
Unary Automatic Graphs:

An Algorithmic Perspective

Bakhadyr Khoussainov1, Jiamou Liu1, and Mia Minnes2

1 Department of Computer Science
University of Auckland, New Zealand

2 Department of Mathematics
Cornell University, USA

Abstract. This paper studies infinite graphs produced from a natural
unfolding operation applied to finite graphs. Graphs produced via such
operations are of finite degree and can be described by finite automata
over the unary alphabet. We investigate algorithmic properties of such
unfolded graphs given their finite presentations. In particular, we ask
whether a given node belongs to an infinite component, whether two
given nodes in the graph are reachable from one another, and whether
the graph is connected. We give polynomial time algorithms for each
of these questions. Hence, we improve on previous work, in which non-
elementary or non-uniform algorithms were found.

1 Introduction

The underlying idea of automatic structures consists of using automata to rep-
resent structures and then to study the logical and algorithmic consequences of
such presentations. For example, there are descriptions of automatic linear orders
and trees in model theoretic terms such as Cantor-Bendixson ranks [13], [10].
Thomas and Oliver gave a full description of finitely generated automatic groups
[12]. Khoussainov, Nies, Rubin and Stephan have characterized the isomorphism
types of automatic Boolean algebras [8]. These results give the decidability of
the isomorphism problems for automatic ordinals and Boolean algebras [13].

The complexity of the first-order theories of automatic structures has also
been studied. Grädel and Blumensath constructed examples of automatic struc-
tures whose first-order theories are non-elementary [2]. Lohrey, on the other
hand, proved that the first-order theory of any automatic graph of bounded de-
gree is elementary [11]. This paper continues this line of research and investigates
computational properties of unary automatic graphs of finite degree. We use a
fundamental algorithmic property of automatic structures proved by Khous-
sainov and Nerode: the first-order theory of any automatic graph is decidable
[7]. In particular, for a fixed first-order formula φ(x̄) and an automatic graph G,
determining if a tuple ā from G satisfies φ(x̄) can be done in linear time. Refining
this, we find polynomial time algorithms for natural graph theoretic questions in
the class of unary automatic graphs of finite degrees. Since all such graphs can
be obtained by an unfolding operation applied to finite graphs (see Theorem 2),

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AUT Scholarly Commons

https://core.ac.uk/display/56362746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

we measure complexity based on the input size of the finite graphs. Specifically,
we are interested in the following decision problems for the graph G determined
by the pair of finite graphs (D,F):

• Connectivity Problem. Is the graph G connected?

• Reachability Problem. Given vertices x, y, is there a path from x to y?

• Infinite Component Problem. Does G have an infinite component?

• Infinity Testing Problem. Given a vertex x, is it in an infinite component?

For finite graphs, the first two problems can be solved in linear time and the
last two have obvious answers. However, for infinite graphs, much more work is
needed to investigate these problems. In the class of all automatic graphs, all
of these problems are undecidable (see [13]). Since all unary automatic graphs
are first-order definable in S1S (the monadic second-order logic of the successor
function), it is not hard to prove that all the problems above are decidable ([1],
[13]). However, the constructions which appeal to S1S yield algorithms with
non-elementary time complexity, since one needs to transform S1S formulas into
automata ([4]). The reachability problem has been studied in [3], [5], and [14] via
pushdown graphs. A pushdown graph is the configuration space of a pushdown
automaton. Unary automatic graphs are examples of pushdown graphs [14]. In
[3], [5], [14] it is proved that for a given node v in a pushdown graph, there
is an automaton that recognizes all nodes reachable from v. The size of this
automaton depends on the input node v. Moreover, the automata constructed by
this algorithm are not uniform (different automata are built for different vertices
v). It is therefore interesting to see for which classes of graphs the reachability
problem has a uniform solution (an automaton that tells whether any two nodes
belong to the same component). The practical advantage of a uniform solution is
that, once the automaton that recognizes reachability relation is built, deciding
whether node v is reachable from u by a path takes only linear time In this
paper, we show that for unary automatic graphs of finite degree, all the problems
above can be solved in polynomial time. Moreover, the reachability problem has
a uniform solution.

We now outline the rest of the paper. Section 2 introduces the main def-
initions needed and recalls a characterization theorem (Theorem 1) for unary
automatic graphs. Section 3 introduces unary automatic graphs of finite de-
gree; Theorem 2 explicitly provides a method for building these graphs and is
used throughout the paper. Section 4 and Section 5 solve the infinite component
problem and infinity testing problem, respectively. For easy reference, we list the
main results below. G is a given unary automatic graph of finite degree, A is the
unary automaton recognizing G, and n is the number of states of A.

