
INSIGHT: Thinking Issues

Tony Clear

Everybody must cut code! Educational imperative, fad or fantasy?

Political momentum now seems to be growing towards ensuring the availability of computing education curricula in

several countries, not only at the high school level but at even earlier stages of education. But what are the chances

of these initiatives being successful? This column discusses recent developments in the context of earlier computing

curricula implementations in a selected group of mostly western countries at the pre-university level. The

challenges to be surmounted, and the seeming lack of concern for the potentially negative side effects of hasty

curriculum implementations are presented, then complemented with a critical projection of the likely eventual

outcomes.

In one example of such a development, recently the New Zealand Government became a signatory of the D5

Charter. Under the charter the D5 purports to represent “a group of the most digitally advanced governments in the

world. The D5 will provide a focused forum to share best practice, identify how to improve the Participants’ digital

services, collaborate on common projects and to support and champion our growing digital economies”[6]. So

immediately we see a set of utilitarian drivers underpinning the initiative, make the signatories richer and ensure that

they come out as winners in a globally competitive digital race! Participating governments to date are Korea, UK,

Estonia, New Zealand and Israel.

One article of the charter is the following commitment:

3.7. Teach children to code - commitment to offer children the opportunity to learn to code and build the next

generation of skills

But as noted in [6], “What, if anything, the D5 may cost each member country in the future is open to question, as

"Participants will decide on a case by case basis how any joint initiatives will be funded and resourced".

Programming early and programming for everyone has been a long argued perspective, from Seymour Papert in the

1980’s with the Logo programming language [14], to more recent developments targeting younger and more diverse

audiences in block based visual programming languages such as Alice and Scratch [10,11,15]. Complementing

these movements as a counter to the narrow focus on ‘programming’ (or even worse ‘coding’!) has been the push for

more widespread adoption of the broader notion of “computational thinking” [16]. Educationally these

developments fit within numerous curriculum initiatives country by country, with various cycles of nomenclature,

IT fluency [3], digital literacy, computer literacy, digital technologies [1,7], coding skills [5,6], computational

Page 1 of 8 Inroads

https://mc.manuscriptcentral.com/inroads

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AUT Scholarly Commons

https://core.ac.uk/display/56365421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

thinking [16] etc. Individual country trajectories will have varied, but the progression of CS curricula at High

School levels has mostly been mixed and confused, demonstrating inconsistency in differentiating between three

different approaches: 1) teaching CS as a discipline in its own right; 2) disseminating computer literacy, and 3)

engaging in the use of computers for teaching other subjects. In one country study reported in 2004 [9], the Finnish

upper high school CS curriculum was shown to have moved significantly over a period from 1972 with ‘Automatic

Data Processing’ (ADP) taught as a sub-field of mathematics, towards ‘Information Technology’ in 1985. Two

courses were described: a) basic use of computers, b) programming). By 1994 CS studies had become subsumed

under broad themes, and by 2003 in an increasingly devolved curriculum, the two themes covering CS were

“technology and society” and communication and media competence”, without specific reference to computers or

CS. The authors of the study concluded “enthusiastic teachers should be cherished as precious assets…[who]

decide whether courses in CS are arranged or not” and that “the possibility to learn CS in Finnish high schools is

changing to a game of chance” [9]. This dismal picture would not be widely different from the experience of many

other countries.

More recently the concerns voiced by key influencers in the UK technology community about the abysmal

curriculum offerings their children had available to them in their schools, had a great political impact, as is evident

in the quote below from the UK education minister Michael Gove:

“ICT used to focus purely on computer literacy – teaching pupils, over and over again, how to word-

process, how to work a spreadsheet, how to use programs already creaking into obsolescence; about as

much use as teaching children to send a telex or travel in a zeppelin.

Our new curriculum teaches children computer science, information technology and digital literacy:

teaching them how to code, and how to create their own programs; not just how to work a computer, but

how a computer works and how to make it work for you.” [5]

I have sympathy for this concern myself seeing my granddaughter [an attendee of many CS Ed conferences and

Scratch literate] being subjected to the same experience of end-user computing as ICT at high school.

