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Abstract: Gaining knowledge on weather patterns, trends and the influence of their 

extremes on various crop production yields and quality continues to be a quest by scientists, 

agriculturists, and managers. Precise and timely information aids decision-making, which is 

widely accepted as intrinsically necessary for increased production and improved quality. 

Studies in this research domain, especially those related to data mining and interpretation 

are being carried out by the authors and their colleagues. Some of this work that relates to 

data definition, description, analysis, and modelling is described in this paper. This 

includes studies that have evaluated extreme dry/wet weather events against reported yield 

at different scales in general. They indicate the effects of weather extremes such as 

prolonged high temperatures, heavy rainfall, and severe wind gusts. Occurrences of these 

events are among the main weather extremes that impact on many crops worldwide. Wind 

gusts are difficult to anticipate due to their rapid manifestation and yet can have 

catastrophic effects on crops and buildings. This paper examines the use of data mining 

methods to reveal patterns in the weather conditions, such as time of the day, month of the 

year, wind direction, speed, and severity using a data set from a single location. Case study 

data is used to provide examples of how the methods used can elicit meaningful 

information and depict it in a fashion usable for management decision making. Historical 

weather data acquired between 2008 and 2012 has been used for this study from telemetry 

devices installed in a vineyard in the north of New Zealand. The results show that using 

data mining techniques and the local weather conditions, such as relative pressure, 

temperature, wind direction and speed recorded at irregular intervals, can produce new 

knowledge relating to wind gust patterns for vineyard management decision making. 
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1. Introduction 

Worldwide, the frequency and severity of weather extremes observed especially over the last few 

decades have increased significantly, leading to an overhaul in models and prediction/forecasting 

methods used for this purpose [1–3]. It is becoming increasingly vital for scientists, agriculturists, 

farmers, global food security, disaster management and related organizations to understand the natural 

phenomena to plan and be prepared for the future [4–7]. Currently used crop-climate models 

developed two decades ago underestimate the potential adverse effects of recent and projected climate 

extremes. More frequent and intense climate extremes (droughts, floods and gusts) characterized by 

stochastic variability in precipitation, wind (tornados), soil moisture, maximum and minimum ambient 

temperatures observed across the globe are not incorporated into the existing models [8]. Crop 

sensitivity to such drastic adverse weather conditions varies significantly depending mainly on the 

crop, plant phenology and other location specific environmental conditions [9]. For instance, severe 

frost events in the month of September in New Zealand could damage the grapevine shoots wiping out 

the year’s crop also affecting vine productivity for up to three following years [10]. In this context, the 

paper investigates the application of different data mining algorithms to wind gust modelling and 

prediction purposes. Kumeu meteorology data acquired over a four year period (2008–2012) using 

wireless telemetry devices for now casting and web display was used for this study. With this 

introduction to the recent weather extremes and the need to model and predict them in advance, in the 

next section literature reviewed on research that has led to the use of intelligent data processing 

approaches for this purpose is detailed. In Section 3, the methodology adopted in this research is 

elaborated, following which the results obtained are presented. At the end of this paper some 

conclusions arrived at from this research are summarized. 

2. Literature  

The section initially outlines a few data mining applications to real world problems that 

complement the conventional statistical methods as the latter are not designed for retrospective 

analysis of ad hoc and large volumes of data. Following this outline, a few recent approaches so far 

investigated on wind gust modelling and prediction by other researchers are presented before 

discussing those investigated by researchers at the Geoinformatics Research Centre (GRC), Auckland 

University of Technology (AUT) New Zealand. 

2.1. Data Mining Techniques for Modelling Meteorological Data 

The 21st century is more renowned for the introduction and refinement of data-driven science as a 

complementary approach to the traditional hypothesis-driven methods. This is even seen by some as a 

“paradigm shift” from the application of “reductionism” theory based to complex systems sciences and 

it has already transformed the natural sciences [11]. For instance, in [12] a time series forecasting 
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approach of a neural network with the multi resolution learning paradigm (NNMLP) has been 

described as showing good skills for predicting long-term range stream flows. The time series 

forecasting approach of NNMLP was concluded to have shown great potential for use on its own in 

regions with limited available information, and for analysis combined with other approaches to 

improve long-term range stream flow forecasts. 

A new technique based on an unsupervised algorithm proposed in [13] was aimed at identifying 

extreme values in climate time series and then correlating the climate and remote sensing data to 

improve agricultural monitoring. The software implementation of the algorithm called CLIPSMiner 

(CLImate PatternS Miner) was described to be able to handle multiple time series of continuous data, 

to identify relevant patterns or extreme events based on a relevance factor that can be chosen by the 

user. Results of the approach showed the CLIPSMiner ability to detect patterns that were described to 

be “known in climatology”, indicating the correctness and feasibility of the proposed algorithm. The 

patterns detected based on a “highest relevance” factor were stated to be in coincidence with the 

extreme events in the chosen phenomenon. Furthermore, the series correlations detected by the 

algorithm are said to be also showing a relation between agro climatic and vegetation indices, 

confirming the agro meteorologists’ expectations. 

In [14] a theoretical framework was put forward for extracting spatio-temporal patterns (sequences 

representing evolution of locations and their neighborhood over time). To overcome the limitations 

with the classical frequency support, such as the exclusion of the pattern neighbor and its evolution 

over time, a new “interestingness measure” was proposed in the framework by taking into account 

both spatial and temporal aspects. The algorithm was based on a pattern-growth approach with 

efficient successive projections over the database.  