Theorem 3 The infinite component problem for G is solved in O(n
3

2).

Theorem 4 The infinity testing problem for G is solved in O(n
5

2). When A is
fixed, a constant time algorithm decides the infinity testing problem on G.

Section 6 gives a polynomial time algorithm constructing uniform automata
that solve the reachability problem. This algorithm also yields a solution to the
connectivity problem for unary automatic graphs of finite degree.

Theorem 5 A polynomial time algorithm solves the reachability problem on G.
For inputs u, v, the running time of the algorithm is O(|u| + |v| + n

5

2).
Theorem 6 The connectivity problem for G is solved in O(n3).

2 Preliminaries

A finite automaton A over Σ is a tuple (Q, ι, ∆, F), where Q is a finite set of
states, ι ∈ Q is the initial state, ∆ ⊂ Q × Σ × Q is the transition table,
and F ⊂ Q is the set of final states. A run of A on a word σ1 . . . σn ∈ Σ⋆ is a
sequence q0, . . . , qn such that q0 = ι and (qi, σi+1, qi+1) ∈ ∆ for all i ≤ n − 1. If
qn ∈ F then the run is successful and we say that the automaton A accepts
the word. The language accepted by the automaton A is the set of all words
accepted by A. A set D ⊂ Σ⋆ is FA recognizable if D is the language accepted
by some finite automaton. For two states q0, q1, the distance from q0 to q1

is the minimum number of transitions required for A to go from q0 to q1. If
|Σ| = 1, we call A a unary automaton. A 2-tape automaton is a one-
way Turing machine with two semi-infinite input tapes. Each tape has written
on it a word from Σ⋆ followed by a succession of ⋄ symbols. The automaton
starts in the initial state, reads simultaneously the first symbol of each tape,
changes state, reads simultaneously the second symbol of each tape, changes
state, etc., until it reads ⋄ on each tape. The automaton then stops and accepts
the 2-tuple of words on its input tapes if it is in a final state. Formally, set
Σ⋄ = Σ ∪ {⋄} where ⋄ 6∈ Σ. The convolution of a tuple (w1, w2) ∈ Σ⋆2 is the
string w1 ⊗ w2 of length maxi |wi| over the alphabet (Σ⋄)

2 which is defined as
follows: the kth symbol is (σ1, σ2) where σi is the kth symbol of wi if k ≤ |wi|,
and is ⋄ otherwise. The convolution of a relation E ⊂ Σ⋆2 is the language
⊗E = {w1 ⊗ w2 | (w1, w2) ∈ E}. The relation E ⊂ Σ⋆2 is FA recognizable if
⊗E is recognizable by a 2-tape automaton.

A graph G = (V, E) is automatic over Σ if its vertex set V ⊂ Σ⋆ and
the edge relation E are FA recognizable. The binary tree ({0, 1}⋆, E), where
E = {(x, y) | y = x0 or y = x1}, is an automatic graph. We are interested in the
following class of automatic graphs:

Definition 1. A unary automatic graph is a graph (V, E) whose domain is
a regular subset of {1}⋆ and whose edge relation E is regular.

Convention. To eliminate bulky exposition, we fix the following assumptions: 1)
By “automatic graph”, we always mean “unary automatic graph”. 2) All graphs
are infinite unless explicitly specified otherwise. 3) The domains of automatic
graphs coincide with the set 1⋆ of all unary strings {λ, 1, 11, 111, . . .}. Hence, the
automaton recognizing the edge relation is sufficient for describing the graph. 4)
The graphs are undirected. All the notions and results below can be adapted
to the case when the domains are regular subsets of 1⋆ and when the graphs are
directed without materially changing the complexity of the algorithms.

Let G = (V, E) be an automatic graph. Let A be a unary automaton recog-
nizing E with n states. The general shape of A is given in Figure 1. All the states

reachable from the initial state by reading input (1, 1) are called (1, 1)-states. A
tail in A is a sequence of states linked by transitions without repetition. A loop
is a sequence of states linked by transitions such that the last state coincides
with the first one, and with no repetition in the middle. The set of (1, 1)-states
is a disjoint union of a tail and a loop, called the (1, 1)-tail and the (1, 1)-loop.
Let q be a (1, 1)-state. All the states reachable from q by reading inputs (1, ⋄)
are called (1, ⋄)-states. This collection of (1, ⋄)-states is also a disjoint union
of a tail and a loop (see the figure), called the (1, ⋄)-tail and the (1, ⋄)-loop.
The (⋄, 1)-tails and (⋄, 1)-loops are defined in a similar way. Since we con-
sider undirected graphs, we simplify the general shape of the automaton by only
considering edges labelled by (⋄, 1) and (1, 1). An automaton is standard if the
lengths of all its loops and tails equal some number p, called the loop constant.

