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Abstract 
 
The distribution of the “mixing time” or the “time to stationarity” in a discrete time 
irreducible Markov chain, starting in state i, can be defined as the number of trials to reach a 
state sampled from the stationary distribution of the Markov chain. Expressions for the 
probability generating function, and hence the probability distribution of the mixing time 
starting in state i are derived and special cases explored. This extends the results of the author 
regarding the expected time to mixing [J.J. Hunter, Mixing times with applications to 
perturbed Markov chains, Linear Algebra Appl. 417 (2006) 108–123], and the variance of the 
times to mixing, [J.J. Hunter, Variances of first passage times in a Markov chain with 
applications to mixing times, Linear Algebra Appl. 429 (2008) 1135–1162]. Some new results 
for the distribution of recurrence and first passage times in three-state Markov chain are also 
presented. 
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1. Introduction 
 
Let P = [pij] be the transition matrix of a finite irreducible, discrete time Markov chain {Xn},  
(n ≥ 0), with state space S = {1, 2, … , m}.   
 
Let {πj}, (1 ≤ j ≤  m), be the stationary distribution of the chain and πT = (π1, π2, ... ,πm

 ) its 
stationary probability vector. 
 
For all regular (finite, aperiodic, irreducible) Markov chains, for all j ∈ S, P[Xn = j] = πj.  

 
For all irreducible chains (including periodic chains), if for some k ≥ 0, P[Xk = j] = πj for all j 
∈S, then P[Xn = j] = πj for all n ≥ k and all j ∈ S.  
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Once the Markov chain “achieves stationarity”, at say step n, the distribution of Xn is assumed 
to be the stationary distribution, i.e. P[Xn = j] = πj for each j ∈ S.   If that is the case, then it 
easy to show that, for all k ≥ n, P[Xk = j] = πj for each j ∈ S. 
    
Let Tij be the “first passage time” random variable from state i to state j, i.e. Tij = min{n ≥ 1 
such that Xn = j given that X0 = i}. Let be the “first hitting time” random variable from 

state i to state j, i.e. = min{n ≥ 0 such that Xn = j given that X0 = i}.  
 
This distinction between first passage times and hitting times is only of interest when i = j, in 
which case while . For i ≠ j, . 
 
The “mixing time” or “time to stationarity” in a finite irreducible discrete time Markov chain, 
starting in state i, can be regarded as the number of trials, (the time), for the chain to reach a 
state sampled from the stationary distribution of the Markov chain. To be more specific: 
 
Definition 1: 
Let {Xn, n ≥ 0} be a Markov chain with state space S  = {1, 2, … , m}. The random variable 
M is said to be a “mixing variable” if P[M = j] = πj  for all j ∈ S, where {πj} is the stationary 
distribution of the chain  If, under such a sampling, M = j, state j is said to be “the mixing 
state”. 
 
Thus the mixing state is sampled from the stationary distribution of the Markov chain. 
 
Definition 2: 
We say that the Markov chain {Xi} “achieves mixing at time T = k” when Xk = M, the mixing 
variable, for the smallest such k. 
 
When the concept of “mixing” was introduced in [5] the Markov chain was required to make 
at least a single step so that in Definition 2, k ≥ 1, implying that mixing was achieved 
following a “first passage” from the initial state i to the mixing state j, (or “first return” to 
state i if i = j). However, in [3], it was found useful to permit the mixing process to terminate 
initially (when in Definition 2, k = 0) if the mixing state is the same as the initial state i, so 
that mixing occurs at the “hitting” time of the mixing state. 
 
We distinguish between these two cases.  
 
Definition 3:  
Let {Xn, n ≥ 0} be a Markov chain with stationary distribution {πj} and mixing state M.  
The random variable (≥ 0) is the number of trials n (n ≥ 0), given the starting (or initial) 
state X0 = i, for the Markov chain to make a “first hitting” of the mixing state M.  The random 
variable  (≥ 1) is the number of trials n (n ≥ 1), given X0 = i, for the Markov chain to make 
a “first passage” to the mixing state M.  
 
While both and  are “mixing times” of the Markov chain, starting in state i, we can 
distinguish between the two random variables by calling the “random hitting time” 
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starting in state i and the “random first passage time” starting in state i. 
 