In a more recent work presented in [15] different rainfall prediction models, such as Weather 

research and forecasting, Seasonal climate forecasting, Global data forecasting and General data 

mining rainfall prediction models were discussed in detail. The models were implemented by the 

Indian Meteorological Department to perform data mining tasks and were stated as providing a very 

useful and accurate knowledge base in the form of rules, models, and visual graphs for prediction and 

to support decision making in different sectors. 

A data model developed for analyzing meteorological data in the Indian context discussed in [16] is 

more related to the work presented in this paper. The performances of the different algorithms initially 

investigated in that study were compared using standard performance metrics, and the algorithm that 

gave the best results was then used to generate classification rules for the mean weather variables. 

Furthermore, a predictive Neural Network model was developed for the weather prediction program 

and the results were then compared with actual weather data for the predicted periods. The results of 

the work were described to have given enough case data, to suggest that the data mining techniques 

could be used for weather forecasting and climate change studies. 

As can be observed above, the success of different data mining approaches to modelling and 

forecasting natural phenomena vary significantly making one wonder which could be the best 

approach for the particular problem in hand [17]. On the other hand, every time a solution is found the 

volume of the data increases with time (based on Moore theory data increases exponentially at an 

increasingly shorter pace [18]) in turn creating new constraints with the model developed only a year or 

two ago [19]. Thus, this paper looks at the results obtained with five different data mining techniques 
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in an initial investigation conducted into revealing the patterns in weather conditions for forecasting 

very high wind gust events using Kumeu meteorological data as an example study.  

2.2. Wind Gust Prediction Methods 

A wide range of wind hazard modelling methods has been developed since the 1950s however none 

of them has been able to represent the full complexity of the real world scenarios [20]. The popular 

models identified by the authors of that recent study were atmosphere—ocean circulation and regional 

climate modelling, Monte Carlo simulation, and statistical probabilistic modelling, all three stated to 

be suffering from some major constraints. The limitations identified with these methods were: 

intensive demand for computation, lack of surface measurements for calibration of wind-field models 

and unavailability of consistent data covering a long time period respectively. Even then in that work 

the statistical probabilistic modelling approaches were considered to be better for wind hazard 

modelling. These approaches use weather monitoring station data relating to fixed locations that 

represent the ideal characteristics of buildings and infrastructure exposed to wind actions in the wind 

load calculations. The recorded data at a site represents directly the time series of near-surface 

(typically at 10-m altitude) wind loads on a structure/plants at the meso scale.  

Meanwhile in [21] the authors developed a model to predict 1 Hz wind series at below 2 m. The 

model uses the averaged wind velocity, the standard deviation (or turbulent intensity) at 2 m and the 

friction velocity acquired by multipoint measurement system equipped with high-sensitivity cup 

anemometers for field measurement. In another interesting paper by [22], the authors developed a 

hybrid approach comprising of Self-organising map (SOM) and back propagation neural networks to 

predict wind speed. In their results the hybrid approach outperformed the back propagation network 

alone method. The variables used as input to the hybrid were temperature, humidity, and wind gust. 

2.2.1. Machine Learning Wind Gust Models 

In [23], using 2,000 observations of gust events from contrasting locations namely, Kumeu in the 

North West of New Zealand’s North Island and the Maule Region, in the Central Valley of Chile, a 

mean interval of 3.2 min between the beginning and end of wind velocity change within a noticeable 

linear acceleration pattern was observed.  

To overcome the challenge caused by sampling and interpretation of the complex data set, in that 

research, methods of wind gust measurement and prediction for making reliable predictions were 

investigated. From that investigation, a machine-learning approach was found to be a satisfactory 

analytical process with meaningful and useful results produced. The algorithm used for the analysis 

was designed to use terrestrial sensor telemetry weather data collected in real-time at near-ground level 

and recorded independent of geostrophic upper atmosphere conditions as input. 

2.2.2. GRC’s Kalman Ensemble Wind Gust Model 

Previously, in [24] Ensemble Kalman Filter (EnKF) method was used to deal with the spatio-temporal 

estimation problem when identifying and determining values for discrete data points across a three 

dimensional plane. 
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Modelling climate variations is a non-trivial challenge for any single interpolation method because 

the data is inherently continuous. Using methods derived from signal processing de-noising tool 

applications, the Ensemble Kalman filter (EnKF) has been proposed in data assimilation situations to 

model uncertain initial conditions in numerical weather prediction. The EnKF overrides the linearity 

assumption of the standard Kalman filter by using a Monte Carlo approximation of the optimal 

probability forecast. Because of the inherent so-called ‘curse of dimensionality problem’ of stochastic 

approximation methods such as with a sequential Monte Carlo, the EnKF uses a low-rank approximation 

to the covariance of the posterior density, which also introduces spurious correlations in the filter 

estimates. This is a three step recursive process such that T is modified iteratively by new information: 

T|T-1 T+1|T T+1|T+1  

where an a priori state T given T-1 is updated with a mean and covariance from new observations 

(realizations) at T+1 (given T), which then as T+1 becomes the forecast estimate (posterior 

prediction) and is returned as the prior for the next iteration of the model, when T+1 becomes T (as in 

Figure 1). The recursive sequencing nature of the method can be depicted using Markov notation thus: 

Figure 1. The recursive ensemble process 

 
The authors argued that the outlying values that may not conform to the expected variations to a 

mean as “significant indicators” of a change point yet to be observed, stating that Kriging would prune 

such a value and complete the interpolation without including it in the cluster of predictors for new 

data point instances. Based on some previous work, it was then found ensemble methods to be a multi 

algorithmic approach with an ability to retain any outlier value until computations of all possible 

permutations of the data are exhausted. The methods were found to be also useful when incorporating 

a temporal variable into the model without distorting the intrinsic geospatial properties of the former 

interpolation methods. Finally, from that initial investigation the authors concluded that the EnKF 

approach was a potential and useful tool to predict accurately against a known truth while at the same 

time maintaining data integrity, reducing noise in the data set during computation, producing a clean 

and reliable model together with a result. 

