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Limited natural energy resources compel humankind to search for efficient utilization of 

energy, and thus increasing number of fluorescent lamps are adopted for lighting 

systems. However, previous study showed that there exists a tradeoff between energy-

saving and lifespan for fluorescent lamps. Consequently, it becomes an important topic 

on how to design an efficient and effective automatic control algorithm in illuminating 

engineering. The problem was traditionally studied by conducting surveys and 

experiments, which were unavoidably costly and rather time-consuming. This paper 

presents a novel application of teletraffic engineering modeling techniques in studying 

automatic lighting control systems. A queueing model is proposed to study typical 

lighting systems and a simple close-loop algorithm is illustrated to effectively adapt the 

system control parameters. Through computer simulation, we show that the proposed 

method provides an alternative way of studying lighting systems in a cost-effective 

manner, while providing adequate accuracy.  
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Limited natural energy resources remain a major concern all over the world due to 

the ever-increasing energy consumption with continuous growth of the global economy. 

Despite the fast development of renewable and clean energy, such as solar power and 

biofuels, generation of electricity still relies on coal and oil resources, which are not 

renewable and cause major environmental problems such as greenhouse gases and acid 

rain pollution. Statistics showed that commercial buildings account for over one-third of 

the total primary energy consumption. In particular, a quarter of total energy 

consumption by commercial buildings is contributed by electric lighting1. Consequently, 

it becomes an important interior design strategy to improve the utilization efficiency of 

lighting systems. 

Two types of widely-deployed lamps are incandescent and fluorescent lamps2. The 

former make light by heating a metal filament wire to a high temperature until it glows. 

The hot filament is usually protected from air by a glass bulb, which is filled with inert 

gas or evacuated. The latter uses electricity to excite mercury atoms to generate short-

wave ultraviolet light, which is in turn used to produce visible light by making a 

phosphor fluoresce. Compared to an incandescent lamp, a fluorescent lamp converts 

electrical power into useful light with much higher energy efficiency, and this makes 

fluorescent lamps more appealing as compared to incandescent for commercial 

buildings. Nevertheless, fluorescent lamps come with a relatively costlier lamp fixture 

due to their need for ballasts to regulate the electric current flowing through the lamps. 

Recent development of compact fluorescent lamps (CFLs) have dramatically reduced the 

cost of lamp fixtures and CFLs have become popular for residential lighting systems3. 

Many countries have started campaigns aimed at replacing incandescent lamps with 

CFLs to improve the energy efficiency so as to reduce electricity consumption.  

Besides replacing lamps with low energy-efficiency by ones with high energy-

efficiency, automatic lighting control can be applied to reduce energy consumption. For 

example, Rubinstein et al. have shown that up to 50% of lighting energy saving can be 
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achieved with lighting control systems4. Current automatic lighting control is usually 

realized by the application of timers and/or sensors5. For example, one may use light 

detection sensors to measure the illuminance and turn a lamp on whenever the detected 

illuminance is below a certain threshold values. Of course, we can also use timers to set 

the time for a lamp to be turned on/off.  

In the literature, several papers discussed the application of occupancy sensors in 

automatic lighting control6,7, which can be used for either dimming control (i.e., to vary 

the light output of the lamps) and switching control (i.e., to turn the lamps on/off)8. 

Dimming control considers different levels of light output1 but is seldom applied to 

fluorescent lamps9. As such, we only consider switching control hereafter. For switching 

control, lamps will be automatically switched off after a certain amount of time has 

elapsed since the occupancy sensor detects the last movement in the space (e.g. a 

function room). This time is usually called the timeout setting, a typical factory setting 

being between 12 to 15 minutes10. As pointed out in reference 10, calibrating the timeout 

setting of occupancy sensors is not a trivial job. If it is set to a large value, less energy 

saving can be achieved; if it is set to a small value, the lighting system may result in 

false-offs when no motion is detected during periods of occupancy. Furthermore, as 

mentioned in reference 11, lamps with a longer burning cycle (i.e., lamp-on interval) will 

have longer average lifespan and shorter burning cycles will shorten lamp life. For 

example, lamps that are operated 24 hours a day could have an average lifespan of nearly 

38,000 hours. Interested readers are referred to an introductory article on the lifespan of 

fluorescent lamps12. In addition, studies have shown that savings from lighting 

operations are affected by the work function and the number of occupants13.  

