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ABSTRACT
Maintaining high levels of physical function is an important aspect of successful
ageing. While muscle mass and strength contribute to functional performance in
older adults, little is known about the possible genetic basis for the heterogeneity
of physical function in older adults and in how older adults respond to exercise.
Two genes that have possible roles in determining levels of muscle mass, strength
and function in young and older adults are angiotensin-converting enzyme (ACE)
and mitochondrial uncoupling protein 2 (UCP2). This study examined whether
polymorphisms in these two individual genes were associated with baseline
functional performance levels and/or the training-related changes following
exercise in previously untrained older adults. Five-eight Caucasian older adults
(mean age 69.8 years) with no recent history of resistance training enrolled in
a 12 week program of resistance, balance and cardiovascular exercises aimed at
improving functional performance. Performance in 6 functional tasks was recorded
at baseline and after 12 weeks. Genomic DNA was assayed for the ACE intron 16
insertion/deletion (I/D) and the UCP2 G-866A polymorphism. Baseline differences
among genotype groups were tested using analysis of variance. Genotype differences
in absolute and relative changes in physical function among the exercisers were tested
using a general linear model, adjusting for age and gender. The genotype frequencies
for each of the studied polymorphisms conformed to the Hardy-Weinberg
equilibrium. The ACE I/D genotype was significantly associated with mean baseline
measures of handgrip strength (II 30.9 ± 3.01 v. ID 31.7 ± 1.48 v. DD 29.3 ± 2.18 kg,
p < 0.001), 8ft Up and Go time (II 6.45 ± 0.48 v. ID/DD 4.41 ± 0.19 s, p < 0.001)
and 6 min walk distance (II 458 ± 28.7 v. ID/DD 546 ± 12.1m, p = 0.008). The
UCP2 G-866A genotype was also associated with baseline 8ft Up and Go time
(GG 5.45 ± 0.35 v. GA 4.47 ± 0.26 v. AA 3.89 ± 0.71 s, p = 0.045). After 12 weeks
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of training, a significant difference between UCP2 G-886A genotype groups for
change in 8ft Up and Go time was detected (GG −0.68 ± 0.17 v. GA −0.10 ± 0.14 v.
AA +0.05 ± 0.31 s, p = 0.023). While several interesting and possibly consistent
associations with older adults’ baseline functional performance were found for the
ACE and UCP2 polymorphisms, we found no strong evidence of genetic associations
with exercise responses in this study. The relative equivalence of some of these
training-response findings to the literature may have reflected the current study’s
focus on physical function rather than just strength, the relatively high levels of
baseline function for some genotype groups as well as the greater statistical power for
detecting baseline differences than the training-related changes.

Subjects Genetics, Genomics, Geriatrics, Kinesiology
Keywords Uncoupling protein 2 gene, Genetic polymorphism, Angiotensin-converting enzyme
gene, Older adults, Physical activity

INTRODUCTION
Maintaining adequate levels of muscle mass, strength, muscular and aerobic endurance

and functional performance in older age is important, as a decline in these physical

attributes may result in: (1) a loss of independence (Baumgartner et al., 2004; Kim et

al., 2012), (2) an increased risk and fear of falls (Brouwer, Musselman & Culham, 2004;

Wagenaar, Keogh & Taylor, 2012); (3) an increase in the risk of chronic conditions

(Abellan van Kan et al., 2009); and (4) a reduction in quality of life (Giles, Hawthorne &

Crotty, 2009; Masel et al., 2009). Engaging in regular resistance and aerobic activity and

ensuring adequate nutritional intake appear to be some of the key strategies for older

adults to reduce these sarcopenic-related losses of muscle mass, strength and function

(Fiatarone-Singh, 2002; Nelson et al., 2007). While initial studies in this area focused on

maintaining muscle mass, a number of recent reviews indicate older adults at risk of

physical decline may gain more substantial improvements in muscular strength, balance

and functional performance, for example gait speed, than improve their muscle mass

(Keogh & MacLeod, 2012; Valenzuela, 2012). This is vital as the age-related loss of strength,

balance and gait speed has a greater relationship to outcomes such as activities of daily

living, independence and quality of life and mortality than muscle mass alone (Abellan van

Kan et al., 2009; Kim et al., 2012; Wood et al., 2011).

Studies involving younger (Argus et al., 2009; Till & Cooke, 2009) and middle-aged to

older (Karavirta et al., 2011) adults indicate the potential for considerable inter-individual

responses to identical training programs, even when the sample is relatively homogenous

at baseline and engage in the same exercise program. For example, in a study in which

175 untrained middle-aged to older adults performed 21 weeks of strength, aerobic

training, combined strength and aerobic or no training, Karavirta et al. (2011) reported

large individual differences in muscular strength (−12 to 87%) and aerobic power (−8

to 42%) changes for the combined strength and endurance training group (n = 53).
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This high degree of within-participant variability in response was demonstrated via

the use of criterion assessments of strength and aerobic power, namely the maximum

voluntary contraction (MVC) and cycle ergometry peak oxygen consumption (VO2peak)

tests, respectively. Further, there were no significant correlations (all r’s < 0.10) between

the changes in the MVC strength or VO2peak in any of the three groups, suggesting that

the strength and aerobic power responses to strength and/or aerobic training can exhibit

substantial within- and between-participant variability. These intra-individual differences

in training response may reflect genetic factors.

While considerable heterogeneity exists in the physical function of many older adults,

even when chronic conditions and medications are controlled for, the relative contribution

of genetics and long-term physical activity levels in determining their physical function

and ultimately survival remains less clear. Based on research involving primarily younger

adults, two genes that might play a role in regulating the physical function and indirectly

impact on survival in older adults are angiotensin-converting enzyme (ACE) and mito-

chondrial uncoupling protein 2 (UCP2) (Dhamrait et al., 2012; Puthucheary et al., 2011).

When expressed, the ACE gene produces angiotensin-converting enzyme protein. This

ACE protein plays a key role in regulating the activity of the rennin-angiotensin system,

thereby directly influencing blood pressure and fluid balance and indirectly influencing

cardiovascular and musculoskeletal structure and function (Puthucheary et al., 2011; Seripa

et al., 2011). Indeed, a functional polymorphism in the human ACE gene, the intron 16

insertion (I) allele, has been associated with an enhanced cardiovascular response to train-

ing (Myerson et al., 1999), while the deletion (D) allele has been associated with a superior

muscle size and strength response to training (Puthucheary et al., 2011; Woods et al., 2001).

The UCP2 gene is expressed in many tissues particularly skeletal muscle. It exerts a

variety of effects on mitochondrial function, meaning it influences the rate of synthesis of

ATP and reactive oxygen species and indirectly influences many indices of cardiovascular

health (Bo et al., 2013; Dato et al., 2014; Dhamrait et al., 2004; Palmer et al., 2003).