(1, 1)-tail

(1, ⋄)-loop

(1, ⋄)-tail

(1, 1)-loop

(⋄, 1)-tail

(⋄, 1)-loop

Fig. 1. A Typical Unary Graph Automaton

We recall a characterization theorem of unary automatic graphs from [13].
Let D = (D, ED) and F = (F, EF) be finite graphs. Let R1, R2 be subsets of
D × F , and R3, R4 be subsets of F × F . Consider the graph D followed by ω
many copies of F , ordered as F0,F1,F2, Formally, the vertex set of F i is
F × {i} and we write f i = (f, i) for f ∈ F and i ∈ ω. The edge set Ei of F i

consists of all pairs (ai, bi) such that (a, b) ∈ EF . We define the infinite graph,
unwind(D,F , R̄), as follows: the vertex set is D ∪ F 0 ∪ F 1 ∪ F 2 ∪ . . .; the edge
set contains ED ∪ E0 ∪ E1 ∪ . . . as well as the following edges, for all a, b ∈ F ,
d ∈ D, and i, j ∈ ω:

– (d, b0) when (d, b) ∈ R1, and (d, bi+1) when (d, b) ∈ R2,

– (ai, bi+1) when (a, b) ∈ R3, and (ai, bi+2+j) when (a, b) ∈ R4.

Theorem 1. [9] A graph G has a unary automaton presentation if and only if it
is isomorphic to unwind(D,F , R̄) for some parameters D, F , and R̄. Moreover,
if A is a standard automaton representing G then the parameters D,F , R̄ can be
extracted in O(n2); otherwise, the parameters can be extracted in O(n2n), where
n is the number of states in A.

3 Unary Automatic Graphs of Finite Degree

A graph is of finite degree if there are finitely many edges connected to each
vertex v. A unary automaton A recognizing a binary relation is a one-loop
automaton if its transition diagram contains exactly one loop, the (1, 1)-loop.
The following is an easy proposition:

Proposition 1. Let G = (V, E) be a unary automatic graph, then G is of finite
degree if and only if there is a one-loop unary automaton A recognizing E. ⊓⊔

Each unary automaton has an equivalent standard unary automaton. In gen-
eral, the standard automaton may have exponentially more states. However, if A
is a one-loop automaton with n states, the (1, 1)-loop of the equivalent standard
one-loop automaton has at most n states, so the automaton itself has at most
4n2 states. Below, we assume the input automaton A is standard. Let p be the
loop constant of A, then A has exactly 4p2 states. In the following, we state all
results in terms of p rather than n, the number of states of the input automaton.

Definition 2 (Unfolding Operation). Let D = (VD, ED) and F = (VF , EF)
be finite graphs. The finite sets ΣD,F , ΣF contain all mappings η : VD → P (VF)
and σ : VF → P (VF) (respectively). The sequence α = ησ0σ1 . . . where η ∈ ΣD,F

and σi ∈ ΣF for each i yields the infinite graph Gα = (Vα, Eα) as follows:

• Vα = VD ∪ {(v, i) | v ∈ VF , i ∈ ω}.

• Eα = ED ∪ {(d, (v, 0)) | v ∈ η(d)} ∪ {((v, i), (v′, i)) | (v, v′) ∈ EF , i ∈ ω} ∪
{((v, i), (v′, i + 1)) | v′ ∈ σi(v), i ∈ ω}.

Figure 2 illustrates the general shape of a unary automatic graph of finite
degree built from D, F , η, and σω (σω is the infinite word σσσ · · ·). We use
Definition 2 to recast Theorem 1 for graphs of finite degree. The proof is omitted.

Theorem 2. A graph of finite degree G = (V, E) possesses a unary automatic
presentation if and only if there exist finite graphs D,F and mappings η : VD →
P (VF) and σ : VF → P (VF) such that G is isomorphic to Gησω . ⊓⊔

Fig. 2. Unary automatic graph of finite degree Gησω

If G is a unary automatic graph of finite degree, the parameters D, F , σ and
η can be extracted in O(p2) time, where p is the loop constant of the one-loop
automaton representing the graph. Furthermore, |VF | = |VD| = p.