With this introduction to recent wind gust models investigated in general and by GRC researchers, 

from here onwards the paper elaborates on the data mining methods investigated for this research to 

further drilldown through the meteorological/weather and atmosphere data acquired by telemetry 

devices installed in Kumeu River Wines, Auckland, New Zealand.  
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3. The Data 

Weather and atmosphere data acquired at different time intervals e.g., 5–30 min/s by multiple 

wireless sensors installed in Kumeu River Wines vineyard and other locations around the world are 

logged and transmitted to a local server in Auckland, New Zealand, and then to a database server for 

web display and future analysis. From this data repository, instances relating to the Kumeu River 

vineyard for a period of four years (2008–2012) were extracted for this study. The data consisted of 

correct and erroneous readings hence it was cleaned to remove all readings that were outside of Kumeu 

record readings based on [25]. The final 86,418 vectors and their distribution over the 12 months and 

within the years studied are presented in Tables 1–3. A new variable gust class (no, low, med, high and 

very high classes for 0, <1, <3, <10 and <20 km/h respectively) has been introduced to model the 

weather patterns using data mining algorithms that do not handle continuous output data such as C5, 

Quest and CHAID. The input variables used are: month (either as class or coded), outdoor 

temperature, outdoor humidity, pressure relative, wind speed (Wind is defined as “the rate at which air 

is moving horizontally past a given point. It may be a 2-minute average speed (reported as wind speed) 

or an instantaneous speed (reported as a peak wind speed, or gust)” both measured and used in this 

study in km per hour (km/h)).  The former in the average wind speed of observed reading within every 

two minutes, whereas the latter is the instantaneous, wind direction (The wind direction is the direction 

from which the wind is blowing), wind chill (Wind chill is defined as “the additional cooling effect 

resulting from wind blowing on bare skin. The wind chill is based on the rate of heat loss from 

exposed skin caused by the combined effects of wind and cold. The (equivalent) wind chill 

temperature is the temperature the body “feels” for a certain combination of wind and air 

temperature”) and dew point (Dew point is “the temperature to which the air must be cooled for water 

vapor to condense and form fog or clouds”) based on [26]. 

Table 1. Distribution of Kumeu meteorological data over different months  

(January–December) (top) and in years studied (2008, 2009, 2011 and 2012) (bottom). 

Month Frequency Out of Total Total (%) Valid (%) Cumulative (%) 

April 4,946 5.7 5.7 5.7 

August 7,375 8.5 8.5 14.2 

December 13,034 15.1 15.1 29.4 

February 1,101 1.3 1.3 30.6 

January 10,754 12.4 12.4 43 

July 5.31 5.8 5.8 48.9 

June 6,259 7.2 7.2 56.1 

March 2,782 3.2 3.2 59.3 

May 8,215 9.5 9.5 68.8 

November 13,664 15.8 15.8 84.6 

October 8,276 9.6 9.6 94.3 

September 4,981 5.8 5.8 100 

Total 86,418 100 100 100 



Atmosphere 2014, 5 66 

 

Table 1. Cont. 

Year Frequency out of Total Total % Valid (%) Cumulative (%) 

2008 7,861 9.1 9.1 9.1 
2009 20,479 23.7 23.7 32.8 
2011 47,072 54.5 54.5 87.3 
2012 11,006 12.7 12.7 100 
Total 86,418 100 100  

Table 2. Meteorological variables and their profiles of cleaned data used to model  

and predict gusts. 

 Month 

Year  

(No. of  

Records) 

Pressure 

Relative 

(hPA) 

Out  

Temperature 

(°C) 

Outdoor 

Humidify 

(%) 

Dew 

Point 

(°C) 

Wind  

Chill  

(°C) 

Wind  

Speed  

(km/h) 

Wind  

Direction 

(°) 

Gust 

(km/h) 

Total N 
N (Valid) 86,418 86,418 86,418 86,418 86,418 86,418 86,418 86,418 86,418 86,418 

N (Missing) 0 0 0 0 0 0 0 0 0 0 

Mean  2010 1,009.91 14.75 79.38 11.01 14.22 4.08 136.92 4.95 

Std. Error of Mean  0.004 0.028 0.019 0.046 0.013 0.02 0.02 0.443 0.028 

Median  2011 1,009.60 14.90 84.00 11.20 14.30 1.40 100.00 0.60 

Mode  2011 1,011.40 0.30 91 11.80 15.00 0.00 0 0.00 

Std. Deviation  1.229 8.25 5.57 13.477 3.81 5.00 6.08 130.35 8.33 

Variance  1.510 68.02 31.04 181.62 14.53 25.034 36.98 16,990.38 69.46 

Skewness  −0.636 0.14 0.003 −0.900 −0.398 0.027 3.2 0.232 2.47 

Std.Err of Skewness  0.008 0.01 0.008 0.008 0.008 0.008 0.008 0.008 0.01 

Kurtosis  −0.922 0.097 0.827 −0.205 0.732 0.526 29.80 −1.610 10.65 

Std. Error of Kurtosis  0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.02 

