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Abstract—This paper presents findings from a study of five 

healthy subjects performing 50% maximum voluntary 

contraction until complete fatigue of the muscle. An 

overlapping window technique was used to find the values 

for mean frequency (MNF), median frequency (MDF) of the 

power spectrum, root mean square (RMS) and muscle fibre 

conduction velocity (MFCV). The surface electromyography 

signal (sEMG) was collected from the vastus lateralis muscle 

using a three channel Laplacian electrode. The results show 

the MNF and MDF values showed a consistent trend with 

each other where they remained at steady values between 

20-30% and 75-80% of the signal after which they fell 15-30% 

of this value. The RMS showed a linear increase in value. 

The MFCV showed a similar trend to that found in the 

MNF and MDF values. 

 

Index Terms—MNF, MDF, RMS and MFCV 

 

I. INTRODUCTION 

Fatigue is a factor that affects all individuals on a daily 

basis. Its definition is very complex, not unique and 

controversial. There are two basic types of fatigue (a) 

whole body physical fatigue and (b) localized muscle 

fatigue [1], [2]. If muscles are exercised strenuously for a 

long period of time, muscle fatigue occurs. A muscle is 

fatigued when it is unable to contract even though it is 

still being stimulated. Without rest, an active or working 

muscle begins to tire and contracts more weakly until it 

finally ceases to react and stops contracting [3]. 

Temporal and spectral parameters are used as feature 

extraction and pattern recognition in the processing and 

analysis of bio-medical signals [4], [5]. The use of the 

signal analysis is apparent in the field of research and 

clinical health for diagnosing health related problems and 

rehabilitation using bio-medical signals such as surface 

Electromyography (sEMG) signals. sEMG signals is the 

study of striated muscle activity obtained in the form of 

electrical signals [1]. The sEMG signals are obtained by 

electrodes placed on the skin surface overlying the 

muscle which are then sent to a computer. 

In signal processing, determining the frequency 

content of a signal by Fourier transform is one of the 

                                                           

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main aspects in feature extraction and understanding the 

characteristics of a signal. 

The Fourier transform F(ω) of a time domain input 

signal x(t) represented in the frequency domain is the sum 

of the signal x(t) multiplied by a complex exponential as 

given in equation (1), where ω is the angular frequency 

and  = 2πf with f is the input frequency [6], [7]. 
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Since a digital computer only works with discrete data, 

a technique called Discrete Fourier Transform (DFT) is 

used [6]. Fast Fourier Transform (FFT) is the practical 

application name used for the DFT that maps discrete-

time sequences into discrete-frequency representation as 

given in equation (2) where x[n] is the input sequence, 

F(k) is the DFT, 2πk is the angular frequency of input 

sequence frequency k and N is the number of samples in 

both discrete-time and the discrete-frequency domains [6, 

7]. 
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A common technique in signal processing of sEMG 

signals is to consider the squared of the values of the FFT 

coefficients as given in equation (3) producing a resultant 

plot that is referred to as a power spectrum [7]. 
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Aspects of a signal such as the mean and the median 

frequency of the power spectrum and the root mean 

square (RMS) value of signal’s electrical potential also 

play important roles in the whole task of features 

extraction for signal characterization. The ultimate aim of 

this exercise is to develop a system with the ability for 

signal classification by features, which is a powerful and 

promising tool for diagnosing problems. 

The mean frequency (MNF) is the average of all 

frequencies of the power spectrum and can be expressed 

as given in equation (4) where P() is the power 

spectrum of the signal [4]. 
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The median frequency (MDF) is the frequency having 

50% of the distribution on each side of the power 

spectrum as given in equation (5) [4]. 
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The RMS value of a signal x(t) over a time interval 0-T 

is determined by computing the equation as given in (6) 

[4]. 
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The collection of the sEMG signals from the surface of 

the skin to the data being stored involves a number of 

different stages, starting from a continuous analogue 

signal and ending with a discrete or digital signal [8].  

These stages include amplification, analogue-to-digital 

conversion and signal conditioning. 