Garg and Bansal proposed to use a model to learn “human movement” patterns and 

change the timeout setting of lighting control accordingly. Experimental results showed 

about 5% more energy saving could be achieved by using smart occupancy sensors to 

adapt the timeout setting as compared to non-adapting sensors14. However, their work 
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only considered a single user and the results may not be pervasive. Next, a research 

group from Rensselaer Polytechnic Institute and US Environmental Protection Agency 

studied the effects of changing timeout settings of occupancy sensors on energy saving, 

lamp cycling and maintenance cost15. In particular, they investigated the energy and cost 

saving potential of using occupancy sensors for commercial lighting systems. Discrete 

values of timeout settings were adopted and they were varied from 5 to 20 minutes at 5 

minutes increments. Although the studies in references 15 and 16 contained extensive 

numerical details, their method is costly in terms of data collection duration, used 

hardware and statistical analysis. For example, in reference 15, the researchers spent 

about 8 months and used a lot of data loggers to collect the statistics from 180 spaces in 

24 States in the United States.  

Unlike the statistical data analysis method, Chung and Burnett proposed to use an 

occupancy probability model to predict the energy savings that could be achieved by 

occupancy sensors with different timeout settings17. However, their study focused on the 

occupancy probability model and did not discuss the effect of timeout setting values on 

the lifespan of lamps.  

Guo et al. presented a review of the performance of occupancy-based lighting 

control systems. They highlighted that significant uncertainty exists in lighting systems 

using single measurement points, which may cause lighting to shut off inadvertently or 

turn on due to the detection of passersby in adjoining hallways18. For example, the 

National Lighting Product Information Program (NLPIP) pointed out that half of a small 

sample of motion sensor detectors did not response to a movement occurring within the 

coverage area claimed for the device7. In order to improve the accuracy of occupancy 

detection, Dodier et al. proposed using sensor belief networks based on Bayesian 

probability theory to determine occupancy19 and a similar work was presented in 

reference 20. However, the effect of timeout settings on energy saving was not 
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mentioned. Guo et al. proposed a data processing and evaluation framework for 

application to a lighting control sensor network21,22.  

A field study conducted by Floyd et al. pointed out the importance of proper 

installation and configuration of occupancy sensors in order to achieve and maximize 

energy saving23,24. Their study showed that about 10% energy saving could be achieved 

with the proper use of occupancy sensors in open offices, which was further confirmed 

by the results based on a two-year lighting data25. Furthermore, the energy saving could 

be up to 46% for private offices with occupancy sensors that were properly installed and 

commissioned.  

Enlightened by previous studies on lighting control systems, in this paper we first 

apply teletraffic engineering modeling techniques to model a restroom and their users as 

a queueing system. Then, we investigate the effect of timeout settings on energy-saving 

and lifespan of fluorescent lamps. Next, instead of using fixed timeout settings as in 

conventional occupancy-sensors-controlled lighting systems, we propose a simple 

algorithm to adapt the timeout settings according to the real-time occupancy statistics. To 

the authors’ best knowledge, this is the first time that teletraffic engineering modeling 

techniques have been introduced to lighting system modeling and simulation, which is 

expected to play an important role on the study of the energy saving of smart lighting 

systems. 

The rest of this paper is organized as follows. Section 2 introduces the teletraffic 

engineering modeling technique, presents a queueing system model for a restroom and 

discusses the rationale behind. Section 3 presents a simple algorithm to adaptively 

change the setting of timeout values. In Section 4, the proposed queueing model is 

validated through computer simulation results, and effects of different parameter settings 

are discussed and analyzed. Finally, Section 5 concludes the paper and discusses our 

future work. 
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2. Queuing model for smart lighting systems 

 
 

Historically, teletraffic engineering is related to traffic engineering, which is a 

branch of civil engineering. In brief, traffic engineering uses engineering techniques to 

achieve safe, efficient and reliable movement of people and goods on roadways. In terms 

of research areas, traffic engineering focuses on traffic rules (or protocols), infrastructure 

and vehicle design for safe and efficient traffic flow. Teletraffic engineering is the 

application of traffic engineering in telecommunications. Specifically, teletraffic 

engineers apply statistics including queueing theory26, traffic patterns, practical models, 

measurements and simulations to plan telecommunication networks. This field was 

created by the work of a Danish mathematician, Agner Krarup Erlang. Later in 1946, the 

Comité Consultatif International Téléphonique et Télégraphique (CCIT) named the 

international unit of telephone traffic Erlangs in honour of this great mathematician.  

