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Abstract

When animals (including humans) first explore a
new environment, what they remember is fragmen-
tary knowledge about the places visited. Yet, they
have to use such fragmentary knowledge to find
their way home. Humans naturally use more pow-
erful heuristics while lower animals have shown to
develop a variety of methods that tend to utilize two
key pieces of information, namely distance and ori-
entation information. Their methods differ depend-
ing on how they sense their environment. Could
a mobile robot be used to investigate the nature of
such a process, commonly referred to in the psy-
chological literature as cognitive mapping? What
might be computed in the initial explorations and
how is the resulting “cognitive map” be used to re-
turn home? In this paper, we presented a novel ap-
proach using a mobile robot to do cognitive map-
ping. Our robot computes a “cognitive map” and
uses distance and orientation information to find its
way home. The process developed provides inter-
esting insights into the nature of cognitive mapping
and encourages us to use a mobile robot to do cog-
nitive mapping in the future, as opposed to its pop-
ular use in robot mapping.

1 Introduction

In robot mapping, one is concerned with the development of
efficient algorithms for the robot, with its particular sensors,
to simultaneously localize and map its environment. The
map, a robot created, is precise. By “precise”, it is meant
that each surface encountered is remembered and its posi-
tion is known with a certain degree of accuracy. The robot
also knows its position in the environment. In contrast, the
humans’ (and animals’) mapping process, referred to as cog-
nitive mapping, produces fragmentary maps initially which
later turn into a representation laden with one’s own interpre-
tations and experiences of the world. The map produced in
such a process is known as a cognitive map.

The idea that animals compute cognitive maps was first
suggested by Tolman [1948], who conducted experiments
with rats finding their way in a maze. Since then, much has
been said about the complex nature of cognitive maps (see

e. g., [Golledge, 1999]) and several computational theories of
cognitive mapping have been proposed [Chown et al., 1995;
Kuipers, 2000; Yeap and Jefferies, 1999]. More recently, re-
searchers began to use mobile robots to test ideas about cog-
nitive mapping as opposed to robot mapping.

For example, Kuipers and his students have been experi-
menting with robots to find ways to compute his Spatial Se-
mantic Hierarchy from the ground up (see e. g., [Piers and
Kuipers, 1997]). Both the gateway construct in the PLAN
model of cognitive mapping [Chown et al., 1995] and the use
of exits in the ASR-model of cognitive mapping [Yeap and
Jefferies, 1999] were tested on a mobile robot (see e. g., [Ko-
rtenkamp, 1993] for the former and [Jefferies et al., 2004]

for the latter). Ideas about cognitive mapping based upon
neurological findings were also being tested using mobile
robots. Examples of such work include [Gaussier et al., 2002;
Hafner, 2005]. However, many of these attempts produced
algorithms that were more an inspiration from observations
about cognitive mapping than a test-bed for theories of cog-
nitive mapping. These researchers were concerned that their
robots were able to map its environments successfully and
they thus solved much of the robot mapping problem. For in-
stance, they were keen that their robots “close the loops” and
produce “real world SLAM results”.

In this paper, our goal differs. We note that different an-
imals compute cognitive maps using different sensors and
therefore our robot should be treated as a kind of animal with
its own peculiar sensing capabilities. For some unknown rea-
sons, humans do not remember a precise map after one or two
visits to a new environment. We assume animals do not too
and so neither should our robot. To investigate our robot’s
cognitive mapping process, it is thus best to have our robot
compute an imprecise map first and then investigate animal-
like strategies for finding its way home using such a map. It
is argued that the behavior of such a robot might shed light
on cognitive mapping.

To do so, we use a robot equipped with sonar sensors to
compute a description of each local space visited. The robot’s
“cognitive map” is thus a network of such local spaces. Fol-
lowing [Yeap and Jefferies, 1999] theory of cognitive map-
ping, we refer to each local spaces computed as an Absolute
Space Representation (ASR). With sonar sensors, the descrip-
tion of each ASR computed (or more precisely, the shape
computed) is not accurate enough to allow its identification
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on its return journey. Our robot is not programmed with pow-
erful heuristics such as those found in humans. However,
lower animals have been observed to use distance and direc-
tion information encoded in their cognitive map to find their
way. We implemented two such strategies for our robot, one
utilizes distance information and the other relative orientation
information.

