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Abstract 

The increasing use of computer aided software 
engineering (CASE) tools, fourth-generation languages 
(4GLs) and other similar development automation 
techniques, has reduced the impact of implementation 
methods and individual ability on development task 
difficulty.  It has therefore been suggested that measures 
derived from software specification representations may 
provide a consistent basis for relatively accurate 
estimation of subsequent development attributes.  To this 
end, this paper describes the development of a functional 
complexity analysis scheme that is applicable to system 
specification products, rather than to the traditional 
products of the lower-level design and construction 
phases. 

 
1. INTRODUCTION 

Tate and Verner [1] recently suggested that measures 
extracted from software specifications may be useful in 
estimating subsequent development attributes, particularly 
in an automated development environment. They were 
able to suggest a number of candidate measures, including 
the number of data model entities and the number of data 
flow diagram (DFD) processes. Although certainly useful 
as a first step, these measures were based only on intuitive 
expectations. This paper represents a progression from 
the work of Tate and Verner [1] in that a comprehensive 
set of operational measures covering several specification 
dimensions and notations is described. Furthermore, 
selection of the measures was undertaken with the 
assistance of structured paradigms as a safeguard to 
ensure that the chosen measures were relevant to the 
overall goals of a recent empirical study. 

The next section of this paper therefore briefly considers 
the impact that an automated environment has on software 
assessment, followed by a discussion on the basis of 
assessment in software specifications. The third section 
then provides detailed descriptions of the measures 
chosen for complexity assessment and effort estimation, 
and of the reasons and assumptions upon which the 
selection of measures was based. The paper is then 
concluded with a short summary of the assessment 
approach and with comments concerning validation. 
 

2. SOFTWARE ASSESSMENT IN AN 
AUTOMATED ENVIRONMENT 

DeMarco [2,3] has suggested that the attributes of an 
implemented system are directly related to the 
characteristics of that system’s specification.  Given the 
structured and semi-formal nature of several widely used 
specification models, it has been further suggested that 
useful and consistent quantitative information relating to 
system functionality may be derived from these early-
phase representations. The utilisation of graphic system 
models, such as those used in many specification 
techniques, provides concise yet comprehensive 
representations of reality; this enables inexpensive 
analysis of essential system aspects to be performed, 
without the need to consider excessive low-level details.  
Graphic functional models can therefore form a useful 
basis for the extraction of quantitative indications of the 
scope and complexity of a project. [2,4] With the 
widespread incorporation of specification modelling 
techniques within integrated computer aided software 
engineering (CASE) environments, the automatic 
extraction and analysis of measures derived from these 
specification representations is becoming an increasingly 
likely prospect. 

The increasing use of CASE environments and fourth 
generation languages (4GLs) in the development of 
commercial software has also helped to make the 
transformation from requirements representations to 
constructed systems much less dependent on 
implementation methods or on the ability of individual 
developers. [5,6,7] Relative levels of implementation 
complexity are therefore of less importance when it 
comes to assessing the ease with which software 
developed under an automated environment can be 
constructed and maintained. [8] It is suggested here that 
specification-based functional complexity, that is, the 
complexity associated only with the required functionality 
of a system, will instead be the main determinant of these 
factors. 

Commercial software requirements are often specified 
using entity relationship diagrams (ERDs) and data flow 
diagrams. [9,10]  These representation methods are semi-
formal and have been incorporated into a large number of 
CASE tools.  Tate and Verner [1] therefore suggest that 
they are appropriate representations for early-phase scope 
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analysis. The procedure of detailed requirements analysis, 
in the commercial domain at least, frequently consists of 
two areas - data analysis and processing analysis. [11]  
This approach is illustrated by Benwell et al. [12] in 
Figure 1, with the implication that both data flow and data 
structure models be used during the analysis activity. 
Both perspectives should therefore be considered in an 
assessment of complexity if this assessment is to be 
comprehensive. 

 
Figure 1.  Process and data analysis in software development 

Extensive use of the entity relationship (ER) model in 
determining data requirements is likely to continue in the 
foreseeable future, especially when it is considered that a 
large number of automated development environments 
have adopted the ER modelling convention as the basis 
for their data repositories.  For example, ERMA, 
Teamwork, IEW/ADW, ProKit Workbench, Data 
Modeller, Software through Pictures, Excelerator, 
Blue/60, ER-Designer and IRMA all use the ER model in 
the derivation of data specifications for software systems. 
Thus the suggestion that the ER model could be an 
appropriate early system representation for complexity 
analysis seems justified. 

Given the increasing use of automated assistance in 
software development, facilities for direct system 
generation from abstractions such as DFDs should also 
become more widespread.  There are already a large 
number of commercially available tools that employ data 
flow modelling techniques (for example, Aut2, Prosa, 
Teamwork, Excelerator, ProKit Workbench, IEW/ADW).  
Most include features that assist in the development of 
robust specifications, for example, the enforcement of 
consistent element definitions, the detection of duplicate 
names, process balancing, and co-ordination with the data 
repository. Processing requirements, as depicted in DFDs, 
will contribute to the overall functional complexity of a 
complete specification - any assessment of complexity 
should therefore consider quantitative aspects of this 
model. 