Range  4 57.10 41.80 57 31.30 51.10 173.00 360 173.00 

Minimum  2008 977.90 −8.90 39 −3.70 −11.20 0.00 0 0.00 

Maximum  2012 1,035.00 32.90 96 27.60 39.90 173.00 360 173.00 

Percentiles 

10  2009 999.70 8.30 58.00 6.10 8.10 0.00 0.00 0.00 

20  2009 1,002.60 10.70 67.00 8.20 10.50 0.00 0.00 0.00 

25  2009 1,003.70 11.40 70.00 8.80 11.20 0.00 0.00 0.00 

30  2009 1,004.90 12.20 74.00 9.40 11.70 0.00 0.00 0.00 

40  2011 1,007.50 13.60 79.00 10.30 13.00 0.10 45.00 0.00 

50  2011 1,009.60 14.90 84.00 11.20 14.30 1.40 100.00 0.60 

60  2011 1,012.10 15.90 87.00 12.20 15.30 3.20 220.00 2.20 

70  2011 1,014.20 17.10 90.00 13.20 16.50 5.00 248.00 4.70 

75  2011 1,015.30 17.90 91.00 13.70 17.10 6.10 265.00 6.10 

80  2011 1,016.80 18.90 91.00 14.20 17.90 7.60 277.00 8.600 

90  2012 1,020.30 21.40 93.00 15.50 20.60 11.90 311.00 16.90 

Table 3. Gust classes introduced in this study for use as output/target in C5, Quest and 

CAHID algorithms. 

Class Frequency of Total Valid (%) Cumulative (%) 

No 45463 52.6 52.6 
Low 15620 18.1 70.7 

Medium 9855 11.4 82.1 
High 8831 10.2 92.3 

Very High 6649 7.7 100 
Total 86418 100 
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4. The Methodology 

The cleaned and coded (gust classes no-0, low-1, medium-2, high-3 and very high-4 and months 

from 1 January to 12 December) data is analyzed using the following data mining techniques and 

statistical methods to find the precise weather conditions/patterns relating to very high gust events in 

this location: 

Methods 1(C5.0) and 2 (QUEST): using gust class as output and all seven variables listed in  

Table 2 leaving out the year as input, the two functions were run to create rules.  

Methods 3 (CRT) and 4 (CHAID): using gust real values/classes (no, low, med, high and very high) 

as output and the eight variables as input, CRT and CAHID functions were run to create rules and 

predict real gust.  

Method 5 Kohonen self-organising map (SOM) clustering: all input variables and real gust values 

were used in the clustering. 

Method 6: Artificial neural network (ANN) prediction:  using all input variables along with either 

gust class or real values the latter was predicted. 

Method 7: Regression and Principal component analysis (PCA): using all input variables, regression 

and PCA tests were run against real gust value as output. 

The algorithms of the above rule induction (association) or decision tree methods (1–4) are capable 

of culling through a set of predictors by successively splitting a data set into subgroups or grouping 

similar data points into subgroups on the basis of the relationships between predictors and the output 

field. These data mining algorithms vary in the way they group or split the data and depending on the 

data set, one particular method/algorithm could produce better rules describing the correlations 

between the predictors and the output as explained in Section 2.1. The above data mining techniques 

and statistical methods were run using SPSS clementine ver. 10.1. Rules (in the form of trees or if and 

then statements) obtained are analyzed to look at the weather conditions (wind speed, wind direction, 

wind chill, relative pressure, dew point, outdoor temperature and outdoor humidity) and patterns 

relating to very high gust events (>20 km/h) at the Kumeu River Wines.  

5. Results and Discussion 

The results obtained with each of the seven methods are discussed in this section. 

5.1. C5.0 and QUEST Algorithm Results 

The C5.0 algorithm ran using gust class as output produced 847 rules, 249 for no gust, 98 for low, 

65 for medium, 218 for high and 217 for very high gust events. The top three highest instances relate 

to no gust (Table 4). Based on rule 1, wind speeds ≤ 1 km/h produced no gust with 23,699 instances at 

0.999 confidence interval. Similarly, based on rules 2 and 3 wind speeds ≤ 0.1 or ≤ 0.7 km/h both with 

wind directions > 0 produced no gust events at 0.998 and 0.874 confidence intervals respectively. 

The rules with 4 and 5th highest instances (Table 4), (over 2,000 instances at 0.998 and  

1 confidence intervals respectively) relate to medium gust events. Based on rule 62 in November wind 

at speed between 4.9 and 9.9 km/h from south/north-west (> 90°) leads to medium gusts. Based on rule 63 
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in October, wind at speed >0° and as per rule 62 same wind speed but with direction > 90° leads to 

medium gusts.  

Table 4. Top 14 highest rules in terms of instances out of 847 rules produced by C5 

algorithm for the 86,418 readings recorded at 5–30 min intervals. Gust values are 

converted into gust classes (no gust < 1, low < 3 medium < 10, high < 20 and very high > 

20 km/h classes see Table 3 for details). 

