¢ ∗ (�����		
�
 − z>

�)	    (6.6) 

 

where		m�����	
�
, �����	
�
, �����	
�
n	are the original fMRI voxels coordi-

nates and (��
�����	��
�
�, ��
�����	��
�
� , ��
�����	��
�
�) are the new mapped Neu-

Cube coordinates. 

Stretch factors	�� , 	�¡ and �« are calculated from each of	�, � and � coordinates 

of fMRI raw data.  For instance, in determining �� of StarPlus data, the centre value of �����	
�
 is determined from the mean value of	�, such that this center value will be 

mapped to the center of ��
�����	��
�
� of NeuCubeB and in this case is	0.  Let us con-

sider the following situation.  StarPlus �����	
�
 are ranging from 12 to 52 while Neu-

CubeB		��
�����	��
�
�		are ranging from -60 to 60 (as depicted in Figure 6-3).  Based 
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on Equation 6.1, the �stretch factor is	�� =	 .¬�)D	.	MD= 3 and this value will be multiplied 

to each �����	
�
 coordinate as in Equation 6.4 resulting in a new set 

of		��
�����	��
�
�.  For example StarPlus �����	
�
 = 32	 will be mapped to NeuCu-

beB		��
�����	��
�
� = 	3 ∗ (32 − 32) = 0.  The same mapping concept is applied in 

order to determine �¡ and �« and hence to determine �	and � coordinates of NeuCubeB. 

 

 

Figure 6-2:  Determination of �� value that will be used in mapping of		�����	
�
	into ��
�����	��
�
�	of NeuCubeB. 

 

The newly calculated voxel coordinates are used in the next step, which is to 

find those coordinates that are close to NeuCubeB points i.e. to be within a certain radius 

unit.  This is to ensure that, not a single coordinate of the newly calculated mapped co-

ordinates is located outside of the NeuCubeB brain.  This mapping is used to determine 

the sample set.  The exact set of sample (i.e. input neurons), which is later used for 

learning, is generated based on the 1,471 neurons of NeuCubeB. 

6.2 MAPPING ILLUSTRATION OF INDIVIDUAL NEURON AS INPUT 

NEURON 

The main and novel feature proposed in the NeuCubeB model is that, both NeuCubeB 

and fMRI neurons can be visualized in 3D view.  Specifically, we proposed a method 

for visualizing the fMRI data as input neurons in the Cube of NeuCubeB.  Visualization 

is calculated and derived based on the 1,471 of NeuCubeB neurons.  Coordinate map-

ping from the previous section is used to determine the exact set of input neurons to the 

SNN.  Based on each these 1,471 mapped neurons of NeuCubeB, the voxel inputs are 

defined as those fMRI voxels that are located within a certain radius unit from these 

neurons.  For illustration purposes, in this NeuCubeB model, the radius is assumed to be 

7 mm.  For example, as illustrated in Figure 6-3, for a NeuCubeB coordinate (indexed as 
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50) there are 6 fMRI voxel coordinates that are located within the specified 7 mm ra-

dius.  The voxel values from these 6 coordinates are averaged and this value is used as 

the exact input to the learning process.   Certainly this radius value can be changed i.e. 

selecting smaller/bigger radius will generate a different number of input features. 

 

 

Figure 6-3: NeuCubeB 50 and the neighbouring 6 fMRI voxel coordinates that are 
within 7 mm radius. 

6.3 MAPPING ILLUSTRATION OF NEURON CLUSTER AS INPUT 

The previous step generated 1,471 clusters of neurons in which not all of these neurons 

were the input neurons since some of the clusters were empty i.e. without neighbouring 

fMRI voxel.  For mapping illustration, Figure 6-4 shows NeuCubeB neurons of 500, 

1009 and 1105 from which both neurons 500 and 1105 were the input neurons because 

there are 8 and 16 neighbouring fMRI voxels around them respectively. Meanwhile 

neuron 1009 will not be the input neuron because there is no fMRI voxel within the 

specified radius.  The mapping from different subjects produces different numbers of 

input neurons, which is according to the number of voxels defined for each subject. 
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Figure 6-4: NeuCubeB 500, 1009 and 1105 with their neighbouring fMRI neurons 
viewed from �� direction. 

6.4 VISUALIZATION 

We also proposed that the neurons that are mapped previously (both NeuCubeB neurons 

and fMRI input neurons), are visualized in the same cube.  For illustration purposes 

Figure 6-5 shows these neurons mapping in which the black dots represent NeuCubeB 

neurons while the blue dots represent the fMRI neurons.  From the application, we can 

also easily rotate the NeuCubeB to see the neurons from any angle.  It is also possible to 

visualize these fMRI neurons i.e. input neurons in all three directions (in	��, �� and �� 

views) (Figure 6-6).  NeuCubeB also provides visualizations of neurons in a separate 

layer (i.e. � −slice), where each layer is captured in different times.  Figure 6-7 shows 

the NeuCubeB neurons which are represented with cyan squares while fMRI neurons are 

represented with blue squares where each sub-figure displays a slice of neurons.  From 

this figure, we can see that NeuCubeB is composed of 11 layers of � − -o9{F while fMRI 

data (i.e. StarPlus data), is composed of only 8 layers of	� − -o9{F.  These different 

visualizations are important to ensure that the fMRI neurons are properly mapped within 

the specified 1,471 NeuCubeB neurons, and these mappings were not implemented in 

the previous studies (Doborjeh et al., 2014, 2015; Othman et al., 2014).   
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Figure 6-5: NeuCubeB neurons (black dots) and fMRI input neurons (blue crosses) 
mapped and visualized together in 3D view in initialization stage. 
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Figure 6-6:  NeuCubeB neurons (black dots) and fMRI neurons (blue crosses) in three 
views (in	��, �� and �� views) 
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Figure 6-7: NeuCubeB (cyan squares) and fMRI (blue squares) input neurons mapping, 
in each z-slice, in which each sub-figure represent a single slice. 

 

One of the main advantages of the NeuCubeB model is that it also allows for 

visualization in terms of the neurons’ state i.e. the state of the neurons before (NeuCu-

beB   initial structure); and after unsupervised STDP learning as well as after supervised 

deSNN learning.  This is another contribution to the thesis in which we visualize the 

neuron states through the connections between the neurons, which are actually small 

world recurrent connections, created after each training cycles.  Following the evolving 

connectionist system paradigm (Kasabov, 2007), eSNN learn the fMRI data incremen-

tally by one pass propagation by creating and merging the spiking neurons.          

In STDP learning, synapses’ weight is increased or decreased based on the tim-

ing of the post-synaptic action potential in relation to the pre-synaptic action potential.  

If a pre-synaptic neuron fires first, the connection weight between the two neurons in-

creases (i.e. the difference in the spike time between the pre-synaptic and post-synaptic 

neurons is negative), otherwise it decreases.  Through STDP, connected neurons learn 

consecutive temporal associations from the fMRI data and new connections are also 

evolved. 

In addition, in the second stage of the model, we proposed that these spatio-

temporal fMRI data are fed into deSNN learning (Dhoble et al., 2012), and weights are 

further calculated and adjusted, using RO and STDP.  RO learning will initialize the 
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connection weights and STDP will make adjustments to those connection weights based 

on the spikes that follow after that.   

6.4.1 Model Interpretation 

We also proposed a new method for interpreting the neuron connections created inside 

the brain-like model of eSNN Cube in correlation with the fMRI spiking activity during 

the NeuCubeB learning.  As shown in Figure 6-8, spiking neurons activity before and 

after unsupervised (or supervised) learning is captured and visualized through connec-

tions between neurons that are presented with blue and red lines.  Blue lines represent 

positive weight connections (connection weight > 0) and red lines represent negative 

weight connections (connection weight < 0).  These connections are initialized, created 

and calculated in each training cycle that actually represents the spatio-temporal con-

nections between input variables in the network.  Active neurons are presented with 

blue dots and inactive neurons are presented with red dots. 

During initialization stage, NeuCubeB connections and their connection weights 

are initialized randomly.  After training processes, more densely interconnected neurons 

could be seen in different areas of the NeuCubeB resulted from higher positive spikes 

activity (higher connectivity weight) that have been created and calculated during the 

training.  Neuron connections with the stronger spikes can also be visualized through 

the model. 

Areas that are highly interconnected with positive blue lines are those areas that 

are highly activated when seeing certain stimulus.  Connection with maximum weights 

which implies stronger spikes can be visualized and the affected brain areas can be iden-

tified and labelled.  This extraction of new knowledge (stimulated brain areas) is defi-

nitely impossible to be gained from the traditional machine learning techniques.  For 

illustration purposes Figure 6-8 shows neurons connectivity before and after STDP 

learning.      
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Figure 6-8: Visualization of neurons connectivity for fMRI data stimulus before (top) 
and after (down) STDP learning in 3D view.  Positive connections are in blue and nega-
tive connections are in red. 

6.5 CHAPTER SUMMARY 

This chapter has elaborated the recently proposed NeuCubeB as a generic metholdogy 

that can be used to model and to learn spatio-temporal fMRI data.  From this model, the 

generic and novel contributions of this study can be identified in terms of Talairach 

template fMRI mapping (i.e. individual and cluster fMRI data mapping into the 

NeuCubeB structure), unsupervised and supervised learning of spatio-temporal fMRI 

data, classification, visualization of the model before and after unsupervised (or 

supervised) learning and finally in interpretation of the model.    
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In the next chapter, the first case study involving NeuCubeB and StarPlus data 

will be explained in detail.  It starts with the experimental setup, mapping of the data 

into the 3D structure, learning of the data in unsupervised mode, and learning in super-

vised deSNN mode.  The classification results from the deSNN classifier is tabulated 

and analyzed.  The dynamic brain state in terms of the neuron connections during the 

NeuCubeB learning is also captured, visualized and interpreted.   
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7 Chapter 7 

CASE STUDY 1: APPLICATION OF NEUCUBEB ON STARPLUS DATA 

This chapter presented our first original case study that uses the NeuCubeB model in 

mapping, learning, classifying and interpreting the StarPlus dataset.  We fed in the spa-

tio-temporal StarPlus fMRI data into the NeuCubeB over time (i.e. in its temporal order) 

and the coordinates of StarPlus fMRI were mapped into the architecture.  After the en-

coding process, these corresponding voxel values are the input spikes to the system that 

will then be used in the learning phase.  The output from this phase will be trained again 

using a classifier to determine to which class these data belongs.  Each phase will be 

explained in detail in the next sections. 

7.1 EXPERIMENTAL SETUP 

The experiment (Mitchell et al., 2003) is conducted by executing 2 sets of trials in 

which half of the trials, (a subject is first presented with a Picture stimulus for 4 sec-

onds, then a rest period for 4 seconds and finally the subject is presented with a Sen-

tence stimulus for another 4 seconds), are identified as PS trials.  For the other half of 

trials, a subject is first presented with a Sentence stimulus, followed by a rest period and 

then Picture stimulus (SP trials).  For our experiment, we took the whole lot of 1-24 

time points of PS dataset to be Class 1 and the same time points of SP dataset to be 

Class 2, to differentiate and classify whether the subject is viewing a Picture or viewing 

a Sentence.  There are 10 samples for each class.  Experiment was conducted for each 6 

subjects who are labelled as S04799, S04820, S04847, S05675, S05680 and S05710.    

7.2 MAPPING OF 3D STARPLUS fMRI DATA INTO NEUCUBEB 

As explained in Chapter 6, we have to map the StarPlus voxels’ coordinates into the 3D 

NeuCubeB architecture.  Voxels coordinates are first extracted from the metadata and 

this voxel extraction is according to the steps explained in the previous chapter. 
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7.2.1 Neuron Mapping for Each Subjects 

The newly calculated StarPlus coordinates are used in the next step, which is to find the 

coordinates that are close to NeuCubeB points i.e. to be within a certain radius unit.  

NeuCubeB neurons are constructed in 11 slices while StarPlus neurons are constructed 

in 8 slices (�2
i�i¨
 = 11 and	�­�
�®¯i� = 8).  In this experiment, we set the radius to 

7.  This is to ensure that, not a single coordinate of new StarPlus is located outside of 

the NeuCubeB brain.   

Figure 7-1 until Figure 7-26 show NeuCubeB and fMRI StarPlus neuron map-

ping for all 6 subjects in different views; and their details are presented in Table 7-1.  

For instance for subject S04799, its original fMRI volume has 4,949 voxels and Figure 

7-1 shows these 4,949 voxels mapping in 3D view while Figure 7-3 shows the same 

subject mapping but in ��, �� and �� views respectively.  In Figure 7-1 NeuCube neu-

rons are in black dots while StarPlus neurons are in blue dots.  In Figure 7-3, neuron 

mapping in	�� and ��	views provide visualization as to which 8 � −slices of StarPlus 

are mapped into the 11 � −slices of NeuCubeB.  This analysis ensures that the each � −slice of StarPlus is within the NeuCubeB slices. 

We can also visualize the different regions of the brain in the NeuCubeB model 

(Figure 7-2) and each region is labelled and illustrated with different representation as 

tabulated in Table 7-2.  Another possible visualization is in terms of brain slices (Figure 

7-4) where each sub-figure represents a single slice (� −slice) of the brain data.  Sub-

figures which have only cyan squares mean that no StarPlus coordinates i.e. no input 

neurons are mapped into that particular	� −slice (for example in	� = {−40,−30,60}).  
The subsequent figures (Figure 7-5 to Figure 7-24) show the neuron mapping for the 

other 5 subjects.   

