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Abstract— We describe a method for the automatic recognition 

of air pollution and fog from a vehicle. Our system consists of 

sensors to acquire main data from cameras as well as from 

Light Detection and Recognition (LIDAR) instruments. We 

discuss how this data can be collected, analyzed and merged to 
determine the degree of air pollution or fog.  Such data is 

essentaial for control systems of moving vehicles in making 

autonomous decisions for avoidance. Backend systems need 

such data for forecasting and stragtegic traffic planning and 

control. Laboratory based experimental results are presented 
for weather conditions like air pollution and fog, showing that 

the recognition scenario works with better than adequate 

results.  This paper demonstrates that LIDAR technology, 

already onboard for the purpose of autonomous driving, can 

be used to improve weather condition recognition when 
compared with a camera only system. We conclude that the 

combination of a front camera and a LIDAR laser scanner is 

well suited as a sensor instrument set for air pollution and fog 

recognition that can contribute accurate data to driving 

assistance and weather alerting systems.  

Keywords: air pollution detection; fog detection; weather 

detection; remote sensing; LIDAR; colaborative driver assistant 
functions; spatial resolution; air pollution forecasting services 

I.  INTRODUCTION 

Driving assistance functions are core technologies of 
intelligent vehicles. Well-known applications are lane 

keeping, traffic sign detection and interpretation, light 
assistance and adaptive cruise control. All of those functions 

are capable of scanning visual images and to determine 

lanes, signals and lights of preceding or opposing traffic. 
Recognising the extent of air pollution in the proximity of a 

traveling vehicle such as fog and aerosol particulate matter 
density, is a real challenge and can provide important 

auxiliary information for many other driving applications 
considering the degree of air pollution. The spectrum of air 

pollution and fog condition information obtained by this 

combination of instruments is categorised with both 
quantitative and qualitative methods. 

LIDAR technology enables advanced object recognition, 
used for more qualified detection in quality and quantity 

(fog, dust, drizzle, mist, aerosol).  LIDAR is a promising 
technology for air pollution and fog detection, due to its 

very high sensitivity and spatial resolution, this active 
detection technique enables efficient location of air 

pollution and weather effects during both day and night and 

over a considerable range. 
The fusion of camera and LIDAR air pollution with fog 

condition data provides valuable input for generating 

reliable and robust information on certain pollution, vision 

and weather effects.  This is described here in the paper. 

Finally, a neural- network technique for automatic 
recognition of severe air pollution and fog signatures on 

incoming camera and LIDAR data is considered and several 
neural-network arch itectures and learning algorithms are  

evaluated and presented. 

II. CAMERA BASED WEATHER RECOGNITION 

Vehicle on-board mounted cameras capture the visual 

signal in which the driver needs to drive safely. Processing 
this in real t ime allows detecting pavement markings, road 

signs or hazards such as obstacles, in order to assess time to 
lane crossing, time to collision or other risk indicators. It is 

also possible to detect reduced visibility conditions such  as 
fog, rain, or glare, and even to quantify their impact on sight 

distance or target visibility, in order to provide speed 

warning, distance warning to vehicles ahead or to control 
light beams. In some cases, visibility can even be restored, 

up to a point, by  dehazing and in-painting techniques for 
Head-Up-Displays [2]. 

A. Detection and characterization of adverse weather 
conditions 

Contemporary modern cameras are widely-used and are 
a component of almost every advance driver assistance 

system because of the their price and flexib ility. 

Nevertheless the major problem is that cameras can be blind 
under adverse weather conditions when they are needed the 

most. To identify and quantify the cause of the degradation 
of the signal and estimate a confidence index is  a strong 

challenge for ADAS development. 

B. Detection of rain, snow and fog 

Previous camera based fog detection systems analyse 

distinct objects in the image or image regions like  the road 
region or the horizon. These approaches are not reliable for 

everyday use. A new method is to use the only reliable 
visible attribute of foggy weather conditions: the decrease in 

contrast and blurring in the whole image [1]. The power 
spectrum being the squared magnitude of the Fourier 

transform for the image that holds information about the 

frequencies in the image. The matter of d iscarding spatial 
informat ion and its decision-informing potential will be 

analysed. From the power spectrum one builds the image 
features that can be then fed to the classifier that has been 

trained on fog and fog free images . It turns out, that in the 
case of an observed fog scene, the frequency components 

are concentrated at the zero frequency whereas in a scene 
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without fog one finds a broadly spread spectrum caused by 

the contrast attenuation and blurring in the image provoked 
by the fog. Sharp Edges are modelled by many different low 

and high frequencies, where as smooth edges created by 
only low frequencies.  