The unit Erlang is dimensionless. For example, a single cord circuit has the 

capacity to be used for 60 minutes in one hour. If 100 six-minutes calls are received in 

one hour by the telephone switching network then the total traffic load in that hour is 600 

minutes or 10 Erlangs. In simple mathematics, we have 

E hλ=                                                                           (1) 

where λ is the call arrival rate (number of call arrivals per hour) and h is the average call-

holding time (in hours per call). λ = 100 calls/hour and h = 0.1hours/call for the 

aforementioned example. 

Queueing theory provides the mathematical analysis of property of waiting line or 

queues. In this paper, we consider an M/M/c queueing model for a restroom, where we 

assume that user arrivals follow a Poisson process (i.e., the inter-arrival time is 
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exponentially distributed) and service time (i.e., how long a user stays in the restroom) is 

also exponentially distributed.  

Previous studies on occupancy sensors have revealed that (a) how often users enter 

/ leave a room and (b) how long they stay inside the room are two important factors 

related to smart lighting control. For example, during peak office hours on weekdays, 

recorded data proved that it is of high probability a room will be occupied with lamps on, 

while during weekends, it is of high probability a room will be empty with lamps off. 

From a teletraffic engineering point of view, these two factors (a) and (b) exactly 

determine inter-arrival time and service time for a queueing model. This motivates us to 

examine a smart light system with occupancy sensors using a teletraffic engineering 

queueing model. In the following paragraphs, we describe each entity of the queueing 

model in details. For emphasis, those terms from queueing theory were purposely put in 

italics. 

 
 

2.1 Server and customer 

 
 

The facilities available in a restroom are modeled as servers. Those users have 

access to facilities are modeled as customers. By default, each server can only serve one 

customer at a time. For example, the number of servers in a restroom can be considered 

as three. Furthermore, we are taking the liberty of assuming infinite consumers.  

 
 

2.2 Inter-arrival time 

 
 

As we consider the Poisson arrival of customers, the inter-arrival time is 

exponentially distributed with a well-known probability distribution function (PDF) 
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Facility-occupancy time is modeled as service time, which is considered as a 

truncated Gaussian distributed with a known PDF, 

1

( ; , , , )
( ) ( )

T

t

f t a b
b a

µφ
σ σµ σ

µ µ
σ σ

− 
 
 =

− −
Φ − Φ

                  (4) 

( ) 21 1exp
22

x xφ
π

 = − 
 

                           (5) 

2 /21 1( ) 1
22 2

x t xx e dt erf
π

−

−∞

  
Φ = = +  

  
∫             (6) 

where μ and σ2 are the mean and the variance of service time, respectively. With a = 0 
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For brevity, we use N(0,∞)(μ,σ2) to denote a truncated Gaussian distributed 

variable with a = 0 and b = ∞. From probability theory, if X and Y are independent, 

random variables that are Gaussian distributed, i.e., 2
x xX µ σ( , ) Ν  and 2

y yY µ σ( , ) Ν , then 

X+Y is also Gaussian distributed: 

2 2
x y x yZ X Y µ µ σ σ= + + +( , ) Ν                           (8) 

However, Equation 7 does not hold for truncated Gaussian distributed variables. Through 

simple simulation, we can show that summation of truncated Gaussian distributed 

variables can be better approximated by a Rayleigh distributed variable with certain 

offset. For example, as shown in Figure 1, we can see that a slight discrepancy exists 

between the cumulative distribution function (CDF) of summation of truncated Gaussian 

distributed variables and that of a Rayleigh distributed variable with offset.  

