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Abstract. A computable graph is computably categorical if any two
computable presentations of the graph are computably isomorphic. In
this paper we investigate the class of computably categorical graphs. We
restrict ourselves to strongly locally finite graphs; these are the graphs
all of whose components are finite. We present a necessary and sufficient
condition for certain classes of strongly locally finite graphs to be com-
putably categorical. We prove that if there exists an infinite ∆0

2-set of
components that can be properly embedded into infinitely many compo-
nents of the graph then the graph is not computably categorical. We also
show that the ∆0

2-bound found is sharp. This is proved by a construction
(that we outline in this paper) that builds a strongly locally finite com-
putably categorical graph with an infinite chain of properly embedded
components. There are also several examples.

1 Introduction

In this paper we are interested in computable graphs. A computable graph
G is a pair (V,E) where the set V of vertices and the set E of edges are both
computable sets. All our graphs are undirected and infinite. If G is a computable
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graph isomorphic to a graph G′ then G is called a computable presentation
of G′ and G′ is called computably presentable. For a computable graph G we
can always assume that the set of vertices of G is ω, the set of natural numbers.

The study of computable structures goes back to the late 1950s and finds its
roots in the work of A. Malcev [15] and M. Rabin [16]. Later the theory has been
developed by Yu. Ershov and A. Nerode and their colleagues (e.g. [3]). For the
current state of the area see, for example, the book by Ershov and Goncharov
[7], the Handbooks on computable models and algebra [5] [6]. See also [11].

One of the central themes in the theory of computable structures is concerned
with computable isomorphisms. We say that two computable graphs G1, G2

have the same computable isomorphism type if G1 and G2 are computably
isomorphic.

Definition 1. The number of computable isomorphism types of graph G, de-
noted by dim(G), is called the computable dimension of G. If the computable
dimension of G equals 1 then the graph G is called computably categorical.

For example the graph (ω,E) where E = {{i, i + 1} | i ∈ ω} is computably
categorical. The graph consisting of ω many copies of (ω,E) is not computable
categorical; in fact, it has computable dimension ω. In general, providing ex-
amples of computably categorical graphs or graphs of computable dimension ω
is easy. S. S. Goncharov in [9] was the first to provide examples of graphs of
computable dimension n, where n > 1. In this paper we will be interested in
the study of computably categorical graphs in a specific class of graphs called
strongly locally finite graphs.

The study of computably categorical structures constitutes one of the major
topics in the study of computable isomorphisms. Here the goal is to provide a
characterization of computably categorical structures within specific classes of
structures. This has been done for Boolean algebras [4], linearly ordered sets [17],
trees [14], Abelian groups [8], ordered Abelian groups [12], etc. Hence, this paper
fits the general program devoted to the study of computable isomorphisms.

Let S be a sequence G0,G1, . . . of pairwise disjoint finite graphs. Define the
new graph GS as the disjoint union of these graphs. More formally, the set of
vertices of GS is

⋃
i∈ω Vi and the set of edges is

⋃
i∈ω Ei.

Let G be a graph. We say that vertices v and w are connected if there
is a path from v to w. In this case we also say that w is reachable from v.
The component of G is a maximal subset of G in which any two vertices are
connected. The component containing a vertex v is denoted by C(v).

We say that G is strongly locally finite if every component of G forms a
finite graph. It is not hard to see that G is strongly locally finite if and only
if G is GS for some sequence S of pairwise disjoint finite graphs. The following
proposition gives a full description of computable dimensions for strongly locally
finite graphs:

Proposition 1. The computable dimension of any strongly locally finite graph is
either 1 or ω. In particular, no strongly locally finite graph has a finite computable
dimension n, where n > 1.



Proof. We invoke the following well-known result of Goncharov [10]. If any two
computable presentations of a structure A are isomorphic via a ∆0

2-function then
the computable dimension of A is either 1 or ω. Now, if G is strongly locally
finite then any two computable presentations of G are isomorphic via a ∆0

2-
function. ut

By this proposition, it makes perfect sense to work towards a characterization
of computably categorical strongly locally finite graphs. This is the subject of
this paper.

