
The accurate computation of key properties of 
Markov and semi-Markov Processes 

Jeffrey J Hunter 
Auckland University of Technology 

New Zealand 



 
Outline 
 
1.  Introduction 
2.  Stationary distributions of Markov chains 
3.  Mean first passage times 
4.  Solving for Stationary Distributions 
5.  Solving for Mean First Passage Times 
6.  GTH Algorithm 
7.  MFPT via the Extended GTH Algorithm 
8.  The Test Problems 
9.  Computation comparisons for MFPT 
 

 

  
  
  



  

  

  

Let P = [pij] be the transition matrix of an irreducible, 
discrete time Markov chain (MC) {Xn} (n ≥ 0) with finite 
state space  S = {1, 2,…, N}. 
  

1. Introduction 

  i.e.  pij = P{Xn = j Xn−1 = i} for all i, j  ∈ S.

  

We are interested in developing accurate ways of finding
two key properties of such chains:

(i) the stationary probabilites {π j }, (1≤ j ≤ N).

(ii) the mean first passage times {mij },(1≤ i, j ≤ N).



  
  
 
 

  
 
 

   

2. Stationary distributions 

Let  πT = (π1, π2, . . . , πN ) be the stationary prob. vector 
of the Markov chain with transition matrix P = [pij] .   

    

We need to solve π j = π ii=1

N∑ pij  with π ii=1

N∑ = 1,

i.e.                        π T (I – P) =  0T  with π Te = 1.



	

 

    
 
 

  3. Mean first passage times 
        

  

Let Tij  be the first passage time RV from state i  to state j, 

i.e.Tij = min {n ≥  1 such that Xn =  j  given that X0 = i}.

Tii  is the first return to state i.

Let mij = E[Tij X0 = i ], the mean first passage time from 

state i   to state j. 



  

   The mean first passage times 

                       

   

Let M = [mij ]  be the matrix of mean first passage times

It is well known that
                          mij = 1+ pik

k  ≠ j
∑ mkj ,

with mjj = 1 π j .

M  satisfies the matrix equation
                         (I −P)M = E −PD,

where E  = [1] = eeT , and    

D = Md = [δ ijmij ] =(Πd )−1  (with Π = eπT ).

       



 
    

 
 

  4. Solving for the stationary distribution 

   

If G = [I −P  + tuT ]−1 where u, t  such that  uTe ≠ 0, π Tt ≠ 0,

                       π T = uTG
uTGe

.

(Paige,Styan,Wachter,1975), (Kemeny,1981), (Hunter,1982)

In particular if G = [I −P  + euT ]−1 then π T = uTG



5. Solving for mean first passage times 

    

(i)  If G is any g-inverse of I −P, then
  M = [GΠ −E(GΠ )d + I – G +EGd ]D.             (Hunter, 1982)

(ii) If Ge = ge  for some g 
                          ⇔  M =  [I −G +EGd ]D.       (Hunter,2013)

The "standard algorithm"  is  M =  [I − Z +EZd ]D   where

Z= [I −P + eπ T ]−1 , Kemeny and Snell's "fundamental matrix"      

                   



Solving for mean first passage times 

      

Hunter (2007) presented a "simple algorithm" which 
is the simplest method to  simultaneoulsy compute 
the stationary distribution and the MFPTs.

If  Geb = [I −P + eeb
T ]−1 = gij

⎡⎣ ⎤⎦,

then π j = gbj ,   j = 1, 2, ...,  N,    

and   mij =
1/ gbj , i = j,

(gjj − gij ) gbj , i ≠ j.

⎧
⎨
⎪

⎩⎪
      



Solving for mean first passage times 

    

Hunter (2014) developed a variety "perturbation algorithms" 
where the transition matrix is successively updated  row by 
row from an initial simple transition matrix to end up with the
required transition matrix. One such algorithm is the following: 
(i)   Let  K0 = I. 

