
Full citation: MacDonell, S.G. (1993) Deriving relevant functional measures for automated
development projects, Information and Software Technology 35(9), pp.499-512.
doi: 10.1016/0950-5849(93)90017-W

Deriving relevant functional measures for automated development projects

Stephen G. MacDonell
Computer and Information Science

University of Otago, Dunedin, New Zealand
stevemac@commerce.otago.ac.nz

Abstract

The increasing use of computer aided software
engineering (CASE) tools, fourth-generation languages
(4GLs) and other similar development automation
techniques, has reduced the impact of implementation
methods and individual ability on development task
difficulty. It has therefore been suggested that measures
derived from software specification representations may
provide a consistent basis for relatively accurate
estimation of subsequent development attributes. To this
end, this paper describes the development of a functional
complexity analysis scheme that is applicable to system
specification products, rather than to the traditional
products of the lower-level design and construction
phases.

1. INTRODUCTION

Tate and Verner [1] recently suggested that measures
extracted from software specifications may be useful in
estimating subsequent development attributes, particularly
in an automated development environment. They were
able to suggest a number of candidate measures, including
the number of data model entities and the number of data
flow diagram (DFD) processes. Although certainly useful
as a first step, these measures were based only on intuitive
expectations. This paper represents a progression from
the work of Tate and Verner [1] in that a comprehensive
set of operational measures covering several specification
dimensions and notations is described. Furthermore,
selection of the measures was undertaken with the
assistance of structured paradigms as a safeguard to
ensure that the chosen measures were relevant to the
overall goals of a recent empirical study.

The next section of this paper therefore briefly considers
the impact that an automated environment has on software
assessment, followed by a discussion on the basis of
assessment in software specifications. The third section
then provides detailed descriptions of the measures
chosen for complexity assessment and effort estimation,
and of the reasons and assumptions upon which the
selection of measures was based. The paper is then
concluded with a short summary of the assessment
approach and with comments concerning validation.

2. SOFTWARE ASSESSMENT IN AN
AUTOMATED ENVIRONMENT

DeMarco [2,3] has suggested that the attributes of an
implemented system are directly related to the
characteristics of that system’s specification. Given the
structured and semi-formal nature of several widely used
specification models, it has been further suggested that
useful and consistent quantitative information relating to
system functionality may be derived from these early-
phase representations. The utilisation of graphic system
models, such as those used in many specification
techniques, provides concise yet comprehensive
representations of reality; this enables inexpensive
analysis of essential system aspects to be performed,
without the need to consider excessive low-level details.
Graphic functional models can therefore form a useful
basis for the extraction of quantitative indications of the
scope and complexity of a project. [2,4] With the
widespread incorporation of specification modelling
techniques within integrated computer aided software
engineering (CASE) environments, the automatic
extraction and analysis of measures derived from these
specification representations is becoming an increasingly
likely prospect.

The increasing use of CASE environments and fourth
generation languages (4GLs) in the development of
commercial software has also helped to make the
transformation from requirements representations to
constructed systems much less dependent on
implementation methods or on the ability of individual
developers. [5,6,7] Relative levels of implementation
complexity are therefore of less importance when it
comes to assessing the ease with which software
developed under an automated environment can be
constructed and maintained. [8] It is suggested here that
specification-based functional complexity, that is, the
complexity associated only with the required functionality
of a system, will instead be the main determinant of these
factors.

Commercial software requirements are often specified
using entity relationship diagrams (ERDs) and data flow
diagrams. [9,10] These representation methods are semi-
formal and have been incorporated into a large number of
CASE tools. Tate and Verner [1] therefore suggest that
they are appropriate representations for early-phase scope

http://dx.doi.org/10.1016/0950-5849(93)90017-W�

analysis. The procedure of detailed requirements analysis,
in the commercial domain at least, frequently consists of
two areas - data analysis and processing analysis. [11]
This approach is illustrated by Benwell et al. [12] in
Figure 1, with the implication that both data flow and data
structure models be used during the analysis activity.
Both perspectives should therefore be considered in an
assessment of complexity if this assessment is to be
comprehensive.

Figure 1. Process and data analysis in software development

Extensive use of the entity relationship (ER) model in
determining data requirements is likely to continue in the
foreseeable future, especially when it is considered that a
large number of automated development environments
have adopted the ER modelling convention as the basis
for their data repositories. For example, ERMA,
Teamwork, IEW/ADW, ProKit Workbench, Data
Modeller, Software through Pictures, Excelerator,
Blue/60, ER-Designer and IRMA all use the ER model in
the derivation of data specifications for software systems.
Thus the suggestion that the ER model could be an
appropriate early system representation for complexity
analysis seems justified.

Given the increasing use of automated assistance in
software development, facilities for direct system
generation from abstractions such as DFDs should also
become more widespread. There are already a large
number of commercially available tools that employ data
flow modelling techniques (for example, Aut2, Prosa,
Teamwork, Excelerator, ProKit Workbench, IEW/ADW).
Most include features that assist in the development of
robust specifications, for example, the enforcement of
consistent element definitions, the detection of duplicate
names, process balancing, and co-ordination with the data
repository. Processing requirements, as depicted in DFDs,
will contribute to the overall functional complexity of a
complete specification - any assessment of complexity
should therefore consider quantitative aspects of this
model.

Three other specification representations are also used
extensively in the expression of commercial system
requirements. The first is the transaction representation,
widely employed in the development of commercial
database systems. These systems comprise a number of
low-level functions which may be described in terms of
the operations that they perform on individual data
entities. For example, a process to record a customer
payment may read the customer and account entities, then
update the account entity. Elementary functions specified
using this method can generally be more easily translated
into lower-level processing logic than can purely narrative
specifications. As this representation combines both data
and process requirements it is likely that transaction
specifications will provide a sound basis for
comprehensive complexity assessment.

Analysing the representation of a system’s proposed user
interface, the second of the three perspectives considered
here, is particularly appropriate for development projects
that utilise 4GLs and prototyping methods, as the iterative
development of an applicable interface often requires a
significant amount of effort in this type of environment.
Generally a user interface representation includes
examples of the screen and report formats that are
required during system operation. As interactive systems,
by their very nature, use screen displays, and many
transaction processing systems produce reports, a
consideration of the complexity of this representation is
essential if an overall assessment of complexity is to be
obtained.