The frequency of the UCP2 (A55V) C allele was found to be higher among power

athletes compared with controls (Sessa et al., 2011). Another allele of the UCP2 G-866A

polymorphism has also been associated with increased delta efficiency after endurance

training in young, healthy adults compared to those carrying the G allele (Dhamrait et al.,

2012; Perusse et al., 2013).

Recently, some studies have examined the relationships between ACE (Bustamante-Ara

et al., 2010; Garatachea et al., 2012; Giaccaglia et al., 2008; Pereira et al., 2013) and UCP2

(Dato et al., 2014) gene polymorphisms and a variety of measures of muscular strength

and power in older adults. Only one of these four ACE studies reported significant

genotypic relationship to performance at baseline, with the ACE insertion/deletion (ACE

ID) group having a significantly greater baseline handgrip strength (Bustamante-Ara et

al., 2010). In support of a possible genetic link to baseline function, Seripa et al. (2011)

demonstrated that the ACE II genotype was associated with increased risk of limitations

in activities of daily living in hospitalised older patients. Of the two studies that assessed

training-related changes in older adults, both reported significantly greater improvements
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in strength and power measures for those with the ACE D allele (Giaccaglia et al., 2008;

Pereira et al., 2013). To the authors’ knowledge, only one study has so far reported

associations between baseline differences in older adults who differ in UCP2 genotypes

(Dato et al., 2014), with no studies examining the exercise response. Dato et al. (2014)

found significantly greater walking speeds over 3–4 m in those with the rs7109266 SNP

found on the UCP2 G-866A allele, but no UCP2 association with the degree of disability,

handgrip strength or cognitive function in a sample of 1089 older adults.

Therefore, the purpose of this study was to determine if either the ACE and/or UCP2

genotypes individually: (1) distinguish the baseline level of functional performance in

older adults who are not currently performing an exercise program; and (2) influence the

training-related changes in older adults’ functional performance. It is hypothesised that

variations in these individual alleles will be associated with baseline- and training-related

differences in older adults’ functional performance.

MATERIALS AND METHODS
Research design
This study utilised a cross-sectional and pre-post single arm trial design to determine

whether polymorphisms in two individual genes (ACE and UCP2) were associated with

baseline and training-related changes in a variety of physical performance measures in

community dwelling older adults, respectively. Due to a lack of sufficient statistical power,

no interactions between polymorphisms of the two genes and the physical performance

measures were examined. Portions of this data describing the exercise program, physical

assessments used and the magnitude of changes in physical function seen with training

have been reported previously (Keogh et al., 2014).

Participants
As the Never Too Old (N2O) program is a community-based program for older adults,

there was no specific inclusion/exclusion criteria for participation in this study, besides

being at least 60 years of age and healthy enough to be given medical clearance to

participate in the program. Fifty-eight older adults of European ancestry who had just

enrolled in a N2O program gave written informed consent to participate in this study.

These 58 participants were a subset of the 67 participants who gave informed consent to

participate in Study 1 (which examined the training-related changes in physical function)

of the wider N2O study (Keogh et al., 2014). The nine participants whose data is not

included in this study either declined to participate in the current genetic project or were

ineligible to participate based on their ethnicity.

Prior to starting the N2O program, all subjects completed a modified PAR-Q

pre-exercise health assessment questionnaire to determine if the potential participants

had any relative or absolute contraindications to exercise. If the PAR-Q raised any concerns

about the safety of exercise, the individual was required to obtain clearance from a qualified

medical practitioner prior to entry into the program. Ethical clearance for the project was

approved by the Auckland University of Technology Human Ethics Committee (06/05).
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TRAINING PROGRAM
Participants attended the N2O program twice weekly for 12 weeks, with each training

session lasting approximately 60 min. The participants in this research project performed

the Bronze N20 program, which focused on providing a safe and friendly environment that

introduced the older adults to selected resistance and cardiovascular exercises that were

aimed at improving their overall functional performance and health.

Training sessions commenced with a 5–10 min warm-up that preceded the resistance

training component. The resistance training exercises included the knee extension, leg curl,

leg press, chest press, lat pulldown, shoulder press, bicep curl and tricep pushdown, with

a selection of these exercises performed during each training session. Each exercise was

performed for 1–2 sets of 8–12 repetitions with loads that initially produced moderately

light to moderate ratings of perceived on the Borg rating of perceived exertion (RPE) scale

(Borg, 1982). After completing the resistance training exercises, 5–10 min of cardiovascular

exercise (i.e., stationary cycling or walking on a treadmill) was then performed at a

moderately light to moderate intensity on the Borg RPE scale (Borg, 1982). The exercise

session was then completed by performing 5–10 min of stretches for the major muscle

groups of the body. Loads for the resistance and cardiovascular exercises were progressively

increased over the course of the 12 week training program.

Procedures
The N2O program is aligned with the International Society of Aging and Physical Activity

(ISAPA) and adopts the ISAPA’s recommended Senior Fitness Test battery (Rikli & Jones,

1999a; Rikli & Jones, 1999b; Rikli & Jones, 2001). This series of assessments has been to

shown to be reliable and valid in predicting functional levels in older adults and involves

the: (1) 30 s sit to stand (30 s STS); (2) 30 s bicep curl; (3) 8 ft Up and Go; and (4)

6 min walk tests. The 30 s STS and bicep curl stand tests were designed to assess lower

and upper limb muscular strength and endurance, respectively, of older adults (Rikli &

Jones, 1999a; Rikli & Jones, 1999b). The 8 ft Up and Go and the 6 min walk tests assess

dynamic balance/mobility and walking endurance, respectively (Rikli & Jones, 1999a; Rikli

& Jones, 1999b). Measures of upper limb dexterity (Purdue Pegboard Test) and strength

(handgrip strength) were also assessed, as older adults have reduced upper limb dexterity

and strength compared to young adults (Keogh, Morrison & Barrett, 2007; Sequeria, Keogh

& Kavanagh, 2012). In addition, the height and body mass of each participant was also

obtained using standard procedures so that a body mass index (BMI) could be calculated.

BMI was calculated by dividing the body mass in kg by the square of the height in metres.

All of these tests were conducted within the same assessment session that were

completed in <1 h in the same order as described above with the exception that the 6 min

walk test was performed last due to its fatiguing nature. Prior to performing these eight

assessments, all participants completed a 5–10 min warm-up that consisted of general

total body movements and stretches of primary muscle groups. A description of the

eight tests is provided below. Prior to performing each of the tests, participants were

given the same instructions, these being “to do the best they can on the tests, but to never
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push themselves to the point of overexertion or beyond what they think is safe for them”

(Rikli & Jones, 1999a).

30 s STS
The participant was asked to fully stand and sit down as many times as possible in 30 s from

a chair without arms, a seat height of 43 cm and with their arms crossed at the wrist and

held against the chest. One practice trial, of 2–3 repetitions, was performed as a specific

warm-up followed by one full trial of this test. The score was the complete number of

correct repetitions performed in 30 s.