Three other specification representations are also used 
extensively in the expression of commercial system 
requirements. The first is the transaction representation, 
widely employed in the development of commercial 
database systems. These systems comprise a number of 
low-level functions which may be described in terms of 
the operations that they perform on individual data 
entities.  For example, a process to record a customer 
payment may read the customer and account entities, then 
update the account entity.  Elementary functions specified 
using this method can generally be more easily translated 
into lower-level processing logic than can purely narrative 
specifications. As this representation combines both data 
and process requirements it is likely that transaction 
specifications will provide a sound basis for 
comprehensive complexity assessment. 

Analysing the representation of a system’s proposed user 
interface, the second of the three perspectives considered 
here, is particularly appropriate for development projects 
that utilise 4GLs and prototyping methods, as the iterative 
development of an applicable interface often requires a 
significant amount of effort in this type of environment.  
Generally a user interface representation includes 
examples of the screen and report formats that are 
required during system operation.  As interactive systems, 
by their very nature, use screen displays, and many 
transaction processing systems produce reports, a 
consideration of the complexity of this representation is 
essential if an overall assessment of complexity is to be 
obtained.  

Another representation perspective commonly employed 
in commercial system specifications is the functional 
decomposition hierarchy (FDH). [13] This is a levelled 
description of the functions that are to be provided by a 
system, normally incorporating the module calling 
structure that will subsequently be implemented. Module 
interaction, at the code level at least, has been the focus of 
several previous assessment studies (see, for example, 
Henry and Kafura [14] or Chapin [15]). It is therefore 
suggested that this representation should also be 
considered in any comprehensive assessment scheme. 

Figure 2 therefore depicts five specification perspectives 
commonly utilised in commercial systems development. 
As all five are quantifiable in terms of the contribution 
that each may make to overall system complexity, each 
has therefore been considered in the assessment scheme, 
as described in the next section. 

 
3. ASSESSMENT SCHEME 

DEVELOPMENT 

The Goal/Question/Metric (GQM) paradigm, as 
developed by Basili and others [16,17] and enhanced by 
Shepperd, [18] and Bush and Fenton’s Classification 
Scheme [19] were adapted and used to determine the 
relevant measures for a recent empirical study. [20]  The 
two approaches are similar in that they both employ a 
decomposition process from overall study goals until 
elementary data classes or measures essential to achieving 



the study’s objectives have been determined. Figures 3 
and 4 depict the use of the two paradigms in the recent 
study. (More detailed discussion of the use of the GQM 
and Classification Scheme paradigms in this study can be 
found in MacDonell. [21]) 

 
Figure 2.  Five perspectives of a system specification 

When examined in combination it can be seen that the 
two figures, 3 and 4, depict all of the data elements 
needed in the study. The lowest level of Figure 3 shows 
all of the product measures required to achieve the aims 
of the project. The necessary project management data 
elements, however, are not shown on this figure for 
reasons of clarity. The classification figure, Figure 4, 
illustrates a similar decomposition of data classes until 
exhaustive and exclusive project management data 
elements are specified. Again for reasons of clarity only 
the characteristic product measures are defined on Figure 
4. Thus both figures provide a consistent and 
comprehensive foundation for the subsequent data 
collection procedures. 

In some cases one of the two process-oriented 
specification methods considered in the scheme, that is, 
data flow diagrams and functional decomposition 
hierarchies, may not be used in a given development 
project.  One of three different data collection strategies 
would therefore be applicable: 

• if both DFDs and FDHs are used then each 
elementary DFD process should map to a 
corresponding low-level FDH module - in this 
case, all five sets of measures should be taken; that 
is, process model and functional model measures, 
in association with the transaction, user interface 
and data model measures;  

• if only the DFD is broken down to an elementary 
level then process model measures only should be 

recorded, in association with the transaction, user 
interface and data model measures;  

• if only the FDH is broken down to an elementary 
level then functional model measures only should 
be recorded, in association with the transaction, 
user interface and data model measures.  

Thus for the purposes of the study a primitive function 
consists of: 

1. a single function at the lowest level of a 
hierarchically decomposed functional model 
(referred to from now on as a functional model 
primitive) and/or 

2. a single process and all connected elements at the 
lowest level of a hierarchically decomposed 
process model (referred to from now on as a 
process model primitive) and 

3. the section of the data model upon which the 
function and/or process acts (referred to from now 
on as a data model primitive). 

This approach may be illustrated by a small example 
taken from the specification of a university department’s 
administration system.  In this case, only DFDs have been 
used to depict the process requirements of the system.  At 
the elementary level there is a process that specifies the 
production of a class list.  Given that Figure 5 depicts the 
underlying data model for the whole system, Figures 6 
and 7 show the relevant process and data model 
primitives that comprise the single primitive function. 
The following five sub-sections fill out the details of the 
assessment scheme adopted in the study.  A number of 
commercial software specification techniques were briefly 
described in the previous section - methods for the 
assessment of functional representations developed using 
those techniques are therefore now provided.  Each of the 
sections describes the basis for assessment and the actual 
measures chosen in the scheme.  Measures preceded by 
an asterisk (*) in Tables 1 to 7 are composite measures; 
that is, they are merely calculated from the values of other 
measures.  The use of composite measures as overall 
indicators of specification perspective size is supported 
by Tate and Verner. [1]  This approach was therefore 
extended in the study to consider aspects other than size, 
for example, interconnection. 

