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Abstract—Understanding the correlation between the underlie
network structure and overlay cascade effects in the interdepen-
dent networks is one of major challenges in complex network
studies. There are some existing metrics that can be used
to measure the cascades. However, different metrics such as
average node degree interpret different characteristic of network
topological structure, especially less metrics have been identified
to effectively measure the cascading performance in interdepen-
dent networks. In this paper, we propose to use a combined
Laplacian matrix to model the interdependent networks and their
interconnectivity, and then use its effective resistance metric as an
indicator to its cascading behavior. Moreover, we have conducted
extensive comparative studies among different metrics such as
average node degree, and the proposed effective resistance. We
have found that the effective resistance metric can describe more
accurate and finer characteristics on topological structure of
the interdependent networks than average node degree which
is widely adapted by the existing research studies for measuring
the cascading performance in interdependent networks.
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I. INTRODUCTION

In recent year, modern critical infrastructures are highly
networked. Interdependency among those infrastructures is
becoming a common strategy for the future of networking. For
example, Smart Grid is the next generation of electrical power
grid where the traditional power grids and the communication
networks are interconnected and interdependent. Smart Grid
is a modernisation of the traditional power network which
provides advanced two-way communications with highly ca-
pability in term of control, reliability, efficiency and safety [1].
Interdependency in this context is the bidirectional relationship
between two or more critical infrastructures. In addition, those
infrastructures have great influence on each other [2].

In the past decade, there has been much interest in the study
of complex networks. Cascading failures in complex networks
is an active field of research. Failure trigger in one network
might causes a malfunction to the dependent network. As a
result, an avalanche of cascading failures widely spread within
the interdependent netowrks. The events of power blackout
caused by cacading failures have happened in the past and will
continue to happen today. As examples, two blackout events
happened in 1996 in west America led to 11 states without
power [3]. In August 2003, the largest blackout in the history
of the U.S. triggered in the power grid of the U.S. and Canada

[4]. Understanding the cascading phenomena and measuring
the network structures to find root cause of fragilities is a
major challenge in complex network research.

Modelling and measuring cascading failures in complex
networks with given topologies have been subjected to many
research in recent year. The average node degree is a metric
which has been widely adopted in many previous studies
as a measurement indicator in quantifying the relationship
between network connectivity and the dynamical characteristic
of interdependent network. In particular, measuring the largest
connected component of an interdependent network, where
an attack occured on a node of a proposed ”one-to-one
correspondence” network model [5]. In this model, each node
in one network is depending on only one node in another
network and vice-versa. More realistic models have been
introduced with a consideration of random and targeted attacks
on large degree vertices such as: multiple support dependent
relation [6]; two fully dependent networks [7]; correspondently
coupled network [8]; interdependent networks with different
degree distribution [9]; regular inter-edge allocation method
for the purpose of improving the robustness of the system
[10]; real power grid in Italy [11]; and network of networks
[12]. These studies adopted average node degree and node
degree distribution combined with the percolation framework
in assessing the size of network components after failures of
vertices.

Despite the average node degree has been adopted in many
robustness measures studies, it does not provide sufficient
information of the underlying structure of interdependent net-
works. In this study, we propose to use a combined Lapla-
cian matrix to model the interdependent networks and their
interconnectivity, and then use its effective resistance metric
as a measure to its overlay cascading behavior. Moreover,
we have conducted extensive comparative studies between
average node degree, and the proposed effective resistance.
In addition, we adopted a well-known Bak-Tang-Wiesenfeld
(BTW) sandpile model as dynamic load distribution. The
extensive simulation studies have confirmed that the effective
resistance metric can generate more accurate and finer grained
indicator on topological structure of interdependent networks
than the average node degree which is a popularly used metric
reported in literature for measuring the cascading behavior in
interdependent networks.

The structure of this paper is outlined as follow: section
II proposes to use a combined Laplacian matrix to model
the interdependent network and their interdependency-links. In



section III, we introduce the concepts of average node degree,
effective graph resistance, and Bak-Tang-Wiesenfeld sandpile
model a representation of load distribution in interdependent
network. We conduct the extensive comparative studies includ-
ing adding and repositioning interdependency-links as well as
results analysis in section IV. Final conclusion and future work
are drawn in secition V.

II. MODELLING INTERDEPENDENT NETWORKS

Lets defines G as a graph of interdependent network.
According to graph theory, given a graph G(N,L) where N
is a set of nodes and L is a set of links. Suppose we have
two graphs representation of two networks G1(N1, L1) and
G2(N2, L2), each of which has a set of nodes N1, N2 and
a set of links L1, L2. These two networks are undireted and
unweighted [13].

