
One Pass Concept Change Detection for Data Streams

Sripirakas Sakthithasan1, Russel Pears1, and Yun Sing Koh2

1 School of Computing and Mathematical Sciences, Auckland University of Technology,
{ssakthit,rpears}@aut.ac.nz

2 Department of Computer Science, University of Auckland
ykoh@cs.auckland.ac.nz

Abstract. In this research we present a novel approach to the concept change
detection problem. Change detection is a fundamental issue with data stream
mining as models generated need to be updated when significant changes in the
underlying data distribution occur. A number of change detection approaches
have been proposed but they all suffer from limitations such as high computa-
tional complexity, poor sensitivity to gradual change, or the opposite problem of
high false positive rate. Our approach, termed OnePassSampler, has low computa-
tional complexity as it avoids multiple scans on its memory buffer by sequentially
processing data. Extensive experimentation on a wide variety of datasets reveals
that OnePassSampler has a smaller false detection rate and smaller computational
overheads while maintaining a competitive true detection rate to ADWIN2.

Keywords: Data Stream Mining, Concept Drift Detection, Bernstein Bound

1 Introduction

Data stream mining has been the subject of extensive research over the last decade or
so. The well known CVFDT [1] algorithm is a good example of an early algorithm that
proposed an incremental approach to building and maintaining a decision tree in the
face of changes or concept drift that occur in a data stream environment. Since then
there has been a multitude of refinements to CVFDT (such as [2]) and to other methods
[3] [4] that perform other types of mining such as a clustering and association rule
mining.

The fundamental issue with data stream mining is to manage the sheer volume of
data which grows continuously over time. A standard method of coping with this issue
is to use a fixed size window of width w, where only the most recent w instances are
used to update the model built [5]. While this method is conceptually appealing, the
major limitation is that concept change can occur at intervals that are quite distinct from
the window boundaries. If rapid changes occur within a window, then these multiple
changes will be undetected by the mining algorithm thus reducing the effectiveness of
the model generated. Ideally a data stream algorithm should use long periods of stability
to build a more detailed model whereas in time of rapid change the window needs to be
shrunk at each change, the data representing the old concept be purged and the model
updated with the new concept. Concept change detection with variable-sized adaptive
windows has received very little attention compared to the well established area of
algorithm development for data stream mining.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AUT Scholarly Commons

https://core.ac.uk/display/56363628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The methods proposed for concept change detection with adaptive windows all suf-
fer from limitations with respect to one or more key performance factors such as high
computational complexity, poor sensitivity to gradual change or drift, or the opposite
problem of high false positive rate. In this research we propose a novel concept change
detection method called OnePassSampler and compare it with the state-of-the-art con-
cept change detector, ADWIN2 [6]. Our empirical results show that OnePassSampler
has a lower false positive rate and significantly lower computational overheads than
ADWIN2. OnePassSampler, as its name suggests makes only a single pass through
its memory buffer and employs a simple and efficient array structure to maintain data
about the current window. With ADWIN2 every new data block that arrives triggers
a reassessment of candidate cut points previously visited, thus making it a multi-pass
algorithm with respect to its internal memory buffer.

The major contributions made by this research are: a robust one pass algorithm for
concept drift detection that has low memory and run time overheads while offering a
rigorous guarantee on the false positive rate. The rest of the paper is as follows. Section
2 reviews the major research relating to concept drift detection. In Section 3 we describe
our novel approach to drift detection with the formulation of a model, the derivation of
a test statistic and the one pass algorithmic approach that is the key to low overheads.
Section 4 presents a conceptual comparison between OnePassSampler and ADWIN2.
Section 5 presents our empirical results and we conclude in Section 6 with a summary
of the research achievements and some thoughts on further work in the area of concept
change detection.