Yet if we take on board the lessons learned from the New Zealand senior high school CS curriculum roll-out, a

major move towards a more credible CS curriculum is challenging for systems and teachers. As noted in [1] a

survey of teachers showed that the majority were aged 50 plus, had no experience in computer science as a subject

and were not confident in teaching the new materials. To put this in perspective, would we seriously expect a

computer scientist to teach senior high school Latin after a two day crash course and a pointer to a repository of

someone else’s hastily prepared curriculum materials? Yet these lessons reflect experiences with introducing a CS

curriculum at high school level, not as now proposed in some countries [notably UK and Australia], from the

elementary school and upwards [5,7]. As observed in [7] stakeholder consultation in Australia has “identified

significant concerns in relation to teacher development (particularly at F-7), appropriate pedagogy, and skills

needed for integration of DT learning objectives with the teaching of other learning areas”. The authors further note

Page 2 of 8Inroads

https://mc.manuscriptcentral.com/inroads

the limited research in the area to guide teachers in appropriate pedagogical strategies. The work by Ray Lister on

neo-piagetian stages of cognitive development at tertiary level [12], should give some additional cause for concern

about the typical student’s ability to handle different forms of abstraction at the earlier schooling levels.

Even worse, with the way in which Anglo-phone governments (who mostly tend to be of a neo-liberal stripe)

manage schools [and in some cases tertiary institutions] punitively through withdrawal of funding based on student

pass rate thresholds [4,2], having demanding courses in which students fail is not a good thing. In [3] I have

previously commented on the role of dumbed down end user focused ICT courses as an easy way of getting non-

academic students through examination hurdles and making the school statistics look good. As also noted in the

New Zealand context [1]

Two respondents mentioned that management and colleagues do not understand the new courses:

“Educating other staff (still) that this is not a typing class,” “Management, both Senior and Departmental

do not understand the importance of the topic in terms of content and job opportunities. The digital

technology [achievement standards] are viewed as being ‘too hard’ and there is a push to return to [unit

standard] work where students gain credits for doing rather than thinking.”

Then further taking equity considerations into account, what is the likely impact of these developments in pushing

CS further back in the curriculum. Will it merely reinforce the negative gender stereotypes about CS as a discipline

earlier? If we acknowledge the findings of Jane Margolis in her dispiriting book about race, class, prejudice and

quality of CS teaching in poorer and minority schools, then will this extension of the CS curriculum bear fruit in

those schools, or be just another under resourced, poorly taught and marginalised subject?

Politically driven CS curriculum initiatives aimed at developing the competitiveness necessary for the much vaunted

knowledge economy are probably merely a passing fad. Yet few could take issue with the need for a serious revamp

of what passes for a CS/IT curriculum below the University level in most countries. Though when we see educators

in the tougher schools struggling to teach basic numeracy and math at elementary and high school levels [13], the

prospect of the universal success of a ‘computational thinking’ curriculum, which we could view as ‘numeracy on

steroids’ seems rather far-fetched to me.

The utopian view will see the developing of programming skills from an early age as a part of a modern liberal

education, in which students have the opportunity to express a new form of creativity, through that most plastic of

all media - software! If we do see a set of curriculum initiatives that can succeed in re-sparking the passion, beauty,

joy and awe: and making computing fun again [8], then that would be wonderful. I sincerely hope this will be the

outcome, but with this ambitious broadening out of the CS curriculum and its attempted wholesale delivery across

primary, secondary and tertiary sectors of education, I fear that things will persist. Much as they have done for the

Page 3 of 8 Inroads

https://mc.manuscriptcentral.com/inroads

last four decades of computing education in schools, I suspect we will continue to see isolated islands of excellence

drifting in a sea of dross!