The key to a single step fog detection is now to work out 
the differences in the power spectrum.[1]  

 

 
Fig. 1 Fog detection flow diagram 

 

In the preprocessing step the image will be filtered  and 
normalized  to reduce illumination effects and to avoid that 

some image regions dominate the spectrum. For the 

normalizat ion a square image section is used and the 
intensity values are equalized.  
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Next step is the feature extraction. Before the Fourier 
transformation a windowing with a 2 d imensional Hanning 

window is applied [1].  
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For the feature reduction a Gabor sampling by a filter 
bank of scaled and oriented filters is deployed. For the 

subsequent PCA the Gabor features are used. 
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In the last step of the Classification Process, a SVM 

(Support Vector Machine) with a Radial Basis Function 
(RBF) kernel is used. The regularizat ion parameters were  

determined by training data.  
With this approach summarized  above, the average 

accuracy accomplished was 96% on a basis of 44.000 
images [1]. The next  step would be to analyze how this 

method would perform on nighttime fog images. At night 

time light from the headlamps is reflected by the airborne 
droplets of the fog in front of the vehicle back to the driver, 

producing a back–scattered veil. This would create a 
blurring effect as encountered during daytime. Our research 

is investigating the potential for this by extending the 
method to further distinguish rain and snow from fog.  

III. LIDAR BASED AIR POLLUTION & FOG RECOGNITION 

A. Detection and characterization of adverse weather 

conditions 

Despite their price and versatility, cameras have their 

disadvantages. One major problem is that cameras can be 
totally or partially blind under adverse weather conditions, 

when the systems they feed are most needed. Detecting and 

quantifying degradations of the signal and identify ing their 
causes constitutes an as yet unresolved challenge for 

automated driver assistance systems (ADAS). It involves 
estimating a confidence index, and it involves self-

diagnosis. Another sensor technology is LIDAR (Light 
Detection and Ranging). It is based on laser technology and 

eliminates most of the common disadvantages of cameras.  

B. The LIDAR priciples and pulse reflection recognition 

The principle behind LIDAR is quite simple. A narrow 

light beam is shone at a surface and the time it takes to 
return to its source is measured. This is similar to when one 

shines a torch light onto a surface and what is actually seen 
is the light being reflected and returned to the retina of the 

viewer. Light travels very fast - about 300,000 kilometres 
per second or 0.3 metres per nanosecond. The equipment 

required to carry out this operation needs therefore, to 

operate extremely fast. Only with the advancements in 
modern computing technology has this instrumentation 

operation become feasible. 
The actual calculation used to measure how far a 

returning light photon has travelled to and from an object is 
quite simple:  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
(𝑆𝑝𝑒𝑒𝑑  𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 ∗ 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 )
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The LIDAR sends rapid pulses of laser light at a surface 
(fig. 2, 4), some at up to 150,000 pulses per second. A 

sensor on the device measures the amount of time (fig. 2, 3) 
it takes for each pulse to bounce back (fig. 2, 1). Light 

moves at a constant and known speed so the LIDAR can 
calculate the distance between itself and the target with h igh 

accuracy. By repeating this in quick succession the device 

builds up a complex 'map' of the surface scanned.  



 

Fig. 2: 1 Object, 2 Laser pulse 3 Reflected laser pulse 4 Laser 

 

Lasers are categorised by their wavelength. 600-1000nm 

lasers are more commonly  used for non-scientific purposes 
but, as they can be focused and easily absorbed by the eye, 

the maximum power has to be limited to make them 'eye-
safe'. Lasers with a wavelength of 1550nm are a common 

alternative as they are not focused by the eye and are 'eye-
safe' and can be used at higher power levels [9]. 

For a LIDAR sensor mounted on vehicles, it is necessary 

to determine the absolute position and the orientation of the 
sensor to retain useable data. Global Positioning Systems 

provide accurate geographical informat ion regarding the 
position of the sensor and an Inertia Measurement Unit  

(IMU) records the precise orientation of the sensor at that 
location. These two devices provide the method for 

translating sensor data into static points for use in a variety 

of systems.  

 
Fig. 3: Laser echo 
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LIDAR is becoming more important as an 

environmental recognition sensor for high ly automated 
vehicles. The speed and accuracy of a scanner enables 

applications of it to operate in more or less real-time. This 

enables the device to detect obstacles and to recognise its 
route in very small time intervals. This means that the near 

range weather situation around a vehicle can be captured. 
Within fig. 3 the pulse 4 indicates the reflection of an  

object on the trajectory of a vehicle in a certain sensible 
distance. The voltage Uth indicates the noise threshold, at 

signal levels above the threshold, so indicating an object 

reflection. 