2 Related Work

The concept drift detection problem has a classic statistical interpretation: given a sam-
ple of data, does this sample represent a single homogeneous distribution or is there
some point in the data (i.e the concept change point) at which the data distribution has
undergone a significant shift from a statistical point of view? All concept change de-
tection approaches in the literature formulate the problem from this viewpoint but the
models and the algorithms used to solve this problem differ greatly in their detail.

Sebastiao and Gama [7] present a concise survey on change detection methods.
They point out that methods used fall into four basic categories: Statistical Process
Control (SPC), Adaptive Windowing, Fixed Cumulative Windowing Schemes and fi-
nally other classic statistical change detection methods. Early Drift Detection Method
(EDDM) [8] works on the same basic principle as the authors earlier work but uses
different statistics to detect change. More recently Bifet et al [6] proposed an adaptive
windowing scheme called ADWIN that is based on the use of the Hoeffding bound to
detect concept change. The ADWIN algorithm was shown to outperform the SPC ap-
proach and has the attractive property of providing rigorous guarantees on false positive
and false negative rates. ADWIN maintains a window (W) of instances at a given time
and compares the mean difference of any two sub windows (W0 of older instances and
W1 of recent instances) from W . If the mean difference is statistically significant, then
ADWIN removes all instances of W0 considered to represent the old concept and only
carries W1 forward to the next test.

An improved version of ADWIN called ADWIN2[6] was also proposed by the same
author which used a variation of exponential histograms and a memory parameter, to
limit the number of hypothesis tests done on a given window. ADWIN2 was shown
to be superior to Gama’s method and fixed size window with flushing [9] on perfor-
mance measures such as the false positive rate, false negative rate and sensitivity to
slow gradual changes [6]. Despite the improvements made in ADWIN2, some issues
remain namely, the fact that multiple passes on data are made in the current window
and an improvement in the false positive rate for noisy data environments.

3 The One Pass Sampler Concept Change Detector

We start by defining in formal terms the problem that we address in this research. We
then describe some generic principles that govern our change detector model. A test
statistic is then derived that will be used in the change detector algorithms that we pro-
pose. We present a memory management strategy that supports incremental sampling
with the use of a fixed size buffer in the form of a reservoir.

3.1 Change Detection Problem Definition

Concept Change Detection Let S1 = (x1, x2, ..., xm) and S2 = (xm+1, ..., xn) with
0 < m < n represent two samples of instances from a stream with population means
µ1 and µ2 respectively. Then the change detection problem can be expressed as testing
the null hypothesis H0 that µ1 = µ2 that the two samples are drawn from the same
distribution versus the alternate hypothesis H1 that they arrive from different distribu-
tions with µ1 6= µ2. In practice the underlying data distribution is unknown and a test
statistic based on the sample means needs to be constructed by the change detector. If
the null hypothesis is accepted incorrectly when a change has occurred then a false neg-
ative is said to have taken place. On the other hand if H1 is accepted when no change
has occurred in the data distribution then a false positive is said to have occurred. Since
the population mean of the underlying distribution is unknown, sample means need to
be used to perform the above hypothesis tests. The hypothesis tests can be restated as:
Accept hypothesis H1 whenever Pr(| ˆµS1 − ˆµS2 |) ≥ ε) > δ, where δ lies in the inter-
val (0, 1) and is a parameter that controls the maximum allowable false positive rate,
while ε is a function of δ and the test statistic used to model the difference between the
sample means.

Detection Delay Due to the use of sample data to infer changes in the population,
detection delay is inevitable in any concept change detector and is thus an important
performance measure. Detection Delay is the distance between (m+1) and m

′
, where

m
′

is the instance at which change is detected. In other words, detection delay equals:(
m
′ − (m+ 1)

)
.

3.2 OnePassSampler Conceptual Change Detection Model:

Our change detector is designed to widen its applicability to streams with different char-
acteristics while yielding comparable performance, accuracy and robustness to methods

such as ADWIN2. OnePassSampler has the following properties, as illustrated in our
experimentation: (1) is oblivious to the underlying data distribution, and (2) is inexpen-
sive in terms of computational cost and memory.