This mapping method is proposed to be used in determining the sample set.  For 

instance, as tabulated in Table 7-1, for subject S04799, the number of voxels specified 

is 4949 and thus implying 4,949 x 3 coordinates.  The exact set of sample, which is later 

used for learning, is generated based on the 1,471 neurons of NeuCubeB i.e. 24 x 1,471 x 

20, calculated from the base sample of 24 x 4,949 x 20.  From the specified 1,471 Neu-

CubeB neurons, only 817 neurons were used as input neurons for subject S04799 i.e. 

other unselected neurons were those NeuCubeB neurons without mapped StarPlus neu-

rons.  These 817 input neurons were actually StarPlus neurons in clusters, which held 

the average of StarPlus neurons that were located within the radius. 
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Table 7-1: Voxel details for each subject 

Subject/ 
Item 

S04799 S04820 S04847 S05675 S05680 S05710 

Number of 
voxel  

4,949 5,015 4,698 5,135 5,062 4,634 

StarPlus co-
ordinates 

4,949 x 3 5,015 x 3 4,698 x 3 5,135 x 3 5,062 x 3 4,634 x 3 

Base sample  24 x 4,949 
x 20 

24 x 5,015 
x 20 

24 x 4,698 
x 20 

24 x 5,135 
x 20 

24 x 5,062 
x 20 

24 x 4,634 
x 20 

Exact sample 24 x 1,471 
x 20 

24 x 1,471  
x 20 

24 x 1,471 
x 20 

24 x 1,471 
x 20 

24 x 1,471 
x 20 

24 x 1,471 
x 20 

Input neuron 817 840 821 847 803 747 
 
 

 

Figure 7-1: Mapping of 4,949 fMRI neurons (blue crosses) into NeuCubeB input neu-
rons (black dots) for subject S04799 in 3D view. 
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Figure 7-2: NeuCubeB and segmented StarPlus fMRI neurons for subject S04799.  Dif-
ferent colours represent different brain areas. 

 

Table 7-2: Brain region representation 

Region Labelled Region Representation 
Calcarine Sulcus CALC Black dot (.) 
Left Inferior Parietal Lobe LIPL Blue dot (.) 
Left Temporal Lobe LT Yellow dot (.) 
Left Triangularis LTRIA Magenta dot (.) 
Left Opercularis LOPER Cyan dot (.) 
Left Intraparietal Sulcus LIPS Green dot (.) 
Left Bilateral Dorsolateral Prefrontal Cortex LDLPFC Red dot (.) 
Left Frontal Eye Field LFEF Red cross (x) 
Left Inferior Frontal Gyrus LIFG Black cross (x) 
Left Inferior Temporal Lobe LIT Yellow cross (x) 
Left Posterior Precentral Sulcus LPPREC Magenta cross (x) 
Left Supramarginal Gyrus  LSGA Cyan cross (x) 
Left Superior Parietal Lobe LSPL Green cross (x) 
Right Bilateral Dorsolateral Prefrontal Cortex RDLPFC Red circle (o) 
Right  Frontal Eye Field RFEF Green circle (o) 
Right Inferior Parietal Lobe RIPL Cyan circle (o) 
Right Intraparietal Sulcus RIPS Magenta circle (o) 
Right Inferior Temporal Lobe RIT Yellow circle (o) 
Right Opercularis ROPER Black circle (o) 
Right Posterior Precentral Sulcus RPPREC Black asterisk (*)  
Right Supramarginal Gyrus RSGA Red asterisk (*) 
Right Superior Parietal Lobe RSPL Yellow asterisk (*) 
Right Temporal Lobe RT Magenta asterisk (*) 
Right Triangularis RTRIA Cyan asterisk (*) 
Supplementary Motor Area SMA Green asterisk (*) 
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Figure 7-3: NeuCubeB neurons (black dots) and fMRI S04799 input neurons (blue dots) 
in three views (in	��, �� and �� views). 
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Figure 7-4: NeuCubeB neurons (cyan squares) and fMRI S04799 input neurons (blue 
dots) mapping, in each 11	� −slice, in which each sub-figure represents a single slice. 

 

 

Figure 7-5: Mapping of 5,015 fMRI neurons (blue crosses) into NeuCubeB input neu-
rons (black dots) for subject S04820 in 3D view. 
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Figure 7-6: NeuCubeB and segmented StarPlus fMRI neurons for subject S04820.  Dif-
ferent colours represent different brain areas. 
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Figure 7-7: NeuCubeB neurons (black dots) and fMRI S04820 input neurons (blue dots) 
in three views (in	��, �� and �� views). 
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Figure 7-8: NeuCubeB neurons (cyan squares) and fMRI S04820 input neurons (blue 
dots) mapping, in each 11	� −slice, in which each sub-figure represents a single slice. 

 

 

Figure 7-9: Mapping of 4,698 fMRI neurons (blue crosses) into NeuCubeB input neu-
rons (black dots) for subject S04847 in 3D view. 
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Figure 7-10: NeuCubeB and segmented StarPlus fMRI neurons for subject S04847.  Dif-
ferent colours represent different brain areas. 
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Figure 7-11: NeuCubeB neurons (black dots) and fMRI S04847 input neurons (blue 
dots) in three views (in		��, �� and �� views). 
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Figure 7-12: NeuCubeB neurons (cyan squares) and fMRI S04847 input neurons (blue 
dots) mapping, in each 11	� −slice, in which each sub-figure represents a single slice. 

 

 

Figure 7-13: Mapping of 5,135 fMRI neurons (blue crosses) into NeuCubeB input neu-
rons (black dots) for subject S05675 in 3D view. 
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Figure 7-14: NeuCubeB and segmented StarPlus fMRI neurons for subject S05675.  Dif-
ferent colours represent different brain areas. 
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Figure 7-15: NeuCubeB neurons (black dots) and fMRI S05675 neurons (blue dots) in 
three views (in	��, �� and �� views). 
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Figure 7-16: NeuCubeB neurons (cyan squares) and fMRI S05675 input neurons (blue 
dots) mapping, in each 11	� −slice, in which each sub-figure represents a single slice. 

 

 

Figure 7-17: Mapping of 5,062 fMRI neurons (blue crosses) into NeuCubeB input neu-
rons (black dots) for subject S05680 in 3D view. 
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Figure 7-18: NeuCubeB and segmented StarPlus fMRI neurons for subject S05680.  Dif-
ferent colours represent different brain areas. 
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Figure 7-19: NeuCubeB neurons (black dots) and fMRI S05680 neurons (blue dots) in 
three views (in	��, �� and �� views). 
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Figure 7-20: NeuCubeB neurons (cyan squares) and fMRI S05680 input neurons (blue 
dots) mapping, in each 11	� −slice, in which each sub-figure represents a single slice. 

 

 

Figure 7-21: Mapping of 4,634 fMRI neurons (blue crosses) into NeuCubeB neurons 
(black dots) for subject S05710 in 3D view. 
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Figure 7-22: NeuCubeB and segmented StarPlus fMRI neurons for subject S05710.  Dif-
ferent colours represent different brain areas. 
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Figure 7-23: NeuCubeB neurons (black dots) and fMRI S05710 input neurons (blue 
dots) in three views (in	��, �� and �� views). 
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Figure 7-24: NeuCubeB neurons (cyan squares) and fMRI S05710 input neurons (blue 
dots) mapping, in each 11	� −slice, in which each sub-figure represents a single slice. 

 

It is also possible to visualize the 7 ROIs of StarPlus neurons that were used in 

the classification procedures.  To better visualize the different brain regions, each ROI 

was segmented and plotted in different colours as depicted in Figure 7-25.  Figure 7-27 

is used to visualize the segmented fMRI StarPlus data according to the regions.  The 

spatio-temporal relationship between these input neurons can be segmented as an iden-

tical region in terms of the spatial correlation between the neighbouring neurons and 

their temporal spiking activities.  Different regions of the brain are presented in different 

colours and each region is labelled appropriately. 
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Figure 7-25: NeuCubeB and StarPlus 7 ROIs neurons mapping in	��	 view.  Different 
colour represents different ROI.  Black dots are NeuCubeB coordinates and blue crosses 
are the other StarPlus neurons. 

 

 

Figure 7-26: NeuCubeB and StarPlus 25 ROIs neurons mapping in 2D view. 
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Figure 7-27: NeuCubeB and segmented StarPlus 25 ROIs neurons mapping in 3D view. 

 

We can conclude that our proposed mapping technique provides a new insight of 

learning and classifying spatio-temporal StarPlus fMRI data which was not studied be-

fore (Kasabov, 2013).  We maintained and made full use of the spatio-temporal infor-

mation.  Pervious approaches had either disregard one of the spatio-temporal compo-

nents or treated the data as a static data (Brodersen et al., 2012; Georgieva & Torre, 

2013; Rustandi, Mitchell, & Xing, 2010).  Visualization of the data across the subjects 

also presents a new method in analyzing the input neurons, which will be used later. 

7.3 DATA ENCODING 

fMRI input data that have already been mapped as described in previous section is en-

coded using AER method which is based on the difference between 2 consecutive voxel 

values of the same input variable.  If the difference is greater than certain threshold 

value, which is defined through a grid search, a spike will be generated.  For instance in 

Table 7-3, for subject S04799, after mapping process there are 817 input neurons gener-

ated.  From this 817 input neurons, AER encoding method will produce 1,634 spike 

states in which 240 x 1,634 spike states are for training and another 240 x 1,634 spike 
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states are for validation (i.e. assuming 50-50 split of data for training and validation re-

spectively).  The spike state length which is 240 is generated based on the following 

formula: time length (24s) x number of samples (10). 

Table 7-3:  Total number of neurons for each subject, the actual input neurons and the 
corresponding spike states for training and validation 

Subject Total Neurons 
Actual Input 

Neuron 
Spike States for 

Training 
Spike States for 

Validation 
S04799 4,949 817 240 x 1,634 240 x 1,634 
S04820 5,015 840 240 x 1,680 240 x 1,680 
S04847 4,698 821 240 x 1,642 240 x 1,642 
S05675 5,135 847 240 x 1,694 240 x 1,694 
S05680 5,062 803 240 x 1,606 240 x 1,606 
S05710 4,634 747 240 x 1,494 240 x 1,494 

7.4 DATA LEARNING 

The previous experimental setting in (Kasabov et al., 2014) was designed and tested to 

access the feasibility of NeuCube in predicting stroke occurrences for a specific person 

and further experiment is done to access on other SSTD namely fMRI data.   In our ex-

periment, for each six subjects from the StarPlus data, 24 time points are extracted from 

the raw data with selected meta.cond=2; which indicates the interval is a Sen-

tence/Picture trial in which the sentence is not negated e.g. “Is it true that the plus is be-

low the dollar?”   These sets of image sequences are labelled into classes of person see-

ing a Picture or seeing a Sentence.   There were 20 samples generated, 10 samples for 

each class.   

STDP learning method is applied in the NeuCubeB to initialize, modify and re-

tain connection weights (memory) throughout the unsupervised learning stage.  As illus-

tration, the following parameter values were selected for classification accuracy: 

 

o NeuCubeB is constructed with 1,471 neurons 

 

o The threshold for the AER is 2.375 i.e. when the input value variable is 

greater (smaller) than 2.375, there will a positive (or negative) spike gener-

ated and entered into the SNN.  Data is not normalized to minimize error or 

loss of information. 
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o SWC is used to initialize neurons connection in the NeuCubeB with the ra-

dius of initial connection is set to 0.15.  Initial connections between neurons 

are generated probabilistically. 

 

o The threshold of LIFM neurons is 0.5 

 

o Leak parameter of the LIFM neurons is 0.002;  

 

o STDP learning rate is 0.01; 

 

o Number of training is 5 times;  

 

o Mod parameter is 0. 4 and drift is 0.25.  

 

The combination of parameter values stated above is determined after a thor-

ough grid search from countless experiment runs, which resulted with highest percent-

age accuracy.  For illustration purposes Figure 7-27 represents the 1,471 neurons of the 

brain-like cube were mapped according to the Talairach brain atlas.  After STDP learn-

ing is completed, the dynamic brain activities were captured inside the Cube, while the 

spiking neurons were trained with the time series data (Picture and Sentence spike se-

quences).  The brain states are captured before and after unsupervised learning (Figure 

7-28 left and right).  The number of neurons connection has increased and different neu-

ron connections are created and added.   In certain areas of the NeuCubeB, the connec-

tions are more condensed as compared to the other area suggesting the increase in the 

calculated synaptic weight and consequently an increase in the number of connections 

between neurons.  This implies that more spikes are generated in that area as compared 

to areas with no connections i.e. no spike.  The connections between neurons are repre-

sented by blue lines if the calculated weights are greater than 0 (i.e. positive connec-

tions), while the weights that are less than 0 are represented by red lines (i.e. negative 

connections).  The connection weight is increased by STDP rate if pre-synaptic neurons 

fire first before the post-synaptic neurons.  As a result, spikes are emitted if the calcu-

lated neuron potential has reached the stated threshold, thus resulting in connected neu-

rons.  Figure 7-28 demonstrates connections between neurons after initialization process 

and after unsupervised learning is completed. 
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Figure 7-28: Neuron connections after initialization (left) and neuron connections after 
unsupervised learning (right). 

 

From the figure above, we can conclude that more positive weight connections 

(blue lines) i.e. more connections were formed between the neurons after the unsuper-

vised learning than before the learning process (i.e. after initialization).  Different brain 

areas are also activated.  For visualization purposes, different connection weights can be 

specified to show areas of the brain with less/more spikes activities, ranging from the 

connection weight > 0 to the maximum connection weight determined before/after the 

unsupervised/supervised learning.    