In this paper, we consider two types of activities, and their respective server-

occupancy time is Gaussian distributed. The related parameters are N (0,∞)(2,22) and N(0,∞) 

(10,62) minutes. Notice that these parameters are chosen in order to match the baseline 

case provided in reference 16 after a number of preliminary simulation runs. For the 

purpose of simulation study, we may use Rayleigh distribution to generate the random 

variables, especially when there are more than three types of activities to be considered. 
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Figure 1. Comparison of the sum of two truncated normal distributed variables and a 
Rayleigh distributed variable. 

 
 

2.4 Service model 

 
 

The service model follows a first-in-first-out (FIFO) service discipline. A customer 

will leave the restroom immediately when he / she found all the facilities are occupied 

upon arrival. In other words, we assume customers will not wait to use the restroom 

facilities. 

 
 

2.5 Computer simulation 

 
 

Computer simulation was performed based on the flowchart shown in Figure 2. Inter-

arrival time and service time were generated using random number generators.  
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Figure 2. Flowchart for the proposed teletraffic queueing model.  

 

3. Automatic lighting control algorithm  

 
 

We consider a restroom with three facilities and the restroom is illuminated by 

fluorescent lamps controlled by manual switches and automatic occupancy-sensors, e.g., 

passive infrared (PIR) sensors27. PIR sensors work by responding to temperature 
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differences, for example, when an infrared source with one temperature, such as a human 

body, passes in front of an infrared source with another temperature, such as a wall. Ideal 

PIR occupancy sensors are assumed and the lamps will not be turned off falsely when the 

facility is occupied.  

Let us further assume that the lamps are switched on manually during the test 

period of studying the effectiveness of automatic lighting control.  

 
 

3.1 Minimum lamp-on time 

 
 

As we know, the lifespan of fluorescent lamps is adversely affected by the burning 

cycle, which is usually set to 3 hours on and 20 minutes off during a quality test. Under 

controlled testing conditions with a particular setting of burning cycle, the hours of 

operation after which half the lamps under test (usually in a large group) fail to produce 

light are conventionally referred to as the average lamp life. The average lamp life for a 

burning cycle of 3 hours/start is defined as the rated lamp life. An empirical formula28 

describes the relationship among average lamp life, rated lamp life and burning cycle, 

which is given as follows, 

0 505

1 71 1
3 89

.

. exp
.r
uL L M

    = × × × − −       
                 (9) 

where L and Lr are the average lamp life and the rated lamp life, respectively. M is the 

mortality ratio and u the burn cycle in hours/start. Notice that M is dependent on survival 

criterion. 

From the above, we can see that the longer the burning cycle, the longer the 

average lamp life. To increase the burning cycle, we should avoid frequent on/off 

switching. Therefore, we may have a minimum lamp-on time, Ton,min, whose nominal 
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value is 15 minutes10. In this paper, we will study the different effects of using fixed 

Ton,min and adaptive Ton,min.  

 
 

3.2 Timeout setting 

 
 

As aforementioned, timeout setting is required when the lamps are automatically 

controlled using occupancy sensors. Let us denote the amount of time that a room is 

occupied as To, and the timeout setting as Td. Furthermore, the amount of time for which 

a lamp is on is denoted as Ton. Therefore,  

on o dT T T= +                                     (10) 

It is not difficult to deduce that  
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where Td,min is a constant value.  

 
 

3.3 Adaptation algorithm 

 
 

Previous studies have shown that the lighting condition profile for the same facility 

(e.g., a classroom, an office or a restroom) exhibits salient difference between weekdays 

and weekends. As such, if fixed parameter settings optimized for one scenario (e.g., with 

high traffic load) were to be adopted for a smart lighting control system, they would 

result in inefficient energy saving for another scenario (e.g., with low traffic load). For 

example, during daytime on weekdays Ton,min can be set to a larger value while during 

nighttime at weekends Ton,min should be set to a smaller value. Therefore, we should 
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adapt the system parameter settings according to the traffic load at different times of a 

day or even periods of a year. 