Laplacian surface electrodes use spatial filters in 

sEMG recording and are represented by the Laplace 

filters. This is a class of high-pass spatial filters which 

approximate the second spatial derivative of the surface 

potential. Longitudinal and transversal Laplace filters can 

be combined to become the normal double differential 

(NDD) filter, which is a very selective spatial filter that 

enhances single motor unit (MU) activity from the 

interference signals, even at maximal contraction levels. 

The weights of the NDD filter, its filter mask can be 

written as in (7) [9, 10]. 
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The NDD configuration can be obtained by means of 

five cross-wised electrodes and is frequently used for 

two-dimensional sEMG recordings. This and other two-

dimensional spatial filter configurations have been 

applied to extract single MU information from surface 

recordings [10-13]. 

The muscle fibre conduction velocity (MFVC) was 

obtained by performing a cross-correlation between two 

corresponding sEMG signals [14]. The cross-correlation 

is performed using the recorded data offline and was via 

the Fourier transform. The resulting cross-correlation 

function Rxy() as given by (8). 
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where x(t) and y(t) are two different sEMG signals, with  
is the time difference between them and k a constant to 

normalise the cross-correlation plot between -1 and +1.  

The peak in the cross-correlation plot was displaced by 

time T from time zero, which was used to calculate the 

MFCV as given in (9). 

T
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where d is the inter-electrode distance between the two 

sEMG signals.  

II. METHODOLOGY 

A. Subjects 

Five healthy volunteers with no previous history of 

knee or severe musculoskeletal injuries (5 males, age 18-

35 years) participated in this study. This study was 

approved by the Auckland University of Technology 

Ethics Committee (AUTEC) and was performed after 

each subject had given written consent. 

B. Experimental Setup 

Subjects were seated in a purpose built upright chair 

set at 110 with their knee flexed to 90 see Fig. 1. The 

chair was adjusted to ensure that the back of the knee 

rested comfortably against the edge of the seat. Once 

comfortable, the subject was secured to the chair using a 

lap and chest strap. The lower leg, minus socks or other 

clothing, was strapped to a metal attachment in series 

with a strain gauge at the ankle level, just proximal to the 

lateral malleolus. Comfort was ensured by using a heat-

moulded thermoplastic brace to secure the leg. This 

experimental setup was similar to that used by Maïsetti, 

O., et al [15]. 

 

Figure 1. Schematic diagram showing the equipment setup for data 
acquisition of sEMG signals. 

Force measurements: a PST model, 250 kg-maximum 

strain gauge (Precision Transducers Ltd, New Zealand) 

was used to measure the maximum voluntary contraction 

(MVC), and to provide a measurement of 50 % of MVC 

during endurance test. Force readings were in Newtons 

(N), and were collected from the strain gauge via a 

custom made amplifier by an Apple G4 personal 

computer sampling at 2 kHz. A real-time force trace was 

displayed on a computer monitor using a customized 

software program (Superscope LL 5.0 GW Instruments, 

USA). This provided visual feedback of the force being 

generated by the subjects. 
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C. sEMG Electrode Placement 

Skin preparation: The procedure recommended by De 

Luca [16] was followed to ensure skin impedance was 

below 10k. First, the electrode sites were shaved. The 

shaved area was then rubbed with an abrasive paste 

(Omni-Prep®, D.O. Weaver & Co., USA) and the skin 

was then cleansed with 70% alcohol wipes and left to dry 

before attaching the electrodes. Finally, a small amount 

of conductive gel was wiped onto the shaved area. This 

was shown during testing to improve the quality of the 

signal from the Laplacian electrode. Electrodes used are 

(a) mono-polar silver/silver-chloride (Ag/AgCl) passive 

electrodes (Red Dot, 3M Health Care, USA) for 

grounding purposes and (b) for data collection of sEMG 

signals was via an eleven-pin (4 mm diameter) two-

dimensional high-spatial resolution three channels 

Laplacian electrode (Université de Technologie, 

Compiegne, France) with an inter-electrode distance of 

10 mm see Fig. 2. 

