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Abstract

Personalized modeling is an emerging approach, in which a model is created for every

new input vector of the problem space based on its nearest neighbors using trans-

ductive reasoning (Kasabov, 2007c; Vapnik, 1998). The underlying philosophy of

this approach when applied to medicine is that each patient is an individual. There-

fore, each patient requires and deserves a personalized treatment model that predicts

the best possible outcomes for the patient. This study proposes a novel integrated

evolving framework and system for personalized modeling (evoPM); an extension of

a model proposed by Kasabov and Hu (Kasabov & Hu, 2011). By allowing users to

select the most important features, optimize nearest neighbors and model paramet-

ers, the model provides higher accuracy and personalized knowledge than global and

local modeling approaches. The evoPM creates a personalized model for each test

sample with unique optimal sets of features, neighborhood and model parameters.

In addition, the system keeps evolving and is adaptable to any new incoming data

vectors. The already created personalized model can be further evolved on new data

entering in the neighborhood.

Currently, the amount of available spatio-temporal data (STD) is growing exponen-

tially, thus suitable techniques to effectively and efficiently analyze and process this

vast quantity information are urgently needed. Evolving spiking neural networks

(eSNN), an extension of spiking neural networks (SNN), is an emerging computa-

tional technique for STD analysis. Evolving SNNs learn STD by first converting

temporal changes in the input variables into spike trains, then applying learning

procedures to map spatio-temporal patterns detected in the data into temporal spik-

ing activity of spatially located neurons. This study introduces two recently pro-

posed methods for spatio-temporal pattern recognition, the extended eSNN frame-



work (EESNN) (Hamed, Kasabov, Shamsuddin, Widiputra & Dhoble, 2011) and the

recurrent network reservoir structure of eSNN (reSNN) using liquid state machine

(LSM) (Schliebs, Hamed & Kasabov, 2011). Both methods are the first time applied

to evaluate the spatio-temporal weather and stroke occurrence data as a case study.

The evoPM is applied as a classifier to learn the responses from the reSNN model.

The novel evoPM framework and system brings several advances over existing per-

sonalized modeling methods. These are summarized below:

• The integrated evolving personalized modeling system is developed based on

an emerging novel technology namely eSNN;

• A recently developed population-based heuristic optimization approach called

gravitational search algorithm (GSA) is applied to improve the robustness and

generalisability of feature selection, neighborhood, model and its parameters

optimization for classification, diagnostic and prognostic problems;

• The standard diseased classification system is replaced by personalized risk

evaluation.

• The evoPM system and framework is novel applied to stroke data as case

studies.

The novel method is validated on several benchmark cancer gene expression datasets

and stroke data. The model outputs are compared with those of traditional global,

local and personalized modeling methods. The results of all studies show that evoPM

performs consistently better than the traditional methods. In particular, it develops

more useful knowledge discovery for medical decision support for cancer diagnosis

and prognosis due to it selects the optimal sets of genes and disease classification

parameters for each individual patient.
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CHAPTER 1

Introduction

1.1 Motivation

Vast quantities of biomedical personal data are now available in a large volume, but

these data are complex, challenging and require new methods for their analysis. For

instance, the human brain as a complex system and network of multiply connected

cells was recognized in the late nineteenth century. Throughout the entire body nerve

cells are connected to other cells. Nerve cells deliver messages from the brain to other

organ systems and to the brain itself, thereby controlling function, communication,

or decision making. On the other hand, complex interactions between genes and

neuronal functions may cause certain brain diseases.

In recent decades, stroke has become a major public health challenge and concern in

industrialized countries, including New Zealand. 90% of the more than 15 million new

cases of stroke occurring globally every year are preventable (Donnell et al., 2010). To

date, many intelligent systems have been developed with the purpose of improving

health care and providing better health care facilities at reduced cost. However,

traditional predictive models use standard population statistics, and therefore cannot

predict the degree of disability for individual stroke survivors. Statistical prediction

methods incorporate the most recurrent or powerful variables with certain loss of



1.2. Research Objectives, Questions and Hypotheses

unique patient information (Wieslaw, Oczkowski & Barreca, 1997). For this reason,

personalized modeling is worthy of exploration and integration in the medical system

for diagnosis, prediction and prescription.

Personalized modeling aims to create a model and to output a value for a single point

of the problem space, utilizing additional information related to this point (Vapnik,

1998). This approach has been successfully applied to a variety of modeling prob-

lems. For instance, in the field of personalized healthcare and therapy, the knowledge

discovered by this approach has significantly improved diagnosis, prediction and ther-

apy for individual patients. It has also resulted in improved patient safety (Kathryn

& Charis, 2012; Deloitte, 2012). Furthermore, given the current advances in net-

working technologies, personalized mobile service delivers a more efficient service,

which in turn benefits business (Alcatel-Lucent, 2012).

Personalized medicine and drug design are becoming a leading trend in medicine,

health care and life sciences. Drugs in the current market are tested on global pop-

ulations and are prescribed based on statistical averages. However, these drugs are

only effective in about 50% of cases, such as among cancer patients, the rate of in-

effectiveness jumps to 75% and 40% for the anti-depressants (Jackson-Laboratory,

n.d.). The objective of personalized medicine is to determine a patient’s disease based

on his/her molecular profile, so that appropriate therapies can be administered to

appropriate patients at appropriate time. Current trends are replacing the tradi-

tional form of medicine with more accurate marker-assisted diagnosis and treatment

(Abrahams, 2007). Personalized medicine presents numerous benefits and possibil-

ities in different disciplines. Patients and clinicians receive more effective, precise

and safer diagnosis and treatment; in the pharmaceutical industry, the productivity

and efficiency of product lines are improved; society as a whole is rewarded by more

focused applications of valuable health care resources.

1.2 Research Objectives, Questions and Hypotheses

With proven efficiency of personalized modeling in contrast to global and local mod-

eling (Vapnik, 1998; Kasabov, 2007c; Kasabov & Hu, 2011; Shabo, 2007), application

of this approach in various modeling problems becomes imperative. The most widely

used personalized modeling approaches are nearest neighbor method and its deriv-

2



1.2. Research Objectives, Questions and Hypotheses

atives (Vapnik, 1998; Kasabov, 2007c). The major objective of this research is to

develop a principally new method for personalized modeling and prognostic decision

support. The novel personalized modeling system and framework is able to select

the most significant features, optimize the optimal number of nearest neighbors and

model parameters for a single input sample.

In many cases sudden undesirable events are triggered by specific spatio-temporal

patterns of interaction between multiple variables over a period preceding the event-

occurrence (e.g. cardiovascular disease (Cornelissen et al., 2002; Stoupel et al., 2000),

cancer (J. E. Anderson et al., 2006), stroke occurrence (V. L. Feigin, Nikitin & Vino-

gradova, 1997; V. L. Feigin, Lawes, Bennett, Barker & Varsha, 2009; V. L. Feigin,

Lawes, Bennett & Anderson, 2003), ecological and environmental disasters, financial

and economic crises, etc.). Such events may be preventable if predicted early enough.

However, existing personalized modeling methods are applicable only to static data,

and therefore cannot identify important spatio-temporal interactions between vari-

ables that affect the outcome of interest for an individual (Vapnik, 1998; Kasabov,

2007c; L. Li, 2006). This task is timely, important and challenging, with a broad

range of potential applications across medical, environmental, ecological and social

areas.

Based on the above considerations, this research will achieve the following main

objectives:

• To further develop the personalized modeling framework introduced by Kas-

abov (2007b);

• To develop a novel integrated evolving personalized modeling system (evoPM)

by utilizing novel technology such as evolving spiking neural networks (eSNN);

• To improve the robustness and generalisability of feature selection, neighbor-

hood, model and its parameters optimization for classification, diagnostic and

prognostic problems;

• To evaluate the feasibility of the novel integrated evolving personalized method

on several gene expression benchmark datasets and compare the outputs with

traditional global, local and personalized methods;

3
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• To study the personalized risk for individual patients, as opposed to classify

patients into normal or diseased groups. Accurately quantifying this risk is

critical for medical decision support to ensure that patients receive treatment

that is optimal for their individual profile.

• To facilitate new knowledge discovery that will help to understand the complex

brain and to improve medical decision making. The methodology and compu-

tational method for personalized modeling will be applied to stroke outcome

prognosis data in a preliminary case study;

• To build personalized reservoir based generic methods for learning dynamic

spatio-temporal data (STD), which applied to stroke risk spatio-temporal data

as another case study.

More specifically, this research aims to answer the following research questions:

• How to develop a novel integrated evolving personalized modeling system using

incrementally new data from various sources?

• How to select optimal set of features, neighborhoods, model and its parameters?

• How can these complex personal data be visualized?

• How to accurately estimate personalized risk?

• How to encode the real-valued data into spike trains prior to feed into a spatio-

temporal filter (reservoir) to accumulate the spatio-temporal information of all

input signals into a single high-dimensional state?

We hypothesize that the new model

• will be fast, efficient and incrementally trainable with new data, thus the effi-

ciency of the model will improve over time;

• will improve the robustness and generalisability of feature selection, neighbor-

hood, model and its parameters optimization in personalized modeling prob-

lems;

4
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• will provide more precise accuracy and new personalized knowledge that will

advance our understanding of signal processing in the biological brain, as well

as enhancement of medical decision making;

• be extendable to multivariate spatio-temporal data. The personalized reservoir

based generic methods will provide more accurately prediction than existing

prognostic models.

1.3 Organization of the Thesis

The study is organized into the following chapters:

• Part 1 - Literature Review

1. Chapter 2 outlines and compares inductive modeling and transductive

modeling approaches. This is followed by a more detailed discussion of

the two approaches, including a detailed review on global, local and per-

sonalized modeling approaches.

2. Chapter 3 introduces biological neurons, followed by a review of two

emerging contemporary neural models: spiking neural network (SNN)

and evolving spiking neural network (eSNN). Neural encoding methods,

learning algorithms and applications are also discussed. In addition, this

chapter provides a brief literature review of two recently proposed meth-

ods for spatio-temporal pattern recognition, extended eSNN framework

(EESNN) and the recurrent network reservoir structure of eSNN (reSNN)

using liquid state machine (LSM).

3. Chapter 4 introduces evolutionary computation (EC) focusing on a re-

cently developed population-based heuristic optimization approach called

gravitational search algorithm (GSA) for feature, neighborhood and model

parameters optimization in the scope of personalized modeling.

4. Chapter 5 introduces biological background of the human brain. And

then it reviews the disease of stroke together with information methods

for predicting risk and outcome of stroke. These methods include conven-

tional statistical methods and computational intelligent modeling meth-

ods. The chapter concludes with a comparative study using conventional

5



1.3. Organization of the Thesis

global, local, classical personalized modeling methods, and evoPM-based

algorithms on the stroke outcome prognosis data as a case study.

• Part 2 - Proposed Novel evoPM for Static Data and Applications

1. Chapter 6 first discusses the motivation behind the development of this

novel personalized modeling framework and system. Thereafter, the novel

evoPM is introduced, ranging from the simple implementation (with lim-

ited model parameter optimization) to the complicated implementation

(with full feature, neighborhood and model parameter optimization). Fi-

nally, an experimental study is designed for verifying the strength of each

evoPM prototype.

2. Chapter 7 presents relevant biological background before introducing sev-

eral information techniques used for evaluating gene expression data. The

chapter concludes with a comparative study investigating the feasibility

of the novel evoPM on several benchmark cancer gene expression datasets

using global, local, and personalized modeling methods in classification

tasks.

• Part 3 - Proposed Generic Personalized Modeling for Dynamic STD and Ap-

plication

1. Chapter 8 offers a comparative study of exploring associations between

changes in weather conditions and stroke occurrence. Results of conven-

tional algorithms (global, local and classical personalized modeling) are

compared with the algorithms from evoPM. In particular, gender differ-

ences in weather and stroke occurrence are explored.

2. Chapter 9 begins with a pilot statistical analysis on the weather and stroke

occurrence STD, followed by two studies using the proposed EESNN and

reSNN generic personalized models.

The study conclusion and suggestions for future work are presented in Chapter 10.
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1.4 Thesis Contributions

A summary of the contributions made by this thesis is visualized two dimensionally

in Figure 1.1. The X axis represents the information acquiring methods proposed

in the study, while the purple dots relate the proposed novel integrated methods to

the datasets used for testing.

Applications

Information Methods
Traditional PM  evoPM – prototype 1 

(optimize K)

 evoPM – prototype 2 

(optimize K + Mp)
 evoPM – prototype 3 

(optimize K + Mp + Fea)

Personalized Reservoir 

based Generic Method

Cancer Gene Expression Data

Stroke Outcome Case Study

Weather and Stroke Occurrence Case Study

Colon Cancer

Lung Cancer

Leukaemia

Lymphoma

Breast Cancer

Chapter 7

Chapter 6 Chapter 6 Chapter 6

Chapter 9 & 10

Chapter 8

Chapter 6

Chapter 10

Chapter 7

Chapter 8

Chapter 9 & 10

Figure 1.1: A visual summary of contributions made by the proposed novel per-
sonalized modeling framework and system. The dots indicate the datasets to which
each model was applied.
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CHAPTER 2

Personalized Modeling

2.1 Introduction

Before providing a detailed literature review on the concept of personalized modeling,

a comparison between inductive modeling and transductive modeling approaches

is given, and outline the basic theory behind these two approaches. Thereafter,

inductive and transductive inference methods are described in depth, including a

detailed review of global, local and personalized modeling approaches.

2.2 Inductive versus Transductive Reasoning Ap-

proaches

To date, most artificial intelligence (AI) learning methods, especially those employing

neural fuzzy inference methods, are based on either inductive inference or transduct-

ive reasoning approaches. Figure 2.1 illustrates the difference between these two

approaches. In the transductive inference method, data are trained and then tested

in a problem space, while the inductive inference method first induces a function

from the training data, which is then deducted and used to predict the testing data



2.2. Inductive versus Transductive Reasoning Approaches

(Vapnik, 1998). These two reasoning approaches are compared further in the follow-

ing section.

Function

Training Data Testing Data

Induction Deduction

Transduction

Figure 2.1: The difference between inductive inference and transductive inference
methods.

2.2.1 Inductive Inference Method

The theory of inductive inference was pioneered by Ray Solomonoff around 1960

(Solomonoff, 1960). Inductive inference is defined as a process of inferring a general

rule or law from the observations of a particular example (Angluin & Smith, 1983).

For instance, given the binary string “100, 111100, 11000, 1110, 1100”, the following

rule can be inferred: “any number of 1s are followed by any number of 0s”.

In general, the inductive inference method concerns the creation of a model (generally

a global model) from all available data. In other words, it focuses on the whole

problem space. This model can be adapted to investigate new input vectors. Once a

global model is created, no new information about a new input vector is considered.

Instead, the extent to which the new input vector fits the model is estimated by an

error calculation.

An overview of an inductive inference method is presented in Figure 2.2. A global

model M is created from the dataset D, which is then recalled for every new input

vector Vi. Model M computes an output Yi for each new input vector.

2.2.2 Transductive Inference Method

The transductive inference approach was originated by Vapnik in 1998 (Vapnik,

1998). Transductive inference evaluates the potential value of a model for an in-

10
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Data set D for training

New input vector Vi

Train a global model M

Recall of global model M Output Yi

Figure 2.2: Overview of the inductive inference method.

dividual point of the problem space by using additional information related to the

point. In contrast to the inductive inference approach which solves a general prob-

lem, the transductive inference approach is targeted to individual problem solving

(Bosnic & Kononenko, 2003).

Figures 2.3 and 2.4 depict the transductive inference approach: every new input

vector Vi is investigated by a classification or prediction task based primarily on

its nearest neighbors. The nearest neighbors form a sub-data set Di derived from

the original training data set D. Based on these vectors, a new local model Mi

is dynamically created and adapted to estimate the output Yi for every new input

vector Vi.

Data set D for training

New input vector Vi

Dataset Di is derived from D, 

based on the neighborhood 

of the new input vector Vi

A new local model Mi is 

dynamically created for the 

vector Vi

Output Yi

Figure 2.3: Overview of the inductive inference method (a).

2.3 Global, Local and Personalized Modeling

“Machine learning is the process of discovering and interpreting meaningful informa-

tion, such as new correlations, patterns and trends by sifting through large amounts

of data stored in repositories, using pattern recognition technologies as well as stat-

istical and mathematical techniques”(Larose, 2005). Kasabov (2007c) classified com-

11
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text

V2

V1

D1

D2

New vector

Sample from D

Sample from M

Figure 2.4: Overview of transductive inference method (b): V1 and V2 represent
two new input vectors surrounded by a number of nearest neighbors selected from
the training data set D and generated from an existing model M .

putational machine learning models into three categories (global, local, and person-

alized), such models have become widely used in data analysis and decision support,

especially in the fields of medicine and bioinformatics.

2.3.1 Definition

• Global modeling - A global model is created from the entire data set for the

whole problem space based on an inductive inference method. It focuses on the

whole problem space rather than on individual vectors. This model is usually

not readily adaptable to new input data.

• Local modeling - A local model is created to evaluate an output function in

a sub-space of a problem space. Local modeling approaches are more amenable

to individual vector interpretation than global modeling.

• Personalized modeling - A personalized model is evolved for every new

input vector of the problem space based on its nearest neighbors using the

transductive reasoning approach. Personalized modeling is tailored to solve

the problem for an individual data point rather than a general problem across

the whole data population.
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2.3.2 Global Modeling

Support vector machine (SVM) is one of the most popular global modeling ap-

proaches used in machine learning. SVM is a fast optimization algorithm that

achieves high-quality classification accuracy with few training samples. However,

in dealing with a large, high-dimensional data set, the kernel computation time re-

quired to train the SVM classifier is prohibitively long.

Support Vector Machine (SVM)

SVM is a supervised learning algorithm based on small-sample statistical learning

theory, was proposed by Vapnik (1998) and his co-workers. The algorithm has

been widely applied to classification and regression problems. In addition, it has

been successively extended by subsequence researchers. Adaptations of SVM in-

clude virtual-support vector machine (V-SVM) (Scholkopy & Smola, 2000), smooth

support vector machine (SSVM) (Lee & Mangasarian, 2001), Newton support vec-

tor machine (NSVM) (Fung & Mangasarian, 2004), and least square support vector

machine (LSSVM) (Suykens & Vandewalle, 1999).

The most widely used two SVM are linear SVM (Vapnik & Lerner, 1963) and non-

linear SVM (Aizerman & Braverman, 1964). In cases where the data are linearly

separable, SVM uses a hyperplane to separate a given set of training data, such

that the distance from the hyperplane to the data is maximized (also known as

“the maximum margin hyperplane”). If the data are non-linearly separable, SVM

cooperates with the non-linear “kernel function” that automatically maps the data

onto a feature space (possibly a high-dimensional feature space). Consequently, the

hyperplane in the high-dimensional feature space corresponds to a non-linear decision

boundary in the original input space.

Figure 2.5 displays the SVM process: the optimal hyperplane splits a set of vectors

in such a way that the vectors within two separate categories are placed on either

side of the plane.

Mathematically, the SVM can be formulated as the following equations, given a
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Figure 2.5: Overview of a simple SVM process.
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Figure 2.6: Overview of a simple linearly separable SVM.

two-class classification task:

D = {((x1, y1), . . . (xi, yi))|x ∈ Rn, y ∈ [−1, 1]}mi=1 (2.1)

where D is a given training data set, x is a n-dimensional vector, and y is the class

label that indicates the category of x.

As illustrated in Figure 2.6, when the data are linearly separable, the optimal hy-
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perplane is defined as:

wT(w1,...wn)
x+ b = 0 (2.2)

where w is the weight vector, and b is a scalar. Therefore, the optimal hyperplane

separates the vectors into two distinct classes. Furthermore, both w and b can be

constrained such that:

w(∧) = minL(w, b,∧) (2.3)

where L is the Lagrange function, and ∧ is the Lagrange multiplier. If w and b are

to be chosen to maximize the margin, the hyperplane in Eq.(2.2) can be re-defined

as:

wT(w1,...wn)
x+ b = 1 (2.4)

wT(w1,...wn)
x+ b = −1 (2.5)

Thus if the distance between the vectors belonging to the two different classes is max-

imized, those vectors are optimally separated by the hyperplanes given by Eq.(2.4)

and Eq.(2.5). From Eq.(2.3), the parameters w, ∧ and the optimal hyperplane are

related by:

w =
n∑
i=1

∧ixiyi (2.6)

Therefore, the classifying function can be defined as:

f(x) = wT(w1,...wn)
x+ b (2.7)

The result (either 1 or -1) obtained from Eq.(2.7) is ultimately used to assign a class

to vector x.

2.3.3 Local Modeling

Local models are usually adaptable to new data vector and more suited to ana-

lysis of individual cases than global models. Evolving classifier function (ECF) is a

representative approach for local modeling, was proposed by Kasabov (2002). The

special characteristics of ECF are: (1) fast incremental and online learning, and (2)
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dynamic allocation of rule nodes assists users in understanding and verifying the

model’s functionality.

Evolving Classifier Function (ECF)

As stated by Arbib (2003), traditional neural network models do not allow researchers

to discover new patterns from the data, because they are essentially “black boxes”.

Kasabov (2002) introduced a novel type of neural network model, called evolving

connectionist systems (ECOS) that enables fast incremental, online learning, as well

as rule extraction and rule adaptation. According to Kasabov (2007b), “Evolving

connectionist system (ECOS) is a connectionist architecture that facilitates modeling

of an evolving process and knowledge discovery”; which represents ECOS imparts

new information to neural network knowledge.

ECF is an implementation of ECOS that has been widely applied to pattern classi-

fication tasks. It comprises four layers of nodes (Kasabov, 2007b):

1. input variables;

2. fuzzy membership functions;

3. a set of data centers in the input space;

4. classes.

ECF produces rule nodes in a multi-dimensional input space, where each rule node

is identified by its radius, center and class. Figure 2.7 illustrates the classification of

data into clusters, where c denotes the class, vi is the ith data vector, and oj and rj

are the center and radius of node jth, respectively.

2.3.4 Personalized Modeling

The personalized modeling approach is a type of local modeling that is created for

each new input vector of the problem space, based on its nearest neighbors using the
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Data Vi

Class c1

x

rj

oj

Node

Class ci

Class c2 . . .

Figure 2.7: An example of clusters evolved in ECF for a robotics classification
task.

transductive reasoning approach (Kasabov, 2007c; Vapnik, 1998). The basic prin-

ciple and framework of personalized modeling is shown in Figure 2.8. Personalized

modeling involves as following steps (Kasabov & Hu, 2011):

1. Select a feature subset Si for the new input vector Vi from the given dataset

D (the global problem space);

2. Select a group of (K) nearest neighbors of Vi and allocate this group to a local

problem space Di;

3. Create a personalized model Mi for Vi, which consists of a learning function F
that measures the performance of Mi (e.g. a classifier);

4. Evaluate the feature subsets by the learning function based on the performance

evaluated within a personalized problem space Di;

5. Optimize personalized model Mi through iterations. The output is the optimal

or near-optimal solution to Vi, when the termination criteria are reached. The

solution includes an optimal personalized model M∗
i with a small set of features

S∗i ;

6. Use model M∗
i to evaluate Vi and output the result;
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7. Create a personalized profile for Vi.

New input vector Vi

Dataset D for training Feature selection

Dataset Di derived from D, based on the 

neighborhood of the new input vector Vi

A new personalized model Mi is created for the 

new input vector Vi

Evaluate the performance of the new 

personalized model Mi  

termination 

criteria

Output Yi

Evolve a personalized model Mi

No

Yes

Figure 2.8: Flowchart of personalized modeling.

Several personalized modeling algorithms have been developed to date. such as k-

nearest neighbor (KNN) is the simplest nearest neighbor algorithm and has been ex-

tended to weighted k-nearest neighbor (WKNN) (Dudani, 1976), weighted-weighted

k-nearest neighbor (WWKNN) (Kasabov, 2007c), and transductive neuro-fuzzy in-

ference system with weighted data normalization (TWNFI) (Song & Kasabov, 2006).

These methods are described below.

K-Nearest Neighbor (KNN)

KNN has been successfully used for classifying sets of samples based on nearest

training samples in a multi-dimensional feature space (Fix & Hodges, 1951). The

basic idea behind the KNN algorithm is:

1. Data points are specified by feature pairs, set of pairs (e.g. (x1, y1), . . . , (xn, yn)),

and each data points is assigned a class label C = c1, . . . , cn;
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2. Similarity of the data points (considering all features) is measured by a chosen

distance measurement (e.g. Euclidean distance (Eq.(2.8)), or Manhattan dis-

tance (Eq.(2.9)));

3. From the distance measurements, the k-nearest neighbors are found for a target

data point. The data point is classified by majority voting rule.

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2.8)

d(x, y) =
n∑
i=1

|xi − yi| (2.9)

A overview of KNN is presented in Figure 2.9. If k=5, the target vector v is classified

into class 1 based on the classification of its five nearest neighbors.

X

Y

V

Class1

Class2

Figure 2.9: An example of the KNN classification task. Each vector is represen-
ted by a two dimensional point within a Euclidean space.

Weighted K-Nearest Neighbor (WKNN)

WKNN evaluates the output of a model focusing solely on an individual point in

a problem space using information related to this point. In the WKNN algorithm,

each new input vector is fitted to a local rather than a global model; thus each new

input vector can be matched to an individual model without considering specific
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information on existing vectors. In contrast to KNN, the output of a new input

vector depends on the outputs of its k-nearest neighbor vectors, but also on the

distance between these vectors and the new input vector, which is represented as a

weight distance vector w.

Mathematically, the WKNN algorithm is expressed as:

Output =
∑

j=1,...,ki

wjyj (2.10)

where ki represents the number of nearest neighbors, and wj denotes the weight,

calculated as:

wj =
max(d)− (dj −min(d))

max(d)
(2.11)

where d = [d1, . . . , dki ] represents the distance between the new input vector and ki.

The parameters max(d) and min(d) represent the maximum and minimum values

in d, respectively.

Weighted-Weighted K-Nearest Neighbor (WWKNN)

WWKNN is a novel personalized modeling algorithm is proposed by Kasabov (2007c).

In this algorithm, the output of each new input vector depend not only on the out-

puts of its k-nearest neighbors, and the distance between the existing vectors and

the new input vector, but also on the power of each vector, which is weighted by

its importance within the sub-space (local space) to which the new input vector be-

longs. We assume that all the variables from a data set are used and that distances

between vectors are calculated in a v-dimensional space with all input variables hav-

ing equal impact on the output variables. However, the importance of different vari-

ables might vary when classifying vectors into classes, if these variables are ranked

by their discriminative power in classifying vectors over the entire v-dimensional Eu-

clidean space. We note that the discriminative power of variables within a sub-space

of the problem space may vary. The output of each new input vector is then assigned

a power ranking within the neighborhood of k-nearest neighbor vectors.
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The WWKNN algorithm uses the following formulas:

dj =

√√√√ k∑
l=1...n

Ci,l(xl − xj,l)2 (2.12)

Ci = (Ci,l, . . . Ci,n) (2.13)

where dj is the distance between the new input vector xi and its nearest neighbor

vector xj, k represents the number of nearest neighbors, and Ci,l is the weighing

coefficient between variable xl and its nearest neighbor vector xi. Each variable is

ranked across all vectors in Di by signal-to-noise-ratio (SNR) supervised method:

Ci,l =
S1∑

S1(l = 1, 2, . . . n)
(2.14)

S1 =
|x(class1)1 − x(class2)1 |

Std
(class1)
1 + Std

(class2)
1

(2.15)

where the parameters x
(class1)
1 and x

(class2)
1 represent the means of variable x from

Class 1 and Class 2, respectively. The parameters Std
(class1)
1 and Std

(class2)
1 represent

the standard deviations of Class 1 and Class 2 variables, respectively, in dataset Di.

Transductive Neuro-Fuzzy Inference System with Weighted Data Nor-

malization (TWNFI)

TWNFI is a dynamic neuro-fuzzy inference system with local generalization (Song

& Kasabov, 2006), designed for solving problems requiring individual modeling ana-

lysis. This method creates a learning model based on the neighborhood of a new

data vector, and calculates the output by applying the trained model on the new

data.

In the TWNFI model, Gaussian fuzzy membership functions are used in each fuzzy

rule for both antecedent and consequent parts. The parameters of the fuzzy mem-

bership functions are optimized by applying a steepest descent (back-propagation)

learning algorithm (C. T. Lin & Lee, 1996; Wang, 1994). The distance between two

21



2.3. Global, Local and Personalized Modeling

vectors a and b is computed using weighted normalized Euclidean distance defined as

follows:

‖a− b‖ = [
1

p

p∑
j=1

wi|aj − bj|2]
1

2
(2.16)

where wj is the weight vector reflecting the importance of the variables to the spe-

cified problem.

Figure 2.10 is a general block diagram of the TWNFI algorithm. The algorithm is

executed as follows:

1. Normalize the training data set and the new data vector Vi (range [0, 1]); set

the initial weight for every input variable to 1;

2. Find Nv training samples (within an appropriate neighborhood Dv) that are

closest to Vi, using the weighted normalized Euclidean distance defined in Eq.

(2.16);

3. Compute the distances between theNv training samples and Vi: di, i = 1, 2, . . . , Nv,

using Eq. (2.16), and calculate the weights for each sample: wi = 1 − (di −
min(d)), i = 1, 2, . . . , Nv, min(d) is the minimum element in the distance vector

d = [d1, d2, . . . , dNv ];

4. Cluster and partition the input subspace comprising the Nv selected training

samples; create fuzzy rules and set their initial parameter values based on the

clustering results. In each fuzzy rule, the centroid of a cluster is the center of

the fuzzy membership function (e.g. Gaussian membership function) and the

cluster radius is taken as the width;

5. Apply the steepest descent (back-propagation) approach to optimize the weights

and the parameters of the fuzzy rules in a local model Mv;

6. Find a new neighborhood set D∗v closest to Vi (Step 2): if the set contains the

same samples as were found the previous search, the algorithm advances to the

next step; otherwise, it repeats from Step 3;

7. Calculate the output value Yv for the input vector Vi applying fuzzy inference

over the set of fuzzy rules that constitute the local model Mv;

8. Algorithm terminates.
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Figure 2.10: A general block diagram of the TWNFI algorithm.

The weights and parameters can be optimized as follows: Consider a system with

V inputs, one output and M fuzzy rules initially defined by a clustering algorithm.

The lth rule is formed as:

Rl: if xl is in Fl1, x2 is in Fl2 and . . . xv is in Flv, then y is in Gl, where Flj are the

fuzzy sets defined by the following Gaussian membership function:

Gaussian MF = α exp(−(x−m)2

2σ2
) (2.17)

and Gl is defined as:

Gaussian MF = exp(−(y − n)2

2δ2
) (2.18)

Thus, given an input vector xi = [x1, x2, . . . , xv], the output can be calculated by a
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modified center average defuzzification function as:

f(xi) =

∑M
l=1

nl
δ2l

∏V
j=1 αli exp[−

w2
j (xij−mli)2

2σ2
lj

]∑M
l=1

1
δ2l

∏V
j=1 αli exp[−

w2
j (xij−mli)2

2σ2
lj

]
(2.19)

2.4 Open Questions in Personalized Modeling

Personalized modeling is an emerging technique applied in many disciplines, partic-

ularly the biomedical fields. However, numerous open questions must be addressed

before a truly efficient personalized modeling system can be developed for data ana-

lysis. This section reviews a number of techniques relevant to the study, such as

feature selection procedures, cross-validation techniques, performance measures and

parameter optimization.

2.4.1 Feature Selection

In general, feature selection is regarded as a fundamental step in data mining, uses

specific learning algorithms to find an optimal set of features among a given feature

set. Throughout the past few years, feature selection techniques in machine learning

have attracted much attention, and have become especially important in bioinform-

atics applications. Currently, this technique is applied in diverse fields, such as data

mining (M. Chen, Han & Yu, 1996; Provost & Kolluri, 1999), pattern recognition

(Ferri, Pudil, Hatef & Kittler, 1994), and text learning (Y. Yang & Pedersen, 1997).

The primary goals of this technique are:

1. To improve classification or prediction accuracy;

2. To enhance speed and reduce the cost of learning stages;

3. To avoid over-fitting and improve classification or prediction model perform-

ance;

4. To reduce the dimensionality of the feature space and to identify the relevant

features to be applied for a successful classification or prediction task.
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In general, feature selection techniques are organized into two categories: filter and

wrapper, depending on whether or not the selection method includes a learning func-

tion.

Filter Method

In a filter method, feature selection and classifier learning are separated in a feature

subset, which means that features are selected prior to classification by a separate

model. This type of feature selection approach is independent of machine learning

algorithm. Figure 2.11 presents the basic structure of a simple filter model. Feature

selection starts with a given training set characterized by the full feature set. Various

feature subsets are generated and evaluated by the feature subset generator and

evaluator. The final specific feature subset is evaluated by training and testing a

specific classification model. Finally, ultimate classification accuracy is estimated

from the test set.

Training Set

Feature Subset Generator Feature Subset Evaluator

Feature Set

Performance Estimation

Selected Feature Subset

Training Testing

Inductive 
Algorithm

Final Evaluation
Final Accuracy

Figure 2.11: Basic structure of a simple filter model.

Filter feature selection is one of the simplest and most commonly used feature se-
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lection techniques in microarray literature. The advantages of this model are that

feature selection requires no machine learning process, and the model is time econom-

ical compared to the wrapper model. However, a major drawback of this method is

that feature interactions are ignored, which compromises classification performance.

A typical type of filter model is signal-to-noise ratio (SNR) ranking procedure (see

Eq.(2.15)). SNR is a supervised method, in which each variable is assigned a rank-

ing number that indicates how well the variable distinguishes two different classes.

Moreover, SNR can efficiently reduce the dimensionality of a data set. Basically, this

approach begins with the evaluation of an individual feature and iteratively examines

the remaining features in terms of statistic ranking score.

Wrapper Method

In the wrapper method, a feature subset procedure is defined, and various feature

subsets are generated and evaluated using a feature subset generator and evaluator,

respectively. Specific feature subsets are evaluated by training and testing with a

specific classification model. The entire feature subset space is then searched by a

search algorithm wrapped around the classification model. Figure 2.12 demonstrates

the basic structure of a simple wrapper model.

The advantages of the wrapper method are that the features’ importance is evaluated

by a learning function, leading to much higher performance compared to the filter

method. However, the method is more computationally expensive than the filter

method, and the evaluation results depend largely on the inductive algorithm (also

known as the central machine learning algorithm).

2.4.2 Cross-Validation Techniques

The choice of data splitting/sampling strategy is critical for the verification of fi-

nal experimental results (BragaNeto & Hashimoto, 2004; Allison & Cui, 2006).

Currently, cross-validation is the most popular data splitting method, having been

successfully applied to microarray data analysis, performance evaluation of neural

networks, and generalization ability estimation of a classifier (also known as gener-

alization error).

26



2.4. Open Questions in Personalized Modeling
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Feature Subset Evaluator
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HypothesisFeature Set
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Algorithm

Final Evaluation
Final Accuracy

Figure 2.12: Basic structure of a simple wrapper model.

Cross-validation (also called “rotation estimation”) is defined as an optimal method

for measuring the extent to which statistical analysis results can generalize to an

independent data set. The available training set is split into two parts: a training

set to train the model, and a testing set to estimate the performance of the trained

model. The primary goal of this method to reduce generalization error and the

possibility of over-fitting is generally accomplished by sequentially omitting parts

of the original sample in the available data set prior to perform a multi-variable

analysis. The process iterates until all samples in the data set have been estimated

(Ransohoff, 2004). A brief overview of two common cross-validation techniques is

presented below.
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K-fold Cross-Validation

In K-fold cross-validation, the entire data set is randomly divided into K equal-

sized subsets. For each of K experiments, the model is tested on an individual

sub-sample, while the remaining K-1 sub-samples serve as training data. Cross-

validation is iterated K times/folds (commonly 10-fold is used) with each of the K

sub-samples being estimated exactly once as the testing data (Figure 2.13 shows

a general K-fold cross-validation process). Once all samples have been estimated,

the overall generalization error is calculated as the average error rate across the K

experiments.

Experiment 1

. . .

All samples in the data set

Experiment 2

Experiment 3

Experiment K

Testing samples

Figure 2.13: Overview of a general K-fold cross-validation process.

The advantage of this method is that all samples are used as both training and

testing data, and each sample is validated exactly once. On the other hand, the

disadvantage of this method is the training process needs to be repeated by K times

computations to make an evaluation.

Leave-One-Out Cross-Validation (LOOCV)

The LOOCV algorithm proposed by Craven and Wahba (1979), is an almost unbiased

validation schema for the optimal generalization ability of a classifier. LOOCV is a

type of K-fold cross-validation, in which the number of folds (K) equals the number

of samples (N) in an available data set. In each experiment, this algorithm uses N-1

samples for training and the remaining sample for testing. Thus, the LOOCV process

is repeated N times, until every sample in the available data has been trained except
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that which is left out for testing (Figure 2.14 shows the general LOOCV process).

The final result is the average performance of the N experiments.

Experiment 1

. . .

All samples in the data set

Experiment 2

Experiment 3

Experiment N

A single testing sample

Figure 2.14: Overview of a general leave-one-out cross-validation process.

The method ensures economical use of the available data as each pattern is used

as both training and testing data. However, the algorithm is very computationally

expensive when applied to neural networks due to the large repeat number of the

training process.

2.4.3 Performance Measurement

Machine Learning has recently benefited from attention to the performance measures

used in classification. Evaluation of learning algorithms concentrates on two goals:

algorithm comparison and the applicability of algorithms on specific domains. Vari-

ous measuring techniques have been developed to evaluate classifier performance,

the most popular being the confusion matrix and receiver operating characteristic

(ROC).

Confusion Matrix

In general, the performance of a classification model is evaluated from counts of

correct and incorrect model predictions. The counts are typically evaluated by a

confusion matrix as illustrated in Figure 2.15: The columns represent the predicted

class, while the rows represent the actual class. True Positive (TP) and True Negative
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(TN) are the correct predictions, while False Positive (FP) and False Negative (FN)

are the incorrect predictions.

Predicted Class

Class 1 Class 2

True Positive

(TP)
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(FN)

True Negative

(TN)

Figure 2.15: Confusion matrix for 2-class classification problem.

Although a confusion matrix provides the necessary information for evaluating clas-

sification model performance. The performance of different models can be more

conveniently compared by summarizing this information as a single number termed

the Accuracy.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.20)

Equivalently, the performance of a classification model can be evaluated terms of

Error rate (1-Accuracy):

Error rate =
FP + FN

TP + TN + FP + FN
(2.21)

Receiver Operating Characteristic (ROC)

Receiver operating characteristic (ROC) first deployed by electrical and radar engin-

eers during World War II to detect enemy objects in battle fields, is also known as

signal detection theory. In a pioneering study, Spackman (1989) applied ROC curves

in machine learning tasks.

More recently, the ROC curve has become extensively studied in medical decision

making field, such as radiology (Obuchowski, 2003; Eng, 2005), bioinformatics (Lasko,
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Bhagwat, Zou & Ohno Machado, 2005), and epidemiology (Shapiro, 1999).

In a ROC curve, the true positive rate (Sensitivity) is plotted as a function of the false

positive rate (1-Specificity) for different cut-off points of a specified parameter. Each

point on the ROC curve represents a sensitivity/specificity pair corresponding to a

particular decision threshold. The area under the ROC curve is a measure of how well

a parameter can distinguish between two diagnostic groups (e.g. healthy/diseased).

Sensitivity and specificity are defined as follows:

• Sensitivity: the population of correctly identified diseased individuals.

• Specificity: the population of correctly identified healthy individuals.

Figure 2.16 illustrates a typical example of ROC test results for two populations,

designated healthy and diseased groups.

TN

FN FP

TP

Normal Group Diseased Group

Figure 2.16: An example of ROC test results for two populations.

As shown in the figure, for every possible cut-off point selected to discriminate

between the two groups, some diseased cases will likely be classified as healthy (FN

= False Negative fraction), while others will be correctly classified as diseased (TP

= True Positive fraction). On the other hand, some healthy cases will be correctly

classified as healthy (TN = True Negative fraction), while others will be classified as

diseased (FP = False Positive fraction).

In a ROC curve, FP is plotted on the X axis and TP is plotted on the Y axis. The

blue line connecting the stars is a computed ROC curve, while the red solid line

represents the perfect classification (see Figure 2.17). In general, the lower left point

(0,0) represents the strategy of never issuing a positive classification, whereas the
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Figure 2.17: An example of ROC curve.

upper right point (1,1) represents the opposite strategy of unconditionally issuing

positive classification. In addition, the point (0,1) represents perfect classification.

2.4.4 Parameter Optimization

Personalized modeling construction is a complex process that requires evolving and

adaptive computational techniques. However, several open questions are raised dur-

ing the implementation of the personalized modeling framework, including:

• Which features are significant for every new input vector?