Another representation perspective commonly employed
in commercial system specifications is the functional
decomposition hierarchy (FDH). [13] This is a levelled
description of the functions that are to be provided by a
system, normally incorporating the module calling
structure that will subsequently be implemented. Module
interaction, at the code level at least, has been the focus of
several previous assessment studies (see, for example,
Henry and Kafura [14] or Chapin [15]). It is therefore
suggested that this representation should also be
considered in any comprehensive assessment scheme.

Figure 2 therefore depicts five specification perspectives
commonly utilised in commercial systems development.
As all five are quantifiable in terms of the contribution
that each may make to overall system complexity, each
has therefore been considered in the assessment scheme,
as described in the next section.

3. ASSESSMENT SCHEME

DEVELOPMENT

The Goal/Question/Metric (GQM) paradigm, as
developed by Basili and others [16,17] and enhanced by
Shepperd, [18] and Bush and Fenton’s Classification
Scheme [19] were adapted and used to determine the
relevant measures for a recent empirical study. [20] The
two approaches are similar in that they both employ a
decomposition process from overall study goals until
elementary data classes or measures essential to achieving

the study’s objectives have been determined. Figures 3
and 4 depict the use of the two paradigms in the recent
study. (More detailed discussion of the use of the GQM
and Classification Scheme paradigms in this study can be
found in MacDonell. [21])

Figure 2. Five perspectives of a system specification

When examined in combination it can be seen that the
two figures, 3 and 4, depict all of the data elements
needed in the study. The lowest level of Figure 3 shows
all of the product measures required to achieve the aims
of the project. The necessary project management data
elements, however, are not shown on this figure for
reasons of clarity. The classification figure, Figure 4,
illustrates a similar decomposition of data classes until
exhaustive and exclusive project management data
elements are specified. Again for reasons of clarity only
the characteristic product measures are defined on Figure
4. Thus both figures provide a consistent and
comprehensive foundation for the subsequent data
collection procedures.

In some cases one of the two process-oriented
specification methods considered in the scheme, that is,
data flow diagrams and functional decomposition
hierarchies, may not be used in a given development
project. One of three different data collection strategies
would therefore be applicable:

• if both DFDs and FDHs are used then each
elementary DFD process should map to a
corresponding low-level FDH module - in this
case, all five sets of measures should be taken; that
is, process model and functional model measures,
in association with the transaction, user interface
and data model measures;

• if only the DFD is broken down to an elementary
level then process model measures only should be

recorded, in association with the transaction, user
interface and data model measures;

• if only the FDH is broken down to an elementary
level then functional model measures only should
be recorded, in association with the transaction,
user interface and data model measures.

Thus for the purposes of the study a primitive function
consists of:

1. a single function at the lowest level of a
hierarchically decomposed functional model
(referred to from now on as a functional model
primitive) and/or

2. a single process and all connected elements at the
lowest level of a hierarchically decomposed
process model (referred to from now on as a
process model primitive) and

3. the section of the data model upon which the
function and/or process acts (referred to from now
on as a data model primitive).

This approach may be illustrated by a small example
taken from the specification of a university department’s
administration system. In this case, only DFDs have been
used to depict the process requirements of the system. At
the elementary level there is a process that specifies the
production of a class list. Given that Figure 5 depicts the
underlying data model for the whole system, Figures 6
and 7 show the relevant process and data model
primitives that comprise the single primitive function.
The following five sub-sections fill out the details of the
assessment scheme adopted in the study. A number of
commercial software specification techniques were briefly
described in the previous section - methods for the
assessment of functional representations developed using
those techniques are therefore now provided. Each of the
sections describes the basis for assessment and the actual
measures chosen in the scheme. Measures preceded by
an asterisk (*) in Tables 1 to 7 are composite measures;
that is, they are merely calculated from the values of other
measures. The use of composite measures as overall
indicators of specification perspective size is supported
by Tate and Verner. [1] This approach was therefore
extended in the study to consider aspects other than size,
for example, interconnection.

In cases where a non-composite system level
(macroanalysis) measure is simply the sum of the values
obtained for the same primitive function level
(microanalysis) measure over all primitive functions in a
system it is denoted by placing a ‘T’ in front of the
primitive function measure. Thus the ‘TCR’ measure in
Table 1 is the sum of the values of the ‘CR’ measure that
are obtained for all primitive functions in the system. For
example, if a system was made up of four primitive
functions and the values of the CR measure for those
primitive functions were two, one, three and zero
respectively, then the value of the TCR measure for that
system would be the sum of these four figures, that is, six.

Figure 3. Goal/Question/Measure paradigm

Figure 4. Classification Scheme paradigm

Figure 5. University department system data model example

Figure 6. Process model primitive example

Figure 7. Data model primitive example

3.1. Transaction measures

Elementary transactions of database-oriented systems in
the commercial domain always perform one or more of
the following operations: create a record (C), read a

record or part of a record (R), update a record or part of a
record (U) or delete a record (D) (CRUD). Although
generally recognised as a data structure-based
specification method, due to its basis in entity models,
Kerr [7] in fact describes process modelling solely in
these terms, in that for each entity in a data model at least
three functional modules will be developed, with each
module containing the create, update or delete rules for
controlling the manipulation of the data. Gray et al. [11]
remark that single create, update and delete operations
work on only one entity each, but that a read may access
several entities in one operation. They therefore suggest
that the read operation may be different from the others in
terms of complexity. Worsley [22] also found that in a
study of enhancement effort for a medium-sized 4GL
system, estimates for tasks that required new create
transactions were poor, and that the actual re-testing
effort required for these enhancements was also generally
greater than predicted. Furthermore, the four operations
are also weighted differently under a project sizing
methodology developed by British Gas. [23]

Four size measures relating to the transaction
representation of a specification are therefore included in
the analysis scheme, at each of the primitive function and
system levels. These are the (T)CR, (T)RE, (T)UP and
(T)DE measures, as defined in Table 1. Note that it is the
number of operations, not the number of entities operated
upon, that is counted in the scheme; the number of entities
referenced is assessed in the data model measures. Thus if
a single primitive function reads and updates a single
entity, both the RE and UP measures for that primitive
function should be incremented.