Section 2 describes the way our robot computes its “cog-
nitive map”. Section 3 describes the two strategies that our
robot uses to find its way home. Section 4 shows the results
of our experiments and Sect. 5 concludes with a discussion of
the insights obtained from our experiments.

2 Mapping the Environment

When exploring the environment for the first time, the robot
creates a “cognitive map” of its environment. This section
gives a short description of the process involved; details have
been presented by [Schmidt et al., 2006a; 2006b].

2.1 Data Gathering and Pre-Processing

The mapping process used in our system (a wandering robot
that records sonar data) is as follows: The robot acquires
sonar readings while moving until it runs into an obstacle. At
this point an obstacle avoidance algorithm is used, after which
the robot can move forward again. Using this input we build
a simplified geometric map containing the robot movement
path as well as linear surfaces approximated from the sonar
data. In the first step, the recorded sonar data is low-pass
filtered and converted to surfaces, being a piecewise linear
approximation of the sonar distances. These surfaces are sim-
plified further by grouping them, thus removing small gaps.

2.2 Generating ASRs

The approach for generating ASRs from the data gathered by
the robot is based on a region split and merge algorithm. The
pre-requisite for this algorithm is a geometric map that con-
tains the robot movement path as well as surfaces in terms
of line approximations of the original range sensor data. The
objective is to divide the perceived information (which is in
the form of a fuzzy metric map) into a network of ASRs, thus
effectively creating a topological map on top of a metric one.
Splitting is done along the robot movement path, using an ob-
jective function that computes the quality of a region, based
on criteria such as the average room width (corridors are long
and narrow compared to rooms) and overall direction (e. g., a
corridor is separated from another one by a sharp bend in the
wall). Additionally, a regularization term is used in order to
avoid the formation of very small regions, which may origi-
nate from missing (gaps) or unreliable sensor data. Examples
of maps including ASR splittings are shown in the experi-
ment’s section (see Fig. 2). The result of this mapping stage
will be called the original map further on. This is the map the
robot will use for returning home.

3 Finding the Way Home

3.1 Re-Mapping

On its way home, the robot basically performs the same data
gathering and processing steps as described previously. In

contrast to pure mapping, where all data is gathered first,
and processed only once at the final position (i. e., the return
point), on the return journey the robot performs a map pro-
cessing and ASR splitting each time it has to stop, which is
normally because of an obstacle in its way. This means that
at each of these intermediate stops, a new map of the envi-
ronment as well as a new high-level representation in terms
of ASRs is available and can be used in combination with the
original map for localization. The result of the localization
step is the index of the ASR the robot believes it is currently
in, which is a rough estimate of its global position. As it is ar-
gued in [Yeap and Jefferies, 1999], this estimate is sufficient
for navigation, and an accurate map will not be necessary as
long the robot can find the exits to adjacent ASRs.

In the following, we will describe the strategies that we
use for localization based on ASR information, and a data
fusion algorithm that allows for an overall position estimate
computed from the single localization methods.

3.2 Localization Strategies

Two different strategies for localizing the robot based on the
original map generated on its way to the current position are
presented in the following. Each method computes a local
confidence map that contains a confidence value between 0
and 1 for each ASR of the original map. Note that these con-
fidence values are not probabilities, and they do not sum up
to one; the interval has been chosen for convenience, and dif-
ferent intervals can be used as desired. The two strategies
mentioned previously will be described in the following, to-
gether with the method for computing local confidence maps
independently for each strategy. The fusion of all local con-
fidence maps, which may have been generated by different
robot localization methods with varying reliability, is based
on the idea of Democratic Integration introduced in [Triesch
and von der Malsburg, 2001]. It was developed for the pur-
pose of sensor data fusion in computer vision and computes
confidence maps directly on images. The original method has
been extended and embedded into a probabilistic framework
in [Denzler et al., 2002], still within the area of machine vi-
sion. We extend the original approach in a way that we do
not use images as an input, but rather generate local confi-
dence maps using various (more or less reliable) techniques
for robot localization. A main advantage of this approach is
that the extension to more than two strategies is straightfor-
ward, as is the replacement of a method by another.

