
Collaborative Soft Object Manipulation for Game
Engine-Based Virtual Reality Surgery Simulators

Stefan Marks
Email: dev.stefan.marks@gmx.net

Division for Biomedical Imaging and Visualization
Department of Computer Science

University of Auckland, New Zealand

John Windsor
Email: j.windsor@auckland.ac.nz

Advanced Clinical Skills Center
Department of Surgery

Faculty of Medical and Health Sciences
University of Auckland, New Zealand

Burkhard Wünsche
Email: burkhard@cs.auckland.ac.nz

Division for Biomedical Imaging and Visualization
Department of Computer Science

University of Auckland, New Zealand

Abstract

In this paper we analyse and evaluate the capabilities of popular game engines to simulate and interact
with soft objects. We discuss how these engines can be used for simulated surgical training applications,
determine their shortcomings and make suggestions how game engines can be extended to make them
more suitable for such applications.

Keywords: game engines, surgical simulation, collaboration, deformation

1 Introduction

Training tools using virtual reality (VR) simu-
lations are becoming increasingly important in
healthcare, in particular for applications which
involve complex procedures and tasks, such as
surgical training. The drivers for this include
the improvement of quality in medical care and
training, the need to reduce errors and costs [1], the
requirement of quality standards and assessment
methods for the performance of medical staff, and
the desire to increase patient safety.

Most commercially available simulators focus on
training individuals on a limited range of surgical
procedures. This restriction is a major drawback
since cooperation is considered an important di-
mension of simulations [2]. Only very expensive
simulators (mainly mannequins) are capable of
addressing this dimension.

The second drawback of commercially available
simulators is their high price, mainly due to
the high-end hardware and specialised input and
output devices (e.g. for force feedback). Only a
limited number of training centers have the means
to obtain simulators, so that surgeons and interns
have to travel to the closest centre to get training.

A third drawback is the constant “reinvention
of the wheel.” All simulators require the basic
components depicted in figure 1, which in general
are developed independently by each vendor.

Events
● Input events
● Output events

User

Graphics
● 3D models
● GUIs

Physics
● Rigid bodies
● Collision response
● Soft bodies
● Fluids/Smoke

Sound
● Play/Record sound

Surgical Simulator

Content
● Organ models

● Physiology model

● Sounds

● Tasks

● Movies

● User Interface

Figure 1: Functional components of a surgical simula-

tor.

There have been attempts to create extendable
frameworks for building surgical simulators (e.g.
SPRING [3], GiPSi [4], SOFA [5], [6]). They
all incorporate the above mentioned components
and a variety of mathematical models for the
physical simulation and interaction. But except
for SPRING (ironically the oldest project in the
list) they all lack the capability of networking with

S. Marks, J. Windsor, B. Wünsche, ‘Collaborative Soft Object Manipulation for Game
Engine-Based Virtual Reality Surgery Simulators’, Proceedings of Image and Vision
Computing New Zealand 2007, pp. 205–210, Hamilton, New Zealand, December 2007.

205



other simulators in order to develop collaborative
scenarios. Furthermore, sound support is not built
into one of them.

Modern game engines are structured similar to sur-
gical simulators (see figure 2) and also incorporate
a networking and sound component. Game engines
are well tested, robust and usually available at low
costs. This paper evaluates the suitability of game
engines for handling of soft objects in collaborative
scenarios, an essential aspect of surgical simulation
and training applications.

2 Game Engines

The use of games or game engines for medical
education is a little explored research subject with
many areas still undiscovered. One reason for
this might be the incoherency of the seriousness
of medicine and the playful, sometimes violent
character of computer games. Nevertheless, game
engines offer a vast pool of useful concepts and
resources in technical as well as in educational
aspects.

Projects like the “Serious Game Initiative” [7]
focus on offering help to “organize and accelerate
the adoption of computer games for a variety of
challenges facing the world today.” A subproject
founded by this initiative is “Games for Health” [8],
focusing mainly on games used in various health
care sectors.

Previous authors have so far concentrated on
applications where the game content was about
learning facts, rather than tasks and procedures.
For example, Wünsche et al. [9] have examined
how game engines can be used for visualisation of
medical datasets, and Mackenzie et al. [10] utilise
a game engine for anatomical education. However,
so far nobody has tried to simulate complex and
cooperative procedures, involving the interactive
manipulation of soft objects.