Core Algorithm Overview We first provide a basic sketch of our algorithm before
discussing details of hypothesis testing. We use a simple example to illustrate the work-
ing of the algorithm. OnePassSampler accumulates data instances into blocks of size b.
When attached to a classifier that uses OnePassSampler to detect change points, input
data instances consists of a binary sequence of bits where binary 1 denotes a misclassi-
fication error and binary 0 denotes a correct classification decision. We use a block of
data instances as the basic unit instead of instances as it would both be very inefficient
and unnecessary from a statistical point of view to test for concept changes at the arrival
of every instance.

Suppose that at time t1 blocks B1 and B2 have arrived. OnePassSampler then
checks whether a concept change has occurred at the B1|B2 boundary by testing H1

above. If H1 is rejected then blocks B1 and B2 are concatenated into one single block
B12 and H1 is next tested on the B12|B3 boundary. In this check the sample mean of
sub-window B12 is computed by taking the average value of a random sample of size
b from the sub-window of size 2b. This sample mean is then compared with the sam-
ple mean computed from block B3, also of size b. This process continues until H1 is
accepted, at which point a concept change is declared; instances in the left sub-window
are removed and the instances in the right sub-window are transferred to the left. At
all testing points equal sized samples are used to compare the sample means from the
two sides of the window. The use of random sampling accelerates the process of the
computation of the sample mean while maintaining robustness. The use of the aver-
aging function as we shall see from our experimentation helps to smooth variation in
the data and makes OnePassSampler more robust to noise than ADWIN2. In essence,
OnePassSampler does a single forward scan through its memory buffer without the use
of expensive backtracking as employed ADWIN2. While the use of random sampling
ensures that sample means can be computed efficiently, a memory management strategy
is required to ensure efficient use of memory as the left sub-window has the potential to
grow indefinitely during periods of long stability in the stream.

Use of Bernstein Bound Our approach relies on well established bounds for the differ-
ence between the true population and sample mean. A number of such bounds exist that
do not assume a particular data distribution. Among them are the Hoeffding , Chebyshev
, Chernoff and Bernstein inequalities [10]. The Hoeffding inequality has been widely
used in the context of machine learning but has been found to be too conservative [6],
over estimating the probability of large deviations for distributions of small variance. In
contrast , the Bernstein inequality provides a tighter bound and is thus adopted in our
work.

The Bernstein inequality states the following:

Pr

(∣∣∣ 1
n

n∑
i=1

Xi − E[X]
∣∣∣ > ε

)
≤ 2 exp

(−nε2

2σ̂2 + 2
3ε(c− a)

)

where X1, ..., Xn are independent random variables, E[X] is the expected value or
population mean, Xi ∈ [a, c] and σ̂ is the sample variance.

Memory Management in OnePassSampler As OnePassSampler never re-examines
previous candidate cut points it does not need to maintain a history of such cut-points
and thus does not need to store memory synopses in the form of exponential histograms
as ADWIN2 does. Instead, OnePassSampler only requires the means of its left and
right sub-windows. In order to efficiently support the computation of sample averages
a random sampling strategy is employed.

In addition to improving efficiency, random sampling is also necessary to satisfy
the independence requirement for data used in the computation of the Bernstein bound.
In a data stream environment independence between data instances in the same locality
may not always be true as changes in the underlying data causes instances arriving after
such a change to have very similar data characteristics, thus violating the independence
property. One simple and effective method of addressing this dependence effect is to
perform random sampling.