(ii)  For  i = 1, 2, ...,N, let pi
T = ei

TP, bi
T = pi

T −  eT N ,

      Ki = Ki−1 I +Ci( ),where ki = 1− bi
TKi−1ei  and  Ci =

1
ki

eibi
TKi−1. 

(iii)  At  i = N, let K = KN  then π T = 1
N
eTK,  

      M =  [I −K +EKd ]D,  where D = (Πd )−1 .
                



  6. The GTH Algorithm 
Let    PN = pij

⎡⎣ ⎤⎦ = pij
(N )⎡⎣ ⎤⎦ be the N × N transition matrix 

associated with a M.C. {Xk ,k ≥ 0} with state space 

  SN = {1,2,...,N} , and transition probabilities 

  pij
(N ) = P{Xk+1 = j Xk = i}. 

The general approach is to start with an N–state 
Markov chain and reduce the state space by one state 
at each stage. Thus in stages 

  SN = SN−1 ∪ {N}, SN−1 = SN−2 ∪ {N −1},...., S2 = {1,2}. 
 
Once we get to two states we expand the state space 
one state at a time until we return to the final set! SN !!



  

         
    

Assume that the initial M.C. with state space SN  is 
irreducible and that stationary probability vector is 
given by   π

T = (π1 ,π 2,...,πN−1,πN ) 

  Let π T = π (N )T = (π1
(N ),π 2

(N ),...,πN−1
(N ) ,πN

(N ) ). 

From the stationary equations   π
(N )T = π (N )TPN  or in 

element form   π j
(N ) = π i

(N )
i=1

N∑ pij
(N )    ( j = 1,2, ...,N)  

express   πN
(N ) in terms of   π1

(N ),…,   πN−1
(N )  : 

                                 

πN
(N ) =

π i
(N )piN

(N )
i=1

N−1∑
pNj

(N )
j=1

N−1∑
 

and eliminate   πN
(N ) from the stationary equations.  

!



  

         
    

Partition the stationary probability vector 

  π
(N )T = (ν (N−1)T , πN

(N ) ) where ν (N−1)T = (π1
(N−1),π 2

(N−1),...,πN−1
(N−1)) 

It is easily shown that 

  

ν (N−1)T IN−1 −PN−1( ) = 0T , where  PN−1 = QN−1
(N ) −

pN−1
(N )(c )pN−1

(N )(r )T

pN−1
(N )(r )Te(N−1) . 

Let PN−1 = pij
(N−1)⎡⎣ ⎤⎦  then pij

(N−1) = pij
(N ) +

piN
(N )pNj

(n)

S(N)
, 

                                                    1≤ i ≤ N −1, 1≤ j ≤ N −1.  

Note that calculation of the S(N) and the pij
(N−1)  do not 

involve subtractions.

 

!

  

Let   PN =
QN−1

(N ) pN−1
(N )(c )

pN−1
(N )(r )T pNN

(N )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

       



  

         
    

  

Observe

PN−1 is a stochastic matrix with state space SN−1

PN−1 is irreducible

ν (N−1)T  is a scaled stationary prob vector of this N −1 state MC

π (N−1)T = (π1
(N−1),π 2

(N−1),...,πN−1
(N−1)) ≡ 1

1− πN
(N ) ν

(N−1)T

so that the first N −1 stationary probs of the N-state MC are 
scaled versions of the N −1 state MC.



  

         
    

We can repeat this process reducing the state space from    
n  to n–1 (n= N, N-1, …, 2) with the resulting MC having a 
stationary distribution that is a scaled version of the first  
n–1 components of the stationary distribution of the MC 
with n states. 
 
Thus if   Pn = pij

(n)⎡⎣ ⎤⎦  with Pn−1 = pij
(n−1)⎡⎣ ⎤⎦ then 

                       
  
pij

(n−1) = pij
(n) +

pin
(n)pnj

(n)

S(n)
,1≤ i ≤ n −1,1≤ j ≤ n −1;              

where 
  
S(n) = 1− pnn

(n) = pnj
(n)

j=1

n−1∑ .!