2.1 Design

A game engine is a complex software system
necessary for developing and playing games. Two
different games with the same underlying engine
differ by the game content , i.e. graphics, sounds,
storyline. Game engines build a bridge between
this content and the underlying hardware. With
the help of an operating system abstraction layer,
the same game content can be run on many
platforms (e.g. Windows, Linux, XBox) without
change.

Modern game engines consist of all or a subset of
functional blocks depicted in figure 2.

The Graphics Engine loads, displays, manipulates
and manages all the data related to graphical con-
tent and visual effects. 3D models of landscapes,
buildings, players and other characters and objects
can be loaded, textured, lit, and animated.

All audible content like sound effects, ambient
noise, and music, but also physical sound phenom-
ena like occlusion or Doppler effect, is handled by
the Audio Engine.

The Physics Engine implements advanced mathe-
matical models for calculating rigid body simula-
tions of arbitrarily shaped and articulated objects
(e.g. vehicles, machines).

Artificial intelligence, provided by the AI En-
gine, is needed for enabling Non-Player Characters
(NPC), the computer controlled antagonists or
team members, to navigate, make decisions, and
react to their environment.

The Networking component allows multiple players
to interact over a network. This is achieved by
sending the game state and actions of all players
and NPCs over the network, such that each con-
nected client sees the same instance of the virtual
world.

The great flexibility of a game engine is achieved
by Scripting languages that allow an immediate
access to the functions of the engine.

The remaining parts of a game engine manage the
memory and the efficient scheduling of processes
(Memory/Process Management), receive the user
input and other events, e.g from keyboards, mice,
joysticks (Event handling), or can load media like
music or videos (Streaming).

2.2 Advantages

Modern game engines utilise the latest graphics
hardware while still being compatible with older
technologies. This makes game engines capable of
handling the same game content on hardware with
different speed, memory and features.

Playing computer games is no longer an action
for single players but has evolved into multiplayer
gaming, bringing together several thousand players
at the same time [11]. Consequently, many game
engines offer carefully designed and tested network
support that enables users at different physical
locations anywhere in the world to cooperatively
accomplish tasks. Built-in support for recording
and playing sound over the network enables the
players to communicate in a natural way to co-
ordinate their actions. Textual input of messages
serves as an alternative way.

The stability and reliability of game engines is
secured by customers and developers worldwide,

206



O
p

er
at

in
g

 S
ys

te
m

Graphics

Events

Operating
System

Abstraction

Scripting

User

Storage

Graphics Engine
● Scene management
● Shaders
● Models
● Bones
● Animation
● Particles

Memory / Process
Management

Streaming
● Video
● Audio
● Map data

AI Engine
● Behavior
● Strategy
● Path planning
● Learning

Physics Engine
● Collision detection
● Collision response
● Rigid Body
● Joints
● Mass/Spring
● Particles/Fluids/Smoke
● Cloth

Audio Engine
● Play/Record sound
● Play music
● Acoustics
● Surround

Internet

Game Engine Game
Computer /

Game Console
Content

● Models

● Animations

● Maps

● Sounds

● Storyline

● Movies

● Dialogs

● User Interface

● Scripts

Sound

CPU

Memory

Input Devices

Network

Networking
● Client/Server
● Multiplayer

Figure 2: Functional blocks of a game engine.

who give feedback about errors and flaws. Fixes
and patches for those errors are then developed,
and returned to the customers.

All of these advantages are useful for developing
biomedical and scientific simulations, which run on
consumer level hardware.

The networking support enables the construction
of collaborative scenarios and provides verbal and
textual communication between participants. This
can be used by a supervising trainer to observe
an ongoing surgery simulation, to provide spoken
or written feedback, to interact with participants
and to change parameters of the simulation in
accordance with the skills of the participants.

The large user base of game engines ensures that
the underlying technology is regularly updated and
increases the number of potential users of the sim-
ulation, which helps with making the application
more stable. By allowing users to contribute new
models and scenarios, the quality and diversity of
simulations can be improved.

3 Methodology

3.1 Engine Selection

We started our selection of suitable game engines
with an evaluation of an internet game engine
database [12]. At the time of this evaluation (July
2007), this database contained 278 engines. We
disregarded engines still in an early development
state and those that were not developed or main-
tained any more. Engines without sound or other
essential components were also removed from the
list. Of the remaining engines, we selected those
with in-built means of creating new game envi-

ronments (maps). This requirement reduces the
complexity of the editing process as with it there
is no need for purchasing, installing and setting
up external editors and necessary conversion tools,
assumed the latter exist at all.