In cases where a non-composite system level 
(macroanalysis) measure is simply the sum of the values 
obtained for the same primitive function level 
(microanalysis) measure over all primitive functions in a 
system it is denoted by placing a ‘T’ in front of the 
primitive function measure.  Thus the ‘TCR’ measure in 
Table 1 is the sum of the values of the ‘CR’ measure that 
are obtained for all primitive functions in the system.  For 
example, if a system was made up of four primitive 
functions and the values of the CR measure for those 
primitive functions were two, one, three and zero 
respectively, then the value of the TCR measure for that 
system would be the sum of these four figures, that is, six. 



 

 
Figure 3.  Goal/Question/Measure paradigm 



 
Figure 4.  Classification Scheme paradigm 



 
Figure 5.  University department system data model example 

 

 
Figure 6.  Process model primitive example 

 

 
Figure 7.  Data model primitive example 

 
3.1. Transaction measures 

Elementary transactions of database-oriented systems in 
the commercial domain always perform one or more of 
the following operations: create a record (C), read a 

record or part of a record (R), update a record or part of a 
record (U) or delete a record (D) (CRUD).  Although 
generally recognised as a data structure-based 
specification method, due to its basis in entity models, 
Kerr [7] in fact describes process modelling solely in 
these terms, in that for each entity in a data model at least 
three functional modules will be developed, with each 
module containing the create, update or delete rules for 
controlling the manipulation of the data.  Gray et al. [11] 
remark that single create, update and delete operations 
work on only one entity each, but that a read may access 
several entities in one operation.  They therefore suggest 
that the read operation may be different from the others in 
terms of complexity.  Worsley [22] also found that in a 
study of enhancement effort for a medium-sized 4GL 
system, estimates for tasks that required new create 
transactions were poor, and that the actual re-testing 
effort required for these enhancements was also generally 
greater than predicted.  Furthermore, the four operations 
are also weighted differently under a project sizing 
methodology developed by British Gas. [23] 

Four size measures relating to the transaction 
representation of a specification are therefore included in 
the analysis scheme, at each of the primitive function and 
system levels.  These are the (T)CR, (T)RE, (T)UP and 
(T)DE measures, as defined in Table 1.  Note that it is the 
number of operations, not the number of entities operated 
upon, that is counted in the scheme; the number of entities 
referenced is assessed in the data model measures. Thus if 
a single primitive function reads and updates a single 
entity, both the RE and UP measures for that primitive 
function should be incremented. 

 
Table 1.  Transaction measures 

Microanalysis and macroanalysis transaction measures 
(T)CR (Total) Number of create transactions performed by 

the primitive function/system 
(T)RE (Total) Number of read transactions performed by the 

primitive function/system 
(T)UP (Total) Number of update transactions performed by 

the primitive function/system 
(T)DE (Total) Number of delete transactions performed by 

the primitive function/system 
 
The transaction measures may be illustrated by the 
following example. A system comprises three primitive 
functions, F1, F2 and F3.  Function F1 reads data from 
two entities for subsequent processing by another 
primitive function; F2 reads data from one entity, displays 
it on the screen and then updates that entity after input 
from the user; F3 deletes records from two entities.  The 
transaction measures for these primitive functions 
therefore take the values shown in Table 2. The system 
level transaction measures are then easily determined 
from the primitive function values, using the method 
described at the end of the previous section.  Thus for this 
same example TCR equals zero, TRE equals three, TUP 
equals one and TDE equals two. 
 
 



Table 2.  Example primitive function level transaction measures 

Measure F1 F2 F3 
CR 0 0 0 
RE 2 1 0 
UP 0 1 0 
DE 0 0 2 

 
3.2. Functional model measures 

In cases where the functional hierarchy model is broken 
down to an elementary level the FDH can form the basis 
for quantitative analysis of several aspects of a system.  
Primarily, system size, in terms of the number and 
distribution of modules, is shown.  However the calling 
structure is also portrayed, through the use of linkages 
between levels of the hierarchy.  Measures of both system 
size and system depth are therefore available from this 
representation.  These measures are defined in Table 3. 

 
Table 3.  Functional model measures 

Microanalysis function model measures 
MDL Maximum decomposition level of the function 
NP Number of parent functions 
 

Macroanalysis function model measures 
DEFUNC Number of distinct elementary functions in the 

decomposition 
FLEV Maximum number of function decomposition 

levels 
L1 Number of functions at level 1 
L2 Number of functions at level 2 
… … 
Ln Number of functions at level n 
*TFUNC Total functions (L1 + L2 + … + Ln) 
*TD Total decomposition ((L1 x 1) + (L2 x 2) + … + 

(Ln x n)) 
 
Only two functional model measures are included in the 
analysis scheme at the primitive function level.  The first 
measure, MDL, is an indication of the level of system 
depth at which the function is to be implemented.  
Modules in a hierarchy, and the data elements that they 
manipulate, are likely to be affected by the processing 
performed above and below them.  Those at higher levels, 
for example, may be more vulnerable to functional errors, 
due to the fact that they must control and co-ordinate the 
processing of often large numbers of modules at lower 
levels of the hierarchy.  Greater caution in development 
and more extensive testing may therefore be necessary for 
higher level modules - it is suggested here that the MDL 
measure may to some degree reflect these requirements.  
The second measure, NP, quantifies the number of 
parents that call a single function.  By examining the use 
of common function calls it may be found, for example, 
that a function that is called or controlled by more than 
one parent is more difficult to develop than a module with 
only one parent, given that the plural-parent module may 
need to cope with different data under different calling 
conditions. 