In general, existing lighting control circuits using PIR sensors adopt one or a 

combination of three basic control algorithms: integral (reset) control, open-loop control 

and close-loop control. We investigate the performance of an intelligent close-loop 

algorithm that is used to adapt the system setting parameters of a lighting system. In 

particular, we assume that the average value of time duration that a room is occupied, 

To,avg, is estimated at a fixed sampling interval, Ts, e.g., 20 minutes. Then, To,avg is used to 

generate new Ton,min and Td,min values of the system setting for the next Ts. The following 

adaptation algorithm is used, 

( ) [ ]1  where 0  1
,min ,

,min , , ,
on o avg

d o avg

T T

T T α α

=


= − ∈
              (12) 

where α is an index indicating a user’s preference on energy saving. On the one hand, if 

α is larger than 0.5, the user prefers to save energy rather than to prolong the life of the 

lamps; on the other hand, if α is smaller than 0.5, the user prefers to prolong the life of 

the lamps rather than to save energy. 

 
 
4. Results 

 
 

The simulation imitates a restroom with three facilities and automatic lighting 

control, which can be realized by a combination of PIR occupancy sensor and 

microphone sensors to improve control accuracy. Let us suppose the total power rating 

of CFLs installed in this restroom is 60 watts and the electricity price is 8 cents/kWh. For 

simplicity, we take the liberty of considering only the electricity consumption by the 
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CFLs and ignore that by the lighting control gear and sensors. As such, the cost for the 

restroom to be occupied and the lamps to be on for one hour is  

60 1 8 /1000 0.48 cents× × =                                                  (13) 

In order to perform fair comparisons with previous studies using data collection 

and a statistical analysis method, we use the same baseline scenario found in references 

15 and 16. We may take that baseline as the Manual Control Scheme, i.e., without 

automatic lighting control. Users will switch on the lamps when they enter the restroom 

and find the lamps are off. However, one may not compulsorily switch off the lamps 

when he / she is the last one who leaves the restroom. 

Without loss of generality, Td,min takes a nominal value of 0 minutes, and Ton,min 

takes discrete values from 0 minutes to 20 minutes, with a 5 minute interval. We are 

interested in the following performance criteria related to the smart lighting control: (a) 

percentage of time when the restroom is lighted during occupied periods; (b) percentage 

of time when the restroom is lighted during unoccupied periods; (c) electricity cost for 

the restroom during a particular time period; and (d) average number of off to on 

switching per hour for the CFLs in the restroom. For each traffic load, we keep it 

constant for one hour and run computer simulation for a period of 30 days (machine 

time). The 95% confidence intervals are within ±10% of the average values shown for 

each data point presented in the figures.  

 
 

4.1 Effect of traffic load 

 
 

Let us first examine the effect of varying traffic load on performance criteria (a) and 

(b). The traffic load is varied from 0.025 Erlangs to 0.60 Erlangs. Figure 3 shows the 

lighting condition profile for the percentage of time when the restroom was lighted while 
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occupied. As expected, it increases as the traffic load increases. Furthermore, it is 

regardless of the Ton,min settings. This exactly reflects how often and how long the 

restroom occupied by users is solely determined by the traffic load.  

Next, Figure 4 shows the lighting condition profile for the percentage of time when 

the restroom was lighted while unoccupied. When Ton,min was set to zero, this percentage 

was close to zero because no delay was required for the lamps to be switched off. When 

the restroom became unoccupied, the lamps were switched off immediately. As Ton,min 

increases, the amount of extra time for the restroom to remain lighted increases.  

 
 

4.2 Validation of queueing model 

 
 

Based on Figure 3, we have estimated the traffic load for different time intervals for 

the queueing model of the restroom corresponding to the measurement results of a 

restroom provided in Figure 5 in reference 16. For a particular time interval of day, e.g., 

from 2:30pm to 3:30pm, the amount of traffic load is estimated, which corresponds to 

the average percent of time when the restroom was lit while occupied. For the sake of 

readability, we have plotted the baseline lighting condition profile in Figure 5. The 

estimated traffic load for respective time intervals are shown in Table I. 
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Figure 3. Lighting condition profile for the percentage of time when the restroom was 
lit while occupied. 

 

Figure 4. Lighting condition profile for the percentage of time when the restroom was 
lit while unoccupied. 
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Figure 5. Lighting condition profile for the percentage of time when the restroom was 
lit during occupied / unoccupied periods for baseline and simulation with Ton,min = 0 
minutes. 