Here is an outline of the rest of the paper. In the next section we provide
a necessary and sufficient condition for certain types of strongly locally finite
graphs to be computably categorical. In Section 3 we prove that if there is a
infinite ∆0

2-set X of vertices in graph G such that C(v), the component contain-
ing v, embeds into infinitely many components of G for all v ∈ X, then G is not
computably categorical. In Section 4 we give several examples of computably
categorical and non-computably categorical strongly locally finite graphs. Fi-
nally, in the last section we outline a construction of a computably categorical
strongly locally finite graph that possesses a infinite chain of embedded com-
ponents. In particular this example shows that the existence of infinitely many
components each of which can be embedded into infinitely many components
does not guarantee computable categoricity. The example also shows that the
∆0

2-complexity used in the proof of the main result in Section 3 is sharp.
Finally, all our graphs considered in this paper are strongly locally finite.

2 Computable Categoricity and The Size Function

Let G be a computable graph. Define the size function sizeG : V → ω by
sizeG(v) = |C(v)|, where C(v) is the component of vertex v.

Lemma 1. Let G1,G2 be computable presentations of G such that sizeG1 , sizeG2
are computable. Then G1 and G2 are computably isomorphic.

Proof. For i ∈ {1, 2}, we can effectively reveal C(v) for any vertex v in Gi

by searching for the sizeGi
(v) vertices that are connected to v. To construct a

computable isomorphism between G1 and G2, map each v to the corresponding
vertex v′ in G2 such that C(v) ∼= C(v′). In the construction, use the back and
forth method of building the isomorphism. ut

The lemma implies that G is computably categorical if the size function is
computable for all computable presentations of G.

Proposition 2. Suppose sizeG is a computable function. The graph G is com-
putably categorical if and only if the size function is computable for all computable
presentations of G.

Proof. One direction is proved by Lemma 1. The other direction is straightfor-
ward since from G to any computable presentation G′ of G there is a computable
isomorphism h. Then sizeG′(v) = sizeG(h(v)). ut



In the rest of this section we suppose that sizeG is computable. For any
vertex v ∈ V , one effectively reveals the component of v by using sizeG(v). So,
we effectively list (without repetition) C0, C1, . . . all components of G.

Given two finite graphs H1 = (V1, E1) and H2 = (V2, E2), we say H1 prop-
erly embeds into H2 if V1 can be mapped injectively to a proper subset of V2

that preserves the edge relation. We denote it by H1 ≺ H2.

Lemma 2. If there are infinitely many i such that {j | Ci ≺ Cj} is an infinite
set, then G is not computably categorical.

Proof. Our goal is to build a graph G′ = (ω,E′) such that G′ ∼= G but G′ is not
computably isomorphic to G. Let Φ0, Φ1, . . . be a standard enumeration of all
partial computable functions from ω to ω. We construct a graph G′ that satisfies
the following requirements:

Pe : Φe is not an isomorphism from G to G′

The requirement Pe has a higher priority than Pt if t > e. We construct G′
by stages. At stage s we construct a finite graph G′s so that G′s is isomorphic to
G restricted to C0 ∪ . . . ∪ Cs−1, G′s ⊂ G′s+1 for all s, and fs is the isomorphism
constructed at stage s. Our desired graph will be G′ = ∪s G′s. Set G′0 to be the
empty graph. Set f0 to be undefined.

At stage s+ 1, consider Gs obtained by adding Cs to Gs−1. Let C ′0, . . . , C
′
s−1

be all components in G′s−1 such that each C ′i is isomorphic to Ci via the partial
function fs for i < s. Find minimal e ≤ s+ 1 such that for some i < s we have:

1. Φe has not been processed and Φe,s+1 is defined on Ci.
2. Φe,s+1 is a partial isomorphism.
3. The component C ′j = Φe(Ci) is free for Φe, and Ci ≺ Cs.

If such e does not exist then go on to the next stage. Otherwise, act as follows:
(1) Extend C ′j to a component, denoted by C ′s, such that C ′s ∼= Cs; (2) Build
a new copy C ′j isomorphic to Cj ; (3) Redefine fs by mapping Cj to C ′j and
Cs to C ′s. Declare C ′s not free for all Φt with t > e, and declare Φe processed.
This completes the construction for G′s+1.