C. Object detection out of the pulse reflection cloud 

For the research vehicle the LIDAR system IBEO-LUX 
has been used. The system produces as output a stream of 

range and angle tuples; this data is pro jected into the local 

coordinate system using the vehicle’s position in the local 
coordinate system (continuously updated as the vehicle 

moves) and the sensor’s position in the vehicle’s coordinate 
system (determined off-line). The result is a stream of 3D 

points in the local coordinate frame (fig. 4), where all 
subsequent sensor fusion takes place. 

 
Fig. 4: Scanned weather objects in a polar grid 

 

The LIDAR returns detected objects marked as ground, 

dirt, ra in, snow, spray and fog. The first phase of the data 
processing is to classify each return as “ground”, “dirt”, or 

“rain/spray/fog”. The first step is to filter out the stream of 
points that correspond only to weather objects (removing 

ground and outliers). By accomplishing this step, the high 
resolution of LIDAR data enables us to implement a 

sophisticated weather classifier. Th is is essential for our 
work, which set out to develop a strategy for identifying 

objects that are likely to be remarkable weather objects;  

those of immediate importance for driv ing condition 
recognition. Other points in the cloud that are far enough 

above the ground model (and satisfy other criteria designed 
to reject outliers) are output as weather detections. 

Particle filters such as Kalman or Gaborfilters have been 
the subject of research and verification processes in our 

project.  They are used to classify and quantity the examined 

weather type objects. Given the non-conformity of the 
airborne moisture laden entit ies being detected it is 

suggested that allometric scaling algorithms  may be useful 
for analysis of cloud/fog/rain/snow/hail/haze and mist 

entities, especially from v isual onboard instruments located 
in moving vehicles .  These are being investigated for 

inclusion in the set of techniques potentially  applicable to 

the domain of research being described in this paper. Not 
only topographic characterization for entity shape is 

applicable in this domain, with LIDAR bathymetric 
methods also being considered for the useful provision of 

detected moisture content. 
Both of these geometric recognition and characterizat ion 

methods are to be the subject of ongoing investigation in the 
work. 

D. Detection of rain, snow and fog 

During weather effects such as fog, rain, and snow, the 
backscatter leads to the perception of an atmospheric veil.  

Therefore, we look at the LIDAR reflected signal power 
(Form. 2) and the backscatter coefficient 〈𝛽(𝑅)〉 . 



The power Pr received by the LIDAR is defined by the 

LIDAR equation (Measures, 1984)  
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where El is the output laser pulse energy, c the speed of 
light, 𝛽(𝑅)  the mean backscattering coefficient of the  

medium, Ar the effect ive receiver area, τT and τR the 

transmitter and receiver efficiencies (the latter is mostly 
defined by a special filter confining the bandwidth), and 𝛼 is 

the extinction coefficient [4].  

The backscattering coefficient 〈𝛽(𝑅)〉 is an average over 
the area illuminated by the laser bea m as well as along the 

line-o f-sight within the range ctp /2 , where tp is the laser 

pulse duration. The extinction coefficient α is controlled by 
the aerosol scattering fact.  

 
Fig. 5 Parameter intensity 

 
For object and obstacle detection for adaptive cruise 

control (ACC) or highly automated driving the weather 
influence is filtered out (resulting as backscatter and power 

of the received LIDAR reflection). For obtaining qualified 
weather object information the LIDAR reflections have to 

be particle filtered via Kalman  filters. A particu lar focus is 

put on the backscatter coefficient ß for variation of the filter. 
Estimates for fog intensity are statistically calcu lated 

using a Kalman  filter algorithm in  an ensemble of error 
correcting procedures to produce a most probable estimate 

value for fog intensity.  This method has become known as 
the Ensemble Kalman Filter (EnKF) method.  An estimate 

value is provided to the algorithm as  an init ial prior that is 
sensitized by intervention values from the sensor data to 

provide a posterior value, which recursively becomes the 

new prior (estimate) for the next iteration of the filter. The 
Kalman filter correlates the historic data of previous sample 

data with the value of the new prior, producing an error 
value (the corrected most probable value), which becomes 

the estimate, or estimated intensity value as illustrated in fig. 

5. 

 
 

Fig. 6 Detection Scenario 

 
We examine a set of filters under lab conditions to 

determine weather condition information from the vehicle’s 
trajectory when in  a 200m range of known objects. The set 

of weather condition data comprises: 

 Rain 
 Snow 
 Fog, Dust, Mist, Haze 

 

 
 

Fig. 7 Front camera 

 

At fig. 6 you can see the LIDAR based rain detection 
scenario on the research vehicle. The associated camera 

image is illustrated within fig. 7. The object  and obstacle 

detection is outlined. As result of the weather depiction, the 
LIDAR point cloud around the rain object recognition can 

be seen. A Kalman filter was utilized throughout the 
implementation. The pseudo code at fig. 8 visualizes the 

parameterization for the weather detection purposes, fig. 9 
reflects the stochastic calculation.  