Our memory management strategy is based on the use of arrays to store blocks of
data. An array enables fast access to specific data blocks that are sampled via the use
of random sampling. The array is used to capture data in OnePassSampler’s memory
buffer. The memory buffer is divided into a left sub-window and a right sub-window,
each of which uses an array for storage. When a new data block arrives, the block is
temporarily inserted into the right sub-window and the sample means from the two
sub-windows are compared to check for statistically significant differences. If no such
difference exists, data in the right sub-window is copied into the left sub-window and
is then removed from the right sub-window. Essentially this means that the left sub-
window consists of a set of largely homogeneous blocks. In this context, it is more
efficient from a memory point of view to slide the oldest wb block from the sub-window,
where w is the width of the window and b is the data block size.

In certain circumstances the right sub-window may hold more than one data block.
This happens when OnePassSampler enters a warning state after which newly arriving
data blocks are added to the right sub-window instead of the left sub-window. A warn-
ing state is triggered when the mean of the data block in the right sub-window is not
significantly different from the mean in the left sub-window on the basis of the drift
confidence value 1− δdrift but is significantly different with respect to a warning con-
fidence value 1 − δwarning. In cases when a warning state is entered a sliding window
scheme is used for the right sub-window as well.

Given the OnePassSampler’s worst case memory requirements are bounded above
by 2w as two memory buffers are allocated of size w for each of the two sub-windows.
We experimented with different values of w and show that the quality of change detec-
tion (false positive rate, false negative rate and detection delay) is largely insensitive to
the size of w, provided that w exceeds the block size b.

3.3 Computation of Cut Point Threshold ε

We now establish the value of the cut threshold against a null hypothesis that the data
in the left and right sub-windows are drawn from the same population. Our null hy-

pothesis is expressed as: H0 is H0 : µl = µr = µ and the alternate hypothesis as
H1 : µl 6= µr. Let Sl = a random sample {z1, z2, . . . , zl}of size l from {x1, x2, ..., xm}
which comprise the m blocks in the left sub-window and let Sr = a random sam-
ple {z1, z2, . . . , zr} of size r from {xm+1, xm+2, . . . , xn} which comprises the (n-m)
blocks in the right sub-window. With the application of the union bound on expression
(1), we derive the following for every real number k ∈ (0, 1):

Pr [|µ̂l − µ̂r| ≥ ε] ≤ Pr [|µ̂l − µ| ≥ kε] + Pr [|µ− µ̂r| ≥ (1− k) ε] (1)

Applying the Bernstein inequality on the R.H.S of Equation 1, we get:

Pr [|µ̂l − µ̂r| ≥ ε] ≤ 2 exp
(

−b(kε)2
2σ2
s

2
3kε(c−a)

)
+2 exp

(
−b((1−k)ε)2

2σ2
s+

2
3 (1−k)ε(c−a)

)
(2)

In the classification context, the bounds a and c for the Bernstein bound take values
a = 0, c = 1. Substituting this in (2) we get:

Pr [|µ̂l − µ̂r| ≥ ε] ≤ 2 exp
(−b(kε)2
2σ2

s +
2
3kε

)
+ 2 exp

(−b((1− k)ε)2
2σ2

s +
2
3 (1− k)ε

)
(3)

The probability Pr [|µ̂l − µ̂r| ≥ ε] represents the false positive rate δ and hence we
have:

δ = Pr [|µ̂l − µ̂r| ≥ ε] ≤ 2 exp
(−b(kε)2
2σ2

s +
2
3kε

)
+ 2 exp

(−b((1− k)ε)2
2σ2

s +
2
3 (1− k)ε

)
(4)

We now need to minimize the RHS of (4) in order to minimize the upper bound δ for the
false positive rate. Given the two exponential terms, the RHS of (4) can be minimized
when:

−b(kε)2

2σ2
s +

2
3kε

=
−b((1− k)ε)2

2σ2
s +

2
3 (1− k)ε

(5)

The variable k above represents the proportion of instances among the left and right
sub-windows. OnePassSampler uses equal sized samples across the sub-windows, giv-
ing k = 1

2 . We note that k = 1
2 satisfies (5) above. Substituting k = 1

2 in (4) gives:

δ ≤ 2 exp
(−b 14ε

2

2σ2
s +

2
3 .