4 Deciding the Infinite Component Problem

A component of a graph is the transitive closure of a vertex under the edge
relation. The infinite component problem asks whether a graph G has an
infinite component.

Theorem 3. The infinite component problem for unary automatic graphs of
finite degree G is solved in O(p3), where p is the loop constant of the unary
automaton recognizing G.

By Theorem 2, it suffices to consider the case when G = Gσω since Gησω has
an infinite component if and only if Gσω has one. Let F i be the ith copy of F in G
and xi be the copy of vertex x in F i. The finite directed graph Fσ = (V σ, Eσ) is
defined as follows. Nodes in V σ are the distinct connected components of F . For
simplicity, we assume that |V σ| = |VF | and use x to denote its own component
in F . The case in which |V σ| < |VF | is similar. For x, y ∈ VF , put (x, y) ∈ Eσ if
and only if y′ ∈ σ(x′) for some x′ and y′ that are in the same component as x
and y, respectively. Constructing Fσ requires finding connected components of
F and hence takes time O(p2). To prove Theorem 3, we make essential use of
the following definition which is taken from [6].

Definition 3. An oriented walk in a directed graph G is a subgraph P of G
that consists of a sequence of nodes v0, . . . , vk such that for 1 ≤ i ≤ k, either
(vi−1, vi) or (vi, vi−1) is an arc in G, and for each 1 ≤ i ≤ k, exactly one of
(vi−1, vi) and (vi, vi−1) belongs to P. An oriented walk is an oriented cycle if
v0 = vk and there are no repeated nodes in v1, . . . , vk.

In an oriented walk P , an arc (vi, vi+1) is called a forward arc and (vi+1, vi)
is called a backward arc. The net length of P , denoted disp(P), is the dif-
ference between the number of forward arcs and backward arcs. Note that the
net length can be negative. Given an oriented walk P = v0, . . . , vm , we define
the low point of P as min{disp(v0 . . . vℓ) | 0 ≤ ℓ ≤ m}. The low point of the
oriented walk P is at most min{0, disp(P)}, and hence is not positive. The next
lemma establishes a connection between oriented walks in Fσ and paths in G.

Lemma 1. Let P be an oriented walk from x to y whose net length is d and low
point is −ℓ . For every i ≥ ℓ, the oriented walk P defines a path P i in G from
xi to yi+d. Moreover, the smallest j such that P i ∩ F j 6= ∅ is equal to i − ℓ. ⊓⊔

Lemma 2. There is an infinite component in G if and only if there is an oriented
cycle in Fσ with positive net length.

Proof. We prove one direction; the other is left to the reader. Suppose there is
an infinite component D in G. Since F is finite, there must be some x in VF such
that there are infinitely many copies of x in D. Let xi and xj be two copies of x
in D with i < j. Consider a path between xi and xj . We can assume that on this
path there is at most one copy of any vertex y ∈ VF apart from x (otherwise,
there is another vertex in VF having an infinite number of copies in the infinite
component with these properties). By definition of Gσω and Fσ, the node x must
be on an oriented cycle of Fσ with net length j − i. ⊓⊔

Proof (Theorem 3). By Lemma 2, it suffices to decide if Fσ contains an oriented
cycle with positive net length. Such an oriented cycle exists if and only if there
is an oriented cycle with negative net length. Therefore, the following algorithm
searches for oriented cycles with non-zero net length.
ALG:Oriented-Cycle

1. Pick the first node x ∈ Fσ for which a queue has not been built. Initialize
the queue Qx to be empty. Let d(x) = 0, and put x into Qx marked as
unprocessed. If there is no such x ∈ Fσ, stop the process and return NO.

2. Define y to be the first unprocessed node in the queue Qx. If there are no
unprocessed nodes in Qx, return to (1).

3. For each node z in the set {z | (y, z) ∈ Eσ or (z, y) ∈ Eσ}, do the following:
(a) If (y, z) ∈ Eσ, set d′(z) = d(y) + 1; if (z, y) ∈ Eσ, set d′(z) = d(y) − 1.
(If both hold, do steps (a), (b), (c) first for (z, y) and then for (y, z).)
(b) If z /∈ Qx, set d(z) = d′(z), put z into Qx, and mark z as unprocessed.
(c) If z ∈ Qx then if d(z) = d′(z), move to next z; if d(z) 6= d′(z), stop the
process and return YES.