 
Fig. 8 Kalman filter settings 

IV. SENSOR FUSION, DATAFUSION 

“Sensor fusion is a formal framework that comprises 

methods and tools for the association of data coming from 
different sensory sources. It tries to win information of high 

quality, where the specific defin ition of high  quality varies 
also from one application to another” (Wald).  

“Data fusion is the process of combin ing data or 
information to estimate or predict entity states“ (Steinberg). 

 

 

Fig. 9 Sensor fusion for gaining weather information 

 

As described earlier within the document, different 
sensors are delivering data for ACC or automated driving. 

Discussion of a lane keeping function demonstrates that 
there are essential sensors needed for this such as 

 Camera 
 LIDAR 
 Position (GPS) 

 Velocity 
 Inertia Measurement Unit (IMA) 

in order to obtain sufficient informat ion about the 

specific position and movement needed to control the 
vehicle on its planned trajectory. To combine this spectrum 

of sensor data, a fusion model is introduced (see fig. 8).  

Vertical segmentation covers the different sensor types and 
sources, horizontal segmentation is done for functional 

composition and logical grouping.  
In case of air pollution and fog recognition using 

LIDAR, camera and ego, motion is a primary value used in 
the air pollution and fog perception equation. Historical data 

of these sources are needed for considering the time variable 

element for the equation. The perception model developed 
to deliver precise environmental informat ion needs 

historical data for tendency handling. 
Fig. 10 illustrates the sensor data fusion process for 

LIDAR sensor data generation (data collect ion) through a 
process that determines the quality and quantity of that data.  

These so-called reflections are visualized. The final 
applicable LIDAR point clouds appear as Type A 

assignments. They have been classified by their main  

characteristic hypothesis (MH) and their object, obstacle or 
weather object hypothesis (OH) [8]. 

       Generation    Determination       Selection 

Fig. 10 Sensor data fusion 

V. EVALUATION 

The evaluation was carried out using a BMW research 

car, equipped with a fu ll instrumentation for autonomous 
driving. The car is illustrated in fig. 11.  

 

 
Fig. 11 Research car 

 

Arrows mark the main sensors; in particular the LIDAR 

scanners are highlighted as lasers. For the different types of 
eco-data (air pollution and fog) conditions, particular test 

runs have been executed. Input and output has been 
captured for further studies to optimize the recognition 

algorithms. The outcome of the near field environmental 
(eco-) recognition is valuable eco-driv ing and driving-

security information for the driver. Addit ionally, such 

ecological data can be correlated with the current geo 
position (map location) and submitted to eco-telematics 
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services or other collaborative traffic systems. On board of 

the vehicle itself many autonomous driving functions can 
subscribe these eco information’s.  Thus the adaptive cruise 

control (ACC) can automat ically reduce the desired speed in 
case the eco conditions are getting worse. The same applies 

for highly  automated driv ing. The recommended maximum 
speed setting, the driving attitude or the proposed routing 

can be adjusted automatically too. 

VI. CONCLUSION 

Increasingly the automotive industry is developing and 

producing innovative driving assistance functions to support 
vehicle drivers. Well understood as being a very important 

goal is to improve the eco driving ability. In this context it is 
an essential functionality to capture local eco-data (air-

pollution, fog or even weather) in the v icin ity of the car. 
Many dependent functions within a vehicle can be 

advantaged by subscribing to an automated, reliable eco-

data source. Focusing on the ecological and collaborative 
aspects of traffic systems existing today and as planned for 

the future will accelerate the process of producing eco 
friendly and reliable autonomous driving systems. It  is clear 

that the detection of eco-data (and thus, road conditions) is a 
principal element and data source in this quest.  Sharing 

informat ion from vehicles with the sensors described in this 

paper is regarded as an intrinsic benefit for future green eco 
driving and so is being investigated for viability as part of 

our research work. Cloud based technologies are thought to 
be key for resolving the data communications aspects of this 

scenario, with traffic management and eco-data informat ion 
systems interacting at the data level in  a Cloud technology 

space.  In our scenario, the data and software in this source 

would provide both driver informat ion and vehicle control 
system data relating to vehicle position on the road, speed 

and road conditions, supplemented by eco-data such as air 
pollution and fog condition information to minimize the 

emissions of greenhouse gases.  
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