After the reduction of the original list by this
selection process, we chose from the remaining
engines those which were inexpensive and in our
opinion most popular and widely distributed:

• Unreal Engine 2 [13]
• id Tech 4 [14]
• Source Engine [15]

3.2 Evaluation

A first step in our evaluation process is the cre-
ation of a simple multiplayer map with isolated
physical objects. As a limited subset of surgical
actions, the objects are pushed and pulled by the
users. This demonstrates the ability of the engine
for exact replication of the state of objects on
the game server and the other connected users
(clients). Failing this test would restrict the engine
to playback of predefined animations triggered by
the users. This would drastically decrease the
degree of interactivity in cooperative scenarios.

In a second step, we connect several physical
objects by constraints (joints) and evaluate the
stability of the simulation when multiple users
push and pull this construct. This step demon-
strates the ability and stability of the physics
engine in resolving constraints, a prerequisite for
more complicated physical constructs, like mass-
spring systems, the simplest representation of soft
objects.

207



A third step is the evaluation of the extendability
of the game engine itself by means of scripting or
programming, called “modding.” This facilitates
the implementation of features which a game en-
gine might lack, such as soft tissue simulation and
new interaction tools.

4 Results

4.1 Unreal Engine 2

The Unreal Engine 2, used, e.g., by the game
“Unreal Tournament 2004” (see figure 3), is ca-
pable of simulating physical objects connected by
joints, but only in single player mode. It cannot
duplicate the state of moving physical objects over
the network.

We created a map including simple physical objects
like a shelve and a table. In addition, we modified
a freely available skeleton model1 by adding joints
to the arms, the legs and the skull.

When this skeleton is moved by the user on the
server, the user on the client will not see this
movement. In contrast the physical modelling of
the skeleton and the collision detection with it are
handled correctly on the server. The client player
sees the skeleton still lying on the table, but is
lifted up when walking over the skeleton, which in
reality lies on the ground as correctly seen by the
server user.

This asynchronism of the physics engine is not
considered an error, as in 2003, the time of the
release of the game, the physical simulation of
game objects was not yet an important aspect
of gameplay. Nevertheless, users wanted to cre-
ate multiplayer maps with synchronised physical
objects and thus developed a modification of the
physics engine [16] written in the engine’s scripting
language UnrealScript. Due to the age of the
Unreal Engine 2, this project has undergone no
further improvement since 2005 and is now no
longer available on servers.

1Skeleton model source: http://artist-3d.com/free_3d_
models/dnm/model_disp.php?uid=637

Figure 3: Multiplayer test map for the Unreal Engine

2. The skeleton shows up at different locations on the

server (left) and the client (right) when being moved

in multiplayer mode.

4.2 id Tech 4

The id Tech 4 engine, represented by the game
“Quake 4” was not able to fluently display physical
object movements on the connected client. Objects
moved with more than 25 frames per second on the
server, but only with about 5 frames per second on
the client. In rare cases, the same location update
problems as for the Unreal Engine 2 occurred.

In addition, it was not possible to connect physical
objects by joints, because the map editor did not
implement the adding of joint constraints in the
map. This lack was unexpected, as articulated
structures like cranes with swinging load can be
seen in the game “Doom 3,” which also uses the
id Tech 4 engine.

It is possible to access features of the game engine
by scripting, but only to a limited extent. Adding
a more sophisticated physics engine is not possible
since the low level functionality of the engine is
inaccessible.

4.3 Source Engine

With the purchase of a game of the “Half-Life
2” series, the user is authorised to download the
SDK (Software Development Kit) for the Source
Engine. This SDK enables the construction of new
maps and even modification of the source code of
the engine. The engine itself is constructed in a
modular manner, so that new features can easily
be added, e.g. the extension of the render engine
for automatic brightness adaption in dark or bright
scenes (High Dynamic Range), which was released
with the expansion mission pack Half-Life 2:Lost
Coast.

The games based on the Source Engine 2 are at
the time of writing unique with respect to the
use of physical objects for the completion of game
objectives (e.g. building ramps, moving levers,
building traps). The engine’s advanced physics
model is reflected in its ability to fluently simulate
objects in our test map on the server and the client.