4. Mark y as processed and go back to (2).

We claim that the algorithm returns YES if and only if there is an oriented
cycle in Fσ with non-zero net length. Suppose the algorithm returns YES. Then,
there is a base node x and a node z such that d(z) 6= d′(z). Thus, there is an
oriented walk P from x to z with net length d(z) and there is an oriented walk
P ′ from x to z with net length d′(z). Let (P ′)− be the oriented walk P ′ in reverse
direction. Consider the oriented walk P(P ′)−: it is an oriented walk from x to
x with net length d(z) − d′(z) 6= 0. If there are no repeated nodes in P(P ′)−,
it is the required oriented cycle. Otherwise, let y be a repeated node in P(P ′)−

such that no nodes between the two occurrences of y are repeated. Consider the
oriented walk between these two occurrences of y; if it has a non-zero net length
it is our required oriented cycle and otherwise we can make the oriented walk
P(P ′)− shorter without altering its net length.

Conversely, suppose there is an oriented cycle P = x0, . . . , xm of non-zero
net length where x0 = xm. We assume for a contradiction that the algorithm
returns NO. Consider how the algorithm acts when we pick x0 at step (1). For
each 0 ≤ i ≤ m, the following statements hold (by induction on i).

(⋆) xi gets a label d(xi)
(⋆⋆) d(xi) equals the net length of the oriented walk from x0 to xi in P .

These statements suffice to yield a contradiction, and hence prove the correctness
of Oriented-Cycle.

Putting these pieces together, the following algorithm solves the infinite com-
ponent problem. Suppose we are given a unary automaton (with loop constant
p) which recognizes the unary automatic graph of finite degree G. Recall that
p = |VF |. We compute Fσ in time O(p2). Then we run Oriented-Cycle to de-
cide if Fσ contains an oriented cycle with positive net length. For each node x in
Fσ, the run time is O(p2). Since Fσ contains p nodes, this takes time O(p3). ⊓⊔

5 Deciding the Infinity Testing Problem

The infinity testing problem asks for an algorithm that, given a vertex v and
graph G, decides if the vertex belongs to an infinite component of the graph G.

Theorem 4. The infinity testing problem for G, a unary automatic graph of
finite degree with loop constant p, is solved in O(p5). When A is fixed, there is
a constant time algorithm that decides the infinity testing problem on G.

To prove Theorem 4 we outline several lemmas, the more difficult of which we
prove. The set C is defined as all nodes x in Fσ for which there exists an oriented
cycle from x with positive net length and low point 0. We call an oriented walk
simple if it contains no repeated nodes. For any k ≥ 0, let C[k] be the set of all
nodes x /∈ C[0] ∪ . . . ∪ C[k − 1] that can reach C via a simple oriented walk with
low point −k. Note that C ⊆ C[0]. Moreover, since |Fσ| ≤ p, a simple oriented
walk may have at most p steps and hence C[k] = ∅ for k > p − 1.

Lemma 3. Let x ∈ VF . If xi belongs to an infinite component of G then for all
j > 0, xi+j also belongs to an infinite component of G. ⊓⊔

Lemma 4. If x ∈ C, then xi is in an infinite component for all i ∈ ω. ⊓⊔

Lemma 5. For each vertex xi, xi belongs to an infinite component in G if and
only if node x ∈ C[k] for some 0 ≤ k ≤ min{i, p− 1}.

Proof. We prove the harder direction: if xi is in an infinite component, there is
an oriented walk from x to C with low point −k, where 0 ≤ k ≤ min{i, p−1}. Let
D be the infinite component of xi. Since F is finite, there must be y in VF such
that D contains infinitely many copies of y. Let ys and yt be two copies of y in D
with s < t. Take a path P in G between ys and yt such that P contains no more
than one copy of each vertex in VF apart from y. (If there is no such path P ,
choose another vertex y in VF with these properties). Let ℓ be the least number
such that P ∩Fℓ 6= ∅. Let zℓ be a vertex in P . Then P is divided into two paths
P1 and P2, where P1 goes from ys to zℓ and P2 goes from zℓ to yt. Hence there
is a path P3 from yt to zℓ+t−s. By joining P2 and P3 together we obtain a path
between zℓ and zℓ+t−s. We have defined an oriented cycle in Fσ with positive
net length and low point 0. Hence, z ∈ C. Take a path in G between xi and a
copy of z in D containing no more than one copy of each vertex in F . This is an
oriented walk in Fσ from x to z with low point not more than min{i, p− 1}. ⊓⊔

Lemma 6. If G is a unary automatic graph of finite degree presented by A with
loop constant p, the set C for G can be computed in time O(p4).