D. Data Acquisition of sEMG Signals 

Signals were collected and filtered by NND using the 

mask as given in equation (7) for each channel by the 

Laplacian sEMG electrodes with a gain of 100. Each 

sEMG channel was then further amplified with a gain of 

1000 and filtered using a band-pass filter between 3 Hz 

and 1 kHz Grass model P511 amplifier (Grass 

Instruments Company, USA). The analogue signals were 

acquired by a multifunction data acquisition board NI 

PCI-6024E (National Instruments Corporation, USA) 

with LabVIEW 2010 software (National Instruments 

Corporation, USA) for raw data acquisition on a host 

desktop computer. The signals were analogue-to-digital 

converted with 16 bit resolution in the  5 V range and 

sampled at 10 kHz.  

 

Figure 2. Three channel Laplacian electrode (right) and amplifier (left) 
used for data collection of sEMG signals from the vastus medialis 
muscle of the quadriceps. Supplied by Université de Technologie, 

Compiegne, France. 
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Figure 3. The top plot shows a single channel sEMG signal to be 
analysed using a 1 second window size with a 0.5 second overlap. 
Power Spectrum is used to calculate the MNF and MDF plus the 

RMS value of the windowed signal. 

E. Signal Processing of sEMG Signals 

Each of the three separate channel sEMG signals 

recorded were subsequently analysed off-line using a 

newly developed code for performing signal processing 

analysis of the sEMG signals using MATLAB 2010 

(MathWorks Inc, USA). The sEMG signals were 

demeaned removing any direct current (DC) component 

that may exist in the signals before the analysis. The 

signals were subsequently digitally filtered using a  

4
th

 order Butterworth band-pass filter with a pass-band 

from 5 to 500 Hz. 

A new algorithm was written in MATLAB to allow for 

each channel to be analysed at the same time see Fig 3 

[6], [17]. The algorithm takes a 1 second window size of 

data from which a power spectrum was produced and 

analysed to calculate the MDF, and MNF values along 

with the RMS value. By taking a 1 second window size it 

is assumed to be quasi-stationary that is stationary during 

short time intervals. Under this assumption spectral 

analysis for feature extraction can be applied [18], [19]. 
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Figure 4. The top plot shows all 3 sEMG signals to be analysed 
using a 1 second window size with a 0.5 second overlap. Cross-

correlation is used to obtain the MFCV between to channels 1-2 and 

channels 2-3. 

 

Figure 5. Demean and filtered sEMG signals collected from the  
three channel Laplacian electrode. 

A Hanning window was used for the power spectrum 

to obtain smoothness of the output frequency spectrum 

avoiding spectral leakages and outliers. Each window 

size extracted was overlapped by 0.5 seconds to give a 

more detailed view of how the MNF, MDF and RMS 

vary over time through the sEMG signal. The values for 

MNF, MDF, and RMS were stored in a matrix; this was 

continued until the final n
th

 window. Once all three 

signals were analysed, a separate plot for each value 

against time was produced. 
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The MFCV was calculated separately from a new 

algorithm using the cross-correlation function available in 

MATLAB see Fig. 4. This required taking channels 1 and 

2 of the sEMG data to find the MCVF for a 1 second 

window and then proceeding to overlap each window by 

0.5 seconds. The same method was performed using 

channels 2 and 3. The values for MFCV for each window 

were stored in a separate matrix, until the final n
th

 

window. Once all the signals were analysed a separate 

plot for each value against time was produced. 
 

 

 

Figure 6. Show the sEMG signal for channel 1 (top plot) with the 
combined values for MNF, MDF (middle plot) and  

RMS values (bottom plot). 

 

Figure 7. Shows the sEMG signal for channel 2 (top plot) with the 
combined values for MNF, MDF (middle plot) and  

RMS values (bottom plot). 