In this case, G has a set of nodes N = N1UN2 and a set of
links L = L1UL2ULInt, where LInt is the interdependency-
links connecting G1 and G2. Lets denote Ni as the number
of nodes in |Ni| and Li as the number of links in |Li|. Thus
N = N1 + N2 and L = L1 + L2. Assign A

′

1 and A
′

2 be the
adjancency matrices of G1 and G2 and A

′
be the adjacency

matrix of graph G. The adjacency matrix:

Aij =

{
1, if (i, j) ∈ L
0, otherwise

In an adjacency matrix, the element aij = 1 only if node i
is connected to node j, otherwise aij = 0. When two networks
are completely disconnected Lint = 0

A
′
=

[
A

′

1 0

0 A
′

2

]
(1)

The adjacency matrix of the interdependency links LI is
denotes as B:

B =

[
0 BInt

BT
Int 0

]
(2)

The adjacency matrix of G

A = A
′
+ αB =

[
A

′

1 αBInt

αBT
Int A

′

2

]
(3)

where α is the coupling strength between the two networks.
Based on the equations (2), (3), and (4), we define the
Laplacian matrix L by taking the diagonal degree matrix D
subtract the adjacency matrix A of G:

L = D −A (4)

The diagonal degree matrix D can be written as:

D =

[
D1 0
0 D2

]
Based on equation (3), the adjacency matrix of G is A

′
+αB

which consists of matrix A
′

and matrix B. Thus, the Laplacian
matrices LA for A

′
and LB for B can be written as follow:

LA = D −A =

[
D1 −A1 0

0 D2 −A2

]
=

[
L1 0
0 L2

]
(5)

LB = D − αB =

[
D1 −αBInt

−αBT
Int D2

]
(6)

The total Laplacian matrix of interdependent network G
can be written as:

L = LA + αLB =

[
L1 + αD1 −αBInt

−αBT
Int L2 + αD2

]
(7)

The eigenvalues of the Laplacian matrix is also known as
the Laplacian Spectrum which is 0 = λ1(G) 6 λ2(G) 6 ... 6
λN (G).

III. MEASURING CASCADE EFFECTS

A. Average node degree

Average node degree 〈k〉 is a degree metric which describes
the characteristic of network connectivity. Given an undirected
and unweighted graph G(N,L), where N is the number of
vertices and L is the number of edges, the average node degree
can be written as:

〈k〉 = 2× L
N

A network that is known to be better-connected, if it has higher
average node degree [14]. However, this metric has a limitation
such that two networks with the same average node degree but
their topological structures are different.

B. Effective graph resistance

This section presents the basic concept of the effective
graph resistance and its computational method. The effective
graph resistance is a function of the Laplacian eigenvalues of
the interdependent networks graph. The theory behind effective
graph resistance is related to an electrical circuit, where a link
between nodes i and j corresponds to a resistor. According to
[15], if two resistors r1 and r2 are connected in series, the total
resistance R = r1 + r2. On the other hand, if r1 and r2 are
connected in parallel, the total resistance R = (r−11 + r−12 )−1.

The total effective resistance is also known as the effective
graph resistance. The effective graph resistance is the sum of
the effective resistances over all pairs of nodes in a graph
[16]. According to Klein and Randic [17], the effective graph
resistance can be written as:

RG = N

N∑
i=2

1

µi
(8)

where N is the total number of nodes and µi is the eigenvalues
of the Laplacian matrix. In this study, we focus on interdepen-
dent networks and the mathematical modelling of this type
of network. The computational method of defining Laplacian
matrix is defined in the next section.



C. Bak-Tang-Wiesenfeld (BTW) sandpile model

The original BTW sandpile model derived from a real
sand pile behavior, which establish on 2-dimensional lattices.
This model is initiated by dropping grains of sand uniformly
at random on the network and every node has a threshold.
After dropping grains of sand, if a node exceeds its capacity
or threshold, this node will begins to topple sand to the
neighboring nodes. At this stage, if the neighboring nodes
become unstable or failed, grains of sand will continue to
topple to other neighboring nodes. Eventually, there will be no
other nodes exceed anymore capacity. However, upon dropping
another grain of sand, the toppling process will initiate again
[18].