30 s Bicep curl
The participant was asked to sit down on a chair and to complete as many bicep curls in

30 s as possible with their preferred arm. This test was done with 2 kg or 4 kg dumbbells for

older women and men, respectively. The participant was required to keep their trunk still

and to move their forearm through a full range of motion about the elbow joint for each

repetition to be counted. One practice trial of 2–3 repetitions (if possible) were performed

as a specific warm-up followed by one full trial of this test. The score was the complete

number of correct repetitions performed in 30 s.

8 ft Up and Go
The 8 ft Up and Go required the participant who was initially seated on a chair that was

∼43 cm high and no arm rests, to stand up, walk around a cone positioned 8 ft (∼2.44 m)

away and sit down again in the chair. One practice trial was performed as a specific

warm-up followed by two trial of this test, each separated by a rest period of 60 s. The

time required to complete each trial of this test was measured via stopwatch to the nearest

0.01 s.

6 Min walk
The 6 min walk test was performed by having several older adults starting at different

points of a 50 m rectangular course. This course was marked with cones every 5 m to

facilitate easy recording of distance walked. One trial was performed due to the challenging

and fatiguing nature of this test.

Purdue Pegboard Test: (PPT)
The upper limb dexterity of the older adults was assessed by the PPT (Tiffin & Asher, 1948).

The PPT is a time-based dexterity assessment tool comprising four sub-tasks; right hand

only, left hand only, both hands and an assembly task, in which the participant is required

to place the maximum number of pegs in the holes on the pegboard in a set time. For the

handed tests, the participant was required to place pegs into evenly spaced holes on the

board using the indicated hand. For the assembly task there is an additional component

with the assembly made up of the pegs, washers and collars, placed in a specific order. The

individual and both handed tasks are performed for 30 s while the assembly task allows

60 s due to its greater complexity. Each of the sub-tasks was performed 2 times to reduce

possible learning effect and improve the reliability of the test (Tiffin & Asher, 1948).
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Isometric handgrip strength
Isometric MVC grip strength of the preferred limb was assessed with a hand-grip

dynamometer (Bohannon, 2002). Participants performed one practice and two test trials of

the isometric hand-grip strength test. For all trials, the preferred arm had to be kept by the

side of the participant with the elbow maintained at ∼90◦ of elbow flexion. A rest period of

60 s was given between each trial.

DNA extraction and genotyping
For genetic analysis buccal cells were harvested from participants via a mouthwash of 10 ml

4% sucrose in sterile deionised water. The cell suspension was recovered in a 50 ml tube,

vortexed vigorously and stored at −20◦C until DNA isolation was performed as previously

reported (Palmer & Healy, 1993).

DNA samples (100 ng) were genotyped for the ACE intron 16 insertion/deletion (I/D)

polymorphism using a two primer polymerase chain reaction (PCR) protocol (Rigat et

al., 1992) with the addition of 5% DMSO to eliminate mis-amplification of heterozygous

templates (Fogarty et al., 1994). A PCR-RFLP assay (Esterbauer et al., 2001) was employed

to genotype 100 ng DNA samples for the UCP2 G-866A polymorphism, in which 360 bp

amplimers were digested with MluI. Amplimers were electrophoresed on 1 or 2% agarose,

0.5 x TBE gels stained with ethidium bromide and visualized with a Bio-Rad Fluor-S

imaging system (Bio-Rad, Hercules, California, USA). A random subset (20%) of the

samples were regenotyped in separate assays with 100% concordance.

Statistical analysis
Data are presented as mean ± standard deviation (SD). Data were analysed using a

statistical software package (SPSS, v14, Chicago, Illinois, USA). Baseline differences among

genotype groups were tested using analysis of variance. Genotype differences in absolute

and relative changes in physical function among the exercisers were tested using a general

linear model, adjusting for age and gender. Additive and D allele-dominant (ACE) and

additive and A allele-dominant (UCP2) genetic models were all evaluated. Statistical

significance was set at p < 0.05. As calculated using G*Power 3.1.3 (Faul et al., 2009),

the study had greater than 90% power to detect a difference in (for example) baseline Up

& Go performance between the ACE DD/ID and II genotype groups with an α = 0.05.

However, the study only had 70% power to detect a difference in post-training 8 ft Up & Go

performance between these groups with an α = 0.05.

RESULTS
A description of the participants’ baseline demographic data is provided in Table 1. Almost

all participants had at least one chronic disease, with high blood pressure (19%), arthritis

and other joint conditions (16%) and cardiovascular disease (12%) being most common.

At baseline, most participants were somewhat physically active (i.e., performed ∼60 min

of moderate physical activity per week) and possessed moderately low to moderately high

levels of physical function, based on age- and gender-matched normative data for the

Senior Fitness Test (Rikli & Jones, 1999b). Program attendance was very high with the
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Table 1 Baseline demographic data for the sample.

Female (n = 40) Males (n = 18) Overall (n = 58)

Age (yrs) 69.7 ± 5.3 70.0 ± 5.9 69.8 ± 4.9

Height (cm) 161.9 ± 5.0 175.9 ± 6.7 166.3 ± 8.6

Mass (kg) 69.7 ± 5.3 88.1 ± 21.0 76.4 ± 18.4

BMI (kg m−2) 26.9 ± 4.8 28.3 ± 5.2 27.3 ± 4.9

Table 2 Frequency statistics for each genotype for all participants (n = 58).

Polymorphism Genotype Frequency Hardy Weinberg equilibrium
(p-value)

ACE intron 16 DD 0.295 1.00

Insertion/deletion ID 0.492

II 0.213

UCP2 G-866A GG 0.344 0.990

GA 0.541

AA 0.115

participants attending 22 ± 2 out of the requested 24 training sessions, resulting in an

overall attendance rate of 93%.

DNA samples were successfully obtained from all participants who commenced the

study. However, a small number of subjects did not complete all physical tests during the

pre- and post-training assessments. Therefore, the actual sample size for each test differed

somewhat for each of the tests, with this presented within the Tables. Importantly, the

resulting genotype frequencies for each of the studied polymorphisms conformed to the

Hardy-Weinberg equilibrium (Table 2).

Characteristics and baseline phenotypes
Overall, the frequencies of the ACE genotypes were 21, 49 and 30% for II, ID and DD.

The distribution of UCP2 G-8661 genotypes was 34, 54 and 12% for GG, GA and AA

respectively. There were no differences in age, gender, or baseline BMI between genotype

groups. As such, all data reported in the tables is for the overall group of 58 male and female

participants. However, significant differences were observed for some baseline measures of

physical function, when adjusted for age and gender (Tables 3 and 4), specifically between

some ACE genotype groups for the 6 min walk, 8 ft Up & Go and handgrip strength

(Table 3) and UCP2 genotype groups for 8ft Up & Go and handgrip strength (Table 4).