• How many nearest neighbors should be selected for every new input vector?

• How to find the best combination of model parameters for the learning function

(e.g a classifier)?

Hence, finding an efficient solution to optimize parameters becomes a formidable

challenge personalized modeling development. Metaheuristic algorithms are available

for solving such problems, and numerous methods for continuous optimization and
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heuristics for discrete problems have been developed (Blum & Roli, 2003; T. Y. Chen

& Cheng, 2008; X. S. Yang, 2008, 2010). The Greek word heuristic means “to find”

or “to discover”. According to Russell and Norvig (1995), “Heuristics are techniques

which seek good (near-optimal) solutions at a reasonable computational cost without

being able to guarantee either feasibility or optimality, or even in many cases to state

how close to optimality a particular feasible solution is.” The heuristic methods

include population based, iterative based, stochastic, and deterministic.

In this study, a novel integrated evolving personalized modeling system and frame-

work (evoPM) using a new population-based optimization approach termed gravita-

tional search algorithm (GSA) is proposed. The purpose is to improve the robustness

and generalisability of feature, neighborhood selection, and model and its parameters

selection. The framework will be applied to classification, diagnostic and prognostic

problems. The concept of GSA is introduced in Chapter 4.

2.5 Summary

This chapter compares the inductive and transductive inference approaches, includ-

ing their operation and areas of application. In addition, it reviews global, local and

personalized modeling approaches, explaining the basic theory behind these three

approaches and the popular methods of implementing each approach. The inductive

approach creates a global model derived from an entire problem space. The obtained

model is then applied to every new input data point. In contrast, the transducive ap-

proach creates a local model for every new input data based on its nearest neighbors

within the existing problem space. Personalized modeling is a type of local modeling

that is tailored to an individual vector of the problem space.

More importantly, this chapter discusses several open questions that arise when

implementing personalized modeling, such the appropriate data splitting strategy,

how the performance of a classifier should be measured, and how to select optimal

sets of feature selection, neighborhood and model parameters optimization. These

questions and issues will be further studied and addressed in the remainder of this

study.

One goal of this study is to further develop the personalized modeling framework
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2.5. Summary

introduced by Kasabov (2007b). To this end, a new method must be established for

improved prognostic decision support. The next chapter introduces two emerging

contemporary neural models: spiking neural network (SNN) and its extended version,

termed evolving spiking neural network (eSNN). The eSNN method will be applied

as a classifier to develop the novel intergraded personalized modeling system and

framework (evoPM).
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CHAPTER 3

Neural Networks (NN)

3.1 Introduction

The remarkable information processing capabilities of the brain have inspired numer-

ous mathematical descriptions of biological neurons. “Neural Network” (NN), also

known as artificial neural network (ANN), is a hardware or software computational

model that mimics information processing by the biological nervous systems, such as

the brain. A number of ANN models have been successfully developed and applied

across different disciplines, including medical and business decision support, time

series prediction, and pattern recognition. (Kasabov, 2010). However, current ANN

models perform rather poorly when applied to complex stochastic and dynamic pro-

cesses such as biological, environmental, and brain disease process. For this reason,

the development of more accurate and efficient biological neural networks is essential

to knowledge discovery and information processing.

This chapter provides a brief review of two emerging contemporary neural mod-

els: spiking neural network (SNN) and its extended version evolving spiking neural

network (eSNN). Since numerous spatio-temporal stroke data have been collected

and are available for research purposes. Suitable techniques to properly analyze

and process this complex information are imperative. This chapter also introduces



3.2. Biological Neurons

two recently proposed methods for spatio-temporal pattern recognition, namely the

extended eSNN framework (EESNN) (Hamed et al., 2011) and the recurrent net-

work reservoir structure of eSNN (reSNN), which uses liquid state machine (LSM)

(Schliebs et al., 2011).

3.2 Biological Neurons

Its the center of the nervous system, the brain is extremely complex. The cerebral

cortex of the human brain contains roughly 15−33 billion neurons, perhaps more,

depending on gender and age, each linked by up to 10,000 synaptic connections.

The neuron is the fundamental unit of the nervous system. The essential role of

a neuron is to receive incoming information and based on that information send a

signal to other neurons, muscles, or glands. Neurons are designed to rapidly send

signals across physiologically long distances. Despite the diversing of shapes and

sizes, typical vertebrate neurons are characterized by four functionally distinct parts:

dendrites, soma, synapse and axon.

Essentially, the dendrites play the role of the ‘input device’ that collects signals from

other neurons and transmits them to the soma. The main part of the neuron, soma

contains the genetic information: if the total input exceeds a certain threshold, an

output signal is generated. The output signal is intercepted by the ‘output device’,

the axon, which delivers the signal to other neurons. The junction between two

neurons (the synapse) transfers signals between two neurons. A typical biological

neuron in the human brain is illustrated in Figure 3.1.

As is well-known, our brain is an exceptionally complex organ, yet we lack com-

plete understanding of even a single neuron’s functionality. In recent years, many

neural networks researchers have brought their attention to develop more realistic

computational neuron models inspired by biological neurons. The ultimate aim is

to investigate and model the functionalities of the brain. Such are the cases of the

first generation of ANN, the second generation of Neurons, and the third genera-

tion of SNN. These models have been applied successfully to diverse fields such as

engineering, computer science, and physics.
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Synapse
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Figure 3.1: Schematic drawing of a typical biological neuron (Adam, 2005).

3.3 Evolving Connectionist Systems (ECOS)

“Evolving” is defined as revealing or developing over time in a continuous manner

(Kasabov, 2002). Evolving processes are difficult to model as no prior knowledge

may exist for some parameters, the results may not be long-term predictable, and

unexpected changes might occur at some stage of the development. Thus to facilitate

the modeling of evolving processes and knowledge discovery, a novel type of neural

network model is proposed, based on the concept of evolving connectionist systems

(ECOS) (Kasabov, 2002).

ECOS is an adaptive, incremental learning and knowledge representation system that

evolves in structure and functionality. The core of the system contains a connectionist

architecture consists of interconnected neural networks. ECOS learns local models

from data through a set of clusters, where each cluster associated with a local output

function. Cluster creation is based on the similarity between data samples in the

input space or in both input and output space.

Thus far, several ECOS models have been developed, such as evolving classifier

function (ECF) (Kasabov, 2002), dynamic evolving neuro-fuzzy inference (DENFIS)

(Kasabov & Song, 2002), and evolving fuzzy neural networks (EFuNNs) (Kasabov,

2002). The eSNN is also based on the principle of ECOS. More information on ECOS

can be found in (Kasabov, 1998) and (Watts, 2009).
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3.4. Spiking Neural Networks (SNN)

3.4 Spiking Neural Networks (SNN)

Wolfgang Maass (1997) describes past and current neuron models into three gener-

ations. Spiking neural networks (SNNs) is the third generation of neural network

models, such models are complex and biologically plausible connectionist model be-

longing to the ECOS family. All SNN models are compiled from artificial spiking

neurons that represent and process pulse-coded information. Figure 3.2 is a simplified

diagram of a spiking neuron model.

Figure 3.2: Simplified diagram of spiking neuron model.

A SNN comprises an encoding method, a neuron model, and a learning method,

elucidated as follows:

3.4.1 Design of Encoding

The fundamental problem of any information processing system is information trans-

mission. Biologists have known for over 100 years that neurons transmit information

using electrical signals, but the code by which they transmit remains a challenging

issue of neuronal coding. Traditionally, neuronal coding is achieved by one of two

schemes: rate code and spike/pulse code.
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3.4. Spiking Neural Networks (SNN)

Rate Code

Rate coding sometimes called frequency coding, assumes that the frequency or rate

of spike firing increases with rising stimulus intensity.

A crucial factor in rate coding is precise computation of the firing rate. Firing

rate may be conceptualized in different ways, depending on the selected averaging

procedure. One averaging procedure (shown in Figure 3.3) is to average over a

population of neurons (rate as a population activity).

A

Post-

Synaptic 

Neuron

Population of 

Neurons

B
1

2

. . .

N
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Figure 3.3: A - A post-synaptic neuron receives spike input from a sub-population
of active pre-synaptic neurons; B - The population activity is calculated as the
fraction of neurons that are active within a short time interval [t, t+ ∆t], divided
by the time period ∆t and the population size N

A post-synaptic neuron receives spike input from the population of pre-synaptic

neurons that are active. The population activity is defined as the fraction of neurons

that are active within a short time interval [t, t+ ∆t], divided by the time period ∆t

and the population size N :

A =
1

∆t

nact(t, t+ ∆t)

N
(3.1)

where ∆t represents the time period; N is the total number of neurons in the popu-

lation; and nact(t, t+ ∆t) is the number of active spikes triggered within the interval

[t, t + ∆t]. The population activity may vary rapidly, allowing fast responses of the

neurons to changes in stimulus (Gerstner, 2000).
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3.4. Spiking Neural Networks (SNN)

Spike/Pulse code

Spike/Pulse coding also known as time-to-first-spike, is the second classical scheme of

neuronal coding (see Figure 3.4). Its conception was inspired by the visual processing

of the human eye. In a pure version of this coding scheme, each neuron transmits

information by firing a single spike. If a neuron emits several spikes, the first spike

after the reference signal is transmitted; succeeding spikes are ignored. As mentioned

by Thorpe et al. (1996), the brain lacks sufficient time to evaluate more than one

spike per neuron per processing step. Therefore the first spike should contain most of

the relevant information. Since each neuron transmits exactly one spike per stimulus,

information is clearly conveyed by timing rather than by spike numbers.

Stimulus

Figure 3.4: Diagram of time-to-first spike. The second neuron from the top is
the first one to fire a spike following a stimulus. The dashed line indicates the time
course of the stimulus.

The important consideration in spike/pulse coding are synchrony and correlation.

The neurons representing a similar concept, object or label are “labeled” as firing

synchronously (Malsburg, 1981). More generally, any precise spatio-temporal pulse

pattern is potentially meaningful and could encode information. Neurons that fire

with a specific relative time delay may signify a certain stimulus. An application

of spike/pulse coding is population rank order encoding, introduced in the following

section.

3.4.2 Neuron Model

To date, the activities of biological neurons have been described in numerous math-

ematical models. Since neurons are believed to communicate via action potentials,
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3.4. Spiking Neural Networks (SNN)

these models express neuronal behavior in terms of membrane potential and action

potential.

Among the existing neuron models of SNN are the Hodgkin Huxley model (Hodgkin

& Huxley, 1952), spike response model (Gerstner, 1995; Kistler & Gerstner, 1997;

Gerstner & Kistler, 2002a), integrate-and-fire model (Gerstner & Kistler, 2002a;

Maass & Bishop, 1999), and Izhikevich model (Izhikevich, 2004, 2007; Izhikevich &

Edelman, 2008). This section provides a brief overview of the leaky integrate-and-fire

(LIF) model probably the best-known and widely used spiking neuron model. The

desirable feature of LIF include clarity of coding, enabling of mathematical analysis

of network dynamics, and relatively efficient simulation of large networks.

Leaky Integrate-and-Fire (LIF) Model

The LIF model is a simple model proposed by Louis Lapicque (1907). LIF is still

extensively used to understand the behavior of many excitable systems. Lapicque

modeled the neuron as an electric circuit consisting of a capacitor C in parallel with

a resistor R driven by an external current I(t), where both C and R are assumed

constant (see Figure 3.5).

)(tI

C R

V Spike Train

Figure 3.5: Illustration of a leaky integrate and fire model. The discrete pulses
of the rate neuron are replaced by a continuous output rate.

The current I(t) is split into two components:

I(t) = IR + IC (3.2)

where IC charges the capacitor C and IR is the current passing through the resistor

R. IC = C du
dt

in terms of capacitance, IC is expressed as where u is the voltage

across the capacitor (equal to voltage across R). IR is calculated from Ohm’s law as

41



3.4. Spiking Neural Networks (SNN)

IR = u
R

. Thus we obtain

I(t) =
u(t)

R
+ C

du

dt
(3.3)

The voltage u(t) across the capacitor represents the membrane potential. The voltage

scale is chosen such that u(t) = 0 is the resting potential. The temporal evolution of

u(t) is:

Tm
du

dt
= −u(t) +RI(t) (3.4)

where Tm is the membrane time constant of the neuron, and u is the membrane

potential.

The form of an action potential in the integrate-and-fire model is not given explicitly.

Spikes are events characterized by a firing time t(f):

t(f) : u(t(f)) = ϑ (3.5)

That is, the membrane potential u(t) is compared with the threshold value ϑ. If

u(t) = ϑ in time t(f), then an action potential is output.

Once a spike has fired, the next spike cannot occur during the refractory period, in

other words, the potential is reset to a new value ureset < ϑ.

lim
t→t(f),t>t(f)

u(t) = ureset (3.6)

In fact, Thorpe’s neuron model is the simplified LIF model, the general idea of this

model is introduced in a later section.

3.4.3 Learning Algorithm

Learning how to recognize the temporal information contained in spike trains is

a crucial factor in SNN. Various SNN learning algorithms have been proposed to

date, enabling spike trains to be processed in close to real-time (Hopfield & Brody,

2000, 2001; Maass, Natschlager & Markram, 2003). Similarly to traditional neural

networks, learning in SNN may be: supervised or unsupervised (Kasinski & Ponulak,

2006).
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3.4. Spiking Neural Networks (SNN)

Spike Time Dependent Plasticity (STDP)

The most commonly used unsupervised learning rule in SNN is STDP derived from

Hebbs law (Hebb, 1949). STDP embodies long-term potentiation (LTP) and depres-

sion (LTD), where depends on the output of a neuron spike time and transmission

time. Efficacy of synapses is strengthened or weakened based on the relative tim-

ing between post-synaptic action potential and pre-synaptic spike. Through STDP,

connected neurons learn consecutive temporal associations from data and new con-

nections are evolved. If a pre-synaptic spike arrives at the synapse before the post-

synaptic action potential, the synapse is potentiated as long-term potential (LTP);

reversing this temporal order causes long-term depression (LTD) (Kempter, Gerstner

& van Hemmen, 1999; Bi & Poo, 2001; Gerstner & Kistler, 2002b).

Mathematically, the function W (tpre − tpost), also referred to as the STDP window

describes the STDP learning rule. The change of synaptic weight depends on the

difference between the arrival time tpre of a pre-synaptic spike and the time tpost of

an action potential emitted by the neuron.

W (tpre − tpost) =

{
A+exp(

tpre−tpost
τ+

) if tpre < tpost

A−exp(− tpre−tpost
τ−

) if tpre > tpost
(3.7)

where parameters τ+ and τ− represent the time interval of the pre-synaptic and post-

synaptic activity, respectively; and A+ and A− indicate the maximum fractions of

synaptic modification at tpre − tpost close to zero.

3.4.4 Liquid State Machine (LSM)

Liquid state machine (LSM) can be best explained by a simple example: imagine

a rock and a pond and throw the rock into the water. In fact, the rock is a low-

dimensional temporal input: the rock and throw have some properties but these are

only expressed very briefly. The resulting splash and ripples that are created can be

seen as the reaction, or liquid state. These ripples propagate over the water’s surface

for a while and will interact with the ripples caused by other recent events. The

water can thus be said to retain and integrate information about recent events, so

if we’re somehow able to read the water’s surface we can extract information about
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what has been recently going on in this pond. We refer to this trained spectator as a

readout unit that we can ask at any one time what’s going on in the pond, provided

that we can show him a picture of the water’s surface.

In general, LSM consists of two separate components: the liquid, which yields a com-

plex time-varying vector state; and the readout function is a memory-free subsystem

that extracts information from the liquid. Figure 3.6 is a schematic of the LSM: a

reservoir of recurrently interacting nodes is stimulated by the input u(t), a liquid

state x(t) is extracted and a readout function f converts the high-dimensional liquid

state x(t) into the desired output y(t) for the given task.

Input )( tu

. . . 

Liquid

Liquid State )(tX

Readout f

. . . 

Output )(ty

Figure 3.6: Architecture of the liquid state machine (LSM).

The LSM is a network of spiking neurons that can map complex spatio-temporal data

(STD) into a high dimensional space where new patterns can be recognized from the

firing of hundreds of thousands of neurons (Maass, Natschlager & Markram, 2002).

It is a novel computation learning paradigm based on the transient dynamics of

recurrent neural circuitry. As a form of reservoir computing, it constructs a recurrent

neural network of spiking neurons, for which all parameters (such as connectivity,

neural parameters, and synaptic weights) are randomly chosen and fixed during

simulation.

As mentioned in the literature (Destexhe & Contreras, 2006; Yamazaki & Tanaka,

44



3.4. Spiking Neural Networks (SNN)

2007), some parts of the mammalian brain might act as a liquid generator while others

learn how to interpret the liquid perturbations caused by external sensory stimuli.

From this viewpoint, LSM mimics brain-like information processing, analysis may

lead to very powerful computational tools, as well as providing further insights into

the functioning of the mammalian brain.

The concept of reservoir as proposed by Maass et al. (2002) is composed of LIF

neurons. When the network inputs are transferred into a high-dimensional space,

they become easily separated. Thus, a readout function maps reservoir states into

a desired class label. Because it uses recurrent networks, the reservoir can process

temporal information present in the input signals. LSM integrated with the reservoir

paradigm is becoming a popular means of processing STD.

3.4.5 Applications of SNN

SNN has been increasingly applied in various disciplines for solving complicated pre-

diction and classification problems, such as speech recognition (Yau, Kumar & Ar-

junan, 2007), audio and video analysis (Fyfe, Barbakh, Ooi & Ko, 2008; Tsapatsoulis,

Rapantzikos & Pattichis, 2007), and financial forecasting (Schneider & Graupe,

2008).

Currently, SNN is becoming to be a powerful computational tool that can diagnose

and monitor the prognosis of a disease. Over 500 papers on neural network applica-

tions in medicine are now published per year (Gant, Rodway & Wyatt, 2001). SNN

has been successfully used in breast cancer diagnosis (Kiyan & Yildirim, 2003), as-

sessing prognoses for patients with congestive heart failure (Cowburn, Cleland, Coats

& Komajda, 1996), predicting the risk of death for lung cancer patients (Bartfay,

Mackillop & Pater, 2006), and predicting functional outcome associated with clinical

variables of stroke rehabilitation (Oczkowski & Barreca, 1997).

As identified in some existing studies, the predictive accuracy of SNN is strong

compared to that of the classical approaches. However, the ability of current SNN

models to solve complex real world problems is limited. Therefore, novel SNN models

are required.
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3.5 Evolving Spiking Neural Networks (eSNN)

SNN has been successfully extended to eSNN which is modeled on the neural pro-

cessing of the human eye. Proposed by Wysoski, Benuskova and Kasabov (2006),

eSNN performs considerably better than previously published models in solving com-

plex classification tasks, including taste recognition (Soltic, Wysoski & Kasabov,

2008), face recognition (Wysoski, Benuskova & Kasabov, 2008), and person authen-

tication based on audiovisual information (Wysoski, Benuskova & Kasabov, 2007).

A simplified diagram of evolving spiking neuron model is shown in Figure 3.7.

eSNN

    

. . . 

    

. . . 
. . . 

Receptive Fields Pre-synaptic 

Neurons

Output Neuron 

Repository

Class 1

Class 2

Figure 3.7: Simplified diagram of evolving spiking neuron model.

Like SNN, an eSNN model consists of an encoding method for transforming the

real-valued data into a spike train, a neuron model, and a learning method.

3.5.1 Population Rank Order Encoding

Because information in an eSNN model is represented as series of spikes, real-valued

data inputs must first be converted into spike train. A number of SNN encoding

methods have been proposed such as poisson processes, rank order encoding, and

frequency mappings.

A well-know eSNN encoding method is population rank order encoding, where a
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single input value is encoded into multiple pre-synaptic neurons M. Each pre-synaptic

neuron generates a spike at a certain firing time. Analogous to arrays of receptive

fields, Bohte et al. (2002) suggest that the firing time could be calculated from the

intersection of a Gaussian function and a neuron. This encoding approach allows

the encoding of continuous values by using a population of neurons with overlapping

sensitivity profiles. The Gaussian center and width are computed from Equations

3.8 and 3.9 respectively, where the variable interval is [lmin, lmax]. The parameter

β controls the width of each Gaussian receptive field. Figure 3.8 illustrates the

operation of population rank order encoding.

Figure 3.8: Population rank order encoding based on Gaussian receptive fields.

µ = lmin +
2i− 3

2

lmax − lmin
M − 2

(3.8)

σ =
1

β

lmax − lmin
M − 2

, 1 ≤ β ≤ 2 (3.9)

3.5.2 Spiking Neuron Model based on Population Rank Or-

der Encoding

Thorpe’s neuron model is adopted in eSNN due to its simplicity and effectiveness.

The basic philosophy behind this model is that earlier spikes received by a neuron are

weighted more heavily than later spikes. If the neuron intercepts a certain number

of spikes and the post-synaptic potential (PSP) is larger than a threshold θ, a spike
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is triggered, and the PSP is set to 0 for the rest of the simulation, even if the neuron

remains stimulated by incoming spike trains (See Figure 3.9).

Figure 3.9: A spike is triggered when the total spiking input-PSP exceeds the
threshold θ, and the PSP set to 0 for the rest of the simulation.

Equation 3.10 describes the PSP dynamics of a neuron i in the neuron model:

PSPi(t) =

{
0 if neuron fired

Σw(ji) ∗M order(j)
i else

(3.10)

where w(ji) represents the weight of a pre-synaptic neuron j; Mi ∈ [0, 1] is a para-

meter termed the modulation factor and order(j) represents the rank of the spike

triggered by the neuron j. The order(j) is 0 if neuron j is the first pre-synaptic

neuron to spike, and increases with firing time.

3.5.3 One-Pass Learning Algorithm

The learning algorithm applied to eSNN is a one-pass algorithm, in which the

trained network learns new samples without retraining previously learned samples

(S. J. Thorpe, 1997). In this algorithm, each training sample generates a new out-

put neuron, which is then compared with existing neurons in the repository. If the

newly trained neuron is very similar to those stored in the repository (according

to a specified similarity threshold), it will be merged with the most similar stored

neuron. Otherwise, it is added to the repository as a new output neuron. The mer-

ging process is implemented by modifying the connection weights and the threshold

of the merged neurons to their average value. The pseudo code of the eSNN training

algorithm is provided in Algorithm 1.
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Algorithm 1 eSNN Training Algorithm

Require: Mod ∈ [0, 1], Sim ∈ [0, 1], C ∈ [0, 1]
1: Initialize neuron repository R = {}
2: for Every input samples i belonging to the same output class do
3: Encode every input sample into pre-synaptic neurons j

Generate a new output neuron and compute the connection weights: wj =
Modorder(j)

4: PSPmax(i) = Σw(j) ∗Mod
order(j)
i

5: θ(PSPthresholdvalue) = PSPmax(i)∗C
6: if The new trained neuron is too similar to the ones already in the R (according

to a specified similarity threshold) then
7: w(n) ← merge w(i)and w(n)

θ(n) ← merge θ(i)and θ(n)

8: else
9: Add the new neuron to the output neuron repository R

10: end if
11: end for

3.6 Personalized SNN Reservoir based Generic Method

for Spatio-Temporal Data

Space and time are the two important components of real world phenomena. Conven-

tional datasets generally contain either temporal or spatial information. In contrast,

a spatio-temporal dataset (STD) manages both forms of information; the data change

and evolve with time. Vast quantities of STDs, including medical, brain signals,

weather forecast, environment monitoring, and audio/visual. Given the multifaceted

nature of STD, the efficient and accurate analysis of these data presents a major

challenge.

The reservoir acts as an intermediate recurrent neural network that captures an

input and maps it into a high-dimensional output to enhance the separability of

the incoming data. Next, an external classifier or a readout function transforms

the responses from the reservoir into the desired class label for final decision making.

Since the state of the reservoir depends on temporal information present in the input

signals, it is an appropriate tool for STD analysis.
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3.6.1 Spatio-Temporal Data (STD)

Approximately 80% of available datasets contain interrelated spatial and temporal

components (Fayyad & Grinstein, 2001). Such data include:

• Ecological data - environment monitoring, moving storms, changes in atmo-

spheric pressure level;

• Biological data - species relocation, mating behavior, and animal movements;

• Forestry data - forest fires, planning tree planting and cutting;

• Transport data - vehicle movement and traffic monitoring.

Recently, the quantity of available STDs is expanding exponentially; thus, suitable

techniques that incorporate human expertise to effectively and efficiently analyze

and process these data are urgently required. Spatio-temporal data mining is an

emerging approach for discovering or extracting the “implicit knowledge, spatial and

temporal relationships, or other patterns not explicitly stored in spatio-temporal

datasets” (Koperski, Han & Adhikary, 1998).

Several conventional techniques have been developed for STD processing. Among

the most popular are Hidden Markov models (HMM) (Rabiner, 1989), recurrent

Elman networks (Elman, 1990), and time delay neural networks (TDNN) (Waibel,

Hanazawa, Hinton, Shikano & Lang, 2002). However, existing statistical and com-

putational methods are insufficient for the following reasons:

• Although STD is embedded in continuous space, conventional datasets are

generally discrete;

• The patterns in the STD tend to be localized, whereas classical methods nor-

mally focus on global patterns;

• Because existing methods model either space or time separately, or mix both

components in a simple way, they fail to capture some essential relations

between STD variables.
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To satisfy STD processing demands, the new generation of data modeling tech-

niques must be able to train new STD efficiently, accurately and incrementally. As

mentioned previously, eSNN as an extension of SNN is an emerging computational

technique for STD analysis. This model can learn STD by first transferring temporal

changes occurring in the input variables into spike trains (binary temporal events)

and then applying learning procedures to map spatio-temporal patterns detected in

the data into temporal spiking activity of spatially located neurons. The next sub-

section introduces two recently developed extended eSNN models that adopt the

reservoir computing paradigm in solving STD classification problems.

3.6.2 Extended eSNN (EESNN)

The proposed EESNN model implemented by Hamed (Hamed et al., 2011), extends

the original eSNN by adding a new layer that captures the entire STD pattern. The

hybrid approach of EESNN is shown in Figure 3.10. The model comprises two major

layers: (1) the first acts as a memory to capture the entire STD pattern; (2) and the

second is the standard eSNN classifier (operating through the LOOCV schema) that

learn the response from the first layer.

In the first layer, each real-value spatial data vector valued at every time moment

is encoded into spike trains using the population rank order encoding scheme and

is stored in memory. This encoding distributes a single input value into multiple

neurons. The spike trains are then injected into the memory to capture their tem-

poral information, and to map the entire STD input pattern into a single high-

dimensional spiking neuron structure. The spiking time of the neurons reflects the

values of the input variables at every time point of STD measurement. The obtained

high-dimensional spiking neuron structures are then fed into the second layer for

classification.

In the second layer, responses from the first layer are learned using a fast one-

pass learning algorithm of eSNN that enables adaptive and incremental learning of

spatio-temporal patterns. Thorpe’s neuron model fires an output spike after sufficient

spatio-temporal spike trains are received. In the classification process, the learned

output for every sample is compared with the target output. The pseudo code of the

EESNN algorithm is presented in Algorithm 2.
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Figure 3.10: The framework of the extended eSNN (EESNN) model.

Algorithm 2 EESNN Algorithm

1: for all samples in class c do
2: for all time points do
3: Encode every real-value spatial data vector into spike trains
4: end for
5: Accumulate all spike trains for all time points in a memory
6: end for
7: Apply spike memory into standard eSNN for a classification task
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3.6.3 Recurrent Network Reservoir Structure of eSNN (reSNN)

The concept of reSNN was introduced by Schliebs et al. (2011) and was applied to

reservoir computing (Maass et al., 2002) for efficient processing of spatio-temporal

data. The framework of reSNN is illustrated in Figure 3.11. Note that an additional

layer exists between the reservoir and classifier, which denotes the liquid state.

. . . 

t1

t2

t3

t4

Sample 1

. . . 

Sample n

t1t2t3t4

Liquid 

State
Recurrent Reservoir

Classifier

Figure 3.11: The framework of recurrent network reservoir structure of reSNN
model.

In the first step, as for the EESNN model, each real-value of the spatio-temporal

data vector is encoded into a spike train by population rank-order encoding. Thus, a

series of spike trains for all pre-synaptic input neurons is generated, each attached to

a input neuron within the reservoir. The complete input spike trains are continuously

fed into the reservoir in temporal order; spikes that fire sooner are fed first followed

by later ones.

Once all the spike trains have been injected into the reservoir layer, the reSNN

reservoir acts as a large recurrent neural network whose topology and connection

weight matrix is fixed during simulation. In this way, the reSNN accumulates the

temporal information of all input spike trains and transforms them into a single

high-dimensional intermediate liquid state. The recurrent reservoir is designed on

the integrate-and-fire (LIF) neuron principle and is commonly referred to as a liquid

state machine (LSM) that mimics the brain-like information processing of the human

eye.

The recurrent reservoir generates unique accumulated neuron responses to different

classes of input spike trains from different samples. Once the pre-defined simulation
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time has elapsed, all reservoir responses are transformed into liquid states. However,

before performing classification, the liquid states at a given time t must be read out

from the reservoir. Three major types of readouts are in popular use, such as cluster,

frequency and analog readouts. The reSNN adopts the analog readout approach, in

which every spike is convolved by an α-kernel function according to Equation 3.11

α(t) = eτ−1s te
−t
τs Θ(t) (3.11)

where τs is the synaptic time constant, and Θ(t) is the Heaviside function defined as

Θ(t) =

{
0 if t < 0

1 if t ≥ 0

}
(3.12)

Thus, a convolved spike train s̃(t) is computed as:

s̃(t) =
∑
tf

eτ−1(t− tf )e−
(t−tf )
τ Θ(t− tf ) (3.13)

where the parameter tf represents the firing time of a neuron.

The final decision is made by passing liquid states at all time points to the classific-

ation layer. Algorithm 3 lists the pseudo code of the reSNN algorithm.

Algorithm 3 reSNN Algorithm

1: for all samples in class c do
2: for all time points do
3: Encode every real-value spatial data vector into spike trains
4: end for
5: Accumulate all spike trains for all time points in a memory
6: end for
7: for all spike trains do
8: Inject into the recurrent reservoir
9: Generate reservoir responses based on the neuron spikes

10: Produce the liquid states from reservoir responses
11: end for
12: Apply liquid states to classifier/readout function for a classification task

As discussed above, several differences exist between EESNN and reSNN models.

These are summarized below:
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• The memory structure of EESNN comprises simple spike trains and requires

no internal learning in the reservoir, thus it runs much faster than the reSNN

model;

• The reSNN model possesses a more complex reservoir structure comprising an

integrated recurrent network and LIF neurons. Therefore, it requires more

computational time and resources than EESNN model;

• However, in the reSNN model, the liquid states can be extracted at any time

point and passed to a classifier or a readout function to perform the classifica-

tion task.

3.7 Summary

This chapter reviews in detail two novel neural technologies, namely SNN and eSNN,

with focus on their encoding methods, neuron models, and learning methods. SNN

is considered as the third generation of brain-inspired neural network methods. SNN

learns temporal data by first transforming temporal changes occurring in the in-

put variables into spike trains (binary temporal events) and then applying learning

procedures to map spatio-temporal patterns detected in the data into temporal spik-

ing activity of spatially located neurons. eSNN is a extension of SNN which has

been successfully applied to complex classification tasks. In this study, eSNN is util-

ized as a classifier in novel integrated evolving personalized modeling systems. Its

parameters will be optimized simultaneously with the features and neighborhood by

gradational search algorithm (GSA), an evolutionary algorithm that enables effective

and efficient decision making and knowledge discovery. Evolutionary computation

and algorithms, in particular, the novel GSA optimization method will be described

in the next chapter.

In addition, this chapter provides a brief literature review of two personalized SNN

reservoir-based models: EESNN and reSNN. One aim of this PhD study is to apply

these two models to spatio-temporal classification tasks and to evaluate their feasib-

ility on a case study involving spatio-temporal weather and stroke occurrence data.

The details of the study are presented in Chapter 9.
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CHAPTER 4

Evolutionary Computation and

Algorithms

4.1 Introduction

A vast diversity of species exists in nature. How does mankind evolve among such

enormous variety? In other words, how does nature solve the optimization problem

of perfecting mankind? This question may be answered in Charles Darwin’s theory

of evolution (1859). Evolution embodies the development of generations of individual

populations governed by fitness criteria. Natural evolution has inspired the devel-

opment of computational methods collectively known as evolutionary computation

(EC).

This chapter provides a brief introduction to EC and to a recently developed population-

based heuristic optimization approach called gravitational search algorithm (GSA).

In this study, GSA is chosen to integrate with personalized modeling concept be-

cause: (1) It has been successfully applied to various types of complex optimization

problems, and converges to the global optimum much more rapidly than many clas-

sical optimizers (Rashedi, Nezamabadi-pour & Saryazdi, 2009, 2010); (2) It can solve

multi-objective optimization, where neighborhood and model parameters optimiza-

tion is undertaken by a continuous (real-valued) RGSA, while feature selection uses
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a discrete (binary-valued) BGSA; (3) GSA is a emerging technique not previously

applied to personalized modeling before, thus it offers novelty compared to existing

personalized modeling methods.

4.2 Evolutionary Computation (EC)

EC is the collective name for a range of problem-solving techniques inspired by

biological mechanisms of evolution, such as natural selection and genetic inheritance.

Improved optimization, robust adaptation, machine intelligence, and facilitating a

greater understanding of biology are the main driving forces of EC development.

EC includes the evolutionary algorithm (EA), a powerful optimization method based

on generic populations. Several types of evolutionary methods have been developed

(Back, 1996), such as the genetic algorithm (GA) (Holland, 1975), which optimizes

general combinatorial problems; evolution strategy (ES) (Rechenberg, 1973), which

optimizes continuous functions with recombination; evolutionary programming (EP)

(Fogel, Owens & Walsh, 1966), which optimizes continuous functions without recom-

bination; and genetic programming (GP) (Koza, 1992), which evolves programs.

The mechanisms of EA are inspired by biological evolution, which operates by re-

production, mutation, recombination, and selection. The general scheme of an EA

is given in Figure 4.1.

Population

Parents Offspring

Parent Selection

Recombination Mutation

Survivor Selection

InitialisationTermination

Figure 4.1: Flow-chart of an evolutionary algorithm (EA).
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As is evident in the Figure, EA methods include two principle stages:

1. Creation of new population of individuals;

2. Development of the individual systems, such that a system develops and evolves

through interaction with the environment, which itself depends on the genetic

material embodied in the system.

4.2.1 Advantages of EA

Some of the advantages of using evolutionary algorithms rather than other global

optimization techniques are given below (Fogel, 1999):

• The framework offered by EA much more easily accommodates prior know-

ledge on the problem. Incorporating such information focuses the evolutionary

search, providing a more efficient exploration of the state space of possible

solutions;

• EA can be combined with traditional optimization techniques. This may be as

simple as a gradient minimization after primary search with an evolutionary

algorithm (e.g. fine tuning of weights of an evolutionary neural network) or

it may involve simultaneous application of other algorithms (e.g. hybridizing

with simulated annealing or Tabu search to improve the efficiency of basic

evolutionary search);

• Each solution can be evaluated in parallel and selection alone (which requires

at least pair-wise competition) requires some serial processing. Implicit paral-

lelism is not possible in many global optimization algorithms such as simulated

annealing and Tabu search;

• Traditional methods of optimization are not robust to dynamic changes in

the environment and often require a complete restart to provide a solution

(e.g. dynamic programming). In contrast, evolutionary algorithms can adapt

solutions to changing circumstance;

• The greatest advantage of evolutionary algorithms is that they can address

problems unknown to human expertise. Although human expertise should be
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used when available, it often proves less than adequate for automating problem

solving routines.

4.2.2 Applications of EA

EA are ubiquitous to date, having been successfully applied to multi-domain applic-

ations, including:

• Planning

One of the best known combinatorial optimization problems is the traveling

salesman problem (TSP). A salesman must visit a number of cities, and then

return home. In which order should the cities be visited to minimize the dis-

tance traveled? Optimizing the tradeoff between the speed and accuracy of

solution is an ongoing aim of optimization algorithm (Verhoeven, Aarts, van de

Sluis & Vaessens, 1992).

• Controlling

Some researchers (Fogel et al., 1966; DeJong, 1980) have applied the adaptive

qualities of EA to build on-line controllers for dynamic systems. Fonseca and

Fleming (1993) used an EA to design a controller for a gas turbine engine that

optimize the step response of the engine.

• Economics

Oliver (1993) formulated rules to reflect the way in which consumers choose

one brand rather than another, when a product can be judged by multiple cri-

teria. A fuzzy hybrid system has been used for financial decision making, with

applications to credit evaluation, risk assessment, and insurance underwriting.

• Biology

EA has been applied to the difficult task of protein secondary-structure determ-

ination, for instance, classifying the locations of particular protein segments

(Handley, 1993).
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4.2.3 Methods of EA

To date, various evolutionary optimization techniques have been developed for tuning

the optimal set of model parameters and/or the optimal feature set. Some of the

more popular ones are given below:

• Genetic Algorithm (GA) (Holland, 1975)

GA formally introduced in the 1970s by John Holland, was inspired by Darwin’s

theory of evolution. It works particularly very well on mixed (continuous and

discrete) combinatorial problems.

A common type of GA works operates as follows: a population is randomly

created from a group of individuals. The individuals in the population are then

evaluated by a provided evaluation function, and are scored based on their

performance in the given task. The individuals are then selected by fitness,

the higher the fitness, the higher the chance of being selected and vice-versa.

These selected individuals then “reproduce”, yielding one or more offspring,

after which the offspring are mutated randomly. This continues until a optimal

or near-optimal solution has been found or a certain number of generations

have passed, depending on the termination conditions.

However, GA is computationally time-expensive. Furthermore, GA does not

guarantee globally optimal solution, for instance, when the populations have

a lot of subjects. In addition, for noise data, convergence is rendered difficult

and local optimization might yield a meaningless result.

• Artificial Immune System (AIS) (Farmer, Packard & Perelson, 1986)

AIS is a population-based algorithm inspired by the biological immune sys-

tem. It is applied to real-world problems such as numerical optimization and

combinatorial optimization problems.

In AIS, the initial population is randomly generated and its size can grow and

shrink dynamically. In the cloning step, each antibody of the population gen-

erates a number of clones. Because no antibody has a selective advantage over

the others, the algorithm can perform multi-model searching. These clones

are assigned mutations at rates inversely proportional to their fitness: clones

with higher fitness will be submitted to lower mutation rates and vice-versa.

60



4.2. Evolutionary Computation (EC)

Following the insertion of clones into the population, the antibodies form an

interactive network. If two or more antibodies present a degree of similarity

above a given threshold, all but one are eliminated from the population. In-

dividuals with low fitness are also excluded. This process avoids redundancy

and therefore tends to preserve population diversity.

The main weakness of AIS is normally the additional parameters required,

some of which may be difficult to fine tune for an arbitrary problem. Further-

more, the current multi-objective artificial immune systems have focused on

the solution of standard test functions, rather than on applications.

• Ant Colony Optimization (ACO) (Dorigo, 1992)

ACO was first proposed by Marco Dorigo in his PhD thesis. The original

algorithm searches for an optimal path in a graph, based on the behavior of

ants seeking a path between their colony and food source. ACO is a population-

based metaheuristic paradigm designed for solving combinatorial optimization

problems.

The essences of ACO algorithms are as follows: each path followed by an ant is

associated with a candidate solution to a given problem. When an ant follows

a path, the amount of pheromone deposited on that path is proportional to

the quality of the corresponding candidate solution to the target problem.

When an ant must choose between two or more paths, the path(s) with more

pheromone are more likely to be chosen by the ant. As a result, the ants

eventually converge to a short path, hopefully the optimum or a near-optimum

solution to the target problem, as do natural ants.

Although of ACO guarantees convergence, the time to convergence is uncertain,

and the probability distribution changes with each iteration.

• Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995)

PSO is a population-based stochastic optimization technique proposed by Kennedy

and Eberhart in 1995, inspired by social behavior of bird flocking, fish schooling

and swarm theory. It has been developed for continuous, discrete, and binary

problems.

In PSO, the potential solution called particle, is assigned a random position and

velocity. Each particle keeps track of its best-fit (up to the current iteration)

coordinates in the problem space and records them as pbest. Another “best”
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value that is tracked by the particle swarm optimizer is the best value obtained

so far by any particle in the particle neighborhood. This location is called lbest.

When the topological neighbors of a particle comprise the entire population,

the best value is a global best and is designated gbest.

At each time step, particle swarm optimization alters the velocity of each

particle toward its pbest and lbest locations. Acceleration is weighted ran-

domly, with separate random numbers assigned for acceleration towards the

pbest and lbest locations.

The main drawbacks of PSO when used for multi-objective optimization are:

(1) The method easily suffers from partial optimization, which compromises

the accuracy of its speed and direction regulation; (2) Diversity is not easily

controllable. The loss of diversity is generally compensated by mutation oper-

ators. However, the role of the PSO parameters in algorithm convergence and

loss of diversity are incompletely understood; (3) The criteria by which leaders

are selected also seems to play a critical role in multi-objective optimization,

but this effect has been little investigated.