Grains of sand represent as load and the degree of nodes
represent as capacities which is also the threshold. We are
most interested in the probability of avalanche size distribution,
which is the chance that the load might topple a large number
of nodes within the interconnected networks. In 2-dimensional
finite lattices with open boundaries condition, some sands
are lost when arriving at the boundaries naturally equivalent
to delete grains of sand independently with probability f or
dissipation rate [19]. Consider sandpile model of 2-dimentional
finite N×N networks, every node in each network is denoted
by Zi where:

Zi = Z(x, y) = 0, 1, 2, 3, ...

x, y = 1, 2, 3, ...N

At initial state, Zi << K where there is no grain of sand
being dropped. K is the threshold of each node. Upon dropping
grains of sand uniformly at random, eventually a grain of sand
arrive at a node in which its capacity equal to threshold (Zi =
K), a toppling event will begin which might leads to a whole
series of toppling events and it will continue stable state is
reached where there is no other node topple [20]. A toppling
event is represented by Zi −→ Zi + 1, when Zi = K

IV. CASE STUDIES

In this section, interdependent netowrk topology is pre-
sented. Python based Networkx tool [21] is being used to
generate Erdös Rényi (ER) interdependent netowrk. We in-
troduce two numerical simulation scenarios include adding
interdependency links and repositioning interdependency links.
The results from this numerical simulation can be used to
calculate the effective graph resistance. Bak-Tang-Wiesenfeld
sandpile dynamic model is used to generate load distribution.

The detail of the two scenarios are: (i) Measuring the
cascade effects by using the effective graph resistance as
an indicator in relation to the probability of avalanche size
distribution. In this case, three interdependency-links are being
constantly added to the network for eight set of experiments.
(ii) In the second scenario, again we are most interested in
correlation between the effective graph resistance and the prob-
ability of avalanche size distribution. However, we conduct
different experiments by respositioning the interdependency-
links ranging from connecting between small degrees nodes to
large degrees nodes. These scenarios allow us to observe the
cascading effects due to topological changes.

A. Interdependent Network Topologies

This section presents the detail and graph representation
of the interdependent network topological structure which is
shown in Fig.1. This interdependent network consist of net-
work A and network B, nodes in each network are connected
via internal-links and interconnected via interdependency links.
The key characteristics of the interdependent netowrks used
in this study are listed in TABLE I. First, network A and

Fig. 1. Interdependent networks topology

network B have identical number of nodes Na = Nb. Secondly,
both network have the same average node degree Za = Zb.
Finally, in our numerical simulation, we are investigating the
impact of topological changes in four different network sizes
(Na = Nb = 40, 50, 60, 70). These networks sizes will be used
to quantify the cascade effects by using the effective graph
resistance metric as an indicator.

TABLE I. CHARACTERISTICS OF THE INTERDEPENDENT NETWORK
TOPOLOGIES

Characteristics ER1 ER2 ER3 ER4
N = Na + Nb 80 100 120 140
Z = Za + Zb 85 117 164 173

In both scenarios, we are focusing on the changes in
interdependency-link. All four different network size will be
investigated. First scenario, we are constantly adding three
interdependency links 8 times included the first three initial
interdependency-links. Following the process in section II, we
can obtain the Laplacian matrix and then calculate the eigen-
values. Once we obtain the eigenvalues of Laplacian matrix,
the effective graph resistance can be computed using equation
(8). Second scenario, we reposition the interdependency links
by considering the importance of node degree. The results
of these two scenarios will be discussed in the following
subsections.

B. Numerical Simulations

1) Adding Interdependency-Links: In this section, we in-
vestigate the cascading behaviours affecting by the increase in
number of interdependency-links using the effective graph re-
sistance. In addition, we conduct extensive comparative studies
between the effective graph resistance and the average node
degree. Table II shows the characteristics of interdependent
networks with various cases of adding interdependency-links.

Two numerical simulations were conducted on two network
sizes, Na = Nb = 40 and Na = Nb = 70. Three
interdependency-links are constantly added to eight different
cases. According to Fig.2 and Fig.3, while the number of



interdependency-links increases, we found that the average
node degree is also increased. In theory, when the average
node degree incrases, the network is better connected. On the
other hand, the effective graph resistance is decreasing when
more interdependency-links being added to the network.