  

         
    

Interpretation of the transition probabilities  

  
pij

(n−1) = pij
(n) +

pin
(n)pnj

(n)

S(n)
,1≤ i ≤ n −1,1≤ j ≤ n −1. 

The   pij
(n−1)  can be interpreted as the transition probability 

from i to j of the M.C. on  Sn restricted to   Sn−1.  
For   (i, j)∈Sn−1 ×Sn−1 it is possible to jump directly from i to j 
with probability   pij

(n). Alternatively jump from i to j via state 
n, being held at state n for t (= 0,1,2,…) steps, followed 
by a jump to j, with probability 

  
pin

(n) pnn
(n)( )t

t=0

∞∑⎛⎝
⎞
⎠ pnj

(n) =
pin

(n)pnj
(n)

1− pnn
(n) =

pin
(n)pnj

(n)

S(n)
,  

leading to the general expression for   pij
(n−1). 



  

         
    

Since the original M.C. is irreducible (i.e. every state can 
be reached from every other state) the restricted M.C. 
must also be irreducible and further since   pnn

(n) <1,   S(n) > 0. 
If we start with 

  π
(N )T = (π1

(N ),π 2
(N ),....,πN−1

(N ) ,πN
(N ) ) ≡ (π1,π 2,....,π n−1,π n )  

then the N – 1 elements of   π (N−1)T  are scaled elements of 
the first N – 1 elements of   π (N )T and hence of   π1,π 2,....,π n−1.  
Thus each   π (n)T  is a scaled version of   (π1,π 2,....,π n−1,π n ).  

The process continues to n = 2, where we have 

  

P2 =
p11

(2) p12
(2)

p21
(2) p22

(2)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
 which is a stochastic matrix.  



  

         
    

The stationary distribution of this MC will be a scaled 
version of   π

(2)T = (π1
(2),π 2

(2))  or of (π1 ,π 2 ). 
 
The second stationary equation is   π 2 = π1p12

(2) + π 2p22
(2) 

implying  

                                  
  
π 2 = π1

p12
(2)

S(2)
. 

Note that 
  
S(2) = 1− p22

(2) = p2 j
(2)

j=1

1∑ = p21
(2) = p1

(2)(r )Te(1). 
We now proceed with increasing the state space. 

  
π 3 =

π ipi3
(3)

i=1

2∑
p3 i

(3)
i=1

2∑
= π1

p13
(3)

S(3)
+ π 2

p23
(3)

S(3)
,

  
In general,   π n =

π ipin
(n)

i=1

n−1∑
pni

(n)
i=1

n−1∑
= π ii=1

n−1∑ pin
(n)

S(n)



  

         
    

If π j = krj  with r1 = 1 then 

   π ii=1

N∑ = 1⇒ k = 1 rii=1

N∑  with  

  
rn =

ripin
(n)

i=1

n−1∑
S(n)

,(n = 2,...,N),  

  

implying 

π i =
ri

rnn=1

N∑
,  i = 1,2,..., N. 



   

         
    

!

!

!

!

!

!

!

!
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(2)

  p31
(3)
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(n−2)
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(n−1)

  pn,3
(n)

  pN−2,3
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(N−1)
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(N )
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(n−1)

  pn−2,n
(n)
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  pn−2,N−1
(N−1)

  pn−2,N
(N )

  S(N)

 πN π1  π2  π3   πn−2   πn−1  πn   πN−2   πN−1

  S(N −1)

  S(N − 2)

  S(n)
  S(n −1)

  S(n − 2)

  S(2)

  S(3)



   
GTH Algorithm 

         
    

1. Start with a Markov chain with N states and transition 
matrix   PN = pij

(N )⎡⎣ ⎤⎦. 
   