Table 1. Transaction measures

Microanalysis and macroanalysis transaction measures
(T)CR (Total) Number of create transactions performed by

the primitive function/system
(T)RE (Total) Number of read transactions performed by the

primitive function/system
(T)UP (Total) Number of update transactions performed by

the primitive function/system
(T)DE (Total) Number of delete transactions performed by

the primitive function/system

The transaction measures may be illustrated by the
following example. A system comprises three primitive
functions, F1, F2 and F3. Function F1 reads data from
two entities for subsequent processing by another
primitive function; F2 reads data from one entity, displays
it on the screen and then updates that entity after input
from the user; F3 deletes records from two entities. The
transaction measures for these primitive functions
therefore take the values shown in Table 2. The system
level transaction measures are then easily determined
from the primitive function values, using the method
described at the end of the previous section. Thus for this
same example TCR equals zero, TRE equals three, TUP
equals one and TDE equals two.

Table 2. Example primitive function level transaction measures

Measure F1 F2 F3
CR 0 0 0
RE 2 1 0
UP 0 1 0
DE 0 0 2

3.2. Functional model measures

In cases where the functional hierarchy model is broken
down to an elementary level the FDH can form the basis
for quantitative analysis of several aspects of a system.
Primarily, system size, in terms of the number and
distribution of modules, is shown. However the calling
structure is also portrayed, through the use of linkages
between levels of the hierarchy. Measures of both system
size and system depth are therefore available from this
representation. These measures are defined in Table 3.

Table 3. Functional model measures

Microanalysis function model measures
MDL Maximum decomposition level of the function
NP Number of parent functions

Macroanalysis function model measures
DEFUNC Number of distinct elementary functions in the

decomposition
FLEV Maximum number of function decomposition

levels
L1 Number of functions at level 1
L2 Number of functions at level 2
… …
Ln Number of functions at level n
*TFUNC Total functions (L1 + L2 + … + Ln)
*TD Total decomposition ((L1 x 1) + (L2 x 2) + … +

(Ln x n))

Only two functional model measures are included in the
analysis scheme at the primitive function level. The first
measure, MDL, is an indication of the level of system
depth at which the function is to be implemented.
Modules in a hierarchy, and the data elements that they
manipulate, are likely to be affected by the processing
performed above and below them. Those at higher levels,
for example, may be more vulnerable to functional errors,
due to the fact that they must control and co-ordinate the
processing of often large numbers of modules at lower
levels of the hierarchy. Greater caution in development
and more extensive testing may therefore be necessary for
higher level modules - it is suggested here that the MDL
measure may to some degree reflect these requirements.
The second measure, NP, quantifies the number of
parents that call a single function. By examining the use
of common function calls it may be found, for example,
that a function that is called or controlled by more than
one parent is more difficult to develop than a module with
only one parent, given that the plural-parent module may
need to cope with different data under different calling
conditions.

A completely different set of measures than that used for
primitive function level assessment are included in the
analysis scheme at the system level. They are mainly
indicators of system size, but there is also some
consideration of the impact of the decomposition
structure on overall complexity. DEFUNC is the count of
all the distinct elementary system functions, that is, those
functions in the hierarchy that call no other functions.
Note that each distinct function is only counted once,
even though it may be called in several instances. This is
to reflect the fact that the function will only be developed
once, even if it may be used more than once. The FLEV
measure is similar in principle to the primitive function
level MDL measure. If a particular system hierarchy is
decomposed down to a maximum of six levels, that is,
one or more elementary functions must be traced back
through at most six calling modules to reach the highest-
level system description, then FLEV will equal six for
that system. Comparative indications of system depth
may contribute in a relative manner to overall system
complexity. The L1 to Ln measures are derived only for
the determination of the TFUNC and TD measures of
decomposition. Note that level 1 is one below that at
which the highest-level system description is depicted.
The TD measure uses relative weightings to provide an
overall assessment of the complete decomposition
structure. This is in an attempt to assess the relative
contributions of both hierarchy depth and breadth to total
system complexity.

The hierarchy depicted in Figure 8 provides a basis for
illustrating the derivation of the measures just described.
If we choose function ‘Store Item’ for microanalysis
assessment the MDL measure would take a value of two;
this is because function ‘Store Item’ occurs at level 2 in
the hierarchy. The NP measure for this same function
would equal one as it has just the one parent function, that
is, function ‘Receive and Store Item’. If, on the other
hand, we were to choose function ‘Read Item and
Required’ for assessment, MDL would be assigned the
value of five, as this is the highest value level at which it
appears. Furthermore NP would equal two for this
function, as it is called by both function ‘Read Updated
Items’ and function ‘Calculate Deficit’. Any repeat of a
function such as in this case is denoted on the diagram by
an asterisk (*) after the function name.

Concentration on the complete hierarchy also enables the
derivation of the macroanalysis functional model
measures. The DEFUNC measure is defined as the
number of distinct elementary functions in the
decomposition. For this example the distinct elementary
functions, that is, those that do not call any other
functions, are functions ‘Receive Item’, ‘Store Item’,
‘Read Item and Required’, ‘Request Missing Items’ and
‘Report Requirements’. Hence DEFUNC for this
example equals five. The L1 to Ln measures are as
follows: L1 equals two (functions ‘Receive and Store
Item’ and ‘Determine Requirements’), L2 equals four
(functions ‘Receive Item’, ‘Store Item’, ‘Identify Missing
Items’ and ‘Request Missing Items’), L3 equals three
(functions ‘Read Updated Items’, ‘Request Missing

Items’ and ‘Report Requirements’), L4 equals two
(functions ‘Read Item and Required’ and ‘Calculate
Deficit’) and L5 equals one (function ‘Read Item and
Required’). The FLEV measure is equal to n in the Ln
measure, that is, FLEV equals five for this example. The

TFUNC and TD measures are then directly computable
from the previously derived measurement values.