A completely different set of measures than that used for 
primitive function level assessment are included in the 
analysis scheme at the system level.  They are mainly 
indicators of system size, but there is also some 
consideration of the impact of the decomposition 
structure on overall complexity. DEFUNC is the count of 
all the distinct elementary system functions, that is, those 
functions in the hierarchy that call no other functions.  
Note that each distinct function is only counted once, 
even though it may be called in several instances. This is 
to reflect the fact that the function will only be developed 
once, even if it may be used more than once. The FLEV 
measure is similar in principle to the primitive function 
level MDL measure.  If a particular system hierarchy is 
decomposed down to a maximum of six levels, that is, 
one or more elementary functions must be traced back 
through at most six calling modules to reach the highest-
level system description, then FLEV will equal six for 
that system.  Comparative indications of system depth 
may contribute in a relative manner to overall system 
complexity. The L1 to Ln measures are derived only for 
the determination of the TFUNC and TD measures of 
decomposition.  Note that level 1 is one below that at 
which the highest-level system description is depicted.  
The TD measure uses relative weightings to provide an 
overall assessment of the complete decomposition 
structure.  This is in an attempt to assess the relative 
contributions of both hierarchy depth and breadth to total 
system complexity. 

The hierarchy depicted in Figure 8 provides a basis for 
illustrating the derivation of the measures just described. 
If we choose function ‘Store Item’ for microanalysis 
assessment the MDL measure would take a value of two; 
this is because function ‘Store Item’ occurs at level 2 in 
the hierarchy.  The NP measure for this same function 
would equal one as it has just the one parent function, that 
is, function ‘Receive and Store Item’.  If, on the other 
hand, we were to choose function ‘Read Item and 
Required’ for assessment, MDL would be assigned the 
value of five, as this is the highest value level at which it 
appears.  Furthermore NP would equal two for this 
function, as it is called by both function ‘Read Updated 
Items’ and function ‘Calculate Deficit’.  Any repeat of a 
function such as in this case is denoted on the diagram by 
an asterisk (*) after the function name. 

Concentration on the complete hierarchy also enables the 
derivation of the macroanalysis functional model 
measures. The DEFUNC measure is defined as the 
number of distinct elementary functions in the 
decomposition.  For this example the distinct elementary 
functions, that is, those that do not call any other 
functions, are functions ‘Receive Item’, ‘Store Item’, 
‘Read Item and Required’, ‘Request Missing Items’ and 
‘Report Requirements’.  Hence DEFUNC for this 
example equals five.  The L1 to Ln measures are as 
follows: L1 equals two (functions ‘Receive and Store 
Item’ and ‘Determine Requirements’), L2 equals four 
(functions ‘Receive Item’, ‘Store Item’, ‘Identify Missing 
Items’ and ‘Request Missing Items’), L3 equals three 
(functions ‘Read Updated Items’, ‘Request Missing 



Items’ and ‘Report Requirements’), L4 equals two 
(functions ‘Read Item and Required’ and ‘Calculate 
Deficit’) and L5 equals one (function ‘Read Item and 
Required’). The FLEV measure is equal to n in the Ln 
measure, that is, FLEV equals five for this example.  The 

TFUNC and TD measures are then directly computable 
from the previously derived measurement values. 
 

 

 
Figure 8.  Functional decomposition hierarchy example 

3.3. User interface measures 

Boehm et al. [24] and Lin [6] suggest that the number of 
user-required screens and reports in a 4GL-developed 
system will have a direct effect on development effort, as 
the construction of approved report and screen layouts 
can form a significant part of 4GL system development.  
Worsley, [22] for example, found that the time taken for 
report development with a 4GL was longer for reports 
that included complex layouts and that accessed large 
numbers of tables. 

The primitive function level user interface measures are 
therefore included to reflect findings such as this - the 
layout of both reports and screens is considered here to be 
related to the number of data elements that are produced 
on each.  It is also assumed that a primitive function that 

uses more screens and produces more reports will be 
more complex than one that uses fewer of these 
representations.  The REP and SCR measures, as defined 
in Table 4, therefore consider the number of complete 
reports and screens that are referred to by a primitive 
function, and the DER and DED measures consider the 
number of distinct elements used on those reports and 
screens.  A distinct element is an actual data element, not 
a label, header or footer, that should be counted only once 
for each report or screen on which it appears, no matter 
how many times that element may be used on a single 
report or screen.  The system level measures for this 
representation, which also appear in Table 4, are similar 
to but not the same as the primitive level measures just 
described.  The TDREP and TDSCR measures are simply 
the total number of distinct, that is, different, reports and 
screens that are employed by a system.  TDER and TDED 



are directly comparable to the DER and DED measures 
discussed above; thus they are simply the sums of the 
DER and DED values for all primitive functions. The two 
other indicators, TREPC and TSCRC, equate to the total 
number of times that reports and screens are used in the 
system. 

Table 4.  User interface measures 

Microanalysis user interface measures 
REP Number of reports produced by the primitive 

function 
SCR Number of screens displayed by the primitive 

function 
 

Microanalysis and macroanalysis user interface measures 
(T)DER (Total) Number of distinct elements reported by the 

primitive function/system 
(T)DED (Total) Number of distinct elements displayed by the 

primitive function/system 
 

Macroanalysis user interface measures 
TDREP Total number of distinct reports produced by the 

system 
TREPC Total number of report calls performed by the 

system 
TDSCR Total number of distinct screens displayed by the 

system 
TSCRC Total number of screen calls performed by the 

system 
 
The sample screen shown in Figure 9 may be associated 
with a given primitive function.  If this is the only screen 
used by the primitive function, and no reports are 
produced by the function, then the microanalysis 
measures would take the following values: REP and DER 
would both equal zero, SCR would equal one and DED 
would equal thirteen.  The thirteen elements displayed are 
Order No., Date, Date Filled, Cust. Ref., Back-O?, 
Component, Required, Available, Back-O, Comp. Cost, 
Line Cost, Sub-Total and Total. 