 
 

4.3 Smart lighting control with fixed system settings 

 
 

From now on, simulations are performed based on the traffic loads in Table I without 

specific notations. Computer simulation studies were performed to investigate how 

various parameters of smart lighting control systems affect energy saving and life of 

lamps in terms of electricity cost and average number of off-to-on switching per hour, 

respectively.  

Figure 6 shows the electricity cost per hour for the restroom during different times 

of day for the baseline and the simulation study with different Ton,min settings. From 

Figure 6, we can clearly see that smart lighting control will help us save cost. With a 

Ton,min setting of 0 minutes, which largely imitates the situation where all users are 

disciplined and they always switch off the lights when they are the last one who leave the 
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restroom. This indicates the minimum cost we can have when using an automatic 

lighting control system although it is important to remember that we have not taken into 

account the electricity cost due to the control gear and sensors. With an increasing value 

of Ton,min, the cost increases. During the peak time of day, the percentage of savings as 

compared to the baseline senario is smaller as compared to that during the off-peak 

hours. This result is consistent with an important finding in reference 16. The peak 

saving contribution from smart lighting control does not fall within the typical peak 

utility billng periods, e.g., from 10am to 4pm.  

Besides electricity cost, we are also interested in the life of the lamps, which is 

closely related to the average number of off-to-on switching per hour. This is particularly 

true for CFLs because filaments of CFLs need to be heated before they can excite 

mercury atoms, although a slight portion of the filaments will also be vapourized during 

this warm up process. As such, a filament will degrade after each off-to-on switching and 

eventually fail. Figure 7 shows the lamp switching profile as affected by the Ton,min 

setting. A larger value of Ton,min setting will lead to a lower average number of off-to-on 

switching per hour and consequently a longer life for the lamps. For example, at peak 

hour, e.g., 12pm-1pm in Figure 7, we may reduce the average number of off-to-on 

switching per hour by 57.8% by increasing Ton,min from 0 minutes to 20 minutes. From 

Figure 6, we noticed that this happened at the expense of electricity cost increased by 

80%.  

If we may model life of CFLs by a finite number of off-to-on switching, from the 

average number of switching per hour at different times of day, as shown in Figure 7, we 

can calculate how many lamps should be replaced during a study period, thus we are able 

to include the cost of replacing lamps in our study of smart lighting systems. This forms 

part of our future work. 
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Figure 6. Electricity cost profile for the baseline and simulation with different Ton,min 
settings. 

 

Figure 7. Lamp switching profile for simulation with different Ton,min settings. 
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4.4 Smart lighting control with adaptive system settings 

 
 

Next, we investigate the performance of the proposed adaptive algorithm in equation 

(12) to change the Ton,min and Td,min in a real-time manner. In order to determine an 

appropriate sampling interval, Ts, we first set α to 0 and vary the sampling interval from 

15 to 60 minutes with an increment of 15 minutes. The performance of the adaptive 

algorithm was compared with that of the case with fixed parameter settings, which can 

be treated as an adaptive case with Ts=∞ (no adaptive feedback). From Figure 8 and 

Figure 9, we can see that Ts has a trivial effect on the adaptive algorithm. We also notice 

that the initial values of Ton,min and Td,min would not affect the system performance 

because they were adapted according to the traffic load. Thus, for simplicity, we choose 

60 minutes as the sampling interval. In practice, the longer the value of Ts, the less the 

power drawn by the central processor of the smart lighting control circuits because of 

reduced sampling and processing efforts. 

Finally, we study the effect of α, which emulates an index to reflect the user’s 

preference on energy saving. In particular, the value of α can be adjusted using a 

potentiometer in a practical implementation of smart lighting control circuits. This would 

allow users to easily set their preference. In computer simulations, we vary α from 0 to 1 

with an increment of 0.25. From Figure 10 and Figure 11, we can see that the setting of 

preference index α significantly affects the system performance, especially when the 

traffic load is high. For example, under high traffic load (e.g. from 10am to 4pm), 

electricity cost can be reduced by 29% at the expense of increasing average number of 

off-to-on switching per hour by 100% if the user prefers to save energy (α=1) than to 

prolong the life of the lamps (α=0).  
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Figure 8. Electricity cost profile for baseline and simulation with different Ts settings. 