1
2ε

)
+ 2 exp

(−b 14ε
2

2σ2
s +

2
3 .

1
2ε

)
(6)

Solving (6) to find ε gives:

ε =
2

3b

{
p+

√
p2 + 18σ2

sbp
}

(7)

where p = ln
(
4
δ

)
. If |µ̂l − µ̂r| ≥ ε, concept change is declared at instance (m + 1)

and Sl, Sr can be considered to be from different distributions with probability (1− δ),

otherwise, hypothesis H0 is accepted that there is no concept change in the window of
instances Sn.

A change detection algorithm by its very nature needs to test multiple cut points
before an actual change point is detected. Each test involves a hypothesis test applied at
a certain confidence level. The effect of multiple tests is to reduce the confidence from
δ to δ

′
which represents the effective (overall) confidence after n successive hypothesis

tests have been carried. However, we note that the hypothesis tests in the change de-
tection scenario are not independent of each other as the probability of a false positive
(i.e incorrectly accepting hypothesis H1 that the means across the left and and right
sub-windows are different) at a particular test has an influence on whether a false posi-
tive occurs at subsequent tests and hence methods such as Bonferroni do not apply. We
use our own error correction factor, δ

′
= 2 δ

(1− 1
2
n)

. The derivation of δ
′

is omitted due
to space constraints. Thus, in our model the change and warning significance levels,
δChange and δWarning are set to δ

′

Change and δ
′

Warning respectively to control the false
positive probability. We observe that the the correction factor above converges to 2δ for
large values of n.

3.4 OnePassSampler Change Detection Algorithms

This section presents the core algorithms used in our change detector system. Sr and Sl
denote the right and left sub windows. Algorithm (1) decides the change type given the
mean values µ̂r and µ̂l of Sr and Sl respectively, εchange (the threshold mean differ-
ence for δchange) and εwarning (the warning threshold mean difference for δwarning).
εchange and εwarning are calculated using the equation (7). Though OnePassSampler
detects drifts in any variation in the mean, algorithm (1) only reports the change when
mean increases (µ̂r > µ̂l). In the event of a concept change Algorithm (2) transfers
the contents of the right sub-window into the left. When a warning state is triggered it
increases the sample size, in expectation of a subsequent concept change. This increase
has the effect of increasing precision in sampling and the algorithm may become more
sensitive to slow gradual change.

Input: µ̂l,µ̂r,εChange ,εWarning
Output: Change || Warning || Internal
if εWarning ≤ |µ̂l − µ̂r| then

if εChange ≤ |µ̂l − µ̂r| then
if µ̂r > µ̂l then

return Change;
end
return Internal;

end
return Warning;

end
return None;

Algorithm 1: GetDriftType()

Input: An instance(Ins), BlockSize, Sl,
Sr

Output: True/False
Increment the instance counter;
Sl = Sr ∪{Ins};
if At the block boundary then

ChangeType = GetDriftType();
if (DriftType isChange or Internal) then

Remove all elements from Sl;
Copy all elements of Sr to Sl;
Remove all elements from Sr;
Set SampleSize to BlockSize;
if (DriftType isChange) then

return True;
end
return False;

end
else if (DriftType isWarning) then

Double the sample size;
return False;

end
Copy all elements of Sr to Sl;
SampleSize = BlockSize;
return False;

end

Algorithm 2: IsDrift()

4 OnePassSampler versus ADWIN2: Similarities and Differences

Two major design differences exist between the two change detectors. The first lies in
the policy used in determining cuts. When new data arrives, ADWIN2 creates a new
bucket and adds it to its memory buffer. It then searches through all buckets currently
stored in its memory buffer for a possible cut point. A cut point in ADWIN2 lies on
the boundary between buckets. With N buckets currently in storage, ADWIN2 will ex-
amine a total of (N − 1) possible cut points. Furthermore, as each new bucket arrives
previous bucket boundaries that were examined before will be re-examined for possi-
ble cuts. Effectively, ADWIN2 makes multiple passes through its memory buffer. In
contrast, OnePassSampler never re-examines previous block (equivalent of ADWIN2’s
bucket) boundaries for cuts and only examines the boundary between the newly arrived
block and the collection of blocks that arrived previously for a possible cut. In this
sense, OnePassSampler can be said to do a single pass through its memory buffer when
searching for cuts, and hence its name.