Proof. For each x ∈ Fσ, do a breadth-first search through Fσ for oriented
walks starting at x. To compute the path P , put (y, d) in a queue, where y is
the incremental destination of P and d is its net length. We keep track of the
following properties of the pair (y, d):

1. level(y, d) is the length of the oriented walk P from x to y; and

2. path(y, d) is a tuple of pairs (x0, d0) . . . (xlevel(y,d), dlevel(y,d)) coding the ini-
tial segment of P . Note: (x0, d0) = (x, 0) and (xlevel(y,d), dlevel(y,d)) = (y, d).

Given input x ∈ Fσ, the following algorithm checks membership in C.
ALG:C-Membership

1. Put (x, 0) into the (initially empty) queue Q. Mark (x, 0) as unprocessed and
set level(x, 0) = 0, path(x, 0) = (x, 0).

2. If no unprocessed pair is left in the queue, stop and output NO. Otherwise,
take the first unprocessed (y, d) in Q.

3. If level(y, d) ≥ p, stop and output NO.
4. For arcs e of the form (y, z) or (z, y) in Eσ do the following:

(a) If e = (y, z), set j = d + 1; if e = (z, y), set j = d − 1.
(b) If z = x and j > 0, stop the process and return YES.
(c) If (z, d′) is not in path(y, d) for any d′, and if j ≥ 0 and (z, j) /∈ Q, then
put (z, j) into Q, mark (z, j) as unprocessed, set level(z, j) = level(y, d)+1,
set path(z, j) = path(y, d) · (z, j).

5. Mark (y, d) as processed and go back to (2).

We claim that C-Membership on input x returns YES if and only if x ∈ C.
Suppose the algorithm returns YES. Then there is a simple oriented walk P from
x to x with positive net length. Let P be x0, . . . , xm such that x0 = xm = x. The
algorithm ensures that the net length of the (sub)oriented walk in P from x0 to
each xi is non-negative. Thus, the low point of P is no less than 0 and x ∈ C.
For the other direction, suppose P = x0, . . . , xm is an oriented cycle of positive
net length and zero low point. Assume the algorithm does not return YES. Run
the algorithm from x0. For all xi, the following statements hold by induction.

(⋆) There exists di ≥ 0 such that (xi, di) ∈ Q.
(⋆⋆) di equals the net length of the oriented walk from x0 to xi in P .

Note that level(y, d) ≤ p for all (y, d) ∈ Q. Moreover, every time the level is
incremented by 1 the net length either goes up or down by 1, hence d must also
be no more than p. Thus, the cardinality of Q is bounded above by p2 and so
for each x ∈ Fσ, the algorithm takes time O(p3). To compute C, we need to run
C-Membership on every x in Fσ, taking time O(p4). ⊓⊔

Using Lemma 6, we iteratively compute C[k] for any 0 ≤ k ≤ p−1 as follows.
First, compute the set C in time O(p4). For each x /∈ C[0]∪ · · · ∪ C[k − 1] we run
operations similar to the ones described above, except that at step (4)(b), the
process stops and returns YES whenever z ∈ C and j ≥ −k, and at step (4)(c),
the process puts a pair (z, j) into the queue Q if j ≥ −k and (z, j) /∈ Q. The
proof of correctness is like that of C-Membership. This algorithm runs in O(p4).

Proof (Theorem 4). We assume the input vertex xi is given by tuple (x, i). By
Lemma 5, to check if xi is in an infinite component, the algorithm needs to
compute C[0], . . . , C[min{i, p − 1}]. As a consequence of Lemma 6, this takes
time O(p5). The algorithm then checks whether x ∈ C[k] for some 0 ≤ k ≤
min{i, p − 1}. Once the sets C[0], . . . , C[p − 1] are found, checking whether xi

belongs to an infinite component takes constant time. ⊓⊔

6 Deciding the Reachability and Connectivity Problems

The reachability problem asks whether two given vertices u and v in a unary
automatic graph of finite degree belong to the same component.

Theorem 5. Suppose G is a unary automatic graph of finite degree represented
by unary automaton A of loop constant p. A polynomial time algorithm solves the
reachability problem on G. For inputs xi, yj, the algorithm runs in O(i+ j + p5).

We restrict to the case G = Gσω (the general case requires few changes). The
infinity testing algorithm checks if xi is in a finite component in O(p5) time, and
leads to two possible cases. First, suppose that xi is in a finite component.

Lemma 7. If xi is in a finite component, then xi and yj are in the same com-
ponent only if i − p < j < i + p. ⊓⊔

To check if xi and yj are in the same component, we run a breadth first search
in G starting from xi visiting all vertices in F i−i′ , . . . ,F i+p (i′ = min{p, i}) .