Intra- and inter-genotype response to physical training response
Forty-three percent of the overall sample completed all 24 training sessions. Mean

attendance of the programme was 22 ± 2 out of 24 sessions (93%). No significant

difference in attendance rates were observed between male and female participants (data

not shown).
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Table 3 Baseline (pre-training) physical abilities according to ACE, adjusted for age and gender. In the final two columns, the upper row for each
assessment provides the p value and in the lower row the value in parentheses is the effect size. Higher scores are indicative of better performance in
all tests with the exception of the 8 ft Up and Go in which a smaller score indicates better performance.

Assessment ACE IIa ACE ID ACE DD ACE ID/DD IIvIDvDD IIvID/DD

n M ± SD n M ± SD n M ± SD n M ± SD p-value
(effect size)

p-value
(effect size)

6 min walk (m) 7 458 ± 28.7* 26 531 ± 14.6 13 576 ± 20.7 39 546 ± 12.1* 0.339 (0.659) 0.008 (0.614)

8ft Up & Go (s) 7 6.45 ± 0.48* 26 4.42 ± 0.24 13 4.39 ± 0.34 39 4.41 ± 0.19* 0.219 (0.779) <0.001 (0.781)

Sit to Stand (repetitions) 7 12.4 ± 2.23 26 13.8 ± 1.14 13 17.9 ± 1.61 39 15.2 ± 0.95 0.269 (0.726) 0.268 (0.565)

Bicep curls (repetitions) 7 15.4 ± 1.41 26 16.2 ± 0.72 13 17.8 ± 1.01 39 16.7 ± 0.61 0.726 (0.273) 0.421 (0.684)

Handgrip strength (kg) 8 30.9 ± 3.01 29 31.7 ± 1.48* 14 29.3 ± 2.18* 43 30.9 ± 1.21 <0.001 (0.786) 0.994 (0.001)

Purdue Pegboard (pegs) 8 11.4 ± 2.01 29 14.9 ± 0.99 13 11.7 ± 1.62 42 14.0 ± 0.85 0.451 (0.547) 0.239 (0.375)

Notes.
* Indicates a significant difference between genotype groups for each specific assessment.
a Referent group.

Table 4 Baseline (pre-training) physical abilities stratified by UCP2 G-886A polymporhism, adjusted for age and gender. In the final column,
the upper row for each assessment provides the p value and in the lower row the value in parentheses is the effect size. Higher scores are indicative of
better performance in all tests with the exception of the 8ft Up and Go in which a smaller score indicates better performance.

Assessment UCP2 G-886A AA UCP2 G-886A GA UCP2 G-886A GGa AAvGAvGG

n M ± SD n M ± SD n M ± SD p-value (effect size)

6 min walk (s) 8 523 ± 44.5 25 539 ± 16.6 20 516 ± 21.9 0.695 (0.336)

8ft Up & Go (s) 8 3.89 ± 0.71* 25 4.47 ± 0.26 20 5.45 ± 0.35* 0.045 (0.578)

Sit to Stand (repetitions) 8 15.0 ± 3.26 25 14.5 ± 1.21 20 14.6 ± 1.60 0.992 (0.020)

Bicep curls (repetitions) 8 17.5 ± 2.02 25 15.5 ± 0.75 20 17.9 ± 0.99 0.155 (0.946)

Handgrip strength (kg) 7 39.3 ± 3.98 29 29.9 ± 1.38 21 30.7 ± 1.95 0.094 (0.101)

Purdue Pegboard (pegs) 7 13.2 ± 3.07 28 13.4 ± 1.11 21 13.8 ± 1.49 0.969 (0.031)

Notes.
* Indicates a significant difference between genotype groups for each specific assessment.
a Referent group.

Tables 5 and 6 show the absolute changes for each physical measure after 12 weeks

of training for each genotype group. A trend towards improvement in muscle strength

(bicep curls) was observed between ACE II v. ID/DD (p = 0.099). There was a significant

difference between UCP2 G-886A genotype groups for the 8ft Up and Go test (p = 0.023).

Bonferroni correction for multiple testing suggested these differences may be due to

chance, as P > 0.05 after correction.

DISCUSSION
The current study’s primary aims were to determine if baseline differences and

training-related changes in functional performance were related to particular genotypes

of the ACE and UCP2 genes in older adults. The frequencies of the ACE and UCP2

G-8661 genotypes in our sample conformed to the expectations of the Hardy-Weinberg

equilibrium and to that of a New Zealand population of Caucasian ancestry (Palmer et al.,

2009; Palmer et al., 2003).
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Table 5 Changes in physical measures for each ACE allele after 12 weeks physical training intervention on older adults. In the final two columns,
the upper row for each assessment provides the p value and in the lower row the value in parentheses is the effect size. Positive scores are indicative
of improvements in performance in all tests with the exception of the 8ft Up and Go in which a negative change indicates better performance.

Assessment ACE IIa ACE ID ACE DD ID/DD IIvIDvDD IIvID/DD

n M ± SD n M ± SD n M ± SD n M ± SD p-value
(effect size)

p-value
(effect size)

6 min walk (m) 6 28.8 ± 14.5 26 44.2 ± 7.23 13 44.5 ± 10.0 39 44.3 ± 5.95 0.607 (0.533) 0.315 (0.703)

8ft Up & Go (s) 6 −0.55 ± 0.30 26 −0.23 ± 0.15 13 −0.32 ± 0.20 39 −0.26 ± 0.12 0.621 (0.878) 0.365 (0.916)

Sit to Stand (repetitions) 6 1.62 ± 1.58 26 3.43 ± 0.79 13 1.25 ± 1.09 39 2.71 ± 0.67 0.217 (0.809) 0.536 (0.525)

Bicep curls (repetitions) 6 −0.02 ± 1.14 26 1.77 ± 0.57 13 2.50 ± 0.79 39 2.01 ± 0.47 0.198 (0.416) 0.099 (0.923)

Handgrip strength (kg) 7 1.64 ± 1.56 29 0.78 ± 0.79 13 2.50 ± 1.15 42 1.31 ± 0.68 0.450 (0.043) 0.853 (0.054)

Purdue Pegboard (pegs) 7 −0.31 ± 0.83 29 0.62 ± 0.42 13 1.41 ± 0.63 42 0.85 ± 0.37 0.234 (0.965) 0.189 (0.769)

Notes.
a Referent group.

Table 6 Changes in physical measures for each UCP2 G-886A allele after 12 weeks physical training intervention in older adults. In the final
column, the upper row for each assessment provides the p value and in the lower row the value in parentheses is the effect size. Positive scores
are indicative of improvements in performance in all tests with the exception of the 8ft Up and Go in which a negative change indicates better
performance.