2. Compute for n = N, N–1, …, ,3,

  

   
pij

(n−1) = pij
(n) +

pin
(n)pnj

(n)

S(n)
,1≤ i ≤ n −1,1≤ j ≤ n −1; where  

  
S(n) = pnj

(n)
j=1

n−1∑ . 

  3. Set r1 = 1 and compute  
  
rn =

ripin
(n)

i=1

n−1∑
S(n)

, for n = 2,...,N. 

  

4.  Compute   π i =
ri

rjj=1

N∑
,  i = 1,2,..., N. 



  

         
    

7. Mean First Passage Times via Extended GTH 
 
We seek a computational procedure, utilising the 
GTH/State reduction procedure. 
 
For a M.C. {Xn}  with N-states and transition matrix P, its 
mean first passage time matrix (MFPT) M satisfies  

  (I −P)M = E −PMd  
where   E = 1⎡⎣ ⎤⎦ = e

(N )e(N )T
 and 

  Md = δ ijmjj
⎡⎣ ⎤⎦ = diag(π1,π 2,...,πN ).  

 
For a M.R.P. {Xn,Tn} the  MFPT matrix satisfies  

  (I −P)M = µ (N )e(N )T −P(M)d . 



  

         
    

M.R.P Primer 
From Hunter (1982)  
Let    {(Xn,Tn)}, (n ≥ 0}, be a Markov renewal process (M.R.P.)  
with state space SN and semi-Markov kernel   Q(t) = Qij (t)⎡⎣ ⎤⎦  , 

where    Qij (t) = P{Xn+1 = j, Tn+1 −Tn ≤ t Xn = i}, (i, j)∈SN. 
Xn is the state at the n-th transition  

 Tn is the time of the n-th transition.  
Let   P = pij

⎡⎣ ⎤⎦ be the transition matrix of the embedded 

M.C.   { Xn },  (n ≥ 0),   pij = Qij (+∞) =   P{Xn+1 = j Xn = i}.  

  Qij (t) = pijFij (t) where   Fij (t)   = P{Tn+1 −Tn ≤ t Xn = i, Xn+1 = j }  



  

         
    

  Fij (t) is the distribution function of the “holding time” 

  Tn+1 −Tn in state Xn  until transition into state   Xn+1 given that 
the M.R.P. makes a transition from  Xn  to  Xn+1.  

Let 
  
µij = t dQij0

∞

∫ (t) so that   µij = pijE[Tn+1 −Tn Xn = i, Xn+1 = j ]. 

Let   P
(1) = µij

⎡⎣ ⎤⎦ then  

  (I −P)M = P (1)E −PMd . 

Let   µ = P (1)e then   µ
T = (µ1,µ2,...,µN ) where 

  
µi = µijj=1

N∑ . 

µi  =   E[Tn+1 −Tn Xn = i ] is the “mean holding time in state i “. 
Thus   P

(1)E = P (1)eeT = µeT  

Note that for a M.C.   µ
(N )T = e(N )T = (1,1,...,1) and   P (1)E = E . 



  

         
    

Let us partition  M = MN  as 

  

MN =
MN−1 mN−1

(N )(c )

mN−1
(N )(r )T mNN

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
   

where 

  MN−1 = mij
⎡⎣ ⎤⎦, (1≤ i ≤ N −1, 1≤ j ≤ N −1), 

  mN−1
(N )(r )T = (mN1,mN2,....,mN,N−1) and 

  mN−1
(N )(c )T = (m1N,m2N,....,mN−1,N ). 

 
Let us also partition   µ

(N )T = (µ1
(N ),...,µN−1

(N ) ,µN
(N ) )   = (µN−1

(N )T ,µN
(N ) )  

  where µN−1
(N )T = (µ1

(N ),...,µN−1
(N ) )  

 
!

  

Expressing (I −P)M = µ (N )e(N )T −P(M)d  in block form

and carrying out block multiplication we obtain  the
following results (details omitted).