The correctness of the construction is now a standard proof. The proof is
based on the following two observations. First of all, one inductively shows that
each requirement Pe is satisfied. Secondly, one proves that the function f(v) =
lims fs(v) establishes an isomorphism (which is necessarily a ∆0

2-set). ut

For a computable graph G with a computable size function, let C0, C1, . . . be
an effective list of all components of G. Define the proper extension function
extG : ω → ω by extG(i) = |{j | Ci ≺ Cj}|.

Lemma 3. Suppose there are finitely many i such that the set {j | Ci ≺ Cj} is
infinite. If extG is not computable then G is not computable categorical.



Proof. The construction of G′ that is isomorphic but not computably isomorphic
to G is very similar to the construction for the previous lemma. The only differ-
ence is that we start with G0 as consisting of all (finitely many) components in
G that embed into infinitely many components. Therefore in this construction
let C0, C1, . . . list all other components in G. The construction of the previous
lemma is then repeated.

Suppose Pe is the requirement with the highest priority that is not satisfied.
Let s be the stage when all requirements with higher priorities are satisfied. Since
Φe is an isomorphism, we can compute the the function extG as follows. Consider
Ci for which Φe(Ci) is free for Φe. Note that there are only finitely many Ci that
are not free for Φe. Let t be the stage > s such that Φe,t is defined on Ci. From
this stage on Ci can not be properly embedded into Ck for all k > t. Hence the
number of proper extensions of Ci in Gt can be computed effectively. ut

We can now prove the following characterization theorem:

Theorem 1. Let G be a graph such that sizeG is a computable function. Then
the following are equivalent:

1. G is computably categorical.
2. The size function is computable in all computable presentations of G.
3. There are finitely many i such that the set {j | Ci ≺ Cj} is infinite and the

function extG is computable.

Proof. The equivalence of (1) and (2) follows from Proposition 2. The direction
(1) to (3) follows from the lemmas above. We prove the implication (3) → (1).
So, let G′ be a computable presentation of G. Take all components Ci such that
{j | Ci ≺ Cj} is infinite. There are only finitely many such Ci; non-uniformly
map them to isomorphic components in G′.

Take Ci such that {j | Ci ≺ Cj} is finite. Since extG is computable, we can list
all components X1, . . ., Xp in G that properly extend Ci. In G′ find components
Y , Y1, . . ., Yp such that Y is isomorphic to Ci and each Yi is isomorphic to Xi.
Map Ci isomorphically to Y . It is not hard to show, using the definition of the
function extG and induction on the number of proper extensions of Ci, that Y
is a component of G′ isomorphic to Ci. ut

3 A Sufficient Condition for Not Computably Categorical

In this section we do not assume computability of the size function sizeG . The
theorem below gives us a version of Lemma 2 in this case.

Theorem 2. Let G be a strongly locally finite graph on which the reachability
relation is computable. If there exists an infinite ∆0

2 set of vertices X such that
(∀x ∈ X)(∃∞v)[C(x) ≺ C(v)], then G is not computably categorical.



Proof. For each s ∈ ω, let Gs be the restriction of the graph of G to vertices
among {0, ..., s}. Since G is computable, we can uniformly compute Gs. For each
v ∈ {0, ..., s}, let Cs(v) denote the connected component of v in Gs. Since the
reachability relation on G is computable, we may assume without loss of gener-
ality that if Cmax(v,w)(v) 6= Cmax(v,w)(w), then Cs(v) 6= Cs(w) for all s. That is,
when a new vertex is added to the graph of G it is immediately decided whether
it is in the same component as any previously present vertices.

We will build a computable graph H ∼= G such that we meet for each e ∈ ω
the requirement:

Re : Φe is not an isomorphism from H to G

We will construct H by stages. At each stage s we will have a function
hs : Gs

∼= Hs and we will ensure that h = lims hs exists.
If we declare that hs(v) = w, then we will define hs such that hs : Cs(v) ∼=

Cs(w). If at a later stage t the component of v in G grows (Cs(v) ( Ct(v)), and
we still have ht(v) = hs(v), then we will add a new vertex to Ht and define ht

to extend hs so that ht : Ct(v) ∼= Ct(w).
To meet requirement Re we will find a vertex ve such that either Φe(ve) ↑ or

C(ve) ≺ C(Φe(ve)).
Let {Xs}s∈ω be a ∆0

2 approximation of X. For n, s ∈ ω, let xn,s = µx[x ∈
Xs∧(∀m < n)[x 6∈ Cs(xm,s)]]. Note that since X is ∆0

2 and since each component
of G is finite, xn = lims xn,s exists for all n.