TABLE II. CHARACTERISTICS OF ADDING INTERDEPENDENCY-LINKS

N Na = Nb = 40

Za + Zb 85
Inter-links 3 6 9 12 15 18 21 24
〈k〉 2.20 2.28 2.35 2.43 2.50 2.58 2.65 2.73
R 3246 2730 2518 2394 2307 2248 2193 2122
N Na = Nb = 70

Za + Zb 173
Inter-links 3 6 9 12 15 18 21 24
〈k〉 2.51 2.56 2.60 2.64 2.69 2.73 2.77 2.81
R 9982 8471 7925 7633 7450 7281 7123 7012

Fig. 2. Probability of avalanche size distribution vs. average node degree
and effective graph resistance in the case of adding interdependency-links
(Na = Nb = 40)

In term of cascading behaviours, when the average node
degree increases the chance of having a large avalanche size
which is the probability of avalanche size distribution, is also
increased. On the other hand, when the effective resistance is
becoming smaller, the chance of having large avalanche size
is becoming higher. Thus, from the results we can see that, the
effective graph resistance is a better indicator than the average
node degree.

2) Repositioning Interdependency-Links: We further in-
vestigate the impact of interdependency-links on cascading
behaviours by adopting the link reposition approach and again
using both average node degree and the effective graph re-
sistance as the indicators. In this case, two network sizes,
Na = Nb = 50 and Na = Nb = 60 were selected. TABLE III

Fig. 3. Probability of avalanche size distribution vs. average node degree
and effective graph resistance in the case of adding interdependency-links
(Na = Nb = 70)

shows the characteristics of interdependent networks in various
cases of repositioning interdependency-links.

TABLE III. CHARACTERISTICS OF ADDING INTERDEPENDENCY-LINKS

N Na = Nb = 50

Za + Zb 85
Inter-links 6
Connectivity Small degrees Medium degrees Large degrees
〈k〉 1.82 1.82 1.82
R 41.77 41.55 41.17
Probability 0.00038 0.00051 0.00063
N Na = Nb = 60

Za + Zb 117
Inter-links 6
Connectivity Small degrees Medium degrees Large degrees
〈k〉 2.05 2.05 2.05
R 40.98 40.45 39.73
Probability 0.0024 0.0026 0.0027

As shwon in TABLE III, the average node degree have
exactly the values for all three different repositioning cases. On
the other hand, the effective graph resistance shows different
values. In this scenario, we are most interested in the impact
of connecting between nodes ranging from small degrees to
large degrees on cascading behaviours. Fig.4 and Fig.5 show
a clear evidences that the average node degree cannot tell
differences between three cases, although the probability of
avalanche size distribution shows differences. In cotrast, the
effective graph resistance shows different values for different
cases where network with higher effective graph resistance
has lower chance of having a large avalanche size. From the
results we found that, connecting between small degrees nodes
has higher resistance than large degrees.



Fig. 4. Probability of avalanche size distribution vs. average node degree and
effective graph resistance in the case of repositioning interdependency-links
(Na = Nb = 50)

Fig. 5. Probability of avalanche size distribution vs. average node degree and
effective graph resistance in the case of repositioning interdependency-links
(Na = Nb = 60)

V. CONCLUSION

In this paper, we proposed to use the effective graph
resistance metric as a cascading effects indicator. In addition,
we have selected the average node degree which have been
widely used in many complex networks research and con-
ducted extensive comparative studies with the effective graph
resistance. The results from this paper lead to our arguement
that the effective graph resistance is a better and effective
metric than the average node degree that sufficiently describe
the finest topological changes in interdependent networks.

In this study, we proposed to use Erös Rényi random
graph to model the interdependent networks. Furthermore, we
used a combine Laplacian matrix to mathematically model
the networks. Numerical simulations were conducted using
adding and repositioning interdependency-links approaches
and computed the average node degree and the effective graph
resistance. Bak-Tang-Wiesentfeld sandpile dynamic model is
being used to generate load distribution as a dynamical be-
haviours in interdependent networks.

Results clearly shows that networks with same average
node degree have different topological structures. In addition,
average node degree can only tell how network are connected
based on an average degrees of every node in the netowrk.
In this case, repositioning the interdependency-links does not
affect the average degree values because no links has been
added or removed. On the other hand, the effective graph
resistance is more sensitive to topological changes in the case
of repositioning and adding interdependency links. In addition,
when a network has high effective resistance, the probability
chance of having a large avalanche size is low.

For future research, it would be interesting to consider a
large scale interconnected networks and how both internal-
links and inter-links affect the cascading performance of
interconnected network, taking into account the cascading
failures in relation to the dynamical behaviors of the system. In
addition, there is scope for more accurate topological metric
than our current proposed effective graph resistance waiting
to be identified to better describe cascade effects in coupled
networks.
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