Figure 8. Functional decomposition hierarchy example

3.3. User interface measures

Boehm et al. [24] and Lin [6] suggest that the number of
user-required screens and reports in a 4GL-developed
system will have a direct effect on development effort, as
the construction of approved report and screen layouts
can form a significant part of 4GL system development.
Worsley, [22] for example, found that the time taken for
report development with a 4GL was longer for reports
that included complex layouts and that accessed large
numbers of tables.

The primitive function level user interface measures are
therefore included to reflect findings such as this - the
layout of both reports and screens is considered here to be
related to the number of data elements that are produced
on each. It is also assumed that a primitive function that

uses more screens and produces more reports will be
more complex than one that uses fewer of these
representations. The REP and SCR measures, as defined
in Table 4, therefore consider the number of complete
reports and screens that are referred to by a primitive
function, and the DER and DED measures consider the
number of distinct elements used on those reports and
screens. A distinct element is an actual data element, not
a label, header or footer, that should be counted only once
for each report or screen on which it appears, no matter
how many times that element may be used on a single
report or screen. The system level measures for this
representation, which also appear in Table 4, are similar
to but not the same as the primitive level measures just
described. The TDREP and TDSCR measures are simply
the total number of distinct, that is, different, reports and
screens that are employed by a system. TDER and TDED

are directly comparable to the DER and DED measures
discussed above; thus they are simply the sums of the
DER and DED values for all primitive functions. The two
other indicators, TREPC and TSCRC, equate to the total
number of times that reports and screens are used in the
system.

Table 4. User interface measures

Microanalysis user interface measures
REP Number of reports produced by the primitive

function
SCR Number of screens displayed by the primitive

function

Microanalysis and macroanalysis user interface measures
(T)DER (Total) Number of distinct elements reported by the

primitive function/system
(T)DED (Total) Number of distinct elements displayed by the

primitive function/system

Macroanalysis user interface measures
TDREP Total number of distinct reports produced by the

system
TREPC Total number of report calls performed by the

system
TDSCR Total number of distinct screens displayed by the

system
TSCRC Total number of screen calls performed by the

system

The sample screen shown in Figure 9 may be associated
with a given primitive function. If this is the only screen
used by the primitive function, and no reports are
produced by the function, then the microanalysis
measures would take the following values: REP and DER
would both equal zero, SCR would equal one and DED
would equal thirteen. The thirteen elements displayed are
Order No., Date, Date Filled, Cust. Ref., Back-O?,
Component, Required, Available, Back-O, Comp. Cost,
Line Cost, Sub-Total and Total.

Figure 9. Screen example

3.4. Process model measures

One of the main benefits of utilising data flow diagrams
in commercial software development is the reduction in
system complexity that the partitioning process provides.
[25] A consideration of the functional complexity
associated with this representation should therefore be
applicable here. Generally the measures of this model
from both analysis levels reflect the assumption that a
large process model, in terms of decomposition levels,
processes, related data stores and individual data element
usage, will result in a proportionally large coded function.
Thus the measures from Table 5 that relate to the numbers
of levels, processes, stores and elements, that is, TPP, PD,
TSPD, DSP, DSC, TDSSP, TDSSC, (T)DEP and
(T)DEC, are all indications of process model size. The
TPP measure is clearly only applicable to the system-
level analysis procedure, given that the microanalysis
technique considers only one primitive process at a time.
Therefore TPP is simply the total number of primitive
(lowest-level) processes in the system. In this respect it is
very similar to the DEFUNC functional model measure.
In the same way, the process model PD and TSPD
measures are similar to the functional model MDL and
FLEV measures. They are included to assess the depth of
processing that is to be implemented in the final system.

It is acknowledged that the data store measures DSP,
DSC, TDSSP and TDSSC may not be of significance, as
the number of stores may be determined by an arbitrary
decision of the analyst. One analyst may prefer to have a
distinct data store for each entity, whereas another may
group entity-views into data stores simply for
representational convenience. For purposes of
completeness, however, these measures will still be taken
for each system. The use of the words ‘non-file’ in the
(T)DEP and (T)DEC definitions reflects the fact that all
file-related elements are assessed in the evaluation of the
data model with the (T)AU and (T)AC measures. There
could be considerable overlap in these two pairs of
measures; the ‘non-file’ condition, however, enables the
sole consideration of data elements other than those
stored by the system that are (i) input by the user or by
other external systems/processes and (ii) produced on the
screen and in report formats.

Process model interconnection should reflect the degree
of coupling that will be implemented in the final system.
[26] Interconnection at this level may be related to Henry
and Kafura’s design phase Information Flow measure,
[14] in that the fan-in and fan-out measures may be
approximated by the flows-in and flows-out measures of
this proposal. Since it is generally accepted that DFD
process interconnection should be minimised to lessen
complexity, [1,27] lower values of interconnection
measures such as (T)FI and (T)FO should have a positive
impact on the ease of development.

Table 5. Process model measures

Microanalysis process model measures
DSP Number of distinct data stores providing data
DSC Number of distinct data stores consuming data
PD Process depth (Number of parent processes up to

level 1)
EEP Number of distinct external entities providing data
EEC Number of distinct external entities consuming

data
*SPM Size (Process model) (PMA + DSP + DSC + EEP

+ EEC)

Microanalysis and macroanalysis process model measures
(T)FI (Total) Number of flows into the process/system

processes
(T)FO (Total) Number of flows out of the process/system

processes
(T)PDS (Total) Number of provisions from data stores
(T)CDS (Total) Number of consumptions by data stores
(T)DEP (Total) Number of non-file elements produced by

the process/system processes
(T)DEC (Total) Number of non-file elements consumed by

the process/system processes
(T)PPI (Total) Number of process-to-process flows into

the process/system processes
(T)PEE (Total) Number of provisions from external entities
(T)CEE (Total) Number of consumptions by external

entities
*(T)PMA (Total) Process model access ((T)FI + (T)FO)
*(T)IPM (Total) Interconnection (Process model) ((T)FI x