7.5 MINING USING DYNAMIC EVOLVING SPIKING NEURAL NETWORKS 

(deSNN) 

In our study, the potential of deSNN as a training algorithm is further explored using 

spatio-temporal StarPlus fMRI data.  deSNN as described in (Dhoble et al., 2012) 

achieve fast and accurate learning of AER data for STPR as compared to eSNN and 

SNN that uses only SDSP.   With deSNN, for every fMRI input, the connection weights 

are initialized using the RO learning rule, the connections weights for consecutive 

spikes are adjusted using SDSP learning rule, and the maximum of post synaptic poten-

tial and threshold value are calculated.  The detail algorithm is as presented in Section 

3.3.1.  For our experiment, we use two classes of fMRI data of a subject - either that 

subject is viewing a Picture or viewing a Sentence.  The parameters used in the experi-

ment are presented in the previous section.  The training and testing is conducted using 

50:50 split. 
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The SVM experiment uses Polynomial Kernel of first degree while MLP ex-

periment uses 20 hidden nodes and one output, with learning rate of 0.001 and 500 it-

erations.  The data design for both NeuCubeB and standard classifiers are as in Figure 

7-29.  In NeuCubeB model, brain volumes within the same trial are learned as one spa-

tio-temporal pattern i.e. one sample and is propagated one after another.  The signal in-

tensity of each brain volume at time point "Z within a trial is treated as a voxels	:, and 

all brain volumes within a trial of the same experimental condition as a sample	´�.  Each 

sample will be 24 x 1,471 voxel and thus generating 24 x 1,471 x 20 samples.  Whereas 

in standard classifiers, brain volumes within the same trial are concatenated and taken as 

a single sample i.e. each sample will be 35,304 voxels generating 35,304 x 20 samples 

for StarPlus data. 

(a)  

(b)

 

 

   

 

Figure 7-29: Data design for: (a) NeuCubeB model.  Brain volumes within the same trial 
are learned as one spatio-temporal pattern i.e. one sample and propagated one after an-
other.  (b) Standard classifiers model.   Brain volumes within the same trial are concate-
nated and taken as a single sample. 
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7.6 RESULT AND DISCUSSION 

7.6.1 Classification Results 

For the experiment, we have used the NeuCubeB model of 1,471 spiking neurons with 

AER as the input data encoding method, STDP as the learning method and deSNN as 

the classifier.  A snapshot of the NeuCubeB software implementation after a successful 

classification is presented in Figure 7-30.  The best percentage accuracies obtained for 

the designed and trained NeuCubeB against eSNN and standard classifiers (SVM and 

MLP) for 20 samples for each subject are as depicted in Table 7-4.  As for the NeuCu-

beB and eSNN models, the networks are trained in unsupervised and supervised stages.  

For example for subject S04847 the overall classification accuracy obtained in NeuCu-

beB was 90% (100% for Class 1 and 80% for Class 2), in eSNN the overall classifica-

tion accuracy was 60% (40% for Class 1 and 80% for Class 2), in SVM was only 45% 

(60% for Class 1 and 30% for Class 2) and in MLP was 65% (70% for Class 1 and 60 

for Class 2).  For the experiment involving subject S04820, eSNN and deSNN produce 

a comparatively similar result which was 90% of accuracy.  In other experiment involv-

ing subject S05675, eSNN produced a slightly better accuracy performance compared to 

deSNN which was 90% for eSNN and 80% for deSNN.  However, for the other experi-

ments involving the other 4 subjects i.e. S04799, S04847, S05680 and S05710, deSNN 

produced better results compared to eSNN with the overall classification accuracies of 

90%.  From these results, we can conclude NeuCubeB model produced higher accuracy 

percentage results than eSNN, SVM or MLP in almost all experiments.   

Figure 7-31(a) shows neurons in the Cube in which blue dots represent NeuCu-

beB neurons and yellow dots represent StarPlus input neurons.  The Cube is in initializa-

tion stage.  Figure 7-31(b) shows the spiking activity in the Cube during the learning 

process.  Active neurons are represented in red, inactive neurons are represented in blue, 

positive input neurons are represented in magenta, negative input neurons are repre-

sented in cyan and zero input neurons are represented in yellow.  Neurons connectivity 

before and after training are displayed in Figure 7-31(c) and (d), in blue lines (i.e. posi-

tive spikes) and red lines (i.e. negative spikes).  More neuron connections were created 

after the learning process than before the learning process. 
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Figure 7-30: A snapshot of a software implementation of the NeuCubeB architecture for 
classification of 2 class fMRI data for subject S04847.  The parameter values are as in 
the Setting parameter box.  The classification model used is deSNN an accuracy of 
100% for Class 1 and 80% for Class 2 

 

Table 7-4: Classification results between classical machine learning and NeuCubeB.  
The dataset consists of 20 samples of 1,471 pixel value variables 

Subject 
/Method  

SVM MLP eSNN NeuCubeB 

S04799 50 (20, 80) 35 (30, 40) 60(60, 60) 90 (100, 80) 
S04820 40 (30, 50) 75 (80, 70) 90 (100, 80) 90 (80, 100) 
S04847 45 (60, 30) 65 (70, 60) 60 (40, 80) 90 (100, 80) 
S05675 60 (40, 80) 30 (20, 40) 90 (100, 80) 80 (100, 60) 
S05680 40 (70, 10) 50 (40, 60) 70 (80, 60) 90 (80, 100) 
S05710 55 (60, 50) 50 (50, 50) 50 (60, 40) 90 (100, 80) 
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(a) (b)  

 

(c) (d)  

Figure 7-31: Visualization of fMRI data model and connectivity between neurons of 
eSNN: (a) no spiking activity yet, inactive neurons are in blue, fMRI data neurons (in-
put neurons) are in yellow; (b) spiking activity: active neurons are represented in red, 
inactive neurons are represented in blue, positive input neurons are represented in ma-
genta, negative input neurons are represented in cyan and zero input are represented in 
yellow; (c) neurons connectivity before training (small world connection), positive con-
nections are in blue and negative connections in red; (d) neurons connectivity after 
training. 

 

The results clearly show that NeuCubeB model is much more applicable to han-

dle complex data because without filtering any noise from the data, the results are im-

proved than classical machine learning methods mentioned before.  This proves that 

noise also carries valuable information in defining association between SSTD samples, 

but failed to be recognized and processed in conventional methods.  The deSNN model 

that combines RO and SDSP learning offers a fast one pass propagation of fMRI data, 

on-line supervised and unsupervised learning, modelling and pattern recognition of the 

StarPlus fMRI data.  In particular, the synaptic drift parameter makes the synapse dy-
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namic i.e. it is modifiable during the learning process and this parameter is important 

although the value specified is small.  The model is also capable to evolve and merge 

neurons and connections in an incremental, adaptive and ‘life-long’ learning.    Addi-

tionally, classical machine learning methods clearly not suitable in analyzing complex 

SSTD that have spatial and temporal information, because their capability is only lim-

ited to only vector and static based kind of data. 

7.7 NEURONS CONNECTIVITY 

We also proposed the interpretation of the trained data in terms of neurons connectivity 

in the NeuCubeB before and after the learning process.  Taking subject S04847 for illus-

tration, during the unsupervised training, the data is mapped into relevant areas of the 

NeuCubeB over time and unsupervised learning is used to calculate the connection 

weights between neurons.  Figure 7-32 to Figure 7-35 show the neurons connectivity 

(positive and negative connections) before and after 5 times of unsupervised trainings 

for data Sentence and Picture.  Blue lines represent positive connections (i.e. connection 

weight > 0) and red lines represent negative connections (i.e. connection weight < 0).  

Neurons in blue indicate active neurons while red neurons indicate inactive neurons.  

Neuron connections are created and calculated in each training cycle that actually repre-

sents spatio-temporal relationship between input neurons (i.e. input voxels) in the net-

work.   

7.7.1 NeuCubeB Visualization for Spatio-temporal Connections Based on the fMRI 

Spiking Activity for Sentence stimulus 

After the NeuCubeB learning processes, the spatio-temporal relationship between the 

neurons was analyzed with respect to the data collected.  More densely interconnected 

neurons could be seen in different areas of the NeuCubeB resulted from higher connec-

tivity that has been created i.e. more spikes emission, during the learning process.  Dur-

ing initialization stage, NeuCubeB connections and their connection weights are initial-

ized randomly (Figure 7-32).  The left and right figures show the connections with con-

nection weight >= 0.19 (i.e. stronger spikes) and weight >=	0.09 (i.e. weaker spikes) 

respectively.  For this experiment, the maximum connection weight calculated was 0.2 

before the learning process and 0.2079 after the learning process.  Areas that are highly 

interconnected with positive blue lines are those areas that are highly activated when 



100 

 

seeing Sentence stimulus i.e. more spikes are generated from the input neurons.  Higher 

NeuCubeB weights which imply stronger spikes are initialized somewhere in LIFG, 

LDLPFC, LPPREC, LTRIA, LSPL, CALC, RTRIA and RIT areas.   

After 5 times of STDP unsupervised learning these connections has increased 

and more positive spikes are created.  More and stronger NeuCubeB connections are 

generated on areas specifically on LSGA, RSGA, LTRIA, RTRIA, ROPER, LFEF, 

RFEF and CALC (Figure 7-33).  Higher NeuCubeB weights indicating stronger spikes 

(Figure 7-33 left) are identified in LTRIA, RTRIA, and RSGA suggesting input neurons 

in these areas emit stronger spikes than neurons in other areas.   

It can be concluded that LTRIA, RTRIA and RSGA are most activated and 

stimulated with the Sentence stimulus.  These brain areas are known to involve among 

all in semantic definition, semantic working memory and language processing tasks 

(LTRIA and RTRIA) (Gabrieli, Poldrack, & Desmond, 1998), and language perception 

and processing (RSGA) (Gazzaniga, Ivry, Mangun, & Steven, 2009).  

7.7.2 NeuCubeB Visualization for Spatio-temporal Connections Based on the fMRI 

Spiking Activity for Picture stimulus 

The same procedures as in the previous section are taken for the Picture stimulus.   The 

dynamic brain state was captured inside the NeuCubeB and more spikes were emitted 

after the learning process (Figure 7-35) than before the learning process (Figure 7-34).  

The left and right figures in Figure 7-34 shows the NeuCubeB input neuron connections 

created with connection weight >= 0.19 (stronger spikes) and weight >=	0.09 (weaker 

spikes) respectively.  Blue lines represent positive connections while red lines represent 

negative connections, and blue neurons represent active neuron while red neuron repre-

sent inactive neuron.  Higher NeuCubeB weights (i.e. more spikes are emitted) are ini-

tialized in distributed locations that include CALC, LDLPFC, RDLPFC, LT, RT, 

LSGA, RSGA, LTRIA, RTRIA, ROPER, LFEF, RFEF,LIPL and RIPL areas. 

More neuron connections and stronger spikes are created after 5 times of STDP 

learning (Figure 7-35).  Higher NeuCubeB weights are identified in CALC, LIPL, LT, 

LSGA, LFEF, RFEF, ROPER and RIPL areas, suggesting the areas that receive the 

most signals from the Picture stimulus i.e. more positive spikes are emitted.   

In short, neurons in CALC, LIPL, LT, LSGA, LFEF, RFEF, ROPER and RIPL 

areas emitted stronger spikes than neurons in other brain areas.  These brain areas are 
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known to involve activities such as in visual processing (CALC) (Wandell, Brewer, & 

Dougherty, 2005), language processing (LSGA) (Gazzaniga et al., 2009), continuing 

attention (RIPL and LIPL) (Singh-Curry & Husain, 2009), visual memories (LT) (Kolb 

& Whishaw, 1996),  visual attention and eye movement (RFEF and LFEF) (Schall, 

2004), and language processing (ROPER) (Foundas, Eure, Luevano, & Weinberger, 

1998). 

 

 

Figure 7-32: Visualization of neurons connectivity for data Sentence stimulus after ini-
tialization in 3D view.  For visualization purposes, displayed connections are based on 
weight more than 0.19 (left) and weight more than 0.09 (right). 

 

 

Figure 7-33: Visualization of neurons connectivity for data Sentence stimulus after 
STDP learning in 3D.  For visualization purposes, displayed connections are based on 
weight more than 0.19 (left) and weight more than 0.09 (right). 
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Figure 7-34: Visualization of neurons connectivity for data Picture stimulus after ini-
tialization in 3D view.  For visualization purposes, displayed connections are based on 
weight more than 0.19 (left) and weight more than 0.09 (right). 

 

 

Figure 7-35: Visualization of neurons connectivity for data Picture stimulus after STDP 
learning in 3D view.  For visualization purposes, displayed connections are based on 
weight more than 0.19 (left) and weight more than 0.09 (right). 

 

From these observations, we can conclude that seeing a Sentence (or Picture) in-

volves activation of neurons (emission of spikes) in many distributed and sometimes 

overlapped areas.  For instance seeing a Picture activates similar neuron areas as seeing 

a Sentence which are CALC, ROPER, LSGA, LFEF and RFEF.  This suggests that both 

experiment conditions created more and stronger connections in those areas than other 
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brain areas.  The connectivity was especially enhanced between the input neurons (i.e. 

input voxels) in these areas.   

Neurons in RSGA, LDLPFC, RDLPFC, LT and RT regions are more densely 

connected in Sentence stimulus as compared to the Picture stimulus suggesting activi-

ties of visual memory processing (LT and RT) (Kolb & Whishaw, 1996), information 

processing and perception (LDLPFC and RDLPFC) (Miller, Freedman, & Wallis, 2002) 

and language perception and processing (RSGA) (Gazzaniga et al., 2009).    Areas with 

fewer or no connected lines are those areas in the NeuCubeB that are not really affected 

by either stimulus i.e. no spike was emitted such as in region SMA which are basically 

activated by physical voluntary/control movement.   