Rule No. Instance Confidence Rule 

1 for  no  23,699 0.999 if Winds ≤ 4.9 and Winds ≤ 1 and Wind_Dir ≤ 1 then no 

2 for  no  11,886 0.998 if Winds ≤ 4.9 and Winds ≤ 1 and Wind_Dir > 1 and Winds ≤ 0.1 then no 

3 for  no  3,459 0.874 
if Winds ≤ 4.9 and Winds ≤ 1 and Wind_Dir > 1 and Winds > 0.1 and Winds 

≤ 0.7 then no 

62 for med  2,491 0.998 
if Winds > 4.9 and Winds ≤ 9.9 and Wind_Dir > 0 and month = Nov and 

Wind_Dir > 90 then med 

63 for med  2,169 1 
if Winds > 4.9 and Winds ≤ 9.9 and Wind_Dir > 0 and month = Oct then 

med 

217 for 

very_high  
2,154 1 if Winds > 4.9 and Winds > 9.9 and Winds > 19.8 then very_high 

48 for low  2,061 0.809 
if Winds <= 4.9 and Winds > 1 and Wind_Dir > 0 and Wind_Dir ≤ 359 and 

month = Jun and Wind_Dir ≤ 339 then low 

83 for low  1,973 1 
if Winds ≤ 4.9 and Winds > 1 and Wind_Dir > 0 and Wind_Dir ≤ 359 and 

month = Oct then low 

216 for 

high  
1,827 0.999 

if Winds > 4.9 and Winds > 9.9 and Winds ≤ 19.8 and Wind_Dir > 0 and 

month = Nov and Wind_Dir > 90 then high 

82 for low  1,686 1 
if Winds ≤ 4.9 and Winds > 1 and Wind_Dir > 0 and Wind_Dir ≤ 359 and 

month = Nov and Pressure_Rel > 1006.3 then low 

25 for no  1,507 0.897 if Winds ≤ 4.9 and Winds > 1 and Wind_Dir ≤ 0 and Winds ≤ 3.4 then no 

39 for low  1,355 0.986 
if Winds ≤ 4.9 and Winds > 1 and Wind_Dir > 0 and Wind_Dir ≤ 359 and 

month = Dec and Pressure_Rel > 1002.6 then low 

44 for med  1,137 0.994 
if Winds > 4.9 and Winds ≤ 9.9 and Wind_Dir > 0 and month = Dec and 

Pressure_Rel > 1002.6 and Pressure_Rel > 1008.8 then med 

217 for 

high  
1,070 1 

if Winds > 4.9 and Winds > 9.9 and Winds ≤ 19.8 and Wind_Dir > 0 and 

month = Oct then high 

Looking at the C5 rules generated for very high gust events, rule no. 217 with 2,154 instances and 

at 1 confidence interval with wind speeds > 19.8 have led to very high gust (Table 5). Based on rule 

181, with 514 instances at 0.944 confidence interval wind speeds between 4.9 and 9.9 km/h from  

north-northeast (=0° and >14.8°) have led to very high gust. Based on rule 133, January wind speeds 

between 9.9 and 19.8 km/h and from directions between 0 and 14.8° have led to very high gusts, with  

159 instances and at 0.91 confidence interval and this shows that very high winds in January coming 

from the northeast lead to very high gusts. 

Of the QUEST rules (seen in nodes 17 and 18 in Figure 2), in months August, July and November 

high wind speeds > 19.98 km/h led to very high gust with 1,270 instances at 100% confidence 

interval. The other two rules relating to high gust were only at 50%–60% confidence interval hence not 

included. 
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Figure 2. QUEST tree rules relating to very high gusts. 

 

Table 5. C5.0 rules with top nine highest instances for very high gust. 

Rule No. Instances Confidence Rule 

217 2,154 1 if Winds > 4.9 and Winds > 9.9 and Winds > 19.8 then very_high 

181 514 0.944 
if Winds > 4.9 and Winds > 9.9 and Winds ≤ 19.8 and Wind_Dir ≤ 0 and 

Winds > 14.8 then very_high 

205 238 0.958 
if Winds > 4.9 and Winds > 9.9 and Winds ≤ 19.8 and Wind_Dir > 0 and 

month = Jan and Winds > 14 then very_high 

193 232 0.763 

if Winds > 4.9 and Winds > 9.9 and Winds ≤ 19.8 and Wind_Dir > 0 and 

month = Dec and Pressure_Rel ≤ 1005.2 and Windc ≤ 19.1 and  

Wind_Dir ≤ 311 and Dewp ≤ 16.4 and Pressure_Rel ≤ 1002.6 and Out_Temp 

> 15.6 then very_high 

204 230 0.843 

if Winds > 4.9 and Winds > 9.9 and Winds ≤ 19.8 and Wind_Dir > 0 and 

month = Jan and Winds ≤ 14 and Winds > 10.1 and Wind_Dir > 200 then 

very_high 
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Table 5. Cont. 

Rule No. Instances Confidence Rule 

154 229 0.795 

if Winds > 4.9 and Winds > 9.9 and Winds ≤ 19.8 and Wind_Dir ≤ 0 and 

Winds ≤ 14.8 and Pressure_Rel ≤ 1012.2 and Out_Hum ≤ 88 and month in [ 

"Dec" ] and Out_Hum > 57 and Pressure_Rel ≤ 1006.8 then very_high 

72 217 0.733 

if Winds > 4.9 and Winds ≤ 9.9 and Wind_Dir ≤ 0 and Winds > 8 and 

Pressure_Rel ≤ 1012.2 and Out_Hum ≤ 88 and Windc > 13 and Winds > 8.6 

then very_high 

159 133 0.91 

if Winds > 4.9 and Winds > 9.9 and Winds ≤ 19.8 and Wind_Dir ≤ 0 and 

Winds ≤ 14.8 and Pressure_Rel ≤ 1012.2 and Out_Hum ≤ 88 and month in [ 

"Jan" ] and Out_Hum > 65 and Windc ≤ 18.9 and Out_Temp > 17.3 then 

very_high 

156 107 0.907 

if Winds > 4.9 and Winds > 9.9 and Winds ≤ 19.8 and Wind_Dir ≤ 0 and 

Winds ≤ 14.8 and Pressure_Rel ≤ 1012.2 and Out_Hum ≤ 88 and month in [ 

"Jan" ] and Out_Hum ≤ 65 then very_high 

Figure 3. CRT tree rules for gust predictions show the rule sets relating to two major  

wind speeds.  