These random variables have also been used in the past as possible “mixing” variables (see 
[1], [9]). 
  
Under finite state space and irreducibility conditions, the first passage times Tij are proper 
variables with finite expectations, (Theorem 7.3.1, [7]).  Let mij be the mean first passage time 
from state i to state j, i.e. mij = E[Tij | X0 = i] for all i, j ∈ S. 
 
Under the same conditions, the mixing times are also finite (a.s) with finite expectations. 
Expressions for the expected time to mixing, starting in state i were derived in [5] where it 
was shown that , while in [3] it was shown that  

. Thus these expectations depends on the stationary distribution of the Markov 

chain and the mean first passage times from state i to the other states in the state space. Of 
considerable significance is that it was shown that these expectations are constant and neither 
depends on the starting state i, so that ηi =η and further that τi = τ = η  – 1. In paper [5] the 
main properties of η were explored, including calculation techniques and uniform lower 
bounds on this expectation for all finite state Markov chains. These were extended in paper 
[3] to the expectation τ.  
 
In [4], expressions for the variance of the mixing times were obtained but these expressions, 
in general, depend on the starting state i. 
 
In presenting the aforementioned results at a recent conference, the question was raised 
regarding the feasibility of deriving the distribution times of the mixing times  and . 
This paper provides techniques for such derivations and, further, re-establishes the 
expectation results above, but with different proofs. The general theory is illustrated through a 
study of the special cases of 2-state and 3-state Markov chains. Subsidiary to the main thrust 
of the paper are some new general expressions for the distributions of the first passage time 
and recurrence time distributions for states in a general three-state Markov chain. 
 
 
2. Distribution Results 
 
Let  and  so that are the 
probability distributions of the mixing time random variables, respectively  and , 
given that the Markov chain starts in state i. 
 
The n-step first passage time probabilities of the Markov chain {Xn} are given as 

,  (i, j) ∈ S = {1, 2 ,… , m}.   
 
Theorem 2.1: (Distribution of the mixing times  and ) 
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  (2.1) 

and                                                                                              (2.2) 

 
Proof: Let us assume that X0 = i, so that it is given that the starting state is i.  
First observe that . 

But,  so that  
. 

In general, for n ≥ 1, , 

since if j = i  mixing has occurred at the initial trial. If the mixing state is j and the starting 
state is i, where j ≠ i, then mixing can only occur for the first-time in n steps if there is a first 
passage from state i to state j in n steps, leading to Eqn. (2.1). 
 
For  the mixing random variable is always ≥ 1 so that gi,0 = 0. As before, assuming that X0 
= i, if the mixing state is j, then mixing can only occur for the first-time in n steps if there is a 
first passage from state i to state j in n steps, (or a first return when i = j). i.e. 

 leading to Eqn. (2.2). 

 
While it is possible to use Eqns. (2.1) and (2.2) to evaluate the distributions of  and , 
these expressions require the determination of the first passage time distribution times, when 
typically we only have the structure of the transition matrix, P, and the transition probabilities, 
pij.  Techniques for finding these first passage time probabilities are given in Section 5.1 of [6] 
and 6.2 of [7]. We do not go into these derivations in this paper, but refer the reader to the 
given references regarding such techniques. 
 
Equations (2.1) and (2.2) are amenable to generating function techniques.  
 
Let us define the probability generating functions . 

Let be the probability generating function of the first passage time random 
variable Tij. 
 
Theorem 2.2:  (Generating functions for mixing time distributions in terms of Fij(s)) 
For i = 1, …, m 
                                     (2.3) 

and                                                                   (2.4)  

 
Proof: Firstly, from Eqn. (2.1),  
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        ,                                  (2.5) 

 leading to Eqn. (2.3). 
Secondly, from Eqn. (2.2), 

 

giving Eqn. (2.4).  
 

Let us define the n × 1 column vectors  

 
Further, define the matrix generating function  
 
Theorem 2.3:  (Vector generating functions for mixing time distributions in terms of F(s)) 
For |s| < 1 

                                                (2.6) 
                                                                     (2.7) 

 
Proof: Expressing Eqn. (2.3) in vector form yields 

, leading to Eqn. (2.6). 
Similarly, Eqn. (2.7) follows directly from Eqn. (2.4). 
 