In a nutshell, the analysis on the neurons connectivity provides a new method in 

analyzing the StarPlus data especially in visualizing the neuron connections which is 

based on the spiking activity of the data.  By using the neuron connection weight, we 

can visualize from the model which neuron connections are stronger and which connec-

tions are weaker.  We can also identify the regions with more spiking activities through 

the density of the connected neurons.  This visualization is not provided in the previous 

studies involving the StarPlus data. 

7.8 CHAPTER SUMMARY 

The outcome from the first classification experiment through the application of NeuCu-

beB model with StarPlus fMRI data validates the NeuCubeB feasibility in analyzing 

complex spatio-temporal data.  Applying this model on fMRI data have greatly im-

proved classification accuracy as compared to other standard classifiers in determining 

different patterns of voxels.  In addition to this, the output from the second experiment 

suggests that Sentence or Picture stimulus activates different but sometimes overlapped 

brain regions.  More densely connected neurons could be seen in certain regions as 

compared to other regions suggesting more neurons activities (i.e. more spikes) had oc-

curred during STDP learning in that particular regions.  From both experiments, we can 

also conclude that NeuCubeB model offers a better understanding and better analysis of 

the StarPlus data compared to the previous studies involving the same dataset.  Specifi-

cally in terms of visualization and neurons connectivity interpretation of the spatio-

temporal data, the proposed NeuCubeB model has presented other benefits that conven-

tional classifiers have failed to provide. 
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In the next chapter, NeuCubeB is tested on the second dataset involving visual 

object classification.  The purpose of this experiment is to classify a stimulus against 

another stimulus i.e. Face versus Scrambled Pictures, and to classify a stimulus against 

the other 7 stimuli (Face versus Not Face and Scrambled Pictures versus Not Scrambled 

Pictures).  The experimental setup, voxels mapping, unsupervised learning and super-

vised learning will be explained in detail.  The classification results from the deSNN 

classifier technique is also tabulated and analyzed, together with the analysis about neu-

rons connectivity that were created in the network before and after the learning process. 
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8 Chapter 8 

CASE STUDY 2: APPLICATION OF NEUCUBEB METHODOLOGY ON HAXBY 

VISUAL OBJECT RECOGNITION DATA 

Our new NeuCubeB model is experimented with another set of fMRI data which is in a 

different format from the StarPlus.  This chapter presented our second original case 

study that uses the NeuCubeB model in mapping, learning, classifying and interpreting 

the Haxby dataset.  Although the same procedures (as in the first case study) are applied 

to the data, the complexity of this experiment, especially in the mapping process, poses 

a new challenge to our research.  This is because of the NII format that this data hold.  

NII file type is in principal associated with NIfTI-1 data format defined by Neuroimag-

ing Informatics Technology Initiative, to save volumetric fMRI data.  A single volumet-

ric data consists of a header, with extension	. hdr to store meta-information, the actual 

data, with extension . 9]A and other extra information. 

The same generic methodology explained and used in Chapter 6 is used again in 

this second experiment involving a different set of complex SSTD i.e. named as 

Haxby’s visual object recognition (Haxby et al., 2001) downloaded from OpenfMRI 

(Haxby et al., 2011).  The successful results in the previous experiment motivate this 

new experiment.  The generic NeuCubeB architecture as displayed in Figure 6-1 will be 

used.  Our second mapping approach is different from the previous experiment because 

of the different brain dimension and size, as well as in the number of voxels. 

8.1 EXPERIMENTAL SETUP 

This experiment involves taking the neural response, as reflected in hemodynamic 

changes, in six different subjects (five female and one male).  However, only five sub-

jects (SUB001, SUB002, SUB003, SUB004 and SUB006) are considered for the ex-

periments because the data for SUB005 is incomplete.  They were presented with one-

back repetition of Faces, Houses, Cats, Bottles, Scissors, Shoes, Chairs, and control 

Nonsense Patterns stimulus, all in gray-scaled colours as shown in Figure 8-1.  Each 

stimulus is labelled as COND001 (House), COND002 (Scrambled Pictures), COND003 

(Cat), COND004 (Shoe), COND005 (Bottle), COND006 (Scissors), COND007 (Chair) 
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and COND008 (Face).  All stimuli from the category have the same base level name 

and the nonsense patterns were phase-scrambled images.  For each subject, there are 12 

time-series obtained where each time series began and ended with 12 seconds of rest 

and contained 8 stimulus blocks of 24 seconds duration, one for each category, sepa-

rated by 12seconds intervals of rest.  Each stimulus is displayed for 0.5 seconds with 1.5 

seconds interval between the stimuli.  The same face or object stimulus is photographed 

in 4 different angles, and there are 12 different exemplars for each stimuli category.   

The fMRI scanning is set on a GE 3T scanner (General Electric, Milwaukee, WI) [repe-

tition time (TR) = 2500 millisecond, 40 3.5-mm-thick sagittal images, field of view 

(FOV) = 24 cm, echo time (TE) = 30 millisecond, flip angle = 90o] where high-

resolution images were obtained for each subject to provide detailed anatomy.  

In this second experiment, we extracted the raw data from the file body. nii	specified in the 40 x 64 x 64 x 121 .img structure.  The . img structure is ex-

tracted and tabulated for each of the 5 subjects from the first stimuli displayed until the 

eighth stimuli, for each 12 experiment runs (time series).  In every experiment run, a 

subject is presented with a stimulus of different exemplars for 0.5 seconds, another 1.5 

seconds for an inter-stimulus interval, thus producing 24 seconds of a particular stimu-

lus block.  In between stimulus presentation, there are 12 seconds intervals of rest.  For 

instance, Table 8-1 shows an example of the first time series for subject 1 (SUB001), 

starting with Scissors stimulus (COND006), followed by Face stimulus (COND008), 

Cat (COND003), Shoe(COND004), House (COND001), Scrambled Pictures 

(COND002), Bottle (COND005) and finally Chair stimulus (COND007).  Each stimu-

lus block is identified with unique IDs representing different time-points, which gener-

ates 108 time-series i.e. 9 IDs x 12 runs for each stimulus for each subject.   

We conducted the experiment in 2 approaches: to classify a stimulus against an-

other stimulus (Face versus Scrambled Pictures) and to classify a stimulus against the 

other 7 stimuli (Face versus Not Face and Scrambled Pictures versus Not Scrambled 

Pictures) for each subject.  For the first approach, the classification is between 2 stimuli 

within the same subject, 12 samples for Class 1 (Face) and 12 samples for Class 2 

(Scrambled Pictures).  For the second approach, the samples for the classification is 96 

samples in which 12 samples are for Class 1 (Face) and 84 samples are for Class 2 (Not 

Face).  Figure 8-2 shows an example of Haxby data for Subject 1 (SUB001) when the 

subject is presented with Face stimulus for ID=1 and run=1.   
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Figure 8-1: Examples of stimulus used in the Haxby visual experiment.  Subjects per-
formed a one-back repetition detection task i.e. the same object is presented with differ-
ent views.  Picture is taken from Haxby et al., (2001). 
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Table 8-1: Example of task run 1 for SUB001 in which the subject is presented first 
with Scissors, followed by Face, Cat, Shoe, House, Scrambled Picture, Bottle and fi-

nally Chair stimulus, and the brain image is captured in every 2.5 seconds (0.5 seconds 
to display stimulus and another 1.5 seconds are the interval between stimuli) 

ID 
TR 
(s) 

Task 
Run 

ID 
TR 
(s) 

Task 
Run 

ID 
TR 
(s) 

Task Run ID 
TR 
(s) 

Task 
Run 

1 0   31 75   61 150   91 225   
2 2.5   32 77.5   62 152.5   92 227.5   
3 5   33 80   63 155   93 230 

Bottle 

4 7.5   34 82.5   64 157.5 

House 

94 232.5 
5 10   35 85 

Cat 

65 160 95 235 
6 12.5 

Scissors 

36 87.5 66 162.5 96 237.5 
7 15 37 90 67 165 97 240 
8 17.5 38 92.5 68 167.5 98 242.5 
9 20 39 95 69 170 99 245 

10 22.5 40 97.5 70 172.5 100 247.5 
11 25 41 100 71 175 101 250 
12 27.5 42 102.5 72 177.5 102 252.5   
13 30 43 105 73 180   103 255   
14 32.5 44 107.5   74 182.5   104 257.5   
15 35   45 110   75 185   105 260   
16 37.5   46 112.5   76 187.5   106 262.5   
17 40   47 115   77 190   107 265 

Chair 

18 42.5   48 117.5   78 192.5 

Scrambled 
Picture 

108 267.5 
19 45   49 120 

Shoe 

79 195 109 270 
20 47.5   50 122.5 80 197.5 110 272.5 
21 50 

Face 
 

51 125 81 200 111 275 
22 52.5 52 127.5 82 202.5 112 277.5 
23 55 53 130 83 205 113 280 
24 57.5 54 132.5 84 207.5 114 282.5 
25 60 55 135 85 210 115 285 
26 62.5 56 137.5 86 212.5 116 287.5   
27 65 57 140 87 215   117 290   
28 67.5 58 142.5   88 217.5   118 292.5   
29 70 59 145   89 220   119 295   
30 72.5   60 147.5   90 222.5   120 297.5   
                  121 300   
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Figure 8-2: Illustration of Haxby data (Haxby et al., 2011) for SUB001 when the subject 
is presented with Face stimulus for ID=1 and Run=1 

8.2 MAPPING OF NIfTI-1 fMRI DATA INTO NEUCUBEB 

Firstly, we have to map the Haxby voxels’ coordinates into the 3D of NeuCubeB archi-

tecture.  The same steps explained in Chapter 6 are followed which is to extract the co-

ordinates and then to adjust the coordinates according to the NeuCubeB coordinate.  The 

size of the NeuCubeB is built in Talairach coordinate space with 1,471 defined neuron 

locations, while Haxby’s size has 40 x 64 x 64 defined neuron locations and thus gener-

ating163,840 neuron locations with possible input neurons.   
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8.2.1 Neuron Mapping 

Figure 8-3 shows the direct coordinates mapping of Haxby’s fMRI neuron locations into 

NeuCubeB neurons in 3D space for subject SUB001 in which blue dots represent Neu-

CubeB neurons while cyan dots represent Haxby neurons.  Figure 8-4, Figure 8-5 and 

Figure 8-6 show the different 3 views of the direct mapping i.e. in	��, �� and ��	views.  

To be able to use the voxels for learning, these neurons will be mapped according to the 

mapping procedure explained in Chapter 6.  The visualizations of this mapping are as 

depicted in Figure 8-7, Figure 8-8 and Figure 8-9. 

After mapping, the Haxby neurons’ coordinates are reduced to 19,930.  The next 

step is to select those important voxels that will be the input to the NeuCubeB learning 

based on certain threshold value.  In this experiment, the threshold is set to 1,000 and 

the calculated significant voxels are 19,930.  The lower the threshold value is, the more 

voxels are identified.  From these 19,930 voxels, their respective voxel coordinate loca-

tions are determined.  Next, every coordinates that are close to the NeuCubeB coordi-

nates that are within the specified radius are also identified, thus reducing the coordi-

nates from 19,930 to 1,471 following the 1,471 NeuCubeB neuron locations.  Based on 

each calculated neuron locations, all voxels that are within each NeuCubeB neuron and 

within the specified radius are averaged (radius is set to 7 mm).  However, only 854 

neuron locations are with neurons, while the rest are empty location i.e. no Haxby coor-

dinate is mapped to the NeuCubeB coordinate.  The 854 computed voxels values are the 

actual input voxel to the framework.  The other details for the other conditions for each 

subject are tabulated in Table 8-2.  Because of the imaging experiments were conducted 

based on each experiment condition, the number of voxels (of the same subject) was not 

the same thus producing a slightly different number of input neurons.  The input voxels 

are then encoded into spike sequences that will be elaborated in the next section. 

 

 



111 

 

 

Figure 8-3: Visualization of coordinates that are mapped into the NeuCubeB.  Cyan dots 
represent the coordinates of Haxby fMRI brain data while blue dots are coordinates of 
NeuCubeB, in 3D view for subject SUB001. 

 

 

Figure 8-4: Visualization of coordinates that are mapped into the NeuCubeB.  Cyan dots 
represent the original voxels of Haxby fMRI brain data while blue dots are coordinates 
of NeuCubeB, in �� view for subject SUB001. 
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Figure 8-5: Visualization of coordinates that are mapped into the NeuCubeB.  Cyan dots 
represent the original voxels of Haxby fMRI brain data while blue dots are coordinates 
of NeuCubeB, in �� view for subject SUB001. 

 

 

Figure 8-6: Visualization of coordinates that are mapped into the NeuCubeB.  Cyan dots 
represent the original voxels of Haxby fMRI brain data while blue dots are coordinates 
of NeuCubeB, in �� view for subject SUB001. 
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Figure 8-7: Visualization of mapped Haxby coordinates into NeuCubeB coordinates, 
in	�� view for subject SUB001 after the mapping procedure. 

 

 

Figure 8-8: Visualization of mapped Haxby coordinates into NeuCubeB coordinates, 
in��	view for subject SUB001 after the mapping procedure. 
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Figure 8-9: Visualization of mapped Haxby coordinates into NeuCubeB coordinates, 
in	��	view for subject SUB001 after the mapping procedure. 