For the evaluation, we created a test map with
a mass-spring system consisting of 4×4 partially
intersecting spheres connected in a rectangular
pattern by 24 springs (see figure 4). This physical

Figure 4: Cooperative manipulation of the mass-spring

system.

208



construct can be grabbed by two or more users
and being pushed and pulled. The simulation
of the mass spring system was stable and well
synchronised on server and client. With the
custom texture and the shiny surface properties,
it resembled the handling of a colon or a similar
structure. For a more realistic appearance, the
mass spring system should deform a single geo-
metrical object, but this is not possible without
extending the engine. Nevertheless, this extension
is possible, since the included SDK allows the
modification of the source code of the engine.

We also created a map with a heart model whose
vessels are deformable by means of “skeletal ani-
mation” (see figure 5). To achieve this, the heart
model is extended by a skeleton structure with
bones positioned along the centres of the main
vessels. As a result, movement of the skeletal bones
deforms the mesh of the vessels. To achieve softer
bending and thus a more natural appearance, the
influence of the bones on the mesh linearly varies
from 0.0 (no influence, blue colour in figure 5) at
the beginning of the vessel to 1.0 (full influence,
red colour) at the end.

Figure 5: Soft deformation of a tube mesh by skeletal

animation.

Figure 6 shows how the user can grab a tool and
interactively deform the heart vessels with it. At
the same time, other users are able to observe this
action and to cooperatively interact with the same
model.

Figure 6: Manipulation of a deformable heart model

seen by the acting user (top) and the observing user

(bottom).

5 Conclusion

All three evaluated engines (see results in table 1)
allow the playback of animations and are hence
suitable for implementing simple simulations based
on prerecorded animations. The Unreal Engine 2
also allows the manipulation of articulated physical
objects for a single user and is thereby suitable for
standalone simulators. However, full collaborative
interaction with physical objects is only possible
with the Source Engine. Its physics engine allows
the simulation of soft objects by skeletal animation
or with mass-spring systems. In addition, the SDK
also enables the extension of the engine with new
features.

Since in current games soft objects are not im-
portant for the gameplay and are thus not imple-
mented in the physics engines, this extensibility is a
major selection criterion when using game engines
for such simulations.

Development times for biomedical and scientific
simulations can be reduced by using game engines
that include editors for building custom maps.
Without such editors, the integration of custom
content is difficult and time consuming. Engines
that allow users to create their own content also
are more likely to be stable and well designed, as
with increasing exploration of their capabilities in
user created maps many bugs, errors and design
flaws will eventually be reported and corrected.

6 Future Work

While the mesh-spring system implemented in the
Source Engine allows the simulation soft objects,
the process of manually inserting and editing the
mesh is time consuming. We plan to investigate the
integration of new mathematical models for soft
objects, e.g. [17, 18, 19].

Towards the end of 2007, new game engines
(CryEngine 2 [20], Unreal Engine 3 [21]) will be
released. Their physics engines will be more flexi-
ble and offer more features, such as the simulation
of cloth, fluids and smoke. This new functionality
might also be useful for simulating deformable
objects.

References
[1] L. T. Kohn, J. M. Corrigan, and M. S.

Donaldson, Eds., To Err is Human: Building
a Safer Health System. Washington, DC,
USA: National Academy Press, Nov. 2000.
[Online]. Available: http://www.nap.edu/catalog.
php?record id=9728

209



Feature
Unreal id Tech 4 Source

Engine 2 Engine

Predefined animation + + +
Single physical objects, single player + + +
Single physical objects, multiplayer – – (5 fps) +
Connected physical objects, single player + – (no constraints available) +
Connected physical objects, multiplayer – – (no constraints available) +
Extensibility UnrealScript limited Source code

Table 1: Results of the evaluation of game engines.

[2] D. M. Gaba, “The future vision of simulation in
health care,” Quality and Safety in Health Care,
vol. 13, no. Suppl 1, pp. i2–i10, Oct. 2004.

[3] K. Montgomery, C. Bruyns, J. Brown, S. Sorkin,
F. Mazzella, G. Thonier, A. Tellier, B. Lerman,
and A. Menon, “Spring: A General Framework
for Collaborative, Real-time Surgical Simulation,”
Studies in Health Technology and Informatics,
vol. 85, pp. 296–303, 2002.