(T)FO)2
*(T)DSA (Total) Data store access ((T)PDS + (T)CDS)
*(T)EM (Total) Element manipulation ((T)DEP + (T)DEC))
*(T)C (Total) Containment ((T)PEE + (T)CEE)

Macroanalysis process model measures
TPP Total number of primitive processes
TDSSP Total number of distinct system data stores

providing data
TDSSC Total number of distinct system data stores

consuming data
TSPD Total system process depth (Number of process

levels)
TSEEP Total number of distinct system external entities

providing data
TSEEC Total number of distinct system external entities

consuming data
*TSPM Total size (Process model) (TPMA + TDSSP +

TDSSC + TSEEP + TSEEC)

The level of system containment is also considered to be
important. Dependence on data supplied from outside the
system boundaries may have an effect on the ease of
system implementation and maintenance, especially
where control over the form and validity of the data is out
of the developer’s hands. External entities that receive
data, on the other hand, often require this information in
some form of report. For example, a packing slip may be
sent to a warehouse, or an invoice to a customer.
Therefore development and maintenance of the relevant
process would also involve the creation or consideration
of a report form and the incorporation of extra processing
to produce that report. The EEP, EEC, TSEEP, TSEEC,
(T)PEE and (T)CEE measures are therefore included to

reflect the impact of process model containment. The
measures differ in the fact that the first four simply
consider the number of external entities that are involved
in the operation of a primitive function or a system,
whereas the final four assess the actual number of
interactions between system processes and external
entities. This follows the same approach as that used in
the collection of the DSP, DSC, TDSSP, TDSSC, (T)PDS
and (T)CDS measures.

The process model primitive example shown earlier in the
section (Figure 6) may be useful in illustrating the
derivation of microanalysis process model measures. If
we know from the user interface assessment that the Class
List report contains fourteen data elements then all of the
non-composite process model measures can be
determined immediately, as shown in Table 6.

Table 6. Example process model primitive measures

Measure Value
FI 4
FO 1
DSP 4
PDS 4
DSC 0
CDS 0
DEP 14
DEC 0
PPI 0
PD 3
EEP 0
PEE 0
EEC 1
CEE 1

3.5. Data model measures

The final set of specification product measures considers
aspects of size and interconnection associated with the
data model representation. The size of a data model will
provide a first-cut, basic indication of the amount of
processing that is to be performed on it; that is, a larger
data model implies a greater degree of processing to
reference, manipulate and/or write to the entities and
individual attributes involved. Data model size may also
be influential in the estimation of maintenance tasks,
particularly for data retrieval systems, where the structure
of the existing data will have an impact on how new data
should be incorporated into the system. [11,28] Measures
from this class in the current analysis scheme, as defined
in Table 7, include EDM, TESDM, EPD, TDEPD, ECD,
TDECD, (T)EP, (T)EC, (T)AU, (T)AC and (T)EL.

The number of entities involved in system operations are
considered by the EDM, TESDM, EPD, TDEPD, ECD,
TDECD, (T)EP and (T)EC measures. The first two
measures are quite straightforward - they are simply
counts of the number of entities that are referenced or
traversed by a primitive function or by a system. The
other measures then consider the types of references that
the entities undergo, whether providing data, consuming
data or both, as a result of system operations. Use of the
measures is based on the same approach as that used for

the process model assessment. That is, EPD through to
TDECD consider the number of distinct entities
referenced, whereas (T)EP and (T)EC consider the actual
number of references.

Table 7. Data model measures

Microanalysis data model measures
EDM Number of entities in the data model primitive
EPD Number of distinct entities providing primitive

function data
ECD Number of distinct entities consuming primitive

function data
OOL Number of 1:1 links between entities in the data

model primitive
OML Number of 1:n links between entities in the data

model primitive
MML Number of n:m links between entities in the data

model primitive
OL Number of optional links in the data model

primitive
ML Number of mandatory links in the data model

primitive
MEL Number of exclusive links between entities in the

data model primitive
*IDM Interconnection (Data model) (OOL + OML +

MML)
*SDM Size (Data model) (EDM + IDM)

Microanalysis and macroanalysis data model measures
(T)EP (Total) Number of entity provisions
(T)EC (Total) Number of entity consumptions
(T)AU (Total) Number of attributes updated by the

primitive function/system
(T)AC (Total) Number of attributes consumed by the

primitive function/system
(T)EL (Total) Number of entity look-ups performed by

the primitive function/system
*(T)EA (Total) Entity access ((T)EP + (T)EC)
*(T)AM (Total) Attribute manipulation ((T)AU + (T)AC)
*(T)DMA (Total) Data model access ((T)EA + (T)EL)

Macroanalysis data model measures
TESDM Total number of entities in the system data model
TDEPD Total number of distinct entities providing data
TDECD Total number of distinct entities consuming data
TOOLS Total number of 1:1 links between entities in the

system data model
TOMLS Total number of 1:n links between entities in the

system data model
TMMLS Total number of n:m links between entities in the

system data model
TOLS Total number of optional links between entities in

the system data model
TMLS Total number of mandatory links between entities

in the system data model
TMELS Total number of exclusive links between entities in

the system data model
*TIDM Total interconnection (Data model) (TOOLS +

TOMLS + TMMLS)
*TSDM Total size (Data model) (TESDM + TIDM)

Gray et al. [11] suggest that data model measures should
also include some consideration of the amount of data
actually passed to and from the database. They therefore

propose that this could be derived from the number of
attributes flowing in the system - for create and delete
operations this would be the number of attributes in the
entity referenced; for the update and read operations it
would be the number of actual attributes referenced.
Although this suggestion was developed independently of
the current study, these measures equate precisely to the
attributes-updated and attributes-consumed measures
((T)AU and (T)AC) of the current proposal. The entity
look-up count, (T)EL, should be incremented only when
an entity is referenced purely for validation purposes, that
is, when an entity is read only to ensure that a particular
field value is allowed - the entity’s data is not actually
used in the process. An entity may, however, be counted
more than once for a given system/primitive function if it
is accessed both to supply data for processing and for
look-up validation.