The second major difference lies in the estimation strategy for assessing means of
data segments. ADWIN2 relies on exponential histograms for estimating mean values,
whereas OnePassSampler uses random sampling base on an efficient array structure to
estimate means. The problem with exponential histograms is that some of the buckets,
typically the more recent ones may be too small in size to yield accurate estimations
for mean values. This is due to the fact that in ADWIN2 a bucket is created whenever a
1 appears in the stream, and when data has high variation bucket size will vary widely.
For buckets that are too small in size to support accurate estimation, ADWIN2 will end
up overestimating the true mean and false positives may then result.

5 Empirical Study

Our empirical study had two broad objectives. Firstly, we conducted a comparative
study of OnePassSampler with ADWIN2 on key performance criteria such as the true
positive rate, the false positive rate, the time delay in detecting changes and the exe-
cution time overheads involved in change detection. We used Bernoulli distribution in
all experiments to simulate classifier outputs though OnePassSampler is a general drift
detector for any distribution.

In the second part of our experimentation we conducted a sensitivity analysis of the
effects of block size, warning level and sliding window size on the delay detection time
for OnePassSampler.

5.1 Comparative Performance Study

One first experiment was designed to test OnePassSampler’s false positive rate vis-a-vis
ADWIN2. We used a stationary Bernoulli distribution for this and tested the effect of
various combinations of mean values (µ) and confidence values (δ) as shown in Table
1. For this experiment the block size for OnePassSampler was set to its default value of
100 and ADWIN2’s internal parameter M was also set to its default value. We conducted

Table 1. False Positive Rate for stationary Bernoulli distribution

One Pass Sampler ADWIN2
µ δ =0.05 δ =0.1 δ =0.3 δ =0.05 δ =0.1 δ =0.3

0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.0000 0.0000 0.0000 0.0001 0.0002 0.0018
0.3 0.0000 0.0000 0.0001 0.0008 0.0017 0.0100
0.5 0.0000 0.0000 0.0001 0.0012 0.0030 0.0128

a total of 100 trials for each combination of µ and δ and the average false positive rate
for each combination was recorded.

Table 1 shows that both OnePassSampler and ADWIN2 have good false positive
rates that are substantially lower than the confidence level set. However, we observe that
as the variance in the data increases with the increase in the µ value (for a Bernoulli dis-
tribution, the variance is µ×(1−µ)) that ADWIN2 starts to register false positives. The
ADWIN2 false positive rate increases progressively with the increase in the variance as
well as the lowering of confidence (ie higher δ values). On the other hand OnePass-
Sampler retains a virtually zero false positive rate except when the confidence is low
at 0.3 when it registers a rate of 0.01%, compared to the ADWIN2 rate of 1.28% at
µ = 0.5 and δ = 0.3. As the confidence becomes lower the ε value decreases and this
results in an increase in the false positive rate for ADWIN2. However, OnePassSampler
is virtually insensitive to the decrease in ε due to the fact that the mean value can be
estimated more accurately through the combined use of random sampling and the use
of the aggregated running average mechanism.