The above algorithms are considered as classical optimization techniques and have

been applied to different data analysis problems related to medical decision support,

e.g. gene expression data for cancer diagnosis. Nevertheless, common drawbacks

of these models are computational expense and the uncertain time to convergence,

especially on complex real-world problems. For example, though GA is noted for its

robustness at solving optimizing problems under different circumstances, its heavy

computational cost may be prohibitive. Additionally, convergence towards optimum

might be very slow and difficult in the presence of noisy data. Swarm intelligence

based methods, such as PSO, tend and induce premature convergence and to reduce

diversity within the swarm (Parrott & Li, 2006; Xinchao, 2010). As a result, new

high performance heuristic algorithms are essentially required.

4.3 Gravitational Search Algorithm (GSA)

GSA was proposed by Rashedi et al. as a new population-based heuristic optimiza-

tion approach (Rashedi et al., 2009) inspired by Newton laws of gravity and motion:
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“Every particle in the universe attracts every other particle with a force that is dir-

ectly proportional to the product of their masses and inversely proportional to the

square of the distance between them”.

4.3.1 Newton Laws of Gravity and Motion

Gravity is a natural phenomenon by which physical bodies attract with a force

proportional to their mass. Gravitation is most familiar as the agent that gives

weight to objects with mass and causes them to fall to the ground when dropped.

Gravity is responsible for retaining the earth and the other planets in their orbits

around the sun and the moon in its orbit around the earth. The gravitational force

acting on human bodies is perceived as our “weight”.

Newton Laws of Gravity

According to the well-known story, Newton conceived his law of gravitation after a

failing apple landed on his head. Immediately he realized that a force must have

pulled the apple from the tree and towards the ground.

Newton’s law states that every massive particle (M1 and M2) in the universe attracts

every other massive particle with a force which is directly proportional to the product

of their masses and inversely proportional to the square of the distance between them

(R). The universal gravitational constant G is essentially a “fudge factor”.

Mathematically, the law is formulated as follows (see Figure 4.2):

F = G
M1M2

R2
(4.1)

where:

• F is the force between the masses;

• M1 and M2 are the mass of the first and second particles respectively;

• R is the distance between the centers of mass of the particles.

63



4.3. Gravitational Search Algorithm (GSA)

M1 M2
F1 F2

R

Figure 4.2: Newton universal law of gravitation.

Newton Laws of Motion

Newton developed his theories of gravitation in 1666, when he was only 23 years

old. Around twenty years later, he published three laws of motion in his “Principia

Mathematica Philosophiae Naturalis”. The three laws of motion are summarized as

follows:

1. First law: The velocity (v) of a body remains constant unless the body is

acted upon by an external force.

In its inertial form, this law sates that objects will remain in their state of

motion unless their motion is altered by a force.

2. Second law: The acceleration a of a body is parallel and directly proportional

to the net force F and inversely proportional to the mass m, i.e.

F = ma (4.2)

Given an external applied force, the change in velocity depends on the mass

of the object. A force induces a change in velocity; alternatively, a change in

velocity will generate a force. The equation is invertible.

3. Third law: All forces in the universe occur as equal but oppositely directed

pairs. No isolated forces exist; for every external force that acts on an object,

the object exerts an opposite force of equal magnitude.

The third law underlies the generation of lift by a wing and the production of

thrust by a jet engine.
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From Eq.(4.1) and Eq.(4.2), we note that an attracting gravitational force among all

particles in the universe, whose magnitude increases with mass and decreases with

distance. Due to the effect of decreasing gravity, the actual value of the gravitational

constant (G) depends on the age of the universe. Eq.(4.3) gives the decrease of G

with age (Mansouri, Nasseri & Khorrami, 1999):

G(t) = G(t0)(
t0
t

)β, β < 1 (4.3)

where G(t) is the gravitational constant at time t and G(t0) is the gravitational

constant at the first cosmic quantum time interval t0.

4.3.2 Real-Valued Gravitational Search Algorithm (RGSA)

The original version of GSA (RGSA) was designed for optimizing the problems with

real-valued parameters. The RGSA algorithm is provided in Algorithm 4. The

principle of the algorithm is outlined below.

Given a system containing N agents (masses), the position of the ith agent can be

defined by:

Xi = (x1i , . . . , x
d
i , . . . x

n
i ), for i = 1, 2, . . . , N (4.4)

where xdi presents the position of the ith agent in the dth dimension.

Following calculation of the current population’s fitness, the mass of each agent is

determined as:

Mi(t) =
fiti(t)− worst(t)∑N

j=1(fitj(t)− worst(t))
, worst(t) = minj∈(1...N)fitj(t) (4.5)

where Mi(t) is the mass of agent i, fiti(t) is the fitness value of agent i at time t,

and worst(t) represents a maximization problem.

Based on the law of gravity, the force acting on mass i from mass j is calculated as

(Eq.4.6):

F d
i (t) =

∑
j∈kbest,j 6=i

randjG(t)
Mi(t)Mj(t)

Rij(t) + ε
(xdj (t)− xdi (t)) (4.6)

The acceleration of agent i at the time moment t in the dth direction is calculated
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using Newton’s second law as (Eq.4.7):

adi (t) =
F d
i (t)

Mi(t)
=

∑
j∈kbest,j 6=i

randjG(t)
Mj(t)

Rij(t) + ε
(xdj (t)− xdi (t)) (4.7)

The next velocity of an agent, calculated as a fraction of its current velocity, is added

to its acceleration (Eq.4.8). Thus, the position of agent i at time moment (t+ 1) is

expressed as (Eq.4.9):

V d
i (t+ 1) = randiv

d
i (t) + adi (t) (4.8)

xdi (t+ 1) = xdi (t) + vdi (t+ 1) (4.9)

where randi and randj is a random number within the interval [0,1], respectively; ε

is a small constant; Rij(t) is the Euclidean distance between agent i and j; kbest is

the set of K agents with the best fitness value and highest mass.

G is a gravitational constant is assigned an initial value G0 and will decrease towards

0 after many iterations (Eq.4.10):

G = G0exp(−
α ∗ t
T

) (4.10)

where T represents the total number of iterations.

Algorithm 4 Real-valued gravitational search algorithm (RGSA)

1: Generate initial population N
2: Repeat
3: for Every agent/mass i = 1,2,. . . ,N do
4: Evaluate the fitness for each agent;
5: Calculate mass M for each agent (Eq.(4.5));
6: Calculate acceleration a for each agent (Eq.(4.7));
7: Update the velocity V (Eq.(4.8));
8: Update the position (Eq.(4.9));
9: end for

10: Stop until termination conditions are met

66



4.3. Gravitational Search Algorithm (GSA)

4.3.3 Binary-Valued Gravitational Search Algorithm (BGSA)

BGSA is a modification of the original GSA (Rashedi et al., 2010). Although both

RGSA and BGSA similarly update the force, acceleration and velocity (Eq.4.6 - 4.8),

the two essential differences exist between the methods:

1. Distance measurement between agents: RGSA uses Euclidian distance while

BGSA uses Hamming distance;

2. Update of agent position (according to the velocity of its mass): Both al-

gorithms use Eq.4.8 to update the position, but BGSA assigns the new position

as either “0” or “1” (using Eq.4.11 to transform V d
i into a probability), i.e. “1”

represents the feature to be selected, whereas “0” represents the feature not to

be selected.

S(V d
i (t)) = |tanh(V d

i (t))| (4.11)

4.3.4 Applications of GSA

GSA has been applied to many complex real-world problems, and has proven a flex-

ible and well-balanced mechanism by which to enhance exploration and exploitation

abilities. Some examples of GSA use are:

• Slope stability analysis (Khajehzadeh, Taha, El Shafie & M., 2011);

• The DNA sequence design problem (Xiao & Cheng, 2011);

• Combined with neural network for solving the well-known Wessinger’s equation

problem (Ghalambaz et al., 2011);

• Parameter identification of hydraulic turbine governing system (HTGS) (C. Li

& Zhou, 2011);

• Combined with heuristic search (HS) for clustering problems (Hatamlou, Ab-

dullah & Othman, 2011);
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• The optimization of retaining structures (Khajehzadeh & M., 2012);

• A global searcher to find the best positions of representatives (prototypes)

(Bahrololoum, Nezamabadi pour, Bahrololoum & Saeed, 2012).

4.3.5 Advantages of GSA

GSA belongs to the class of swarm population-based heuristic algorithms. Rashedi et

al. (2009) conducted a comparative study between GSA and a number of well-known

algorithms, including genetic algorithm (GA), swarm theory inspired particle swarm

optimization (PSO), and metaphor of gravitational kinematics inspired central force

optimization (CFO). The results showed that algorithms inspired by Newton law

of gravity and motion outperform other algorithms at rapidly finding the global

optimum, suggesting that GSA are suitable for complex problems. GSA is efficient

for the following reasons (Rashedi et al., 2009, 2010):

• It is memory-free, but works as efficiently as the memory-based algorithms;

• Similar to PSO, an agent can easily observe the performance of its neighboring

agents, because it detects the gravitational force of its neighborhood agents.

In other words, the force can be regarded as an information-transferring tool

between the agents;

• Because the inertial mass decelerates the motion, heavier agents move more

slowly than their lighter-weight counterparts. Hence, new agents are searched

within a local space, which constitutes adaptive learning;

• A heavy gravitational mass is associated with a large effective attraction radius

and high attraction. Superior-performing agents possess greater gravitational

mass, which attracts other agents toward the optimal agent.

4.4 Summary

This chapter reviews the evolutionary algorithms for optimization, highlighting their

applications and advantages. Various classical optimization methods are also in-

troduced along with their theoretical backgrounds and limitations. The literature
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reveals that all of these methods are computationally expensive and that convergence

towards the global optimum is quite slow in highly complex real-world situations.

Thus, in this study we adopt a recently proposed Newton law of gravity and motion

inspired algorithm called GSA. Using this algorithm we develop a novel integrated

evolving personalized modeling system (evoPM) for optimizing features, neighbor-

hood and model parameters. Our choice was influenced by the following consider-

ations: (1) GSA has not previously been integrated with a personalized modeling

approach for complex optimization problems; (2) GSA is applicable to both continu-

ous (real-valued) and discrete (binary-valued) multi-object optimization; (3) The

construction of personalized models typically carries a heavy computational burden,

because it creates a personalized model for each testing sample, thus requiring in-

tensive optimization to find an optimal solution. Existing studies show that GSA can

converge to the global optimum much faster than many classical optimizers (Rashedi

et al., 2009; Sarafrazi, Nezamabadi-pour & Brahman, 2010).

To evaluate the feasibility of using the novel integrated evolving personalized method

(evoPM), we test the model on stroke data as case studies. The next chapter intro-

duces stroke and describes two large stroke datasets: the largest and most accurate

spatio-temporal stroke dataset collected from stroke occurrences worldwide, and a

long-term population-based stroke outcome dataset.
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The Case Study of Stroke Data

5.1 Introduction

Stroke is a major cause of disability and mortality in most economically developed

countries. It is the second leading cause of death worldwide (after cancer and heart

disease) (Johnston, Mendis & Mathers, 2009; Rothwell, 2001) and a major cause of

adult disability in developed countries (Tobias, Cheung & McNaughton, 2002). Due

to its prevalence and severity stroke has become a major public health challenge and

concern in New Zealand and globally. Tobias et al. (2007) estimated that over 7,000

New Zealanders each year will experience a stroke event, and at least three-quarters

of this population will die or be dependent on others for health care one year later.

Following a brief introduction to stroke, this chapter reviews various information

methods, including conventional statistical methods and computational intelligent

modeling methods for predicting stroke risk and outcome.

This chapter also introduces a population-based long-term Auckland Stroke Out-

comes Study (ASTRO). Understanding long-term stroke outcomes, including body

functioning (neurologic and neuropsychological impairments), activity limitations

and participation, is essential for long-term evidence-based rehabilitation and service

planning that could significantly improve health outcomes. However, most existing



5.2. Biological Background of Human Brain

neuropsychological stroke data are not population-based, examine limited outcomes,

and are limited to short-term follow-up.

This chapter provides a pilot statistical analysis over entire population of the ASTRO

dataset. In addition, the performance of evoPM-based algorithms are compared with

that conventional global, local, and classical personalized modeling methods on the

ASTRO dataset as a case study. The principle aim is to find the predictors of stroke

outcomes in 5-year stroke survivors. Studying predictors of long-term outcomes in

stroke survivors would allow the identification of patients who may benefit from spe-

cific rehabilitation services, may improve planning of stroke care and rehabilitation

services and would facilitate information provision to patients and their families.

Such measures would enhance the patient’s potential for recovery and the likelihood

of surviving in the long-term.

5.2 Biological Background of Human Brain

As part of the central nervous system, the human brain is responsible for receiving,

analyzing, and storing information (forming memories). The average human brain

weights about 3 pounds (1300-1400g), approximately 2% of our body weight. Human

brain comprises three major parts: cerebrum, cerebellum, and brainstem (medulla),

which are briefly described below (see Figure 5.1):

• Cerebrum

This is the largest part of the brain, comprising 85% of the brain weight. The

cerebrum facilitates complex behaviors such as thought, judgement, learning,

working memory, speech and language, and social interactions.

• Cerebellum

The cerebellum lies back of the brain, below the cerebrum. It is a mere 1/8 the

size of the cerebrum, but controls of several bodily functions, such as muscle

tone, balance and equilibrium, and fine movement coordination.

• Brainstem

The brainstem sits beneath the cerebrum and in front of the cerebellum. It

connects the rest of the brain to the spinal cord, which descends down the neck
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Figure 5.1: A simplified diagram of the human brain (Michelon, 2008).

and back, and is involved in the functions required to sustain life, including

breathing, food digestion, and blood circulation.

The brain is a complex system that evolves its functions and structures during its

lifetime (Kasabov, 2007a). Brain performance is governed by complex interactions

between genes and neuronal functions. Abnormalities in these interactions may

cause certain brain diseases, such as brain cancer, Parkinsons disease and Alzheimers

disease.

5.3 Review of Stroke

5.3.1 What is a Stroke

The World Health Organization (WHO) defines stroke as “rapidly developing clin-

ical signs of focal or global disturbance of cerebral function lasting more than 24

hours (unless interrupted by surgery or death) with no apparent cause other than

of vascular origin” (Aho et al., 1980). It is generally accepted that the lifetime risk

of stroke occurrence is 1 in 6, at least as high as the risk for developing Alzheimer

disease (Seshadri, 2006).

Stroke exerts a large physical, psychological and financial impact on patients/families,

the health care system, and society (Strong, Mathers & Bonita, 2007; Caro, Huy-
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brechts & Duchesne, 2000). Lifetime costs per stroke patient range from US 59.8K

to US 230K (Caro et al., 2000). The majority (about 75%) of stroke cases occur in

the age group 65 years and over (Bonita, Broad & Beaglehole, 1993; Bonita et al.,

1994), and about one third of patients die within a year of stroke onset (C. S. Ander-

son, Jamrozik, Broadhurst & Stewart, 1994; Bonita, Ford & Stewart, 1988). Over

half of the survivors remain dependent on others for everyday activities, often with

significant adverse effects on caregivers (C. S. Anderson, Linto & Stewart, 1995).

Family members of stroke victims are burdened by the suffering of their loved ones

as well as by the responsibility caring for them, uncertainty regarding future plans

and financial anxiety regarding the cost of the patient’s treatment.

5.3.2 What are the Risk Factors

Stroke risk is elevated by a number of factors. More risk factors incur a greater

chance of suffering a stroke. Stroke risk factors are broadly categorized into two

classes (Wannamethee, Shaper, Whincup & Walker, 1995; Hankey, 1999; Reynolds,

Lewis & Nolen, 2003; Thomson, 2009; Larsson, Virtamo & Wolk, 2011):

1. Controllable

Controllable risk factors include: lifestyle risk and medical risk factors. Life-

style risk factors can often be changed, while medical risk factors are usually

treatable. Both types can be best managed by working with a doctor, who can

prescribe medications and advise on adopting a healthy lifestyle.

The most important risk factors are:

• Smoking

• Alcohol

• High Cholesterol

• Diabetes mellitus

• Elevated blood pressure

• Overweight (especially abdominal obesity)

• Poor, unbalanced diet lacking fruits and vegetables
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2. Uncontrollable

Uncontrollable risk factors include increasing age (being 55 or older), gender

(males are at greater risk than females), ethnicity (Asians/Pacific Islanders and

African American are at increased risk), and family history of stroke, heart

attack or transient ischemic attack (TIA).

5.3.3 What are the Symptoms

The signs and symptoms of a stroke depend on the area of the brain affected and

the amount of brain tissue damaged. Although isolated small strokes may induce no

significant focal neurological symptoms (so-called silent strokes), accumulated small

strokes may lead to clinically significant consequences, such as vascular dementia. In

general, strokes affecting the left side of the brain produce clinical symptoms on the

right side of the body and vice versa.

According to the U.S. National Institute of Neurological Disorders and Stroke (NINDS),

the common symptoms of stroke are typically sudden and may include:

• Loss of consciousness: patient may become stuporous or hard to arouse;

• Loss or disturbance of vision: difficulty with seeing in one or both eyes, such

as blurriness;

• Headache: sudden onset of severe headache that may be accompanied by vomit-

ing or dizziness (loss of balance);

• Trouble with muscle movements: difficulty with walking, moving arm or leg on

one side of body, carrying or picking up objects;

5.3.4 How does Stroke Happen

Stroke is a heterogeneous disorder encompassing two major pathological types (ischemic

and hemorrhagic). Each type is divisible into different sub-types with different causes

and outcomes. Ischemic and hemorrhagic stoke are discussed in more detail below

(see Figure 5.2):
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(a) Ischemic stroke occurs when
a blood vessel in the brain be-
comes blocked

(b) Intracerebral hemorrhage
occurs when blood vessels
within the brain become
damaged and burst within the
brain

(c) Subarachnoid hemorrhage
occurs when a cerebral an-
eurysm ruptures, blood will fill
the space surrounding the brain

Figure 5.2: Types of Stroke (V. Feigin, 2004).

Ischemic Stroke

Ischemic stroke is the most common type of stroke, accounting for almost 85% of all

stroke cases. It results from a clot in the blood vessel of the brain that reduces or

blocks the blood supply coming from the heart to the brain. Since the brain does not

store nutrient/energy, it requires a constant supply of nutrients from the blood. The

blood carries sugar and oxygen to the brain, and removes cellular waste and carbon

dioxide. If an artery is blocked, the brain cells are deprived of essential oxygen and

glucose, and the affected cells begin to shut down. If blood supply is absent for as

little as 7 seconds, the affected brain cells may die.

At least four subtypes of ischemic stroke have been identified: cardioembolic stroke,

ischemic stroke due to large artery disease (such as atherosclerosis), ischemic stroke

due to small artery disease (such as hypertension, intracranial arteritis), and ischemic

stroke due to haematological disorders and other rare conditions.
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Hemorrhagic Stroke

Hemorrhagic stroke accounts for up to 15% of all stroke cases. It is a frequent

complication of bleeding into brain from a burst artery (intracerebral hemorrhage)

or bleeding around the brain (subarachnoid hemorrhage).

Intracerebral Hemorrhage

Intracerebral hemorrhage occurs when a diseased blood vessel breaks in the brain,

causing blood leakage in the brain tissue. The resulting sudden increase in intra-

cranial pressure may directly or indirectly damage the affected brain cells. Both

precesses may cause unconsciousness, lost neurological function or even death. In-

tracerebral haemorrhage may be caused by different mechanisms (e.g. elevated blood

pressure, amyloid angiopathy) in different parts of the brain (e.g. supratential, infrat-

entirial hemorrhage) each of which carries a different prognosis and requires different

management strategies.

Subarachnoid hemorrhage

Subarachnoid hemorrhage occurs when a blood vessel bursts in the area between the

brain and the thin tissues surrounding the brain. This area, termed the subarachnoid

space, lies outside of the brain tissue. Subarachnoid hemorrhage is characterized by

loss of consciousness, vomiting, severe headache or neck pain, and neck stiffiness.

Subarachnoid hemorrhage most often results from a rupture of the intracranial an-

eurysm but may also arise from a rupture of other brain arteries (so-called non-

aneurysmal subarachnoid hemorrhage). The two forms of subarachnoid hemorrhage

require very different management.

5.4 Information Methods for Predicting Risk and

Outcome of Stroke

Many intelligent systems have been developed with the purpose of improving health

care and providing better health care facilities at reduced cost. These technologies

can be divided into two major categories: conventional statistical methods and com-

putational intelligent machine learning methods. However, stroke occurrence and
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outcomes literature reveals that traditional predictive models using standard popu-

lation statistics apply to collective of patients and cannot predict the level of risk

occurrence or disability for either an at-risk individual or a stroke survivor. Con-

ventional statistical prediction methods employ only the most significant predictive

variables, less statistically significant personal information that may be clinically

significant for the particular patient is certainly lost (Wieslaw et al., 1997).

For this reason, effective computational intelligent machine learning approaches should

be integrated into the medical system for diagnosis, prediction and management. Per-

sonalized modeling has already been adopted for knowledge discovery in biomedical

applications. This computational intelligent approach aims to create a personalized

diagnostic or prediction model for an individual person based on his/her nearest

neighbors of predictive variables that are pertinent for that person.

5.4.1 Conventional Statistical Methods

Stroke prediction is usually analyzed by conventional statistical methods. For ex-

ample, the frequency of strokes in the general population, across gender, and ethnic

groups is estimated from descriptive statistics such as frequency statistics (V. L. Fei-

gin et al., 2006); correlations between two different scales, such as Barthel Index

and the SF-36 are found by spearman rank or some other correlation methods (Lai,

Duncan & Keighley, 1998); the factors associated with the SF-36 sub-scales are ana-

lyzed by logistic regression to determine which of these variables best discriminates

between patients scoring low and high on the SF-36 subscales (Kauhanen, 1999); and

differences between stroke outcomes are generally analyzed by one-way of variance

and X2 (Chi square) test (V. L. Feigin et al., 2010).

Compared to machine learning methods, conventional statistical methods are limited

in efficiency and prediction accuracy. Khosla and his colleagues (Khosla et al., 2010)

developed an integrated machine learning approach and compared its performance

with that of the Cox proportional hazards model (one of the most commonly used

conventional statistical methods in medical research) on the Cardiovascular Health

Study (CHS) dataset for stroke risk prediction. They demonstrated that the machine

learning methods significantly outperformed the Cox model in terms of stroke risk

estimation.
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5.4.2 Machine Learning Methods

”Machine learning is the process of discovering and interpreting meaningful informa-

tion, such as new correlations, patterns and trends by sifting through large amounts

of data stored in repositories, using pattern recognition technologies as well as statist-

ical and mathematical techniques” (Larose, 2005). In other worlds, machine learning

uses different analysis techniques to observe previously unknown, potentially mean-

ingful information, and to discover strong patterns and relationships from a large

dataset that can be accurately applied to a particular patient.

While vast volumes of biomedical data on stroke risk factors and prognosis are avail-

able, the interpretation of these data remains complex and challenging. These com-

plex data have become increasingly explored, but mostly by conventional statistical

methods. The need for computational models, especially with regard to personalized

risk assessment is steadily growing. Such models will assist in unveiling the patho-

physiology of individual and specific groups of stroke, and to achieve improved and

reliable risk prediction for individuals.

Personalized modeling is an emerging effective approach for knowledge discovery

in biomedical applications. As mentioned above, personalized modeling generally

outperforms the conventional statistical methods at prediction and/or classification

of conditions. The most popular personalized modeling methods are the nearest

neighbor method and its derivatives (Vapnik, 1998; Kasabov, 2007c), which create a

simple model for every individual entity based on ‘neighboring’ data points. However,

published studies highlight the need for new methods that deliver more efficient

personalized outputs.

As described in Chapter 3, SNN is emerging as a powerful computational machining

learning tool that can successfully diagnose and monitor the prognosis of a disease.

As such, it can be applied to stroke rehabilitation (Wieslaw et al., 1997), early

diagnosing of ischemic stroke (Anita, Bhanot & Mishra, 2009), and to classify the

gait patterns of post-stroke patients into homogenous groups (Kaczmarczyk, Wit,

Krawczyk & Zaborski, 2009).

As proposed by Kasabov (2011), the development of a novel integrated evolving

personalized modeling system using novel technology such as eSNN might facilitate

more precise decision making, ensuring that patients receive optimal prognosis and
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treatment. To this end, we aspire to develop a novel integrated eSNN-based evolving

personalized classification method, and to evaluate its feasibility for medical decision

support.

Most of the available stroke data are spatio-temporal data (STD), which are diffi-

cult to process. In this thesis, a recently proposed extended eSNN (EESNN) model

(Hamed et al., 2011) and a recurrent network reservoir structure of eSNN (reSNN)

using liquid state machine (LSM) (Schliebs et al., 2011) are tested in a case study in-

volving spatio-temporal weather and stroke occurrence data. The results will provide

new insights into the relationship between weather and stroke occurrence. We hypo-

thesize that the EESNN and reSNN individualized prognostic models are applicable

to multivariate STD and will outperform existing prognostic models, providing both

better accuracy of individualized event prediction and new knowledge.

5.5 Stroke Outcome Data

5.5.1 Background

Auckland Stroke Outcomes Study (ASTRO) is a population-based long-term stroke

follow-up study exploring the associations between neuropsychological deficits (memory,

executive function, information processing speed, visuoperceptual/construction abil-

ity, language), depression, and a range of functional outcomes and their interrelation-

ships 5 years post-stroke. The study sources its participants from the population-

based Auckland Regional Community Stroke (ARCOS) study conducted in 2002-

2003.

5.5.2 Dataset Description

418 patients participated in the ASTRO study, 318 Europeans, 37 Pacific Islanders,

35 Asians, 23 Maori, and individuals from 5 other ethnic groups. All stroke outcomes

are measured by structured self-administered questionnaires and a face-to-face in-

terview including a battery of neuropsychological tests. Among the questionnaires

administered were the Short Form 36 questionnaire (SF-36), Geriatric Depression
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Scale (GDS-15), Modified Rankin Score (MRS), Barthel Index (BI), Frenchay Activ-

ity Index (FAI), Hodkinson Abbreviated Mental Test (HAMT), Bakas Caregiving

Outcomes Scale (BCOS), and General Health Questionnaire 28 (GHQ-28).

Since a complete study is impractical, a pilot study was conducted to find the pre-

dictors of depression in 5-year stroke survivors using the short form GDS-15. The

short form GDS-15, introduced by Sheikh and Yesavage in 1986, has been extensively

applied to older populations in community, acute and long-term care settings. The

short form includes 15 yes/no questions (see Appendix D). The scale of the scores is

0-15, where a score above “5” suggests depression, and a score exceeding “10” almost

always indicates depression.

In this study, 408 patients completed this questionnaire, scores of < 5 and > 5 were

assigned into class 1 (287 patients) and class 2 (121 patients), respectively.

5.5.3 Statistical Analysis

The 408 patients participating the questionnaire comprise 213 male and 195 female

patients. Patient age range from 20-99, with most patients in the 70-79 age group

(see Figure 5.3).
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Figure 5.3: Number of patients in each age group.

The distribution of GDS score across the entire population is shown in Figure 5.4.

70% of patients present as non-depressible. The most common score among these

patients is 2.

We next separate number of patients indicative of depression and non-depression by
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Table 5.1: Classification accuracy obtained by conventional global, local, person-
alized modeling approaches, and evoPM-based algorithms through LOOCV valida-
tion.

Experimental Results

Classifier Overall
Acc(%)

Class(1/2)(%)

SVM (RBF Kernal, gamma=0.5) 84.60 (86.80/82.40)
ECF 84.04 (85.54/82.54)
KNN(k=15) 84.93 (88.53/81.33)
WKNN(k=13, thre=0.3) 84.61 (86.64/82.58)
knnGSA(k=11 Ave) 89.63 (89.81/88.25)
svmGSA(gamma=0.74, c=50.96, k=17 Ave) 91.91 (94.60/89.34)
esnnGSA(mod=0.65, thre=0.34, sim=0.22, k=21
Ave)

89.22 (89.71/88.73)

Note: The parameters are selected through the same optimization process if
they are employed in evoPM models. The parameters in SVM, ECF and KNN
are selected based on the best classification performance. For the global SVM
parameters, only the parameter γ is tuned.

gender (see Figure 5.5). Clearly, male patients are more likely to display signs of

depression than female patients.

We also investigate the number of patients indicative of depression and non-depression

in each age group (see Figure 5.6). The age groups 70-79 and 80-89 contain the same

largest number of patients indicative of depression (32 patients score of > 5 in both

age groups), followed by the 60-69 age group (29 patients report a score of > 5).

From this study, we infer that the older population is more subject to depression

than the young population.

5.5.4 Experimental Setup

To implement a performance comparison of the different methods, I have applied

a global modeling method (SVM); a local modeling method (ECF); two classical

personalized modeling methods (KNN and WKNN); and evoPM -based methods

(knnGSA, svmGSA and esnnGSA). The performance of all experiments is evaluated

by LOOCV. Significantly, irrelevant features are filtered out using a signal-to-noise-

ratio (SNR) algorithm.
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 Figure 5.4: Distribution of Geriatric Depression Scale (GDS) score over the
entire population in the stroke dataset.
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Figure 5.5: Number of patients indicative of depression and non-depression in
each gender group.
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Figure 5.6: Number of patients indicative of depression and non-depression in
each age group.

82



5.5. Stroke Outcome Data

5.5.5 Experimental Result

Table 5.1 summarizes the results achieved by all methods, valuated by LOOCV. The

performance is significantly improved under the evoPM-based methods, svmGSA

yielding the best classification performance (91.91%), exceeding the best accuracy

achieved by the conventional WKNN method by almost 7%.

Recall that evoPM creates a personalized profile for each individual patient. To

demonstrate this efficacy, a personalized profile is created for sample 10 of the stroke

data using svmGSA (see Figure 5.8). 6 features are selected as the best predictors

of depression for this particular patient.

The global predictors are computed based on the selecting frequency over all samples

obtained by svmGSA (see Figure 5.7). The features “5, 6, 8, and 12”, selected as

global predictors of depression, are presented below:

• Feature 5 - Are you in good spirits most of the time?

• Feature 6 - Are you afraid that something bad is going to happen to you?

• Feature 8 - Do you often feel helpless?

• Feature 12 - Do you feel pretty worthless the way you are now?

In conclusion, this experiment presents approximately 30% of patients are indicative

of depression. The older population (age 60-89) are at increased risk of depression.

Furthermore, according to the comparative study using various computational al-

gorithms, the evoPM-based methods achieve higher classification accuracies than

the conventional methods because they can select the optimal or near-optimal sets

of features, nearest neighbors, and model parameters. Provided that a patient can

remain happy and the risk of depression retain a sense of usefulness is largely reduced!

A single stroke outcome has been investigated in this chapter. Future studies must

investigate more stroke outcomes and evaluate the correlations between various out-

comes. As more data become available, the problem will become one of stroke risk

prediction rather than classification.
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Figure 5.7: A set of global markers are selected across all samples obtained by
svmGSA.

 

Figure 5.8: The personal profile for sample 10 obtained by svmGSA, after 50
testing runs.
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5.6 Summary

This chapter briefly reviews the medical condition of stroke, and identifies the risk

factors, symptoms and aetiology of stroke. Several information methods for predict-

ing risk and outcome of stroke are introduced, embracing both conventional statist-

ical methods and machine learning methods. As the demand for suitable methods

to extract essential information from complex stroke data, increases conventional

statistical methods have been refined and supplemented with new computational

approaches. Particularly, personalized modeling is regarded as ideal approach to

individually tailored medical decision making. To this end, we propose and develop

a novel personalized modeling system and framework, termed evolving personalized

modeling system (evoPM), as discussed in the next chapter.
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CHAPTER 6

Novel Integrated Evolving Personalized

Modeling System (evoPM) for Feature

Selection, Neighborhood and Parameter

Optimization

6.1 Introduction

This chapter introduces a novel evolving personalized modeling system incorporat-

ing a gravitational search (GSA) inspired algorithm for selecting a small group of

most informative features, optimizing neighborhoods and model parameters relevant

to the learning functions. The system should exhibit superior diagnostic and pro-

gnostic performance and personalized knowledge relative to global and local modeling

approaches. In addition, the obtained information and knowledge may significantly

contribute to the design of individualized treatments, e.g. personalized medicine and

personalized drug design.

This chapter states the motivation behind the development of this novel personal-

ized modeling system and framework. Thereafter, the system itself termed evolving

personalized modeling system (evoPM) is introduced, ranging from the simple im-
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plementation (with limited model parameters optimization) to more comprehensive

implementation (with full feature, neighborhood and model parameters optimiza-

tion). Finally, the strength of each evoPM prototype is evaluated in an experimental

study.

6.2 Motivation

As previously discussed, transductive approaches have been successfully implemented

in medical and clinical decision support systems, and time-series prediction problems,

where a personalized model is created for each new input vector. The model aims to

predict the best outcome for the individual data vector. Many studies have shown

that such characteristic is able to ensure personalized modeling to be a more appro-

priate method for solving complex problems rather than using the methods based

on conventional global modeling approaches (Kasabov, 2007c; Ramaswamy & Perou,

2003; Kasabov et al., 2008; Hu, Song & Kasabov, 2009).

However, there are some opening questions raised in the development of the person-

alized modeling framework (Kasabov, 2007c), such as:

• What features are significant for every new input vector?

• How many nearest neighbors should be selected for every new input vector?

• How to find the best combination of model parameters for the learning function

(e.g a classifier)?

Theoretically speaking, the performance of a personalized model largely relies on

some specific parameters that might have different optimal values for every new in-

put vector, such as the number of selected features, number of nearest neighbors

and optimal sets of model parameters. Thus, it is essential to optimize these para-

meters in order to effectively improve the performance of a personalized model, as

well as correctly derive personalized knowledge. For this reason, a novel system and

framework for personalized modeling is developed to study and address these open-

ing questions based on the existing personalized modeling framework introduced by

Kasabov (2007c).
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6.3 Methodology

In this study, a novel integrated evolving system for personalized modeling is pro-

posed as an extension of Kasabov and Hu’s model (Kasabov & Hu, 2011). The

system aims to evolve a personalized model for every single new input vector based

on its nearest neighbors. The concept is illustrated in Fig. 6.1 for a new patient V .

At time t, a personalized model is constructed for the patient. Later on, another

personalized model may be created for the same patient at time t+1, reflecting the

changing status of the patient, for example his/her age or level of hypertension, etc.

time t

Data D

V V

time t+1

V

time t+2

Figure 6.1: The basic concept of the proposed novel integrated evolving person-
alized modeling system (evoPM).

Alternatively, the system keeps evolving and is ready to accept any new incoming

data vectors. The already created personalized model can be further evolved on new

data entering in the neighborhood. The evolving process will include:

1. Comparison of the new data vectors with the individual vector for which a

model is being developed;

2. If the new data vectors belong to the neighborhood, the personalized model is

updated;

3. A new outcome is calculated for the individual and new profile is extracted.
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6.3.1 The Principle of evoPM System and Framework

The novel proposed evoPM system is a hybrid approach consisting of six main pro-

cesses, as summarized below:

1. Pre-filtering feature subset - A subset of relevant features Feai are selected for

the new input vector Vi from a global space using signal to noise ratio (SNR);

2. Selecting K-nearest neighbors - A set of nearest neighbors of Vi are selected,

and gathered into a local problem space Di;

3. Evaluating fitness function - Each agent/chromosome comprises three parts:

feature mask (Fea), k-nearest neighbors (K), and model parameters (Mp). The

classification accuracy of each chromosome is evaluated by its fitness function;

4. Meeting termination criteria - If the termination criteria are met, the entire

process is stopped; otherwise it continues processing the next generation of

agents;

5. Building personal profile - A personalized model and personalized profile are

built using the optimal sets of features, neighborhoods, and model parameters

with known outcomes;

6. Validation - All performances obtained by evoPM in this study are validated

by leave-one-out cross validation (LOOCV).

Figure 6.2 illustrates the flowchart of evoPM system, and the pseudo code of the

novel system is given in Algorithm 5.

6.3.2 Chromosome Structure

As introduced above, the novel evoPM system can simultaneously select optimal or

near-optimal sets of features, neighborhoods and model parameters. Therefore, the

whole optimization problem space can be decomposed into three sub-components:
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Data

Training Testing

Pre-processing

(LOOCV)

SNR (Optional)

Trainingnew

GSA

. . .

Population 1

Population 2

Population 3

Population n

Train Classifier with selected { Features,  K & Model Parameters }

Termination 

criteria 

Optimal set of { Features,  K & Model Parameters }

Final Train Classifier

Yes

Output

Knowledge 

Discovery

No

Para K Fea1 Fea2 ... Fean  

RGSA BGSA

Para K Fea1 Fea2 ... Fean

Para K Fea1 Fea2 ... Fean

Para K Fea1 Fea2 ... Fean

Figure 6.2: Flowchart of the proposed novel integrated evolving personalized mod-
eling system (evoPM)
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Algorithm 5 Evolving Personalized Modeling System (evoPM)

Require: Input a new data vector Vi and a training dataset D
1: Pre-filtering feature subset
Feai = frnk(D)

2: Generate a candidate feature pool Feap from the feature subset Feai
3: Selecting K-nearest neighbors for Vi
Di = fk(Vi, D)

4: Evaluating fitness function
Optsel = fsel(Feap, Di,Mp)

5: if termination criteria are met then
6: Output Optsel with best feature mask (Fea), k-nearest neighbors (K), and

model parameters (Mp)
7: else
8: Return to Step 4 to process the next generation
9: end if

10: Building personal profile on the testing data vector Vi
outputi = fcls(Optsel, Vi)

11: where:
frnk: a statistical function (e.g. SNR) for ranking all features;
fk: a function (e.g. KNN) for searching the personalized space for Vi;
fsel: a function for selecting optimal or near-optimal sets of Fea, K, and Mp;
fcls: a classification function.
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1. Component 1 - Feature mask (Fea). The features are encoded into a binary

bit string, in which each bit denotes wether this feature is to be selected (1) or

not (0).

2. Component 2 - Neighborhood (K). This component is used for finding the

number of samples in the personalized problem space, and is real-value encoded.

3. Component 3 - Model parameters (Mp). This subcomponent is used for optim-

izing model parameters and is real-value encoded.

In this thesis, two types of GSA are adopted for feature, neighborhood selection and

parameter optimization: the continuous (real-valued) RGSA and discrete (binary-

valued) BGSA. RGSA is utilized to optimize the neighborhoods and model paramet-

ers, whereas BGSA is utilized to select the features (see Figure 6.3).

Mp K 1 1 ... 0

RGSA BGSA

0 1

Figure 6.3: A chromosome consists of three sub-components; feature mask (Fea),
neighborhoods (K), and model parameters (Mp)

6.3.3 Fitness Function

Each of the chromosomes in a generation must be evaluated based on their fitness

function. A fitness function determines how well each chromosome solves the prob-

lem. In general, evaluation is accomplished by examining the classification accuracy

of each chromosome containing an optimal or near-optimal number of features (Fea),

neighborhoods (K) and model parameters (Mp). A chromosome with a high fitness

value will very likely be selected in the next generation.

In the novel evoPM system, the fitness function is evaluated by the KNN and SVM

classification algorithms, chosen for their simplicity and effectiveness. Because of

the proven efficacy of eSNN at solving complex classification tasks, this technology

is here applied to the novel integrated evolving personalized modeling system. The

pseudo code of the GSA based hybrid personalized system is given in Algorithm 6.
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Algorithm 6 GSA based Hybrid System

1: Generate initial population N
2: Repeat
3: for Every agent/mass i = 1,2,. . . ,N do
4: Train classifier (e.g. KNN or SVM or eSNN) to evaluate the fitness for each

agent;
5: Calculate mass M for each agent;
6: Calculate acceleration a for each agent;
7: Update the velocity V ;
8: Update the position;
9: end for

10: Stop until termination conditions are met

In essence, the fitness function is evaluated by comparing the actual result and the

predicted result. For instance, as discussed in section 2.4.4, the two-class classification

problem yields four possible outcomes for prediction. True Positive (TP) and True

Negative (TN) represent the correct classifications. A False Positive (FP) occurs

when a negative outcome is incorrectly predicted as positive; while a False Negative

(FN) occurs when a positive outcome is incorrectly predicted as negative. Recall

from section 2.4.4 that the accuracy rate is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(6.1)

6.3.4 Personalized Risk Evaluation

Accurate personalized risk evaluation is a crucial factor for medical decision making,

if patients are to receive effective treatment. Up to date, several risk stratification

models remain grounded in traditional statistical methods and in problem statements

that have not evolved significantly over the years (Zeeshan & Ilan, 2010).