8.3 DATA ENCODING 

Input fMRI data that have already been mapped as described in the previous section is 

encoded using AER method which is based on the difference between two consecutive 

voxel values of the same input variable.  If the difference is greater than a certain 

threshold value, a spike will be generated.  For instance in Table 8-2, for 854 input vox-

els, 1,708 spike states are generated: 108 x 1,708 spike states for training and 108 x 

1,708 spike states for validation.  The spike states length (108) is computed from the 

time length (9 seconds) times the number of samples (12 samples i.e. 6 samples for 

Class 1 and 6 samples for Class 2) with the assumption of 50% of samples is used for 

training and 50%samples are used for validation.  These spike states are for 12 samples 

of Class 1 (Face) and 12 samples of Class 2 (Scrambled Pictures).   

For the experiment involving classification of a stimulus versus the other 7 

stimuli, the spike states details are displayed in Table 8-3.  For illustration purposes, 

spike states generated for training and validation for SUB001 are 432 x 1,708.  The 

spike states length (432) is calculated from the time length (seconds) x the number of 

samples (i.e.:9 x 48) in which the 48 samples are composed of 6 samples for Class 1 and 

42 samples for Class 2. 
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Table 8-2: Total number of neurons for each subject, the actual input neurons and the 
corresponding spike states for training and validation for a stimulus against the other 

stimulus 

Subject Total Neurons 
Actual Input Neu-

ron 
Spike States for 

Training 
Spike States for 

Validation 
SUB001 19,930 854 108 x 1,708 108 x 1,708 
SUB002 8,853 603 108 x 1,206 108 x 1,206 
SUB003 7,999 571 108 x 1,142 108 x 1,142 
SUB004 18,778 823 108 x 1,646 108 x 1,646 
SUB006 24,841 1,051 108 x 2,012 108 x 2,012 

 

Table 8-3: Total number of neurons for each subject, the actual input neurons and the 
corresponding spike states for training and validation for a stimulus against the other 7 

stimuli 

Subject Total Neurons 
Actual Input Neu-

ron 
Spike States for 

Training 
Spike States for 

Validation 
SUB001 19,930 854 432 x 1,708 432 x 1,708 
SUB002 8,853 603 432 x 1,206 432 x 1,206 
SUB003 7,999 571 432 x 1,142 432 x 1,142 
SUB004 18,778 823 432 x 1,646 432 x 1,646 
SUB006 24,841 1051 432 x 2,012 432 x 2,012 

8.4 DATA LEARNING 

We have applied STDP learning method in the NeuCubeB to initialize, modify and re-

tain connection weights (memory) throughout the unsupervised learning stage.  In learn-

ing the data, we have taken two approaches.  The first approach is to classify the differ-

ent brain patterns for each subject.  The idea is to differentiate brain areas that are af-

fected by the Face stimulus and the brain areas that are affected by the Scrambled Pic-

ture for each subject.  The second approach is to classify the brain patterns whether the 

subject is looking at a Face stimulus or that the subject is looking at the other 7 stimuli.   

The choice of approaches is based on the study of activation patterns that are distributed 

and overlapped in the ventral temporal cortex and ventral occipital cortex of the human 

brain (Haxby et al., 2001; Ishai, Ungerleider, Martin, & Haxby, 2000). 

8.4.1 Stimulus by Stimulus Learning for Each Subject Approach 

Taking the same approach as (Haxby et al., 2001) which distinguish different brain acti-

vation patterns for each stimulus, we apply the same data formulation to run on STDP 

learning.  For each subject, the classification of brain patterns is based on a stimulus 



116 

 

versus the other one stimulus (i.e. Face against Scrambled Pictures).  There are a total of 

24 samples generated for both classes.  For illustration, the following parameter values, 

determined after a grid search, were selected for classification accuracy: 

 

o NeuCubeB is constructed with 1,471 neurons 

 

o Threshold for the AER is 2.   

 

o SWC is set to 0.15, which is used to initialize neurons connection.   

 

o Threshold of LIFM neurons is 0.5 

 

o Leak parameter of the LIFM neurons is 0.002;  

 

o STDP learning rate is 0.01; 

 

o Number of training is 2 times;  

 

o Mod parameter is 0. 4 and drift is 0.25.  

 

For illustration, after completing the STDP learning, neuron connections have 

increased and new neurons connections have evolved.  In certain part of the SNN Cube, 

the connections are more concentrated as compared to other areas suggesting the in-

crease in the calculated synaptic weight and consequently increasing the number of 

connections.  The connections between neurons are represented by blue (or red) lines if 

the calculated weights are greater (or less) than 0.  Spikes emissions are determined by 

the calculated neuron potentials, which are based on the connection weights.  Figure 8-5 

demonstrates connections between neurons after initialization process and after unsu-

pervised learning is completed.  Blue lines represent positive connections while red 

lines represent negative connections.  Neurons in blue are active neurons whereas neu-

rons in red are inactive neurons. 
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Figure 8-10: Neuron connections after initialization (left) and neuron connections after 
unsupervised learning (right). 

8.4.2 Subject by Subject (Personalized) Approach 

Another approach is more on personalized way of learning the brain data i.e. for a par-

ticular subject, classification of brain patterns is based on 1 stimulus (i.e. Face) versus 

the other 7 stimuli (the other stimuli except Face stimulus).  We have generated 8 dif-

ferent experiment combinations.  As illustration, the following parameter values were 

selected for classification accuracy: 

 

o NeuCubeB is constructed with 1,471 neurons 

 

o Threshold for the AER is 4.25; 

 

o SWC is set to 0.15; 

 

o Threshold of LIFM neurons is 0.8; 

 

o Leak parameter of the LIFM neurons is 0.002;  

 

o STDP learning rate is 0.01; 

 

o Number of training is 2 times;  
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o Mod parameter is 0. 4 and drift is 0.25.  

 
The parameter setting stated above is determined after a thorough grid search 

from countless experiment runs, which resulted with highest percentage accuracy. 

8.5 MINING USING DYNAMIC EVOLVING SPIKING NEURAL NETWORKS 

(deSNN) 

In our second selected dataset i.e. Haxby visual object recognition, the potential of 

deSNN as a training algorithm is further explored.  After going through STDP learning 

in the previous stage, the already trained fMRI data is fed into the second stage of learn-

ing i.e. deSNN for classification.  In the deSNN (Dhoble et al., 2012) algorithm as pre-

sented in Section 3.3.1, for every fMRI input, the connection weights are initialized us-

ing the RO learning rule, connections weights for consecutive spikes are adjusted using 

SDSP learning rule, and the maximum post synaptic potential and threshold value are 

calculated.  For our experiment, two classes of stimuli are formulated i.e. Class 1 (Face) 

versus Class 2 (Scrambled Pictures), to differentiate which brain area is activated by the 

different stimulus.  Parameters used in the experiment are presented in the previous sec-

tion.  The training and testing are conducted using 50:50 split i.e. 50% of samples is 

used as training set and the rest 50% is used for testing. 

The SVM experiment uses Polynomial Kernel of first degree while MLP ex-

periment uses 5 hidden nodes, with learning rate of 0.001 and 100 iterations.   

8.6 RESULT AND DISCUSSION 

The following section presents and discusses the results on a stimulus-by-stimulus basis 

for each subject experiment and followed by the results on the subject-by-subject basis 

i.e. personalized experiment. 

8.6.1 Stimulus by Stimulus for Each Subject Classification Results 

In this experiment, we have trained the network with parameters as shown in section 

8.4.1. For instance, for SUB004, there are 823 input neurons for Class 1 (Scrambled 

Pictures) and Class 2 (Face) trained in unsupervised and supervised mode.  From these 

inputs, the calculated spike states for training are 108 x 1,708 and the spike states for 
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validation are 108 x 1708.  A snapshot of the NeuCubeB software implementation after 

a successful classification is presented in Figure 8-6.  The best percentage accuracies 

obtained for the designed and trained NeuCubeB against eSNN and standard classifiers 

(SVM and MLP) for 24 samples for each subject (Table 8-4).  As for the NeuCubeB and 

eSNN model, the networks are trained in unsupervised and supervised stages.  The best 

classification accuracy was obtained for NeuCubeB involving subject SUB004 which 

was 83% (83% for Class 1 and 83% for Class 2) as compared to 75% for eSNN (67% 

for Class 1 and 83% for Class 2), 67% for SVM and 57% for MLP.  For the experiment 

involving subject SUB003, eSNN outperformed deSNN of NeuCubeB and other con-

ventional classifiers in classifying the stimuli by achieving 75% classification accuracy 

(67% for Class 1 and 83 for Class 2) as compared to NeuCube with only 67%.  For all 

other experiments, conventional classifiers produced inferior classification accuracies 

than NeuCubeB and eSNN.    

Figure 8-7(a) shows neurons in the NeuCubeB in which blue dots represent 

NeuCubeB neurons and yellow dots represent Haxby input neurons.  The NeuCubeB is 

said to be in initialization stage.  Figure 8-7(b) shows the spiking activity in the NeuCu-

beB during the learning process.  Active neurons are represented in red, inactive neurons 

are represented in blue, positive input neurons are represented in magenta, negative in-

put neurons are represented in cyan and zero input neurons are represented in yellow.  

Neuron connectivities before and after training are displayed in blue lines, i.e. positive 

connections, and red lines i.e. negative connections (Figure 8-7(c) and (d)).  More neu-

ron connections are created after the learning process than before the learning process. 
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Figure 8-11: A snapshot of a software implementation of the NeuCubeB architecture for 
classification of 2 class fMRI data for SUB004.  The parameter values are as stated in 
section 7.5.2.  The classification model used is deSNN with an accuracy of 83.3% for 
Class 1 and 83.3% for Class 2. 

 

Table 8-4: Classification accuracy percentage of Class1 (Face) and Class 2 (Scrambled 
Pictures) stimulus for all subjects 

Subject SVM MLP eSNN NeuCubeB 
Sub001 64 52 67 (83, 50) 75 (100,50) 
Sub002 57 54 67 (50, 83) 75 (77,73) 
Sub003 57 56 75 (67, 83) 67 (43, 90) 
Sub004 67 57 75 (67, 83) 83 (83, 83) 
Sub006 65 52 67 (67, 67) 67 (50, 83) 
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(a) (b)  

 

(c) (d)  

Figure 8-12: Visualization of fMRI data model and connectivity between neurons of 
eSNN: (a) no spiking activity yet, inactive neurons are in blue, fMRI data neurons (in-
put neurons) are in yellow; (b) spiking activity: active neurons are represented in red, 
inactive neurons are represented in blue, positive input neurons are represented in ma-
genta, negative input neurons are represented in cyan and zero input are represented in 
yellow; (c) neurons connectivity before training (small world connection), positive con-
nections are in blue and negative connection in red; (d) neurons connectivity after train-
ing. 

 

From the results, it clearly shows that the NeuCubeB model once again is more 

applicable to handle complex and noisy data that reside in STBD fMRI as compared to 

eSNN and conventional classifiers.  NeuCubeB also offers a display on the neuron con-

nectivities, indicating as to which areas of the brain are most activated by the Face or 

Scrambled Picture stimulus.    
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8.6.2 Subject by Subject (Personalized) Classification Result 

The network is trained with parameters as shown in Section 8.4.2 to the 96 samples of 

each subject in unsupervised and supervised mode.  Samples are fed into the network 

one at a time to maintain the temporal information.  Figure 8-8 shows a snapshot of the 

NeuCubeB software implementation after successful classification.   

The overall percentage accuracies obtained using 50% of the data for training 

and 50% of data for testing, for the designed and trained NeuCubeB against eSNN and 

standard classifiers (SVM and MLP) for subject SUB001, SUB002, SUB003, SUB004 

and SUB006 are as depicted in Table 8-5.  Values in brackets are the average of accu-

racy (in percent) obtained for Class 1 and Class 2 from 5 test runs.  From all experiment 

conditions formulated for each subject, NeuCubeB has moderately outperformed eSNN, 

MLP and SVM, with an average accuracy achieved at 85% as compared to 80% for 

eSNN, 76% for MLP and 66% for SVM.  The highest accuracy is attained from 

SUB001 Face against Not Face test run (90%) of that, 23% correctly recognizing brain 

patterns generated from Face stimulus (Class 1) and that 99% correctly recognizing 

brain patterns generated from the other 7 stimulus (Class 2).  

In all test runs conducted, Class 1 achieved very small accuracy percentage as 

compared to Class 2.  For instance the lowest result for Class 1 of MLP classifier is 0% 

which is achieved in SUB001 and SUB002 for Scrambled against Not Scrambled ex-

periments.  As for SVM classifier, the lowest result for Class 1 is 12% which is 

achieved for SUB001 for Scrambled against Not Scrambled and for Face against Not 

Face experiments.  Low accuracy result is also achieved by NeuCubeB with 13% of 

Class 1 for Scrambled against Not Scrambled experiment and 17% of Class 1 for Face 

against Not Face experiments for SUB001 and SUB002 respectively.  However, in all 

experiments we can conclude that NeuCubeB performed better in discriminating Class 1 

against Class 2 for all 5 subjects. 

Figure 8-9(a) shows neurons in the Cube in which blue dots represent NeuCubeB 

neurons and yellow dots represent Haxby input neurons.  The Cube is said to be in ini-

tialization stage.  Figure 8-9(b) shows the spiking activity in the Cube during the learn-

ing process.  Active neurons are represented in red, inactive neurons are represented in 

blue, positive input neurons are represented in magenta, negative input neurons are rep-

resented in cyan and zero input neurons are represented in yellow.  Neuron connectivi-

ties before and after training are displayed in Figure 8-9(c) and (d), displayed in blue 

lines, which indicate positive connections, and red lines, which indicate negative con-
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nections.  More neuron connections were created after the learning process than before 

the learning process. 