Distance

The first strategy is based on the idea of using the distance the
robot traveled from its return point to the current position, just
as humans have a rough notion of how far they walked. Note
that neither do we care about an exact measurement, nor do
we use the actual distance traveled as provided by odometry.
Using the odometry data directly would result in very differ-
ent distances for each journey, as the robot normally moves in
a zig-zag fashion rather than straight. Instead we use distance
information computed from the ASR splitting of the maps,
i. e., ASR length, which is defined by the distance between
the entrance and the exit the robot used when passing through
a particular ASR. In the maps shown in Fig. 2, start and end



points of an ASR are depicted by dark dots (split points) lo-
cated on a set of connected lines representing the path the
robot took. The zig-zag movement of the robot in between
two splits is clearly visible, and can be quite different from
the line connecting start and end points. The basic strategy is
now to compare the distance d traveled when returning home,
measured in ASR lengths taken from the intermediate map
computed on the return journey, to the ASR lengths taken
from the original map computed during the mapping process.

The local confidence map cDist ∈ IRN (N being the to-
tal number of ASRs in the original map) is computed as fol-
lows: The confidence for each ASR depends on the overall
distance d traveled on the return journey; the closer an ASR
is to this distance from the origin, the more likely it is the
one the robot is in currently. As the distance traveled is an
unreliable estimate, adjacent ASRs should be considered as
well, the more the closer they are to the most likely one. We
decided to use a Gaussian to model the confidences for each
ASR, the horizontal axis being the distance traveled in mm.
The Gaussian is centered at the current overall distance trav-
eled d. Its standard deviation σ is dependent on the distance
traveled, and was chosen as σ = 0.05d. Note that although
a Gaussian is used here, we do not try to model a probability
density. A Gaussian was rather chosen for a number of rea-
sons making it most suitable for our purpose: It allows for a
smooth transition between ASRs, and the width can be easily
adjusted by altering the standard deviation. This is necessary
as the overall distance traveled gets more and more unreliable
(due to slippage and drift) the farther the robot travels. The
confidence value for an ASR is determined by sampling the
Gaussian at the position given by the accumulated distances
from the origin (i. e., where the robot started the homeward
journey) to the end of this ASR. After a value for each ASR
is computed, the local confidence map cDist is normalized to
the interval [0; 1].

Relative Orientation

The second method for computing estimates of the robot’s
position with respect to the original map is based on using
relative orientation information generated while dividing the
map into ASRs. During its journey, the robot enters an ASR
at one location and exits at a different one, usually including
zig-zag movements in between. We define the direction of an
ASR as the direction of the line connecting the entrance and
exit points. Certainly this direction information varies every
time the robot travels through the environment, but the overall
shape between adjacent ASRs is relatively stable. Therefore,
we propose to use angles between ASR directions as a simple
measure of the current position of the robot. Note that this
information is pretty much useless on its own, because the
same angles (i. e., direction changes) can be found in differ-
ent locations of the environment. However, combining this
strategy with others can help to decide between position es-
timates that would otherwise be indistinguishable. It has the
advantage that angles between adjacent ASR directions are a
local measure of direction changes, thus keeping the influence
of odometry errors due to drift and slippage to a minimum.