Assessment UCP2 G-886A AA UCP2 G-886A GA UCP2 G-886A GGa AAvGAvGG

n M ± SD n M ± SD n M ± SD p-value (effect size)

6 min walk (m) 5 39.1 ± 16.9 23 41.4 ± 7.52 17 44.3 ± 9.15 0.949 (0.397)

8ft Up & Go (s) 5 0.05 ± 0.31* 23 −0.10 ± 0.14 17 −0.68 ± 0.17* 0.023 (0.714)

Sit to Stand (repetitions) 5 2.93 ± 1.89 23 2.85 ± 0.84 17 2.01 ± 1.02 0.789 (0.447)

Bicep curls (repetitions) 5 1.00 ± 1.36 23 1.95 ± 0.61 17 1.60 ± 0.74 0.799 (0.200)

Handgrip strength (kg) 5 0.72 ± 1.94 26 1.07 ± 0.82 18 2.02 ± 1.03 0.708 (0.447)

Purdue Pegboard (pegs) 5 1.50 ± 1.05 26 0.72 ± 0.45 18 0.38 ± 0.56 0.622 (0.319)

Notes.
a Referent group.

At baseline, it was observed that the ACE gene variant genotypes were associated

with significant differences in 3 of the 6 performance tests (6 min walk, 8ft Up and

Go and handgrip strength). Baseline variations in the UCP2 gene polymorphism were

also observed for the 8ft Up and Go, with handgrip strength approaching significance

(p = 0.094).

The ID/DD ACE allele groups performed significantly better at baseline than those with

those with II alleles on the 6 min walk and 8ft Up and Go tests. While these two walking

tests both require the participants to walk as quickly as possible over a set course, these tests

differ in several ways. The 6 min walk test requires the participants to walk a maximum

distance in 6 min, and is therefore considered a field test of VO2peak and walking ability

for older adults (Rikli & Jones, 1999a; Rikli & Jones, 1999b). In contrast, the 8ft Up and

Go requires the participants to stand up, walk a distance of 8 ft, turnaround, walk back to

the chair and then sit down, suggesting a greater reliance on lower body strength, walking

speed and mobility (Rikli & Jones, 1999a; Rikli & Jones, 1999b).

Keogh et al. (2015), PeerJ, DOI 10.7717/peerj.980 10/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.980


The baseline differences for the 8ft Up and Go appear consistent with previous studies

demonstrating increased muscular strength or power with the D allele of the ACE gene for

younger adults (Puthucheary et al., 2011; Woods et al., 2001), but in contrast to some studies

involving older adults (Garatachea et al., 2012; Giaccaglia et al., 2008; Pereira et al., 2013).

While the greater 6 min walk distance for the ID/DD groups was initially unexpected, a lack

of lower body strength may reduce the ability of older adults to walk briskly for extended

periods of time. Research support for this view is provided by the significant improvements

in VO2peak observed in older adults as a consequence of resistance training (Lovell, Cuneo &

Gass, 2009). The significantly greater performance in the two walking tests for the ID/DD

groups is also consistent with a recent report (Seripa et al., 2011), observing that the ACE II

genotype was associated with greater limitations in activities of daily living in hospitalised

older patients. As gait speed over a variety of distances is an influential determinant of

maintaining independence and in reducing many age-related adverse effects (Abellan van

Kan et al., 2009), the results of our study and (Seripa et al., 2011) suggest some genetic

component to the wide variation seen in walking speed and performance of older adults

(Peel, Kuys & Klein, 2013).

Based on the reported role of the ACE gene in human physical performance studies

involving younger adults (Dhamrait et al., 2012; Puthucheary et al., 2011), our findings

at baseline for the 30 s STS and handgrip strength test were somewhat unexpected, with

greater performance expected from those with the ID/DD alleles for both of these tests.

A significant between-group was observed for handgrip strength, whereby the ID group

had greater handgrip strength than the DD group. While such a result was not expected

based on the results of the younger adult literature, it was consistent with the only other

study conducted to date involving older adults (Bustamante-Ara et al., 2010). Our results

indicated no significant baseline differences between ACE genotype groups for the 30 s

STS. While this may have unexpected based on the younger adult literature, the lack of

significant baseline differences in 30 s STS performance was also consistent with the results

reported for 139 older women by Pereira et al. (2013).

Comparisons of the baseline performance results for the UCP2 genotype groups also

revealed significant differences for the 8ft Up and Go test and a trend for handgrip strength

(p = 0.094), whereby greater performance was found in those with the A than G UCP2

allele. This result was somewhat consistent with (Dato et al., 2014), who reported signifi-

cantly greater walking speeds over 3–4 m in older adults with the UCP2 A allele. However,

the direction of these baseline differences for the 8ft Up and Go test was inconsistent with

the greater improvements in endurance performance markers for the A compared to G

allele carriers in younger populations (Dhamrait et al., 2012; Perusse et al., 2013). Such

inconsistencies in the association between UCP2 polymorphisms and endurance vs power

performance in younger compared to older adults warrants further investigation.

The second aim of the current study was to examine whether the ACE and UCP2 gene

influenced the training related responses in older adults’ functional performance. The

training program used in the current study appeared effective as the magnitude of the

training related changes for the Functional Fitness Test battery outcomes was relatively
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consistent with that reported for other community-based older adult exercise programs

(Bates et al., 2009; Belza et al., 2010; Henwood, Wooding & de Souza, 2013). Inspection of

the data revealed little evidence for the ACE or UCP2 gene alleles to have any significant

effects on the training-related changes in the outcome measures assessed in this study.

Exceptions to this rule were the significantly greater improvements for the GG UCP2 group

in the 8ft Up and Go and the trend (p = 0.099) for larger improvements in bicep curl

strength for the ID/DD versus II ACE allele groups. These associations between the UCP2

gene and training-related changes in the 8ft Up and Go test are novel and to the authors’

knowledge, our study is the first to assess the relationship between the UCP2 genotypes and

changes in physical performance in older adults.

The lack of differences in the training related response between different ACE genotype

groups was consistent with the only study to assess changes in older adults’ 6 min walk

performance resulting from 18 months of combined aerobic and resistance training

(Giaccaglia et al., 2008). The responses in our assessments that were more dependent

on strength or power were inconsistent with the two studies conducted to date, where

significantly greater improvements in muscular strength and power were associated with

the ACE D gene allele (Giaccaglia et al., 2008; Pereira et al., 2013). Potential reasons for the

variation in our results compared to the two studies within the literature may be explained

by three primary factors.