 
Figure 9.  Screen example 

3.4. Process model measures 

One of the main benefits of utilising data flow diagrams 
in commercial software development is the reduction in 
system complexity that the partitioning process provides. 
[25] A consideration of the functional complexity 
associated with this representation should therefore be 
applicable here. Generally the measures of this model 
from both analysis levels reflect the assumption that a 
large process model, in terms of decomposition levels, 
processes, related data stores and individual data element 
usage, will result in a proportionally large coded function.  
Thus the measures from Table 5 that relate to the numbers 
of levels, processes, stores and elements, that is, TPP, PD, 
TSPD, DSP, DSC, TDSSP, TDSSC, (T)DEP and 
(T)DEC, are all indications of process model size. The 
TPP measure is clearly only applicable to the system-
level analysis procedure, given that the microanalysis 
technique considers only one primitive process at a time.  
Therefore TPP is simply the total number of primitive 
(lowest-level) processes in the system.  In this respect it is 
very similar to the DEFUNC functional model measure.  
In the same way, the process model PD and TSPD 
measures are similar to the functional model MDL and 
FLEV measures.  They are included to assess the depth of 
processing that is to be implemented in the final system. 

It is acknowledged that the data store measures DSP, 
DSC, TDSSP and TDSSC may not be of significance, as 
the number of stores may be determined by an arbitrary 
decision of the analyst.  One analyst may prefer to have a 
distinct data store for each entity, whereas another may 
group entity-views into data stores simply for 
representational convenience.  For purposes of 
completeness, however, these measures will still be taken 
for each system.  The use of the words ‘non-file’ in the 
(T)DEP and (T)DEC definitions reflects the fact that all 
file-related elements are assessed in the evaluation of the 
data model with the (T)AU and (T)AC measures.  There 
could be considerable overlap in these two pairs of 
measures; the ‘non-file’ condition, however, enables the 
sole consideration of data elements other than those 
stored by the system that are (i) input by the user or by 
other external systems/processes and (ii) produced on the 
screen and in report formats. 

Process model interconnection should reflect the degree 
of coupling that will be implemented in the final system. 
[26] Interconnection at this level may be related to Henry 
and Kafura’s design phase Information Flow measure, 
[14] in that the fan-in and fan-out measures may be 
approximated by the flows-in and flows-out measures of 
this proposal.  Since it is generally accepted that DFD 
process interconnection should be minimised to lessen 
complexity, [1,27] lower values of interconnection 
measures such as (T)FI and (T)FO should have a positive 
impact on the ease of development. 

 

 

 



Table 5.  Process model measures 

Microanalysis process model measures 
DSP Number of distinct data stores providing data 
DSC Number of distinct data stores consuming data 
PD Process depth (Number of parent processes up to 

level 1) 
EEP Number of distinct external entities providing data 
EEC Number of distinct external entities consuming 

data 
*SPM Size (Process model) (PMA + DSP + DSC + EEP 

+ EEC) 
 

Microanalysis and macroanalysis process model measures 
(T)FI (Total) Number of flows into the process/system 

processes 
(T)FO (Total) Number of flows out of the process/system 

processes 
(T)PDS (Total) Number of provisions from data stores 
(T)CDS (Total) Number of consumptions by data stores 
(T)DEP (Total) Number of non-file elements produced by 

the process/system processes 
(T)DEC (Total) Number of non-file elements consumed by 

the process/system processes 
(T)PPI (Total) Number of process-to-process flows into 

the process/system processes 
(T)PEE (Total) Number of provisions from external entities 
(T)CEE (Total) Number of consumptions by external 

entities 
*(T)PMA (Total) Process model access ((T)FI + (T)FO) 
*(T)IPM (Total) Interconnection (Process model) ((T)FI x 

(T)FO)2 
*(T)DSA (Total) Data store access ((T)PDS + (T)CDS) 
*(T)EM (Total) Element manipulation ((T)DEP + (T)DEC)) 
*(T)C (Total) Containment ((T)PEE + (T)CEE) 
 

Macroanalysis process model measures 
TPP Total number of primitive processes 
TDSSP Total number of distinct system data stores 

providing data 
TDSSC Total number of distinct system data stores 

consuming data 
TSPD Total system process depth (Number of process 

levels) 
TSEEP Total number of distinct system external entities 

providing data 
TSEEC Total number of distinct system external entities 

consuming data 
*TSPM Total size (Process model) (TPMA + TDSSP + 

TDSSC + TSEEP + TSEEC) 
 
The level of system containment is also considered to be 
important. Dependence on data supplied from outside the 
system boundaries may have an effect on the ease of 
system implementation and maintenance, especially 
where control over the form and validity of the data is out 
of the developer’s hands.  External entities that receive 
data, on the other hand, often require this information in 
some form of report. For example, a packing slip may be 
sent to a warehouse, or an invoice to a customer.  
Therefore development and maintenance of the relevant 
process would also involve the creation or consideration 
of a report form and the incorporation of extra processing 
to produce that report. The EEP, EEC, TSEEP, TSEEC, 
(T)PEE and (T)CEE measures are therefore included to 

reflect the impact of process model containment.  The 
measures differ in the fact that the first four simply 
consider the number of external entities that are involved 
in the operation of a primitive function or a system, 
whereas the final four assess the actual number of 
interactions between system processes and external 
entities.  This follows the same approach as that used in 
the collection of the DSP, DSC, TDSSP, TDSSC, (T)PDS 
and (T)CDS measures. 