The interconnection among entities using various
relationship types also gives an indication of processing
requirements. For example, a one-to-many relationship
suggests a hierarchical link, such as that for orders and
order lines, providing an insight as to how the relevant
data will be entered and processed. Eglington [29]
suggests, in fact, that the complexity of many data
processing systems is mainly contained in the
relationships between records. It would therefore seem
worthwhile to consider entity relationship link types at the
logical level in an assessment of complexity.
Participation requirements may also be important. A
mandatory connection, for example, may indicate a need
for validation during processing to ensure that no null
entries are supplied. Bushell [30] and Keuffel [31] both
state that many-to-many (n:m) relationships are difficult
to implement. Bushell [30] also suggests that connections
between entities should be minimised because, if there are
several ways of traversing system data for essentially the
same purpose, different paths will be used in different
cases. Moreover, subsequent changes will be made more
difficult. The existence of only one path therefore
ensures a standard approach. To this end, the
interconnection measures OOL through to TMELS are
also included in the analysis scheme.

Derivation of the OOL, OML, MML, TOOLS, TOMLS
and TMMLS counts may not be obvious when it comes to
the assessment of certain relationship types.
Recommendations are therefore made for the following
situations:

• a. recursive relationships - as these have no direct
impact on the difficulty of development, they
should be assessed in the same way as any other
relationship

• b. multiple relationships -

1. where more than one distinct relationship
exists between two entities on a given system
or primitive data model, and where the
system/primitive function being assessed may
traverse any of these relationships at one
time, each relationship should be counted
separately as part of the assessment;

2. where more than one distinct relationship
exists between two entities on a given system
or primitive data model, and where the
system/primitive function being assessed may
traverse only a subset of those relationships
at one time, each relationship in the subset
should be counted as part of the assessment.

Returning to the primitive function depicted in Figures 6
and 7, the microanalysis data model measures can now
also be determined. For simplicity’s sake let us state that
each of the entities in the data model primitive contains
five attributes and that none of the entities are referenced
for look-up purposes. The non-composite data model
primitive measures are therefore assigned the values
shown in Table 8.

Table 8. Example data model primitive measures

Measure Value
EDM 4
EPD 4
EP 0
ECD 0
EC 0
AU 0
AC 20
EL 0
OOL 0
OML 3
MML 0
OL 2
ML 4
MEL 0

3.6. Rationale

DeMarco [2] suggests that the effort required to
implement a system increases monotonically with
increasing specification size, assuming that there is no
redundancy in the specification. As CASE helps to
ensure that redundancy is kept to a minimum, size
measures derived from specification models should prove
to be useful in effort determination. DeMarco [2] also
claims that the size of a specification model approaches
invariance with respect to the decisions of the individual
modeller. This would suggest that, for a given system
requirement, roughly the same functional measurement
values will be obtained irrespective of the modeller,
particularly when CASE technology is employed. [5,32]
This does not imply that the same specification will be
produced, but only that the scope and size of the
specifications will be similar. However this in itself is an
aid to achieving more consistent assessment and analysis.
Thus the basis of the complexity analysis scheme in
specification representations would still appear to be
sound.

A similar comment to that of DeMarco’s above is made
by Rudolph [33] in a discussion on functional size
assessment - the remark is equally applicable to any type
of functional analysis, however. Rudolph suggests that by
its very nature functional assessment should not in the
first instance reflect ‘external’ factors such as

programmer and organisational experience or the effects
of various implementation approaches. Rather, the
absolute value of the measured attribute should be
established first, and then adjusted if required. Moreover,
Chen and Norman [34] suggest that the use of a graphic
interface in many of the tools enables easier learning and
use, lessening the impact of tool experience on effort
requirements. All of these factors lend support to the
approach adopted in this study, that is, the assessment of
functional complexity with no initial adjustment for other
factors.

Further support for the purely functional approach is
indirectly provided by the advantage of application
portability that many CASE tools now provide. [35] Tate
and Verner [1] suggest that as projects move through the
phases of development more specific methods and
techniques are employed. They go on to suggest that this
leads to increasing dependence of software products on
the target technology, even in a CASE environment. The
implication is that the development and implementation
methods chosen have an increasing impact on a system’s
size and that this will have a corresponding impact on
development effort. However several CASE tools enable
development to be performed irrespective of the eventual
implementation platform, as the tools include facilities for
implementation on a number of different platforms.
[35,36] Thus functional measures should provide a sound
basis for the determination and classification of effort
requirements in an automated environment up until the
implementation phase of development.

In the past, adjustment of functional measures has
generally been performed to enable the consideration of
special system requirements. It has recently been
suggested, however, that systems developed with 4GLs
and CASE tools will not require adjustment as the
‘special’ requirements will be developed as standard:
[5,28,34]

In the longer term, the ultimate computer-aided
systems engineering (CASE) tool will provide all
these technical features automatically; we shall
only have to think about the information-
processing requirements of the problem. In this
ultimate situation, the coefficient [of the
adjustment factor] will fall to zero, and there will
be no further need for a Technical Complexity
Adjustment. [28 p. 29]

Although it is questionable as to whether we have reached
the age of the ‘ultimate’ CASE tool, this assumption is the
basis for the current proposal, that is, that useful
assessment can be performed based solely on systems’
functional requirements. As 4GLs and CASE tools tend
to specify functional transactions rather than procedural
components, Verner et al. [37] suggest that a specification
produced with these tools will be a closer representation
of the pure inherent function required. Moreover, since
development using these tools is often based around a
central repository, the likelihood of duplicated and
inconsistent work among development teams should be
reduced, providing a basis for more consistent and

accurate assessment of functional characteristics. It is
certainly possible that measures from a specification will
be related to the functional value of the system, based on
the assertion that transactions comprised of larger and
more complex specifications provide more function to the
user. [37] Appropriate measures of functional size and
complexity are therefore required. Those proposed here
are a first response to this need.