The first of these was the difference in outcome measures assessed in the current study

compared to that of the literature. The current study focused on functional performance

tests (30 s STS, bicep curl, 8 ft Up and Go and 6 min walk), whereas most of the outcomes

assessed in the literature were strength or power tests. While performance in many of the

functional performance tests we selected is moderately correlated with strength and/or

VO2peak, our assessments were not criterion measures of either of these physical qualities. It

is therefore likely that functional performance tests have a greater variety of determinants

than criterion tests of muscular strength or VO2peak, thereby reducing the potential for

isolated genotypes to significantly influence training-related changes in functional perfor-

mance. Such speculation is consistent with the lack of any significant relationship between

the ACE and UCP2 genotypes for the older adults’ baseline- or training-related differences

in upper limb dexterity (Purdue Pegboard) test performance seen in this study. The second

difference may have been the relatively high levels of baseline function for some genotype

groups in the current study compared to that of the literature. Specifically, the ACE ID/DD

and UCP2 AA gene allele groups who had the highest scores at baseline, were typically in

the 60–80th percentile (men) and 80–90th percentiles (women) for the 30 s STS, bicep

curl, 6 min walk and 8 ft Up and Go tests (Rikli & Jones, 1999b). In comparison, our other

gene allele group and older adults in the other studies within this literature appeared to

have much poorer baseline function. These weaker older adults in ours and other studies

therefore had more chance to demonstrate significant improvements in function and

significant genotype-related responses to training than our higher functioning ID/DD

and UCP2 AA groups. Thirdly, the current study had more modest statistical power for

detecting training-related changes (70% power) than baseline differences (90% power).
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In conclusion, the current study adds to the literature on the potential link between

genotype and physical performance in older adults. While our baseline results were

generally consistent with the phenotypes associated with the ACE I/D and UCP2

polymorphisms, we found no strong evidence of genetic association to the functional

performance response to physical training in this study. Some of this relative equivalence

may have reflected our focus on functional performance such as the 8ft Up and Go test

rather than physical capacity outcomes e.g., MVC strength or aerobic power. Specifically,

functional performance assessments would appear to require the integration of a greater

number of sensoriomotor functions than physical capacity assessments of MVC or

VO2peak. The variance in results for this study compared to that of literature may also

reflect the relatively high levels of baseline function for some genotype groups of the older

adults in the current study as well as the greater statistical power for detecting baseline

differences (90% power) than the training-related changes (70% power). Future studies in

this area should recruit larger sample sizes so to obtain sufficient statistical power to detect

meaningful training related responses in a variety of health, physical fitness and functional

performance outcomes and ensure no statistically significant between-group differences

in outcome scores at baseline. These future studies should also be sufficiently powered

to detect differences in training response as a function of interactions between different

polymorphisms of multiple genes that may play a role in modulating the exercise response.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The Auckland University of Technology’s Faculty of Health and Environmental Sciences

funded this project through the CGH 10/06 AUT Contestable Grant round. The

funders had no role in study design, data collection and analysis, decision to publish, or

preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

Auckland University of Technology’s Faculty of Health and Environmental Sciences.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Justin W.L. Keogh conceived and designed the experiments, performed the experiments,

contributed reagents/materials/analysis tools, wrote the paper, prepared figures and/or

tables, reviewed drafts of the paper.

• Barry R. Palmer conceived and designed the experiments, performed the experiments,

analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,

prepared figures and/or tables, reviewed drafts of the paper.

Keogh et al. (2015), PeerJ, DOI 10.7717/peerj.980 13/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.980


• Denise Taylor conceived and designed the experiments, contributed

reagents/materials/analysis tools, prepared figures and/or tables, reviewed drafts of

the paper.

• Andrew E. Kilding conceived and designed the experiments, analyzed the data,

contributed reagents/materials/analysis tools, prepared figures and/or tables, reviewed

drafts of the paper.

Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body

and any reference numbers):

Ethical approval for the studies was given by the Auckland University of Technology

Human Ethics Committee. The ethics approval number was 06/05.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.980#supplemental-information.

REFERENCES
Abellan van Kan G, Rolland Y, Andrieu S, Bauer J, Beauchet O, Bonnefoy M, Cesari M,

Donini LM, Gillette Guyonnet S, Inzitari M, Nourhashemi F, Onder G, Ritz P, Salva A,
Visser M, Vellas B. 2009. Gait speed at usual pace as a predictor of adverse outcomes in
community-dwelling older people an International Academy on Nutrition and Aging (IANA)
Task Force. Journal of Nutrition, Health and Aging 13:881–889 DOI 10.1007/s12603-009-0246-z.

Argus CK, Gill ND, Keogh JWL, Hopkins WG, Beaven CM. 2009. Changes in strength, power
and steroid hormones during a professional rugby union competition. Journal of Strength and
Conditioning Research 23:1583–1592 DOI 10.1519/JSC.0b013e3181a392d9.

Bates A, Donaldson A, Lloyd B, Castell S, Krolik P, Coleman R. 2009. Staying active, staying
strong: pilot evaluation of a once-weekly, community-based strength training program for
older adults. Health Promotion Journal of Australia 20:42–47.

Baumgartner RN, Wayne SJ, Waters DL, Janssen I, Gallagher D, Morley JE. 2004. Sarcopenic
obesity predicts instrumental activities of daily living disability in the elderly. Obesity Research
12:1995–2004 DOI 10.1038/oby.2004.250.

Belza B, Snyder S, Thompson M, LoGerfo J. 2010. From research to practice: enhancefitness,
an innovative community-based senior exercise program. Topics in Geriatric Rehabilitation
26:299–309 DOI 10.1097/TGR.0b013e3181fee69e.

Bohannon RW. 2002. Quantitative testing of muscle strength: issues and practical
options for the geriatric population. Topics in Geriatric Rehabilitation 18:1–17
DOI 10.1097/00013614-200212000-00003.

Bo H, Jiang N, Ji LL, Zhang Y. 2013. Mitochondrial redox metabolism in aging: Effect of exercise
interventions. Journal of Sport and Health Science 2:67–74 DOI 10.1016/j.jshs.2013.03.006.

Borg GA. 1982. Psychophysical bases of perceived exertion. Medicine and Science in Sports and
Exercise 14:377–381.

Brouwer B, Musselman K, Culham E. 2004. Physical function and health status among seniors
with and without a fear of falling. Gerontology 50:135–141 DOI 10.1159/000076771.

Keogh et al. (2015), PeerJ, DOI 10.7717/peerj.980 14/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.7717/peerj.980#supplemental-information
http://dx.doi.org/10.1007/s12603-009-0246-z
http://dx.doi.org/10.1519/JSC.0b013e3181a392d9
http://dx.doi.org/10.1038/oby.2004.250
http://dx.doi.org/10.1097/TGR.0b013e3181fee69e
http://dx.doi.org/10.1097/00013614-200212000-00003
http://dx.doi.org/10.1016/j.jshs.2013.03.006
http://dx.doi.org/10.1159/000076771
http://dx.doi.org/10.7717/peerj.980


Bustamante-Ara N, Santiago C, Verde Z, Yvert T, Gomez-Gallego F, Rodriguez-Romo G,
Gonzalez-Gil P, Serra-Rexach JA, Ruiz JR, Lucia A. 2010. ACE and ACTN3 genes and
muscle phenotypes in nonagenarians. International Journal of Sports Medicine 31:221–224
DOI 10.1055/s-0030-1247529.

Dato S, Soerensen M, Lagani V, Montesanto A, Passarino G, Christensen K, Tan Q,
Christiansen L. 2014. Contribution of genetic polymorphisms on functional status at very old
age: a gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. Experimental
Gerontology 52:23–29 DOI 10.1016/j.exger.2014.01.014.

