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Abstract  The approximate solution to the inverse of a non-minimum phase finite-impulse response (FIR) transfer 
function is given. Such a problem arises in many areas which include room-acoustics and channel equalisation. Unlike 
previous work the method does not require multiple sensors or the use of all-pass transfer function networks. 
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1. Introduction 
FIR transfer functions are more than often the impulse 

response of a communication channel or acoustic 
environment found experimentally. In the case of 
minimum-phase FIR transfer functions their inverse is easily 
found, but for the non-minimum phase case the inverse 
becomes unstable. Previous work in the area[1] involves 
splitting the transfer function into the combination of an 
all-pass transfer functions and a minimum-phase transfer 
function. The minimum-phase part is then inverted leaving 
the all-pass transfer function which has magnitude unity (and 
hence does not effect the magnitude response of the inverse 
filter). Provided the group-delay is constant this method is 
satisfactory. However, as discussed in[1] if the all-pass 
transfer function does not have constant group-delay then the 
conventional method will have a noticeable non-linear phase 
miss-match. The importance of a linear phase solution is that 
frequencies are scaled by a proportional amount when 
passing through the channel and filter, thus preserving the 
shape of the original signal. Linear phase is equivalent to 
having a pure time-delay (constant group-delay) which will 
for example introduce no perceptual distortion in a speech 
signal. 

The method used here recognises that the inverse of a 
non-minimum phase impulse-response can either be an 
unstable system or a stable yet uncausal system. The 
uncausal part is then used by employing a time-delay and 
shifting this part back into positive time. Unfortunately the 
uncausal impulse response has an infinite impulse response 
so it must truncated making the method approximate 
depending on the length of the delay. This method is not new 
in principle, having been used for decades in adaptive 
filtering using least-mean squares (LMS) algorithms[2, 3]. In  
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audio acoustics, the equalization of loudspeaker 
characteristics faces similar problems[4] and in sound 
rendering[5]. In the control literature similar problems are 
often encountered[6]. Techniques already exist for two or 
more sensors[7], but this explicit solution is new and only 
requires one signal-transmission channel. 

2. Mathematical Preliminaries 
If a polynomial defined as 

1 1 2
0 1 2( ) ... n

nX z x x z x z x z− − − −= + + + +  of degree n 
with real coefficients has all its roots within the unit circle in 
the z plane, then it is termed strict sense minimum phase. No 
zeros are assumed to be on the unit circle. For simplicity 

1( )X z−  is often written as X , omitting the complex 

argument 1z− . The conjugate polynomial 
* 2

0 1 2( ) ... n
nX z x x z x z x z= + + + +  is strict sense 

non-minumum phase having all of its roots outside the unit 
circle on the z plane. The reciprocal polynomial is defined as 

1 ( 1) ( 2) *
0 1 2( ) ... ( )n n n n

nX z x z x z x z x z X z− − − − − − −= + + + + =

which has all its roots outside the unit circle provided 
1( )X z−  is strict sense minimum phase. The zeros of X  

are the zeros of X reflected in the unit circle. Similarly  
* 1 1( ) ( )nX z z X z− −= has all its roots within the unit circle. 

For polynomials which are strict sense non-minimum phase, 
we can factorise 1 1 1

1 2( ) ( ) ( )X z X z X z− − −=  where 1X  

is strict sense minimum phase and 2X  is strict sense 
non-minimum phase. 

3. Theory 
Begin with the FIR transfer functionof a transmission 

channel as described by the product of two polynomials 
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1 1 1
1 2( ) ( ) ( )− − −=H z B z B z            (1) 

where [8] 1
1( )−B z  is strict sense minimum phase and 

1
2 ( )−B z is strict sense non-minimum phase. Their 

polynomial dimensions are 1nb  and 2nb  respectively. 
We require an inverse transfer-function  

1
1 1 1

1 2

1 1( )
( ) ( ) ( )

−
− − −= =F z

H z B z B z
    (2) 

To proceed further we note that * *
2 2 2 2=B B B B   and 

substitute 
*

2 2
2 *

2

=
B BB
B

 

 
into (2) giving 

*
1 2

*
2 2

( )− =
BF z

BB B 
                (3) 

Now the reciprocal polynomial 2B  is stable having all of 

its roots within the unit circle, but *
2B  is not. Therefore 

expand in positive powers of z 

*
22

0 1 2*
2

...B d d z d z
B

= + + +


         (4) 

For a non-minimum phase polynomial 2B  of degree 

2nb  the expansion (4) is easily found by a simple recursion. 
For example if 

2

2

1 2
2 0 1 2 ... −− −= + + + + nb

nbB z z zα α α α    (5) 

then 
2

0
0 =

nb

d α
α

 