The basic idea of the strategy is as follows: Firstly, all
angles α1, . . . , αN−1 between adjacent ASRs in the original

Figure 1: Maps showing the actual layout of the building used
for Experiment 1 (top) and Experiment 2 (bottom). The path
the robot took while generating the original map is shown
as a solid line, with ’X’ marking the starting location of the
experiment. The dashed line visualizes the path the robot took
on the homeward journey and ’O’ marks its starting point.

map are computed. This can be done offline, as this map is
fixed during the homeward journey. In the re-mapping pro-
cess while going home, new ASRs are computed in the new
map based on data gathered while the robot travels. Using
the direction information contained in this map, the angle β
between the current ASR and the previous one can be com-
puted. Comparing this angle to all angles of the original map
gives a clue (or many) for the current location of the robot.
The comparison of angles and conversion to confidence val-
ues is done by computing the cosine of the difference angle,
and mapping the resulting values to the interval [0; 1], which
results in a local confidence map cDir:

cDiri =
1

2
(cos |αi − β| + 1), i = 1, . . . , N − 1 . (1)

This results in high values for similar angles and low values
for dissimilar ones. The confidence map computed this way
can already be used for further processing. Since the over-
all reliability of the relative orientation strategy as described
above is rather low compared to the confidence values from
other methods (in this case using distance information), we
currently reduce the confidence values by half.

3.3 Fusion of Strategies

We will now describe how to merge the separate local con-
fidence map into a single global one based on the original
Democratic Integration approach published by [Triesch and
von der Malsburg, 2001]. The basic idea is straightforward,
as the fusion is done by computing a weighted sum of all
local confidence maps. The main advantage of using demo-
cratic integration becomes visible only after that stage, when
the weights get adjusted dynamically over time, dependent on
the reliabilities of the local map. Given M local confidence
maps cloci(t) at time t (i. e., as in our case two, namely cDist

and cDir) generated using different strategies, the global map



cglob(t) is computed as:

cglob(t) =

M−1∑

i=0

wi(t)cloci(t) , (2)

where wi(t) are weighting factors that add up to one.
An estimate of the current position of the robot with respect

to the original map can now be computed by determining the
largest confidence value in cglob(t). Its position b in cglob(t)
is the index of the ASR that the robot believes it is in. The
confidence value cglobb

at that index gives an impression about
how reliable the position estimate is in absolute terms, while
comparing it to the second best one (and maybe even third
best one) shows the reliability relative to other ASRs.

In order to update the weighting factors, the local confi-
dence maps have to be normalized first. The normalized map
c
′

loci
(t) is given by:

c
′

loci(t) =
1

N
cloci(t) . (3)

The idea when updating the weights is that local confidence
maps that provide very reliable data get higher weights than
those which are unreliable. Different ways for determining
the quality of each local confidence map are presented in
[Triesch and von der Malsburg, 2001]. We use the normal-
ized local confidence values at index b, which has been deter-
mined from the global confidence map as shown above, i. e.,
the quality qi(t) of each local map cloci(t) is given by c′locb

(t).
Normalized qualities q′i(t) are computed by:

q′i(t) =
qi(t)∑M−1

j=0
qj(t)

. (4)

The new weighting factors wi(t + 1) can now be computed
from the old ones:

wi(t + 1) = wi(t) +
1

t + 1
(q′i(t) − wi(t)) . (5)

This is a recursive formulation of the average over all quali-
ties from time zero to t. Using this update equation and the
normalization of the qualities in (4) ensures that the sum of
the weights equals one at all times.

4 Experimental Results

To evaluate the performance of the algorithm proposed, we
used a Pioneer 2 robot from Activmedia, equipped with sonar
sensors and an odometer. As described earlier, the robot must
first explore and generate a representation of the environment,
i. e., a “cognitive map”. The robot was then instructed to re-
turn home (home being the start point of the mapping pro-
cess). The aim was to determine whether the robot can find
its way back home using this inexact “cognitive map”.

We conducted various experiments in an office environ-
ment, two of which are presented in this paper. Further ex-
perimental results can be found in [Schmidt et al., 2006b].
Figure 1 presents the layouts of the environment used. The
paths that the robot took during mapping (solid line) and go-
ing home (dashed line) are both shown in Fig. 1 as well. For
the mapping stage, the robot started at the location marked by
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Figure 2: Top: Experiment 1, bottom: Experiment 2. Left:
original maps, right: maps generated during the homeward
journey. The black dots indicate the points where the map is
split into separate ASRs. The robot movement always starts
at the origin. The origin of the homeward journey is (approx-
imately) the same position as the end point coordinate of the
respective original map; in particular this means, that the map
of the homeward journey for Experiment 2 (bottom right) is
upside-down compared to the original map (bottom right).