A major criticism of many existing assessment methods is
their consideration of only one aspect of complexity, for
example, control-flow, size or data flow. [38,39] The
proposed analysis scheme should at least partially
overcome this problem, in that size, interconnection, data
flow, data structure, process coupling and overall function
are all assessed in some way. The comprehensive
approach that has been adopted in this proposal is
supported by Tate and Verner [5] and Wrigley and
Dexter; [40] they suggest that appropriate specification
measures should come from data structure and data flow
models and from aspects of the proposed user interface.
Each of these representations has been considered in the
overall analysis scheme. The general expectation
underlying this approach is that systems or primitive
functions that return high values for the transaction,
functional model, user interface, process model and/or
data model measures will be more time-consuming and
error-prone to develop than systems/primitive functions
that result in low measures. Due to its more
comprehensive approach, the scheme also includes
measures that are applicable to software specification
products not normally considered. Grady’s examination
of software development work-product analysis states that
the design stage ‘‘...work products for prototypes and data
dictionaries because they are widely used today, although
they represent two cases where metrics research has been
very limited (and so no metrics are shown)’’. [41 p. 30]
In the proposed scheme the data dictionary may be
partially assessed by the data model and process model
measures, and the prototype by the user interface and
functional model measures. [42]

The two-level approach to assessment is another
important aspect of the overall analysis scheme.
Although system-wide measures and indicators are useful,
it has been acknowledged that lower-level analysis is
necessary for effective project management. Verner et al.
[37] and Stevens [43] remark that elementary function-
based assessment is required so that resource allocation in
subsequent development phases can be carried out more
effectively. Moreover, in terms of accuracy, lower-level
assessment receives further support - Stevens [43] and IE
[44] suggest that a more detailed functional breakdown
will provide more accurate measures, due to the reduced
variance achieved.

Furthermore, the measures in the scheme are
automatically derivable at a very early stage in the
development process, increasing the scope for objective
and effective estimation and discrimination. According to
Grady [41] and Gray et al., [11] one of the most
promising aspects of CASE is the facility for automatic,
‘on-line’ delivery of measures and estimates to the project

manager. The notion of automatic data collection and
analysis has widespread support and would appear to be
essential in an unobtrusive form if assessment data
analysis is to become a useful, integral part of the
development process. [45,46] Automatic collection would
also enable more effective progress reports to be
produced - as long as subsequent functional changes to a
system were incorporated into the current specification
models, revised measures and/or estimates could be
automatically generated for the project manager during all
subsequent stages of development.

4. SUMMARY

This paper has described the structured development of a
comprehensive functional complexity assessment scheme
that is based on the specifications of commercial software
systems. The impact of development automation was
examined, resulting in the suggestion that software
specification notations would prove to be useful as
models for analysis. Various specification representations
were therefore considered, and measures appropriate to
the complexity assessment task were determined for each
perspective using the GQM and Classification Scheme
paradigms. Small examples were also provided to
illustrate the derivation of the various measurement
values. This was followed by a discussion of the rationale
upon which the measurement selection had been based.

Small-scale validation of the scheme in the estimation of
development effort has already been undertaken, with
considerable success. [20] It is envisaged that continued
use of the assessment scheme in other automated projects
will produce significantly larger data sets, which in turn
should lead to greater accuracy in the classification and
estimation tasks. This does, however, depend on the
willingness of CASE product users to participate in
studies of this type. Presuming that this will be
forthcoming, it is likely that the scheme will be iteratively
refined until only the most influential measures are
collected. It is hoped that this will then lead to the
incorporation of assessment facilities in actual
development tools. This will enable more objective, non-
intrusive, less error-prone collection of the data to be
carried out without the need for time-consuming manual
collection. It will also mean that analysis and prediction
may be performed in the background of development as
an integral part of a project. Tate [47] and Tate and
Verner [1] also suggest that on-workbench data, relating
to development effort, will soon be collected
automatically within CASE environments. Collection of
project management data will therefore also be more
precise and cost-effective. All of these factors will
encourage continuing refinement of any equations
developed, providing relevant feedback to managers
whenever required. Only under these circumstances is it
likely that functional assessment will become more
readily perceived as a necessary and worthwhile task
within software development.

ACKNOWLEDGEMENTS

The author would like to thank the referees for their
constructive comments. He is also grateful for the
financial support provided for this study by the
Cambridge Commonwealth Trust, the New Zealand Vice-
Chancellors Committee, British Telecom plc, Clare
College, Cambridge, the Cambridge University
Engineering Department and the University of Otago. The
work described in this paper was carried out while the
author was a graduate student at Cambridge University.

REFERENCES

1 Tate, G and Verner, J ‘Approaches to Measuring Size
of Application Products with CASE Tools’ Information
and Software Technology Vol 33 No 9 (November 1991)
pp 622-628.

2 DeMarco, T Controlling Software Projects Yourdon
New York (1982).

3 DeMarco, T ‘An Algorithm For Sizing Software
Products’ ACM SIGMetrics Performance Evaluation
Review Vol 12 No 2 (1984) pp 13-22.

4 Ramamoorthy, C V, Prakash, A, Tsai, W -T and Usuda,
Y ‘Software Engineering: Problems and Perspectives’
Computer (October 1984) pp 191-209.

5 Tate, G and Verner, J ‘Software Metrics for CASE
Development’ in Proceedings COMPSAC ‘91 Tokyo
(1991) pp 565-570.

6 Lin, C -Y ‘Systems Development With Application
Generators: An End User Perspective’ Journal of Systems
Management (April 1990) pp 32-36.

7 Kerr, J M ‘The Information Engineering Paradigm’
Journal of Systems Management (April 1991) pp 28-35.

8 Nelson, M S ‘Computer Aided Software Engineering
(CASE)’ Paper 645 Master of Business Administration
University of Otago, Dunedin (February 1990).

9 Kilov, H ‘Conventional and Convenient in Entity-
Relationship Modeling’ ACM SIGSoft Software
Engineering Notes Vol 16 No 2 (April 1991) pp 31-32.

10 Karimi, J and Konsynski, B R ‘An Automated
Software Design Assistant’ IEEE Transactions on
Software Engineering Vol 14 No 2 (February 1988) pp
194-210.

11 Gray, R H M, Carey, B N, McGlynn, N A and
Pengelly, A D ‘Design Metrics for Database Systems’ BT
Technology Journal Vol 9 No 4 (October 1991) pp 69-79.