In order to implement the results of Theorem 2.3 we need to be able to develop expressions 
for F(s) from the properties of the Markov chain. The following results provide a connection, 
utilizing results for the n-step transition probabilities . 
 
Theorem 2.4:  (Matrix generating function of the n-step transition probabilities and the n-step 
first passage time probabilities) 

,  

  ,                                                           (2.8) 

and                                                   ,                                          (2.9) 
 
 where  is the matrix of diagonal elements of . 
 
Proof: Eqn (2.8) is given in Theorem 6.1.9, [7] and Eqn. (2.9) is given in Theorem 6.2.6, [7]. 
 
Theorem 2.5:  (Vector generating functions for mixing time distributions in terms of P(s)) 
For |s| < 1 
       ,                                              (2.10) 

.                                       (2.11) 
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Proof: From Eqn. (2.9), , so that taking diagonal elements yields 

implying .   Eqn.  (2.10) 
follows from Eqn. (2.6), while Eqn. (2.11) follows directly from Eqns. (2.7) and (2.9).  
 
From the above results one notes that elemental expressions for the generating functions fi(s) 
and gi(s) can be given using equations (2.10) and (2.11), respectively. 
 
Theorem 2.6:  (Generating functions for mixing time distributions in terms of Pij(s)) 
For |s| < 1 

,                                            (2.12) 

                                                  (2.13) 

 
Note that the results of Theorems 2.2. and 2.6 are also linked by results connecting the 
generating functions Fij(s) and Pij(s). From Theorem 6.2.5 of [7], for all i, j ∈ {1, 2, …, m},  

                                       (2.14) 

 
Theorem 6.1.10 of [7] describes the expansion of  when the transition matrix 
P has distinct eigenvalues λ1 = 1, λ2, …, λm. Let  and  be the 
corresponding right and left eigenvectors chosen so that  (i = 1, 2, … , m). Then for 

|s| < 1,  where for nonzero . 

Observe that  and that .  

If we define  and  then  so that  

.  

Further,  where λ1 = 1, λ2, …, λm are the eigenvalues 

of P and that Ak  can be found directly as . 

Note that the characteristic polynomial of P is  

Further ,        (2.15) 

where  is the (j,i)-th cofactor of  I – sP.  

Now  . 
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Consequently  and thus when one wishes to evaluate the 

ratio  one does not need to compute the determinant, only the elements of the 
adjoint.   
 
The implementation of these results is best illustrated in some examples. See Sections 3 and 4. 
 
While general expressions for the distributions of the mixing times are difficult to obtain, it is 
relatively easy to extract moments of the mixing times, using results of the moments of the 
first passage times and the relationships given by Eqns. (2.3) and (2.4). 
 
Theorem 2.7: (Expected times to mixing) 
If the mean first passage time from state i to state j is mij then 

                                  (2.16) 

                                   (2.17) 

Proof: Since  and since from Eqn. (2.3), , taking  

the limit as s↑1,  and noting that  yields Eqn. (2.16). Similarly Eqn. (2.17) 

follows from Eqn. (2.4). 
  
The fact that these means are invariant under changing the initial starting state i is a curious 
phenomena. The derivation of the result that  are independent of i is discussed in 

[5], and the result that  is discussed in [3]. The linking of the two 

expectations follows from the observation that We do not repeat the derivation of 
these results but note that various expressions for η and τ can be given, typically involving the 
trace of generalized inverses of I – P. In particular, η  = tr(Z), where Z = [I – P + Π] -1 , (with 
Π  = eπT). Z is Kemeny and Snell’s fundamental matrix, ([8]).  The constant η is also known 
as Kemeny’s constant (see [2, Chapter 11], [8, Corollary 4.3.6]). 
 
In [5] it is shown that for irreducible periodic, period m, Markov chains,  for an 
m-state Markov chain consisting of independent trials, η = m; while for any irreducible m-
state Markov chain,  
 
  
3.  Special case –Two-state Markov chains 
 

Let                                                                                      (3.1) 

 
with 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, be the transition matrix of a two-state Markov chain with state space 
S = {1, 2}. Let  
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If – 1≤ d < 1, the Markov chain is irreducible with a unique stationary distribution given by 

                           .                          (3.2) 

 
If – 1< d < 1, the Markov chain is regular and this stationary distribution is in fact the 
limiting distribution. If d = 1, there is no unique stationary distribution (with both states 
absorbing), while if d = – 1 the Markov chain is irreducible periodic, period 2.  
 