 

Figure 9. Lamp switching profile for simulation with different Ts settings. 
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Figure 10. Electricity cost profile for baseline and simulation with different α settings. 

 

Figure 11. Lamp switching profile for simulation with different α settings. 

 
 
5. Conclusion and future work 
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Lighting becomes important because people are very interested in the efficient 

utilization of scarce energy resources. This paper proposes to apply teletraffic 

engineering modeling techniques to study the performance of smart lighting control 

systems with fluorescent lamps. The salient feature of this queueing model is that it only 

requires data on how often and how long users will occupy a facility or space. 

Furthermore, a simple adaptation algorithm is proposed to make the smart lighting 

control system change its system parameter settings according to the real-time traffic 

load. Computer simulation showed that it was able to effectively control the system 

performance according to the user preference, which can be done by simply setting one 

system parameter.  

Our future work includes conducting a traffic load data collection study on the 

proposed queueing model and lighting control algorithm. In addition, as a complement to 

the smart lighting control system, intelligent algorithms can be designed to control the 

ballasts of fluorescent lamps to reduce transient current and then further improve the 

energy efficiency, which is particularly useful during the utility’s peak hour of the day 

and would ease the relationship between electricity consumption and electricity 

generation as highlighted in smart power grids.  

 
 
Funding 

This work is partially supported by internal research grant in School of Electrical and 

Electronic Engineering at Nanyang Technological University, Singapore and by internal 

research grant in School of Engineering at Auckland University of Technology, New 

Zealand. 

 
 
References 



25 
 

1.  Li DHW, Cheung KL, Wong SL, Lam TNT, An analysis of energy-efficient light 
fittings and lighting controls, Applied Energy, 2010; 87: 558-567. 

 
2.  Remaking Cities Institute, LED Street Light Research Project--Final Report, 

Pittsburgh, PA: Carnegie Mellon University. 
 
3.  Verderber RR, Morse OC, Alling WR, Harmonics from compact fluorescent lamps, 

IEEE Transactions on Industry Applications, 1993; 29: 670-674. 
 
4.  Rubinstein F, Siminovitch M, Verderber R, Fifty percent energy savings with 

automatic lighting controls, IEEE Transactions on Industry Applications, 1993; 
29: 768-773. 

 
5.  Wu Y, Shi C, Zhang X, Yang W, Design of new intelligent street light control 

system, in Proceedings of 8th IEEE International Conference on Control and 
Automation, Xiamen, China, 2010, pp. 1423-1427. 

 
6.  Energy Office, Michigan Department of Labor and Economic Growth, Occupancy 

sensors for lighting control, The Energy Observer, December 2007. 
 
7.  National Lighting Product Information Program, Occupancy Sensors: Motion 

Sensors for Lighting Control, Troy, NY: Lighting Research Center. 
 
8.  Ranjit SSS, Tuani Ibrahim AF, Salim SIM, Wong YC, Door sensors for automatic 

light switching system, in Proceedings of 3rd UKSim European Symposium of 
Compter Modeling and Simulation, Athens, Greece, 2009, pp. 574-578. 

 
9.  Li DHW, Lam TNT, Wong SL, Lighting and energy performance for an office using 

high frequency dimming controls, Energy Conversion and Management, 2006; 
47: 1133-1145. 

 
10. Rubinstein F, Avery D, Jennings J, On the calibration and commissioning of 

lighting controls, in the Proceedings of 4th Right Light Conference, Copenhagen, 
Denmark, 1997, pp. 1-10. 

 
11. Wolsey R, T8 Fluorescent lamps, Lighting Answers, 1993; 1: 1-6. 
 
12. Bullough JD, Lamp life (La vita è bella), Lighting Futures, 2000; 4: 1-5. 
 



26 
 

13. Richman EE, Dittmer AL, Keller JM, Field analysis of occupancy sensor operation: 
Parameters affecting lighting energy savings, Leukos,1996; 25: 83-62. 

 
14. Garg V, Bansal NK, Smart occupancy sensors to reduce energy consumption, 

Energy and Buildings, 2000; 32: 81-87. 
 
15. Maniccia D, Tweed A, von Neida B, Bierman A, The effect of changing occupancy 

sensor timeout on energy saving, lamp cycling, and maintenance costs, Leukos, 
2001, 30: 97-110. 