 

 

Figure 8-13: A snapshot of a software implementation of the NeuCubeB architecture for 
classification of 2 class fMRI data for SUB001.  The classification model used is 
deSNN with accuracy at 17% for Class 1 and 97% for Class 2 

 

Table 8-5: Overall percentage of classification results for each subject for Face versus 
Not Face and Scrambled Pictures versus Not Scrambled Pictures. 

Subject / Item MLP SVM eSNN NeuCubeB 
SUB001     
Scrambled VS Not Scrambled 87 (0, 87) 76 (12, 87) 76 (7, 86) 88 (13, 97) 
Face VS Not Face 86 (10, 88) 74 (12, 87) 85 (47, 92) 90 (23, 99) 
SUB002     
Scrambled VS Not Scrambled 71 (0, 73) 55 (17, 73) 80 (10, 91) 83 (33, 91) 
Face VS Not Face 71 (6, 75) 62 (23, 75) 80 (17, 89) 86 (17, 96) 
SUB003     
Scrambled VS Not Scrambled 77 (49, 80) 70 (31, 75) 78 (37, 84) 87 (50, 92) 
Face VS Not Face 74 (27, 76) 64 (33, 79) 79 (27, 86) 76 (17, 85) 
SUB004     
Scrambled VS Not Scrambled 74 (8, 75) 69 (30, 77) 75 (17, 83) 81 (20, 90) 
Face VS Not Face 72 (3, 74) 68 (31, 78) 77 (3, 88) 83 (17, 92) 
SUB006     
Scrambled VS Not Scrambled 73 (3, 75) 68 (27, 75) 81 (7, 92) 85 (33, 93) 
Face VS Not Face 71(21, 76) 58 (20, 73) 85 (33, 92) 90 (17, 100) 

 

 

From these results, we can conclude that the low percentage accuracies for Class 

1 are resulted from the low number of samples (i.e. 12 samples only; 6 samples for 

training and 6 samples for testing) in which the network has not enough sample data 

(and time) to learn the pattern that may resides within the data.  As more samples are 
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extracted and used during the STDP learning, the more the network learns from the 

brain pattern. Consequently, a higher percentage of correctly classified stimuli are 

achieved.  This situation can be reflected from the high percentage accuracies achieved 

in NeuCubeB model for Class 2 involving 96 samples (i.e. 48 samples for training and 

48 samples for testing) which resulted as high as 100% accuracy for SUB006 i.e. the 

network could perfectly distinguish that the data is Not-Face data.  In general, NeuCu-

beB model provides better results as compared to eSNN and the conventional classifiers.  

 

(a) (b)  

 

(c) (d)  

Figure 8-14: Visualization of fMRI data model and connectivity between neurons of 
eSNN for SUB001 for Face Versus Not Face test run: (a) no spiking activity yet, inac-
tive neurons are in blue, fMRI data neurons (input neurons) are in yellow; (b) spiking 
activity: active neurons are represented in red, inactive neurons are represented in blue, 
positive input neurons are represented in magenta, negative input neurons are repre-
sented in cyan and zero input are represented in yellow; (c) neurons connectivity before 
training (small world connection), positive connections are in blue and negative connec-
tion in red; (d) neurons connectivity after training. 
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In addition, neuron connectivities of the network after initialization, after unsu-

pervised training and after supervised training could be visualized and studied.  From 

these connections, NeuCubeB offers visualization as to which part of the brain is acti-

vated most by the stimulus.  More details on these neuron connectivities are presented 

in Section 8.7. 

8.7 NEURONS CONNECTIVITY 

For illustration, during the unsupervised training, data for Face stimulus and Scrambled 

Pictures of SUB001 are entered into the model over time, where connection weights be-

tween neurons are created and calculated.  Figure 8-10 presents neuron connectivities 

before and after 5 times of STDP learning, which actually represent spatio-temporal in-

teraction between input voxels (i.e. input neurons) in the network. Blue lines represent 

positive connections (i.e. connection weight > 0) and red lines represent negative con-

nections (i.e. connection weight < 0).  Neurons in blue indicate active neurons while red 

neurons indicate inactive neurons.  The more and stronger connections were formed be-

tween the neurons after the learning process than before the learning process.   

8.7.1 NeuCubeB Visualization for Spatio-temporal Connections Based on the fMRI 

Spiking Activity for Face Stimulus 

In initialization stage, NeuCubeB connections and their connection weights are initial-

ized randomly (Figure 8-10(a)).  For visualization purposes, the left figures (Figure 

8-10(a) and Figure 8-10(c)) show the neuron connections that were created with connec-

tion weight >= 0.09 (i.e. weaker spikes) while the right figures (Figure 8-10(b) and 

Figure 8-10(d)) show neuron connections that have weight >= 0.19 (i.e. stronger 

spikes).  NeuCubeB active neurons which weights are more than 0.09 are initialized 

somewhere in left and right Superior Frontal Gyrus (SFG), left and right Medial Frontal 

Gyrus (MFG), left Inferior Frontal Gyrus (IFG), left and right Superior Parietal Lobe 

(SPL), left Inferior Parietal Lobe (IPL), Superior Temporal Gyrus (SPG), Inferior Tem-

poral Gyrus (ITG) and right and left Occipital Lobe (OL) regions.  Higher NeuCubeB 

weights (weight >= 0.19) which indicate stronger spikes are in MFG, IFG, SPL and OL 

regions.  Figure 8-11 shows these approximated spatial locations of neuron connections 

in the NeuCubeB after initialization (i.e. before learning process).  Regions with highly 
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interconnected positive blue lines were areas that were with most spikes activities and 

were highly activated with the Face stimulus.   

After initialization, NeuCubeB neuron potential is calculated and updated, 

whether to spike or not to spike, assuming that each sample of data is taken in different 

times.  Therefore the potential will not continue from one sample to the next sample i.e. 

NeuCubeB neuron potential is reset to 0 for each incoming sample.  Each neuron poten-

tial is increased if NeuCubeB pre-synaptic neuron (9) and its post-synaptic neuron (�) are 

equal to 1 and NeuCubeB refractory neuron (�) is equal to 0.  Each neuron’s state is also 

determined, whether or not it has reached the threshold.  For neurons that still have not 

reached the threshold, their neuron potentials are leaked.  NeuCubeB neuron connections 

(memory) and weights are also calculated and updated hence resulting in more densely 

interconnected neurons.   

After 5 times of STDP unsupervised learning, as shown in Figure 8-10(c), more 

positive spikes were emitted (i.e. more connections are created) and connection weights 

are also updated.  Figure 8-11 and Figure 8-12 show a different view of NeuCubeB dy-

namic activities through a visualization of positive and negative connections.  NeuCu-

beB connections are more concentrated (i.e. more positive connections) on the same ar-

eas as mentioned before.  However higher NeuCubeB weight connections (weight>= 

0.21), thus implying stronger spikes, were identified in left SFG, left ITG and right 

MFG as shown in Figure 8-13.   

From these connections, we can conclude that these areas received the most ac-

tivation (i.e. stronger spikes) during the whole learning process.  These areas among all 

are responsive to visual stimulus as well as to sensory system (e.g. vi-

sion/smell/touch/auditory/taste) coordination (SFG) (Goldberg, Harel, & Malach, 2006), 

facial/body recognition (ITG) (Haxby et al., 2001) and visual stimulus (MFG) (Talati & 

Hirsch, 2005).   
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(a) (b)  

 

(c) (d)  

Figure 8-15: Visualization of neurons connectivity for Face stimulus (a) before and (c) 
after STDP learning with (b) weight >= 0.09 and (d) weight >= 0.19.  Positive connec-
tions are in blue and negative connections are in red. 

 

 

Figure 8-16: Approximated location of densely interconnected neurons that are acti-
vated when seeing Face stimulus before training. 
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Figure 8-17: Approximated location of densely interconnected neurons that are acti-
vated when seeing Face after the learning process.  More connections are created in ar-
eas SFG, MFG, IFG, STG, IFG, SPL, IPL and OL. 

 

 

Figure 8-18: Visualization of neurons connectivity for Face stimulus when weight is 
greater than 0.21 in 3D view (left) and in �� view (right). 
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8.7.2 NeuCubeB Visualization for Spatio-temporal Connections Based on the fMRI 

Spiking Activity for Scrambled Picture Stimulus 

In the initialization stage, NeuCubeB connections and their connection weights are ini-

tialized randomly (Figure 8-14(a)).  For visualization purposes, Figure 8-14(a) shows 

the connections that were created with connection weight >= 0.09 (i.e. weaker spikes) 

while Figure 8-14(b) shows neurons connections that have weight >= 0.19 (i.e. 

stronger spikes).  NeuCubeB active neurons which weights are more than 0.09 are ini-

tialized somewhere in the left and right Superior Frontal Gyrus (SFG), left and right 

Medial Frontal Gyrus (MFG), left Inferior Frontal Gyrus (IFG), left and right Superior 

Parietal Lobe (SPL), left Inferior Parietal Lobe (IPL), Superior Temporal Gyrus (SPG), 

Inferior Temporal Gyrus (ITG) and right and left Occipital Lobe (OL) regions.  Higher 

NeuCubeB weights (weight >= 0.19) which indicate stronger spikes are in the left IFG, 

left and right MFG and left and right ITG.  Regions with highly interconnected positive 

blue lines are areas that were highly activated with the Scrambled Picture stimulus.  

Figure 8-15 shows these approximated spatial locations of neurons connections in the 

NeuCubeB after initialization (i.e. before the learning process).  

After initialization, NeuCubeB neuron potential is calculated and updated, 

whether to spike or not to spike, assuming that each sample of data is taken in different 

times.  Therefore the potential will not continue from one sample to the next sample i.e. 

NeuCubeB neuron potential is reset to 0 for each incoming sample.  Each neuron poten-

tial is increased if NeuCubeB pre-synaptic neuron (9) and its post-synaptic neuron (�) are 

equal to 1 and NeuCubeB refractory neuron (�) is equal to 0.  Each neuron’s state is also 

determined, whether or not it has reached the threshold.  For neurons that still have not 

reached the threshold, their neuron potentials are leaked.  NeuCubeB neuron connections 

(memory) and weights are also calculated and updated hence resulting in more densely 

interconnected neurons. 

After 5 times of STDP unsupervised learning, more positive spikes were emitted 

i.e. more connections are created and connection weights are also updated (Figure 

8-14(c)).  Stronger spikes were also generated as in Figure 8-14(d) as compared to Fig-

ure 8-14(b) which was before the learning process.  Figure 8-15 and Figure 8-16 show a 

different view of NeuCubeB dynamic connections through a visualization of positive 

and negative connections before and after the learning process respectively.  NeuCubeB 

connections are more concentrated (i.e. more spikes) on the same areas as mentioned 
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above.  However, higher NeuCubeB weights (weight>= 0.21) which indicate stronger 

spikes and represented with blue lines, were identified in the left MFG, left IPL and 

SPL as shown in Figure 8-17.  From these connections, it can be suggested that these 

areas received the most activation (stronger spikes) during the whole learning process.  

These areas among all are responsive to visual stimulus (left MFG) (Talati & Hirsch, 

2005), continuing attention (RIPL and LIPL) (Singh-Curry & Husain, 2009), and audio-

visual integration (SPL) (Molholm et al., 2006). 

 

(a) (b)  

 

(c) (d)  

Figure 8-19: Visualization of neurons connectivity for Scrambled Picture stimulus (a) 
before and (c) after STDP learning with (b) weight >= 0.09 and (d) weight >= 0.19.  
Positive connections are in blue and negative connections are in red. 
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Figure 8-20: Approximated location of densely interconnected neurons before training. 

 

 

Figure 8-21: Approximated location of densely interconnected neurons after training.  
More connections are created in areas SFG, MFG, IFG, STG, IFG, SPL, IPL and OL. 
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Figure 8-22: Visualization of neurons connectivity for Scrambled Picture stimulus when 
weight is greater than 0.21 in 3D view (left) and in �� view (right). 

 

In short, the analysis on the neurons connectivity provides a new method in ana-

lyzing the Haxby data especially in the extraction of new knowledge.  This is achieved 

by visualizing the neuron connections which is based on the spiking activity of the data.  

There are certain areas of the NeuCubeB that are densely interconnected with blue lines 

while other areas are with sparsely or no interconnected neurons.  Regions in the Neu-

CubeB with more connections indicate that more spike activities had occurred during the 

learning process in that particular neuron areas compared to the other areas of neurons, 

which also imply how important these voxels are in determining the areas which receive 

the most activation when a stimulus is presented to the subject.  Thus the areas that re-

ceived the most activation can be identified from the NeuCubeB architecture. 

Stronger connections and weaker connections which imply stronger spikes and 

weaker spikes respectively can be visualized using the neuron connection weight as 

specified by the user.  Again, areas with higher connection weight i.e. more activation 

can be identified.  This visualization is not provided in the previous studies involving 

the Haxby data. 

8.8 CHAPTER SUMMARY 

This chapter described the second experiment involving the use of different set of visual 

stimulus dataset using the NeuCubeB model.  From the experiments, using our proposed 

new method, different patterns of brain activation could be classified moderately using 

the model as compared to the standard machine learning techniques.  However, further 

analysis could be conducted to the Haxby brain data, i.e. in terms of the connectivity of 

the neurons.  Different areas of the brain are activated and are able to be displayed, and 
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these activations are identified by the densely interconnected neuron connections.  This 

kind of analysis could not be performed in standard machine learning techniques, which 

is more of black-box in nature.  From both experiments, we can also conclude that 

NeuCubeB model offers a better understanding and better analysis of the Haxby data 

compared to the previous studies involving the same dataset.   