’X’, and was stopped at a random position (marked by ’O’),
where it started returning home. The return journey stopped
when the robot believed that it reached home, or, more pre-
cisely, the ASR that contains the start location ’X’. It is im-
portant to note that we did not intervene with the environment
at any point in time. That is, things that existed in the envi-
ronment during the mapping process (such as rubbish bins,
flower pots, cabinets, etc) may or may not be there during
the return home journey; and doors may be open or closed
depending on the time of the experiment.

Figure 2 shows the representations generated from the two
experiments. The top row depicts the maps generated from
the mapping and going home processes respectively for Ex-
periment 1; the bottom row are the maps generated from the
mapping and going home processes respectively for Experi-
ment 2. Comparing the maps generated during mapping and
going home highlights the difficulty in using these maps di-
rectly for localization. Each time, the robot goes through
the same environment, it will generate different representa-
tions due to sensory inaccuracies. Figures 3 and 4 show the
confidence maps computed at four locations during the return
home journey for Experiments 1 and 2 respectively. The light
dotted lines shows the ASR estimate using the ASR length
information (distance method) and the dark dashed lines de-
picts the ASR estimate using the angles between ASRs (rel-
ative orientation method). The solid line is the overall ASR
estimate for the corresponding ASR (horizontal axis). Note
that the confidences have values between 0 and 1 (vertical
axis) but do not sum up to 1. In Fig. 3, the top left map shows
a narrow peak for the overall confidence at ASR 1, with cor-
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Figure 3: Confidence maps at four locations during the return
home journey for Experiment 1: distance (light dotted), rela-
tive orientation (dark dashed), and overall map (solid). Hori-
zontal axis: ASR number; vertical axis: confidence (0 to 1).
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Figure 4: Confidence maps at four locations during the re-
turn home journey for Experiment 2: distance (light dotted),
relative orientation (dark dashed), and overall map (solid).

responding peaks for both distance and relative orientation.
The narrow peak signifies the robot being very confident of
being in ASR 1. The top right map however is quite different.
It has two peaks, one slightly higher than the other. It shows
that the robot is around the transition region between ASR 2
and 3. The higher confident value for ASR 3 shows that the
robot feels that it has already moved into ASR 3. The bottom
left map shows a similar account except that this time, neigh-
boring ASRs (4 and 6) have higher values, resulting in a wider
peak. Finally, the bottom right map shows that ASRs 7 and 8
pretty much have the same confidences, meaning the robot is
unsure which of the two ASRs it is in. Figure 4 shows another
set of confidence maps corresponding to four locations in Ex-
periment 2. Figure 5 shows a sequence of four consecutive
confidence maps from experiment 2. These confidences are
taken from the period when the robot is traveling from ASR 6
to ASR 7. Starting from top left figure, the robot is confident
it is in ASR 6. As it moves to the boundary between ASRs 6
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Figure 5: Four consecutive confidence maps computed during
the return home journey for Experiment 2 at the transition
from ASR 6 to 7: distance (light dotted), relative orientation
(dark dashed), and overall map (solid).
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Figure 6: Adjustment of weighting factors over time: ASR
length weights (solid) and ASR angle weights (dashed).

and 7, it is unsure of where it is exactly, as depicted by the top
right and bottom left images. And when it has moved away
from the transition area, the confidence of ASR 6 decreases
dramatically and the peak is now centered on ASR 7.

Figure 6 shows the distribution of weighting used on the
localization strategies for calculating the overall confidence
values. The solid line is the plot of distance method weights
and the dashed line represents the weights of the relative ori-
entation method. For the first three ASRs, the weights for
both distance and orientation are initialized to be 0.5 because
we only start computations after the third ASR. The ASR dis-
tance weight then increases, because the confidence on ASR
distance is higher than the confidence computed from the ori-
entation method. As time progresses, the weights of the dis-
tance method decrease due to a decrease in confidence, and
vice versa for confidence from the orientation method.