III. RESULTS AND DISCUSSIONS 

Fig. 5 shows all three sEMG s collected from the left 

leg of subject 2 from this study of five subjects. These 

signals have been demeaned to remove any dc voltage 

component that may exist in the signals and further 

digitally filtered using a 4
th

 order Butterworth band pass 

filter between 5 Hz and 1 kHz. 

 

Figure 8. Shows the sEMG signal for channel 3 (top plot) with the 
combined values for MNF, MDF (middle plot) and  

RMS values (bottom plot). 

The new algorithm using Fourier Power spectrum in 

Fig. 3 was used to find the MNF, MDF and RMS values 

for a set overlapping window size of 0.5 seconds was 

passed through each signal from the beginning until the 

end of the fatiguing. The results for each separate signal 

were plotted and are shown in Figs 6-8. 

For analysis purposes, the last 4 seconds of the sEMG 

signal just before the subject completely fatigued were 

ignored in the overall analysis of the results. This is 

shown by the dotted black lines in Figs 6-8 for the MNF, 

MDF and RMS values. It clearly shows that the last  

4 seconds are meaningless to the overall picture of the 

data presented. 

Trendlines were added to the MNF, MDF and RMS 

plots using the ‘polyval’ function in MatLAB. The 4
th

 

order polynomial gave the best trendline in order to 

determine visually what was happening to these values 

throughout the signal. 

By examining the results in Figs 6-8 the trendlines for 

MNF and MDF values follow same the trend, with MDF 

lower in value than the MNF. This indicates that the 

power spectrum for each window is skewed to the left  

i.e. the lower frequencies are dominant in the signal. 

Looking at the values for MNF and MDF frequencies it 

can be seen that all three signals have different trends 

during the first 20 seconds after which they follow a 

similar pattern. The values remain steady from 20 to  
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70 seconds after which they drop to about 20% in value 

until complete fatigue in the subject. The RMS values 

obtained show a doubling in a linear fashion throughout 

the signal for all three signals. 

Once the analysis to find the MNF, MDF and RMS 

values were completed, a new algorithm was used to 

determine MFCV, see Fig. 4. To determine the MFCV, 

signals from channel 1 and channel 2 with the inter-

electrode distance of 10 mm are required. The same was 

done to find the MFCV between channel 2 and channel 3. 

The results were plotted as a combined plot shown in  

Fig. 9. 

For analysis purposes of MFCV, the last 2 seconds of 

the sEMG signal just before the subject completely 

fatigued was ignored in the overall analysis of the results. 

This is shown in as a black dotted line in in Fig. 9. It 

clearly shows that the last 2 seconds are meaningless to 

the overall picture of the data presented. 

The MFCV results presented show the first values 

between channel 1 and 2 are greater than that for channel 

2 and 3, but after about 20 seconds they follow the same 

trend. The MFCV remains at steady value between  

20 seconds until 70 seconds after which it drops by  

20-25% in value where after that complete fatigue 

occurred in the subject. 

 

Figure 9. Shows a combined plot for MFCV values and trendlines 

between Ch1/Ch2 and Ch2/Ch3. 

IV. CONCLUSION 

All results using the first algorithm obtained for all 

subjects in this study have given similar results. That is 

for MNF and MDF values all follow the same trend 

throughout the sEMG signal. Therefore only one of these 

features need be selected for analysis purposes. The most 

beneficial one to use would be the MDF values as this 

shows a frequency value where the power spectrum splits 

the distribution in half. By visually examining the MNF 

and MDF trendlines, there was always a levelling off in 

these values between the 20-30% to the 75-80% of the 

muscle contraction. After this point these values dropped 

anywhere between 15-30% until the subject fatigues 

completely. 

The RMS values in all cases showed a linear increase 

from the start of the muscle when it contracts until the 

subjects fatigued. However there was no other noticeable 

trend in the RMS values obtained from the analysis 

carried out. 

The MFCV values in all cases showed a similar trend 

to that found in the MNF and MDF values. This indicates 

that these features are linked together in terms of the 

muscle behaviour through the contraction from start to 

finish. This can potentially be done as further 

investigation in terms of linking these features together. 
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