At each stage s of the construction, we will have ve,s = xn,s for some n ≥ e.
We will ensure that for each e ∈ ω, ve = lims ve,s exists and provides the witness
for meeting requirement Re.

The basic idea for meeting a single requirement R0 is as follows. We let
v0,s = x0,s at every stage s. If we ever see that Φ0,s(v0,s) ↓, and if Φ0 appears to
be an isomorphism in the sense that the component of v0,s in Gs is isomorphic to
the component of Φ0(v0,s) in Hs, then we begin to search for a new component
to appear in G that properly extends the component of v0,s. If v0,s ∈ X, then we
will find such a component. So, at the same time as searching for the component,
we also run the approximation of X to see if v0,t 6= v0,s at some later stage t.
If we first find out that v0 changes, then we continue to wait for Φ0 to converge
on this new v0. If we are provided with a new component extending that of v0,s

then we re-define our map h and extend the graph H so that the component of
Φ0(v0,s) in H is now isomorphic to the new large component, and we include
a new component in H that is isomorphic to the component of v0,s in G. Thus
at the end of stage s + 1, we will have Cs(v0,s) ≺ Cs(Φe(v0,s)). This will have
us meet requirement R0 unless the component of v0,s in G grows at some later
stage. If this happens, we again search for a proper extension of the component
of v0 in G to complete the diagonalization. Note that after a certain stage, v0,s

will never change, and will always be a member of X. Since the component of
v0 in G is finite, it can grow only finitely often. If after the component of v0 in
G has fully appeared we see that Φ0(v0) ↓, then we will at that point succeed in
meeting requirement R0.



The only extra complication for multiple requirements is that we want to
ensure that h : H ∼= G, so we must make sure that if some w ∈ range(hs), then
h−1(w) exists. That is, we only re-define h−1

s (w) finitely often. This is where we
will use the ve instead of just xe as witnesses. If we find that Φe(ve,s) ↓, but is
mapped to some component where we have already redefined h for the sake of
higher priority requirements, then instead of proceeding with the diagonalization,
we will change ve to be the next member of X (i.e., if ve,s = xn,s, we would let
ve,s+1 = xn+1,s+1). Since each requirement only causes h to be re-defined finitely
often, ve will only be re-defined finitely often for this reason. If we notice that
we were wrong about our guess for xn (i.e., xn,s 6= xn,s+1), then we will drop
back down all the ve,s ≥ xn,s to be as small as possible.

We now give the formal construction.
We may assume without loss of generality that if Cs(v) 6= Cs(v′), and if

Φe(v) ↓ and Φe(v′) ↓ then Cs(Φe(v)) 6= Cs(Φe(v′)). This is because since G has
the computable reachability relation, Cs(v) 6= Cs(v′) ⇒ C(v) 6= C(v′), so if
Φe maps v and v′ to the same component in H then we immediately have Re

satisfied. We also assume that Φe,s(x) ↓⇒ (∀y < x)[Φe,s(y) ↓].
Stage 0: Let ve,0 = xe,0 for all e ∈ ω. Let h0(0) = 0. Let H0 have the single

vertex 0 and no edges.
Stage s+ 1:
Step 1: Choose the least e such that Φe,s+1(ve,s+1) ↓ and Cs+1(ve,s+1) ∼=

Cs+1(Φe,s+1(ve,s+1)), and such that ve,s+1 = ve,s. If no such e exists, move
to Step 2. If h−1 or h have already been re-defined at earlier stages by higher
priority requirements on Φe,s+1(ve,s+1) or h−1(Φe,s+1(ve,s+1)), respectively, then
set ve,s+1 = xn+1,s+1, where n is such that xn,s = ve,s. For i > e, let vi,s+1 =
xn+1+i−e,s+1. For i < e, let vi,s+1 = xm,s+1, where m is such that xm,s = vi,s.
Move to stage s+ 2.