 
16. von Neida B, Maniccia D, Tweed A, An analysis of the energy and cost savings 

potential of occupancy sensors for commercial lighting systems, Leukos, 2001; 
30: 111-125. 

 
17. Chung TM, Burnett J, On the prediction of lighting energy savings achieved by 

occupancy sensors, Energy Engineering, 2001; 98: 6-23. 
 
18. Guo X, Tiller DK, Henze GP, Waters CE, The performance of occupancy-based 

lighting control systems: A review, Lighting Research and Technology, 2010; 
42: 415-431. 

 
19. Dodier RH, Henze GP, Tiller DK, Guo X, Building occupancy detection through 

sensor belief networks, Energy and Buildings, 2006; 38: 1033-1043. 
 
20. Tiller DK, Guo X, Henze GP, Waters CE, The application of sensor networks to 

lighting control, Leukos, 2009; 5: 313-325. 
 
21. Guo X, Tiller DK, Henze GP, Waters CE, Analytical methods for application to 

sensor networks for lighting control, Leukos, 2009; 5: 297-311. 
 
22. Tiller DK, Guo X, Henze GP, Waters CE, Validating the application of occupancy 

sensor networks for lighting control, Lighting Research and Technology, 2010; 
42: 399-414. 

 
23. Floyd DB, Parker DS, McIlvaine JER, Sherwin JR, Energy Efficiency Technology 

Demonstration Project for Florida Educational Facilities: Occupancy Sensors, 
Cape Canaveral, FL: Florida Solar Energy Center, 1995. 

 



27 
 

24. Floyd DB, Parker DS, Sherwin JR, Measured Field Performance and Energy 
Savings of Occupancy Sensors: Three Case Studies, Cape Canaveral, FL: 
Florida Solar Engergy Center, 1996. 

 
25. Jennings J, Colak N, Rubinstein F, Newsham G, Pasini I, Love J, Occupancy and 

time-based lighting controls in open offices, Leukos, 2002; 31: 86-100. 
 
26. Kleinrock L, Queueing Systems, New York: John Wiley and Sons, 1974. 
 
27. Surhone LM, Tennoe MT, Henssonow SF, Passive Infrared Sensor, Saarbrücken, 

Germany: VDM Verlag Dr. Mueller AG & Co. Kg, 2010. 
 
28. Carriere LA, Rea MS, Economics of switching fluorescent lamps, IEEE 

Transactions on Industry Applications, 1988; 24: 370-379. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



28 
 

 
 
 
 
Figure captions 
 
Figure 1. Comparison of the sum of two truncated normal distributed variables and a 
Rayleigh distributed variable. 
 
Figure 2. Flowchart for the proposed teletraffic queueing model.  

 
Figure 3. Lighting condition profile for the percentage of time when the restroom was 
lit while occupied. 

 
Figure 4. Lighting condition profile for the percentage of time when the restroom was 
lit while unoccupied. 

Figure 5. Lighting condition profile for the percentage of time when the restroom was 
lit during occupied / unoccupied periods for baseline and simulation with Ton,min = 0 
minutes. 

 
Figure 6. Electricity cost profile for the baseline and simulation with different Ton,min 

settings. 
 
Figure 7. Lamp switching profile for simulation with different Ton,min settings. 

 
Figure 8. Electricity cost profile for for baseline and simulation with different Ts 
settings. 

Figure 9. Lamp switching profile for simulation with different Ts settings. 

Figure 10. Electricity cost profile for baseline and simulation with different α settings. 

Figure 11. Lamp switching profile for simulation with different α settings. 
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Table I. Traffic load at different time intervals 

Time Intervals Traffic load 
(Erlangs) Time Intervals Traffic load 

(Erlangs) 
1* 0.075 13 0.579 
2 0.033 14 0.554 
3 0.005 15 0.535 
4 0.015 16 0.404 
5 0.056 17 0.316 
6 0.130 18 0.215 
7 0.183 19 0.176 
8 0.333 20 0.136 
9 0.428 21 0.096 
10 0.540 22 0.066 
11 0.555 23 0.064 
12 0.590 24 0.052 

* ith time interval denotes (i-1):30 to i:30 hour of the day16. 
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