ALG: FiniteReach

1. Put (x, 0) into the (initially empty) queue Q, marked as unprocessed.

2. If there are no unprocessed pairs in Q, stop the process. Otherwise, let (y, d)
be the first unprocessed pair. For arcs e of the form (y, z) or (z, y) in Eσ:
(a) If e = (y, z), let d′ = d + 1; if e = (z, y), let d′ = d − 1.
(b) If −i′ ≤ d′ ≤ p and (z, d′) /∈ Q, put (z, d′) into Q marked as unprocessed.

3. Mark (y, d) as processed, and go to (2).

Then, xi and yj are in the same (finite) component if and only if after running
FiniteReach on the input xi, the pair (y, j − i) is in Q. The running time is
bounded by the number of edges in G restricted to F0, . . . ,F2p, hence is O(p3).

Corollary 1. If all components of G are finite and if we represent (xi, yj) by
(xi, yj , j − i), an O(p3)-algorithm checks reachability for xi and yj. ⊓⊔

On the other hand, suppose that xi is in an infinite component. We begin
with an algorithm that computes all vertices y ∈ VF whose ith copy lies in the
same component as xi. The algorithm is identical to FiniteReach, except that
Line (2b) in FiniteReach is changed to the following: (2b’) If |d′| ≤ p and
(z, d′) 6∈ Q, then put (z, d′) into Q and mark (z, d′) as unprocessed. We use this
modified algorithm to define the set Reach(x) = {y | (y, 0) ∈ Q}. Intuitively, we
can think of the algorithm as a breadth first search through F0∪· · ·∪F2p which
originates at xp. Therefore, y ∈ Reach(x) if and only if there exists a path from
xp to yp in G, restricted to F0 ∪ · · · ∪ F2p.

Lemma 8. If xi, yi are both in infinite components, they are in the same com-
ponent iff y ∈ Reach(x).

Proof. Assume xi, yi are in infinite components. Suppose y ∈ Reach(x). There
is a path P in G from xp to yp. Let ℓ be least such that Fℓ ∩P 6= ∅. If i ≥ p− ℓ,
then xi and yi are in the same component. Thus, suppose i < p − ℓ. Let z be
such that zℓ ∈ P . Then P is P1P2 where P1 is a path from xp to zℓ and P2 is
a path from zℓ to yp. By Lemma 3, since xi is in an infinite component, so is
xp. There is r > 0 such that the set {xp+rm | m ∈ ω} is contained in a single
component. Likewise, there is an r′ > 0 such that {yp+r′m | m ∈ ω} is in one
component. Consider xp+rr′

and yp+rr′

. There is a path P ′
1P

′
2 from xp+rr′

to
yp+rr′

. A second path P ′ from xp to yp goes from xp to xp+rr′

, then along P ′
1P

′
2

from xp+rr′

to yp+rr′

, and finally to yp. The least ℓ′ such that Fℓ′ ∩ P ′ 6= ∅ is
larger than ℓ. Iteratively lengthening the path between xp and yp until i < p− ℓ′

brings us to the previous case.
To prove the implication in the other direction, we assume that xi and yi

are in the same infinite component. We want to prove that y ∈ Reach(x). Let
i′ = min{p, i}. Let P be a path in G from xi to yi. We use P to construct a path
which stays in F i−i′ ∪· · ·∪F i+p. Let ℓ(P) be largest such that P ∩Fℓ(P) 6= ∅; let
ℓ′(P) be least such that P ∩Fℓ′(P) 6= ∅. If i− i′ ≤ ℓ′(P) and ℓ(P) ≤ i+p, we are
done. Otherwise, let P1, . . . , Pk be a sequence of subpaths of P , each beginning
and ending in F i, such that P = P1 · · ·Pk and for each 1 ≤ j ≤ k, ℓ(Pj) = i or
ℓ′(Pj) = i. It is not hard to see that each Pj can be replaced by a path P ′

j with
the same start and end points and which satisfies i− i′ ≤ ℓ′(P ′

j) ≤ ℓ(P ′
j) ≤ i+ p.

This new path witnesses that y ∈ Reach(x). ⊓⊔

We inductively define a sequence Cl0(x), Cl1(x), . . . such that each Clk(x) is a
subset of VF . Set Cl0(x) = Reach(x). For k > 0, set Clk(x) = Reach(σ(Clk−1(x))).