The second experiment was designed to test the true positive (detection) rates of
OnePassSampler and ADWIN2 over data that was also generated from a Bernoulli dis-
tribution. We generated four different data streams of length L = 10, 000, 50,000,
100,000 and 1,000,000 bits from a Bernoulli distribution. The data generated was sta-
tionary with mean 0.01 in the first L− 2300 time steps and we then varied the distribu-
tion in a linear fashion with different gradients in the last 2300 time steps. A total of 100
trials were conducted for each combination of data length and slope values. We tracked
key performance indicators such as the true detection rate, average execution time and
the detection delay time. Both OnePassSampler and ADWIN2 managed to achieve a
true detection rate of 100% for all combinations of data length and change gradients.

Fig. 1. Comparative Change Detection Performance of OnePassSampler and ADWIN2

Figure 1 also illustrates that ADWIN2 was much slower in stream processing than
OnePassSampler. Furthermore, the gap between the two processing times becomes
wider as the length of the stable segment of the stream becomes longer. This was ex-

pected as ADWIN2 spends much time doing repeated scans through the histogram and
examines every possible combination of cuts defined by the buckets. OnePassSampler,
on the other hand does a single pass through the window segment and at each block
of data it assesses whether the newly arrived block is sufficiently different from the
previous blocks in its memory buffer.

However, it is clear from Figure 1 that ADWIN2 has better mean detection delay
when compared to OnePassSampler. OnePassSampler needs a relatively larger window
segment before it can decide whether a newly arrived block is sufficiently different
due to the sampling strategy that it uses. As expected, the delay times reduced with
increasing gradient of change, although we observe that OnePassSampler reduces at a
faster rate than ADWIN2 with the gap between the two closing for higher gradients of
change. Section 5.2 shows that OnePassSampler’s detection delay can be reduced with
proper use of warning level and particularly block size on which it is most sensitive
with respect to delay.

The final part of our experimentation involved an investigation of the sensitivity of
OnePassSampler’s key parameters on detection delay time. From previous experimen-
tation with Bernoulli data it was observed that OnePassSampler had a higher detection
delay time than ADWIN2 and thus the motivation was to determine parameter settings
that minimize OnePassSampler’s detection delay time.

5.2 Sensitivity Analysis on OnePassSampler

In the first experiment we investigated the effect of block size on Bernoulli data streams
with different gradients. Section 5.1. Figure 2 shows that as block size increases, delay
time initially decreases, reaches a minimum value and then starts to rise once again. In
order to detect changes in data distribution a sample of sufficient size is required, which
in turn is determined by the block size. If the size of the block (sample size) is too low,

Fig. 2. Effects of Block Size and Warning Level on Detection Delay Time for OnePassSampler

then in common with other statistical tests of significance, a statistical difference cannot
be determined until a greater change occurs with time, thus delaying the detection. On
the other hand, if the block size is too large then the probability increases that a change
occurs too late within a given block for the change to be detected and so the change
will go undetected until at least a new block arrives, thus giving rise to an increased
detection delay. A block size of 200 appears to be optimal across a range of different

change gradients, except when the change is very gradual , in which case 500 gives a
slightly lower delay.

We next checked the effect of warning level on delay. Figure 2 shows that warning
level has a much smaller effect on delay than block size. With a slope of 1.00E − 04
the warning level setting has a negligible effect on delay and thus a pragmatic setting
that is twice the significance level should suffice in most cases to reduce the delay.

Next, we assessed the effect of sample size increment. Whenever the warning level
is triggered the sample size is incremented in the hope of trapping an impending change
earlier. We investigated a range of increments and as Figure 3 shows, a doubling of
sample size produces optimal results across the entire spectrum. As with the warning
level, too large an increase results in an increase in the detection delay.

Fig. 3. Effects of Sample Size Increment on Detection Delay Time for OnePassSampler

Overall, it appears that block size is of prime importance in minimizing delay time;
a block size of 200 works well for a range of datasets with different change dynamics.
The other two parameters have a much smaller effect in general but can also contribute
to smaller delay times with settings that we discussed above, especially in the case of
slowly varying data.