In the case of independent trials, , with identical rows so that      

b = 1 – a and d = 0. 
 
For this two-state Markov chain, from Example 6.1.6 [7], 

         (3.3) 

 
while, from Exercise 6.2.2 [7], 

                                    (3.4) 

 
We first summarise the results for the distribution of the recurrence time r.v. T11 and the first 
passage time r.v. T11. 
 
Theorem 3.1:  (The distributions of T11 and T12 for 2-state Markov chains) 

                                (3.5) 
.                                                      (3.6)  

 
Proof: The proofs are well known (Theorem 5.1.8, [6]) and follow from extracting the 
coefficient of sn from F11(s) and F12(s), as given in Eqn.(3.4). Alternatively Eqns. (3.5) and 
(3.6) follow by using simple sample path arguments. 
 
Now from Eqn. (3.3)  

 

so that                            . 

 
From Eqn. (2.9) and Eqn. (3.4), 
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 .         (3.7) 

From Eqn. (2.4) and Eqn. (3.3), 

.             (3.8) 

 
Note that for all cases where – 1≤ d < 1,  and 

, reconfirming that and  are both proper random variables. 
 
Theorem 3.2:  (The distributions of  and  for 2-state Markov chains) 
For the two-state Markov chain with transition matrix given by Eqn. (3.1), if– 1≤ d < 1,  the 
distribution of the mixing time random variable is given by 

,                                           (3.9)  
where the stationary distribution {πj} is given by Eqn. (3.2). 
If – 1≤ d < 1, the distribution of the mixing time random variable is given by 

.                       (3.10)                  
 
Proof: Expanding the power series for f1(s), given in Eqn. (3.5), we obtain, for starting in state 
1, (with symmetrical results for starting in state 2), 

 leading to expression given by Eqn. (3.9). 

Alternatively, Eqn. (3.9) follows directly from Eqn. (2.1) and Eqns. (3.5) and (3.6). 
Similarly, expanding the power series for g1(s), given in Eqn. (3.8), 

 

leading to  the expressions given in Eqn. (3.10). 
Alternatively, Eqn. (3.10) follows directly from Eqn. (2.2) and Eqns. (3.5) and (3.6). 
 
Theorem 3.2 establishes that  is a modified geometric random variable and that  is the 
mixture of two geometric random variables.   Similar results hold for  and  (by 
interchanging 1 and 2). 
 
 
The expected times to mixing can be obtained from the generating functions f1(s) and g1(s). 
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Theorem 3.3:  (Mean mixing times for 2-state Markov chains) 
For the two-state Markov chain with transition matrix given by Eqn. (3.1), if – 1 ≤ d < 1,                

                                                                (3.11) 

and                                  .                                               (3.12) 

Proof: From Eqn. (3.7), since  ,  

. 

Thus  

                           

By the symmetry of the above result, interchanging the indices 1 and 2, leads to identical 
expressions, as given by Eqn. (3.11). 

Similarly, from Eqn. (3.8), since , 

 

Now  

          

         

 
In the above proof we have established expressions for the expected times to mixing for each 
starting state, without resorting to the complicated arguments that were used to derive these 
results in a general setting in [5] (for the case of η) and in [3] (for the case of τ). 
 
For all two-state irreducible Markov chains, τ  ≥ 0.5, ([3]), and η ≥ 1.5, ([5]), with arbitrarily 
large values of τ and η occurring as d→ 1, (when both a → 0 and b→ 0). This occurs when 
the chain is approaching the situation of being close to reducible, with both states absorbing. 
 
 
Periodic Markov chains 
Note that when d = – 1,  so that the Markov chain is periodic, period 2, with 

 Under these conditions the results of Theorem 3.2 yield  and 
 (n ≥ 2), and  and  
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This is consistent with the following observations. Suppose that the Markov chain starts in 
state 1 with X0 = 1.  If the mixing state M is 1 (with probability 1/2) then the random hitting 
time = 0, so that mixing occurs at that trial while the random first passage time = 2 
since 2 further steps 1 → 2, 2 → 1 are required. If the mixing state M is 2 (with probability 
1/2) then = = 1 since the mixing state occurs after 1 further step as 1 → 2. 
 