  

         
    

Using the expression for PN−1, as derived for the GTH 
algorithm, it is easily seen that 
 

  

(IN−1 −PN−1)MN−1 = µ (N−1)e(N−1)T −PN−1(MN−1)d ,

where       µ (N−1)   = µN−1
(N ) +

µN
(N )pN−1

(N )(c )

pN−1
(N )(r )Te(N−1) .  

  

Further,   mN−1
(N )(r )T =

pN−1
(N )(r )T MN−1 − (MN−1)d( ) + µN

(N )e(N−1)T{ }
pN−1

(N )(r )Te(N−1)
  

 
 
  

  

implying  mNj =
pNk

(N )mkj + µN
(N )

k=1,k≠ j

N−1∑{ }
S(N)

 for 1≤ j ≤ N −1,

leading to expressions for mNj  in terms of m1j ,..,mkj ,..,mN−1, j  

(k ≠ j), i.e. expressions for mNj  in terms of the remaining 

elements of the j − th column of M.



  

         
    

More difficult to find mN−1
(N )(c),    i.e. the miN  for     1≤ i ≤ N −1. 

                                     (In−1 −Qn−1
(n) )mn−1

(n)(c ) = µn−1
(n)

                                    

  QN−1
(N ) = pij

(N )⎡⎣ ⎤⎦  for 1≤ i ≤ N −1, 1≤ j ≤ N −1, an (n–1)×(n–1)  
matrix derived from PN , requires further step by step  
reduction procedure by eliminating   mN−1,N  from   mN−1

(N )(c )T  replacing 
it in the expressions for the elements   m1N,m2N,....,mN−2,N.   

Need to express   (N −1)× (N −1) matrix QN−1
(N )  in block form.  

  
mN−1,N =

pN−2
(N−1)(N )(r )TmN−2

(N )(c ) + µN−1
(N ){ }

1− pN−1,N−1
(N−1) =

qN−1,k
(N−1)

k=1

N−2∑ mkN + µN−1
(N ){ }

R(N)
,      

 where 
  
R(N) = 1− pN−1,N−1

(N−1) = pN−1, j
(N )

j=1, j≠N−1

N∑  (i.e. obtained fromPN ). 



  

         
    

Thus for a general reduction from n states to n-1 states 
 

  If (In −Pn)Mn = µ (n)e(n)T −Pn(Mn)d where  µ (n)T = (µn−1
(n) ,µn

(n) ),  

  then (In−1 −Pn−1)Mn−1 = µ (n−1)e(n−1)T −Pn−1(Mn−1)d  

where 
  
µ (n−1)T = µn−1

(n)T +
µn

(n)pn−1
(n)(c )T

pn−1
(n)(r )Te(n−1) .                                        

  µ
(n)T = (µn−1

(n)T ,µn
(n) )  is a 1× n vector,   µn−1

(n)T = (µ1
(n),...,µn−1

(n) ) and  

  µ
(n−1)T = (µ1

(n−1),...,µn−1
(n−1)) is a1× (n –1) vector, with 

                              
  
µi

(n−1) = µi
(n) +

µn
(n)pi,n

(n)

S(n)
, (1≤ i ≤ n −1).               

  
where S(n) = pn−1

(n)(r )Te(n−1) = pnj
(n)

j=1

n−1∑ = 1− pnn
(n). 



  

         
    

We can reduce the state space by 1 at successive steps 
retaining the same mean first passage times for the reduced 
state space i.e.   Mn−1 = mij

⎡⎣ ⎤⎦, for  1≤ i ≤ n −1, 1≤ j ≤ n −1, 
although the calculation is modified with mean holding times  
in the states being modified. i.e. in effect we are using a  
MRP variant to preserve the mean first passage times for  
the reduced state space. 

If we are given   Mn−1 = mij
⎡⎣ ⎤⎦, (1≤ i ≤ n −1, 1≤ j ≤ n −1),  

we wish  to find   mn−1
(n)(c ),mn−1

(n)(r )T  and mnn.   
 