Dhamrait SS, Stephens JW, Cooper JA, Acharya J, Mani AR, Moore K, Miller GJ, Humphries SE,
Hurel SJ, Montgomery HE. 2004. Cardiovascular risk in healthy men and markers of oxidative
stress in diabetic men are associated with common variation in the gene for uncoupling protein
2. European Heart Journal 25:468–475 DOI 10.1016/j.ehj.2004.01.007.

Dhamrait SS, Williams AG, Day SH, Skipworth J, Payne JR, World M, Humphries SE, Mont-
gomery HE. 2012. Variation in the uncoupling protein 2 and 3 genes and human performance.
Journal of Applied Physiology 112:1122–1127 DOI 10.1152/japplphysiol.00766.2011.

Esterbauer H, Schneitler C, Oberkofler H, Ebenbichler C, Paulweber B, Sandhofer F,
Ladurner G, Hell E, Strosberg AD, Patsch JR, Krempler F, Patsch W. 2001. A common
polymorphism in the promoter of UCP2 is associated with decreased risk of obesity in
middle-aged humans. Nature Genetics 28:178–183 DOI 10.1038/88911.

Faul F, Erdfelder E, Buchner A, Lang A-G. 2009. Statistical power analyses using G*Power
3.1: Tests for correlation and regression analyses. Behavior Research Methods 41:1149–1160
DOI 10.3758/BRM.41.4.1149.

Fiatarone-Singh MA. 2002. Exercise comes of age: rationale and recommendations for a geriatric
exercise prescription. Journals of Gerontology Series A, Biological Sciences and Medical Sciences
57A:M262–M282 DOI 10.1093/gerona/57.5.M262.

Fogarty DG, Maxwell AP, Doherty CC, Hughes AE, Nevin NC. 1994. ACE gene typing. Lancet
343:851 DOI 10.1016/S0140-6736(94)92050-8.

Garatachea N, Fiuza-Luces C, Torres-Luque G, Yvert T, Santiago C, Gomez-Gallego F, Ruiz JR,
Lucia A. 2012. Single and combined influence of ACE and ACTN3 genotypes on muscle
phenotypes in octogenarians. European Journal of Applied Physiology 112:2409–2420
DOI 10.1007/s00421-011-2217-4.

Giaccaglia V, Nicklas B, Kritchevsky S, Mychalecky J, Messier S, Bleecker E, Pahor M. 2008.
Interaction between angiotensin converting enzyme insertion/deletion genotype and exercise
training on knee extensor strength in older individuals. International Journal of Sports Medicine
29:40–44 DOI 10.1055/s-2007-964842.

Giles L, Hawthorne G, Crotty M. 2009. Health-related Quality of Life among hospitalized
older people awaiting residential aged care. Health and Quality of Life Outcomes
7:71 DOI 10.1186/1477-7525-7-71.

Henwood T, Wooding A, de Souza D. 2013. Centre-based exercise delivery: feasibility of a staff

delivered program and the benefits for low-functioning older adults accessing respite day care.
Activities, Adaptation & Aging 37:224–238 DOI 10.1080/01924788.2013.816832.

Karavirta L, Hakkinen K, Kauhanen A, Arija-Blazquez A, Sillanpaa E, Rinkinen N, Hakkinen A.
2011. Individual responses to combined endurance and strength training in older adults.
Medicine and Science in Sports and Exercise 43:484–490 DOI 10.1249/MSS.0b013e3181f1bf0d.

Keogh JWL, MacLeod RD. 2012. Body composition, physical fitness, functional performance,
quality of life and fatigue benefits of exercise for prostate cancer patients: a systematic review.
Journal of Pain and Symptom Management 43:96–110 DOI 10.1016/j.jpainsymman.2011.03.006.

Keogh et al. (2015), PeerJ, DOI 10.7717/peerj.980 15/17

https://peerj.com
http://dx.doi.org/10.1055/s-0030-1247529
http://dx.doi.org/10.1016/j.exger.2014.01.014
http://dx.doi.org/10.1016/j.ehj.2004.01.007
http://dx.doi.org/10.1152/japplphysiol.00766.2011
http://dx.doi.org/10.1038/88911
http://dx.doi.org/10.3758/BRM.41.4.1149
http://dx.doi.org/10.1093/gerona/57.5.M262
http://dx.doi.org/10.1016/S0140-6736(94)92050-8
http://dx.doi.org/10.1007/s00421-011-2217-4
http://dx.doi.org/10.1055/s-2007-964842
http://dx.doi.org/10.1186/1477-7525-7-71
http://dx.doi.org/10.1080/01924788.2013.816832
http://dx.doi.org/10.1249/MSS.0b013e3181f1bf0d
http://dx.doi.org/10.1016/j.jpainsymman.2011.03.006
http://dx.doi.org/10.7717/peerj.980


Keogh JW, Morrison S, Barrett R. 2007. Strength-training improves the tri-digit finger-pinch
force control of older adults. Archives of Physical Medicine and Rehabilitation 88:1055–1063
DOI 10.1016/j.apmr.2007.05.014.

Keogh JW, Rice J, Taylor D, Kilding A. 2014. Objective and subjective benefits of a
community-based, older adult multi-component exercise programme. Journal of Primary
Health Care 6:114–122.

Kim KE, Jang SN, Lim S, Park YJ, Paik NJ, Kim KW, Jang HC, Lim JY. 2012. Relationship
between muscle mass and physical performance: is it the same in older adults with weak muscle
strength? Age and Ageing 41:799–803 DOI 10.1093/ageing/afs115.

Lovell DI, Cuneo R, Gass GC. 2009. Strength training improves submaximum cardio-
vascular performance in older men. Journal of Geriatric Physical Therapy 32:117–124
DOI 10.1519/00139143-200932030-00007.

Masel M, Graham J, Reistetter T, Markides K, Ottenbacher K. 2009. Frailty and health
related quality of life in older Mexican Americans. Health and Quality of Life Outcomes
7:70 DOI 10.1186/1477-7525-7-70.

Myerson S, Hemingway H, Budget R, Martin J, Humphries S, Montgomery H. 1999. Human
angiotensin I-converting enzyme gene and endurance performance. Journal of Applied
Physiology 87:1313–1316.

Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, Macera CA, Castaneda-
Sceppa C. 2007. Physical activity and public health in older adults: recommendation from
the American College of Sports Medicine and the American Heart Association. Medicine and
Science in Sports and Exercise 39:1435–1445 DOI 10.1249/mss.0b013e3180616aa2.

Palmer BR, Devereaux CL, Dhamrait SS, Mocatta TJ, Pilbrow AP, Frampton CM, Skelton L,
Yandle TG, Winterbourn CC, Richards AM, Montgomery HE, Cameron VA. 2009. The
common G-866A polymorphism of the UCP2 gene and survival in diabetic patients following
myocardial infarction. Cardiovascular Diabetology 8:31 DOI 10.1186/1475-2840-8-31.

Palmer B, Healy J. 1993. Development of a practical illustrating the use of the polymerase chain
reaction for genetic testing. Biochemical Education 21:106–107
DOI 10.1016/0307-4412(93)90061-4.