The minimum value of the expected mixing times are τ  = 0.5, η = 1.5 which occur when d = 
– 1, i.e. in this periodic, period 2 case.  
 
Independent trials 
In the case of independent trials with two outcomes (states 1 and 2), b = 1 – a, d = 0, and 

. 
From the results of Theorem 3.2, the distribution of the mixing time random variable is 
given by , and the distribution of the mixing time random 
variable is given by .                                     
 
In independent trials, the mixing time  is effectively the time for a nominated state (1 or 2) 
to occur under repeated identical conditions, so that we have the sum of two weighted 
geometric random variables with parameters a and 1 – a with weights (π1 = )1 – a or (π2 = ) a  
depending on whether we are waiting for state 1 or 2 to occur. For , we either have an 
occurrence initially (with probability 1 – a) or we wait (with probability a) for a geometric 
random time for the other state to occur. 
 
In the case of independent trials, since d = 0, the expected times to mixing are τ  = 1 and 
η = 2.  
 
 
4.  Special case –Three-state Markov chains 
 

Let                                                                                          (4.1) 

be the transition matrix of a three-state Markov chain with state space S = {1, 2, 3}. 
 
Let  
and Δ ≡ Δ1 + Δ2 + Δ3.  
 
The Markov chain, with the above transition matrix, is irreducible (and hence a stationary 
distribution exists) if and only if Δ1 > 0, Δ2 > 0, Δ3 > 0.Under these conditions, it is easily 
shown that the stationary probability vector is 

                                                 .                                                (4.2) 
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Special cases of this Markov chain were considered in [7] but in no instance was a general 
form of  or  derived. We explore this now in the context of the results of this paper. 
 
Note from Eqn.(2.8) that  

,                      (4.3) 

where  is the (j,i)-th cofactor of  I – sP.  
 
It is easily verified that 

  

                           (4.4) 
Further 

  

                  ,                                      (4.5) 
so that  and there are two equivalents forms of B, viz. 

             

Note that  and . 
 
For the cofactor terms, 
  where with            (4.6) 
Note  where  are roots of the quadratic, i.e. 

with   

Also  where with                         (4.7) 
 
From Eqn. (2.14),   

  

 

where .                  (4.8) 
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From the expressions above for F11(s) and F12(s), we can derive expressions for the 
distributions of the recurrence time distribution of T11 and the first passage time distribution of 
T12. By symmetry, expressions for the distributions of the other Tij can also be obtained. 
 
 
Theorem 4.1:  (The distribution of T11 for 3-state Markov chains). 
The probability distribution  where is given by  

  
and, in  general, for n ≥ 3,  provided δ1 > 0, 

                                                   (4.9) 

where  , the characteristic polynomial, with 
           (4.10) 

              (4.11) 

and .                (4.12) 

 
Proof: We use Eqn.(4.8) to determine F11(s), with det(I – Ps) as given by Eqns.(4.4) and (4.5). 
Now  
where  and ,                                                   (4.13) 
leading to the terms given by Eqn.(4.12). 

Thus                

where , ,           (4.14) 

Now, from Eqns.(4.8) and (4.5), 
.        (4.15) 

Using the results of Eqns. (4.14), observe that 

 

 

                     
Equating the coefficients of sn for n = 0, 1, 2 and 3, and using the above results we obtain: 
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leading to the special cases when n = 1, 2, and 3. 
 
For the general case of the Theorem, when  

which reduces to expression (4.9), using Eqns. (4.12). Observe further, from Eqn. (4.5),   
 the characteristic polynomial. 

Now  and substitution by , using Eqns. (4.12), 
yields, after simplification, the expressions given by Eqns. (4.10) and (4.11). 
Note also that the expression given for also follows from Eqn. (4.9) when n = 3. 
 
An immediate observation is that the recurrence time distribution for state 1 (and similarly for 
the other states) appears as a mixture of two geometric distributions, although as we see this 
can reduce to a single geometric distribution. In the case where δ1 = 0, the distribution can 
reduce to a negative binomial (see Case 3 to follow.)  An extension to the above result is a 
recurrence relationship that can be used as an alternative computational procedure. 
 