1. Bell, T., Andreae, P. and Robins, A. “A Case Study of the Introduction of Computer Science in NZ

Schools.” Transactions in Computing Education, 14 (2014): 1-31.

2. Clear, A. and Clear, T. “Introductory Programming and Educational Performance Indicators - a

Mismatch”. in Proceedings of ITx New Zealand's Conference of IT, Hamilton, New Zealand:

CITRENZ, 2014: 123-128.

3. Clear, T. and Bidois, G. “Fluency in Information Technology – FITNZ: An ICT Curriculum Meta-

Framework for New Zealand High Schools.” Bulletin of Applied Computing and IT, 3 (2005):

http://www.citrenz.ac.nz/bacit/0303/2005Clear_FITNZ.htm.

4. Dee, T.S. and Jacob, B. “The impact of no Child Left Behind on student achievement.” Journal of

Policy Analysis and Management, 30 (2011): 418-446.

5. Dredge, S. “Coding at school: a parent's guide to England's new computing curriculum.” theguardian,

September 4, 2014. http://www.theguardian.com/technology/2014/sep/04/coding-school-computing-

children-programming. Accessed 2015 August 9.

6. Eskow, S. “NZ Govt commits to kids coding and open source.” IITP Techblog, 13 July, 2015.

http://www.techblog.nz/958-NZGovtcommitstokidscodingandopensource. Accessed 2015 August 9.

7. Falkner, K., Vivian, R. and Falkner, N. “The Australian Digital Technologies Curriculum: Challenge

and Opportunity”. In Proceedings of the. Sixteenth Australasian Computing Education Conference

(ACE2014), ACS, 2014, Auckland, New Zealand: 3-12.

8. Garcia, D.D., et al., “Rediscovering the passion, beauty, joy, and awe: making computing fun again,

continued.” in Proceedings of the 40th ACM technical symposium on Computer science education,

ACM, 2009, Chattanooga, TN, USA: 65-66.

9. Kavander, T., and Salakoski, T. (2004). “Where have all the flowers gone? - Computer Science

education in general upper secondary schools.” In Proceedings of the Fourth Finnish/Baltic Sea

Conference on Computer Science Education, Helsinki University, 2004, Koli, Finland: 112-115.

10. Kelleher, C. and Pausch, R. “Lowering the barriers to programming: A taxonomy of programming

environments and languages for novice programmers.” ACM Computing Surveys, 37 (2005): 83-137.

[doi>10.1145/1089733.1089734]

11. Kelleher, C. and Pausch, R. “Using storytelling to motivate programming.” Communications of the

ACM, 50 (2007): 58-64. [doi>10.1145/1272516.1272540]

12. Lister, R.,” Concrete and Other Neo-Piagetian Forms of Reasoning in the Novice Programmer.” in

Proceedings of the Thirteenth Australasian Computing Education Conference (ACE 2011), ACS,

2011, Perth, Australia: 9-18.

13. Margolis, J. Stuck in the Shallow End: Education, Race, and Computing. (Cambridge, Massachusetts:

The MIT Press, 2008).

Page 4 of 8Inroads

https://mc.manuscriptcentral.com/inroads

14. Papert, S. Mindstorms: children, computers, and powerful ideas. (New York: Basic Books, Inc., 1980)

15. Resnick, M., et al., “Scratch: programming for all.” Communications of the ACM, 52 (2009): 60-67.

16. Wing, J.M. “Computational thinking”, Communications of the ACM, 49 (2006): 33-35.

[doi>10.1145/1118178.1118215]

Page 5 of 8 Inroads

https://mc.manuscriptcentral.com/inroads

The D5 Charter

Page 6 of 8Inroads

https://mc.manuscriptcentral.com/inroads

The D5 Charter

70x45mm (72 x 72 DPI)

Page 7 of 8 Inroads

https://mc.manuscriptcentral.com/inroads

Everybody must cut code!

Page 8 of 8Inroads

https://mc.manuscriptcentral.com/inroads