Lemma 9. Suppose j ≥ i and xi, yj are both in infinite components. xi and yj

are in the same component if and only if y ∈ Clj−i(x). ⊓⊔

The following algorithm uses the lemma to solve the reachability problem.
ALG: Naı̈veReach

1. Check if each of xi, yj are in an infinite component of G (see Theorem 4).
2. If exactly one of xi and yj is in a finite component, then return NO.
3. If both xi, yj are in finite components, run FiniteReach on xi and check if

(y, j − i) ∈ Q.
4. If both xi and yj are in infinite components, check if y ∈ Clj−i(x).

Naı̈ve Reach computes Cl0(x) in time O(p3). Given Clk−1(x), we can com-
pute Clk(x) in time O(p4). Hence, on input xi, yj, Naı̈veReach takes time
O((j − i) · p4). We will now improve this bound. From Lemma 5, xi is in an
infinite component in G if and only if there is an oriented cycle C with positive
net length, zero low point, and reachable from x by a simple oriented walk with
low point ≥ −i. Assume xi is in an infinite component. The algorithm for the
infinity testing problem finds such an oriented cycle C. And, it can compute the
net length r of C. All vertices in {xi+mr | m ∈ ω} belong to the same component.

Lemma 10. Cl0(x) = Clr(x). ⊓⊔

We give a new algorithm, Reach, by replacing line (4) in Naı̈veReach with: (4’)
If xi and yj belong to infinite components, compute Cl0(x), . . ., Clr−1(x). If
y ∈ Clk(x) for k < r with j − i = k mod r, return YES ; otherwise, return NO.

Proof (Theorem 5). By Lemma 9 and Lemma 10, Reach returns YES iff xi and
yj are in the same component. Calculating Cl0(x), . . . , Clr−1(x) requires time
O(p5). Therefore the running Reach on xi, yj takes O(i + j + p5). ⊓⊔

In fact, the algorithm produces k < p such that to check if xi, yj (j > i) are
in the same component, we need to test if j − i < p and if j − i = k mod p. If G
is fixed, we may pre-compute Cl0(x), . . . , Clrx−1(x) for all x, so deciding if two
vertices u, v belong to the same component takes linear time. The above proof
can also be used to build a unary automaton that decides reachability uniformly.

Corollary 2. With G as above, there is a deterministic automaton with at most
2p4 + p3 states that solves the reachability problem on G. The time required to
construct this automaton is O(p6). ⊓⊔

This corollary can be applied to solve the connectivity problem.

Theorem 6. The connectivity problem for unary automatic graphs of finite de-
gree is solved in time O(p6), where p is the loop constant of the unary automaton.

⊓⊔

References

1. A. Blumensath, Automatic Structures. Diploma Thesis, RWTH Aachen, 1999.
2. A. Blumensath, E. Grädel. Finite presentations of infinite structures: Automata

and interpretations. Theory of Computing Systems, vol. 37, pp. 642-674, 2004.
3. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-

tomata: Application to model-checking. Proc. CONCUR’97, LNCS 1243, 135-150,
1997.

4. J. R. Büchi, On a decision method in restricted second-order arithmetic. Proc.
CLMPS, Stanford University Press, 1-11, 1960.

5. J. Esparza, D. Hansel, P. Rossmanith, S. Schwoon, Efficient algorithms for model

checking pushdown systems, Proc. CAV 2000, LNCS 1855, Springer, 232-247, 2000.
6. P. Hell, J. Nes̆etr̆il, Graphs and Homomorphisms. Oxford University Press, 2004.
7. B. Khoussainov, A. Nerode, Automatic presentation of structures. LNCS 960, 367-

392, 1995.
8. B. Khoussainov, A. Nies, S. Rubin, F. Stephan, Automatic structures: richness and

limitations. Proc. LICS, 44-53, 2004.
9. B. Khoussainov, S. Rubin, Graphs with automatic presentations over a unary al-

phabet. J. of Automata, Languages and Combinatorics 6(4), 467-480,2001.
10. B. Khoussainov, S. Rubin, F. Stephan, Automatic linear orders and trees. ACM

Trans. Comput. Log. 6(4), 675-700, 2005.
11. M. Lohrey, Automatic structures of bounded degree. Proc. LPAR, LNAI 2850, 344

- 358, 2003.
12. G. P. Oliver, R. M. Thomas, Automatic presentations for finitely generated groups.

Proc. STACS Springer, LNCS 3404, 693 - 704, 2005.
13. S. Rubin, Automatic Structures, PhD Thesis, University of Auckland, 2004.
14. W. Thomas, A short introduction to infinite automata, Proc. DLT, Springer, LNCS

2295, 130-144, 2002.