Corollary 4.2:  (The distribution of T11 for 3-state Markov chains). 
The probability distribution  where is given by 

,  
and, in general, for n ≥ 4,  

      (4.16) 
where   

           
                   

                                               (4.17)  
 
Proof: 
From Eqn. (4.15) observe that F11(s) can be expressed as  

, 
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where, from Eqn.(4.14), 

                                (4.18) 

It is easily verified that the expressions and the recurrence relationship between an, an-1 and  
an-2, as given by Eqn.(4.17), follow using Eqns.(4.13). 
To obtain the expressions for  observe that from Eqns. (4.18), (4.11) and (4.13), 

 
 

                                          

 

In general, from Eqn. (4.18), that for  
  
         
           
Further simplification, using Eqn. (4.17), yields the expression given by Eqn. (4.16). 
 
Note that the expressions for  as given in Theorem 4.1 and Corollary 4.2 also 
follow from sample path arguments. We verify that expression (4.16), when n = 4, also leads 
to an expression for the probability that the recurrence time of state 1 occurs at the fourth step. 
This can be derived by sample path arguments. Consider all possible paths between the sets of 
states on successive trials, i.e.  Thus 

 

Needless to say, equivalent expressions for the recurrence time distributions for the other 
states occur with a permutation of the indices. 
 
Theorem 4.3:  (The distribution of T12 for 3-state Markov chains). 
The distribution  where is given by  

  
and, in  general, for n ≥ 3, provided δ2  > 0,  

                                             (4.19) 

where  with , 

and .                                                                                           (4.20) 

Proof: From Eqn.(4.8),  implying, from Eqns.(4.6) and (4.7), 
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where          (4.21) 

leading to (4.22)  

These results imply that  
F + G  = 1, 

 

Equating the coefficients of sn for n = 0, 1, 2 and 3, and using the above results we obtain 
 

 
 

 
leading to the special cases when n = 1, 2, and 3. 
For the general case of the Theorem when,  

 

where a(λ) is given by Eqn.(4.20). Further, 

 and .  

 
A recurrence relationship for  can also be obtained, similar to that derived for  
  
Corollary 4.4:  (The distribution of T12 for 3-state Markov chains). 
The probability distribution  where is given by 

 and, for n ≥ 2  

                                        (4.23) 
where  and,  for  n ≥ 2, 

                                                                          (4.24) 
 
Proof: 
From Eqn. (4.21) observe that F12(s) can be expressed as  
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where,  

It is easily verified that the expressions and the recurrence relationship between bn, bn-1 and  
bn-2, as given by Eqn.(4.23). 
 
To obtain the expressions for  observe that from Eqns. (4.21), (4.11) and (4.13), 

 and  
 

implying in general, for the result given by Eqn.(4.23). 
 
Interchanging states 2 and 3, from Theorem 4.3 we have an analogous expression for the 
distribution of T13 We state this without a proof. 
 
Theorem 4.5:  (The distribution of T13 for 3-state Markov chains). 
The distribution , where , is given by  

  
and, in  general, for n ≥ 3, provided δ3  > 0,  

                                             (4.25) 

where  with , 

and .                                                                                           (4.26) 
 
We are now ready to obtain a general form of the distribution of the mixing time random 
variable . The distributions of  and  will follow by similar arguments.   
 
Theorem 4.6:  (The distribution of  for 3-state Markov chains) 
The probability distribution of ,  is given by 

 

 

and, for n ≥ 3,  provided δ2  >  0, δ3  >  0, 

             (4.27) 

where  with , 

            with , 
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and  .                                                                                            
 
Proof: While we can use Eqn. (2.12) for i = 1 and the expressions from Eqn. (4.7) 

 

since we have effectively extracted the coefficients of sn for each of these separate 
components, we can simply use the basic result for the distribution of the mixing times from 
Theorem 2.1:  and for n ≥1, and the results of Theorems 4.3 and 
4.5. The results of the theorem follow, with no simplification. 
 
The derivation of the distribution of  requires the knowledge the distribution of T11, the 
first return to state 1, or the recurrence time of state 1. The efforts that we have gone to in 
deriving the results of Theorem 4.1 can now be made use of in determining the distribution of 

. 
 