In addition, most clinical researches tend to study outcomes across the global pop-

ulation of patients, rather than by developing personalized profiles for individual

patient. Thus, the outcomes are difficult to interpret in some situations. For ex-

ample, the reported morbidity rate for a procedure may not apply to an individual

patient, or might be elevated in patients suffering from other ailments.

In developing an individual-tailored medical profile, this thesis evaluates personal-
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ized risk/probability associated with a classifier. In certain applications, users re-

quest not only a classification, but also the probabilities of belonging to each class.

In this study, risk/probability (opposed to class label prediction) is assessed using

probability-based KNN and probability-based SVM. These classifiers are discussed be-

low:

Probability-based KNN

KNN is a completely nonparametric method: that is it makes no assumptions about

the nature of the data and does not distinguish between high-risk and low-risk pa-

tients. Instead, it predicts patient risk from the outcomes of similar historical cases.

For instance, consider a classification problem with two classes Cm,m = 1, 2, and

N training samples x(n), n = 1, . . . , N . The class posterior probability is defined as

P (Cm|x). Given that Km is the number of k-nearest neighbors to point x belonging

to class C1, the risk is estimated as:

P (C1|x) =
Km

K
(6.2)

This method is best illustrated by a simple example, such as a training sample with

a true class label “2”. To predict the class label for this sample using personalized

modeling, we firstly select its nearest neighbors by setting k=5 (e.g. 4 samples from

class 2 and 1 sample from class 1). Thus, the label is predicted as “2” because most

of the selected k-nearest neighbors are of class 2. The probability of this sample is

computed as “0.8” (= 4/5) implying that 80% of the selected neighbors belong to

class 2.

Probability-based SVM

SVM learns an optimal decision boundary by which to sperate historical cases with

different outcomes. Standard SVM predicts class label by computing a decision

function f(x) rather than probabilities. Platt (1999) proposed that SVM predictions

could be transformed to posterior probabilities by a sigmoid function. Numerical
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difficulties in Platt’s approach were averted in the extended SVM of Lin and Weng

(2007). Both approaches are explained in more detail below:

• Platt’s Approach

Givn a set of training examples xi ∈ Rn, i = 1, . . . , l, labeled by yi ∈ {−1,+1}.
Platt (1999) proposed a sigmoid function to compute a posterior class probab-

ility P (y = class|input).

Mathematically, Platt approach is defined as:

P (y|f) =
1

1 + exp(Af +B)
, where f = f(x) (6.3)

where f is the decision function of the binary SVM, and A and B are two

scalar values fitted by maximum likelihood from a training set (fi, yi), which

is a cross-entropy error function:

arg minA,B{−
∑
i

tilog(pi) + (1− ti)log(1− pi)} (6.4)

with ti target probabilities, defined as:

ti =
yi + 1

2
(6.5)

Two questions arise: what is the origin of the sigmoid train set? and how is

overfitting to this training set?

Platt (1999) addresses both questions by adopting the out-of-sample model.

GivenN+ positive andN− negative samples in the training set, for each training

sample Platt replaces the binary assignment {0,1} with target values t+ and

t− for all of the data in the sigmoid fit. The target values are defined as:

t+ =
N+ + 1

N+ + 2
; t− =

1

N− + 2
(6.6)

Hence,

pi =
1

1 + exp(Afi +B)
, where ti =

{
N++1
N++2

if yi = +1
1

N−+2
if yi = −1

}
(6.7)
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• Lin and Weng’s Approach

Lin and Weng (2007) adopt Platt’s approach to avoid the numerical difficulties

in their implementation. The major difference between the two approaches is

that Eq.(6.4) is solved by different optimization algorithms.

Platt’s approach uses the levenberg-marquardt (LM) method (Press, Flannery,

Teukolsky & Vetterling, 1992), However, this method cannot efficiently con-

verge to the minimum solution of Eq.(6.4) (for details see Lin et al. (2007)).

In Lin and Weng’s approach, the issues inherent in Platt’s pseudo code are

solved by Newton’s method with backtracking line search (Nocedal & Wright,

1999). This proposed algorithm yields higher classification accuracy than

Platt’s approach on two UCI datasets (Sonar and Shuttle) (H. T. Lin et al.,

2007).

Lin and Weng’s approach has been successfully integrated with the LibSVM (an

integrated software for classification, regression and distribution estimation), it

is used for estimating posterior class probabilities, rather than for SVM training

and prediction (Chang & Lin, 2011).

Hence, this thesis hybridizes the GSA with probability-based KNN and LibSVM to

construct a novel hybrid personalized system based on posterior class probabilities in

binary problems. However, posterior probability cannot guarantee high classification

accuracy. The main purpose is not to boost prediction accuracy, but to provide

probability estimates for medical decision making to ensure that patients receive

efficient diagnosis and treatment.

6.4 Prototypes of evoPM

This section presents three prototypes of evoPM that have been gradually developed,

ranging from the simple implementation to the comprehensive implementation. These

are:

1. Prototype 1 - optimize K

In this prototype, only the number of nearest neighbor K is optimized for each

sample. The fitness function is learned by probability-based KNN.
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2. Prototype 2 - optimize K and model parameters Mp

In this prototype, the nearest neighbor K and parameter(s) of a learning func-

tion (e.g. a classifier) Mp are optimized for each testing sample in Di. Two

classifiers are adopted as the learning function: probability-based SVM and

eSNN.

Model parameters are the regularization parameter (C) and the width of the

Gaussian RBF (γ) for SVM; and modulation (m), threshold (θ), and similarity

(s) for eSNN.

3. Prototype 3 - optimize K, model parameters Mp, and features Fea

In this prototype, nearest neighbor K, model parameter(s) Mp, and feature

mask Fea are optimized. Each sample in Di is classified using the optimal or

near-optimal sets of K, Mp and Fea. The fitness function is evaluated using

all three classifiers: namely probability-based KNN, SVM and eSNN.

In this section, the efficacy of each evoPM is tested on the Breast Cancer Wisconsin

dataset (Street, Wolberg & Mangasarian, 1993) achieved in the UCI Machine Learn-

ing Repository. This dataset contains 699 samples with 9 features: clump thickness,

uniformity of cell size, uniformity of cell shape, marginal adhesion, single epithelial

cell size, bare nuclei, bland chromatin, normal nucleoli, and mitoses. It includes

2 classes: benign (class 1) and malignant (class 2). The original dataset contains

16 samples with missing features; these are removed to construct a final dataset

containing 683 samples.

As described in early chapters, personalized model construction normally incurs

heavy computational burden. The creation of a personalized model for each testing

sample requires intensive optimization processing. For this reason, the experimental

study uses 100 randomly selected samples from the dataset to demonstrate whether

the different evoPM prototypes can improve personalized modeling implementation.

To compare the performances of the novel proposed evoPM and classifiers with non-

optimization, the classification accuracy is firstly obtained for classifiers without

optimization. Table 6.1 illustrates the classification performance of a global model-

ing method (SVM); a local modeling method (ECF); and two classical personalized

modeling methods (KNN and WKNN).
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Table 6.1: The classification accuracy of for Breast Cancer Wisconsin data ob-
tained by different classifiers.

Experimental Results

Classifier # selected genes Overall Acc(%) Class(1/2)(%)

SVM (RBF Kernal,
gamma=0.5)

6 96.00 (98.18/93.33)

ECF 5 96.00 (96.36/95.56)
KNN(k=11) 4 96.00 (98.18/93.33)
WKNN(k=9, thre=0.5) 4 96.00 (98.18/93.33)
Original reported - 94.00 -

All of the methods provide the same LOOCV classification accuracy (96.00%), slightly

better than the result reported in the original publication (with 10-fold cross-validation

on all data). However, no further information relevant to medical treatment design

can be gleaned form these results. Hence, in the next section, the proposed novel

evoPM will be applied to a personalized problem space for breast cancer classifica-

tion.

6.4.1 Prototype 1 - Optimize K

In this experiment, probability-based knnGSA is used as the learning function for

evaluating classification performance. Because this evoPM prototype does not auto-

matically select optimal feature sets, but only searches the optimal numbers of K

for each sample, the learning function is applied to data containing all features.

The overall classification accuracy achieved by knnGSA is 96.00% (98.18% for class1

and 93.33% for class2). The performance of prototype 1 is not improved relative to

the best accuracy achieved by non-optimization classifiers. One possible reason is

that in this prototype, the parameter K alone is optimized. However, the optimal

K is searched for each sample and the simple prediction of class label is replaced by

personalized risk/probability evaluation.

Table 6.2 summarises the classification performance of the top 10 samples processed

using prototype 1. All of the benign samples (class 1) are correctly classified, but

2 malignant samples (class 2) are misclassified as benign. Furthermore, because

the classifier estimates the risk/probability rather than class labels, predicted label

evaluated as “1” (benign) based on its 5 nearest neighbors is indeed the true label.
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Table 6.2: The classification performance of the top 10 samples for Breast Cancer
Wisconsin using knnGSA.

knnGSA
Actual: 1 1 1 2 1 2 1 2 2 2
Predicted: 1 1 1 1* 1 2 1 2 1* 2
# of K: 9 7 4 12 9 9 7 12 11 9
Probability: 1 0.8 0.8 0.8 0.667 1 1 1 0.909 1

Table 6.3: The classification accuracy of Breast Cancer Wisconsin using svmGSA
and esnnGSA.

Experimental Results

Classifier # selected genes Overall Acc(%) Class(1/2)(%)

svmGSA (gamma=7.46,
c=163.56, k=19 Ave)

9 97.00 (100/93.33)

esnnGSA (mod=0.75,
thre=0.22, sim=0.32,
k=11 Ave)

9 98.00 (98.18/97.78)

The probability of this sample is given as “0.8”, meaning that 80% of the selected

nearest neighbors belonging to class 1.

The next section will test the classification performance of prototype 2, and will

investigate the effect of model parameters on accuracy.

6.4.2 Prototype 2 - Optimize K and model parameters Mp

This prototype is designed for optimizing numbers of K and the model parameters

Mp. The fitness function is evaluated using probability-based svmGSA and esnnGSA

as the learning functions.

The classification accuracy is seen to be improved in this prototype because the model

parameters are optimized for efficient personalized modeling (see Table 6.3). In other

words, the result answers the question raised in the previous section; classification

performance dependents on appropriate choice of the model parameters.

Table 6.4 summaries the classification performance of the top 10 samples computed

by svmGSA and esnnGSA, respectively. Figure 6.4 also shows that the probability

is estimated by svmGSA. For each sample, the probability of each class is estimated.

For example, the probability of sample 1 (in the benign group) is assigned to class
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Table 6.4: The classification performance of the top 10 samples for Breast Cancer
Wisconsin using svmGSA and esnnGSA.

svmGSA
Actual: 1 1 1 2 1 2 1 2 2 2
Predicted: 1 1 1 2 1 1* 1 1* 2 1*
# of K: 5 5 5 6 5 5 5 6 3 6
C: 124.7664.61 77.14 253.39157.8526.64 79.23 106.17159.21201.91
γ: 0.62 0.61 0.59 0.29 0.51 0.25 0.49 0.53 0.67 0.33

esnnGSA
Actual: 1 1 1 2 1 2 1 2 2 2
Predicted: 1 1 2* 2 1 2 1 2 2 2
# of K: 5 5 6 5 5 6 5 5 5 6
Mod: 0.81 0.13 0.67 0.26 0.44 0.54 0.68 0.51 0.60 0.35
Thre: 0.34 0.38 0.19 0.44 0.34 0.21 0.13 0.21 0.20 0.15
Sim: 0.37 0.21 0.24 0.19 0.13 0.33 0.35 0.27 0.06 0.43

1 and 2 is “0.8” and “0.2”, respectively. Here the probability can be considered as a

confidence value or threshold (0.5). Thus, the predicted label of sample 1 is class 1

with prob≥0.5.

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Index of samples
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ty

 

 Probability in Class 1
Probability in Class 2

Figure 6.4: The probability of each sample will be assigned to class 1 and class
2.

6.4.3 Prototype 3 - Optimize K, model parameters Mp, and

features Fea

As shown in the previous section, the personalized modeling approach has slightly

improved the classification accuracy by optimizing relevant parameters K and model

parameters Mp. Feature selection improves classification accuracy by reducing com-

putational cost and noise, in essence, it selects the interpretable features that can

help identify and monitor target diseases. Microarray gene expression analysis must

process datasets containing tens of thousands of genes. Among these data, only a

smaller number are strongly correlated with the targeted phenotypes. Thus, the
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Table 6.5: The classification accuracy of Breast Cancer Wisconsin using
knnGSA, svmGSA and esnnGSA.

Experimental Results

Classifier # selected genes Overall Acc(%) Class(1/2)(%)

knnGSA (k=11 Ave) 5 97.00 (98.18/95.56)
svmGSA (gamma=0.49,
c=124.89, k=10 Ave)

5 99.00 (100/97.78)

esnnGSA (mod=0.52,
thre=0.27, sim=0.24,
k=12 Ave)

5 99.00 (100/97.78)

third prototype of evoPM with full optimization (K, Mp and Fea ) is expected to

offer the best classification of breast cancer samples.

As shown in Table 6.5, the classification accuracy is slightly improved as compared

with the results achieved by the previous two prototypes. The results demonstrate

the importance of feature selection, neighborhood and optimization of model para-

meters in advanced classification performance.

Figure 6.5 is an example of the classification result provided by svmGSA. All op-

timal sets of features, neighbors and model parameters are listed for the top 10

samples. The completed results for all 100 samples obtained by knnGSA, svmGSA

and esnnGSA are presented in Appendices A, B and C respectively.

6.5 Summary

In conclusion, the experimental study has proved the hypothesis that the novel pro-

posed evoPM can produce promising classification accuracy than global and local

modeling methods through feature selection, neighborhood and model parameters

optimization. Personalized modeling creates a unique model for each patient, ensur-

ing that individuals receive a detailed medical profile. Such information will greatly

assist personalized clinical decision system. In addition, the personalized risk for

individual patient is evaluated by a classifier, as opposed to classifying patients into

normal or diseased groups. A accurately quantifying this risk is critical for medical

decision support, to ensure that patients receive the treatment that best matches

their individual profile.
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Figure 6.5: Classification results of the top 10 samples for Breast Cancer Wis-
consin, evaluated by svmGSA. All optimal sets of features, neighbors and model
parameters are listed for each testing sample.
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To gain more insights into evoPM operation, the next chapter provides a comparative

analysis of this novel personalized modeling system and framework. To this end, the

feasibility of the system is tested on several gene expression benchmark datasets.

103



CHAPTER 7

Evolving Personalized Modeling System

(evoPM) for Cancer Gene Expression

Data Analysis

7.1 Introduction

Cancer, medically known as a malignant neoplasm, is the uncontrolled growth of

abnormal cells in the body. In 2007, cancer caused about 13% of human deaths

worldwide (7.9 million). Incidence are rising as more people live to an old age and as

mass lifestyle changes occur in the developing world (Jemal et al., 2011). Cancer (of

which more than 100 types have been identified) can develop in almost any organ or

tissue in the human body, including lung, liver, colon, blood, breast, skin, and bones.

Up to date, as new cancer gene expression data become available at an unprecedented

speed, there is an increasing need for prognostic models to be continuously adaptive.

After introducing the relevant biological background, thus chapter discusses several

information techniques used for evaluating gene expression data. Finally, the feas-

ibility of the novel proposed personalized modeling system (evoPM) is evaluated.

The classification performance of evoPM is compared with that of global and local

modeling methods.
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7.2 Biological Background

Molecular biology, conceptualized Warren Weaver in 1938, encompasses biology,

chemistry, and especially biochemistry. Molecular biology attempts to explain the re-

lationships intracellular between various systems, including the interactions between

the different types of deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and pro-

tein biosynthesis, as well as learning how these interactions are regulated.

Figure 7.1: The Molecule of life (Castellano, n.d.).

The smallest structural and functional unit of all living organisms is the Cell. The

human body contains about 10 trillion (1013) cells of diverse shapes, sizes, and func-

tions, but sharing a common basic structure. A typical human cell contains 25,000

to 35,000 genes, which carry trait-determinings information. Genes are embedded in

thread-like structures called chromosomes, which collectively contain the information

required for cell grow and reproduction. Humans cells contain two sets of chromo-

somes, one set inherited from each parent, yielding 23 pairs of chromosomes per cell.

The chromosomes and genes are composed of DNA, a schematic of which is shown

in Figure 7.1.
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(a) Schematic of double hel-
ical DNA structure formed
by base pairs attached to a
sugar-phosphate backbone.

(b) RNA contains the bases A (ad-
enine), C (cytosine), G (guanine)
and U (uracil).

Figure 7.2: A diagram of DNA and RNA (Biology-Corner, n.d.).

7.2.1 Deoxyribonucleic Acid (DNA)

DNA constitutes the hereditary material in all organisms. The genetic instructions

which determine the development and functioning of an organism are stored in a

segment of nucleotides represented by four genetic codes, namely A (adenine), T

(thymine), C (cytosine) and G (guanine). DNA in a cell is in a double helix structure

formed by base pairs (A with T, C with G). Two individual DNA strands twist around

each other in a right-handed spiral (see Figure 7.2 (a)).

7.2.2 Ribonucleic Acid (RNA)

RNA is a close cousin of DNA, is created from a DNA template in a process called

transcription. RNA serves multiple roles in living cells; serving as a temporary copy

of genes for protein synthesis (messenger RNA-mRNA), functioning as an adaptor

molecule that decode the genetic code (transfer RNA-tRNA) and catalyzing the

synthesis of proteins (ribosomal RNA-rRNA). Like DNA, RNA is made up of a
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long chain of components called nucleotides, labeled A (adenine), G (guanine), C

(cytosine) and U (uracil). However, unlike DNA, most RNA is a single-stranded

molecule of considerably shorter chain structure (see Figure 7.2 (b)).

7.2.3 Gene Expression

Gene expression refers to the process that converts the genetic information contained

in DNA into proteins. The gene conversion process, which occurs in two major stages,

is summarized in Figure 7.3 below:

Figure 7.3: Simplified overview of gene structure and expression (Berg, 2007).

1. In the first stage, genetic information is transcribed from DNA to mRNA.

In this process, the gene is copied to produce a RNA molecule (a primary tran-

script) with essentially the same sequence as the gene. In most human genes,

the exons carry the information required for protein synthesis, are interspersed

with non-translated sequences termed introns. Most primary transcripts are

therefore processed by splicing to remove intron sequences and generate a ma-

ture transcript or mRNA containing exons alson.
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2. In the second stage, genetic information is translated from mRNA to protein.

In this process, no direct correspondence exists between the nucleotide sequence

in DNA (and RNA) and the sequence of amino acids in the protein. In fact,

each amino acid is encoded by three nucleotides. The chain of amino acids

folds up to generate the final tertiary structure of the protein.

7.2.4 Techniques used for Evaluating Gene Expression Data

The numerous technologies available for analyzing gene expression levels in living

cells are divided into two broad categories: DNA microarray-based techniques and

computational techniques.

DNA Microarray-based Techniques

DNA microarray technology (also known as DNA chips), assesses mRNA levels in

particular cells or tissues when many genes are activated simultaneously. This tech-

nology has been widely applied to tumor classification and prediction of clinical

outcomes (Beer et al., 2002; Nielsen et al., 2002; van’t Veer et al., 2002), identific-

ation of genes involved in various diseases, and elucidation of biological pathways

(Yoshimoto et al., 2002).

Several types of DNA microarray-based technologies have been developed for meas-

uring the thousands of genome-wide expression values in parallel. The two popular

microarray technologies are those of complementary DNA (cDNA) (Schena, Shalon,

Davi & Brown, 1995) and high-density oligonucleotides (Lockhart et al., 1996).

• cDNA microarrays

The first reported DNA microarray technology, that of cDNA was developed

by Patrick Brown and his colleagues at Stanford University. It involves the

micro spotting of pre-fabricated cDNA fragments onto a glass slide.

The advantages of this technology includ: (1) Readily accessible requiring no

specific equipment for use and therefore incurring low cost, and (2) data can be

captured using equipment that is frequently already available in the laboratory.
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However, intensive labor is required for synthesizing, purifying and storing

DNA solutions prior to microarray fabrication.

• High-density oligonucleotide microarrays

This is a sophisticated platform of microarray technology, first developed by

Stephen Fodor et al. in 1991. Presently, the main proponent of this technology

is the commercial version of Affymetrix GeneChips, which holds up to 500,000

probes/sites in a 1.28-cm2 chip area.

This technology offers fast speed, high specificity and reproducibility, but its

use is restricted by high cost and inflexibility. Expensive specialized equipments

are required to carry out the hybridization, label staining, and washing.

The recent advance of microarray technologies has allowed the simultaneous monit-

oring of thousands of genes, with promising results. Nevertheless, several issues need

to be addressed and understood, including:

• The dimensionality of gene expression data is very high. A gene expression

dataset usually contains thousands to tens of thousands of genes; including

numerous noise genes that impede the performance of computational models;

• The vast number of genes incurs heavy computational cost.

Clearly, existing microarray technologies cannot readily handle the above problems

efficiently and effectively. Thus, biology and medicine would benefit greatly from

automated analysis of complicated gene expression data with identification of relev-

ant genes.

Computational Techniques

In recent years, many microarray data classification algorithms have been proposed

for the diagnosis or prognosis of cancer diseases. Most of these are derived from com-

putational machine learning algorithms, and fall into one of categories: supervised

learning and unsupervised learning.
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• Supervised learning

Supervised learning is the search for a gene expression signature that predicts

class membership. This approach begins with two data sets, a training set

and a testing set. A model based on the chosen classification method is con-

structed using the training set; the testing set is then used to evaluate the

classifier. To date, different supervised methods have been used to classify pa-

tient samples, such as SVM (Guyon, Weson, Barnhill & Vapnik, 2002), KNN

(Yeang, Ramaswamy & Tamayo, 2001), and bagging and boosting (Tan &

Gibert, 2003).

• Unsupervised learning

Unsupervised learning is the search for a biologically relevant unknown tax-

onomy identified by a gene expression signature or a biologically relevant set

of co-expressed genes. In other words, learning models of biological processes

and relationships among genes are based entirely on their expression levels.

Various unsupervised learning algorithms have been applied to gene expres-

sion data analysis, such as Bayesian networks (Hwang, Cho, Wook Park, Kim

& Zhang, 2002), hierarchical clustering (Eisen, Spellman, Brown & Botstein,

1998), self-organizing maps (SOM) (Tamayo et al., 1999), and k-means clus-

tering (Tavazoie, Hughes, Campbell, Cho & Church, 1999)

7.3 Cancer Gene Expression Data Analysis Using

evoPM

Cancer is one of the major research fields in medical research. Accurate prediction of

different tumor types could greatly benefit treatment provision and reduce toxicity

to patients.

Existing computational methods facilitate more accurate diagnosis and prognosis of

cancer. However, the treatments suggested by traditional global modeling systems

for complex disease diagnosis and prognosis are effective for only 70% of the patients,

leaving considerably large portion (approx. 30%) gaining no benefits from the treat-

ment (Shabo, 2007). Hence, this section presents a comparative study that tests the
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novel proposed personalized modeling system (evoPM) on four benchmark cancer

gene expression datasets for classification tasks.

7.3.1 Datasets Description

The four benchmark datasets are: Colon cancer, Leukaemia, Lymphoma and Lung

cancer. These datasets are publicly available and have been used in several published

cancer classification studies.

• Colon cancer data (Alon et al., 1999)

The dataset comprises 62 samples, 22 normal patients (class 1) and 40 cancer

patients (class 2). In this data set, only 2,000 genes out of total 6,500 genes

are selected based on confidence in the measured expression levels.

• Leukaemia data (Golub et al., 1999)

This dataset consists of 72 samples and 7129 genes from 6817 human genes.

47 samples are labelled as Acute Lymphoblastic Leukaemia (ALL- class1); the

remainder 25 samples are labelled as Acute Myeloid Leukaemia (AML-class2).

• Lymphoma data (Shipp et al., 2002)

This dataset contains 77 samples, 58 Diffuse large B-cell lymphoma (DLBCL)

samples and 19 Follicular lymphoma (FL) samples. Each sample is represented

by 7129 genes.

• Lung cancer data (Gordon, Jensen, Hsiao, Hsiaox & JE, 2002)

This dataset was originally used for distinguishing between malignant pleural

mesothlioma (MPM) and adenocarcinoma (ADCA). The complete data set

consists of 181 tissue samples (16 MPM /165 ADCA) and 12533 genes.

7.3.2 Experiment Setup and Results

The experimental results from four benchmark datasets through the unbiased val-

idation schema are encouraging. The quality of the optimized classifier with the

selected most important genes is validated by LOOCV. To compare the performance
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of different methods, I here applied a global modeling method (SVM); a local model-

ing method (ECF); two classical personalized modeling methods (KNN and WKNN);

and two evoPM -based methods (knnGSA and svmGSA).

7.3.3 Colon Cancer Dataset

Colon cancer results from uncontrolled growth of cells in the large intestine. Causing

655,000 deaths worldwide per year, this is the fourth most common cancer in the

United States and the third leading cause of cancer-related death in the Western

world (WHO, n.d.).

Table 7.1 summarizes the classification accuracy obtained from several classifiers on

the colon cancer dataset. The highest accuracy obtained by svmGSA provides is

87.10%, approximately 5% better than the best accuracy achieved by tradition SVM

classifier. In addition, knnGSA and svmGSA tend to select fewer genes than other

algorithms.
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Figure 7.4: ROC curve computed by svmGSA on the colon dataset.

Figure 7.4 plots the classification performance of svmGSA on the colon cancer data.

The classification performance is assessed by a ROC curve, where the x and y axes

denote false positive rate (1-specificity) and true positive rate (sensitivity), respect-

ively.

The novel evoPM can select the optimal or near-optimal sets of genes for each in-
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Table 7.1: Classification accuracy of different models, tested on the colon cancer
dataset.

Experimental Results

Classifier Number of se-
lected genes

Overall Acc(%) Class(1/2)(%)

SVM (RBF Kernal,
gamma=0.5)

40 82.14 (95.00/59.09)

ECF 200 72.30 (75.00/68.18)
KNN(k=5) 100 82.14 (90.00/68.18)
WKNN(k=5, thre=0.5) 100 82.14 (90.00/68.18)
knnGSA(k=10 Ave) 75(Ave) 85.48 (90.00/77.27)
svmGSA(gamma=0.7,
c=51.66, k=14 Ave)

91(Ave) 87.10 (90.00/81.82)

Original reported - 87.00 -

Note: The parameters are selected through the same optimization process if
they are employed in evoPM models. The parameters in SVM, ECF and KNN
are selected based on the best classification performance. For the global SVM
parameters, only the parameter γ is tuned.

dividual patient. Thus, the global markers are computed based on the selection

frequency over all samples obtained using svmGSA. The global markers with dif-

ferent numbers of neighbors then are re-evaluated by four classifiers (namely SVM,

KNN, WKNN, and TWNFI) to investigate:

• Whether they are the most efficient features are selected;

• Whether they can significantly improve the classification performance.

Experimental results are valuated by LOOCV. Figure 7.5 shows the global markers

and the results obtained using four classifiers with different number of neighbors.

We note that the accuracy changes with K, and that SVM offers the highest classi-

fication accuracy followed by TWNFI. However, the accuracy of KNN and WKNN

are dramatically decreased as K increases beyond 30.

In addition, the novel evoPM can create a personalized profile for each individual

patient. Here one example - sample 20 of colon cancer data is given for demonstrating

the profile of personalized modeling using svmGSA (see Table 7.2).

For ease of visualization, the 28 nearest neighbors of colon sample 20 are plotted

in a 3D space (representing the 3 most important features/genes) (see Figure 7.6).
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(b) Classification accuracy achieved by 4 classi-
fiers with different number of neighbors, assessed
for 13 global markers of Colon cancer dataset.

Figure 7.5: A set of global markers of Colon dataset and the results obtained
using four classifiers with different number of neighbors.

Table 7.2: The optimal sets of features/genes, nearest neighbors, and model para-
meters, optimized solely for sample 20 of Colon cancer dataset based on one-run
testing.

Optimal set of features/genes Feature ID (7 total): 249 1772
1423 1582 267 513 177

Optimal set of nearest neighbors KNN Index (28 total): 18 7 8 5
26 40 27 43 45 19 2 58 10 32 13 9 59
34 49 42 61 38 60 12 33 57 44 41

Optimal SVM parameter Best γ: 0.17; Best C: 204.08
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Figure 7.6: K-nearest neighbors of sample 20 of colon data set.
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Based on the most common state of its nearest neighbors (normal group), sample 20

is more likely to be in the normal group.

7.3.4 Leukaemia Dataset

Leukaemia is a cancer of the blood or bone marrow, is characterized by an abnor-

mal increase of immature white blood cells called “blasts”. In 2000, approximately

256,000 children and adults worldwide developed some form of leukemia, and 209,000

died from it (Mathers, Boschi-Pinto, Lopez & Murray, 2001).

Table 7.3 lists the classification accuracy obtained by several classifiers tested on

the leukaemia dataset. knnGSA and svmGSA achieve the same accuracy (97.22%),

slightly better than that obtained by traditional SVM (95.83%). Figure 7.7 shows

the classification performance obtained by svmGSA on the leukaemia data.
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Figure 7.7: ROC curve computed by svmGSA on the leukaemia dataset.

Figure 7.8 shows the global markers and the results obtained from four classifiers

(SVM, KNN, WKNN, and TWNFI) assigned different numbers of neighbors. All

classifiers are validated by LOOCV. TWNFI offers the best performance followed by

SVM. We also note that accuracy is not significantly affected by K, except in the

KNN and WKNN methods.
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Table 7.3: Classification results of different models, tested on the leukaemia data-
set.

Experimental Results

Classifier Number of se-
lected genes

Overall Acc(%) Class(1/2)(%)

SVM (RBF Kernal,
gamma=0.6)

40 95.83 (95.74/96.00)

ECF 40 94.44 (97.87/88.00)
KNN(k=8) 30 94.44 (95.74/92.00)
WKNN(k=5, thre=0.5) 30 94.44 (95.74/92.00)
knnGSA(k=16 Ave) 41(Ave) 97.22 (97.87/96.00)
svmGSA(gamma=0.78,
c=49.28, k=31 Ave)

35(Ave) 97.22 (97.87/96.00)

Original reported - 85.00 -

Note: The parameters are selected through the same optimization process if
they are employed in evoPM models. The parameters in SVM, ECF and KNN
are selected based on the best classification performance. For the global SVM
parameters, only the parameter γ is tuned.
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(b) Classification accuracy achieved by 4 classi-
fiers with different number of neighbors, assessed
on 10 global markers of Leukaemia dataset.

Figure 7.8: A set of global markers of Leukaemia dataset and the results obtained
using four classifiers with different number of neighbors.
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7.3.5 Lymphoma Dataset

Lymphoma is the development of malignant tumors in the lymph system. It has

become increasing common in the modern world and is estimated to become the

second or third largest cancer by 2025 (Chris, n.d.).
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Figure 7.9: ROC curve computed by svmGSA on the lymphoma dataset.

The classification performance of several classifiers tested on the lymphoma data is

summarized in Table 7.4. Again, knnGSA and svmGSA achieve the same accuracy

(94.81%), slightly better than that provided by traditional SVM (93.51%). Figure

7.9 plots the classification performance obtained by svmGSA on the lymphoma data.

Figure 7.10 illustrates the global markers and the results obtained from four classifiers

(SVM, KNN, WKNN, and TWNFI) assigned different numbers of neighbors. All

classifiers are validated by LOOCV. From the figure we observe that SVM, KNN

and WKNN provide similar results as K increases from 3 to 33, and that accuracy is

robust within this range. However, the accuracy of KNN and WKNN drop sharply

at K larger than 33, and re-stabilizes at a low level once K reaches 39.
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Table 7.4: Classification accuracy of different models, tested on the lymphoma
dataset.

Experimental Results

Classifier Number of se-
lected genes

Overall Acc(%) Class(1/2)(%)

SVM (RBF Kernal,
gamma=0.5)

80 93.51 (96.55/84.21)

ECF 67 92.21 (93.10/89.47)
KNN(k=3) 90 93.51 (93.10/94.74)
WKNN(k=3, thre=0.5) 90 93.51 (93.10/94.74)
knnGSA(k=3 Ave) 101(Ave) 94.81 (94.83/94.74)
svmGSA(gamma=0.8,
c=50.72, k=17 Ave)

52(Ave) 94.81 (98.28/84.21)

Original reported - 92.20 -

Note: The parameters are selected through the same optimization process if
they are employed in evoPM models. The parameters in SVM, ECF and KNN
are selected based on the best classification performance. For the global SVM
parameters, only the parameter γ is tuned.
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(a) 14 global markers of Lymphoma dataset with
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(b) Classification accuracy achieved by 4 classi-
fiers with different number of neighbors, assessed
on 14 global markers of Lymphoma dataset.

Figure 7.10: A set of global markers of Lymphoma dataset and the results ob-
tained using four classifiers with different number of neighbors.
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Table 7.5: Classification accuracy of different models, tested on the lung cancer
dataset.

Experimental Results

Classifier Number of se-
lected genes

Overall Acc(%) Class(1/2)(%)

SVM (RBF Kernal,
gamma=0.7)

30 95.31 (94.77/95.86)

ECF 30 92.87 (92.15/93.58)
KNN(k=10) 25 96.60 (95.63/97.58)
WKNN(k=10, thre=0.6) 25 95.50 (94.25/96.76)
knnGSA(k=25 Ave) 25(Ave) 98.34 (90.32/100)
svmGSA(gamma=0.74,
c=49.91, k=27 Ave)

26(Ave) 98.90 (96.77/99.33)

Original reported - 90.00 -

Note: The parameters are selected through the same optimization process if
they are employed in evoPM models. The parameters in SVM, ECF and KNN
are selected based on the best classification performance. For the global SVM
parameters, only the parameter γ is tuned.

7.3.6 Lung Cancer Dataset

Lung cancer is characterized by uncontrolled cell growth in tissues of the lung. As

the most common cause of cancer-related death in men and women, it is responsible

for 1.3 million deaths annually, as of 2004 (Ministry-Health, 2006).

The classification accuracy achieved using several classifiers on the lung cancer data-

set is summarized in Table 7.5. Here, svmGSA provides the best accuracy is 98.90%,

approximately 2% higher than the best accuracy achieved by the KNN classifier.

Figure 7.11 shows the classification performance obtained by svmGSA on the lung

cancer dataset, plotted as a ROC curve. The global markers and the results of four

classifiers (SVM, KNN, WKNN, and TWNFI) with different number of neighbors are

illustrated in Figure 7.13. All classifiers are validated by LOOCV. In this experiment,

all of the algorithms provide the same accuracy when K=3 and K=6, but the accuracy

of SVM is slightly increased when K=9 and is retained thereafter. We note that the

classification accuracy achieved by TWNFI is not affected by K, since it remains

constant as K increases from 3 to 54. The accuracy of both KNN and WKNN

decreases with increasing K.

Fig 7.12 summarizes the global marker genes of the Colon cancer and lymphoma
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Figure 7.11: ROC curve computed by svmGSA on the lung cancer dataset.

Dataset Index of Global Marker Descriptions of Global Marker

Colon cancer 780 MACROPHAGE MIGRATION INHIBITORY FACTOR (HUMAN)

377 H.sapiens mRNA for GCAP-II/uroguanylin precursor

625 Human gene for heterogeneous nuclear ribonucleoprotein (hnRNP) core protein A1

141 SM22-ALPHA HOMOLOG (HUMAN)

1843 GELSOLIN PRECURSOR, PLASMA (HUMAN)

1115 SERINE/THREONINE-PROTEIN KINASE IPL1 (Saccharomyces cerevisiae)    

1168 Human isoleucyl-tRNA synthetase mRNA, complete cds

661 P02403 60S RIBOSOMAL PROTEIN 

440 SINGLE-STRANDED DNA-BINDING PROTEIN MITOCHONDRIAL PRECURSOR (HUMAN)

343 Human mRNA for polyA binding protein

1549 VASCULAR ENDOTHELIAL GROWTH FACTOR (Cavia porcellus)    

1139 RAN-SPECIFIC GTPASE-ACTIVATING PROTEIN (Homo sapiens)          

53 ELONGATION FACTOR 1-GAMMA (HUMAN)

Lymphoma 6179 ENO1

4292 PKM2

6815 Tubulin

4372 GM2A

4116 ALDOA

1188 26S

1373 Macrophage

441 Proteasome

3005 Bcl-2

5998 mRNA

1780 L-myc

1704 ADA

3757 Clone

87 SLC

Figure 7.12: The global marker genes discovered by evoPM for Colon cancer and
Lymphoma data.
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(b) Classification accuracy achieved by 4 classi-
fiers with different number of neighbors, assessed
on 14 global markers of Lung cancer dataset.

Figure 7.13: A set of global markers of Lung cancer dataset and the results
obtained using four classifiers with different number of neighbors.

datasets (no supplementary information was available for the leukaemia and lung

cancer datasets).

7.4 Summary

In conclusion, the proposed evoPM consistently improves the classification accuracy

on four benchmark gene expression datasets, relative to previously published results.

The results obtained by evoPM are significantly improved on lymphoma, leukaemia

and lung cancer data, and are slightly improved on colon cancer data. The pro-

posed system not only outperforms several global and local modeling methods in

terms of diagnostic and prognostic accuracy, but finds the optimal or near-optimal

solution to feature selection, neighborhood and model parameters optimization with

significantly reduced computational cost. The results support the hypotheses that

the classification accuracy for each dataset is improved using the discovered global

markers. Furthermore, the classification performance is robust to K for SVM and

TWNFI, but depends on K for KNN and WKNN. In other words, the global markers

have been successfully selected.

In the next chapter, the novel evoPM system will be applied to stroke occurrence data
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as a case study to explore the associations between changes in weather conditions

and stroke occurrence.
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CHAPTER 8

Evolving Personalized Modeling System

(evoPM) for Weather and Stroke

Occurrence Data Analysis

8.1 Introduction

Increasingly, number of studies have identified a link between weather conditions and

stroke occurrence (Z. Y. Chen, Chang & Su, 1995; V. L. Feigin, Nikitin, Bots, Vino-

gradova & Grobbee, 2000). From early evidence, environmental triggers of different

stroke are known as subtypes depend on age, gender and climatic factors. However,

previous data are selection-biased (e.g. unclear CT (computed tomography)/MRI

(magnetic resonance imaging) verification of different stroke subtypes), or reliable

data is missing in various population groups (e.g. age, gender, and region).

Thus far, only a few studies have effectively explored the effect of weather on stroke

occurrence, and in most of these have yielded inconsistent stroke occurrence predic-

tions (Biller, Jones, Bruno, Adams & Banwart, 1988; Ricci et al., 1992; Nyquist,

Brown, Wiebers, Crowson & OFallon, 2001). Thus, the effect of weather on stroke

occurrence remains a matter of uncertainty and controversy. This chapter presents

a comparative study in which associations between changes in weather conditions



8.2. Pilot Analysis

and stroke occurrence are analyzed using conventional global, local, personalized

modeling methods, and evoPM-based algorithms. Particular, attention is devoted to

gender differences in weather and stroke occurrence.

8.2 Pilot Analysis

8.2.1 Background

As evidenced in several studies, sub-optimal ambient temperature and atmospheric

pressure, as well as winter season, are associated with a rise in affect coronary heart

disease death and incidences of heart attack (Z. Y. Chen et al., 1995; V. L. Feigin et

al., 2000). The effect of these and other weather parameters on stroke occurrence re-

mains a matter of controversy and uncertainty. Therefore, the significant associations

between weather parameters and stroke occurrence must be clearly identified. This

knowledge will contribute significantly to understanding the environmental triggers

of stroke. In turn, other novel areas of research must be identified, such as physiolo-

gical weather-stroke associations or clinical trials, from which preventive strategies

against harmful weather conditions may be developed.

8.2.2 Study Areas

This international collaborative study is carried out under the auspices of six popu-

lation regions: Auckland (NZ), Perth and Melbourne (Australia), Oxfordshire (UK),

Dijon (France), Norrbotten and Vasterbotten (Northern Sweden).

The study areas are grouped in the Southern Hemisphere (Auckland, Perth, and Mel-

bourne) and Northern Hemisphere (Oxfordshire, Dijon, Norrotten and Vasterbotten

counties). Table 8.1 summarizes the number of patients in each region.

8.2.3 Dataset Description

The complete dataset consists of 11,453 samples (all with first occurrence of stroke)

and 9 features (4 patient clinical features and 5 weather features):
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Table 8.1: Number of patients in each region participating in the global study.

Region Number of patients
Auckland 2805
Dijon 1756
Melbourne 1316
Oxfordshire 543
Perth 766
Sweden 4267
Total 11453

• Patient clinical features (categorical data) - age, gender, history of hypertension

and smoking status.

• Weather features (continuous data) - temperature, humidity, wind speed, wind-

chill and atmospheric pressure.

In fact, all the weather parameters are measured only for the day of stroke occurrence.