 

Winds <= 6.3500 [ Ave: 1.495, Effect: -3.454 ] (65,860)
Winds <= 2.8500 [ Ave: 0.444, Effect: -1.052 ] (50,634)

Winds <= 1.0500 [ Ave: 0.078, Effect: -0.365 ] (40,497)
Winds <= 0.3500 [ Ave: 0.015, Effect: -0.063 ] (36,133)

Winds <= 0.0500 [ Ave: 0.002, Effect: -0.013 ] => 0.002 (33,806)
Winds > 0.0500 [ Ave: 0.207, Effect: 0.192 ] => 0.207 (2,327)

Winds > 0.3500 [ Ave: 0.602, Effect: 0.523 ] => 0.602 (4,364)
Winds > 1.0500 [ Ave: 1.902, Effect: 1.458 ] (10,137)

Winds <= 1.9500 [ Ave: 1.421, Effect: -0.481 ] (4,796)
Winds <= 1.4500 [ Ave: 1.228, Effect: -0.193 ] => 1.228 (2,768)
Winds > 1.4500 [ Ave: 1.684, Effect: 0.263 ] => 1.684 (2,028)

Winds > 1.9500 [ Ave: 2.334, Effect: 0.432 ] => 2.334 (5,341)
Winds > 2.8500 [ Ave: 4.994, Effect: 3.498 ] (15,226)

Winds <= 4.9500 [ Ave: 3.908, Effect: -1.086 ] (9,488)
Winds <= 3.8500 [ Ave: 3.261, Effect: -0.647 ] => 3.261 (4,941)
Winds > 3.8500 [ Ave: 4.611, Effect: 0.703 ] => 4.611 (4,547)

Winds > 4.9500 [ Ave: 6.789, Effect: 1.795 ] (5,738)
month in [ "Dec" "Feb" "Jan" "Mar" ] [ Ave: 8.685, Effect: 1.896 ] => 8.685 (2,011)
month in [ "Apr" "Aug" "Jul" "Jun" "May" "Nov" "Oct" "Sep" ] [ Ave: 5.766, Effect: -1.023 ] => 5.766 (3,727)

Winds > 6.3500 [ Ave: 16.016, Effect: 11.066 ] (20,558)
Winds <= 17.4500 [ Ave: 13.999, Effect: -2.017 ] (17,319)

month in [ "Apr" "Dec" "Feb" "Jan" "Mar" "May" ] [ Ave: 17.817, Effect: 3.818 ] (7,108)
Winds <= 8.5500 [ Ave: 13.437, Effect: -4.379 ] (2,714)

Pressure_Rel <= 1009.5500 [ Ave: 15.712, Effect: 2.275 ] => 15.712 (1,545)
Pressure_Rel > 1009.5500 [ Ave: 10.431, Effect: -3.007 ] => 10.431 (1,169)

Winds > 8.5500 [ Ave: 20.522, Effect: 2.705 ] (4,394)
month in [ "Feb" "Jan" ] [ Ave: 24.216, Effect: 3.694 ] => 24.216 (1,436)
month in [ "Apr" "Dec" "Mar" "May" ] [ Ave: 18.728, Effect: -1.793 ] => 18.728 (2,958)

month in [ "Aug" "Jul" "Jun" "Nov" "Oct" "Sep" ] [ Ave: 11.341, Effect: -2.658 ] (10,211)
Winds <= 11.3500 [ Ave: 9.062, Effect: -2.279 ] => 9.062 (6,302)
Winds > 11.3500 [ Ave: 15.016, Effect: 3.675 ] => 15.016 (3,909)

Winds > 17.4500 [ Ave: 26.801, Effect: 10.785 ] => 26.801 (3,239)
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5.2. CRT Algorithm Prediction Rules 

Based on CRT rules (Figure 3), wind speeds > 8.5 km/h in February and January have led to gusts 

24.216 km/h (1,436 instances *) and in April, December, March and May have led to gusts 18.728 

km/h (2,958 instances **). In April, December, February, January, March and May months, low wind 

speed (≤8.550 km/h) and low pressure (≤ 1,009.55 hPA) has led to gust measuring 15.712 km/h (1,545, 

instances ***) whereas with the same wind speed but with pressure measuring > 1,009.55 hPA has led 

to gust 10.43 km/h (1,169 instances ****). This shows that in throughout summer even < 8.5 km/h 

wind speed and low pressure can lead to high gusts.  

Interestingly, in February and January months, wind speed 8.55km/h has led to very high gusts 

(24.21 km/h) with 1,436 instances whereas in April, December, March and May has led to not so high 

gust (18.72 km/h) with 2,958 instances (Figure 3 * and **). 

There is another monthly variability in gust for the same wind speed range 2.85–6.35 km/h, in 

December, February, March and May this range has led to gust 8.685 km/h with 2,011 instances ***** 

whereas in the rest of the year it has led to lesser gust 5.766 km/h with 3,727 instances (Figure 3). 