Theorem 4.7:  (The distribution of  for 3-state Markov chains) 

The probability distribution of ,  is given by 
 

 

and, for n ≥ 3,  provided δ1  >  0, δ2  >  0 and δ3  > 0, 

 

                                                                              (4.28) 

where 

, 

 with , 

 with , 

,  
 

 
Proof: From Eqn.(2.2), for n ≥ 1,  with  
Using the results of Theorems 4.1, 4.3 and 4.5 the results of the theorem follow directly. 
 
 
Before we examine some special cases, we have the following results that we state without 
proof, The results are given in [3] and [5], although alternative proofs can be given using the 
results of this paper (analogous to the proof of Theorem 3.3 above). 
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Theorem 4.8:  (Mean mixing times for 3-state Markov chains) 
If the three-state Markov chain with transition matrix given by Eqn. (4.1) is irreducible, (if 
and only if Δ1 > 0, Δ2 > 0, and Δ3 > 0), then 

                                                                                                (4.28) 

                                                                                            (4.29) 

where                                                                          (4.30) 
and         (4.31) 
 
To illustrate the general results of Theorems 4.6 and 4.7 we consider some special cases of 
three state Markov chains. These cases were considered in [5] to illustrate some general 
results for the expected values of the mixing time random variable  and in [3] when the 
expected value of the alternative mixing random variable  was considered. 
 
 
Case 1: “Minimal period 3”  

Let  P = , implying that the Markov chain is periodic, period 3, with transitions 

occurring 1 → 2 → 3 → 1 ... . Then Δ1 = Δ2 = Δ3 = 1, Δ = 3, and π1 = π2 = π3 = . 
It is easily seen that  leading to  

                                             

and                                        

This is consistent with the following observations. Suppose that the Markov chain starts in 
state 1, with X0 = 1.  If the mixing state M is 1 (with probability 1/3) then = 0, so that 
mixing occurs at that trial while = 3 since 3 further steps 1 → 2, 2 → 3, 3 → 1. If the 
mixing state M is 2 (with probability 1/3) then = =1 since the mixing state occurs 
after 1 further step as 1 → 2. If the mixing state M is 3 (with probability 1/3) then = 

=2 since the mixing state occurs after 2 further steps as 1 → 2, 2 → 3. 
 
A simple deduction is that  and , consistent with the observations of 
Theorem 2.7 and the earlier result, reported in [4,] that for irreducible periodic, period 3, 
Markov chains, being the minimal value of the expected time to mixing in a three state 
Markov chain. 
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Case 2: “Period 2” 

Let  P = , (p + q = 1), the transition matrix of a periodic period 2 three-state 

Markov chain (with transitions alternating between the states {1, 3} and {2}). 
Then Δ1 = q, Δ2 = 1, Δ3 = p, Δ = 2 implying .  
In Example 6.1.7 of [7] (whilst obtaining explicit expressions for the n-step transition 
probabilities) an expressions for was shown to be 

. 

This leads immediately to the results (using Eqn. (4.8)) that 

. 

Extraction of the coefficients of sn (via power series expansions for F11(s) and F13(s)), lead to 
 (consistent with the observation that a path from 1 always leads in one step to 2), and 

. This implies that the mixing time distributions are given 
as 

                                     , 

 and                               . 

 
 
Case 3: “Constant movement” 

Let   In this case p11 = p22 = p33 = 0, so that 

at each step the chain does not remain at the state but moves to one of the other states.  The 
Markov chain is irreducible, and regular if 0 < b < 1, 0 < f < 1, 0 < g < 1. 
 
Now Δ1 = 1 – fh, Δ2 = 1 – cg, Δ3 = 1 – bd, Δ = 3 – fg – gc – bd, 

implying  . 