As suggested by the medical expert, we make-up the 59 days pre-stroke occurrence

data based on the measurement of day of stroke occurrence for spatio-temporal data

analysis purpose. Figure 8.1 demonstrates how we make-up the pre-stroke occurrence

data, by using an example of the patient high-lighted in the figure, whose age is

84 has stroke occurrence at the day “3-09-1981”, the temperature for this day is

measured as “23.19999695”. Thus the 1 day pre-stroke occurrence is the day “3-08-

1981”, the temperature for this day is “22.29998779” according to the day of stroke

occurrence. Furthermore, the day of 7 days pre-stroke is “3-02-1981”, since there is

no patient has stroke occurrence at this day, but the closest day is “3-03-1981”, thus

we use the temperature of this day instead which is “21.3999939”, assuming that the

temperature might not have significant differences between day “3-02-1981” and day

“3-03-1981”. The rest data is done in the similar manner.

Case-crossover design is a longitudinal study, which represents a special situation

in which no group exists for separate comparison. In effect, each subject serves as

his/her own control. By assigning both treatments to the same subject covariates

imbalance is precluded. This design has been widely applied in many medical and

health studies. Mukamel and his colleagues (Mukamal, Wellenius, Suh & Mittleman,

2009) used this approach to compare measures of weather and ambient air pollution

on the day of stroke presentation and on other days (as control) for each patient.
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Figure 8.1: Data pre-processing of spatio-temporal weather and stroke occurrence
data.

Figure 8.2: Representative spatio-temporal weather and stroke occurrence data.

Vlak et al. (2011) applied case-crossover design to identify trigger factors and their

attributable risk for rupture of intracranial aneurysms.

In this study, case-crossover design is applied to the global dataset for data pre-

processing, since no “non-stroke” patients exist in the original dataset. The period

spanning 29 days pre-stroke occurrence to the stroke event (30 days time window) is

considered as the “stroke” group. The “normal/control”, for the same participant,

spans days 30-59 post-stroke occurrence (30 days time window) (see Figure 8.2).

8.2.4 Experimental Setup

To our knowledge, this is the first study to use computational intelligent modeling

techniques to investigate the associations between weather and stroke occurrence.

Since this work is a pilot study focussing on real world medical data, the comparative

study uses only data collected from the Auckland region.
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The Auckland region comprises 2805 patients all experiencing first-ever occurrence

of stroke. “Non-stroke” patients are absent in the original dataset. A case-crossover

design is applied, in which the date of stroke occurrence (1 day lag) is considered as

the stroke group, whereas 30 days prior to stroke occurrence (1 day lag) for the same

participant is considered as the normal/control group, assuming that the weather

parameters 30 days before the index stroke do not affect on the stroke occurrence 30

days later.

Due to the heavy computation burden of personalized modeling construction, this

study uses a small section of the original dataset (500 randomly-selected patients).

Hence, the data consist of 1,000 samples (500 “normal/control” patients (class1) and

500 “stroke” patients (class 2)).

Our experiments are carried out in three steps: (1) a simple comparative analysis

using only 4 patient clinical features; (2) using all 9 features; (3) using 6 features

(age and 5 weather features), as age is a continuous value and suggested to be used

for the experiments by experts.

To provide a performance comparison from different methods, I have applied a global

modeling method (SVM); a local modeling method (ECF); two classical personal-

ized modeling methods (KNN and WKNN); and evoPM -based methods (knnGSA,

svmGSA and esnnGSA) to the weather and stroke occurrence problem. All perform-

ances are validated by LOOCV. Irrelevant features are eliminated by a signal-to-

noise-ratio (SNR) algorithm.

8.2.5 Experimental Result

Analysis Using 4 Patient Clinical Features

In this experiment, all modeling techniques are applied to the data assuming 4 rel-

evant patient clinical features. The best classification accuracy manifested by the

svmGSA model is 54.20% (53.80% for class 1-Normal/Control, and 54.60% for class

2-Stroke). The svmGSA model outperforms all other methods in terms of classi-

fication accuracy. However, the accuracy obtained from svmGSA is close to ran-

dom, though the clinical variables selected namely age, gender, blood pressure and
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smoking, are identified as very important stroke risk factors (Wannamethee et al.,

1995; Hankey, 1999).

Analysis Using All 9 Features (4 Patient Clinical Features and 5 Weather

Features)

In the second experiment, the same modeling techniques are applied to 9-feature

data to explore whether accuracy is improved when taking weather features. Among

the methods, esnnGSA obtains the best classification accuracy, averaged at 62.50%

(61.94% for class 1 - Normal/Control, and 63.06% for class 2 - Stroke). Clearly, the

classification accuracy of esnnGSA is significantly improved when 5 weather features

are incorporated into the model. However, the result does not confirm whether

weather conditions indeed have strong effect on stoke occurrence, possibly because

three of the patient clinical features are categorical data (apart from age).

Analysis Using 6 Features (Age and 5 Weather Features)

Table 8.2 summarizes the classification performance of the tested modeling meth-

ods. Here esnnGSA yields the highest accuracy at 70.80% (68.60% for class 1 -

Normal/Control, and 73.00% for class 2 - Stroke), almost 5% better than the highest

accuracy achieved by conventional SVM method. In addition, the result is signific-

antly improved relative to the cases of 4 features (17% improvement) and 9 features

(8% improvement). We can more confident to state that weather and stroke occur-

rence are strongly correlated using 6 features.

8.2.6 Summary

As a general conclusion, the experiments suggest that: weather conditions signific-

antly impact on stroke occurrence. The overall classification accuracy is signific-

antly improved when weather features are incorporated into the experiments. This

knowledge will contribute an understanding of environmental triggers of stroke. In

addition, it will assist the health and medical experts in conducting new areas of

research, such as physiological studies on weather-stroke associations, or preventive

strategies to reduce the hazardous effects of harmful weather conditions.
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8.3. Selected Case Analysis - by Gender

Table 8.2: Classification accuracy obtained by conventional global, local, personal-
ized modeling approaches, and evoPM-based algorithms, assessed through LOOCV
validation.

Experimental Results

Classifier Overall
Acc(%)

Class(1/2)(%)

SVM (RBF Kernal, gamma=0.6) 65.40 (60.80/70.00)
ECF 63.25 (62.50/64.00)
KNN(k=35) 64.80 (64.00/65.60)
WKNN(k=35, thre=0.5) 64.60 (65.20/64.00)
knnGSA(k=6 Ave) 66.20 (58.60/73.80)
svmGSA(gamma=0.76, c=49.36, k=15 Ave) 69.63 (66.50/72.76)
esnnGSA(mod=0.82, thre=0.34, sim=0.22, k=22
Ave)

70.80 (68.60/73.00)

Note: The parameters are selected through the same optimization process if
they are employed in evoPM models. The parameters in SVM, ECF and KNN
are selected based on the best classification performance. For the global SVM
parameters, only the parameter γ is tuned.

8.3 Selected Case Analysis - by Gender

According to Framingham Heart Study (Seshadri, 2006), 1 in 6 men and 1 in 5

women aged over 55 will develop a stroke during their remaining lifetime. Increasing

evidence is emerging for gender differences in stoke symptoms, prevention, diagnosis,

treatment, and outcomes (Labiche, Chan, R. & Morgenstern, 2002; Di et al., 2003;

Goto, Baba, Ito, Maekawa & Koshiji, 2007). This experiment aims to explore the

gender differences in weather and stroke occurrence, as an extension of the previous

pilot study.

8.3.1 Dataset Description

The same dataset is applied as in the previous pilot study. Figure 8.3 shows the num-

ber of strokes in each gender age-adjusted group across the population. The dataset

contains 250 male patients and 250 female patients, of which stroke occurrence is

much more likely in the 50-plus age group than those are younger than 50.

The important risk factors for stroke have been identified as age, gender, a history

of hypertension and smoking. Thus, from the population of 500, this study selects
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8.3. Selected Case Analysis - by Gender

Table 8.3: Classification accuracy of male group obtained by conventional global,
local, personalized modeling approaches, and evoPM-based algorithms, assessed
through LOOCV validation.

Experimental Results - Male Group

Classifier Overall
Acc(%)

Class(1/2)(%)

SVM (RBF Kernal, gamma=0.5) 66.22 (75.68/56.76)
ECF 66.22 (67.57/64.86)
KNN(k=9) 63.51 (72.97/54.05)
WKNN(k=15, thre=0.5) 64.86 (72.97/56.76)
knnGSA(k=16 Ave) 67.57 (70.27/64.86)
svmGSA(gamma=0.47, c=135.16, k=15 Ave) 67.57 (70.27/64.86)
esnnGSA(mod=0.76, thre=0.42, sim=0.25, k=18
Ave)

68.74 (71.35/66.13)

Note: The parameters are selected through the same optimization process if
they are employed in evoPM models. The parameters in SVM, ECF and KNN
are selected based on the best classification performance. For the global SVM
parameters, only the parameter γ is tuned.

the patients over 50 with a history of hypertension and smoking. These patients

comprise 37 males and 21 females.

8.3.2 Experimental Setup

The setup of this experiment study is very similar to that of the previous pilot study;

the difference is this case is that 5 weather parameters are used in a comparative

analysis for both gender groups. These parameters were chosen for their significant

impact on stroke occurrence. The following section details the analysis separated by

gender.

8.3.3 Experimental Result

Male Group

Table 8.3 shows the classification results of the male group obtained by all modeling

techniques. The evoPM-based esnnGSA provides the highest accuracy at 68.74%, a

slightly improvement over other conventional methods.
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Table 8.4: Classification accuracy of female group obtained by conventional
global, local, personalized modeling approaches, and evoPM-based algorithms, as-
sessed through LOOCV validation.

Experimental Results - Female Group

Classifier Overall
Acc(%)

Class(1/2)(%)

SVM (RBF Kernal, gamma=0.4) 64.29 (66.67/61.90)
ECF 57.14 (47.62/66.67)
KNN(k=11) 66.67 (66.67/66.67)
WKNN(k=13, thre=0.5) 66.67 (61.90/71.43)
knnGSA(k=6 Ave) 69.05 (57.14/80.95)
svmGSA(gamma=0.42, c=114.91, k=13 Ave) 71.43 (66.67/76.19)
esnnGSA(mod=0.31, thre=0.23, sim=0.0, k=16
Ave)

70.25 (67.34/73.16)

Note: The parameters are selected through the same optimization process if
they are employed in evoPM models. The parameters in SVM, ECF and KNN
are selected based on the best classification performance. For the global SVM
parameters, only the parameter γ is tuned.

To explore which weather parameters impact most strongly on the male patients,

the global markers are computed based on the selecting frequency over all samples,

obtained from svmGSA (see Figure 8.4). The feature “atmospheric pressure” is

found as the marker parameter since it has been frequently selected, followed by

“wind speed” and “wind chill”.

Figure 8.5 presents an example of a personalized profile created by svmGSA for

sample 10. Displayed are the optimal sets of features, nearest neighbors, and model

parameters for sample 10 alone. Furthermore, the probability of stroke occurrence

is estimated rather than assigning the sample to a particular group.

Female Group

Table 8.4 summarizes the classification performance for the female group. The

highest accuracy (71.43%) is achieved by svmGSA, approximately 5% higher than

that provided by the classical personalized modeling KNN method. Overall classi-

fication accuracy is higher for the female group than the male, suggesting that the

weather parameters impact more heavily on the female group.

Figure 8.7 presents the global markers based on the selecting frequency over all
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8.3. Selected Case Analysis - by Gender

Figure 8.3: Number of strokes in each gender age-adjusted group.
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Figure 8.4: The global markers of male group are computed based on the selecting
frequency over all samples obtained using the svmGSA (G3=atmospheric pressure,
G4=wind speed, and G5=wind chill).

Figure 8.5: The optimal sets of features, nearest neighbors, and model parameters
for sample 10 alone, based on 50 testing runs.
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8.3. Selected Case Analysis - by Gender

samples obtained from svmGSA. “Wind speed” is the most frequently selected fea-

ture, followed by “temperature”. The feature “wind speed” is consistently selected

as the global marker for both gender groups.

Figure 8.6: The optimal sets of features, nearest neighbors, and model parameters
for sample 6 alone, based on 50 testing runs.

Figure 8.6 presents an example of the optimal sets of features, nearest neighbors,

and model parameters obtained by svmGSA for sample 6 alone.

8.3.4 Summary

To conclude the gender studies, weather parameters seem to strongly affect female

patients according to the classification accuracy. However, “wind speed” is selected

as the global marker for individuals of both genders aged over 50 with a history of

hypertension and smoke.

This chapter presents a pilot study using just two time points to evaluate the relation-

ship between weather conditions and stroke occurrence. Experimental results show

that weather conditions impact significantly on stroke occurrence, hence the data is

worthy of further investigation as STD, using recently proposed EESNN and reSNN

methods to learn the whole spatio-temporal pattern. Details of this investigation are

introduced in the next chapter.

133



8.3. Selected Case Analysis - by Gender

4 1
0

5

10

15

20

25

30

Feature ID

Fr
eq

ue
nc

y

The Global Markers

Figure 8.7: The global markers of female group are computed based on the select-
ing frequency over all samples obtained using the svmGSA (G1=temperature and
G4=wind speed).
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CHAPTER 9

Personalized Reservoir based Generic

Method for Spatio-Temporal Weather

and Stroke Occurrence Data Analysis

9.1 Introduction

As explained in Chapter 8, the weather and stroke occurrence dataset contains both

temporal and spatial information. All weather parameters (temperature, humidity,

wind speed, windchill and atmospheric pressure) are measured over time at different

locations. To efficiently and effectively capture the whole STD pattern, rather than

simply analyze the data by conventional statistical methods, the EESNN model

(Hamed et al., 2011) and reSNN model (Schliebs et al., 2011) will be the first time

applied to the spatio-temporal weather and stroke occurrence data.

This chapter begins with a pilot statistical analysis, followed by the application of

EESNN model to the weather and stroke occurrence STD. The chapter concludes

with the application of reSNN to the same data.



9.2. Statistical Analysis

9.2 Statistical Analysis

Before applying the spatio-temporal weather and stroke occurrence data to reservoir

based generic models, a statistical pilot study is conducted. Since this weather and

stroke occurrence STD is here investigated for the first time, only a small group of

patients are selected for analysis. We include data from the Auckland region only,

focussing on the autumn season. The selected patients are aged from 60 to 69, with

experience of hypertension and smoking. Recall that these have been identified as

the important risk factors.

Based on the selection criteria, for triggering a stroke 20 patients were selected (see

Figure 9.1). Since a case-crossover design is applied, 40 patients exist in the dataset,

20 in the “normal/control” group and 20 in the “stroke” group.
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Figure 9.1: Number of patients in each age group.

As explained previously, all weather parameters are measured over a 60-day period,

where the day of stroke occurrence is considered as day 0 and days -1 to -59 are the

days prior to stroke occurrence. Thus, all weather changes over the 60-day period

should be considered. To this end, we investigate weather changes for two age groups:

60 and 68.

Temperature Changes

Figure 9.2 illustrates the temperature changes over 60 days. Temperature changes

smoothly 9 days before stroke occurrence for patients in 60-year old patients. In

contrast, for patient ID 167 (age group 68), the temperature increases suddenly from

day -25 to -24, and decreases gradually from day -9 to the day of stroke occurrence.
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9.2. Statistical Analysis

Other important knowledge abstracted from the Figure are that temperature remains

almost stable from day -59 to -10 for patient ID 1600, but increases gradually from

day -9 to the day of stroke occurrence. Thus, we could hypothesize that 9 days before

stroke occurrence is an important stroke-triggering time window for both patient ID

167 and ID 1600.

Figure 9.2: The temperature changes over 60 days for patients aged 60 (top) and
68 (down).

Humidity Changes

Figure 9.3 graphs the humidity changes to which patients from two age groups are

exposed. Humidity appears to have no significant impact on most of the patients.

However, for patient ID 1600, the humidity remains almost constant over 60 days,

while for patient ID 2306 (age group 60), the humidity level suddenly increases from

day -19 to -18.

Atmospheric Pressure Changes

As shown in Figure 9.4, the atmospheric pressure is quite changeable for some pa-
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9.2. Statistical Analysis

Figure 9.3: The humidity changes over 60 days for patients aged 60 (top) and
68 (down).
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9.2. Statistical Analysis

tients over the 60-day period. For instance, for patient ID 263, it increases suddenly

from day -2 to the day of stroke occurrence, which might have trigged stroke in

this patient. In addition, for patient ID 2258, the atmospheric pressure increases

suddenly from day -58 to -57 and then varies slightly until the day of stroke occur-

rence. In the 68-year age group, the atmospheric pressure level for patient ID 331

changes significantly from day -41 to -32. The gradual decrease at the beginning

of this period is followed by a sudden increase from day -33 to -32. Moreover, the

atmospheric pressure drops dramatically from day -25 to -23 for patient ID 167, and

then increases gradually from day -5 to the day of stroke occurrence. Patient ID

1600, whose stroke occurrence was found to be independent of humidity, is similarly

insensitive to atmospheric pressure.

Figure 9.4: The atmospheric pressure changes over 60 days for patients aged 60
(top) and 68 (down).

Wind Speed Changes

Figure 9.5 illustrates the wind speed changes over 60 days. We note that wind speed

is much more changeable than the previous weather parameters. Up/down variation
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9.2. Statistical Analysis

is frequent over the 60 days, specially for the patients from age group 60. According

to the Figure, wind speed drops for all the patients a few days prior to stroke,

suggesting that wind speed is an important stroke trigger. For example, the wind

speed for patient ID 2258 drops sharply from day -9 to -7 and gradually declines

until the day of stroke. For patient ID 263, the wind speed increases significantly

from day -2 to -1 and drops dramatically on the day of stroke. Patients ID 331

and ID 167 are exposed to similar wind patterns 4 days before stroke: the wind

speed drops significantly from day -4 to -3, and stabilizes until the day of stroke

occurrence. Interestingly, the wind speed varies little for patient ID 1600, for this

patient the wind speed is stable from day -59 to -7. Therefore, we can hypothesize

that 6 days before stroke occurrence is an important stroke-triggering time window

for patient ID 1600.

Figure 9.5: The wind speed changes over 60 days for patients aged 60 (top) and
68 (down).

Wind Chill Changes
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9.2. Statistical Analysis

Wind chill variation for both age groups is shown in Figure 9.6. This Figure shows

that wind chill like wind speed, impacts strongly on patients. Among the 60-year

group, the wind chill for patient ID 1652 decreases suddenly from day -37 to -36

and then stabilizes until the day of stroke. For patient ID 263, the wind chill is

stable from day -59 to -20, but becomes variable from day -19 to the day of stroke,

hence we identify 19 days before stroke occurrence exposure to varying wind chill

as an important time window for triggering stroke in this patient. Moreover, for

patient ID 2306, the wind chill changes little from day -59 to -30, but becomes

more changeable from day -29 till the day of stroke occurrence, thus we hypothesize

that 29 days before stroke occurrence might be an important stroke-triggering time

window for this patient. Patients from age group 68 appear to be less affected by

wind chill than the 60-year old patients. Especially for patient ID 1600, the wind

chill remains stable from day -59 to -9. Other knowledge abstracted from the Figure

is that patients ID 331 and ID 1600 are exposed to similar wind chill patterns 9 days

before stroke occurrence, where wind chill gradually increases. In contrast, patient

ID 167 experiences the opposite pattern, with the wind chill gradually decreasing 9

days prior to stroke.

To conclude this section, some new knowledge as regarding the weather patterns/stroke

occurrence has been discovered:

• Wind speed emerges as the most significant stroke-triggering weather para-

meter followed by wind chill. Wind speed also presents as the global marker

for both gender groups (see Chapter 9 for details). Thus, we can hypothesize

that wind speed impacts strongly on stroke occurrence.

• Non of the weather parameters significantly impact on patient ID 1600 from

day -59 to -10, since they are remains almost stable during this time period.

However, the weather parameters for this patient change from day -9 to the

day of stroke occurrence. Therefore, we can hypothesize that 9 days before

stroke occurrence is an important stroke-triggering time window for patient ID

1600.

• Of all the patients, patient ID 263 is most obversely affected by the weather

changes, especially since changes are more significant 17 days prior to stroke oc-

currence. Hence, we can hypothesize that 17 days before stroke is an important

stroke-triggering time window for patient ID 263.
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9.2. Statistical Analysis

Figure 9.6: The wind chill changes over 60 days for patients aged 60 (top) and
68 (down).
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9.3. Extended eSNN (EESNN) Performance Analysis

In the following section, two studies are presented using two recently proposed generic

methods EESNN and reSNN to learn the whole spatio-temporal pattern. The aim

is to discover useful knowledge regarding the relationship between weather patterns

and stroke occurrence.

9.3 Extended eSNN (EESNN) Performance Ana-

lysis

9.3.1 Setup

As explained in Chapter 3, the real-valued data must be encoded into spike trains

using the population rank-order encoding scheme before it can be classified. How-

ever, prior to encoding, all weather parameters (temperature, humidity, wind speed,

windchill and atmospheric pressure) are normalized individually in the interval [0,1],

to account for their different units.

Figure 9.7 demonstrates how a single input value (e.g. temperature 20o) is encoded

into multiple neurons. Each neuron is encoded into a specific spike train calculated

from the intersection of Gaussian functions. All data are encoded in the same way.

In this study, each single input value is encoded into 40 receptive fields with β 1.5

(where β is the width of each Gaussian receptive field).
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Figure 9.7: Demonstration of a single input value (e.g. temperature 20o) encoded
into spike trains.

Once all of the data have been encoded into spike trains, they are passed to the

first layer of EESNN, which acts as a memory to capture the whole STD pattern.
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9.3. Extended eSNN (EESNN) Performance Analysis

Next, they are passed to eSNN for classification. eSNN contains three parameters,

Modulation factor (Mod) of the Thorpe neural model, Threshold/Proportion factor

(C) which dictates the percentage of the maximum post-synaptic potential (PSP) to

be used for firing an output spike, and Neuron Similarity (Sim) which controls the

similarity distance. If a certain neuron is considered too similar to others, it will be

merged with the most similar existing neuron. All parameters are within the interval

[0,1] (see Chapter 3 for details).

In this preliminary study, all parameters are manually as follows:

• Mod is defined as 0.9, since the spike trains are passed to EESNN time-

sequentially, from day 0 (day of stroke occurrence) to -59. Because Mod is

set to a high value, the first few days will tend to spike earlier than the later

days. This scenario reflects the hypothesis that early days before stroke occur-

rence are important time windows for patients to develop stroke.

• Sim is set as 0.0, since we desire that every neuron produces a output.

• C is studied in the range between 0.1 to 1, incremented by 0.01 each time.

From Figure 9.8, we observe that 0.32 is the most frequently selected threshold

value.
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Figure 9.8: The most frequently selected threshold.

9.3.2 Result

As a pilot study prior to investigation by EESNN, the data are evaluated by conven-

tional KNN. The best accuracy achieved by KNN (k=9) is 60% (50%-class Normal
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9.4. Recurrent Network Reservoir Structure (reSNN) Performance Analysis

& 70%-class Stroke). This almost random result arises because STD cannot be well

learned by the conventional method. Thus, we assume that EESNN, which is es-

pecially designed for STD learning will provide higher accuracy than conventional

method.

Figure 9.9 presents the classification accuracy using different C values (with Mod=0.9,

Sim=0.0 ), where c=0.32 provides the best performance at 70% (65%-class Normal &

75%-class Stroke). This accuracy is 10% higher than that achieved by KNN. There-

fore, we could say that the first 20 days presents an important stroke-triggering time

window.
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Figure 9.9: The classification performance achieved by EESNN for different
threshold/proportion factor (C).

Having found the optimal or near-optimal threshold, the classification accuracy can

be further evaluated by varying the Mod value. As shown in Figure 9.10, the overall

accuracy and the accuracy of stroke class gradually increase as Mod increases. Thus,

we can confidently predict that early days exert more impact on stoke occurrence

than later days.
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9.4. Recurrent Network Reservoir Structure (reSNN) Performance Analysis

9.4 Recurrent Network Reservoir Structure (reSNN)

Performance Analysis

9.4.1 Setup

Similar to the EESNN model, in the first step, each real-value of spatio-temporal data

vector must be encoded into a spike train using the population rank-order encoding

approach. However, unlike the previous encoding a threshold is added to eliminate

all very late spikes. If the spike is less than the pre-determined threshold, it will not

be used for the PSP computation. In this way, only a few earlier spikes carrying most

of the information are used, boosting the accuracy and reducing the computation

time.

Figure 9.11 demonstrates an example of spike trains after population encoding, with

40 receptive fields and β 1.5. The total number of neurons are 200 (40x5). Encoding

reveals clear differences between sample 1 (Normal) and sample 40 (Stroke).

In this experiment, the LSM reservoir is constructed as a three dimensional network

of grid size 5x5x10. The simulation time is set at 500 milliseconds. The reservoir

responses are sampled using a time step of 10 milliseconds during analog readout

process (see Chapter 3), hence the final liquid states are sampled in a series of 50

time intervals.

9.4.2 Result

Figure 9.12 shows typical reservoir responses to sample 1 (Normal) and sample 40

(Stroke). The obvious differences between the samples indicate the high separability

capability of the reservoir.

In this study, time point t=50, 100, 150, 200, 250, 300, 350, 400, 450, and 500

milliseconds spaced at 50 time intervals, are abstracted and passed to the classifier

sequentially to learn the responses from the reservoir. To adequately compare the

different methods, I have a applied global modeling method (SVM); a local modeling

method (ECF); and evoPM -based methods (svmGSA and esnnGSA). The perform-
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Figure 9.10: The classification performance achieved by different modulation
factor (Mod) value.
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Figure 9.11: Comparison of two samples from different class after encoding.
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Figure 9.12: The reservoir responses of two samples from different classes.
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Table 9.1: Classification accuracy of different models, tested at the time point
t = 200 milliseconds.

Experimental Results

Classifier Overall Acc(%) Class(1/2)(%)

SVM (Linear Kernal,
gamma=1)

75.00 (85.00/65.00)

ECF 72.50 (80.00/65.00)
esnnGSA(Mod=0.5865,
Threshold=0.2565,
Sim=0.256, k=7 Ave)

77.50 (60.00/95.00)

svmGSA(gamma=0.84,
c=44.65, k=5 Ave)

72.50 (75.00/70.00)

Note: The parameters are selected through the same op-
timization process if they are employed in evoPM models.
The parameters in SVM and ECF are selected based on
the best classification performance. For the global SVM
parameters, only the parameter γ is tuned.

ance of the methods used in all experiments is evaluated by LOOCV. Irrelevant

features are filtered out by a signal-to-noise-ratio (SNR).

50 100 150 200 250 300 350 400 450 500
esnnGSA 67.50 72.50 75.00 77.50 70.00 75.00 67.50 60.00 60.00 60.00
svmGSA 45.50 62.50 70.00 72.10 65.00 72.00 60.00 55.00 54.50 52.50
SVM 47.50 64.75 68.60 74.34 64.65 73.25 62.15 54.00 53.45 50.15
ECF 52.50 67.50 62.50 72.45 60.00 70.75 57.50 52.50 51.50 47.50
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Figure 9.13: The classification performance of each selected time point.

The results at each time point obtained by the four methods are shown in Fig-

ure 9.13. The esnnGSA performs more accurately than the conventional methods

across the entire simulation, followed by the svmGSA method. esnnGSA attains its

highest accuracy at the time point t = 200 milliseconds (overall accuracy is 77.50%:

60.00% for class 1 - Normal/Control, and 95.00% for class 2 - Stroke). Table 9.1

summarizes all parameters that used for the best experiment. This suggests that

the reservoir provides the best liquid state for distinguishing between output classes

at this time point. However, the time points mentioned here are not related to the
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9.5. Summary

real-time points, but are merely responses from the reservoir. Future studies should

further implement the reSNN method, aiming to link the real-time points with the

reservoir responses. In such a way, we could accurately discover which time window

significantly impacts on stroke occurrence.

9.5 Summary

In the first study, the EESNN method is superior to the conventional KNN method in

terms of classification accuracy. Particularly, we find that the first 20 days might be

an important time window for stroke onset. However, in this study, all the parameters

are manually adjusted. In future studies, EESNN will be further implemented to

improve the robustness and generalisability of parameter optimization.

In the reSNN study, several time points are selected and fed into evoPM as a classifier

to learn the reservoir responses. All methods provide the similar accuracy over the

simulation period. The classification accuracy decreases as the time window enlarges

due to fewer activities produced by the reservoir.
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CHAPTER 10

Conclusions and Future Directions

The concept of personalized modeling is rooted in machine learning technologies that

have been successfully utilized for understanding, evaluating and solving a variety

of modeling problems. Fields that benefit from personalized modeling include per-

sonalized medicine and drug design, business, finance, and crime prevention. How-

ever, personalized modeling is not without problems, defining the correct number of

neighbors and model parameters and an appropriate number of features remain a

challenge. The goal of this research is to study and address these issues by creating

a novel framework and system for personalized modeling that allows users to select

and optimize the most important features, nearest neighbors and model parameters.

The system promises more precise classification accuracy and personalized knowledge

than standard global and local modeling approaches.

In brief, this thesis has presented the following main contributions for personalized

modeling study:

1. Chapter 6 proposes the novel integrated evolving personalized modeling sys-

tems (evoPM), in which a recently developed population-based heuristic op-

timization approach termed gravitational search algorithm (GSA) is applied

for feature selection, neighborhood and model parameters optimization. The

evoPM can create a personalized model for each testing sample with its own

optimal sets of features, neighborhood and model parameters.



This study has investigated a variety of classification methods during the devel-

opment of evoPM, including KNN and SVM. In particular, a new technology

evolving spiking neural networks (eSNN) is utilized in a novel way. Another

novelty is that personalized risk is evaluated for individual patient, rather than

generically classifying patients into normal or diseased groups. Accurately

quantifying disease risk is critical for medical decision support to ensure that

patients receive the optimal treatment for their individual profile;

2. To verify the strength of the novel method, it is applied to several benchmark

cancer gene expression datasets, its performance is compared with that of tra-

ditional global, local and personalized modeling methods. evoPM consistently

provides a more promising performance than traditional methods because it

selects the optimal sets of genes and disease classification parameters for each

individual patient (as detailed in Chapter 7). It discovers more useful know-

ledge for medical decision support in cancer diagnosis and prognosis;

3. The third novelty of this study is the first-time testing of the proposed method

on stroke data as case studies. Chapter 5 presents a comparative study applying

the conventional global, local, classical personalized modeling methods, and

evoPM-based algorithms to stroke outcome prognosis data as a case study. Due

to the limitation of the study, this study is conducted as a pilot study only to

find the predictors of depression in 5-year stroke survivors. The evoPM-based

methods were superior to the traditional methods in terms of classification

accuracy. In addition, the system creates a personalized profile for individual

patient and identifies the global markers computed from the selecting frequency

over all samples;

4. Focussing on multivariate spatio-temproal data (STD) analysis, Chapter 3 in-

troduces two recently proposed methods for spatio-temporal pattern recogni-

tion, namely the extended eSNN framework (EESNN) and the recurrent net-

work reservoir structure of eSNN (reSNN) using Liquid State Machine (LSM).

These two individualized generic prognostic models are for the first time applied

to stroke risk of occurrence spatio-temporal data as another case study (See

Chapter 9). The results show that personalized generic models are developed

successfully for learning STD, as such, they make significant contributions to

new knowledge and provide higher accuracy for predicting an individualized

event than traditional prognostic models.
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10.1. Future Directions

More specifically, the proposed personalized modeling system is the framework and

system that integrates novel machine learning and modeling techniques for the fol-

lowing research problems:

• Develop a novel integrated evolving personalized modeling system using incre-

mentally new data from various sources;

• Data sample profiling and results visualization;

• Estimate personalized risk;

• Encode the real-valued data into spike trains prior to feed into a spatio-

temporal filter to accumulate the spatio-temporal information of all input sig-

nals into a single high-dimensional state;

• Knowledge discovery and model validation;

• Optimal set of features, neighborhoods, model and its parameters selection.

10.1 Future Directions

As mentioned above, personalized modeling promises better results in both static

data analysis and dynamic STD analysis than global and local modeling methods.

Thus, it is worthy of investigating further to generate new knowledge for enhanced

understanding of complex phenomena occurring in nature and in human health.

Suggestions for future work are bulleted below:

• In this study, a new optimization approach GSA is applied for feature selection,

neighborhood and model parameter optimization. In a future study, several

more evolutionary methods will be integrated with personalized modeling ap-

proach and evaluated for optimization, such as particle swarm optimization

(PSO) (Kennedy & Eberhart, 1995) and cuckoo Search (CS) (X. S. Yang &

Deb, 2009), etc.

• evoPM in this study adopts three classification methods, namely KNN, SVM

and eSNN. In a future study, new technology will be studied and investigated,
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10.1. Future Directions

such as probabilistic SNN (pSNN). Proposed by Kasabov (Kasabov, 2007a,

2007b), pSNN stores its information as both connection weights and probabil-

istic parameters under which spikes occur and propagate.

As hypothesized by Kasabov (Kasabov, 2010), a probabilistic connection between

two neurons might enhance the computational power of SNN, leading to new

pSNN. In addition, pSNN might provide probabilistic risk estimates that assist

doctors in providing optimal prognosis and treatment to their patients.

• In two stroke case studies, select cases only are investigated as preliminary stud-

ies. The study limitations preclude an analysis of large populations. Therefore,

in future:

1. More stroke outcomes will be incorporated into stroke outcome prognosis

analysis, including memory, executive function, and information processing.

Such studies will benefit long-term evidence-based rehabilitation and ser-

vice planning, thus improving health outcomes in stroke.

2. The entire population from all six regions (Auckland (NZ), Perth and Mel-

bourne (Australia), Oxfordshire (UK), Dijon (France), Norrbotten and

Vasterbotten (Northern Sweden)) will be incorporated into stroke risk of

occurrence analysis. Especially, a comparative study will be conducted to

investigate the differences and similarities between different regions. We

hypothesize that the study will contribute significantly to understand-

ing of environmental triggers of stroke, as well as reducing the hazardous

effects of harmful weather conditions on other diseases.

• To improve the efficiency of the generic personalized modeling for dynamic STD

learning, EESNN and reSNN will be further implemented by integrating with

evolutionary methods, such as GSA and PSO. We hypothesize that optimized

personalized methods will generate more precise results and new discoveries.

• The “Brain-gene ontology (BGO)” model is used to characterize human brain,

genes, and the relationships between them (Benuskova & Kasabov, 2006). In a

future study, we will develop a Brain Injury Ontology (BIONT) repository to

store all data, information and knowledge of brain injury, such as stroke data.

BIONT will allow users to navigate and find genes expressed in different parts

of the brain, or to study unknown interactions between variables related to any

brain injury disease outcome and risk.
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10.1. Future Directions

In addition, the BIONT and the existing personalized modeling framework and

system will be combined into a Knowledge Engineering System (KESBI) (as

shown in Figure 10.1). This system will support new knowledge discovery that

facilitates understanding of the complex interactions occurring in the brain. In

this way, we can predict the best possible outcome for a new patient, as well

as provide more accurate diagnosis and prognosis of clinical results.