The results from the confidence maps show that the method
proposed provides a consistent approach for using an inexact
“cognitive map” to allow a mobile robot to find its way back
home. It does not provide the exact pose of the robot in the
environment, but rather an approximation, which we believe
is sufficient for navigation and new exploration.

5 Conclusion

We have implemented a very basic algorithm for the robot
to find its way home, namely exploit ASR-distance traveled



to re-trace its movements to return home and comparing the
relative orientation between adjacent ASRs.

Anecdotal evidence suggests that one is aware of signif-
icant turns in a journey and we thus program our robot to
extract such information from its cognitive map. It turns out
that in the journeys experienced, such information does not
provide much help for the robot to locate itself. In the future,
we would like to investigate how the robot could orient itself
from the home position and how such more general orienta-
tion could be used to find one’s way home. Much has been
discussed with respect to the use of distance information in
cognitive mapping. For example, numerous experiments with
chickens and pigeons have shown that they are able to use
both absolute and relative distance in their search for food
(e.g., [Cheng et al., 2006]). Experiments with bees and ants
have shown that they can perform internal calculations of
the distance and direction traveled to perform path integra-
tion (e.g., [Cornell and Heth, 2004] for a general discussion).
Most of these experiments were concerned with the actual
distance traveled and how the individual species deal with the
errors in their measurements, as do most work on robot map-
ping to date. Using our robot, we have shown another way of
using distance information, namely ASR-distance traveled as
opposed to actual distance traveled.

ASR-distance is obtained from the shape of the ASR com-
puted. In the past, there has been scant evidence that hu-
mans/animals do pay attention to the shape of each local en-
vironment (or, in our terminology, ASR) very early on in their
initial exploration of a new environment. However, the de-
bate has now intensified and this is especially true in the ani-
mal literature where the problem is commonly referred to as
geometry in animal spatial behavior (see [Cheng and New-
combe, 2005]). In many of these experiments, a relocation
task utilizing a box-shaped environment is used, and the prin-
cipal axes of the environment appear to be most useful. Our
work here emphasized yet another possibility, namely using
a straight line distance between exits of interests in an ASR.
A remark is worth making regarding the surprisingly good
results obtained in our experiment. Although our robot was
allowed to wander on its own during all the trials, it managed
not to enter any of the rooms. Consequently, the robot ap-
pears to be constantly moving forward along the corridor and
this might have accounted for much of the success of the ex-
periment. This was not planned. It would be interesting to
see how the resulting ASRs would be if the robot enters, say,
the middle room and explores the space in it. Nonetheless the
current work has shown how we might use a mobile robot to
investigate more cognitively oriented strategies in cognitive
mapping.

References

[Cheng and Newcombe, 2005] K. Cheng and N. S. New-
combe. Is there a geometric module for spatial orienta-
tion? Squaring theory and evidence. Psychonomic Bull
Rev, 12:1–23, 2005.

[Cheng et al., 2006] K. Cheng, D. M. Kelly M. L. Spetch,
and V. P. Bingman. Small-scale Spatial Cognition in Pi-
geons. Behavioural Processes, 72:115–127, 2006.

[Chown et al., 1995] E. Chown, S. Kaplan, and D. Ko-
rtenkamp. Prototypes, location, and associative networks
(PLAN): Towards a unified theory of cognitive mapping.
Cognitive Science, 19(1):1–51, 1995.

[Cornell and Heth, 2004] E. H. Cornell and C. D. Heth.
Memories of travel: Dead reckoning within the cognitive
map. In G. Allen, editor, Human spatial memory: Remem-
bering where, pages 191–215. Lawrence Erlbaum Asso-
ciates, Mahwah, NJ, 2004.

[Denzler et al., 2002] J. Denzler, M. Zobel, and J. Triesch.
Probabilistic Integration of Cues From Multiple Cameras.
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