In the next chapter, a conclusion of this study is presented.  It starts with a gen-

eral conclusion, research directions and finalizes with some future works that may be 

carried out.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



134 

 

9 Chapter 9 

 

CONCLUSION AND FUTURE DIRECTION 

This chapter summarizes the experiments that have been conducted to achieve the re-

search objectives and to answer the research questions stated in Chapter 1.  Several 

ideas and recommendations for future work are also discussed in this chapter.  

9.1 CONCLUSION 

This thesis presents and explains a new NeuCubeB computational model which was im-

plemented apart from NeuCube (Kasabov, 2010) framework.  Previous implementation 

of NeuCube has been successfully experimented on other spatio-temporal data namely 

EEG and stroke data, and this study extends the work by implementing it on a large, 

complex and noisy spatio-temporal fMRI data.  Two different datasets with different 

formats have been chosen to test the model.  Not only are the results generated from the 

experiments comparatively superior than standard machine learning techniques, but it 

also allows visualization of model activity and model connectivity that can be used to 

determine spatio-temporal pattern.  In addition, the functional pathways created from 

the connectivity can also be used to better understand the brain process that happened 

during the learning process.   

Although the contributions are relatively small to the fields of machine learning, 

it is significant for the community, specifically for the eSNN and brain research teams.  

These contributions will be explained in the next few paragraphs based on the dataset.   

9.2 THESIS CONTRIBUTIONS 

Based on the first experiment involving StarPlus data presented in Chapter 7, several 

contributions could be identified.   

 

(i) A novel StarPlus coordinates mapping into the NeuCubeB Talairach coordinate 

system.    
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The (�, �, �)	coordinates of the spiking neurons in the Cube correspond to the 

same spatial coordinates of the StarPlus.  The main idea of this procedure is to 

ensure that the newly calculated StarPlus coordinates are within the 1,471 Neu-

CubeB coordinates.  Spatial estimation is imposed to each subject due to the dif-

ferent brain size and structure.  Coordinates that are within a radius of 7 mm are 

identified and the corresponding voxels are the input features to the model.  

These feature voxels are transformed to spike trains and entered into spatially al-

located input neurons in the NeuCubeB Cube as temporal sequences.   

 

(ii) Visualization of neurons connections.   

 

After completing the unsupervised STDP learning, the spiking activity of the 

neurons and the updated neural connections can be visualized and examined.  In 

some regions of the brain cube, neuron connections are more densely connected 

as compared to other areas.  This suggests the different but sometimes over-

lapped areas which are activated to the different stimulus.   

Areas labelled CALC, ROPER, LSGA, LFEF and RFEF display higher 

concentration of connected neurons indicating brain areas are highly activated 

with visual stimulus regardless of seeing Picture or Sentence.  Higher NeuCubeB 

weights are identified in LTRIA, RTRIA, and RSGA areas suggesting these ar-

eas are the most activated and stimulated with the Sentence stimulus.  These 

brain areas are known to involve semantic definitions, semantic working memo-

ries and language processing tasks.  In contrast, higher NeuCubeB weights are 

identified in CALC, LIPL, LT, LSGA, LFEF, RFEF, ROPER and RIPL areas, 

indicating as the areas that receive the most signals from the Picture stimulus.  

These brain areas are known to be involved in activities such as visual process-

ing, language processing, continuing attention, visual memories, visual attention, 

eye movement and language processing. 

 

(iii) Picture to Sentence brain patterns classification.   

 

Classification procedure applied to the spikes patterns determined the class for 

these patterns.  From the experiments, deSNN of NeuCubeB model successfully 

had train and learn the brain patterns and consequently produced superior classi-

fication accuracy compared to the standard machine learning approaches.  Neu-
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CubeB has the average of 90% classification accuracy for all 6 subjects while for 

eSNN, SVM and MLP; it is 70%, 48% and 51% respectively.  This indicates 

that the spatio-temporal characteristic of the brain data has been well taken care 

by the network of the spiking neurons. 

 

As for the second experiment involving the Haxby dataset presented in Chapter 8, the 

following contributions are identified: 

 

(i) A novel coordinates mapping of the Haxby fMRI data into the NeuCubeB Ta-

lairach coordinate system. 

 

The format of this dataset is different from the StarPlus thus posing a new chal-

lenge.  The main idea of this procedure is to ensure that the newly calculated 

Haxby dataset coordinates are within the 1,471 eSNN coordinates.   Feature 

voxels are identified based on the voxels that are within the specified radius of 

the spiking neurons coordinates.  These voxels are further selected based on 

specified voxel threshold value (e.g. threshold = 1,000) and transformed to spike 

trains and entered into spatially allocated input neurons in the eSNN as temporal 

sequences. 

 

(ii) Visualization of neurons connections.   

 

Brain regions that are activated by Class 1 (Face) and Class 2 (Scrambled Pic-

tures) stimulus are visualized using the connections that are created before and 

after the unsupervised STDP learning.   

Connections density is identified in similar NeuCubeB areas for both 

classes (SFG, MFG, IFG, SPL, IPL, SPG, ITG and OL).  However, higher Neu-

CubeB weight connections are identified differently.  For Face stimulus, activa-

tion is recognized in the left SFG, left ITG and right MFG while for Scrambled 

Picture stimulus, brain activation is in the left MFG, left IPL and SPL.  Higher 

NeuCubeB weight connections in the stated areas indicate that these areas re-

ceived the most spikes during the learning process.   
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(iii) Face against Not Face and Scrambled Pictures against Not Scrambled Pictures 

brain pattern classifications.   

 

Classification procedure of deSNN is applied to the spikes patterns to determine 

the class.  From the experiments, deSNN of NeuCubeB model successfully 

trained and learned the brain patterns and consequently produced superior classi-

fication accuracy compared to the standard machine learning approaches.  In 

deSNN, connection weights are further adjusted dynamically at each time mo-

ment of simulation, either by increasing the weight (if there is a spike) or de-

creasing the weight (if there is no spike) by using the synaptic weight drift pa-

rameter.  From the classification experiments of Face against Not Face samples 

and Scrambled Pictures versus Not Scrambled Pictures samples, NeuCubeB has 

an average of 85% of classification accuracy as compared to MLP’s 76% and 

SVM’s 66%.  Compared to other learning and classification of SNN models, 

deSNN is computationally inexpensive and boosts the importance of the spike 

arrival sequence.    

Further analysis of the result shows that Class 1 achieved very low accu-

racy results compared to Class 2.  From these results, we can conclude that 

NeuCubeB (as well as MLP and SVM) needs more sample data in order for the 

network to learn better from the data.  Class 1 only has 12 samples (6 samples 

for training and 6 samples for testing) whereas Class 2 has 96 samples (48 sam-

ples for training and 48 samples for testing).  As the number of samples is very 

low for Class 1, the network does not have sufficient sample data (and time) to 

learn the pattern that may reside within the spatio-temporal fMRI data.  In con-

trast, as more samples are trained for Class 2, the more the network learns from 

the brain pattern, and thus producing more accurate results.  Although the results 

for Class 1 are very low in all experiments, NeuCubeB model still performed bet-

ter than the other two classifiers.   

 

From the experiments involving the two different fMRI datasets, it can be con-

cluded that NeuCubeB could learn the networks of spiking neurons of spatio-temporal 

fMRI brain data better than eSNN and the conventional classifiers.  Although MLP and 

SVM could process the spatial information quite well, via fairly good results, they fail 

to recognize and process the temporal information that fMRI data has.  The superior re-

sults achieved by NeuCubeB shows that this additional information (i.e. temporal infor-
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mation) has contributed significantly in recognizing the brain patterns.  In addition to 

this, NeuCubeB also provides visualization in terms of neurons locations and neurons 

connectivity that actually illustrate brain areas that receive the most signals i.e. spikes, 

which again, fails to be recognized by the conventional classifiers.   

Neuropsychology is one of the research areas that could largely benefit from this 

study.  This study has only examined brain data for subjects who were looking at pic-

tures i.e. star or plus signs and face or other man-made objects, and thus highly affecting 

many brain areas especially areas responsive to visual processing and visual memories.  

However, in reality massive collections of brain data are available to be learned and ex-

amined to better understand the structure and functions for each and every part of the 

brain.  With the NeuCubeB model, researcher/scientist could easily and accurately detect 

and identify the brain states, for example, to discriminate a normal brain to a brain with 

abnormalities from a series of fMRI.  In terms of visualization, the model can also show 

as to which part of the brain is highly activated from the tumour activities.  From the 

experiments that we have conducted, even though involving just a small number of 

samples, the model have learned and classified the spatio-temporal brain data more ac-

curately compared to the existing eSNN.  And this study can be further explored to ex-

amine other brain states and functions. 

9.3 FUTURE DIRECTION 

The proposed NeuCubeB framework has successfully tested two different fMRI data 

formats specifically for solving classification problems.  However, several improve-

ments are suggested for better performance particularly in improving the classification 

accuracy.  Below are some recommendations for future research: 

9.3.1 Parameters Optimization 

As for the current implementation, the user has to manually enter more than five differ-

ent parameters with a target of achieving the highest classification accuracy.  Only a 

perfect combination could produce good results.  The framework has to be tested for 

each and every possible combination of parameters and the results produced are then 

compared with the conventional method.  Thus it is always a good idea for the frame-

work to automatically determine the combination of parameter values involved so that 

the overall performance of the framework is further improved.  Values for AER encod-
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ing threshold and neural threshold are two important parameters that greatly affect the 

overall classification performance.  Furthermore, the threshold for the voxel value also 

has to be predetermined and decided first.  This is to select the most relevant voxels 

(features) that later are to be used to determine their appropriate encoded AER values.  

As explained in Chapter 4, voxels, the main component of fMRI data or the fea-

tures to be processed by the classifier, are more than ten thousand for a single volume of 

a single experiment run of a single subject.  Thus, in most available fMRI dataset, vox-

els to be selected and to be processed are huge.  One method that can be used is to em-

ploy feature optimization in the framework, for instance Quantum-inspired Particle 

Swarm Optimization (QiPSO), so that relevant features can be selected better.  How-

ever, a particular issue that may occur is due to the prohibitive processing time. 

9.3.2 Automatic voxel mapping 

Regardless of the format that defines the spatio-temporal fMRI data, coordinates and 

voxels of the data could be mapped into the NeuCubeB framework automatically and 

effortlessly.  This mapping module should be able to read and process the most widely 

used fMRI data format, for instance NIfTI-1 and ANALYZE format or at least the 

module should be able to identify and extract the coordinates and voxel values from the 

data.  The mapping module should also be able to determine and calculate the coordi-

nates of voxels of fMRI data so that the data reside in the NeuCubeB cube. 

9.3.3 Specialized SNN hardware implementation 

One of the current issues in dealing the huge and complex fMRI data (as well as other 

STBD) is in terms of prohibitive CPU processing power.  Current implementation has 

the NeuCubeB built in a single CPU of a personal computer, and sometimes the load is 

unable to be processed by the computer system, resulting in a suspended system.  More 

CPU processing power that runs parallel, currently is being developed by the research 

group in KEDRI, is able to accept and process massive data in an eSNN based frame-

work (Kasabov, 2012).   NeuCube is currently being implemented on a neuromorphic 

chip, which is based on Neuro-genetic neuron model that specifically will enable large 

scale STBD processing and in general will enable any large engineering application to 

take advantage of the model. 
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11 Appendix A 

12 StarPlus Main Source Codes 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% For StarPlus data extraction  

%% fmri_data_reading 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
% select trials of cond 2: in which interval is a sentence/picture trial in % 

which thesentence is not negated? 

 
trials=find([info.cond]==2);  
[info1,data1,meta1]=transformIDM_selectTrials(info,data,meta,trials); 
% separate P1st and S1st trials 
[in-

foP1,dataP1,metaP1]=transformIDM_selectTrials(info1,data1,meta1,find([info1.fi

rstStimulus]=='P')); 
[infoS1,dataS1,metaS1]=transformIDM_selectTrials(info1,data1,meta1,find([info1

.firstStimulus]=='S')); 

 
% separate reading P vs. S 
[in-

foP2,dataP2,metaP2]=transformIDM_selectTimewindow(infoP1,dataP1,metaP1,[1:24])

; 
[infoS2,dataS2,metaS2]=transformIDM_selectTimewindow(infoS1,dataS1,metaS1,[1:2

4]); 

 
% combine examples and create labels.  Label 'picture' 1, label 'sentence' 2 
labelsP=ones(size(dataP2,1),1); 
labelsS=ones(size(dataS2,1),1)+1; 
dataPS=[dataP2;dataS2]; 
 
class_label=[labelsP;labelsS]; 
fmri_data=zeros(24,meta.nvoxels,20); %initialize 3d array of zeros data 
fori=1:20 
fmri_data(:,:,i)=dataPS{i,1}; %put the data in 3d array data 
end 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% For Mapping the coordinates  

%% fmri_talairach_transform 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

set(handles.stage,'String','Loading NEUCUBE coordinate system (Talairach) 

...'); drawnow; 
loadneural_coordinate; 
 
set(handles.stage,'String','the Talairach transformation is begin...'); 

drawnow; 

 

% the nfMRI is fMRI with Talairach coordinate system 
% x-axis 
XMID = fix(mean(meta.colToCoord(:,1)));  
dx = min(neuron_location(:,1))/min(meta.colToCoord(:,1) - XMID); 
nfMRI(:,1) = dx * (meta.colToCoord(:,1) - XMID); 
% y-axis 
YMID = fix(mean(meta.colToCoord(:,2)));  
dy = min(neuron_location(:,2))/min(meta.colToCoord(:,2) - YMID); 
nfMRI(:,2) = dy * (meta.colToCoord(:,2)- YMID); 
% z-axis 
nfMRI(:,3) = 10 * (meta.colToCoord(:,3)-4); 
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set(handles.stage,'String','Identify every nfMRI points that close to NEUCUBE 

point within RADIUS unit ...'); drawnow; 

 
% identify every nfMRI points that close to NEUCUBE point within RADIUS unit 
% the NEUCUBE using Talairach coordinate system with resolution 10 mm. 
NEURON_ORIGINAL = 1471; 
TAL = cell(NEURON_ORIGINAL,1); 
INPUT_NEURON = zeros(NEURON_ORIGINAL,1); 
% RADIUS unit is mm 
RADIUS = 7;  

 
for N=1:NEURON_ORIGINAL 
% CIRCLE 
TAL{N} = find( ... 
        (sqrt( (nfMRI(:,1)-neuron_location(N,1)).^2 +(nfMRI(:,2)-

neuron_location(N,2)).^2 ) <= RADIUS)&... 
        (nfMRI(:,3)==neuron_location(N,3))); 
if (~isempty(TAL{N})) 
INPUT_NEURON(N,1) = 1; 
end 
end 

 
set(handles.stage,'String','Calculating the average value of voxel ...'); 

drawnow; 
% Mapping voxel  
SAMPLES = size(fmri_data,3); 
TIMEPOINTS = size(fmri_data,1); 
NTAL = length(TAL); % = NEURON_ORIGINAL  
talvoxel=zeros(TIMEPOINTS,NTAL,SAMPLES); 
for S=1:SAMPLES 
for T=1:TIMEPOINTS 
for N=1:NTAL 
if (~isempty( TAL{N} ) ) 
talvoxel(T,N,S)=mean(fmri_data(T,TAL{N},S)); 
end 
end 
end 
set(handles.stage,'String',sprintf('Calculating the average value of voxel ... 