Figure 10.1: Flowchart of the proposed novel integrated Knowledge Engineering
System (KESBI).
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APPENDIX A

Appendix A - Result of 100 Breast

Cancer Wisconsin Samples Achieved by

knnGSA



  

=================================== Result =================================== 

 

 Sample ID        Actual Class        Predicted Class        probRisk 

 1  1   1   1.000 

 2  1   1   0.800 

 3  1   1   0.800 

 4  2   1*   0.800 

 5  1   1   0.667 

 6  2   2   1.000 

 7  1   1   1.000 

 8  2   2   1.000 

 9  2   2   0.909 

 10  2   2   1.000 

 11  1   1   1.000 

 12  1   1   1.000 

 13  1   1   1.000 

 14  1   1   1.000 

 15  1   1   1.000 

 16  2   2   1.000 

 17  1   1   1.000 

 18  2   2   1.000 

 19  2   2   1.000 

 20  1   1   1.000 

 21  1   1   1.000 

 22  2   2   1.000 

 23  1   1   1.000 

 24  2   2   0.750 

 25  2   2   0.938 

 26  1   1   1.000 

 27  2   2   1.000 

 28  1   1   1.000 

 29  2   2   1.000 

 30  2   2   1.000 

 31  1   1   1.000 

 32  1   1   1.000 

 33  2   2   1.000 

 34  1   1   1.000 

 35  1   1   1.000 

 36  2   2   1.000 

 37  2   1*   0.917 

 38  1   1   1.000 

 39  1   1   1.000 

 40  1   1   0.909 

 41  1   1   1.000 

 42  2   2   1.000 

 43  2   2   0.615 

 44  1   1   1.000 

 45  1   1   1.000 

 46  1   1   1.000 

 47  1   1   1.000 



 48  1   1   1.000 

 49  2   2   1.000 

 50  2   2   0.556 

 51  2   2   1.000 

 52  1   1   1.000 

 53  2   2   1.000 

 54  1   1   1.000 

 55  2   2   1.000 

 56  1   1   1.000 

 57  1   1   1.000 

 58  1   1   1.000 

 59  2   2   1.000 

 60  2   2   1.000 

 61  1   1   1.000 

 62  2   2   0.900 

 63  2   2   0.933 

 64  2   2   1.000 

 65  1   1   1.000 

 66  2   2   1.000 

 67  2   2   1.000 

 68  1   1   1.000 

 69  1   1   1.000 

 70  1   1   1.000 

 71  1   1   1.000 

 72  1   2*   1.000 

 73  1   1   1.000 

 74  1   1   1.000 

 75  1   1   1.000 

 76  2   2   1.000 

 77  2   2   1.000 

 78  1   1   1.000 

 79  1   1   1.000 

 80  1   1   1.000 

 81  2   2   1.000 

 82  2   2   1.000 

 83  1   1   1.000 

 84  1   1   1.000 

 85  1   1   1.000 

 86  2   2   1.000 

 87  2   2   1.000 

 88  1   1   1.000 

 89  2   2   1.000 

 90  2   2   1.000 

 91  2   2   1.000 

 92  1   1   1.000 

 93  1   1   1.000 

 94  2   2   1.000 

 95  1   1   1.000 

 96  1   1   1.000 

 97  2   2   0.889 

 98  2   2   0.500 



 99  2   2   0.917 

 100  2   2   0.875 

  

 

 Overall Accuracy of Leave-one-out Crossvalidation:  97.00%  

 

 Class 1 Overall Accuracy:  98.18%  

 Class 2 Overall Accuracy:  95.56%  

 Class1 Confusion Table:  54(Correctly Classified) 55(Total) 

 Class2 Confusion Table:  43(Correctly Classified) 45(Total) 

  

 

-------------------------------------------------------- 

 

  Sample ID       # K     KNN Index 

 

 1   9    1 2 11 13 14 16 19 20 22  

 2   7    12 14 19 25 33 47 67  

 3   4    37 2 13 14  

 4   12    93 29 52 63 90 86 65 5 58 81 80 9  

 5   9    15 54 6 97 1 33 64 94 3  

 6   9    9 76 18 50 17 81 58 42 86  

 7   7    64 94 10 33 5 2 3  

 8   12    76 81 36 29 59 75 21 96 49 24 4 90  

 9   11    28 54 96 98 49 24 36 59 71 75 76  

 10   9    6 26 35 58 62 75 80 88 99  

 11   5    34 51 60 2 13  

 12   11    39 2 14 34 51 11 16 25 31 38 43  

 13   14    19 3 20 25 30 37 40 53 67 70 74 7 38 43  

 14   14    27 55 82 83 31 44 46 47 56 60 68 73 77 79  

 15   15    2 13 19 25 33 47 67 74 91 11 12 14 20 22 27  

 16   15    5 64 1 16 94 7 11 33 40 72 95 3 13 20 22  

 17   20    30 40 2 15 19 20 22 25 31 34 38 43 45 46 47 51 53 56 57 67  

 18   3    36 10 9  

 19   3    59 54 9  

 20   7    13 20 25 30 53 67 70  

 21   9    1 2 13 15 17 20 22 25 30  

 22   12    59 76 49 32 8 98 18 6 10 54 9 36  

 23   11    57 78 84 67 3 21 37 53 70 94 13  

 24   8    28 16 9 18 54 5 19 23  

 25   16    4 93 63 71 75 61 62 99 29 58 90 36 96 86 26 41  

 26   20    2 15 20 47 67 74 91 1 3 5 7 11 12 13 14 21 23 27 31 33  

 27   15    76 6 96 66 50 88 18 35 48 62 28 65 80 75 85  

 28   16    14 55 82 83 17 46 60 68 77 79 87 92 95 34 47 51  

 29   7    9 54 8 98 59 36 49  

 30   13    4 93 65 86 50 27 58 76 8 10 22 52 80  

 31   15    20 21 53 70 3 13 26 37 38 40 43 45 67 69 74  

 32   17    14 28 46 47 55 56 68 73 77 79 82 83 87 91 92 2 12  

 33   10    8 59 22 49 9 36 54 99 29 98  

 34   24    11 13 64 2 12 14 15 20 21 23 26 28 32 34 38 43 45 46 47 51 53 55 

      56 57  



 35   2    10 6 

 36   13    8 54 96 6 27 36 49 59 76 9 29 75 98  

 37   12    75 71 81 61 25 30 98 99 10 19 58 86  

 38   11    3 7 40 1 2 5 11 13 14 15 17  

 39   5    2 6 13 20 9 

 40   22    12 8 44 14 28 55 60 82 83 84 95 97 1 2 11 13 15 17 20 21 23 26  

 41   18    3 20 21 31 38 53 70 13 26 39 43 45 67 69 74 78 84 1  

 42   16    66 22 33 9 18 37 90 19 59 50 49 54 16 24 75 8  

 43   13    19 81 64 7 16 52 22 94 98 34 59 5 6  

 44   11    26 39 45 69 74 1 2 13 15 20 21  

 45   16    14 28 55 60 82 83 84 95 1 2 11 12 13 15 20 21  

 46   18    26 39 44 69 74 2 12 13 15 20 21 31 35 51 53 60 70 3  

 47   8    14 28 55 68 77 79 82 83  

 48   7    1 2 11 14 15 20 21  

 49   7    18 42 66 80 24 63 4  

 50   18    59 22 98 33 19 8 54 16 10 72 9 23 57 94 5 13 1 67  

 51   11    42 58 96 4 65 93 10 66 18 81 75  

 52   10    11 35 60 2 14 15 17 28 39 44  

 53   16    6 10 36 19 27 98 51 59 90 81 58 61 75 4 37 93  

 54   3    1 3 21  

 55   10    10 33 42 51 58 80 6 49 24 29  

 56   5    14 28 60 82 83  

 57   16    32 45 73 34 48 91 2 15 14 17 28 46 47 56 64 68  

 58   13    23 94 72 78 84 7 67 1 21 54 70 3 20  

 59   9    37 75 63 10 86 89 65 99 61  

 60   4    50 22 19 98  

 61   18    14 28 56 82 83 84 17 21 23 35 39 44 47 52 54 58 68 69  

 62   10    71 99 10 75 98 25 50 37 60 22  

 63   15    43 27 49 36 85 18 80 75 24 29 88 42 40 4 93  

 64   7    59 42 66 51 80 86 90  

 65   3    14 17 28  

 66   16    30 88 90 86 75 66 37 25 89 36 4 93 99 85 53 59  

 67   10    76 42 27 51 43 6 10 49 53 62  

 68   12    2 13 15 20 26 48 74 91 1 3 17 21  

 69   10    1 3 14 21 23 28 35 38 39 44  

 70   21    26 39 44 46 74 2 12 13 15 20 21 35 52 54 70 3 11 38 61 41 32  

 71   17    3 14 17 21 23 28 35 38 39 41 44 47 52 54 56 58 61  

 72   6    98 25 9 67 90 50  

 73   11    1 95 5 3 21 23 35 38 39 44 45  

 74   13    2 11 15 17 20 21 23 26 31 32 35 39 44  

 75   6    2 13 15 20 26 48  

 76   4    37 42 59 90  

 77   3    81 6 22  

 78   14    2 3 7 11 12 15 20 21 23 26 32 35 38 39  

 79   10    21 23 54 58 68 71 84 3 20 38  

 80   8    1 14 17 21 23 28 35 39  

 81   4    25 36 66 4  

 82   20    37 43 18 19 8 22 63 9 76 86 6 90 29 27 60 88 66 36 67 10  

 83   18    3 7 11 14 17 21 23 28 35 38 39 41 44 47 52 54 56 58  

 84   14    14 28 56 83 47 61 69 78 80 87 92 35 48 52  

 85   17    7 79 3 21 23 38 54 58 68 71 94 20 41 13 39 44 70  



 86   18    49 88 81 66 67 4 90 93 86 89 42 30 59 36 27 76 18 51  

 87   4    59 66 30 89  

 88   19    17 32 47 48 57 69 74 78 80 91 92 95 2 14 15 28 34 35 45  

 89   4    81 86 49 89  

 90   9    87 59 64 10 66 4 93 89 18  

 91   4    30 4 82 93  

 92   11    14 17 28 32 40 45 47 48 56 57 69  

 93   18    1 3 14 21 23 28 35 38 39 44 47 52 54 56 58 61 69 70  

 94   9    4 30 66 81 49 59 86 89 91  

 95   7    23 58 68 79 85 7 20  

 96   3    9 35 80 

 97   9    64 25 99 72 4 94 30 62 76  

 98   2    31 16  

 99   12    62 72 99 50 25 10 60 76 37 59 64 22  

 100   16    33 72 50 22 60 76 8 30 99 37 62 4 5 16 19 87  

 

 

Average number of K been selected:  11 

 

 

-------------------------------------------------------- 

 

  Sample ID       # Features      Feature Index 

 

 1   2     2 3  

 2   4     6 4 8 7  

 3   6     2 6 3 4 8 9  

 4   6     2 6 5 1 7 9  

 5   5     3 4 8 7 9  

 6   5     3 5 8 1 7  

 7   4     6 3 5 4  

 8   5     2 3 4 1 9  

 9   4     2 6 4 9  

 10   2     6 7  

 11   4     4 1 8 7  

 12   7     2 3 5 4 1 8 9  

 13   5     2 4 1 7 9  

 14   6     6 3 5 4 1 9  

 15   4     6 4 8 7  

 16   7     2 6 3 5 4 7 9  

 17   7     2 6 3 5 4 8 9  

 18   4     2 5 8 9  

 19   7     2 3 5 4 1 7 9  

 20   6     2 5 4 1 8 7  

 21   4     3 5 8 9  

 22   4     2 6 3 8  

 23   6     6 3 4 1 7 9  

 24   6     2 3 8 1 7 9  

 25   4     3 5 8 7  

 26   3     2 6 7  

 27   4     6 5 1 7  



 28   6     2 3 5 1 8 7  

 29   6     6 3 5 4 8 7  

 30   2     2 4  

 31   7     2 3 5 4 1 8 9  

 32   4     6 3 4 1  

 33   5     6 3 5 7 9  

 34   5     2 6 3 4 8  

 35   4     6 5 4 7  

 36   2     6 4  

 37   4     3 5 4 8  

 38   2     8 9  

 39   2     6 4  

 40   4     5 4 8 9  

 41   4     2 3 4 1  

 42   3     2 7 9  

 43   5     6 2 3 8 7  

 44   5     6 3 1 8 9  

 45   4     6 5 4 8  

 46   4     3 4 1 8  

 47   7     2 6 3 1 8 7 9  

 48   4     2 6 8 9  

 49   3     5 4 1  

 50   6     2 5 4 8 1 9  

 51   5     2 5 4 8 9  

 52   3     2 1 7  

 53   4     3 4 1 7  

 54   5     6 5 1 7 9  

 55   2     6 1  

 56   4     2 5 4 7  

 57   4     1 8 7 9  

 58   5     2 6 1 8 7  

 59   5     2 6 5 8 9  

 60   8     2 3 5 4 8 1 7 9  

 61   5     3 5 4 8 7  

 62   4     2 6 4 7  

 63   3     3 5 9  

 64   6     2 6 4 1 8 9  

 65   6     2 4 1 8 7 9  

 66   5     3 1 8 7 9  

 67   3     2 3 5  

 68   4     3 5 7 9  

 69   4     2 6 3 7  

 70   6     6 3 5 4 1 8  

 71   4     2 3 4 7  

 72   4     2 6 1 9  

 73   6     6 3 5 4 7 9  

 74   5     2 5 4 8 9  

 75   5     3 5 4 7 9  

 76   3     2 8 9  

 77   6     2 3 5 4 8 1  

 78   4     2 6 5 4  



 79   8     2 6 3 5 4 1 8 7  

 80   3     3 8 7  

 81   3     5 8 7  

 82   5     3 5 8 1 7  

 83   2     4 7  

 84   6     6 3 5 4 1 7  

 85   6     2 6 4 1 7 9  

 86   6     2 3 4 1 8 9  

 87   8     2 6 3 5 4 8 7 9  

 88   4     3 5 1 9  

 89   4     2 3 4 9  

 90   4     4 8 7 9  

 91   4     6 3 1 9  

 92   4     2 3 1 8  

 93   4     2 6 3 7  

 94   3     2 4 8  

 95   5     2 6 4 1 8  

 96   2     6 4  

 97   4     3 8 7 9  

 98   3     2 6 1  

 99   5     2 6 5 7 9  

 100   3     3 5 4  

 

 

Average number of Features been selected:  5      

 

 

=============================== End ================================ 

 



APPENDIX B

Appendix B - Result of 100 Breast Cancer

Wisconsin Samples Achieved by svmGSA



  

=========================================================================Result====================================================================== 

 

 Sample ID        Actual Class        Predicted Class        Predicted Class (based on Probability)        Pro in Class1        Pro in Class2 

 1  1   1    1     0.95442    0.04558 

 2  1   1    1     0.97257    0.02743 

 3  1   1    1     0.96337    0.03663 

 4  2   2    2     0.27223    0.72777 

 5  1   1    1     0.60940    0.39060 

 6  2   2    1*     0.95759    0.04241 

 7  1   1    1     0.96051    0.03949 

 8  2   2    2     0.12078     0.87922 

 9  2   2    2     0.13689    0.86311 

 10  2   2    2     0.05301    0.94699 

 11  1   1    1     0.97173    0.02827 

 12  1   1    1     0.97151    0.02849 

 13  1   1    1     0.97072    0.02928 

 14  1   1    1     0.96782    0.03218 

 15  1   1    1     0.98417    0.01583 

 16  2   1*    2     0.07845    0.92155 

 17  1   1    1     0.96107    0.03893 

 18  2   2    2     0.16031    0.83969 

 19  2   2    2     0.50000    0.50000 

 20  1   1    1     0.98427    0.01573 

 21  1   1    1     0.97876    0.02124 

 22  2   2    2     0.07526    0.92474 

 23  1   1    1     0.96223    0.03777 

 24  2   2    2     0.37952    0.62048 

 25  2   2    2     0.41948    0.58052 

 26  1   1    1     0.96656    0.03344 

 27  2   2    2     0.07862    0.92138 

 28  1   1    1     0.96700    0.03300 

 29  2   2    2     0.44141    0.55859 

 30  2   2    2     0.13129    0.86871 

 31  1   1    1     0.95684    0.04316 

 32  1   1    1     0.96685    0.03315 

 33  2   2    2     0.07132    0.92868 

 34  1   1    1     0.96843    0.03157 

 35  1   1    1     0.96843    0.03157 



 36  2   2    2     0.09207    0.90793 

 37  2   2    2     0.20231    0.79769 

 38  1   1    1     0.96694    0.03306 

 39  1   1    1     0.96843    0.03157 

 40  1   1    1     0.96593    0.03407 

 41  1   1    1     0.96829    0.03171 

 42  2   2    2     0.07638    0.92362 

 43  2   2    2     0.04218    0.95782 

 44  1   1    1     0.96784    0.03216 

 45  1   1    1     0.90962    0.09038 

 46  1   1    1     0.96622    0.03378 

 47  1   1    1     0.96794    0.03206 

 48  1   1    1     0.96843    0.03157 

 49  2   2    2     0.04590    0.95410 

 50  2   2    2     0.13598    0.86402 

 51  2   2    2     0.09608    0.90392 

 52  1   1    1     0.96843    0.03157 

 53  2   2    2     0.06819    0.93181 

 54  1   1    1     0.98325    0.01675 

 55  2   2    2     0.18602    0.81398 

 56  1   1    1     0.98089    0.01911 

 57  1   1    1     0.96781    0.03219 

 58  1   1    1     0.96253    0.03747 

 59  2   2    2     0.08795    0.91205 

 60  2   2    2     0.08877    0.91123 

 61  1   1    1     0.96111    0.03889 

 62  2   2    2     0.11805    0.88195 

 63  2   2    2     0.10455    0.89545 

 64  2   2    2     0.14825    0.85175 

 65  1   1    1     0.96802    0.03198 

 66  2   2    2     0.11677    0.88323 

 67  2   2    2     0.06286    0.93714 

 68  1   1    1     0.96378    0.03622 

 69  1   1    1     0.97276    0.02724 

 70  1   1    1     0.96554    0.03446 

 71  1   1    1     0.97295    0.02705 

 72  1   1    1     0.96998    0.03002 

 73  1   1    1     0.96686    0.03314 

 74  1   1    1     0.96510    0.03490 



 75  1   1    1     0.96732    0.03268 

 76  2   2    2     0.47376    0.52624 

 77  2   2    2     0.05040    0.94960 

 78  1   1    1     0.97107    0.02893 

 79  1   1    1     0.97889    0.02111 

 80  1   1    1     0.96897    0.03103 

 81  2   2    2     0.07861    0.92139 

 82  2   2    2     0.04727    0.95273 

 83  1   1    1     0.96687    0.03313 

 84  1   1    1     0.96689    0.03311 

 85  1   1    1     0.96778    0.03222 

 86  2   2    2     0.05046    0.94954 

 87  2   2    2     0.10404    0.89596 

 88  1   1    1     0.96394    0.03606 

 89  2   2    2     0.04741    0.95259 

 90  2   2    2     0.04742    0.95258 

 91  2   2    2     0.19843    0.80157 

 92  1   1    1     0.96746    0.03254 

 93  1   1    1     0.96799    0.03201 

 94  2   2    2     0.25917    0.74083 

 95  1   1    1     0.94306    0.05694 

 96  1   1    1     0.97000    0.03000 

 97  2   2    2     0.75812    0.24188 

 98  2   2    2     0.06510    0.93490 

 99  2   2    2     0.42421    0.57579 

 100  2   2    2     0.50000    0.50000 

  

 

 Overall Accuracy of Leave-one-out Crossvalidation:  99.00%  

 

 Class 1 Accuracy:  100.00%  

 Class 2 Accuracy:  97.78%  

 Class1 Confusion Table:  55(Correctly Classified) 55(Total) 

 Class2 Confusion Table:  44(Correctly Classified) 45(Total) 

  

 

 Overall Accuracy of Leave-one-out Crossvalidation (base on probability):  99.00%  

 

 Class 1 Accuracy:  100.00%  



 Class 2 Accuracy:  97.78%  

 Class1 Confusion Table:  55(Correctly Classified) 55(Total) 

 Class2 Confusion Table:  44(Correctly Classified) 45(Total) 

  

 

-------------------------------------------------------- 

 

  Sample ID       Best Gamma          Best C 

 

 1  0.23  91.50 

 2  0.13  205.59 

 3  0.12  113.03 

 4  0.58  8.52 

 5  0.17  201.65 

 6  0.35  13.65 

 7  0.74  105.16 

 8  0.80  210.93 

 9  0.30  169.11 

 10  0.43  198.31 

 11  0.12  159.88 

 12  0.23  233.80 

 13  0.40  154.77 

 14  0.66  80.49 

 15  0.02  236.73 

 16  0.77  185.58 

 17  0.59  51.60 

 18  0.37  238.62 

 19  0.93  72.67 

 20  0.03  246.42 

 21  0.09  166.96 

 22  0.94  124.32 

 23  0.33  39.57 

 24  0.92  76.22 

 25  0.75  78.80 

 26  0.63  100.89 

 27  0.36  51.94 

 28  0.88  239.94 

 29  0.71  175.98 

 30  0.29  214.35 



 31  0.54  28.21 

 32  0.73  234.07 

 33  0.38  177.03 

 34  0.67  215.62 

 35  0.87  160.63 

 36  0.57  155.19 

 37  0.83  67.65 

 38  0.14  163.57 

 39  0.39  151.90 

 40  0.23  20.36 

 41  0.01  11.62 

 42  0.36  61.44 

 43  0.01  50.18 

 44  0.71  213.75 

 45  0.46  76.92 

 46  0.32  28.64 

 47  0.48  80.39 

 48  0.37  64.92 

 49  0.87  94.58 

 50  0.77  93.57 

 51  0.75  30.17 

 52  0.94  67.94 

 53  0.30  135.12 

 54  0.11  97.28 

 55  0.79  113.03 

 56  0.32  154.74 

 57  0.40  225.64 

 58  0.42  226.63 

 59  0.98  198.74 

 60  0.11  173.30 

 61  0.38  152.06 

 62  0.89  1.19 

 63  0.97  168.19 

 64  0.33  132.32 

 65  0.57  87.84 

 66  0.33  179.65 

 67  0.21  54.20 

 68  0.72  111.83 

 69  0.06  237.72 



 70  0.66  52.77 

 71  0.27  162.11 

 72  0.80  195.69 

 73  0.72  145.23 

 74  0.98  23.14 

 75  0.33  29.76 

 76  0.14  111.68 

 77  0.81  14.37 

 78  0.15  86.20 

 79  0.25  102.01 

 80  0.45  101.21 

 81  0.57  213.38 

 82  0.49  108.33 

 83  0.68  90.81 

 84  0.48  30.26 

 85  0.22  155.91 

 86  0.79  41.92 

 87  0.58  206.45 

 88  0.40  228.18 

 89  0.32  65.76 

 90  0.59  208.95 

 91  0.19  81.80 

 92  0.70  141.90 

 93  0.85  57.59 

 94  0.83  107.60 

 95  0.53  92.49 

 96  0.76  61.28 

 97  0.14  130.64 

 98  0.68  74.80 

 99  0.13  178.23 

 100  0.51  244.06 

 

 

Average number of Gamma:  0.49    

 

Average number of C:  124.89     

 

-------------------------------------------------------- 

 



  Sample ID       # K     KNN Index 

 

 1   17    72 20 53 70 2 19 37 38 43 69 78 12 25 40 67 74 84   

 2   13    14 25 34 47 51 74 91 10 31 38 43 45 46  

 3   9    37 20 40 53 70 19 38 43 69  

 4   12    93 29 90 86 63 65 52 58 80 75 61 71  

 5   2    6 15  

 6   10    76 9 59 26 50 7 36 81 75 35  

 7   6    94 5 3 37 78 20  

 8   16    59 21 49 36 98 75 81 86 8 32 6 9 76 99 17 71  

 9   8    28 54 36 98 59 49 32 71  

 10   9    58 86 75 98 6 50 36 59 61  

 11   8    34 51 2 14 38 43 46 60  

 12   6    39 2 14 31 45 56  

 13   9    19 20 25 53 67 70 74 3 37  

 14   7    27 55 82 83 46 60 68  

 15   11    2 25 34 47 51 74 91 11 31 38 43  

 16   17    5 7 40 3 37 1 72 94 78 13 20 22 53 57 70 84 97  

 17   12    46 68 77 79 87 92 14 27 34 47 51 55  

 18   10    23 50 75 86 41 58 21 62 36 71  

 19   2    16 5  

 20   9    13 20 25 53 67 70 74 3 37  

 21   11    53 70 3 20 37 38 43 69 78 13 25  

 22   19    59 49 8 32 36 98 18 76 10 75 86 9 54 81 6 23 99 28 71  

 23   9    57 78 67 84 21 53 70 94 3  

 24   3    18 32 71  

 25   2    71 99  

 26   10    74 2 15 20 38 43 45 69 13 21  

 27   13    35 75 50 36 96 6 41 48 80 18 88 62 85  

 28   11    14 55 82 83 46 60 68 77 79 87 92  

 29   5    9 54 98 49 71  

 30   13    65 4 93 90 86 75 25 36 99 58 88 89 71  

 31   20    20 45 13 26 40 67 74 21 53 70 2 3 15 37 38 43 69 78 84 97  

 32   9    56 73 47 91 2 15 44 33 45  

 33   15    49 59 54 22 98 24 9 10 29 8 97 18 16 36 71  

 34   8    47 64 91 2 11 15 32 46  

 35   10    51 2 11 15 38 43 46 60 68 69  

 36   23    75 27 36 85 80 65 88 30 90 6 48 86 25 58 99 10 4 41 93 96 81 50 71  

 37   6    75 99 8 25 98 71  



 38   8    3 21 40 53 70 20 38 43  

 39   8    43 69 21 26 35 51 53 70  

 40   6    12 44 17 32 56 73  

 41   12    3 38 21 53 70 20 39 43 69 78 13 26  

 42   15    66 50 58 18 80 90 61 75 37 10 27 63 88 86 71  

 43   6    18 62 19 81 22 90  

 44   7    39 69 21 26 35 51 53  

 45   11    32 56 73 47 91 2 15 14 28 34 55  

 46   9    26 74 2 15 20 13 32 39 44  

 47   6    68 77 79 87 92 14  

 48   8    91 2 15 32 47 56 68 73  

 49   27    85 80 88 27 58 36 65 66 86 4 93 62 75 63 89 42 50 18 10 90 30 61 6 37 99 96 71  

 50   12    59 98 22 33 8 54 29 37 9 10 75 71  

 51   21    42 58 10 66 18 75 27 86 37 80 6 61 90 63 65 4 93 88 96 76 71  

 52   8    35 2 11 15 39 44 47 60  

 53   21    4 93 90 81 30 65 19 36 61 86 25 51 80 27 42 58 6 75 10 37 71  

 54   6    21 70 3 20 38 39  

 55   11    33 29 9 50 59 98 97 22 16 24 31  

 56   7    14 28 82 83 47 60 68  

 57   9    32 73 48 91 2 15 45 34 46  

 58   7    23 78 67 84 21 54 70  

 59   19    10 86 80 75 51 63 61 42 65 90 37 4 18 93 85 99 88 89 71  

 60   16    50 22 8 33 98 37 55 10 9 76 29 6 75 18 86 71  

 61   5    14 28 35 52 56  

 62   9    59 10 42 63 90 51 4 93 71  

 63   14    18 85 27 24 75 88 49 99 80 36 66 42 37 71  

 64   6    59 4 93 86 62 71  

 65   8    34 11 47 68 77 79 87 92  

 66   10    88 86 30 90 85 75 59 89 4 93  

 67   9    42 51 88 80 59 18 90 66 85  

 68   7    20 78 13 21 23 54 58  

 69   5    47 77 79 87 92  

 70   6    39 44 21 26 35 52  

 71   11    21 54 3 20 38 39 44 70 78 13 26  

 72   7    99 25 98 75 37 90 29  

 73   7    1 78 21 23 54 58 68  

 74   10    32 57 48 91 2 15 45 34 46 47  

 75   7    26 2 15 20 39 44 46 

 76   3    37 99 72  



 77   4    6 60 22 50  

 78   7    47 69 79 87 92 14 28  

 79   10    21 23 54 58 68 71 84 3 20 38  

 80   11    47 69 78 87 92 14 28 35 48 52 56  

 81   8    85 49 88 59 66 86 42 36  

 82   8    37 8 90 6 86 30 22 53  

 83   7    14 28 56 83 47 61 69  

 84   15    14 28 56 83 47 61 69 78 80 87 92 35 48 52 91  

 85   13    79 21 23 54 58 68 71 3 20 38 13 41 39  

 86   8    81 88 49 66 86 59 36 89  

 87   9    59 66 30 89 76 90 10 4 93 

 88   8    47 69 78 80 92 14 28 35  

 89   11    86 66 81 49 87 89 67 76 59 36 90  

 90   11    87 66 89 86 59 10 76 30 81 37 99  

 91   7    4 30 93 66 87 76 72  

 92   7    48 2 15 32 47 57 69  

 93   10    47 69 78 80 88 14 28 35 48 52  

 94   12    4 30 91 87 64 66 53 59 81 76 62 72  

 95   6    7 23 58 79 68 85  

 96   8    47 69 78 80 88 93 14 28  

 97   5    25 76 27 37 72  

 98   10    31 41 1 5 17 73 20 13 21 26 

 99   3    50 60 72  

 100   2    76 72  

 

 

Average number of K been selected:  10     

 

-------------------------------------------------------- 

 

  Sample ID       # Features      Feature Index 

 

 1   3     2 1 7  

 2   6     2 6 3 5 4 8  

 3   3     3 7 9  

 4   6     2 3 1 8 7 9  

 5   4     2 6 1 7  

 6   4     2 4 1 7  

 7   4     2 3 4 9  



 8   4     2 4 1 9  

 9   6     6 3 4 7 8 9  

 10   3     3 5 8  

 11   4     2 4 1 7  

 12   5     5 1 8 7 9  

 13   5     2 6 3 1 9  

 14   3     2 3 9  

 15   6     6 5 1 8 7 9  

 16   6     2 3 5 4 8 9  

 17   4     3 4 7 9  

 18   2     4 1  

 19   5     3 4 8 1 9  

 20   6     6 3 5 1 8 9  

 21   5     2 5 4 1 9  

 22   6     6 3 5 4 1 9  

 23   6     6 3 1 8 7 9  

 24   4     6 5 8 7  

 25   3     3 1 9  

 26   7     2 6 5 4 8 7 9  

 27   4     1 8 7 9  

 28   4     2 6 7 9  

 29   3     6 4 1  

 30   4     3 5 7 9  

 31   3     2 6 4  

 32   4     2 6 4 9  

 33   5     2 4 8 1 9  

 34   3     3 5 8  

 35   4     2 3 5 8  

 36   5     6 3 5 7 9  

 37   4     6 5 1 9  

 38   4     3 5 1 9  

 39   4     3 4 8 9  

 40   5     6 4 1 8 9  

 41   4     6 5 4 7  

 42   4     3 4 8 9  

 43   4     3 5 4 1  

 44   3     5 4 7  

 45   4     2 5 4 7  

 46   5     6 3 4 1 9  



 47   3     2 4 1  

 48   5     2 6 8 7 9  

 49   7     2 6 3 5 1 7 9  

 50   6     5 4 8 1 7 9  

 51   4     6 3 8 9  

 52   1     7  

 53   2     6 2  

 54   5     3 5 4 8 9  

 55   2     7 9  

 56   6     2 3 5 4 8 9  

 57   5     2 6 5 4 7  

 58   4     2 3 1 8  

 59   3     2 6 8  

 60   4     2 6 5 7  

 61   4     2 5 1 9  

 62   3     3 1 7  

 63   4     2 8 7 9  

 64   3     2 3 8  

 65   5     2 5 4 8 9  

 66   4     3 5 1 7  

 67   5     2 6 1 7 9  

 68   3     5 7 9  

 69   5     2 6 3 5 1  

 70   6     6 3 5 1 8 7  

 71   5     5 1 8 7 9  

 72   4     2 6 8 7  

 73   5     2 5 8 7 9  

 74   4     6 3 4 7  

 75   3     6 3 7  

 76   5     6 5 4 1 7  

 77   5     6 3 8 7 9  

 78   4     2 6 4 9  

 79   4     2 3 5 1  

 80   6     3 5 4 8 7 9  

 81   4     2 6 5 7  

 82   6     2 6 3 5 8 7  

 83   4     2 5 4 1  

 84   4     6 1 7 9  

 85   5     3 4 1 8 9  



 86   7     2 6 5 4 1 7 9  

 87   4     3 5 4 7  

 88   3     3 8 7  

 89   6     2 6 3 5 1 9  

 90   5     2 3 4 8 9  

 91   4     4 1 8 7  

 92   5     2 6 5 1 9  

 93   2     4 1  

 94   4     6 5 4 7  

 95   5     6 3 5 4 9  

 96   5     6 4 8 7 9  

 97   4     3 1 7 9  

 98   4     4 1 7 9  

 99   2     1 7  

 100   2     4 8  

 

 

Average number of Features been selected:  5     

 

=========================================================================End======================================================================== 

 



APPENDIX C

Appendix C - Result of 100 Breast Cancer

Wisconsin Samples Achieved by esnnGSA



  

========================== Result ======================== 

 

 Sample ID        Actual Class        Predicted Class 

 1  1   1 

 2  1   1 

 3  1   1 

 4  2   2 

 5  1   1 

 6  2   2 

 7  1   1 

 8  2   1* 

 9  2   2 

 10  2   2 

 11  1   1 

 12  1   1 

 13  1   1 

 14  1   1 

 15  1   1 

 16  2   2 

 17  1   1 

 18  2   2 

 19  2   2 

 20  1   1 

 21  1   1 

 22  2   2 

 23  1   1 

 24  2   2 

 25  2   2 

 26  1   1 

 27  2   2 

 28  1   1 

 29  2   2 

 30  2   2 

 31  1   1 

 32  1   1 

 33  2   2 

 34  1   1 

 35  1   1 

 36  2   2 

 37  2   2 

 38  1   1 

 39  1   1 

 40  1   1 

 41  1   1 

 42  2   2 

 43  2   2 

 44  1   1 

 45  1   1 

 46  1   1 

 47  1   1 



 48  1   1 

 49  2   2 

 50  2   2 

 51  2   2 

 52  1   1 

 53  2   2 

 54  1   1 

 55  2   2 

 56  1   1 

 57  1   1 

 58  1   1 

 59  2   2 

 60  2   2 

 61  1   1 

 62  2   2 

 63  2   2 

 64  2   2 

 65  1   1 

 66  2   2 

 67  2   2 

 68  1   1 

 69  1   1 

 70  1   1 

 71  1   1 

 72  1   1 

 73  1   1 

 74  1   1 

 75  1   1 

 76  2   2 

 77  2   2 

 78  1   1 

 79  1   1 

 80  1   1 

 81  2   2 

 82  2   2 

 83  1   1 

 84  1   1 

 85  1   1 

 86  2   2 

 87  2   2 

 88  1   1 

 89  2   2 

 90  2   2 

 91  2   2 

 92  1   1 

 93  1   1 

 94  2   2 

 95  1   1 

 96  1   1 

 97  2   2 

 98  2   2 



 99  2   2 

 100  2   2 

  

 

 Overall Accuracy of Leave-one-out Crossvalidation:  99.00%  

 

 Class 1 Accuracy:  100.00%  

 Class 2 Accuracy:  97.78%  

 Class1 Confusion Table:  55(Correctly Classified) 55(Total) 

 Class2 Confusion Table:  44(Correctly Classified) 45(Total) 

  

 

-------------------------------------------------------- 

 

  Sample ID       Best Mod          Best Threshold          Best Sim 

 

 1  0.79   0.32   0.19 

 2  0.46   0.19   0.34 

 3  0.46   0.43   0.37 

 4  0.87   0.32   0.42 

 5  0.67   0.04   0.02 

 6  0.83   0.01   0.38 

 7  0.74   0.50   0.19 

 8  0.06   0.04   0.46 

 9  0.45   0.25   0.28 

 10  0.92   0.03   0.12 

 11  0.57   0.18   0.46 

 12  0.62   0.34   0.39 

 13  0.50   0.30   0.01 

 14  0.64   0.04   0.47 

 15  0.62   0.44   0.48 

 16  0.84   0.11   0.28 

 17  0.19   0.07   0.16 

 18  0.75   0.50   0.40 

 19  0.07   0.47   0.44 

 20  0.98   0.35   0.05 

 21  0.91   0.17   0.25 

 22  0.69   0.15   0.26 

 23  0.52   0.40   0.12 

 24  0.75   0.30   0.08 

 25  0.74   0.38   0.15 

 26  0.98   0.43   0.34 

 27  0.67   0.20   0.47 

 28  0.11   0.45   0.48 

 29  0.61   0.26   0.28 

 30  0.03   0.41   0.09 

 31  0.88   0.33   0.47 

 32  0.31   0.19   0.23 

 33  0.00   0.14   0.39 

 34  0.66   0.11   0.03 

 35  0.05   0.24   0.03 



 36  0.84   0.28   0.03 

 37  0.69   0.41   0.05 

 38  0.95   0.12   0.01 

 39  0.52   0.13   0.46 

 40  0.52   0.23   0.11 

 41  0.02   0.22   0.07 

 42  0.11   0.37   0.09 

 43  0.51   0.48   0.32 

 44  0.86   0.49   0.07 

 45  0.03   0.34   0.08 

 46  0.09   0.12   0.10 

 47  0.65   0.46   0.41 

 48  0.39   0.03   0.00 

 49  0.79   0.36   0.34 

 50  0.39   0.28   0.14 

 51  0.58   0.45   0.22 

 52  0.46   0.06   0.02 

 53  0.43   0.38   0.17 

 54  0.05   0.47   0.24 

 55  0.70   0.03   0.40 

 56  0.29   0.49   0.27 

 57  0.14   0.27   0.04 

 58  0.56   0.16   0.03 

 59  0.72   0.45   0.04 

 60  0.85   0.30   0.36 

 61  0.80   0.19   0.47 

 62  0.72   0.35   0.02 

 63  0.78   0.32   0.15 

 64  0.24   0.04   0.43 

 65  0.55   0.35   0.39 

 66  0.29   0.31   0.03 

 67  0.81   0.15   0.36 

 68  0.28   0.49   0.11 

 69  0.30   0.06   0.36 

 70  0.58   0.19   0.45 

 71  0.48   0.21   0.22 

 72  0.48   0.20   0.46 

 73  0.04   0.22   0.18 

 74  0.25   0.17   0.41 

 75  0.15   0.48   0.38 

 76  0.90   0.13   0.01 

 77  0.86   0.41   0.43 

 78  0.58   0.25   0.17 

 79  0.05   0.37   0.29 

 80  0.62   0.34   0.38 

 81  0.22   0.49   0.06 

 83  0.70   0.23   0.27 

 84  0.46   0.28   0.32 

 86  0.97   0.01   0.29 

 87  0.63   0.32   0.29 

 88  0.04   0.16   0.38 



 89  0.81   0.29   0.03 

 90  0.10   0.28   0.47 

 91  0.61   0.33   0.40 

 92  0.14   0.17   0.06 

 93  0.87   0.27   0.22 

 94  0.83   0.15   0.13 

 95  0.01   0.38   0.27 

 96  0.56   0.21   0.20 

 97  0.97   0.21   0.38 

 99  0.03   0.21   0.29 

 100  0.54   0.26   0.23 

 

 

Average number of Mod:   0.52    

 

Average number of Threshold:  0.27    

 

Average number of Sim:   0.24     

 

-------------------------------------------------------- 

 

  Sample ID       # K     KNN Index 

 

 1   11    72 20 53 70 2 19 37 38 43 69 78  

 2   9    14 25 34 47 51 74 91 10 31  

 3   9    37 20 40 53 70 19 38 43 69  

 4   12    93 29 90 86 63 65 52 58 80 75 61 71  

 5   2    6 15  

 6   7    76 9 59 26 50 7 36  

 7   22    94 5 3 37 78 20 22 40 53 57 67 70 84 19 12 10 38 43 69 1 25 74 1 

 8   16    59 21 49 36 98 75 81 86 8 32 6 9 76 99 17 71  

 9   8    28 54 36 98 59 49 32 71  

 10   19    58 86 75 98 6 50 36 59 61 49 80 21 89 32 17 41 65 90 71  

 11   9    34 51 2 14 38 43 46 60 68  

 12   11    39 2 14 31 45 56 73 25 47 74 91  

 13   13    19 20 25 53 67 70 74 3 37 38 43 45 69  

 14   11    27 55 82 83 46 60 68 77 79 87 92  

 15   17    2 25 34 47 51 74 91 11 31 38 43 45 46 56 60 68 69  

 16   17    5 7 40 3 37 1 72 94 78 13 20 22 53 57 70 84 97  

 17   8    46 68 77 79 87 92 14 27  

 18   10    23 50 75 86 41 58 21 62 36 71  

 19   2    16 5  

 20   14    13 20 25 53 67 70 74 3 37 38 43 45 69 78  

 21   10    53 70 3 20 37 38 43 69 78 13  

 22   19    59 49 8 32 36 98 18 76 10 75 86 9 54 81 6 23 99 28 71  

 23   8    57 78 67 84 21 53 70 94  

 24   3    18 32 71  

 25   2    71 99  

 26   14    74 2 15 20 38 43 45 69 13 21 34 51 53 70 

 27   11    35 75 50 36 96 6 41 48 80 18 88 

 28   11    14 55 82 83 46 60 68 77 79 87 92  



 29   5    9 54 98 49 71  

 30   13    65 4 93 90 86 75 25 36 99 58 88 89 71  

 31   20    20 45 13 26 40 67 74 21 53 70 2 3 15 37 38 43 69 78 84 97  

 32   6    56 73 47 91 2 15  

 33   15    49 59 54 22 98 24 9 10 29 8 97 18 16 36 71  

 34   15    47 64 91 2 11 15 32 46 56 68 73 77 79 87 92 

 35   13    51 2 11 15 38 43 46 60 68 69 77 79 87 

 36   22    75 27 36 85 80 65 88 30 90 6 48 86 25 58 99 10 4 41 93 96 81 50 

 37   6    75 99 8 25 98 71  

 38   6    3 21 40 53 70 20 

 39   11    43 69 21 26 35 51 53 70 74 2 3 

 40   8    12 44 17 32 56 73 47 91 

 41   12    3 38 21 53 70 20 39 43 69 78 13 26 

 42   15    66 50 58 18 80 90 61 75 37 10 27 63 88 86 71  

 43   11    18 62 19 81 22 90 86 85 52 4 93 

 44   12    39 69 21 26 35 51 53 70 74 2 3 11 

 45   7    32 56 73 47 91 2 15 

 46   8    26 74 2 15 20 13 32 39 

 47   8    68 77 79 87 92 14 28 35 

 48   12    91 2 15 32 47 56 68 73 77 79 87 92 

 49   27    85 80 88 27 58 36 65 66 86 4 93 62 75 63 89 42 50 18 10 90 30 61 

      6 37 99 96 71  

 50   12    59 98 22 33 8 54 29 37 9 10 75 71  

 51   21    42 58 10 66 18 75 27 86 37 80 6 61 90 63 65 4 93 88 96 76 71  

 52   10    35 2 11 15 39 44 47 60 68 69 

 53   21    4 93 90 81 30 65 19 36 61 86 25 51 80 27 42 58 6 75 10 37 71  

 54   6    21 70 3 20 38 39 

 55   11    33 29 9 50 59 98 97 22 16 24 31  

 56   7    14 28 82 83 47 60 68 

 57   6    32 73 48 91 2 15 

 58   15    23 78 67 84 21 54 70 94 3 20 38 13 41 1 39 

 59   19    10 86 80 75 51 63 61 42 65 90 37 4 18 93 85 99 88 89 71  

 60   16    50 22 8 33 98 37 55 10 9 76 29 6 75 18 86 71  

 61   6    14 28 35 52 56 82 

 62   9    59 10 42 63 90 51 4 93 71  

 63   14    18 85 27 24 75 88 49 99 80 36 66 42 37 71  

 64   6    59 4 93 86 62 71  

 65   9    34 11 47 68 77 79 87 92 14  

 66   25    88 86 30 90 85 75 59 89 4 93 80 37 36 10 99 66 51 49 64 25 81 42 

      18 27 71  

 67   24    42 51 88 80 59 18 90 66 85 75 49 27 10 37 86 62 36 64 63 99 4 93 

      25 71  

 68   6    20 78 13 21 23 54 

 69   7    47 77 79 87 92 14 28 

 70   12    39 44 21 26 35 52 54 70 74 2 3 11 

 71   9    21 54 3 20 38 39 44 70 78 

 72   13    99 25 98 75 37 90 29 16 59 64 9 86 18  

 73   12    1 78 21 23 54 58 68 71 84 3 5 20 

 74   8    32 57 48 91 2 15 45 34  

 75   8    26 2 15 20 39 44 46 70 

 76   3    37 99 72  



 77   25    6 60 22 50 37 10 8 51 81 76 98 27 18 86 96 29 9 59 55 33 89 25 

      66 36 72  

 78   16    47 69 79 87 92 14 28 35 48 52 56 82 83 91 95 2 

 79   9    21 23 54 58 68 71 84 3 20 

 80   9    47 69 78 87 92 14 28 35 48 

 81   11    85 49 88 59 66 86 42 36 67 76 4 

 82   12    37 8 90 6 86 30 22 53 76 19 60 66 

 83   18    14 28 56 83 47 61 69 78 80 87 92 35 48 52 91 95 2 11  

 84   15    26 65 75 46 21 54 71 3 20 38 13 41 1 84 79 

 85   12    92 48 91 95 34 17 32 45 57 74 65 97  

 86   25    81 88 49 66 86 59 36 89 76 63 90 4 30 93 67 18 64 27 42 10 37 99 

      51 62 72  

 87   19    59 66 30 89 76 90 10 4 93 37 88 64 81 86 18 99 51 8 72  

 88   8    47 69 78 80 92 14 28 35 

 89   9    86 66 81 49 87 89 67 76 59 

 90   26    87 66 89 86 59 10 76 30 81 37 99 18 64 49 22 90 4 93 36 8 60 98 

      50 51 77 72  

 91   7    4 30 93 66 87 76 72  

 92   9    48 2 15 32 47 57 69 74 78 

 93   7    47 69 78 80 88 14 28 

 94   12    4 30 91 87 64 66 53 59 81 76 62 72  

 95   11    7 23 58 79 68 85 21 54 71 3 20 

 96   8    47 69 78 80 88 93 14 28 

 97   5    25 76 27 37 72  

 98   8    31 41 1 5 17 73 20 13 

 99   3    50 60 72  

 100   2    76 72  

 