Finally, we assessed the effects of the sliding window size on true positive rate,
false positive rate and delay time. We varied the sliding window size in the range 500
to 10,000. For each window size, 30 trials were conducted on data from a Bernoulli
distribution and the average for each of the performance measures were recorded. Due
to space constraints we show the detection delay for the smallest change gradient of
1.00E − 4; the results for the other change gradients followed very similar trends. As
Table 2 shows, the detection delay is largely insensitive to window size. In addition,
all window sizes recorded a true positive rate of 100%. The false positive rate was
in line with the other two measures, virtually no change in rate was observed across
the entire range of window sizes used. Once again space constrains prevent us from
showing the entire set of results; we only show the case with mean value 0.3 and delta
0.3. All other combinations of mean and delta returned virtually identical results. These
results indicate that window size when set at a reasonable multiple of block size has
no significant effect on key factors such as the true positive rate and delay time. These
results are to be expected as data that is slid out of the window consists of a set of
homogeneous instances from OnePassSampler’s left sub-window.

6 Conclusions and Future Work

This research has shown that a concept change detector based on a sequential hypothe-
sis testing strategy based on use of the Bernstein bound as a test statistic yields excellent

Table 2. Detection delay for varying window sizes

Sliding Window Size 500 1000 2000 4000 6000 8000 10000
True Positive Rate 100 100 100 100 100 100 100
Delay Time 1300 1330 1350 1320 1350 1370 1330
False Positive Rate 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000

performance in terms of false positive rate, true positive rate and processing time. Our
comparative study with ADWIN2 clearly shows that a single pass strategy can pro-
duce competitive false positive and true positive rates to ADWIN2, with much lower
computational overheads.

The use of sequential hypothesis testing combined with an efficient incremental
strategy that updates statistics on the memory buffer were the two major factors behind
the greatly reduced computational overheads over ADWIN2. Despite lower computa-
tional overheads, OnePassSampler has a higher detection delay time in certain cases
and our future work will focus on improving this aspect. By means of a mechanism
that monitors change in the running average of data arriving in the window an alternate
candidate cut point can be defined at a point further downstream than the current block
boundary. The system would then check both the current block boundary as well as the
alternate point. This modification would result in trading off computational overhead
with an improvement in detection delay for datasets with small gradients of change.

References

1. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proc of the
2001 ACM SIGKDD. (2001) 97–106

2. Hoeglinger, S., Pears, R., Koh, Y.: Cbdt: A concept based approach to data stream mining.
In: Advances in Knowledge Discovery and Data Mining Lecture Notes in Computer Science
Volume 5476, 2009, pp 1006-1012, Springer (2009) 1006–1012

3. Koh, Y., Pears, R., Yeap, W.: Valency based weighted association rule mining. Advances in
Knowledge Discovery and Data Mining, Springer (2010) 274–285

4. Widiputra, H., Pears, R., Serguieva, A., Kasabov, N.: Dynamic interaction networks in mod-
elling and predicting the behaviour of multiple interactive stock markets. Int. J. Intell. Syst.
Account. Financ. Manage. 16 (2009) 189–205

5. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble
classifiers. In: Proceedings of the 9th ACM SIGKDD. KDD ’03 (2003) 226–235

6. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In:
SDM, SIAM (2007)

7. Sebastiao, R., Gama, J.: A study on change detection methods. 4th Portuguese Conf. on
Artificial Intelligence (2009)

8. Jose, M.B., Campo-Ávila, J.D., Fidalgo, R., Bifet, A., Gavaldà, R., Morales-bueno, R.: Early
Drift Detection Method. In: Proc. of the 4th ECML PKDD Int. Workshop on Knowledge
Discovery from Data Streams. (2006) 77–86

9. Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: Proceedings
of the Thirtieth international conference on VLDB - Volume 30, VLDB Endowment (2004)
180–191

10. Peel, T., Anthoine, S., Ralaivola, L.: Empirical bernstein inequalities for U-statistics. In:
NIPS. (2010) 1903–1911