5.3. CHAID Algorithm Results 

CHAID algorithm can be used for analyzing with both real values as well as class as output for 

modelling and prediction purposes. The CHAID results (Figures 4–6) obtained for this research for 

analyzing patterns in meteorological data for predicting real gusts and relating to gust classes are 

discussed in this section.  

Figure 4. CHAID nodes for predicting real values for high gusts > 11.9 km/h. 
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Figure 5. Corresponding CHAID rules for nodes 74-83 of Figure 4 relating to high gusts > 

11.9 km/h. 

 

Figure 6. CHAID tree node (>11.9 wind speed nodes 64–73) and rules relating to gust 

classes (no, low, med, high and very high).  

 
Rule 1 for high (1,434; 0.592) if Winds speed > 11.9 km/h and month in (“August” “December”) and 

Wind_Dir > 0o then high;  

Rule 5 for very_high (392; 0.824) if Winds speed > 11.9 km/h and month in (“August” “December”) and 

Wind_Dir ≤ 0o then very_high;  
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CHAID algorithm produces a multi tree and in this case at the first level wind speed has been 

divided into eight nodes, i.e., wind speed ranges ≤0, (0–0.1), (0.1–1.4), (1.4–3.1), (3.1–4.9),  

(4.9–7.5), (7.5–11.9) and >11.9, unit: km/h, respectively as in Figure 5. At the next level, wind speed 

>11.9 km/h in node 74 (Figure 4) has been divided further into five nodes based purely on wind 

direction (nodes 75, 76, 77, 80 and 71). Based on node 75 (also in red arrow in Figure 5 tree rules), 

high wind speed from the north has led to the highest gust range 26.237 km/h with 1,383 instances and 

effect 5.158. Based on CHAID real gust value rules (Figure 5), in April, August, December, July, 

October and September mostly in winter, wind from south and southwest (>219 km/h and ≤248 km/h) 

has led to low gusts 20.171 km/h when compared with the same wind speed and directions during 

summery February, January, March, May and November months of 24.809 both with over 2,000 

instances.  

Based on CHAID tree (nodes 66–68) and rules for gust classes (Figure 6) in August and December 

months wind from the north at speeds >11.9 km/h have led to very high (>20 km/h) but from other 

directions to just high (<20 km/h). 

In “August” “December” wind at speeds > 11.9 km/h from north lead to very high but from other 

direction lead to just high (Figure 6).  

5.4. Kohonen SOM Clustering 

SOM cluster profiles (Figures 7 and 8) show the individual SOM clustering of variables analyzed. 

Three SOM nodes, (x = 3 y = 0), (x = 3 y = 2) and (x = 0 y = 0) consist of all instances for individual 

months, i.e., November, December and January data respectively. SOM node (x = 1 y = 0) consists of 

the highest gust mean and the cluster vectors are from February-April months with all variables but 

wind direction as important. 

Figure 7. Plot of X-Kohonen and Y-Kohonen with agitation showing the SOM clusters 

(insert in top right).  
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Figure 7. Cont. 

 

Figure 8. Self-organising map (SOM) cluster profiles showing the input variables at 

different levels of “importance” in the clustering of the respective individual variable even 

though all the variables are shown as important in the overall SOM clustering (right side of 

the graphs).  
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Figure 8. Cont. 

 

Figure 9. (a) Artificial Neural Network (ANN) predictions for real gust (over 99% accuracy) 

and (b) for gust classes (over 85% accuracy). Based on the results, more accurate real gust 

predictions depend on wind speed 74% and for gust class predictions, it is around 44%. 

(a) (b) 
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5.5. Artificial Neural Network (ANN) Predictions for Gust 

ANNs with the following two configurations (Figure 9a,b) were tested for predicting “real gust 

values” and “gust classes” and the results show wind speed as the major predictor followed by wind 

chill and then by other variables. 

The ANN node uses a simplified model of the way the human brain cells process information. The 

ANN node works by simulating a large number of interconnected simple processing units that 

resemble abstract versions of neurons. The ANNs are powerful general function estimators and they 

require minimal statistical or mathematical knowledge to train or apply [27]. The “Quick” method used 

with the Kumeu weather data is based on a feed-forward back-propagation network with the topology 

(number and configuration of nodes in the input, hidden and output layers) along with the input and 

output fields.  

5.6. Regression and PCA Results 

Regression test results (Table 6a) show wind speed with the highest standardized coefficient (0.843) 

out of all factors. Pressure relative, humidity, and wind chill were found to have negative impact in the 

model. From the PCA results of this data (Table 6b), the total variance table (middle) 40% is extracted 

from pressure relative and 20% from temperature. Very smaller percentages are extracted from wind 

speed and directions 2.8% and less than 1% respectively. 

Table 6. (a) Regression of the weather data studied using all seven input variables against 

real gust as output. Regression test results show all input variables except for dew point  

(p − value = 0.157) as predictors (at p − value < 0.05) and with 0.733 adjusted R square. 

(b) PCA results of the weather data studied using all seven input variables against real gust 

as output. Regression test results show all input variables except for dew point 

(p − value = 0.157) as predictors (at p − value < 0.05) and with 0.733 adjusted R square. 