Otherwise, speed up the enumeration of G and the approximation of X until
we either find some t > s such that ve,t 6= ve,s (more precisely, xn,t 6= xn,s,
where ve,s = xn,s), or we find some t > s such that there exists v ∈ Gt,
v 6∈ dom(hs), and Ct(ve,s+1) ≺ Ct(v). In the first case, move to step 2. In
the second case, re-define H setting hs+1(v) = Φe,s+1(ve,s+1) and expand the
component of Φe,s+1(ve,s+1) to be isomorphic to Ct(v). Also introduce a new
component isomorphic to Ct(h−1

s (Φe(ve,s+1))) into Hs+1, and define hs+1 on
Ct(h−1

s (Φe(ve,s+1))) accordingly.
Step 2: Let n be least such that xn,s+1 6= xn,s. For e such that ve,s = xm,s

with m < n, let ve,s+1 = ve,s. Let e be least such that ve,s = xm,s with m ≥ n.
For i ≥ e, let vi,s+1 = xn+i−e,s+1.

Step 3: For all new vertices v introduced into Gs+1 (there may be more than
1 since we sped up the enumeration in step 1), if not already done so in step 1,
introduce corresponding new vertices into Hs+1. Extend hs+1 accordingly.

This completes the construction.

The correctness of the construction is based on the following observations.
Firstly, for each e, ve = lims ve,s exists; this tells us that each requirement Re is
met and is eventually satisfied. Secondly, for each v ∈ G, h(v) = lims hs(v) exists,



and that for each w ∈ H, h−1(w) = lims h
−1
s (w) exists. These together with the

fact that at each stage s, hs : Gs
∼= Hs show that h establishes an isomorphism

between G and H. Thus G ∼= H, but G is not computable isomorphic to H, and
hence G is not computably categorical. ut

We note that with essentially the same proof Theorem 2 can be strengthened
by removing the assumption that the reachability relation is computable.

4 Examples

In this section, we provide some examples of strongly locally finite graphs on
which the reachability relation is computable with various properties that are
either computably categorical or not computably categorical. In our examples
all the graphs have components of the following types.

Definition 2. 1. A cycle of length n > 2 is a graph isomorphic to {{1, ..., n}, E},
where E = {{1, 2}, {2, 3}, ..., {n− 1, n}, {n, 1}}. Denote this graph by Cn.

2. A sun of size n > 2 is obtained by attaching a new edge to every vertex of
a cycle of length n. Denote this graph by Sn.

3. A line of length n > 1 is a graph isomorphic to {{0, ..., n}, E}, where E =
{{0, 1}, {1, 2}, ..., {n− 1, n}}. Denote this graph by Ln.

4. C′n is obtained by attaching exactly 1 edge to only one vertex of Cn.
5. C′′n is obtained by attaching exactly 2 edges to only one vertex of Cn.

Example 1. Let G1 be the graph that for each n ≥ 1 contains a copy of Ln. This
graph is not computably categorical. Indeed, G1 has a presentation in which the
size function is computable. Each component of this graph is embedded into ω
many components. The rest follows from Lemma 2.

Example 2. There is a computably categorical graph such that in all computable
presentations of the graph the size function is not computable. The desired graph
is obtained as follows. Let G2 be the graph has a copy of Cn if n 6∈ K and a copy
of Sn if n ∈ K. The verification is left to the reader.

Example 3. There is a computably categorical graph such that in all computable
presentations of the graph the size function is not computable. Indeed, let G3

be the disjoint union of the graphs G1 and G2 described above. Then G3 is not
computably categorical for the same reason that G1 is not, and the size function
on G3 is intrinsically non-computable for the same reason as on G2.

In Theorem 1 we saw that for graphs on which the size function is computable,
if the proper extension function is computable in all computable presentations,
then the graph is computably categorical. We now generalize the definition of
the proper extension function to graphs on which the size function need not be
computable.

Definition 3. For a graph G and a vertex v of G, let ρ(v) = |{x | C(v) ≺ C(x)}|.
That is, ρ(v) is the number of components of G into which the component of v
can be properly embedded.