The process model primitive example shown earlier in the 
section (Figure 6) may be useful in illustrating the 
derivation of microanalysis process model measures.  If 
we know from the user interface assessment that the Class 
List report contains fourteen data elements then all of the 
non-composite process model measures can be 
determined immediately, as shown in Table 6. 

Table 6.  Example process model primitive measures 

Measure Value 
FI 4 
FO 1 
DSP 4 
PDS 4 
DSC 0 
CDS 0 
DEP 14 
DEC 0 
PPI 0 
PD 3 
EEP 0 
PEE 0 
EEC 1 
CEE 1 

 
3.5. Data model measures 

The final set of specification product measures considers 
aspects of size and interconnection associated with the 
data model representation. The size of a data model will 
provide a first-cut, basic indication of the amount of 
processing that is to be performed on it; that is, a larger 
data model implies a greater degree of processing to 
reference, manipulate and/or write to the entities and 
individual attributes involved.  Data model size may also 
be influential in the estimation of maintenance tasks, 
particularly for data retrieval systems, where the structure 
of the existing data will have an impact on how new data 
should be incorporated into the system. [11,28] Measures 
from this class in the current analysis scheme, as defined 
in Table 7, include EDM, TESDM, EPD, TDEPD, ECD, 
TDECD, (T)EP, (T)EC, (T)AU, (T)AC and (T)EL. 

The number of entities involved in system operations are 
considered by the EDM, TESDM, EPD, TDEPD, ECD, 
TDECD, (T)EP and (T)EC measures.  The first two 
measures are quite straightforward - they are simply 
counts of the number of entities that are referenced or 
traversed by a primitive function or by a system.  The 
other measures then consider the types of references that 
the entities undergo, whether providing data, consuming 
data or both, as a result of system operations.  Use of the 
measures is based on the same approach as that used for 



the process model assessment.  That is, EPD through to 
TDECD consider the number of distinct entities 
referenced, whereas (T)EP and (T)EC consider the actual 
number of references. 

Table 7.  Data model measures 

Microanalysis data model measures 
EDM Number of entities in the data model primitive 
EPD Number of distinct entities providing primitive 

function data 
ECD Number of distinct entities consuming primitive 

function data 
OOL Number of 1:1 links between entities in the data 

model primitive 
OML Number of 1:n links between entities in the data 

model primitive 
MML Number of n:m links between entities in the data 

model primitive 
OL Number of optional links in the data model 

primitive 
ML Number of mandatory links in the data model 

primitive 
MEL Number of exclusive links between entities in the 

data model primitive 
*IDM Interconnection (Data model) (OOL + OML + 

MML) 
*SDM Size (Data model) (EDM + IDM) 
 

Microanalysis and macroanalysis data model measures 
(T)EP (Total) Number of entity provisions 
(T)EC (Total) Number of entity consumptions 
(T)AU (Total) Number of attributes updated by the 

primitive function/system 
(T)AC (Total) Number of attributes consumed by the 

primitive function/system 
(T)EL (Total) Number of entity look-ups performed by 

the primitive function/system 
*(T)EA (Total) Entity access ((T)EP + (T)EC) 
*(T)AM (Total) Attribute manipulation ((T)AU + (T)AC) 
*(T)DMA (Total) Data model access ((T)EA + (T)EL) 
 

Macroanalysis data model measures 
TESDM Total number of entities in the system data model 
TDEPD Total number of distinct entities providing data 
TDECD Total number of distinct entities consuming data 
TOOLS Total number of 1:1 links between entities in the 

system data model 
TOMLS Total number of 1:n links between entities in the 

system data model 
TMMLS Total number of n:m links between entities in the 

system data model 
TOLS Total number of optional links between entities in 

the system data model 
TMLS Total number of mandatory links between entities 

in the system data model 
TMELS Total number of exclusive links between entities in 

the system data model 
*TIDM Total interconnection (Data model) (TOOLS + 

TOMLS + TMMLS) 
*TSDM Total size (Data model) (TESDM + TIDM) 
 
Gray et al. [11] suggest that data model measures should 
also include some consideration of the amount of data 
actually passed to and from the database.  They therefore 

propose that this could be derived from the number of 
attributes flowing in the system - for create and delete 
operations this would be the number of attributes in the 
entity referenced; for the update and read operations it 
would be the number of actual attributes referenced.  
Although this suggestion was developed independently of 
the current study, these measures equate precisely to the 
attributes-updated and attributes-consumed measures 
((T)AU and (T)AC) of the current proposal. The entity 
look-up count, (T)EL, should be incremented only when 
an entity is referenced purely for validation purposes, that 
is, when an entity is read only to ensure that a particular 
field value is allowed - the entity’s data is not actually 
used in the process.  An entity may, however, be counted 
more than once for a given system/primitive function if it 
is accessed both to supply data for processing and for 
look-up validation. 