2

2

1

0

2

( )
−

− +
=

−
=

∑
nb

i nb i j j
j

i
nb

d
d

α α

α 21, 2...=i nb    (6) 

and 
2

2

2

1

0

1 −

+ −
=

= − ∑
nb

i j i j nb
jnb

d dα
α for 2>i nb      (7) 

Delaying by   terms  
*

1 22
0 1 1 2*

2

... ... ...B z d z d z d d z d z
B

− − − +
+ += + + + + + +  

  



                    (8) 

Which is a Laurent series with negative (causal) and positive (uncasual) powers of z. 
*

*2
*
2

− = +
B z D E
B









                                    (9) 

The reciprocal polynomial 1
0 1 ...− − += + + +D d z d z d 

 

 , whereas 
* 2

1 2 ...+ += + +E d z d z
 

is an infinite 

polynomial. However, if the delay   is large enough we can approximate * 0→E  since this is part of a convergent 
power-series whose higher terms will converge to zero. So (3) becomes 

1

1 2

( )− ≈
DF z

B B






 for large                                (10) 

which is the inverse filter. It would be possible of course to express this as an FIR transfer function by using polynomial 
division and further truncation. 

4. Example 
Consider an FIR transfer function with 1 1 2( ) 1 2.6 1.2− − −= − +H z z z  or 1 1

1( ) 1 0.6− −= −B z z and
1 1

2 ( ) 1 2− −= −B z z . Find its inverse and use a delay of 6= . 

Solution:Use the fact that *
2 1 2= −B z , 1 *

2 22 , 2−= − + = − +B z B z  . Now expand 
*

5 6 6 5 4 3 2 1 *2
*
2

1 2 0.5 0.75 0.375 0.1875 0.0937 0.04687 0.023437 ...E
2

B zz z z z z z z z
B z

− − − − − − − −−
= = − + + + + + + +
− +

 

So that 6 5 4 3 2 10.5 0.75 0.375 0.1875 0.0937 0.04687 0.0234375D z z z z z z− − − − − −= − + + + + + +


  
Substituting into (10) we find the inverse transfer function as 

6 5 4 3 2 1
1

1 1

( 0.5 0.75 0.375 0.1875 0.0937 0.04687 0.0234375)( ) 0.5
(1 0.5 )(1 0.6 )

z z z z z zF z
z z

− − − − − −
−

− −

− + + + + + +
≈ −

− −
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For comparison purposes we use the alternative approach 
[1] which employs an all-pass transfer function. 

1
' 1

1 1 1

0.5 (1 2 )( )
(1 0.5 )(1 0.6 ) 2(1 0.5 )

−
−

− − −

−
=

− − −
zF z

z z z
 

Now when the original channel transfer-function 
1 1 2( ) 1 2.6 1.2− − −= − +H z z z  is applied by convolution 

with the inverse filter, unity gain should be achieved up to 
half-sampling frequency. A comparison of the magnitude 
and phase inverse transfer functions are shown in Figs 1 and 
2 respectively. Fig 1 shows a comparison for different values 
of delay showing that the amount of ripple reduces 
considerably as the delay increases. 

 
Figure 1.  Magnitude and phase of equalised impulse response using new 
method 

 
Figure 2.  Magnitude and phase of equalised response using all-pass 
method 

It can be seen that there is some 0.5dB peak-to peak ripple 
in the magnitude for the new case when the delay is 4 whilst 

for the all-pass method the magnitude is perfectly flat. 
However, the phase for the all-pass method is non-linear 
whereas for the new method the phase is linear. Furthermore 
the ripple for the new method is further reduced by making 
the delay term bigger. For example, for a delay of 6 samples 
the dB ripple is down to 0.1dB peak-to peak whilst still 
maintaining linear phase. 

5. Conclusions 
A single sensor approach to the inversion of 

non-minimum phase FIR transfer functions has been shown. 
The method is computationally simple and does not rely on 
all-pass transfer functions. Instead, it uses the uncausal part 
of the transfer function inverse itself which is shifted  into 
positive time by using a time-delay. This gives rise to an 
equalised transfer function which has a small amount of 
ripple yet is linear phase. For small impulse responses it 
becomes quite an easy task to find the inverse and this is of 
some theoretical importance, However, for much larger 
impulse responses which could be met in an acoustic 
environment,the method requires the factorization of large 
polynomials into minimum and non-minimum phase 
polynomials, which is in itself quite a computational task. 
Therefore an efficient computational algorithm needs to be 
found for performing this task without having to find all of 
the individual roots of the polynomials themselves. 
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