Example 4. There exists a graph G4 that is not computably categorical, but that
has a presentation on which the size function is computable.

We will simultaneously construct two computable presentations G4
∼= H4

that are not computably isomorphic, as follows.
Stage s: Introduce copies of Cs and C′s into both G4,s and H4,s. If Φe,s(v) ↓∈

CH4,s
e for some v ∈ CG4,s

e , then extend CG4,s
e to a copy of C′e and extend C′G4,s

e to a
copy of C′′e . In the other copy, extend CH4,s

e to a copy of C′′e . This ensures that Φe

is not an isomorphism, but maintains G4,s+1
∼= H4,s+1. It is not hard to show

that the construction is correct.

Our final example is of a structure that is computably categorical and yet
who’s proper extension function is not computable. This, together with the pre-
vious example, shows that the condition on the size function was necessary for
both parts of the equivalence between (1) and (3) in Theorem 1.

Example 5. There is a computably categorical graph on which the proper exten-
sion function is non-computable. Indeed, let G5 be the graph that has one copy
of Cn and one copy of Sn if n 6∈ K, and two copies of Sn if n ∈ K. We leave it
to the reader to show that the graph constructed has the desired properties.

5 Infinite Chains of Embedded Components

From the two theorems above, one may suggest that the existence of an infinite
chain of properly embedded components in a graph may imply that the graph is
not computably categorical. One may also suggest that the ∆0

2-bound in Theo-
rem 2 could be replaced with a Σ0

2 -bound. The main result of this section is to
refute these two suggestions and outline of a proof for the following result:

Theorem 3. There is strongly locally finite computably categorical graph that
possesses an infinite chain of properly embedded components. In fact, the set
{v | C(v) is properly embedded into ω many components} is computable in 0′′.

Proof. Let Φ0, Φ1, . . . be a standard enumeration of all partial computable func-
tions from ω2 to {0, 1}. Based on this, one builds an effective enumeration of
all computable graphs G0,G1,G2, . . . uniformly. On i at stage t we have: (1)
Vi,t ⊆ Vi,t+1, Ei,t ⊆ Ei,t+1 for t ∈ ω; (2)

⋃
t Gi,t = Gi, where Gi,t = (Vi,t, Ei,t);

(3) Vi,t = {0, . . . , ki,t} where ki,t is the maximal j ≤ t such that for all n,m ≤ j
the values Φi,t(n,m) are defined.

Our goal is to construct a graph G = (ω,E) such that G has an infinite
sequence C0 ≺ C1 ≺ C2 ≺ . . . of properly embedded components, and the
construction of G meets the following requirements:

Re : If Ge
∼= G then Ge is computably isomorphic to G

Here we show how to satisfy just one requirement Re. The general construc-
tion (that we omit in this paper due to space limitations) is based on putting



all strategies for Re on a priority tree. The general construction produces a true
path through the tree, the true path is computable in 0′′, and all the require-
ments Re are satisfied along the path. The general construction is somewhat
similar to and simpler than the constructions in [1], [2], and [13] .

The rest of the proof will handle one requirement Re. We need some notation
and definitions. We use cycles as defined in the previous section.

Let H be a graph and v be its vertex. To attach a cycle Cn to v means to
extend the graph H by adjoining to H the graph Cn and adding the edge {v, 1}.

The graph G that we construct will be strongly locally finite such that each
component of G will consist of a vertex v together with finitely many cycles
attached to v. We call such components special-cyclic components.

We approximate Ge as Ge,0 ⊆ Ge,1 ⊆ Ge,2 ⊆ . . . such that every component
of Ge,t is special-cyclic. During the construction we guarantee the following. If
Ge,t provides a component C that can not be embedded into Gt then C will
never be embedded into G. In this case Re is satisfied, and we ensure that G has
an infinite sequence of properly embedded components. Thus, we can always
assume that Ge,t is embedded into G currently built. During the construction we
also guarantee that no two components of G are isomorphic.

The graph Gt denotes approximation to G at stage t. Components of Gt are
denoted by Hj,t, and we assume a natural order between the components (e.g.
H1 < H2 if the minimum vertex in H1 is less than the minimum vertex in H2).