The interconnection among entities using various 
relationship types also gives an indication of processing 
requirements.  For example, a one-to-many relationship 
suggests a hierarchical link, such as that for orders and 
order lines, providing an insight as to how the relevant 
data will be entered and processed.  Eglington [29] 
suggests, in fact, that the complexity of many data 
processing systems is mainly contained in the 
relationships between records.  It would therefore seem 
worthwhile to consider entity relationship link types at the 
logical level in an assessment of complexity.  
Participation requirements may also be important.  A 
mandatory connection, for example, may indicate a need 
for validation during processing to ensure that no null 
entries are supplied. Bushell [30] and Keuffel [31] both 
state that many-to-many (n:m) relationships are difficult 
to implement.  Bushell [30] also suggests that connections 
between entities should be minimised because, if there are 
several ways of traversing system data for essentially the 
same purpose, different paths will be used in different 
cases.  Moreover, subsequent changes will be made more 
difficult.  The existence of only one path therefore 
ensures a standard approach.  To this end, the 
interconnection measures OOL through to TMELS are 
also included in the analysis scheme. 

Derivation of the OOL, OML, MML, TOOLS, TOMLS 
and TMMLS counts may not be obvious when it comes to 
the assessment of certain relationship types.  
Recommendations are therefore made for the following 
situations: 

• a. recursive relationships - as these have no direct 
impact on the difficulty of development, they 
should be assessed in the same way as any other 
relationship 

• b. multiple relationships - 

1. where more than one distinct relationship 
exists between two entities on a given system 
or primitive data model, and where the 
system/primitive function being assessed may 
traverse any of these relationships at one 
time, each relationship should be counted 
separately as part of the assessment; 



2. where more than one distinct relationship 
exists between two entities on a given system 
or primitive data model, and where the 
system/primitive function being assessed may 
traverse only a subset of those relationships 
at one time, each relationship in the subset 
should be counted as part of the assessment. 

Returning to the primitive function depicted in Figures 6 
and 7, the microanalysis data model measures can now 
also be determined.  For simplicity’s sake let us state that 
each of the entities in the data model primitive contains 
five attributes and that none of the entities are referenced 
for look-up purposes.  The non-composite data model 
primitive measures are therefore assigned the values 
shown in Table 8. 

Table 8.  Example data model primitive measures 

Measure Value 
EDM 4 
EPD 4 
EP 0 
ECD 0 
EC 0 
AU 0 
AC 20 
EL 0 
OOL 0 
OML 3 
MML 0 
OL 2 
ML 4 
MEL 0 

 
3.6. Rationale 

DeMarco [2] suggests that the effort required to 
implement a system increases monotonically with 
increasing specification size, assuming that there is no 
redundancy in the specification.  As CASE helps to 
ensure that redundancy is kept to a minimum, size 
measures derived from specification models should prove 
to be useful in effort determination.  DeMarco [2] also 
claims that the size of a specification model approaches 
invariance with respect to the decisions of the individual 
modeller.  This would suggest that, for a given system 
requirement, roughly the same functional measurement 
values will be obtained irrespective of the modeller, 
particularly when CASE technology is employed. [5,32]  
This does not imply that the same specification will be 
produced, but only that the scope and size of the 
specifications will be similar.  However this in itself is an 
aid to achieving more consistent assessment and analysis.  
Thus the basis of the complexity analysis scheme in 
specification representations would still appear to be 
sound. 

A similar comment to that of DeMarco’s above is made 
by Rudolph [33] in a discussion on functional size 
assessment - the remark is equally applicable to any type 
of functional analysis, however.  Rudolph suggests that by 
its very nature functional assessment should not in the 
first instance reflect ‘external’ factors such as 

programmer and organisational experience or the effects 
of various implementation approaches.  Rather, the 
absolute value of the measured attribute should be 
established first, and then adjusted if required.  Moreover, 
Chen and Norman [34] suggest that the use of a graphic 
interface in many of the tools enables easier learning and 
use, lessening the impact of tool experience on effort 
requirements.  All of these factors lend support to the 
approach adopted in this study, that is, the assessment of 
functional complexity with no initial adjustment for other 
factors. 

Further support for the purely functional approach is 
indirectly provided by the advantage of application 
portability that many CASE tools now provide. [35]  Tate 
and Verner [1] suggest that as projects move through the 
phases of development more specific methods and 
techniques are employed.  They go on to suggest that this 
leads to increasing dependence of software products on 
the target technology, even in a CASE environment.  The 
implication is that the development and implementation 
methods chosen have an increasing impact on a system’s 
size and that this will have a corresponding impact on 
development effort.  However several CASE tools enable 
development to be performed irrespective of the eventual 
implementation platform, as the tools include facilities for 
implementation on a number of different platforms. 
[35,36] Thus functional measures should provide a sound 
basis for the determination and classification of effort 
requirements in an automated environment up until the 
implementation phase of development. 