First    mnn = 1 π n

(N )  so  we can use the GTH algorithm from the 
calculation of the stationary probabilities. 

  
For mn−1

(n)(c ),  mnj =
pnk

(n)mkj + µn
(n)

k=1,k≠ j

n−1∑{ }
S(n)

 for 1≤ j ≤ n −1.



  

         
    

For n = 2 :                (I2 −P2)M2 = µ (2)e(2)T −P2(M2)d  

  

1− p11
(2) −p12

(2)

−p21
(2) 1− p22

(2)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

m11 m12

m21 m22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                            =
µ1

(2) µ1
(2)

µ2
(2) µ2

(2)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
−

p11
(2)m11 p12

(2)m22

p21
(2)m11 p22

(2)m22

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

leading to 

  

M2 =
m11 m12

m21 m22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

p21
(2)µ1

(2) + p12
(2)µ2

(2)

p21
(2)

µ1
(2)

p12
(2)

µ2
(2)

p21
(2)

p21
(2)µ1

(2) + p12
(2)µ2

(2)

p12
(2)

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥



  

         
    

General procedure for finding all the elements of M. 
 
Step 1: .Start with PN  and concentrate on finding  
only the expressions for mi1 for i = 1, 2, …, N.  

  i.e. if PN = pij
(N )⎡⎣ ⎤⎦  carry out the extended GTH algorithm

  

  

For n = N, N -1, ...,3, 

let pij
(n−1) = pij

(n) +
pin

(n)pnj
(n)

S(n)
,   1≤ i ≤ n −1, 1≤ j ≤ n −1 

  

and µi
(n−1) = µi

(n) +
µn

(n)pi,n
(n)

S(n)
, (1≤ i ≤ n -1),with S(n) = pnj

(n)
j=1

n−1∑  .

with (µ1
(N ),µ2

(N )....,µN
(N ) ) = (1,1,...,1).

 



  

         
      

Let  m11 = µ1
(2) +

p12
(2)µ2

(2)

p21
(2) , 

       m21 =
µ2

(2)

S(2)
, 

       m31 =  
p32

(3)m21 + µ3
(3)

S(3)
, 

       mn1 =  
pnk

(n)mk1 + µn
(n)

k=2,

n−1∑
S(n)

, n = 3,...,N.

This provides the entries of the first column of  

  M = mij
⎡⎣ ⎤⎦, i.e. mN

(1)(N ), where 
 

  M =  (mN
(1)(N ),mN

(2)(N )....,mN
(N )(N ) ) with mN

(1)(N )T = (m11,m21,....,mN1)  



  

         
    



  

         
    

Step 2: Now reorder the rows of   P (N )  by moving the  
first column after the Nth column, followed by moving  
the first row to the last row. 

  

PN ≡ PN
(1) =

p11 p12 .... p1,N−1 p1,N

p21 p22 p2,N−1 p2N

pN−1.1 pN−1,2 pN−1,N−1 pN−1,N

pN1 pN2 pN,N−1 pNN

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  

→

p22 p2,N−1 p2N p21

pN−1,2 pN−1,N−1 pN−1,N pN−1,1

pN2 pN,N−1 pNN pN.1

p12 p1,N−1 p1,N p11

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

≡ PN
(2)



  

         
    

  

Step 3: Carry out the algorithm, as in Step 1, with PN = PN
(2)

to obtain the vector of MFPTs which we label as mN
(2)(N )

where  mN
(2)(N )T

= (m22,m32,....,mN2,m12).