At stage t, the function ft denotes a partial isomorphism from Ge,t into Gt

that we build. We will also have finitely many selected components in Gt. We say
Hj,t (a component of Gt) is covered if there is a component He,j,t of Ge such
that ft maps He,j,t into Hj,t. We say that Re is in the waiting state (at stage t)
if there are selected and uncovered components of Gt. We say that Re recovers
(at stage t) if for every selected component H in Gt there is a (necessarily) unique
component H ′ in Ge,t such that H ′ embeds into H and H ′ can not be embedded
into any other component of Gt and f has not been defined on H ′. Now we
describe our stagewise construction of G against one Re.

Stage 0. Set G0 to contain two special-cyclic components such that one com-
ponent has a cycle of length 3 attached and the other has a cycle of length 4
attached. Select both components. Mark the first component. Re is now in the
waiting state. The function f0 is empty.

Stage t + 1. Compute Ge,t+1. Assume Re is in the waiting state. Build a
new component H in Gt such that the component built in the previous stage is
properly embedded into H. This builds Gt+1.

Assume Re has recovered. Let H1 be the marked component. Let H2 be
the first selected component such that H2 is not marked. For every selected
component H, consider H ′ in Ge,t+1 such that H ′ embeds into H, ft is not
defined on H ′, and H ′ does not embed into any other component of Gt. Extend
ft to ft+1 by mapping all such H ′ into H. Extend Gt to Gt+1 as follows:

1. Let t′ be the last recovery stage before stage t+ 1. To all components built
between stages t′ + 1 and t + 1 attach new and distinct cycles of distinct



unused lengths. This makes these components non-embeddable into each
other. Declare these components newly selected.

2. Declare all the components selected at stage t′ unselected.
3. Consider H1 and H2. To H2 attach a cycle of length n if H1 has a cycle of

length n attached to it and H2 has no cycle of length n attached. Remove
the mark from H1 and mark the newly extended H2. Declare H2 selected.

4. Construct a new component with a new cycle of unused length in Gt+1.

This finishes the description of stage t+ 1. Set G =
⋃

t Gt. Now we show that
G is a desired graph.

Lemma 4. Suppose there is a stage t after which Re never recovers. Then G
has an infinite chain of properly embedded components and Re is satisfied.

Proof. After stage t, the construction builds an infinite chain of properly em-
bedded components. Also, Ge 6∼= G′ and hence Re is satisfied. ut

Lemma 5. If Ge
∼= G then

⋃
t ft effectively extends to an isomorphism.

Proof. It must be the case that Φe is total. Let H1 be a component of G.

Case 1. The component H1 is never marked. In this case, by construction,
H1 must contain a cycle of length n such that no other component of G has
a cycle attached of the same length. Assume H1 is selected at stage t′. In the
next recovery stage t + 1, ft+1 maps H ′1,t+1 into H1,t+1. Since H ′1 is the only
component that contains a cycle of length n, we will have H1

∼= H ′1.

Case 2. Assume H1 is marked at stage t′ and let t + 1 be the next recovery
stage after t′. We can assume that ft′ maps H ′1 to H1.

At stage t+ 1 we have H2 (see stage t+ 1). H2 contains a cycle of length m
such that no other component has a cycle of length m. At stage t + 1 we also
have a mapping ft+1 such that ft+1 maps H ′1,t+1 to H1,t+1 and H ′2,t+1 to H2,t+1

and ft′ ⊆ ft+1. Let t1 be the next recovery stage after t + 1. Again it must be
the case that ft+1 ⊆ ft1 as otherwise Ge contains two components containing
cycles of length m (after which the construction guarantees that G contains no
two components with cycles of length m). ut

Lemma 6. Assume Ge
∼= G. Then G contains an infinite chain of properly em-

bedded components.

Proof. The components marked at recovery stages form the desired chain. ut

These lemmas prove that the construction is correct to satisfy one Re. In the
general construction our priority T will be the binary tree over the alphabet r, w
with the order r < w, where r represents recovery and w represents the waiting
state. The nodes of length e in T will be devoted to satisfy Re. ut
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