%d of %d samples',S,SAMPLES)); drawnow; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% transformIDM_selectTimewindow (info, data, Meta, snapshots)  
% 
% Returns a copy of info,data, Meta containing only the specified snapshots  

% intime within each trial.  The input parameter 'snapshots' is an array 
% listing the indices of snapshots to be included, assuming the index of  

% thefirst snapshot of each trial is 1. 
%Example:  select just snapshots 3,4,5, and 7 from each trial 
% [info2, data2, meta2] = 

% transformIDM_selectTimewindow (info, data, Meta, [3, 4, 5, 7])  
%History 
% - 11/2/02 TMM Created file. 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
function [rinfo,rdata,rmeta] = transfor-

mIDM_selectTimewindow(info,data,meta,snapshots) 
ntrials= length(data); 
rdata = cell(ntrials,1);   
rmeta=meta; 

 
for j=1:1:ntrials 
rdata{j} = data{j}(snapshots,:); 
rinfo(j) = info(j); 
rinfo(j).len = length(snapshots); 
end; 
rmeta.nsnapshots= sum([rinfo.len]); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% transformIDM_selectTrials (info,data,meta,trials)  
% 
% Returns a copy of info, data, meta containing only the specified trials.  

The 
% input parameter 'trials' is an array listing the indices of trials to be 
% included. 
% 
% Example:  select just trials 3 and 5 
% [info2, data2, meta2] = transformIDM_selectTrials (info,data,meta,[3,5])  
% 
% History 
% - 9/1/02 TMM Created file. 
% - 5/9/05 indra Update mint and maxt after the selection of trials 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
function [rinfo,rdata,rmeta] = transfor-

mIDM_selectTrials(info,data,meta,trials) 
ntrials=length(trials); 

 
rdata = cell(ntrials,1);   
rmeta=meta; 
for j=1:1:ntrials 
    t=trials(j);  % get trial number 
rdata{j} = data{t}; 
rinfo(j) = info(t); 
end; 
 
rmeta.ntrials=length(trials); 
rmeta.nsnapshots= sum([rinfo.len]); 
 
% update mint and maxt 
tStart = 1; 
for j=1:rmeta.ntrials 
tEnd = tStart + rinfo(j).len - 1; 
rinfo(j).mint = tStart; 
rinfo(j).maxt = tEnd; 
 
tStart = tEnd + 1; 
end; 
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13 Appendix B 

14 Haxby Main Source Codes 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% For Haxby data extraction 

%% fmri_data_reading 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

set(handles.stage,'String','The first stimulus NII data extraction ...'); 

drawnow; 
 
load(strcat('COND00',int2str(COND1),'.mat')); 
switch COND1 
case 1 
        COND = COND001; clear COND001; 
case 2 
        COND = COND002; clear COND002; 
case 3 
        COND = COND003; clear COND003; 
case 4 
        COND = COND004; clear COND004; 
case 5 
        COND = COND005; clear COND005; 
case 6 
        COND = COND006; clear COND006; 
case 7 
        COND = COND007; clear COND007; 
case 8 
        COND = COND008; clear COND008; 
end 

 
TIMEPOINT = 9; 
SAMPLE = 12;  % number of TASK_RUN 
% STIMULUS = COND2; 
BASE = (SUBJECT - 1) * 108; 
 
[X,Y,Z] = size(COND(:,:,:,1)); 
fmri_data = zeros(TIMEPOINT,Z*X*Y,2*SAMPLE); 
class_label = zeros(1,2*SAMPLE); 
 
for S=1:SAMPLE     
ID = BASE + ((S-1)*TIMEPOINT ); 

for ROW = 1:TIMEPOINT 
fornX=1:X 

fornY=1:Y 
fornZ=1:Z 

  COL = (nX-1)*64*64 + (nY-1)*64 + nZ; 
  fmri_data(ROW,COL,S) = COND(nX,nY,nZ,ID+ROW); 
  class_label(1,S) = 1; 

end 
end 

end 
set(handles.stage,'String',sprintf('The second stimulus: timepoint %d, 

sample %d from SUBJECT: %d', ROW,S,SUBJECT)); drawnow; 
end 

end 

 
set(handles.stage,'String','The second stimulus NII data extraction ...'); 

drawnow; 
load(strcat('COND00',int2str(COND2),'.mat')); 
switch COND2 
case 1 
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        COND = COND001; clear COND001; 
case 2 
        COND = COND002; clear COND002; 
case 3 
        COND = COND003; clear COND003; 
case 4 
        COND = COND004; clear COND004; 
case 5 
        COND = COND005; clear COND005; 
case 6 
        COND = COND006; clear COND006; 
case 7 
        COND = COND007; clear COND007; 
case 8 
        COND = COND008; clear COND008; 
end 

 
% STIMULUS = COND2; 
BASE = (SUBJECT - 1) * 108; 

 
for S=1:SAMPLE     
ID = BASE + ((S-1)*TIMEPOINT ); 

for ROW=1:TIMEPOINT 
fornX=1:X 

fornY=1:Y 
fornZ=1:Z 

 COL = (nX-1)*64*64 + (nY-1)*64 + nZ; 
 fmri_data(ROW,COL,12+S) = COND(nX,nY,nZ,ID+ROW); 
 class_label(1,12+S) = 2;                   

end 
end 

end 
set(handles.stage,'String',sprintf('The second stimulus: timepoint %d, 

sample %d from SUBJECT: %d', ROW,S,SUBJECT)); drawnow; 
end 

end 
 
%% used for Coordinate Transformation only 
COND = COND(:,:,:,1); 
 
fmri_niiTransform 
 
set(handles.stage,'String','PreparingfMRI data for training and validation 

...'); drawnow; 
 
length_per_sample = size(fmri_data,1); 
number_of_class = length(unique(class_label)); 
total_sample_number = size(fmri_data,3); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
percentage = str2num(get(handles.percentage,'string')); 
sample_amount_per_class_for_training =fix(total_sample_number * percent-

age/number_of_class); 
sample_amount_per_class_for_validation = total_sample_number/number_of_class - 

sample_amount_per_class_for_training; 
sample_amount_for_training = sample_amount_per_class_for_training * num-

ber_of_class; 
sample_amount_for_validation = sample_amount_per_class_for_validation * num-

ber_of_class; 

 
class_label_for_training = []; 
class_label_for_validation = []; 

 
z = 0; 
fori = 1:number_of_class 
% consider only for INPUT NEURON 
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    fmri_data_for_training(:,:,z+1:z+sample_amount_per_class_for_training) = 

talvoxel(:,INDEX_INPUT,(i-1)*total_sample_number/number_of_class+1:(i-

1)*total_sample_number/number_of_class+sample_amount_per_class_for_training);     
    z = size(fmri_data_for_training,3); 
end 

 
z=0; 
fori = 1:number_of_class 
% consider only for INPUT NEURON 
fmri_data_for_validation(:,:,z+1:z+sample_amount_per_class_for_validation) = 

talvoxel(:,INDEX_INPUT,i*total_sample_number/number_of_class-

sam-

ple_amount_per_class_for_validation+1:i*total_sample_number/number_of_class); 
    z = size(fmri_data_for_validation,3); 
end 
 
fori = 1:number_of_class 
class_label_for_training = 

[class_label_for_trainingones(1,sample_amount_per_class_for_training)*i]; 
class_label_for_validation = 

[class_label_for_validationones(1,sample_amount_per_class_for_validation)*i]; 
end 

 
clearz 
cleari; 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% For Mapping the coordinates  

%% fmri_niiTransform 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

load('neural_coordinate.mat'); 
set(handles.stage,'String','Create fmri_colToCoord ...'); drawnow; 
 
%% create colToCoord 
% Z= 12:51>40, Y=20:59>40 
fmri_colToCoord = zeros(40*40*40,4); 
fornx=1:40 

forny=1:40 
fornz=1:40 

                ROW = (nx-1)*40*40 + (ny-1)*40 + nz; 
fmri_colToCoord(ROW,1) = nx; 
fmri_colToCoord(ROW,2) = ny; 
fmri_colToCoord(ROW,3) = nz; 

end 
end 

end 
 
vfMRI = COND(:,20:59,12:51); 
NFMRI_LOCATION = 40*40*40; 
nfMRI = zeros(NFMRI_LOCATION,4); 
% x-axis 
XMID = fix(mean(fmri_colToCoord(:,1)));  
dx = min(neuron_location(:,1))/min(fmri_colToCoord(:,1) - XMID); 
nfMRI(:,1) = dx * (fmri_colToCoord(:,1) - XMID); 
% y-axis 
YMID = fix(mean(fmri_colToCoord(:,2)));  
dy = min(neuron_location(:,2))/min(fmri_colToCoord(:,2) - YMID); 
nfMRI(:,2) = dy * (fmri_colToCoord(:,2)- YMID); 
% z-axis 
% nfMRI(:,3) = 10 * (fmri_colToCoord(:,3)-4); 
ZMID = fix(mean(fmri_colToCoord(:,3)));  
dz = min(neuron_location(:,3))/min(fmri_colToCoord(:,3) - ZMID); 
nfMRI(:,3) = dz * (fmri_colToCoord(:,3)- ZMID); 
fornx=1:40 

forny=1:40 
fornz=1:40 

                ROW = (nx-1)*40*40 + (ny-1)*40 + nz; 
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nfMRI(ROW,4) = vfMRI(nx,ny,nz);  
end 

end 
end 
 
% filter only for important neuron 
IDX = find(nfMRI(:,4) > THRESHOLD);    
nfMRI = nfMRI(IDX,:); 

 
set(handles.stage,'String','Identify every nfMRI points that close to NEUCUBE 

point within RADIUS unit ...'); drawnow; 

 
% identify every nfMRI points that close to NEUCUBE point within RADIUS unit 
% the NEUCUBE using Talairach coordinate system with resolution 10 mm. 
NEURON_ORIGINAL = 1471; 
TAL = cell(NEURON_ORIGINAL,1); 
INPUT_NEURON = zeros(NEURON_ORIGINAL,1); 
% RADIUS unit is mm 
RADIUS = 7;  
 
for N=1:NEURON_ORIGINAL 
% Collect nii_neuron around NeuCubearound 
% CIRCLE  

TAL{N} = find( ... 
        (sqrt( (nfMRI(:,1)-neuron_location(N,1)).^2 +(nfMRI(:,2)-

neuron_location(N,2)).^2 ) <= RADIUS)&... 
        (sqrt( (nfMRI(:,1)-neuron_location(N,1)).^2 +(nfMRI(:,3)-

neuron_location(N,3)).^2 ) <= RADIUS)&... 
        (sqrt( (nfMRI(:,2)-neuron_location(N,2)).^2 +(nfMRI(:,3)-

neuron_location(N,3)).^2 ) <= RADIUS) ... 
        ); 

 
if (~isempty(TAL{N})) 
INPUT_NEURON(N,1) = 1; 
end 

end 
 
set(handles.stage,'String','Calculating the average value of voxel ...'); 

drawnow; 

 
% Mapping voxel  
SAMPLES = size(fmri_data,3); 
TIMEPOINTS = size(fmri_data,1); 
NTAL = length(TAL); % = NEURON_ORIGINAL  
talvoxel=zeros(TIMEPOINTS,NTAL,SAMPLES); 
for S=1:SAMPLES 

for T=1:TIMEPOINTS 
for N=1:NTAL 

if (~isempty( TAL{N} ) ) 
 talvoxel(T,N,S)=mean(fmri_data(T,TAL{N},S)); 

end 
end 

end 
set(handles.stage,'String',sprintf('Calculating the average value of voxel ... 

%d of %d samples',S,SAMPLES)); drawnow; 
end 