In [5] it was shown that 1 ≤ ≤ 1.5.   The minimal value of η = 1 occurs when 
either b = f = g = 1 (and this case reduces to the “period 3” Case 1 above), or when b = f = g 
= 0 (when this case again reduces to a periodic, “period 3” chain but with transitions 1 → 3 → 
2 → 1 ....).  
The maximal value of η = 1.5 occurs when any pair of (b, f, g) take the values 0 and 1, say b = 
1, g = 0, when this case reduces to the “period 2” Case 2 above.  
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For the regular case 1 <  < 1.5, which we now explore.  
After simplification of the algebra, from Theorem 4.1, the distribution  is given by  

  
From Theorem 4.3, the distribution  is given by 

 
From Theorem 4.5, the distribution  is given by 

 
 
From Theorem 2.1, the distribution of the mixing time random variable  is given 
by  

 

 

 
The distribution of the mixing time random variable  is given by  

 

 

 
Thus the mixing time distributions are basically mixtures of modified geometric distributions. 
 
We consider the special case of b = f = g = ε, c = d = h = 1 – ε. 

  

  

and 
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It is interesting to observe, in comparing the two mixing time distributions  and , 

that, for n = 0, 1, 2, … so that for all n ≥ 0, 

 Thus  has the same 

distribution as , or equivalently that  is distributed as . While we have 

earlier shown that in every mixing situation, , this does not necessarily 
imply, in general, that  and  have the same distribution, as observed for the above 
situation. 
 
 
Case 4: “Independent”  

Let P = , implying that the Markov chain is equivalent to 

independent trials on the state space S = {1, 2, 3}. 
 
Observe that Δ1 = a1, Δ2 = a2, Δ3 = a3, Δ = 1 implying . 
It is easily seen that for j = 1, 2, 3,  (i.e. geometric (aj) 
distributions) implying that the two mixing time distributions are given by 

, 
and , 
i.e. a mixture of three distributions – a constant and two geometric distributions for , 
and three geometric distributions for  
 
 
In Case 3 the mixing random variables have relatively tight distributions since the mean times 
to mixing are constrained within tight bounds. We finish with a case where the mixing time 
random variables can take relatively large values, by constraining the movement within the 
states to ensure that the Markov chains can reside in individual states for possibly long 
periods of time before moving.  
 
 
Case 5: “Cyclic drift” 

Let  

implying that the Markov chain is regular. Observe that at each transition the chain either 
remains in the same state i or moves to state i + 1 (or 1 if i = 3).  
Now Δ1 = df, Δ2 =  fb, Δ3 =  bd  so that  

. 
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From [3] and [5],  

Note that 0 < b + d + f < 3 and 0 < df  + bf + bd  < 3.  
When b + d + f → 3 then df  + bf + bd → 3 and η → 2 (as in Case 1). 
When b + d + f → 0 then df  + bf + bd → 0 but the behaviour of η and τ depends upon the 
rates of convergence.  

Let b = d  = f  = ε, then  where the lower bound is achieved in the periodic, 

non-regular case (ε = 1), as in Case 1. Arbitrary large values of η occur as ε → 0 when the 
Markov chain is approaching the reducible situation with all states absorbing. 
 
What is emerging is that if the Markov chain has states where it resides for a large number of 
transitions, i.e. if there is little movement the mixing time can become excessively large. We 
explore this in more detail. 
 
Firstly, we evaluate the recurrence time and first passage time distributions from state 1, using 
Theorems 4.1, 4.3 and 4.5.  
 
Provided c ≠ g, the distribution of  is given by  

  

When c = g (and thus d = 1 – c = 1 – g =  f) 
 

From Theorem 4.3, or sample path arguments, the distribution of  is given by 

 

From Theorem 4.5, provided a  ≠  c the distribution of  is given by  

 

When a = c (and thus b = 1 – a = 1 – c = d ) 
 

 
Let us assume that a ≠ c ≠ g. Then the two mixing time distributions are 

, 

 

and 
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Of interest is the special case when b = d = f = ε, a = c = g = 1 –  ε,  implying that 

 

In this case  
 

 

 

The mixing time distributions are given by 

 

. 

The expected mixing times are  

Graph 1 gives a plot of nine different variants of  f1,n for n = 0(1)20 and  as ε  takes the nine 
values  0.1(0.1)0.9. We see that probability distribution places increasing weight on the “tail 
probabilities” as ε decreases. This is a reflection of the increasing mean of the distribution as 

ε  decreases, since  

 
Graph 1: Plot of the mixing time distribution {f1,n} 

The observation that we made in comparing the two mixing time distributions   and 

 in the special case of Case 3 also holds here since for n = 0, 1, 2, … 

 implying that  is distributed as .  
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