A Novel Agent-Based Framework in Bridge-Mode Hypervisors of Cloud Security

M. Janbeglou and W. Yan

AUT University, NZ

Content

- Cloud computing
- Virtualization and its risks
- Proposed Virtual Network Model
- Evaluations
- Conclusion

A Novel Agent-Based Framework in Bridge-Mode Hypervisors of Cloud Security

Cloud Computing

A Novel Agent-Based Framework in Bridge-Mode Hypervisors of Cloud Security

Cloud Computing (NIST, USA)

Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (i.e. networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.

Cloud Advantages

- On-demand
- Self-service
- Location independent
- Elastic
- Accessible

Clouds

- **Private Cloud**: This model is for usage of individual organization and not shared among other organizations.
- Community Cloud: This model is shared with several set of organizations.
- **Public Cloud**: The most common type of cloud infrastructure that is made to be available for public.
- **Hybrid Cloud**: This model is made by combining two or more deployment models (private, community, or public).

Cloud Components

- SaaS: Software as a Service
- PaaS: Platform as a Service
- laaS: Infrastructure as a Service

Virtualization and Its Risks

Virtualization

- Visualization provides the ability of installing multiple OSs on different VMs on a same physical machine and as a result it increases the machine utilization.
- Virtualization is responsible for **splitting resources** on a single physical machine into multiple VMs.
- Virtualization helps Cloud Service Providers (CSP) to solve the complexity issues in delivering services, managing shared resources and utilizations, isolating VMs, and providing security.

Risks Towards Virtualization

- Virtualized systems risks
- Hypervisor risks
- Virtual machine risks
- Virtual network risks

Virtualized System Risks

- Visualization makes the **security management** more **complex**.
- Visualization needs more controlling and monitoring of the shared resources.
- Larger **security threats** arise when many VMs are combined into a physical machine.
- Systems are dynamic and flexible to changes, defining security
 boundaries will be complicated.

Hypervisor Risks

- Hypervisor is a software program, it is inherently vulnerable to the **growth** of **volume** and **complexity** of application codes.
- Hypervisor provides physical server resources sharing and VM/host isolation.
- **Vulnerabilities** in current hypervisors are Rogue Hypervisors, External Modification of the Hypervisor, VM Escape, and Denial-of-Service.

Virtual Machine Risks

- Use the shared resources on a physical server to deliver business needs.
- Working on a same physical machine
- Using the shared resources

Virtual Machine Risks

- Shared clipboard attack
- Keystroke logging attack
- Monitoring VMs from an infected host

Virtual Network Risks

- In physical networks, firewall and encryptions mechanisms are the main tools for applying security.
- In virtual networks, almost all the physical network threats are likely to happen.
- Isolation does a similar function in virtual networks.

Virtual Network Model

Our Contributions

• This paper proposes a model to improve the **laaS** security on the shared network resources by making **VMs** invisible from attackers, and as a result, preventing them from performing the key step of network-related attacks.

Proposed Agent

- The proposed model introduce an agent to provide a centralized virtual network management for all of the VMs residing in a physical server.
- The agent is to help the hypervisor to **provide security** by **confining the visibility and accessibility** of the VMs network resources.

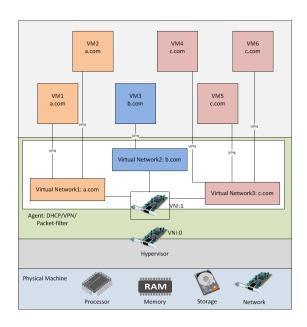
Proposed Model Steps

- Generating network-sub-interfaces
 and Random IP address configurations
- 2) Generating PPTP (Point2Point Tunneling Protocol) configurations
- 3) Customizing the packet-filtering

Network Sub-interfaces

- Network sub-interfaces refers to sub-interfaces that are created from VM Interface.
- Each of the sub-interfaces will be assigned to corresponding VMs.
- Randomly generated IP address configurations are assigned to the VMs by a DHCP (Dynamic Host Configuration Protocol) service running on the agent.

Generating IP addresses in PPTP service


- Counting the number of domains available.
- Counting the maximum number of VMs in each domain.
- Calculating **appropriate subnet** for each domain. The appropriate subnet is the smallest possible subnet to cover a group of VMs working in a domain.
- Generating and assigning IPs to each VM and network-sub-interface.

Customizing the Packet-Filtering

- Packet-filtering improves the security of the whole system by **confining any internal-communications** via dropping packets originating from internal VMs residing in different domains.
- Because the packet-filtering bans any VMs intercommunications within different domains, the VMs'
 IP addresses remain invisible for attackers.

Evaluations

- CIA: Confidentiality, Integrity, and Availability.
- AAA: Authentication, Authorization, and Accountability.

A Novel Agent-Based Framework in Bridge-Mode Hypervisors of Cloud Security

Conclusion

Conclusion

- 1) **Security risks** towards each virtualized system component have been examined.
- 2) A proposed model was introduced.
- 3) The evaluation of proposed model was addressed.

A Novel Agent-Based Framework in Bridge-Mode Hypervisors of Cloud Security

M. Janbeglou and W. Yan

AUT University, NZ