Palmer BR, Pilbrow AP, Yandle TG, Frampton CM, Richards AM, Nicholls MG, Cameron VA.
2003. Angiotensin-converting enzyme gene polymorphism interacts with left
ventricular ejection fraction and brain natriuretic peptide levels to predict mortality
after myocardial infarction. Journal of the American College of Cardiology 41:729–736
DOI 10.1016/S0735-1097(02)02927-3.

Peel NM, Kuys SS, Klein K. 2013. Gait speed as a measure in geriatric assessment in clinical
settings: a systematic review. Journals of Gerontology Series A, Biological Sciences and Medical
Sciences 68:39–46 DOI 10.1093/gerona/gls174.

Pereira A, Costa AM, Izquierdo M, Silva AJ, Bastos E, Marques MC. 2013. ACE I/D and
ACTN3 R/X polymorphisms as potential factors in modulating exercise-related phenotypes
in older women in response to a muscle power training stimuli. Age 35:1949–1959
DOI 10.1007/s11357-012-9461-3.

Perusse L, Rankinen T, Hagberg JM, Loos RJ, Roth SM, Sarzynski MA, Wolfarth B, Bouchard C.
2013. Advances in exercise, fitness, and performance genomics in 2012. Medicine and Science in
Sports and Exercise 45:824–831 DOI 10.1249/MSS.0b013e31828b28a3.

Puthucheary Z, Skipworth JA, Rawal J, Loosemore M, Van Someren K, Montgomery H.
2011. The ACE gene and human performance. Sports Medicine 41:433–448
DOI 10.2165/11588720-000000000-00000.

Keogh et al. (2015), PeerJ, DOI 10.7717/peerj.980 16/17

https://peerj.com
http://dx.doi.org/10.1016/j.apmr.2007.05.014
http://dx.doi.org/10.1093/ageing/afs115
http://dx.doi.org/10.1519/00139143-200932030-00007
http://dx.doi.org/10.1186/1477-7525-7-70
http://dx.doi.org/10.1249/mss.0b013e3180616aa2
http://dx.doi.org/10.1186/1475-2840-8-31
http://dx.doi.org/10.1016/0307-4412(93)90061-4
http://dx.doi.org/10.1016/S0735-1097(02)02927-3
http://dx.doi.org/10.1093/gerona/gls174
http://dx.doi.org/10.1007/s11357-012-9461-3
http://dx.doi.org/10.1249/MSS.0b013e31828b28a3
http://dx.doi.org/10.2165/11588720-000000000-00000
http://dx.doi.org/10.7717/peerj.980


Rigat B, Hubert C, Corvol P, Soubrier F. 1992. PCR detection of the insertion/deletion
polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl
carboxypeptidase 1). Nucleic Acids Research 20:1433 DOI 10.1093/nar/20.6.1433-a.

Rikli RE, Jones CJ. 1999a. Development and validation of a functional fitness test for
community-residing older adults. Journal of Aging and Physical Activity 7:129–161.

Rikli RE, Jones CJ. 1999b. Functional fitness normative scores for community-residing older
adults, ages 60–94. Journal of Aging and Physical Activity 7:162–181.

Rikli RE, Jones CJ. 2001. Senior fitness test manual. Champaign, IL: Human Kinetics.

Sequeria G, Keogh JW, Kavanagh JJ. 2012. Resistance training can improve fine manual
dexterity in essential tremor patients: a preliminary study. Archives of Physical Medicine and
Rehabilitation 93:1466–1468 DOI 10.1016/j.apmr.2012.02.003.

Seripa D, Paroni G, Matera MG, Gravina C, Scarcelli C, Corritore M, D’Ambrosio LP,
Urbano M, D’Onofrio G, Copetti M, Kehoe PG, Panza F, Pilotto A. 2011. Angiotensin-
converting enzyme (ACE) genotypes and disability in hospitalized older patients. Age
33:409–419 DOI 10.1007/s11357-010-9192-2.

Sessa F, Chetta M, Petito A, Franzetti M, Bafunno V, Pisanelli D, Sarno M, Iuso S,
Margaglione M. 2011. Gene polymorphisms and sport attitude in Italian athletes. Genetic
Testing and Molecular Biomarkers 15:285–290 DOI 10.1089/gtmb.2010.0179.

Tiffin J, Asher EF. 1948. The Purdue Pegboard: norms and studies of reliability and validity.
Journal of Applied Psychology 32:234–247 DOI 10.1037/h0061266.

Till KA, Cooke C. 2009. The effects of postactivation potentiation on sprint and jump performance
of male academy soccer players. Journal of Strength and Conditioning Research 23:1960–1967
DOI 10.1519/JSC.0b013e3181b8666e.

Valenzuela T. 2012. Efficacy of progressive resistance training interventions in older adults in
nursing homes: a systematic review. Journal of the American Medical Directors Association
13:418–428 DOI 10.1016/j.jamda.2011.11.001.

Wagenaar R, Keogh JWL, Taylor D. 2012. Development of a clinical Multiple-Lunge test to
predict falls in older adults. Archives of Physical Medicine and Rehabilitation 93:458–465
DOI 10.1016/j.apmr.2011.08.044.

Wood JL, Iuliano-Burns S, King SJ, Strauss BJ, Walker KZ. 2011. Poor physical function in
elderly women in low-level aged care is related to muscle strength rather than to measures
of sarcopenia. Clinical Interventions in Aging 6:67–76 DOI 10.2147/CIA.S16979.

Woods D, Hickman M, Jamshidi Y, Brull D, Vassiliou V, Jones A, Humphries S, Montgomery H.
2001. Elite swimmers and the D allele of the ACE I/D polymorphism. Human Genetics
108:230–232 DOI 10.1007/s004390100466.

Keogh et al. (2015), PeerJ, DOI 10.7717/peerj.980 17/17

https://peerj.com
http://dx.doi.org/10.1093/nar/20.6.1433-a
http://dx.doi.org/10.1016/j.apmr.2012.02.003
http://dx.doi.org/10.1007/s11357-010-9192-2
http://dx.doi.org/10.1089/gtmb.2010.0179
http://dx.doi.org/10.1037/h0061266
http://dx.doi.org/10.1519/JSC.0b013e3181b8666e
http://dx.doi.org/10.1016/j.jamda.2011.11.001
http://dx.doi.org/10.1016/j.apmr.2011.08.044
http://dx.doi.org/10.2147/CIA.S16979
http://dx.doi.org/10.1007/s004390100466
http://dx.doi.org/10.7717/peerj.980

	ACE and UCP2 gene polymorphisms and their association with baseline and exercise-related changes in the functional performance of older adults
	Introduction
	Materials and Methods
	Research design
	Participants

	Training Program
	Procedures
	DNA extraction and genotyping
	Statistical analysis

	Results
	Characteristics and baseline phenotypes
	Intra- and inter-genotype response to physical training response

	Discussion
	References