12 Benwell, G L, Firns, P G and Sallis, P J ‘Deriving
Semantic Data Models from Structured Process
Descriptions of Reality’ Journal of Information
Technology Vol 6 No 1 (March 1991) pp 15-25.

13 Paulson, D and Wand, Y ‘An Automated Approach to
Information Systems Decomposition’ IEEE Transactions
on Software Engineering Vol 18 No 3 (March 1992) pp
174-189.

14 Henry, S and Kafura, D ‘Software Structure Metrics
Based on Information Flow’ IEEE Transactions on
Software Engineering Vol 7 No 5 (September 1981) pp
510-518.

15 Chapin, N ‘A Measure of Software Complexity’ in
Proceedings 1979 National Computer Conference New
York (1979) pp 995-1002.

16 Basili, V R and Rombach, H D ‘The TAME Project:
Towards Improvement-Oriented Software Environments’
IEEE Transactions on Software Engineering Vol 14 No 6
(June 1988) pp 758-773.

17 Basili, V R and Weiss, D M ‘A Methodology for
Collecting Valid Software Engineering Data’ IEEE
Transactions on Software Engineering Vol 10 No 6
(November 1984) pp 728-738.

18 Shepperd, M ‘Design Metrics: An Empirical Analysis’
Software Engineering Journal (January 1990) pp 3-10.

19 Bush, M E and Fenton, N E ‘Software Measurement:
A Conceptual Framework’ Journal of Systems and
Software Vol 12 (1990) pp 223-231.

20 MacDonell, S G ‘Quantitative Functional Complexity
Analysis of Commercial Software Systems’ PhD
Dissertation, University of Cambridge, Cambridge
(1992).

21 MacDonell, S G ‘Overcoming Theoretical Objections
to Software Complexity Measurement’ Forthcoming.

22 Worsley, L M ‘Project Management and the Use of
Metrics in a Fourth Generation Environment’ in
Proceedings 8th European Oracle Users Group
Conference Madrid (April 1990).

23 British Gas Bang Metric Analysis Document Num.
000763 Process Support British Gas plc, Dorking (June
1991).

24 Boehm, B W, Gray, T E and Seewaldt, T ‘Prototyping
Versus Specifying: A Multiproject Experiment’ IEEE
Transactions on Software Engineering Vol 10 No 3 (May
1984) pp 290-302.

25 Keuffel, W ‘The Structured Specification Data
Dictionary’ Computer Language (USA) (July 1991) pp
29-34.

26 Tsai, J J -P and Ridge, J C ‘Intelligent Support for
Specifications Transformation’ IEEE Software
(November 1988) pp 28-35.

27 Tan, K P, Chua, T S and Lee, P -T ‘AUTO-DFD: An
Intelligent Data Flow Processor’ The Computer Journal
Vol 32 No 3 (1989) pp 194-201.

28 Symons, C R Software Sizing and Estimating: Mk II
FPA (Function Point Analysis) John Wiley & Sons
Chichester (1991).

29 Eglington, D ‘Cost-Effective Computer System
Implementation in Medium Sized Companies’ in Gillies,
A (ed) Case Studies in Software Engineering Salford
University Business Services Salford (March 1991) pp
56-59.

30 Bushell, C J ‘The Strengths Of Data Modelling’ in
Proceedings 18th CAE Computer Conference Australia
(1987) pp 105-117.

31 Keuffel, W ‘Exploring ERD Tools’ Computer
Language (USA) (April 1991) pp 27-35.

32 Robinson, K ‘Putting the SE into CASE’ in Spurr, K
and Layzell, P (eds) CASE: Current Practice, Future
Prospects John Wiley & Sons Chichester (1992) pp 1-20.

33 Rudolph, E E Measuring Information Systems Seminar
Guide and Additional Notes Auckland (1987).

34 Chen, M and Norman, R J ‘A Framework for
Integrated CASE’ IEEE Software (March 1992) pp 18-
22.

35 Banker, R D and Kauffman, R J ‘Reuse and
Productivity in Integrated Computer-Aided Software
Engineering: An Empirical Study’ MIS Quarterly
(September 1991) pp 375-401.

36 Brown, D W, Carson, C D, Montgomery, W A and
Zislis, P M ‘Software Specification and Prototyping
Technologies’ AT\&T Technical Journal (July/August
1988) pp 33-45.

37 Verner, J, Tate, G, Jackson, B and Hayward, R G
‘Technology Dependence in Function Point Analysis: A
Case Study and Critical Review’ in Proceedings 11th
International Conference on Software Engineering
Pittsburgh PA (1989) pp 375-382.

38 Weyuker, E J ‘Evaluating Software Complexity
Measures’ IEEE Transactions on Software Engineering
Vol 14 No 9 (September 1988) pp 1357-1365.

39 Longworth, H D, Ottenstein, L M and Smith, M R
‘The Relationship Between Program Complexity And
Slice Complexity During Debugging Tasks’ in
Proceedings COMPSAC ‘86 Chicago IL (1986) pp 383-
389.

40 Wrigley, C D and Dexter, A S ‘A Model for
Measuring Information System Size’ MIS Quarterly (June
1991) pp 245-257.

41 Grady, R B ‘Work-Product Analysis: The
Philosopher’s Stone of Software?’ IEEE Software (March
1990) pp 26-34.

42 Clarke, R ‘A Contingency Approach to the
Application Software Generations’ ACM SIGBIT Data
Base (Summer 1991) pp 23-34.

43 Stevens, O B Project Sizing Methodology
Development Assurance Services Report - Lloyd’s Bank
London (August 1990).

44 IE IE-Metrics Knowledge Base James Martin &
Company Reston VA (November 1989).

45 Henry, S and Lewis, J ‘Integrating Metrics into a
Large-Scale Software Development Environment’ Journal
of Systems and Software Vol 13 (1990) pp 89-95.

46 Norman, R J and Chen, M ‘Working Together to
Integrate CASE (Guest Editors’ Introduction)’ IEEE
Software (March 1992) pp 13-16.

47 Tate, G ‘Management, CASE and the Software
Process’ in Proceedings 12th New Zealand Computer
Conference Dunedin (1991) pp 247-256.