 

Average number of K been selected:   12    

 

-------------------------------------------------------- 

 

  Sample ID       # Features      Feature Index 

 

 1   5     2 3 4 1 9  

 2   5     6 3 5 7 9  

 3   3     5 1 9  

 4   5     2 5 4 1 9  

 5   8     2 6 5 4 1 8 7 9  

 6   4     6 5 8 9  

 7   4     3 1 8 9  

 8   6     2 5 4 1 7 9  

 9   2     4 9  

 10   4     5 4 8 7  

 11   3     2 4 1  

 12   2     3 4  

 13   8     2 6 5 4 1 8 7 9  

 14   3     3 4 7  

 15   5     3 5 4 1 9  

 16   7     2 3 5 4 8 7 9  



 17   3     6 1 9  

 18   7     6 3 5 4 8 7 9  

 19   6     2 5 4 8 1 7  

 20   2     1 8  

 21   7     2 3 5 1 8 7 9  

 22   5     6 3 5 8 7  

 23   6     2 6 3 1 8 7  

 24   3     2 8 9  

 25   7     2 6 4 1 8 7 9  

 26   5     3 1 8 7 9  

 27   2     5 4  

 28   3     4 1 9  

 29   3     2 5 7  

 30   5     2 3 4 1 8  

 31   2     2 5  

 32   7     2 6 3 4 1 7 9  

 33   7     2 6 3 5 1 7 9  

 34   6     2 3 5 4 1 9  

 35   6     6 3 4 8 7 9  

 36   3     3 4 8  

 37   6     5 4 1 8 7 9  

 38   5     3 4 1 8 7  

 39   4     6 4 1 8  

 40   3     2 4 7  

 41   5     3 4 1 8 9  

 42   4     2 6 4 7  

 43   5     3 5 4 1 7  

 44   5     2 6 4 7 9  

 45   8     2 6 3 5 4 1 8 9  

 46   6     2 6 3 8 7 9  

 47   5     5 4 8 7 9  

 48   2     2 4  

 49   5     2 6 3 8 9  

 50   4     2 6 1 7  

 51   3     6 3 1  

 52   5     2 5 4 1 8  

 53   7     6 2 5 4 1 7 9  

 54   4     3 1 8 9  

 55   4     2 5 1 7  

 56   7     2 6 5 4 8 7 9  

 57   6     2 6 3 4 8 9  

 58   3     2 3 9  

 59   4     2 3 5 4  

 60   6     6 3 5 8 1 7  

 61   4     3 1 8 9  

 62   5     6 5 1 8 9  

 63   3     6 5 8  

 64   5     6 1 8 7 9  

 65   5     6 5 4 1 9  

 66   5     6 5 4 8 9  

 67   5     6 4 1 7 9  



 68   5     2 3 8 7 9  

 69   5     2 3 1 7 9  

 70   3     2 3 9  

 71   6     2 6 3 1 7 9  

 72   6     6 3 8 4 7 9  

 73   5     2 4 1 8 9  

 74   4     2 3 4 9  

 75   7     6 3 5 4 1 8 7  

 76   5     6 5 1 7 9  

 77   8     2 6 3 5 4 8 1 7  

 78   6     2 4 1 8 7 9  

 79   5     2 3 4 7 9  

 80   5     6 3 5 7 9  

 81   4     3 5 8 9  

 82   5     3 5 4 1 7  

 83   5     2 6 3 4 1  

 84   1     1  

 85   3     2 3 4  

 86   4     1 8 7 9  

 87   8     2 6 3 5 4 1 8 9  

 88   2     4 8  

 89   7     2 6 3 4 1 8 7  

 90   2     3 8  

 91   5     2 6 4 7 9  

 92   7     6 3 4 1 8 7 9  

 93   8     2 6 3 5 4 1 8 7  

 94   5     6 5 4 8 7  

 95   4     3 5 1 8  

 96   1     3  

 97   4     2 3 7 9  

 98   5     2 3 4 1 7  

 99   7     6 3 5 4 1 7 9  

 100   6     6 4 1 8 7 9  

 

 

Average number of Features been selected:  5     

 

========================== End =========================== 

 



APPENDIX D

Appendix D - Geriatric Depression Scale:

Short Form



Geriatric Depression Scale: Short Form 

 
Choose the best answer for how you have felt over the past week: 

1. Are you basically satisfied with your life? YES / NO 

2. Have you dropped many of your activities and interests? YES / NO 

3. Do you feel that your life is empty? YES / NO 

4. Do you often get bored? YES / NO 

5. Are you in good spirits most of the time? YES / NO 

6. Are you afraid that something bad is going to happen to you? YES / NO 

7. Do you feel happy most of the time? YES / NO 

8. Do you often feel helpless? YES / NO 

9. Do you prefer to stay at home, rather than going out and doing new things? YES / NO 

10. Do you feel you have more problems with memory than most? YES / NO 

11. Do you think it is wonderful to be alive now? YES / NO 

12. Do you feel pretty worthless the way you are now? YES / NO 

13. Do you feel full of energy? YES / NO 

14. Do you feel that your situation is hopeless? YES / NO 

15. Do you think that most people are better off than you are? YES / NO 



APPENDIX E

Appendix E - 40 Samples used for

Chapter 9



ID=263 age=60

Stroke

13 13.5 12.3999939 13.5 13.5 14.3999939 14.3999939 14.29999542 14.29999542 11.19999695 12.5 14 14 10.29999542 11.5 11.5 11.79999542 11.79999542 12 12.79999542 12.79999542 12.69999695 12 12 11.3999939 11.3999939 11.3999939 12.59999847 12.59999847 13.29999542

74 87.8906 75.5 78.09375 78.09375 87.09375 87.09375 86.5 86.5 80.796875 72.1875 86.09375 86.09375 83.5 76.6875 76.6875 84.09375 84.09375 78.796875 80.390625 80.390625 83.890625 82.890625 82.890625 78.5 78.5 78.5 77.796875 77.796875 74.6875

999.4 995.1 1005.7 1007.2 1007.2 1005.6 1005.6 1009.3 1009.3 1012.5 1013.1 1016.9 1016.9 1025.3 1020.9 1020.9 1015.9 1015.9 1015.9 1016.9 1016.9 1019.7 1023.5 1023.5 1009.4 1009.4 1009.4 1011.5 1011.5 1014.7

12.52734375 6.08301 7.944335938 6.75 6.75 5.583007813 5.583007813 6.52734375 6.52734375 5.944335938 6.75 6.916015625 6.916015625 2.138671875 2.444335938 2.444335938 7.8046875 7.8046875 7.610351563 6.221679688 6.221679688 7.5 6.388671875 6.388671875 6.971679688 6.971679688 6.971679688 8.193359375 8.193359375 8.8046875

4.552038568 9.54961 6.935700097 9.0472875 9.047288 10.9083593 10.9083593 10.0943474 10.0943474 7.148500329 7.9424125 9.477945665 9.477945665 9.483099115 10.43380136 10.43380136 6.364034282 6.364034282 6.734445922 8.677692237 8.677692237 7.600621586 7.670756029 7.670756029 6.55392222 6.55392222 6.55392222 6.979612859 6.979612859 7.340620525

Normal

11.59999847 11.6 9.099998474 9.099998474 8.199997 8.199996948 9.099998474 9.699996948 11.3999939 12.8999939 12.59999847 10.19999695 10.19999695 11.5 12.09999847 11 11 11.3999939 11.3999939 11.3999939 11.79999542 10.79999542 10.79999542 8.599998474 8.599998474 8.599998474 10.29999542 10.29999542 11.69999695 11.69999695

85 85 79.6875 79.6875 75.09375 75.09375 69.6875 79.1875 76.390625 87.09375 86.890625 92.09375 92.09375 73.1875 87.296875 86.6875 86.6875 84 84 84 87.890625 80.296875 80.296875 81.1875 81.1875 81.1875 80.5 80.5 90.296875 90.296875

1009.1 1009.1 1018.8 1018.8 1019.3 1019.3 1018.7 1018.3 1014 999.6 1000.9 1006.5 1006.5 1012.1 996.6 1006.4 1006.4 1010.7 1010.7 1010.7 998.4 1010.3 1010.3 1006.7 1006.7 1006.7 995 995 995.2 995.2

5.971679688 5.97168 3.5 3.5 2.277344 2.27734375 4.110351563 3.166503906 5.27734375 6.721679688 5 3.638671875 3.638671875 5.471679688 4.666015625 4.666015625 4.666015625 3.360839844 3.360839844 3.360839844 4.388671875 4.138671875 4.138671875 3.138671875 3.138671875 3.138671875 4.5546875 4.5546875 3.52734375 3.52734375

7.562624883 7.56262 7.002123406 7.002123406 7.209507 7.209506543 6.453245434 7.92908008 7.90805621 8.405774445 9.423498363 8.028652637 8.028652637 7.857255111 9.160544917 7.987593126 7.987593126 9.525559895 9.525559895 9.525559895 9.07123496 8.224159786 8.224159786 6.812380031 6.812380031 6.812380031 7.336584166 7.336584166 9.694999636 9.694999636

ID=1652 age=60

Stroke

16.3999939 16.4 16.3999939 16.29998779 16.29999 16.29998779 16.29998779 16.29998779 14.69999695 14.69999695 14.69999695 14.69999695 16.69999695 16.69999695 16.69999695 16.79998779 16.79998779 16.79998779 16.79998779 16.79998779 15.79999542 15.79999542 15.79999542 15.29999542 12.8999939 12.8999939 12.8999939 12.8999939 12.8999939 15.5

75 75 75 74.09375 74.09375 74.09375 74.09375 74.09375 73.390625 73.390625 73.390625 73.390625 72.890625 72.890625 72.890625 82.390625 82.390625 82.390625 82.390625 82.390625 76.796875 76.796875 76.796875 68.59375 81.5 81.5 81.5 81.5 81.5 76.390625

1019 1019 1019 1018.5 1018.5 1018.5 1018.5 1018.5 1019.3 1019.3 1019.3 1019.3 1014.2 1014.2 1014.2 1014.1 1014.1 1014.1 1014.1 1014.1 1015.2 1015.2 1015.2 1016.1 1014.6 1014.6 1014.6 1014.6 1014.6 1019.3

6.416015625 6.41602 6.416015625 5.02734375 5.027344 5.02734375 5.02734375 5.02734375 2.110839844 2.110839844 2.110839844 2.110839844 7.583007813 7.583007813 7.583007813 9.470703125 9.470703125 9.470703125 9.470703125 9.470703125 9.666015625 9.666015625 9.666015625 7.75 4.471679688 4.471679688 4.471679688 4.471679688 4.471679688 4.75

12.48365146 12.4837 12.48365146 13.37160887 13.37161 13.37160887 13.37160887 13.37160887 13.99249388 13.99249388 13.99249388 13.99249388 12.02033666 12.02033666 12.02033666 10.9247317 10.9247317 10.9247317 10.9247317 10.9247317 9.646015946 9.646015946 9.646015946 10.33690736 10.17101747 10.17101747 10.17101747 10.17101747 10.17101747 12.7223375

Normal

12.19999695 12.2 12.19999695 12.19999695 15.8 15.79999542 15.79999542 17.79998779 17.79998779 17.79998779 19.29998779 19.29998779 19.29998779 19.29998779 19.29998779 19.3999939 19.3999939 19.3999939 19.3999939 18.8999939 18.8999939 18.8999939 18.8999939 18.5 18.5 16.79998779 16.79998779 16.79998779 15.8999939 15.8999939

71.890625 71.8906 71.890625 71.890625 76.09375 76.09375 76.09375 90 90 90 89.5 89.5 89.5 89.5 89.5 89.390625 89.390625 89.390625 89.390625 83.890625 83.890625 83.890625 83.890625 76.6875 76.6875 81.6875 81.6875 81.6875 77 77

1016.9 1016.9 1016.9 1016.9 1009.7 1009.7 1009.7 1012.6 1012.6 1012.6 1012.8 1012.8 1012.8 1012.8 1012.8 1014 1014 1014 1014 1017.1 1017.1 1017.1 1017.1 1023.3 1023.3 1026 1026 1026 1024.2 1024.2

1.416503906 1.4165 1.416503906 1.416503906 7.666016 7.666015625 7.666015625 2.5 2.5 2.5 2.722167969 2.722167969 2.722167969 2.722167969 2.722167969 4.388671875 4.388671875 4.388671875 4.388671875 5.888671875 5.888671875 5.888671875 5.888671875 7.221679688 7.221679688 5.583007813 5.583007813 5.583007813 2.02734375 2.02734375

12.06460472 12.0646 12.06460472 12.06460472 10.95558 10.95558174 10.95558174 16.84973747 16.84973747 16.84973747 18.22466478 18.22466478 18.22466478 18.22466478 18.22466478 17.13628061 17.13628061 17.13628061 17.13628061 15.57831882 15.57831882 15.57831882 15.57831882 14.26672103 14.26672103 13.50823823 13.50823823 13.50823823 15.28352904 15.28352904



ID=111 age=62

Stroke

12.29999542 14.4 14.3999939 16.59999084 16.59999 16.59999084 15.29999542 15.29999542 11.59999847 11.59999847 11.59999847 9.799995422 9.799995422 9.799995422 10.79999542 10.79999542 12.09999847 11.59999847 11.59999847 10.19999695 9.599998474 10.3999939 15.3999939 15.3999939 15.3999939 15.3999939 13.8999939 12.3999939 12.3999939 15.29999542

95 84.6875 84.6875 84.59375 84.59375 95.59375 94.5 94.5 89.6875 89.6875 89.6875 91.390625 91.390625 91.390625 84.796875 84.796875 82.890625 87.59375 87.59375 83.1875 80.390625 80.390625 86.890625 86.890625 86.890625 86.890625 86.390625 92.796875 92.796875 88.890625

1006 1004.6 1004.6 1003 1003 1015.5 1018.3 1018.3 1019.6 1019.6 1019.6 1017.9 1017.9 1017.9 1016.9 1016.9 1018.8 1021.9 1021.9 1025.5 1024.6 1018.7 1003 1003 1003 1003 1018.7 1023 1023 996.8

3.944335938 4.13867 4.138671875 6.166015625 6.166016 3.138671875 3.416503906 3.416503906 1.083251953 1.083251953 1.083251953 0.722167969 0.722167969 0.722167969 2.138671875 2.138671875 4.8046875 5.471679688 5.471679688 1.916503906 2.694335938 1.972167969 6.5546875 6.5546875 6.5546875 6.5546875 2.610839844 1.416503906 1.416503906 4.666015625

9.971127009 12.0278 12.02779372 12.87810811 12.87811 15.11689555 13.5457981 13.5457981 11.76627617 11.76627617 11.76627617 10.31223226 10.31223226 10.31223226 9.99288183 9.99288183 9.046735063 7.965376069 7.965376069 9.586208691 8.255711264 9.73800887 11.28562958 11.28562958 11.28562958 11.28562958 12.7540997 12.26584271 12.26584271 12.57276979

Normal

12.19999695 12.2 14.59999847 17.19999695 17.2 17.19999695 17.59999084 15.8999939 15.8999939 14.5 13.79999542 13.69999695 13.69999695 13.69999695 13.19999695 14.5 16.8999939 16.19999695 16.19999695 15.3999939 15.3999939 15.3999939 15.8999939 15.8999939 15.8999939 16.59999084 16.59999084 16.59999084 14.69999695 15.8999939

72.890625 72.8906 79.890625 90.5 90.5 90.5 95.5 75.390625 75.390625 84.6875 82.296875 85.296875 85.296875 85.296875 85.890625 82.890625 82.796875 76.5 76.5 79.59375 79.59375 79.59375 72.5 72.5 72.5 71.390625 71.390625 71.390625 80.390625 85.59375

1017.1 1017.1 1017.1 1015.4 1015.4 1015.4 1015.5 1022.1 1022.1 1022.5 1024 1025.4 1025.4 1025.4 1026 1023.5 1017.6 1016.5 1016.5 1015.1 1015.1 1015.1 1013.2 1013.2 1013.2 1014.5 1014.5 1014.5 1017.4 1017

8.109375 8.10938 2.972167969 2.02734375 2.027344 2.02734375 4.666015625 7.583007813 7.583007813 3.305175781 0.416625977 0.555541992 0.555541992 0.555541992 0.333312988 2.52734375 4.5546875 3.972167969 3.972167969 3.52734375 3.52734375 3.52734375 5.52734375 5.52734375 5.52734375 2.388671875 2.388671875 2.388671875 0.666625977 3.02734375

6.588637079 6.58864 13.17666071 16.60628976 16.60629 16.60628976 15.02530387 11.12410473 11.12410473 12.80145906 14.55839306 14.33508627 14.33508627 14.33508627 14.04145994 13.44039111 14.36070989 14.05644501 14.05644501 13.56244313 13.56244313 13.56244313 12.57392708 12.57392708 12.57392708 15.70666638 15.70666638 15.70666638 15.22817696 14.47835705

ID=321 age=64

Stroke

14.09999847 14.1 14.09999847 14.09999847 13.6 13.09999847 13.09999847 13.09999847 14.29999542 14.29999542 15 15 15 15 15 10.8999939 10.8999939 10.8999939 11.59999847 11.59999847 11.59999847 13.3999939 13.3999939 14.59999847 16.69999695 15.09999847 14 14 13.8999939 14.09999847

81.296875 81.2969 81.296875 81.296875 82.39063 72.890625 72.890625 72.890625 79.890625 79.890625 93.5 93.5 93.5 93.5 93.5 63.3984375 63.3984375 63.3984375 65.296875 65.296875 65.296875 69.6875 69.6875 89.59375 87.09375 86.1875 80.5 80.5 80.890625 79.296875

1019.4 1019.4 1019.4 1019.4 1014.8 1017.7 1017.7 1017.7 1015.9 1015.9 1017.9 1017.9 1017.9 1017.9 1017.9 1021.9 1021.9 1021.9 1025.3 1025.3 1025.3 1015.8 1015.8 995.7 1015.6 1023.4 1026 1026 1023.9 1021.1

4.5 4.5 4.5 4.5 10.02734 9.693359375 9.693359375 9.693359375 9.638671875 9.638671875 7.333007813 7.333007813 7.333007813 7.333007813 7.333007813 5.5 5.5 5.5 7.75 7.75 7.75 12.25 12.25 7.166015625 6.916015625 5.944335938 2.833007813 2.833007813 1.555419922 2.02734375

11.42392338 11.4239 11.42392338 11.42392338 6.855895 6.49861936 6.49861936 6.49861936 7.925778168 7.925778168 10.29073983 10.29073983 10.29073983 10.29073983 10.29073983 7.185168398 7.185168398 7.185168398 6.180423286 6.180423286 6.180423286 5.205042635 5.205042635 9.963391038 12.46939726 11.39938583 12.67131552 12.67131552 13.65457183 13.45202315

Normal

12.79999542 11.7 11.69999695 11.69999695 11.7 14.59999847 13 13 13.29999542 12.69999695 12.69999695 12.69999695 13.5 13.5 13.5 13.5 13.09999847 13.09999847 13.59999847 13.59999847 15.69999695 14.69999695 15.8999939 15.8999939 12.79999542 12.79999542 12.79999542 13.29999542 13 13.5

71.09375 79.5938 79.59375 79.59375 79.59375 70 73.390625 82.1875 73.796875 84.5 84.5 84.5 79.5 79.5 79.5 79.5 74.5 74.5 82.890625 82.890625 88.296875 82 78.890625 78.890625 75.390625 75.390625 75.390625 74.6875 74 87.890625

1018.3 1006.8 1006.8 1006.8 1006.8 1015.6 1023.5 1025.7 1022.3 1024.4 1024.4 1024.4 1022 1022 1022 1022 1024.4 1024.4 1012.5 1012.5 1019.7 1025.8 1026.1 1026.1 1021.7 1021.7 1021.7 1014.7 999.4 995.1

3.583007813 7.36035 7.360351563 7.360351563 7.360352 4.8046875 4.221679688 2.583007813 4.971679688 3.444335938 3.444335938 3.444335938 7.833007813 7.833007813 7.833007813 7.833007813 6.916015625 6.916015625 11.77734375 11.77734375 7.360351563 3.083007813 5.0546875 5.0546875 4.944335938 4.944335938 4.944335938 8.8046875 12.52734375 6.083007813

10.7981869 6.58818 6.588183385 6.588183385 6.588183 11.71895186 10.48072215 11.85249022 10.19668331 10.81003196 10.81003196 10.81003196 8.255153164 8.255153164 8.255153164 8.255153164 8.480792314 8.480792314 5.735856662 5.735856662 11.0528494 13.18982695 12.92210124 12.92210124 9.682631563 9.682631563 9.682631563 7.340620525 4.552038568 9.549613125

ID=101 age=66



Stroke

11.59999847 9.8 9.799995422 9.799995422 10.8 10.79999542 12.09999847 11.59999847 11.59999847 10.19999695 9.599998474 10.3999939 15.3999939 15.3999939 15.3999939 15.3999939 13.8999939 12.3999939 12.3999939 10.8999939 12.19999695 12.19999695 14.59999847 17.19999695 17.19999695 17.19999695 17.59999084 15.8999939 15.8999939 11.59999847

89.6875 91.3906 91.390625 91.390625 84.79688 84.796875 82.890625 87.59375 87.59375 83.1875 80.390625 80.390625 86.890625 86.890625 86.890625 86.890625 86.390625 92.796875 92.796875 85.1875 72.890625 72.890625 79.890625 90.5 90.5 90.5 95.5 75.390625 75.390625 89.6875

1019.6 1017.9 1017.9 1017.9 1016.9 1016.9 1018.8 1021.9 1021.9 1025.5 1024.6 1018.7 1003 1003 1003 1003 1018.7 1023 1023 1025.2 1017.1 1017.1 1017.1 1015.4 1015.4 1015.4 1015.5 1022.1 1022.1 1019.6

1.083251953 0.72217 0.722167969 0.722167969 2.138672 2.138671875 4.8046875 5.471679688 5.471679688 1.916503906 2.694335938 1.972167969 6.5546875 6.5546875 6.5546875 6.5546875 2.610839844 1.416503906 1.416503906 0.472167969 8.109375 8.109375 2.972167969 2.02734375 2.02734375 2.02734375 4.666015625 7.583007813 7.583007813 1.083251953

11.76627617 10.3122 10.31223226 10.31223226 9.992882 9.99288183 9.046735063 7.965376069 7.965376069 9.586208691 8.255711264 9.73800887 11.28562958 11.28562958 11.28562958 11.28562958 12.7540997 12.26584271 12.26584271 11.64131194 6.588637079 6.588637079 13.17666071 16.60628976 16.60628976 16.60628976 15.02530387 11.12410473 11.12410473 11.76627617

Normal

13.79999542 13.7 13.69999695 13.69999695 13.2 14.5 16.8999939 16.19999695 16.19999695 15.3999939 15.3999939 15.3999939 15.8999939 15.8999939 15.8999939 16.59999084 16.59999084 16.59999084 14.69999695 15.8999939 15.8999939 16.29998779 16.29998779 16.59999084 16.59999084 17.5 17.59999084 17.59999084 17.59999084 18.5

82.296875 85.2969 85.296875 85.296875 85.89063 82.890625 82.796875 76.5 76.5 79.59375 79.59375 79.59375 72.5 72.5 72.5 71.390625 71.390625 71.390625 80.390625 85.59375 85.59375 84.390625 84.390625 68.890625 68.890625 73.59375 84.1875 84.1875 83 87.59375

1024 1025.4 1025.4 1025.4 1026 1023.5 1017.6 1016.5 1016.5 1015.1 1015.1 1015.1 1013.2 1013.2 1013.2 1014.5 1014.5 1014.5 1017.4 1017 1017 1017.8 1017.8 1023 1023 1015.6 1010.5 1010.5 1007.1 1002.2

0.416625977 0.55554 0.555541992 0.555541992 0.333313 2.52734375 4.5546875 3.972167969 3.972167969 3.52734375 3.52734375 3.52734375 5.52734375 5.52734375 5.52734375 2.388671875 2.388671875 2.388671875 0.666625977 3.02734375 3.02734375 1.194335938 1.194335938 6.694335938 6.694335938 7.194335938 3.166503906 3.166503906 2.222167969 10.94335938

14.55839306 14.3351 14.33508627 14.33508627 14.04146 13.44039111 14.36070989 14.05644501 14.05644501 13.56244313 13.56244313 13.56244313 12.57392708 12.57392708 12.57392708 15.70666638 15.70666638 15.70666638 15.22817696 14.47835705 14.47835705 16.37400925 16.37400925 12.51069736 12.51069736 13.17115292 16.13385829 16.13385829 16.86060094 12.05416937

ID=160 age=66

Stroke

9.099998474 11.8 11.79999542 12.79999542 13.2 13.19999695 13.3999939 13.3999939 9.899993896 9.899993896 11.59999847 11.59999847 13 13 13 13.79999542 15.3999939 6.5 8.099998474 10.5 9.099998474 9.099998474 9.099998474 9.399993896 9.399993896 9.399993896 9.399993896 9.399993896 12.09999847 9.099998474

85.59375 84.6875 84.6875 78 88.1875 88.1875 89.09375 89.09375 92 92 87.6875 87.6875 82.59375 82.59375 82.59375 91.5 94.1875 90.59375 83.09375 72.390625 76.296875 76.296875 76.296875 92.59375 92.59375 92.59375 92.59375 92.59375 82.1875 85.59375

1002.3 1000.7 1000.7 1002.2 1001.8 1001.8 1011 1011 1015.9 1015.9 1019.3 1019.3 1006.1 1006.1 1006.1 1002.9 1014.4 1031.3 1026.9 1019 1016.1 1016.1 1016.1 1017.3 1017.3 1017.3 1017.3 1017.3 1018.1 1002.3

3.555175781 4.30469 4.3046875 6.083007813 4.416016 4.416015625 5.360351563 5.360351563 4 4 2.77734375 2.77734375 6.610351563 6.610351563 6.610351563 4.444335938 7.110351563 1 2.360839844 7.77734375 5.5 5.5 5.5 2.02734375 2.02734375 2.02734375 2.02734375 2.02734375 5 3.555175781

6.952124997 9.14144 9.141437703 8.784833173 10.53479 10.53479242 9.998389824 9.998389824 7.394993567 7.394993567 10.24239207 10.24239207 8.600400708 8.600400708 8.600400708 11.14924205 10.89241189 6.75065 7.027586593 4.923515326 5.238023349 5.238023349 5.238023349 8.669740952 8.669740952 8.669740952 8.669740952 8.669740952 8.887248363 6.952124997

Normal

11.59999847 11.6 12.09999847 12.09999847 13.5 13.5 13.5 12.5 10.09999847 11.59999847 11.59999847 11.59999847 11.59999847 12.09999847 12.09999847 13.59999847 15.29999542 15.29999542 15.29999542 12.29999542 14.3999939 14.3999939 16.59999084 16.59999084 16.59999084 15.29999542 15.29999542 11.59999847 11.59999847 11.59999847

80.09375 80.0938 85.796875 85.796875 94.29688 94.296875 94.296875 96.59375 89.59375 82.890625 82.890625 82.890625 82.890625 86.59375 86.59375 88.296875 88.890625 88.890625 88.890625 95 84.6875 84.6875 84.59375 84.59375 95.59375 94.5 94.5 89.6875 89.6875 89.6875

1012.5 1012.5 1005.9 1005.9 1001.4 1001.4 1001.4 1001.8 1011 1007.7 1007.7 1007.7 1007.7 1003.2 1003.2 997.5 996.8 996.8 996.8 1006 1004.6 1004.6 1003 1003 1015.5 1018.3 1018.3 1019.6 1019.6 1019.6

4.416015625 4.41602 3.972167969 3.972167969 2.944336 2.944335938 2.944335938 1 3.610839844 3.833007813 3.833007813 3.833007813 3.833007813 2.583007813 2.583007813 2.388671875 4.666015625 4.666015625 4.666015625 3.944335938 4.138671875 4.138671875 6.166015625 6.166015625 3.138671875 3.416503906 3.416503906 1.083251953 1.083251953 1.083251953

8.836079982 8.83608 9.73715768 9.73715768 12.06153 12.06152656 12.06152656 12.74165 7.948561167 9.328786961 9.328786961 9.328786961 9.328786961 10.92748158 10.92748158 12.6341029 12.57276979 12.57276979 12.57276979 9.971127009 12.02779372 12.02779372 12.87810811 12.87810811 15.11689555 13.5457981 13.5457981 11.76627617 11.76627617 11.76627617

ID=268 age=66

Stroke



15.8999939 12.8 12.79999542 12.79999542 13.3 13 13.5 12.3999939 13.5 13.5 14.3999939 14.3999939 14.29999542 14.29999542 11.19999695 12.5 14 14 10.29999542 11.5 11.5 11.79999542 11.79999542 12 12.79999542 12.79999542 12.69999695 12 12 15.8999939

78.890625 75.3906 75.390625 75.390625 74.6875 74 87.890625 75.5 78.09375 78.09375 87.09375 87.09375 86.5 86.5 80.796875 72.1875 86.09375 86.09375 83.5 76.6875 76.6875 84.09375 84.09375 78.796875 80.390625 80.390625 83.890625 82.890625 82.890625 78.890625

1026.1 1021.7 1021.7 1021.7 1014.7 999.4 995.1 1005.7 1007.2 1007.2 1005.6 1005.6 1009.3 1009.3 1012.5 1013.1 1016.9 1016.9 1025.3 1020.9 1020.9 1015.9 1015.9 1015.9 1016.9 1016.9 1019.7 1023.5 1023.5 1026.1

5.0546875 4.94434 4.944335938 4.944335938 8.804688 12.52734375 6.083007813 7.944335938 6.75 6.75 5.583007813 5.583007813 6.52734375 6.52734375 5.944335938 6.75 6.916015625 6.916015625 2.138671875 2.444335938 2.444335938 7.8046875 7.8046875 7.610351563 6.221679688 6.221679688 7.5 6.388671875 6.388671875 5.0546875

12.92210124 9.68263 9.682631563 9.682631563 7.340621 4.552038568 9.549613125 6.935700097 9.0472875 9.0472875 10.9083593 10.9083593 10.0943474 10.0943474 7.148500329 7.9424125 9.477945665 9.477945665 9.483099115 10.43380136 10.43380136 6.364034282 6.364034282 6.734445922 8.677692237 8.677692237 7.600621586 7.670756029 7.670756029 12.92210124

Normal

11.3999939 11.4 12.59999847 12.59999847 12.6 11.59999847 11.59999847 9.099998474 9.099998474 8.199996948 8.199996948 9.099998474 9.699996948 11.3999939 12.8999939 12.59999847 10.19999695 10.19999695 11.5 12.09999847 11 11 11.3999939 11.3999939 11.3999939 11.79999542 10.79999542 10.79999542 8.599998474 8.599998474

78.5 78.5 77.796875 77.796875 77.79688 85 85 79.6875 79.6875 75.09375 75.09375 69.6875 79.1875 76.390625 87.09375 86.890625 92.09375 92.09375 73.1875 87.296875 86.6875 86.6875 84 84 84 87.890625 80.296875 80.296875 81.1875 81.1875

1009.4 1009.4 1011.5 1011.5 1011.5 1009.1 1009.1 1018.8 1018.8 1019.3 1019.3 1018.7 1018.3 1014 999.6 1000.9 1006.5 1006.5 1012.1 996.6 1006.4 1006.4 1010.7 1010.7 1010.7 998.4 1010.3 1010.3 1006.7 1006.7

6.971679688 6.97168 8.193359375 8.193359375 8.193359 5.971679688 5.971679688 3.5 3.5 2.27734375 2.27734375 4.110351563 3.166503906 5.27734375 6.721679688 5 3.638671875 3.638671875 5.471679688 4.666015625 4.666015625 4.666015625 3.360839844 3.360839844 3.360839844 4.388671875 4.138671875 4.138671875 3.138671875 3.138671875

6.55392222 6.55392 6.979612859 6.979612859 6.979613 7.562624883 7.562624883 7.002123406 7.002123406 7.209506543 7.209506543 6.453245434 7.92908008 7.90805621 8.405774445 9.423498363 8.028652637 8.028652637 7.857255111 9.160544917 7.987593126 7.987593126 9.525559895 9.525559895 9.525559895 9.07123496 8.224159786 8.224159786 6.812380031 6.812380031

ID=2009 age=66

Stroke

10.19999695 10.2 12 12 12 12 12 12 12 12.79999542 12.79999542 13.29999542 13.29999542 13.29999542 13.29999542 13.29999542 12.3999939 12.3999939 12.3999939 12.3999939 12.3999939 13.5 13.5 13.5 13.5 11 9.099998474 9.099998474 9.099998474 10.19999695

75.1875 75.1875 81.296875 81.296875 81.29688 81.296875 81.296875 81.296875 81.296875 84.296875 84.296875 80.890625 80.890625 80.890625 80.890625 80.890625 91.5 91.5 91.5 91.5 91.5 92.59375 92.59375 92.59375 92.59375 86.296875 87.59375 87.59375 87.59375 75.1875

999.9 999.9 1000.7 1000.7 1000.7 1000.7 1000.7 1000.7 1000.7 1005.4 1005.4 1005.7 1005.7 1005.7 1005.7 1005.7 1013.4 1013.4 1013.4 1013.4 1013.4 1018.8 1018.8 1018.8 1018.8 1027.8 1032.9 1032.9 1032.9 999.9

8.27734375 8.27734 7.5546875 7.5546875 7.554688 7.5546875 7.5546875 7.5546875 7.5546875 3.610839844 3.610839844 5.971679688 5.971679688 5.971679688 5.971679688 5.971679688 3.083007813 3.083007813 3.083007813 3.083007813 3.083007813 3.5 3.5 3.5 3.5 4.110351563 1.222167969 1.222167969 1.222167969 8.27734375

4.199236673 4.19924 6.77630271 6.77630271 6.776303 6.77630271 6.77630271 6.77630271 6.77630271 10.77491942 10.77491942 9.416430881 9.416430881 9.416430881 9.416430881 9.416430881 10.80464181 10.80464181 10.80464181 10.80464181 10.80464181 11.599025 11.599025 11.599025 11.599025 8.459725903 9.13211308 9.13211308 9.13211308 4.199236673

Normal

9.099998474 9.1 9.299995422 9.299995422 9.299995 9.299995422 9.299995422 9.199996948 9.199996948 9.199996948 9.199996948 9.199996948 9.199996948 10.19999695 10.19999695 10.19999695 10.19999695 10.09999847 10.09999847 10.09999847 9.699996948 9.699996948 9.699996948 10.59999847 10.59999847 10.59999847 10.59999847 10.59999847 10.59999847 11.8999939

87.59375 87.5938 86.59375 86.59375 86.59375 86.59375 86.59375 84 84 84 84 84 84 83 83 83 83 71.390625 71.390625 71.390625 70.59375 70.59375 70.59375 66 66 66 83 83 83 77.390625

1032.9 1032.9 1032.5 1032.5 1032.5 1032.5 1032.5 1026.5 1026.5 1026.5 1026.5 1026.5 1026.5 1020 1020 1020 1020 1018.7 1018.7 1018.7 1020.3 1020.3 1020.3 1017.2 1017.2 1017.2 1013.8 1013.8 1013.8 1009.8

1.222167969 1.22217 1.138671875 1.138671875 1.138672 1.138671875 1.138671875 1.416503906 1.416503906 1.416503906 1.416503906 1.416503906 1.416503906 4 4 4 4 4 4 4 5.5546875 5.5546875 5.5546875 7.471679688 7.471679688 7.471679688 3.916503906 3.916503906 3.916503906 4.333007813

9.13211308 9.13211 9.412844708 9.412844708 9.412845 9.412844708 9.412844708 9.045988748 9.045988748 9.045988748 9.045988748 9.045988748 9.045988748 7.711196783 7.711196783 7.711196783 7.711196783 7.605798392 7.605798392 7.605798392 5.840834953 5.840834953 5.840834953 5.273345251 5.273345251 5.273345251 8.205250906 8.205250906 8.205250906 9.223759584

ID=2509 age=66

Stroke

15.79999542 17.6 17.59999084 17.59999084 17.59999 16.29998779 16.29998779 16.29998779 16.19999695 16.19999695 16.19999695 18.69999695 18.69999695 18.69999695 18.69999695 19.5 19.5 19.5 19.5 19.5 19.5 19.29998779 19.29998779 19.29998779 19.29998779 18.29998779 18.29998779 18.29998779 18.29998779 15.79999542



89.1875 71.7969 71.796875 71.796875 71.79688 69.390625 69.390625 69.390625 74.6875 74.6875 74.6875 91.1875 91.1875 91.1875 91.1875 86.796875 86.796875 86.796875 86.796875 86.796875 86.796875 76.6875 76.6875 76.6875 76.6875 72.796875 72.796875 72.796875 72.796875 89.1875

1013.5 1015.1 1015.1 1015.1 1015.1 1013.8 1013.8 1013.8 1006.7 1006.7 1006.7 1003.7 1003.7 1003.7 1003.7 1008.3 1008.3 1008.3 1008.3 1008.3 1008.3 1011 1011 1011 1011 1013 1013 1013 1013 1013.5

3.805175781 7.38867 7.388671875 7.388671875 7.388672 7.833007813 7.833007813 7.833007813 7.194335938 7.194335938 7.194335938 5.194335938 5.194335938 5.194335938 5.194335938 5.416015625 5.416015625 5.416015625 5.416015625 5.416015625 5.416015625 2.972167969 2.972167969 2.972167969 2.972167969 2.972167969 2.972167969 2.972167969 2.972167969 3.805175781

13.76417791 13.1551 13.15505127 13.15505127 13.15505 11.40488924 11.40488924 11.40488924 11.72412575 11.72412575 11.72412575 15.83172483 15.83172483 15.83172483 15.83172483 16.54414947 16.54414947 16.54414947 16.54414947 16.54414947 16.54414947 18.04107966 18.04107966 18.04107966 18.04107966 17.00609455 17.00609455 17.00609455 17.00609455 13.76417791

Normal

18.29998779 18.3 18.3999939 19.09999084 19.09999 19.09999084 19.09999084 19.09999084 19.09999084 18.29998779 18.29998779 18.29998779 18.29998779 18.29998779 18.29998779 18.29998779 18.29998779 16.5 16.5 16.5 16.5 16.5 16.5 16.5 15.09999847 15.09999847 15.09999847 15.09999847 16.29998779 16.29998779

72.796875 72.7969 76.796875 78.296875 78.29688 78.296875 78.296875 78.296875 78.296875 67.6875 67.6875 67.6875 67.6875 67.6875 67.6875 67.6875 67.6875 85.09375 85.09375 85.09375 85.09375 85.09375 85.09375 85.09375 85 85 85 85 78.1875 78.1875

1013 1013 1015.2 1016.7 1016.7 1016.7 1016.7 1016.7 1016.7 1015.6 1015.6 1015.6 1015.6 1015.6 1015.6 1015.6 1015.6 1021 1021 1021 1021 1021 1021 1021 1022.2 1022.2 1022.2 1022.2 1020.2 1020.2

2.972167969 2.97217 2.916503906 3.805175781 3.805176 3.805175781 3.805175781 3.805175781 3.805175781 4.166015625 4.166015625 4.166015625 4.166015625 4.166015625 4.166015625 4.166015625 4.166015625 3.194335938 3.194335938 3.194335938 3.194335938 3.194335938 3.194335938 3.194335938 2.27734375 2.27734375 2.27734375 2.27734375 2.77734375 2.77734375

17.00609455 17.0061 17.15126842 17.23047909 17.23048 17.23047909 17.23047909 17.23047909 17.23047909 16.12869204 16.12869204 16.12869204 16.12869204 16.12869204 16.12869204 16.12869204 16.12869204 14.96977958 14.96977958 14.96977958 14.96977958 14.96977958 14.96977958 14.96977958 14.26221103 14.26221103 14.26221103 14.26221103 15.0898711 15.0898711

ID=167 age=68

Stroke

6.199996948 6.8 6.799999237 8.899993896 9.099998 9.099998474 9.099998474 9.099998474 11.79999542 11.79999542 12.79999542 13.19999695 13.19999695 13.3999939 13.3999939 9.899993896 9.899993896 11.59999847 11.59999847 13 13 13 13.79999542 15.3999939 6.5 8.099998474 10.5 9.099998474 9.099998474 6.199996948

85.1875 85.1875 85.1875 83.09375 85.59375 85.59375 85.59375 85.59375 84.6875 84.6875 78 88.1875 88.1875 89.09375 89.09375 92 92 87.6875 87.6875 82.59375 82.59375 82.59375 91.5 94.1875 90.59375 83.09375 72.390625 76.296875 76.296875 85.1875

1017.4 1015.9 1015.9 1010.3 1002.3 1002.3 1002.3 1002.3 1000.7 1000.7 1002.2 1001.8 1001.8 1011 1011 1015.9 1015.9 1019.3 1019.3 1006.1 1006.1 1006.1 1002.9 1014.4 1031.3 1026.9 1019 1016.1 1016.1 1017.4