In the past, adjustment of functional measures has 
generally been performed to enable the consideration of 
special system requirements. It has recently been 
suggested, however, that systems developed with 4GLs 
and CASE tools will not require adjustment as the 
‘special’ requirements will be developed as standard: 
[5,28,34]  

In the longer term, the ultimate computer-aided 
systems engineering (CASE) tool will provide all 
these technical features automatically; we shall 
only have to think about the information-
processing requirements of the problem.  In this 
ultimate situation, the coefficient [of the 
adjustment factor] will fall to zero, and there will 
be no further need for a Technical Complexity 
Adjustment. [28 p. 29]  

Although it is questionable as to whether we have reached 
the age of the ‘ultimate’ CASE tool, this assumption is the 
basis for the current proposal, that is, that useful 
assessment can be performed based solely on systems’ 
functional requirements.  As 4GLs and CASE tools tend 
to specify functional transactions rather than procedural 
components, Verner et al. [37] suggest that a specification 
produced with these tools will be a closer representation 
of the pure inherent function required.  Moreover, since 
development using these tools is often based around a 
central repository, the likelihood of duplicated and 
inconsistent work among development teams should be 
reduced, providing a basis for more consistent and 



accurate assessment of functional characteristics.  It is 
certainly possible that measures from a specification will 
be related to the functional value of the system, based on 
the assertion that transactions comprised of larger and 
more complex specifications provide more function to the 
user. [37] Appropriate measures of functional size and 
complexity are therefore required.  Those proposed here 
are a first response to this need. 

A major criticism of many existing assessment methods is 
their consideration of only one aspect of complexity, for 
example, control-flow, size or data flow. [38,39] The 
proposed analysis scheme should at least partially 
overcome this problem, in that size, interconnection, data 
flow, data structure, process coupling and overall function 
are all assessed in some way. The comprehensive 
approach that has been adopted in this proposal is 
supported by Tate and Verner [5] and Wrigley and 
Dexter; [40] they suggest that appropriate specification 
measures should come from data structure and data flow 
models and from aspects of the proposed user interface.  
Each of these representations has been considered in the 
overall analysis scheme.  The general expectation 
underlying this approach is that systems or primitive 
functions that return high values for the transaction, 
functional model, user interface, process model and/or 
data model measures will be more time-consuming and 
error-prone to develop than systems/primitive functions 
that result in low measures. Due to its more 
comprehensive approach, the scheme also includes 
measures that are applicable to software specification 
products not normally considered.  Grady’s examination 
of software development work-product analysis states that 
the design stage ‘‘...work products for prototypes and data 
dictionaries because they are widely used today, although 
they represent two cases where metrics research has been 
very limited (and so no metrics are shown)’’. [41 p. 30]  
In the proposed scheme the data dictionary may be 
partially assessed by the data model and process model 
measures, and the prototype by the user interface and 
functional model measures. [42] 

The two-level approach to assessment is another 
important aspect of the overall analysis scheme.  
Although system-wide measures and indicators are useful, 
it has been acknowledged that lower-level analysis is 
necessary for effective project management.  Verner et al. 
[37] and Stevens [43] remark that elementary function-
based assessment is required so that resource allocation in 
subsequent development phases can be carried out more 
effectively.  Moreover, in terms of accuracy, lower-level 
assessment receives further support - Stevens [43] and IE 
[44] suggest that a more detailed functional breakdown 
will provide more accurate measures, due to the reduced 
variance achieved. 

Furthermore, the measures in the scheme are 
automatically derivable at a very early stage in the 
development process, increasing the scope for objective 
and effective estimation and discrimination.  According to 
Grady [41] and Gray et al., [11] one of the most 
promising aspects of CASE is the facility for automatic, 
‘on-line’ delivery of measures and estimates to the project 

manager.  The notion of automatic data collection and 
analysis has widespread support and would appear to be 
essential in an unobtrusive form if assessment data 
analysis is to become a useful, integral part of the 
development process. [45,46] Automatic collection would 
also enable more effective progress reports to be 
produced - as long as subsequent functional changes to a 
system were incorporated into the current specification 
models, revised measures and/or estimates could be 
automatically generated for the project manager during all 
subsequent stages of development. 

 
4. SUMMARY 

This paper has described the structured development of a 
comprehensive functional complexity assessment scheme 
that is based on the specifications of commercial software 
systems. The impact of development automation was 
examined, resulting in the suggestion that software 
specification notations would prove to be useful as 
models for analysis. Various specification representations 
were therefore considered, and measures appropriate to 
the complexity assessment task were determined for each 
perspective using the GQM and Classification Scheme 
paradigms. Small examples were also provided to 
illustrate the derivation of the various measurement 
values. This was followed by a discussion of the rationale 
upon which the measurement selection had been based. 

Small-scale validation of the scheme in the estimation of 
development effort has already been undertaken, with 
considerable success. [20] It is envisaged that continued 
use of the assessment scheme in other automated projects 
will produce significantly larger data sets, which in turn 
should lead to greater accuracy in the classification and 
estimation tasks. This does, however, depend on the 
willingness of CASE product users to participate in 
studies of this type. Presuming that this will be 
forthcoming, it is likely that the scheme will be iteratively 
refined until only the most influential measures are 
collected. It is hoped that this will then lead to the 
incorporation of assessment facilities in actual 
development tools.  This will enable more objective, non-
intrusive, less error-prone collection of the data to be 
carried out without the need for time-consuming manual 
collection. It will also mean that analysis and prediction 
may be performed in the background of development as 
an integral part of a project. Tate [47] and Tate and 
Verner [1] also suggest that on-workbench data, relating 
to development effort, will soon be collected 
automatically within CASE environments.  Collection of 
project management data will therefore also be more 
precise and cost-effective.  All of these factors will 
encourage continuing refinement of any equations 
developed, providing relevant feedback to managers 
whenever required. Only under these circumstances is it 
likely that functional assessment will become more 
readily perceived as a necessary and worthwhile task 
within software development. 
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