Model  
Unstandardized Coefficients Standardized Coefficients 

t Sig. 
B Std. Error Beta 

1 

(Constant) 50.825 2.020  25.163 .000 

Dew point 1.58E−002 0.011 0.007 1.414 .157 

Out Humidity −2.43E−002 0.003 −0.039 −9.237 .000 

Out Temp 5.61E−002 0.005 0.038 10.958 .000 

Pressure Relative −4.82E−002 0.002 −0.048 −24.796 .000 

Wind direction −4.50E−003 0.000 −0.070 −38.674 .000 

Wind chill −2.66E−002 0.009 −0.016 −2.827 .005 

Wind speed 1.155 0.003 0.843 345.636 .000 

a. Dependent Variable: Gust  

(a) 
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Table 6. Cont. 

Component 
Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 Pressure Relative 2.802 40.032 40.032 2.802 40.032 40.032 

2 Out Temp 1.443 20.618 60.650 1.443 20.618 60.650 

3 Out Humidity 1.200 17.148 77.798 1.200 17.148 77.798 

4 Dew point .805 11.501 89.299 0.805 11.501 89.299 

5 Wind chill .508 7.258 96.557 0.508 7.258 96.557 

6 Wind speed .196 2.805 99.362    

7 Wind direction 4.46E−002 0.638 100.000    

Extraction Method: Principal Component Analysis. 

(b) 

5.7. Discussion  

Interestingly, the PCA test results showed pressure, temperature, humidity, wind chill and lastly 

wind speed to be the main predictors/contributors. This is different to what has been established 

through other data mining algorithms. Data mining algorithms are data dependent and the different 

algorithm use different ways to optimize the splitting/grouping the data. As seen in the SOM the 

individual component and overall SOM clustering, based on the data mining algorithm, primary 

predictor and rules established could vary. The C5.0, CRT, Quest and CHAID results, ANN 

predictions and the regression test results indicated wind speed as the primary predictor. However, the 

SOM clustering visualizations and the induction rules of data mining methods investigated give some 

rationale and new information relating to these conflicting results.  

In the SOM clustering, the contribution made by different input variables to the SOM clustering of 

the data is indicated with a factor called “importance”. In the SOM cluster profiles, the “importance” 

of each input in the respective individual cluster as well as that of overall SOM is shown and it 

enhances the analysts’ ability to visually analyze the clustering especially the role of each input 

variable in that particular input and overall SOM clustering. This is similar to a 

“coefficient”/“correlation” and thus can be used for measuring and explaining the wind gust 

dependencies seen in different data mining algorithms and the regression test. As stated by visualizing 

the data distribution in terms of month and other SOM components (the histograms/mean and std dev. 

or standard deviation in profiles) one can explain as to why different data mining algorithms show 

different coefficients for different variables. For example, SOM cluster node (x = 0 y = 1) consisting of 

high gusts observed throughout the year and with gust mean 5.7 km/h and std dev. 8.49 has all 

variables as important, whereas for the node (x = 0 y = 0) with gust mean 5.54 km/h and std dev. 11.03 

km/h January alone data, temperature and wind chill (derived from temperature) are the important 

contributors. Node (x = 3 y = 2) December alone cluster, as well has the same but in addition wind 

speed included. Node (x = 1 y = 0) consisting of February, March and April high gusts with gust mean 

6.82 km/h and std dev. 9.91 km/h has all variables as important except for wind direction. Finally, 

pressure is found to be important for all clusters except for January and December only clusters.  

The results of this work show that using data mining algorithms, it is possible to establish some 

specific patterns relating to the location, for example, in this Kumeu location, in different seasons wind 
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with the same speed (11.9 km/h) but coming from the same direction has caused some major 

differences in the gust events experienced. This has been reflected in CHAID nodes 77–79 and 

corresponding rules (Figures 4 and 5), where in the wintry months of April, August, December, July, 

October and September (except for December so mostly in winter), wind from south and southwest  

(> 219o and ≤ 248o) has led to gusts 20.171 km/h but during summery February, January, March, May 

and November months higher gusts of 24.809 km/h both with over 1,000 instances and −2 and +2  

Effect respectively.  

On some occasions, wind with the same speed and in the same season but from different directions 

generated vastly different severity in gust strength. For example in the CHAID rules created for gust 

classes (Figure 6), Rule 1 for high (1,434 instances; 0.592 confidence) and Rule 5 for very high  

(392 instances; 0.824 confidence) wind at speeds > 11.9 km/h in August and December months from 

north (≤ 0°) caused very high but with same speeds in the same months from other than the north 

caused just high (<20 km/h).  

6. Conclusions  

In finding solutions for the increasing need to model and predict gust events more accurately 

especially using ad hoc/large volumes of weather and atmosphere data, for a wide range of purposes 

(as summarized in the introduction), many professionals are investigating new methods and 

approaches, as one method does not fit all data related issues. Some such major recent approaches 

investigated for this purpose, especially the data mining techniques used to handle the “short-term” and 

“shorter interval data” related issues in general and by GRC researchers, were elaborated initially. In 

view of this recent trend, the paper then looked at the use of C5.0, CRT, Quest and CHAID data 

mining algorithms along with Kohonen SOM and a multi-layer supervised ANN approach as well as 

two traditional methods, namely, regression and PCA, for analyzing an example of a weather data set 

(with 86,418 vectors) acquired over a period of four years between 2008 and 2012 by telemetry 

devices installed in a vineyard in Kumeu River Wines, Auckland, New Zealand. 

In conclusion, it can be stated that data mining methods could provide a significantly useful tool for 

analyzing ad hoc data sets, especially to unravel location specific patterns using more recent weather 

conditions, as conventional methods on their own cause constraints with such short-term data sets.  
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