2.02734375 1.61108 1.611083984 4.860351563 3.555176 3.555175781 3.555175781 3.555175781 4.3046875 4.3046875 6.083007813 4.416015625 4.416015625 5.360351563 5.360351563 4 4 2.77734375 2.77734375 6.610351563 6.610351563 6.610351563 4.444335938 7.110351563 1 2.360839844 7.77734375 5.5 5.5 2.02734375

5.413725307 6.43678 6.436779341 5.577447254 6.952125 6.952124997 6.952124997 6.952124997 9.141437703 9.141437703 8.784833173 10.53479242 10.53479242 9.998389824 9.998389824 7.394993567 7.394993567 10.24239207 10.24239207 8.600400708 8.600400708 8.600400708 11.14924205 10.89241189 6.75065 7.027586593 4.923515326 5.238023349 5.238023349 5.413725307

Normal

9.399993896 9.39999 9.399993896 9.399993896 9.399994 12.09999847 12.09999847 11.59999847 11.59999847 12.09999847 12.09999847 13.5 13.5 13.5 12.5 10.09999847 11.59999847 11.59999847 11.59999847 11.59999847 12.09999847 12.09999847 13.59999847 15.29999542 15.29999542 15.29999542 12.29999542 14.3999939 14.3999939 16.59999084

92.59375 92.5938 92.59375 92.59375 92.59375 82.1875 82.1875 80.09375 80.09375 85.796875 85.796875 94.296875 94.296875 94.296875 96.59375 89.59375 82.890625 82.890625 82.890625 82.890625 86.59375 86.59375 88.296875 88.890625 88.890625 88.890625 95 84.6875 84.6875 84.59375

1017.3 1017.3 1017.3 1017.3 1017.3 1018.1 1018.1 1012.5 1012.5 1005.9 1005.9 1001.4 1001.4 1001.4 1001.8 1011 1007.7 1007.7 1007.7 1007.7 1003.2 1003.2 997.5 996.8 996.8 996.8 1006 1004.6 1004.6 1003

2.02734375 2.02734 2.02734375 2.02734375 2.027344 5 5 4.416015625 4.416015625 3.972167969 3.972167969 2.944335938 2.944335938 2.944335938 1 3.610839844 3.833007813 3.833007813 3.833007813 3.833007813 2.583007813 2.583007813 2.388671875 4.666015625 4.666015625 4.666015625 3.944335938 4.138671875 4.138671875 6.166015625

8.669740952 8.66974 8.669740952 8.669740952 8.669741 8.887248363 8.887248363 8.836079982 8.836079982 9.73715768 9.73715768 12.06152656 12.06152656 12.06152656 12.74165 7.948561167 9.328786961 9.328786961 9.328786961 9.328786961 10.92748158 10.92748158 12.6341029 12.57276979 12.57276979 12.57276979 9.971127009 12.02779372 12.02779372 12.87810811

ID=331 age=68

Stroke

15.3999939 15.4 15.29999542 17.3999939 17.39999 16.59999084 16.59999084 14.09999847 14.09999847 14.09999847 14.09999847 14.09999847 14.09999847 14.09999847 13.59999847 13.09999847 13.09999847 13.09999847 14.29999542 14.29999542 15 15 15 15 15 10.8999939 10.8999939 10.8999939 11.59999847 15.3999939

85.890625 85.8906 77.59375 87.890625 87.89063 89.59375 89.59375 79.296875 79.296875 79.296875 81.296875 81.296875 81.296875 81.296875 82.390625 72.890625 72.890625 72.890625 79.890625 79.890625 93.5 93.5 93.5 93.5 93.5 63.3984375 63.3984375 63.3984375 65.296875 85.890625



1008.4 1008.4 1007.2 1006.1 1006.1 1013.8 1013.8 1021.1 1021.1 1021.1 1019.4 1019.4 1019.4 1019.4 1014.8 1017.7 1017.7 1017.7 1015.9 1015.9 1017.9 1017.9 1017.9 1017.9 1017.9 1021.9 1021.9 1021.9 1025.3 1008.4

4.833007813 4.83301 5.221679688 9.970703125 9.970703 8.8046875 8.8046875 2.02734375 2.02734375 2.02734375 4.5 4.5 4.5 4.5 10.02734375 9.693359375 9.693359375 9.693359375 9.638671875 9.638671875 7.333007813 7.333007813 7.333007813 7.333007813 7.333007813 5.5 5.5 5.5 7.75 4.833007813

12.55260108 12.5526 12.15249735 11.31835022 11.31835 11.11214147 11.11214147 13.45202315 13.45202315 13.45202315 11.42392338 11.42392338 11.42392338 11.42392338 6.855894993 6.49861936 6.49861936 6.49861936 7.925778168 7.925778168 10.29073983 10.29073983 10.29073983 10.29073983 10.29073983 7.185168398 7.185168398 7.185168398 6.180423286 12.55260108

Normal

11.59999847 13.4 13.3999939 14.59999847 16.7 15.09999847 14 14 13.8999939 12.79999542 12.79999542 11.69999695 11.69999695 11.69999695 11.69999695 14.59999847 13 13 13.29999542 12.69999695 12.69999695 12.69999695 13.5 13.5 13.5 13.5 13.09999847 13.09999847 13.59999847 13.59999847

65.296875 69.6875 69.6875 89.59375 87.09375 86.1875 80.5 80.5 80.890625 71.09375 71.09375 79.59375 79.59375 79.59375 79.59375 70 73.390625 82.1875 73.796875 84.5 84.5 84.5 79.5 79.5 79.5 79.5 74.5 74.5 82.890625 82.890625

1025.3 1015.8 1015.8 995.7 1015.6 1023.4 1026 1026 1023.9 1018.3 1018.3 1006.8 1006.8 1006.8 1006.8 1015.6 1023.5 1025.7 1022.3 1024.4 1024.4 1024.4 1022 1022 1022 1022 1024.4 1024.4 1012.5 1012.5

7.75 12.25 12.25 7.166015625 6.916016 5.944335938 2.833007813 2.833007813 1.555419922 3.583007813 3.583007813 7.360351563 7.360351563 7.360351563 7.360351563 4.8046875 4.221679688 2.583007813 4.971679688 3.444335938 3.444335938 3.444335938 7.833007813 7.833007813 7.833007813 7.833007813 6.916015625 6.916015625 11.77734375 11.77734375

6.180423286 5.20504 5.205042635 9.963391038 12.4694 11.39938583 12.67131552 12.67131552 13.65457183 10.7981869 10.7981869 6.588183385 6.588183385 6.588183385 6.588183385 11.71895186 10.48072215 11.85249022 10.19668331 10.81003196 10.81003196 10.81003196 8.255153164 8.255153164 8.255153164 8.255153164 8.480792314 8.480792314 5.735856662 5.735856662

ID=1600 age=68

Stroke

18.8999939 18.5 18.5 16.79998779 16.79999 16.79998779 15.8999939 15.8999939 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.3999939 14.3999939 14.3999939 14.59999847 14.59999847 14.59999847 14.59999847 14.59999847 14.59999847 14.59999847 14.59999847 14.59999847 14.5 14.5 18.8999939

83.890625 76.6875 76.6875 81.6875 81.6875 81.6875 77 77 78.890625 78.890625 78.890625 78.890625 78.890625 78.890625 78.890625 79.5 79.5 79.5 81.09375 81.09375 81.09375 81.09375 81.09375 81.09375 81.09375 81.09375 81.09375 84.296875 84.296875 83.890625

1017.1 1023.3 1023.3 1026 1026 1026 1024.2 1024.2 1025.4 1025.4 1025.4 1025.4 1025.4 1025.4 1025.4 1027.2 1027.2 1027.2 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1017.1

5.888671875 7.22168 7.221679688 5.583007813 5.583008 5.583007813 2.02734375 2.02734375 1.944335938 1.944335938 1.944335938 1.944335938 1.944335938 1.944335938 1.944335938 1.638671875 1.638671875 1.638671875 2.194335938 2.194335938 2.194335938 2.194335938 2.194335938 2.194335938 2.194335938 2.194335938 2.194335938 1.833251953 1.833251953 5.888671875

15.57831882 14.2667 14.26672103 13.50823823 13.50824 13.50823823 15.28352904 15.28352904 13.92912724 13.92912724 13.92912724 13.92912724 13.92912724 13.92912724 13.92912724 14.08769635 14.08769635 14.08769635 13.82057759 13.82057759 13.82057759 13.82057759 13.82057759 13.82057759 13.82057759 13.82057759 13.82057759 14.02320514 14.02320514 15.57831882

Normal

14.5 14.5 14.5 15.09999847 15.1 15.09999847 15.09999847 15.09999847 15.09999847 15.59999847 15.59999847 15.59999847 15.59999847 15.59999847 15.5 15.8999939 15.09999847 15.09999847 15.09999847 15.09999847 15.09999847 15.09999847 15.09999847 14.19999695 14.19999695 14.19999695 14.19999695 14.19999695 14.19999695 13.8999939

84.296875 84.2969 84.296875 82.5 82.5 82.5 79.1875 79.1875 79.1875 81.5 81.5 81.5 81.5 81.5 79 74.5 79.6875 79.6875 79.6875 79.6875 79.6875 79.6875 79.6875 80.5 80.5 80.5 80.5 80.5 80.5 73.59375

1027.7 1027.7 1027.7 1026 1026 1026 1025.6 1025.6 1025.6 1026.3 1026.3 1026.3 1026.3 1026.3 1027.4 1029.9 1031.3 1031.3 1031.3 1031.3 1031.3 1031.3 1031.3 1029.9 1029.9 1029.9 1029.9 1029.9 1029.9 1026.9

1.833251953 1.83325 1.833251953 1.916503906 1.916504 1.916503906 1.638671875 1.638671875 1.638671875 2.166503906 2.166503906 2.166503906 2.166503906 2.166503906 1.638671875 1.361083984 1.555419922 1.555419922 1.555419922 1.555419922 1.555419922 1.555419922 1.555419922 1.805419922 1.805419922 1.805419922 1.805419922 1.805419922 1.805419922 1.944335938

14.02320514 14.0232 14.02320514 14.56194132 14.56194 14.56194132 14.79492177 14.79492177 14.79492177 14.8639763 14.8639763 14.8639763 14.8639763 14.8639763 15.19904949 15.83374874 14.86510677 14.86510677 14.86510677 14.86510677 14.86510677 14.86510677 14.86510677 13.74280108 13.74280108 13.74280108 13.74280108 13.74280108 13.74280108 13.31953891

ID=2258 age=60 temp humid atm wsp wc

Stroke

10.29999542 10.3 12.5 12.5 12.5 12.5 10.8999939 10.8999939 12.3999939 14 13.5 13.5 13.5 13 13 13 13 14.19999695 14.19999695 14.19999695 14.19999695 16.19999695 16.19999695 16.19999695 16.19999695 16.19999695 16.19999695 16.19999695 14.59999847 14.59999847

62.59375 62.5938 68.390625 68.390625 68.39063 68.390625 71.59375 71.59375 64.09375 78.09375 74.6875 74.6875 74.6875 73.6875 73.6875 73.6875 73.6875 75 75 75 75 84 84 84 84 84 84 84 73.6875 73.6875

1024.9 1024.9 1021.5 1021.5 1021.5 1021.5 1019.5 1019.5 1015.6 1012.9 1015.2 1015.2 1015.2 1014.9 1014.9 1014.9 1014.9 1008.5 1008.5 1008.5 1008.5 1007.8 1007.8 1007.8 1007.8 1007.8 1007.8 1007.8 1016.4 1016.4



4.02734375 4.02734 4.388671875 4.388671875 4.388672 4.388671875 5.444335938 5.444335938 7.944335938 10.38867188 9.33203125 9.33203125 9.33203125 5.888671875 5.888671875 5.888671875 5.888671875 9.25 9.25 9.25 9.25 8.02734375 8.02734375 8.02734375 8.02734375 8.02734375 8.02734375 8.02734375 5.25 5.25

7.792753858 7.79275 9.814073119 9.814073119 9.814073 9.814073119 7.231071229 7.231071229 6.935700097 7.087293138 7.206730902 7.206730902 7.206730902 9.153576927 9.153576927 9.153576927 9.153576927 8.068446487 8.068446487 8.068446487 8.068446487 11.16305231 11.16305231 11.16305231 11.16305231 11.16305231 11.16305231 11.16305231 11.37729836 11.37729836

Normal

14.3999939 14.4 14.3999939 14.3999939 14.39999 14.3999939 14.3999939 14.3999939 10.69999695 12 12 13.79999542 13.79999542 13.79999542 13.79999542 13.79999542 13.79999542 14.3999939 14.3999939 14.3999939 14.3999939 14.3999939 11.8999939 11.8999939 11.8999939 11.59999847 11.59999847 11.59999847 11.69999695 11.69999695

81.09375 81.0938 81.09375 81.09375 81.09375 81.09375 81.09375 81.09375 69.296875 70.296875 70.296875 84.5 84.5 84.5 84.5 84.5 84.5 79.296875 79.296875 79.296875 79.296875 79.296875 79.796875 79.796875 79.796875 68.59375 68.59375 68.59375 75.796875 75.796875

1015.2 1015.2 1015.2 1015.2 1015.2 1015.2 1015.2 1015.2 1021.1 1017.7 1017.7 1017.8 1017.8 1017.8 1017.8 1017.8 1017.8 1020.2 1020.2 1020.2 1020.2 1020.2 1020.1 1020.1 1020.1 1013.3 1013.3 1013.3 995.6 995.6

7.583007813 7.58301 7.583007813 7.583007813 7.583008 7.583007813 7.583007813 7.583007813 3.610839844 8.25 8.25 4.27734375 4.27734375 4.27734375 4.27734375 4.27734375 4.27734375 3.610839844 3.610839844 3.610839844 3.610839844 3.610839844 4.388671875 4.388671875 4.388671875 9.220703125 9.220703125 9.220703125 8.693359375 8.693359375

9.443676258 9.44368 9.443676258 9.443676258 9.443676 9.443676258 9.443676258 9.443676258 8.576639892 6.258975 6.258975 11.28259388 11.28259388 11.28259388 11.28259388 11.28259388 11.28259388 12.44979869 12.44979869 12.44979869 12.44979869 12.44979869 9.177352384 9.177352384 9.177352384 5.096569044 5.096569044 5.096569044 5.593114327 5.593114327

2306 60

Stroke

14.69999695 14.7 14.5 14 14 14 14 15.5 15.5 15.5 15.5 15.5 15.09999847 15.09999847 15.09999847 13.8999939 13.8999939 13.8999939 13.8999939 10.79999542 10.79999542 10.79999542 10.79999542 10.79999542 10.79999542 10.79999542 10.79999542 11.79999542 12.29999542 13.69999695

76.6875 76.6875 77.09375 71.296875 71.29688 71.296875 71.296875 82.5 82.5 82.5 82.5 82.5 78.296875 78.296875 78.296875 88.09375 88.09375 88.09375 88.09375 64.09375 64.09375 64.09375 64.09375 64.09375 64.09375 64.09375 64.09375 69.09375 65.6875 79.6875

1006.6 1006.6 1010.5 1011.8 1011.8 1011.8 1011.8 1010.7 1010.7 1010.7 1010.7 1010.7 1012 1012 1012 1013.5 1013.5 1013.5 1013.5 1020.6 1020.6 1020.6 1020.6 1020.6 1020.6 1020.6 1020.6 1013.8 1010.3 1013.4

5.8046875 5.80469 6.166015625 8.27734375 8.277344 8.27734375 8.27734375 5.416015625 5.416015625 5.416015625 5.416015625 5.416015625 7.25 7.25 7.25 4.860351563 4.860351563 4.860351563 4.860351563 2.555175781 2.555175781 2.555175781 2.555175781 2.555175781 2.555175781 2.555175781 2.555175781 6.3046875 9 5.5

11.06734509 11.0673 10.58056842 8.505137396 8.505137 8.505137396 8.505137396 12.22336432 12.22336432 12.22336432 12.22336432 12.22336432 10.4605608 10.4605608 10.4605608 10.92702977 10.92702977 10.92702977 10.92702977 9.616363809 9.616363809 9.616363809 9.616363809 9.616363809 9.616363809 9.616363809 9.616363809 7.517150034 6.058344752 10.2140717

Normal

13.5 13.5 13.5 13.5 12.2 12.19999695 12.19999695 12.19999695 11.59999847 11.19999695 11.19999695 11.19999695 11.19999695 11.19999695 11.19999695 11.19999695 10.29999542 10.29999542 10.29999542 12.5 12.5 12.5 12.5 10.8999939 10.8999939 12.3999939 14 13.5 13.5 13.5

69.5 69.5 69.5 69.5 75.6875 75.6875 75.6875 75.6875 75.796875 66.890625 66.890625 66.890625 66.890625 66.890625 66.890625 66.890625 62.59375 62.59375 62.59375 68.390625 68.390625 68.390625 68.390625 71.59375 71.59375 64.09375 78.09375 74.6875 74.6875 74.6875

1024.8 1024.8 1024.8 1024.8 1030.8 1030.8 1030.8 1030.8 1030.5 1027 1027 1027 1027 1027 1027 1027 1024.9 1024.9 1024.9 1021.5 1021.5 1021.5 1021.5 1019.5 1019.5 1015.6 1012.9 1015.2 1015.2 1015.2

4.5546875 4.55469 4.5546875 4.5546875 3.583008 3.583007813 3.583007813 3.583007813 2.722167969 3.138671875 3.138671875 3.138671875 3.138671875 3.138671875 3.138671875 3.138671875 4.02734375 4.02734375 4.02734375 4.388671875 4.388671875 4.388671875 4.388671875 5.444335938 5.444335938 7.944335938 10.38867188 9.33203125 9.33203125 9.33203125

10.74222654 10.7422 10.74222654 10.74222654 10.17042 10.17041711 10.17041711 10.17041711 10.29090295 9.511348564 9.511348564 9.511348564 9.511348564 9.511348564 9.511348564 9.511348564 7.792753858 7.792753858 7.792753858 9.814073119 9.814073119 9.814073119 9.814073119 7.231071229 7.231071229 6.935700097 7.087293138 7.206730902 7.206730902 7.206730902

1616 61

Stroke

15.79999542 15.8 17.79998779 17.79998779 17.79999 19.29998779 19.29998779 19.29998779 19.29998779 19.29998779 19.3999939 19.3999939 19.3999939 19.3999939 18.8999939 18.8999939 18.8999939 18.8999939 18.5 18.5 16.79998779 16.79998779 16.79998779 15.8999939 15.8999939 14.5 14.5 14.5 14.5 14.5

76.09375 76.0938 90 90 90 89.5 89.5 89.5 89.5 89.5 89.390625 89.390625 89.390625 89.390625 83.890625 83.890625 83.890625 83.890625 76.6875 76.6875 81.6875 81.6875 81.6875 77 77 78.890625 78.890625 78.890625 78.890625 78.890625

1009.7 1009.7 1012.6 1012.6 1012.6 1012.8 1012.8 1012.8 1012.8 1012.8 1014 1014 1014 1014 1017.1 1017.1 1017.1 1017.1 1023.3 1023.3 1026 1026 1026 1024.2 1024.2 1025.4 1025.4 1025.4 1025.4 1025.4

7.666015625 7.66602 2.5 2.5 2.5 2.722167969 2.722167969 2.722167969 2.722167969 2.722167969 4.388671875 4.388671875 4.388671875 4.388671875 5.888671875 5.888671875 5.888671875 5.888671875 7.221679688 7.221679688 5.583007813 5.583007813 5.583007813 2.02734375 2.02734375 1.944335938 1.944335938 1.944335938 1.944335938 1.944335938



10.95558174 10.9556 16.84973747 16.84973747 16.84974 18.22466478 18.22466478 18.22466478 18.22466478 18.22466478 17.13628061 17.13628061 17.13628061 17.13628061 15.57831882 15.57831882 15.57831882 15.57831882 14.26672103 14.26672103 13.50823823 13.50823823 13.50823823 15.28352904 15.28352904 13.92912724 13.92912724 13.92912724 13.92912724 13.92912724

Normal

14.5 14.4 14.3999939 14.3999939 14.6 14.59999847 14.59999847 14.59999847 14.59999847 14.59999847 14.59999847 14.59999847 14.59999847 14.5 14.5 14.5 14.5 14.5 14.5 15.09999847 15.09999847 15.09999847 15.09999847 15.09999847 15.09999847 15.59999847 15.59999847 15.59999847 15.59999847 15.59999847

78.890625 79.5 79.5 79.5 81.09375 81.09375 81.09375 81.09375 81.09375 81.09375 81.09375 81.09375 81.09375 84.296875 84.296875 84.296875 84.296875 84.296875 84.296875 82.5 82.5 82.5 79.1875 79.1875 79.1875 81.5 81.5 81.5 81.5 81.5

1025.4 1027.2 1027.2 1027.2 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1026 1026 1026 1025.6 1025.6 1025.6 1026.3 1026.3 1026.3 1026.3 1026.3

1.944335938 1.63867 1.638671875 1.638671875 2.194336 2.194335938 2.194335938 2.194335938 2.194335938 2.194335938 2.194335938 2.194335938 2.194335938 1.833251953 1.833251953 1.833251953 1.833251953 1.833251953 1.833251953 1.916503906 1.916503906 1.916503906 1.638671875 1.638671875 1.638671875 2.166503906 2.166503906 2.166503906 2.166503906 2.166503906

13.92912724 14.0877 14.08769635 14.08769635 13.82058 13.82057759 13.82057759 13.82057759 13.82057759 13.82057759 13.82057759 13.82057759 13.82057759 14.02320514 14.02320514 14.02320514 14.02320514 14.02320514 14.02320514 14.56194132 14.56194132 14.56194132 14.79492177 14.79492177 14.79492177 14.8639763 14.8639763 14.8639763 14.8639763 14.8639763

236 62

Stroke

11.3999939 12.6 12.59999847 12.59999847 11.6 11.59999847 9.099998474 9.099998474 8.199996948 8.199996948 9.099998474 9.699996948 11.3999939 12.8999939 12.59999847 10.19999695 10.19999695 11.5 12.09999847 11 11 11.3999939 11.3999939 11.3999939 11.79999542 10.79999542 10.79999542 8.599998474 8.599998474 8.599998474

78.5 77.7969 77.796875 77.796875 85 85 79.6875 79.6875 75.09375 75.09375 69.6875 79.1875 76.390625 87.09375 86.890625 92.09375 92.09375 73.1875 87.296875 86.6875 86.6875 84 84 84 87.890625 80.296875 80.296875 81.1875 81.1875 81.1875

1009.4 1011.5 1011.5 1011.5 1009.1 1009.1 1018.8 1018.8 1019.3 1019.3 1018.7 1018.3 1014 999.6 1000.9 1006.5 1006.5 1012.1 996.6 1006.4 1006.4 1010.7 1010.7 1010.7 998.4 1010.3 1010.3 1006.7 1006.7 1006.7

6.971679688 8.19336 8.193359375 8.193359375 5.97168 5.971679688 3.5 3.5 2.27734375 2.27734375 4.110351563 3.166503906 5.27734375 6.721679688 5 3.638671875 3.638671875 5.471679688 4.666015625 4.666015625 4.666015625 3.360839844 3.360839844 3.360839844 4.388671875 4.138671875 4.138671875 3.138671875 3.138671875 3.138671875

6.55392222 6.97961 6.979612859 6.979612859 7.562625 7.562624883 7.002123406 7.002123406 7.209506543 7.209506543 6.453245434 7.92908008 7.90805621 8.405774445 9.423498363 8.028652637 8.028652637 7.857255111 9.160544917 7.987593126 7.987593126 9.525559895 9.525559895 9.525559895 9.07123496 8.224159786 8.224159786 6.812380031 6.812380031 6.812380031

Normal

10.29999542 11.7 11.69999695 11.69999695 11.7 11.69999695 11.69999695 12 12 11.3999939 11.3999939 12.29999542 9.899993896 8.399993896 8.399993896 7.699996948 7.699996948 8.5 10 11.69999695 13.09999847 12.5 12.5 11 11 11 13.19999695 12.29999542 10.79999542 7.799999237

80.5 90.2969 90.296875 90.296875 90.29688 90.296875 90.296875 75.6875 75.6875 71.6875 71.6875 82.6875 77.09375 75.890625 75.890625 86.890625 86.890625 90.390625 87.59375 82.09375 88.890625 82.09375 82.09375 82.890625 82.890625 82.890625 85.390625 86.390625 90.59375 91.6875

995 995.2 995.2 995.2 995.2 995.2 995.2 1005.9 1005.9 999.1 999.1 995 1008.7 1011.4 1011.4 1006.8 1006.8 1008.5 1004.3 1001.5 1001.1 1004.2 1004.2 1012.9 1012.9 1012.9 1015.6 1023.4 1027.5 1029.1

4.5546875 3.52734 3.52734375 3.52734375 3.527344 3.52734375 3.52734375 5.471679688 5.471679688 9.916015625 9.916015625 6.083007813 6.52734375 2.916503906 2.916503906 3.972167969 3.972167969 2.333007813 3.694335938 5.666015625 5.833007813 8.638671875 8.638671875 3.944335938 3.944335938 3.944335938 4.833007813 3.888671875 0.638793945 0.888793945

7.336584166 9.695 9.694999636 9.694999636 9.695 9.694999636 9.694999636 8.397868148 8.397868148 4.370129775 4.370129775 8.238565351 5.251019936 6.811715196 6.811715196 5.1018216 5.1018216 7.463402676 7.769870452 7.916581905 9.305570059 6.544926634 6.544926634 8.60227055 8.60227055 8.60227055 10.19990093 10.01773569 11.38440784 8.15926908

729 62

Stroke

10.59999847 10.6 12.8999939 12.8999939 12.89999 12.69999695 12.69999695 11.79999542 11.79999542 12.69999695 14.29999542 14.29999542 14.29999542 14.29999542 14.29999542 12 12 12 12 13.59999847 13.59999847 13.29999542 13.29999542 13.29999542 13.29999542 13.29999542 8.899993896 8.899993896 8.899993896 8.899993896

76.5 76.5 77.890625 77.890625 77.89063 91.296875 91.296875 87 87 73 91.1875 91.1875 91.1875 91.1875 91.1875 77.1875 77.1875 77.1875 77.1875 70.5 70.5 77 77 77 77 77 80.6875 80.6875 80.6875 80.6875

1006.3 1006.3 999.4 999.4 999.4 992.3 992.3 1004.4 1004.4 1001.2 999.7 999.7 999.7 999.7 999.7 1016.9 1016.9 1016.9 1016.9 1018.6 1018.6 1019.3 1019.3 1019.3 1019.3 1019.3 1020.5 1020.5 1020.5 1020.5

9.359375 9.35938 9.416015625 9.416015625 9.416016 2.638671875 2.638671875 3.52734375 3.52734375 9.443359375 6.583007813 6.583007813 6.583007813 6.583007813 6.583007813 3.02734375 3.02734375 3.02734375 3.02734375 6.110351563 6.110351563 5.77734375 5.77734375 5.77734375 5.77734375 5.77734375 4.27734375 4.27734375 4.27734375 4.27734375

3.843991893 3.84399 6.457115671 6.457115671 6.457116 11.49615221 11.49615221 9.799523627 9.799523627 6.207325417 10.05344089 10.05344089 10.05344089 10.05344089 10.05344089 10.43794052 10.43794052 10.43794052 10.43794052 9.638105583 9.638105583 9.566120507 9.566120507 9.566120507 9.566120507 9.566120507 6.092851049 6.092851049 6.092851049 6.092851049



Normal

9.399993896 9.39999 9.399993896 10.09999847 10.7 10.69999695 14 14 14 14 14 14 15.59999847 15.59999847 13 13 13 13.09999847 13.09999847 13.09999847 13.09999847 13.09999847 13.09999847 14.5 14.5 14.5 13.59999847 13.59999847 13.59999847 13.3999939

74 74 74 71.6875 75.29688 75.296875 89.1875 89.1875 89.1875 89.1875 89.1875 89.1875 88.390625 88.390625 80.890625 80.890625 80.890625 72.390625 72.390625 72.390625 72.390625 72.390625 72.390625 69.390625 69.390625 83 72 72 72 87.59375

1017.4 1017.4 1017.4 1018.5 1019.4 1019.4 1021.3 1021.3 1021.3 1021.3 1021.3 1021.3 1025.6 1025.6 1025.3 1025.3 1025.3 1018.6 1018.6 1018.6 1018.6 1018.6 1018.6 1011.8 1011.8 1014.3 1018.3 1018.3 1018.3 1014.7

5.583007813 5.58301 5.583007813 5.416015625 4.554688 4.5546875 4.388671875 4.388671875 4.388671875 4.388671875 4.388671875 4.388671875 3.083007813 3.083007813 2.222167969 2.222167969 2.222167969 4.721679688 4.721679688 4.721679688 4.721679688 4.721679688 4.721679688 9.888671875 9.888671875 9.859375 7.583007813 7.583007813 7.583007813 3.75

5.491931074 5.49193 5.491931074 6.390302708 7.76229 7.762290478 11.40585876 11.40585876 11.40585876 11.40585876 11.40585876 11.40585876 14.12316062 14.12316062 12.16350379 12.16350379 12.16350379 10.18215446 10.18215446 10.18215446 10.18215446 10.18215446 10.18215446 7.994543822 7.994543822 8.013553809 8.547452871 8.547452871 8.547452871 11.2884936

71 64

Stroke

14.5 13.8 13.69999695 13.69999695 13.7 13.19999695 14.5 16.8999939 16.19999695 16.19999695 15.3999939 15.3999939 15.3999939 15.8999939 15.8999939 15.8999939 16.59999084 16.59999084 16.59999084 14.69999695 15.8999939 15.8999939 16.29998779 16.29998779 16.59999084 16.59999084 17.5 17.59999084 17.59999084 17.59999084

84.6875 82.2969 85.296875 85.296875 85.29688 85.890625 82.890625 82.796875 76.5 76.5 79.59375 79.59375 79.59375 72.5 72.5 72.5 71.390625 71.390625 71.390625 80.390625 85.59375 85.59375 84.390625 84.390625 68.890625 68.890625 73.59375 84.1875 84.1875 83

1022.5 1024 1025.4 1025.4 1025.4 1026 1023.5 1017.6 1016.5 1016.5 1015.1 1015.1 1015.1 1013.2 1013.2 1013.2 1014.5 1014.5 1014.5 1017.4 1017 1017 1017.8 1017.8 1023 1023 1015.6 1010.5 1010.5 1007.1

3.305175781 0.41663 0.555541992 0.555541992 0.555542 0.333312988 2.52734375 4.5546875 3.972167969 3.972167969 3.52734375 3.52734375 3.52734375 5.52734375 5.52734375 5.52734375 2.388671875 2.388671875 2.388671875 0.666625977 3.02734375 3.02734375 1.194335938 1.194335938 6.694335938 6.694335938 7.194335938 3.166503906 3.166503906 2.222167969

12.80145906 14.5584 14.33508627 14.33508627 14.33509 14.04145994 13.44039111 14.36070989 14.05644501 14.05644501 13.56244313 13.56244313 13.56244313 12.57392708 12.57392708 12.57392708 15.70666638 15.70666638 15.70666638 15.22817696 14.47835705 14.47835705 16.37400925 16.37400925 12.51069736 12.51069736 13.17115292 16.13385829 16.13385829 16.86060094

Normal

18.5 17.3 17.09999084 17.09999084 17 17 16.69999695 15.29999542 16.5 21.19999695 21.19999695 21.59999084 21.59999084 21.69999695 20.79998779 20.79998779 18.69999695 18.69999695 19 19 19 19.69999695 20.09999084 20.09999084 18.8999939 19.29998779 19.29998779 21.69999695 21.69999695 23.19999695

87.59375 79.3906 81.59375 81.59375 81.6875 81.6875 80.390625 70.390625 62.6953125 83.890625 83.890625 87.296875 87.296875 77.59375 79.5 79.5 72.296875 72.296875 74.390625 74.390625 74.390625 83.59375 70.5 70.5 71.1875 80.59375 80.59375 86.09375 86.09375 88.09375

1002.2 1021.4 1020.1 1020.1 1022.2 1022.2 1026.9 1025.5 1022.2 1017.9 1017.9 1023.4 1023.4 1029.6 1024 1024 1024.3 1024.3 1023.4 1023.4 1023.4 1020 1024.1 1024.1 1024.7 1012.4 1012.4 1012 1012 1008.7

10.94335938 1.83325 1.916503906 1.916503906 2.333008 2.333007813 1.944335938 1.833251953 3.27734375 3.916503906 3.916503906 6.52734375 6.52734375 6.360351563 4.666015625 4.666015625 3.694335938 3.694335938 3.77734375 3.77734375 3.77734375 2.166503906 2.388671875 2.388671875 3.305175781 2.02734375 2.02734375 4.888671875 4.888671875 12.27734375

12.05416937 16.8622 16.59284422 16.59284422 16.16027 16.16026815 16.16425861 14.83433263 14.90532392 19.36127572 19.36127572 18.12986013 18.12986013 18.34026176 18.43752874 18.43752874 16.89047062 16.89047062 17.14539013 17.14539013 17.14539013 19.04630406 19.29133288 19.29133288 17.38249402 18.74304275 18.74304275 19.25426634 19.25426634 17.01825012

286 64

Stroke

11.69999695 14.6 13 13 13.3 12.69999695 12.69999695 12.69999695 13.5 13.5 13.5 13.5 13.09999847 13.09999847 13.59999847 13.59999847 15.69999695 14.69999695 15.8999939 15.8999939 12.79999542 12.79999542 12.79999542 13.29999542 13 13.5 12.3999939 13.5 13.5 14.3999939

79.59375 70 73.390625 82.1875 73.79688 84.5 84.5 84.5 79.5 79.5 79.5 79.5 74.5 74.5 82.890625 82.890625 88.296875 82 78.890625 78.890625 75.390625 75.390625 75.390625 74.6875 74 87.890625 75.5 78.09375 78.09375 87.09375

1006.8 1015.6 1023.5 1025.7 1022.3 1024.4 1024.4 1024.4 1022 1022 1022 1022 1024.4 1024.4 1012.5 1012.5 1019.7 1025.8 1026.1 1026.1 1021.7 1021.7 1021.7 1014.7 999.4 995.1 1005.7 1007.2 1007.2 1005.6

7.360351563 4.80469 4.221679688 2.583007813 4.97168 3.444335938 3.444335938 3.444335938 7.833007813 7.833007813 7.833007813 7.833007813 6.916015625 6.916015625 11.77734375 11.77734375 7.360351563 3.083007813 5.0546875 5.0546875 4.944335938 4.944335938 4.944335938 8.8046875 12.52734375 6.083007813 7.944335938 6.75 6.75 5.583007813

6.588183385 11.719 10.48072215 11.85249022 10.19668 10.81003196 10.81003196 10.81003196 8.255153164 8.255153164 8.255153164 8.255153164 8.480792314 8.480792314 5.735856662 5.735856662 11.0528494 13.18982695 12.92210124 12.92210124 9.682631563 9.682631563 9.682631563 7.340620525 4.552038568 9.549613125 6.935700097 9.0472875 9.0472875 10.9083593

Normal



14.29999542 14.3 11.19999695 12.5 14 14 10.29999542 11.5 11.5 11.79999542 11.79999542 12 12.79999542 12.79999542 12.69999695 12 12 11.3999939 11.3999939 11.3999939 12.59999847 12.59999847 12.59999847 11.59999847 11.59999847 9.099998474 9.099998474 8.199996948 8.199996948 9.099998474

86.5 86.5 80.796875 72.1875 86.09375 86.09375 83.5 76.6875 76.6875 84.09375 84.09375 78.796875 80.390625 80.390625 83.890625 82.890625 82.890625 78.5 78.5 78.5 77.796875 77.796875 77.796875 85 85 79.6875 79.6875 75.09375 75.09375 69.6875

1009.3 1009.3 1012.5 1013.1 1016.9 1016.9 1025.3 1020.9 1020.9 1015.9 1015.9 1015.9 1016.9 1016.9 1019.7 1023.5 1023.5 1009.4 1009.4 1009.4 1011.5 1011.5 1011.5 1009.1 1009.1 1018.8 1018.8 1019.3 1019.3 1018.7

6.52734375 6.52734 5.944335938 6.75 6.916016 6.916015625 2.138671875 2.444335938 2.444335938 7.8046875 7.8046875 7.610351563 6.221679688 6.221679688 7.5 6.388671875 6.388671875 6.971679688 6.971679688 6.971679688 8.193359375 8.193359375 8.193359375 5.971679688 5.971679688 3.5 3.5 2.27734375 2.27734375 4.110351563

10.0943474 10.0943 7.148500329 7.9424125 9.477946 9.477945665 9.483099115 10.43380136 10.43380136 6.364034282 6.364034282 6.734445922 8.677692237 8.677692237 7.600621586 7.670756029 7.670756029 6.55392222 6.55392222 6.55392222 6.979612859 6.979612859 6.979612859 7.562624883 7.562624883 7.002123406 7.002123406 7.209506543 7.209506543 6.453245434

1579 67

Stroke

14.59999847 14.6 14.59999847 14.59999847 14.6 14.59999847 14.59999847 14.5 14.5 14.5 14.5 14.5 14.5 15.09999847 15.09999847 15.09999847 15.09999847 15.09999847 15.09999847 15.59999847 15.59999847 15.59999847 15.59999847 15.59999847 15.5 15.8999939 15.09999847 15.09999847 15.09999847 15.09999847

81.09375 81.0938 81.09375 81.09375 81.09375 81.09375 81.09375 84.296875 84.296875 84.296875 84.296875 84.296875 84.296875 82.5 82.5 82.5 79.1875 79.1875 79.1875 81.5 81.5 81.5 81.5 81.5 79 74.5 79.6875 79.6875 79.6875 79.6875

1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1027.7 1026 1026 1026 1025.6 1025.6 1025.6 1026.3 1026.3 1026.3 1026.3 1026.3 1027.4 1029.9 1031.3 1031.3 1031.3 1031.3

2.194335938 2.19434 2.194335938 2.194335938 2.194336 2.194335938 2.194335938 1.833251953 1.833251953 1.833251953 1.833251953 1.833251953 1.833251953 1.916503906 1.916503906 1.916503906 1.638671875 1.638671875 1.638671875 2.166503906 2.166503906 2.166503906 2.166503906 2.166503906 1.638671875 1.361083984 1.555419922 1.555419922 1.555419922 1.555419922

13.82057759 13.8206 13.82057759 13.82057759 13.82058 13.82057759 13.82057759 14.02320514 14.02320514 14.02320514 14.02320514 14.02320514 14.02320514 14.56194132 14.56194132 14.56194132 14.79492177 14.79492177 14.79492177 14.8639763 14.8639763 14.8639763 14.8639763 14.8639763 15.19904949 15.83374874 14.86510677 14.86510677 14.86510677 14.86510677

Normal

15.09999847 15.1 14.19999695 14.19999695 14.2 14.19999695 14.19999695 14.19999695 13.8999939 13.8999939 13.8999939 13.8999939 13.8999939 13.8999939 13.8999939 13.8999939 14.09999847 14.09999847 14.09999847 14.3999939 14.3999939 14.3999939 14.3999939 16.59999084 16.59999084 16.59999084 16.59999084 16.59999084 16.59999084 16

79.6875 79.6875 80.5 80.5 80.5 80.5 80.5 80.5 73.59375 73.59375 73.59375 73.59375 73.59375 73.59375 73.59375 73.59375 76 76 76 74.296875 74.296875 74.296875 74.296875 74.5 74.5 74.5 74.5 74.5 74.5 81.890625

1031.3 1031.3 1029.9 1029.9 1029.9 1029.9 1029.9 1029.9 1026.9 1026.9 1026.9 1026.9 1026.9 1026.9 1026.9 1026.9 1020 1020 1020 1010.8 1010.8 1010.8 1010.8 1006 1006 1006 1006 1006 1006 1002.1

1.555419922 1.55542 1.805419922 1.805419922 1.80542 1.805419922 1.805419922 1.805419922 1.944335938 1.944335938 1.944335938 1.944335938 1.944335938 1.944335938 1.944335938 1.944335938 2.305175781 2.305175781 2.305175781 2.972167969 2.972167969 2.972167969 2.972167969 7.971679688 7.971679688 7.971679688 7.971679688 7.971679688 7.971679688 8.609375

14.86510677 14.8651 13.74280108 13.74280108 13.7428 13.74280108 13.74280108 13.74280108 13.31953891 13.31953891 13.31953891 13.31953891 13.31953891 13.31953891 13.31953891 13.31953891 13.21658084 13.21658084 13.21658084 12.96965895 12.96965895 12.96965895 12.96965895 11.65099191 11.65099191 11.65099191 11.65099191 11.65099191 11.65099191 10.55338584
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