[4] M. C. Çavuşoğlu, T. G. Göktekin, and F. Tendick,
“GiPSi: A Framework for Open Source/Open
Architecture Software Development for Organ
Level Surgical Simulation,” IEEE Transactions on
Information Technology in Biomedicine, vol. 10,
no. 2, pp. 312–322, Apr. 2006.

[5] J. Allard, S. Cotin, F. Faure, P.-J. Bensoussan,
F. Poyer, C. Duriez, H. Delingette, and L. Grisoni,
“SOFA – an Open Source Framework for Medical
Simulation,” in Medicine Meets Virtual Reality
(MMVR 15), Long Beach, USA, February 2007.

[6] S. Tuchschmid, M. Grassi, D. Bachofen, P. Früh,
M. Thaler, G. Székely, and M. Harders, “A Flexi-
ble Framework for Highly-Modular Surgical Simu-
lation Systems,” in Biomedical Simulation: Third
International Symposium, ISBMS 2006, Zurich,
Switzerland, July 10-11, 2006, ser. Lecture Notes
in Computer Science, vol. 4072. Heidelberg:
Springer Berlin, Jul. 2006, pp. 84–92.

[7] Serious Games Initiative. (2007) Serious Games
Initiative. [Online]. Available: http://www.
seriousgames.org

[8] Serious Games Initiative. (2007) Games For
Health. [Online]. Available: http://www.
gamesforhealth.org

[9] B. C. Wünsche, B. Kot, A. Gits, R. Amor,
J. Hosking, and J. Grundy, “A Framework
for Game Engine Based Visualisations,” in
Proceedings of Image and Vision Computing
New Zealand 2005, Nov. 2005. [Online]. Avail-
able: http://www.cs.auckland.ac.nz/∼burkhard/
Publications/IVCNZ05 WuenscheKotEtAl.pdf

[10] J. Mackenzie, G. Baily, M. Nitsche, and
J. Rashbass, “Gaming Technologies for Anatomy
Education,” Online, May 2003. [Online].
Available: http://www.virtools.com/news/pdf/
2004/CARET.pdf

[11] K.-T. Chen, P. Huang, and C.-L. Lei, “Game traf-
fic analysis: An MMORPG perspective,” Com-
puter Networks, vol. 50, no. 16, pp. 3002–3023,
Nov. 2006.

[12] DevMaster.net. (2007) 3D Game Engines
Database. [Online]. Available: http://www.
devmaster.net/engines/

[13] Epic Games. (2004) Unreal Engine 2. [Online].
Available: http://www.unrealtechnology.com/
html/technology/ue2.shtml

[14] Wikipedia. (2007) id Tech 4 — Wikipedia,
The Free Encyclopedia. [Online]. Available:
http://en.wikipedia.org/wiki/Doom 3 engine

[15] Valve Corporation. (2004) Valve
Source Engine Features. [Online].
Available: http://www.valvesoftware.com/
sourcelicense/enginefeatures.htm

[16] J. Zepp. (2005) GoodKarma Physics Mod Beta 4.
[Online]. Available: http://www.ataricommunity.
com/forums/showthread.php?t=440477

[17] A. Henriques, B. Wünsche, and S. Marks, “An
investigation of meshless deformation for fast soft
tissue simulation in virtual surgery applications,”
International Journal of Computer Assisted Radi-
ology and Surgery, vol. 2, no. Suppl 1, pp. S169–
S171, June 2007.

[18] M. Müller, B. Heidelberger, M. Teschner, and
M. Gross, “Meshless deformations based on
shape matching,” ACM Transactions on Graph-
ics, vol. 24, no. 3, pp. 471–478, Jul. 2005.

[19] A. R. Rivers and D. L. James, “FastLSM: Fast
Lattice Shape Matching for Robust Real-Time
Deformation,” in SIGGRAPH ’07: ACM SIG-
GRAPH 2007 papers, vol. 26, no. 3. New York,
NY, USA: ACM Press, Jul. 2007, p. 82.

[20] Crytek. (2002) CryEngine 2 Specifications.
[Online]. Available: http://www.crytek.com/
technology/index.php?sx=eng2

[21] Epic Games. (2006) Unreal Engine 3. [Online].
Available: http://www.unrealtechnology.com/
html/technology/ue30.shtml

210