  

Step 4: Reorder P2
(N )  as in step 2 to obtain P3

(N )and repeat Step 3

to obtain m
(3)(N )

 where m
(3)(N )T

= (m33,m43,...,mN3,m13,m23)

  

Step k: Repeat as above with Pk
(N )  to obtain m

(k )(N )
 where 

m
(k )(N )T

= (mkk ,mk+1,k ,...,mN,k ,m1,k ,...,mk−1,k ) finishing with 

PN
(N )  and m

(N )(N )
where m

(N )(N )T
= (mNN,m1,N,m2,N,...,mN−1,N )

  

Step N +1: Let M =  (mN
(1)(N ),mN

(2)(N )
....,mN

(N )(N )
)

Finally reorder M  to obtain M = (mN
(1)(N ),mN

(2)(N )....,mN
(N )(N ) )



  

         
    

     end 
        for col=1:m 
            for row= 1:m 
            P_new1(mod(row+m-2,m)+1,col)=P(row,col); 
            end 
        end 
        for col=1:m 
            for row= 1:m 
           P_new2(row,mod(col+m-2,m)+1)=P_new1(row,col); 
            end 
        end 
       P=P_new2; 
        PP=P; 
    end 
    for col=1:m 
        for row=1:m 
            M1(mod(row+col-2,m)+1,col)=M(row,col); 
        end 
     

This can be carried out using the following MatLab procedure:                          



   8. Test Problems 
    Introduced by Harrod & Plemmons (1984) and 

considered by others in different contexts. 
 

 TP1: The original transition matrix was not                     
irreducible and was replaced ( Heyman (1987), 
Heyman & Reeves (1989)) by 

 
  

         
    

 

.1 .6 0 .3 0 0
.5 .5 0 0 0 0
.5 .2 0 0 .3 0
0 .7 0 .2 0 .1
.1 0 .8 0 0 .1
.4 0 .4 0 0 .2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥



  
TP2 (Also Benzi (2004)) 

  

         
    

 

.85 0 .149 .0009 0 .00005 0 .00005
.1 .65 .249 0 .00009 .00005 0 .00005
.1 .8 .09996 .0003 0 0 .0001 0
0 .0004 0 .7 .2995 0 .0001 0

.0005 0 .0004 .399 .6 .0001 0 0
0 .00005 0 0 .00005 .6 .2499 .15

.00003 0 .00003 .00004 0 .1 .8 .0999
0 .00005 0 0 .00005 .1999 .25 .55

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.



  
   TP3 

         
      

0.999999 1.0 E − 07 2.0 E − 07 3.0 E − 07 4.0 E − 07
0.4 0.3 0 0 0.3

5.0 E − 07 0 0.999999 0 5.0 E − 07
5.0 E − 07 0 0 0.999999 5.0 E − 07
2.0 E − 07 3.0 E − 07 1.0 E − 07 4.0 E − 07 0.999999

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.



TP4 variants: 

         
    

 

.1− ε .3 .1 .2 .3 ε 0 0 0 0
.2 .1 .1 .2 .4 0 0 0 0 0
.1 .2 .2 .4 .1 0 0 0 0 0
.4 .2 .1 .2 .1 0 0 0 0 0
.6 .3 0 0 .1 0 0 0 0 0
ε 0 0 0 0 .1− ε .2 .2 .4 .1
0 0 0 0 0 .2 .2 .1 .3 .2
0 0 0 0 0 .1 .5 0 .2 .2
0 0 0 0 0 .5 .2 .1 0 .2
0 0 0 0 0 .1 .2 .2 .3 .2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

  
TP41≡ ε  = 1.0E-01,TP42 ≡ ε  = 1.0E-03,
TP43 ≡ ε  = 1.0E-05,TP44 ≡ ε  = 1.0E-07.



   9. Comparisons  
 
    We present comparisons for the test problems, 
    the 4 algorithms (Standard, Simple, Perturbations 

and Extended GTH), under double precision,  
    for the MFPT matrix M and compute the MAX 

RESIDUAL ERRORS: 
  
  

 
    
   

         
    

  
MAX RES ERROR = max

1≤i≤m,1≤ j≤m
mij − pikmkjk≠ j∑ −1



  

         
    


