
Ensemble interpolation methods for spatio-temporal data modelling 
 

Philip Sallis 
Geoinformatics Research Centre 

Auckland University of Technology 
Auckland, New Zealand 

psallis@aut.ac.nz 

Sergio Hernandez 
Laboratorio  de procesamiento 

de información geoespacial  
Universidad Catolica del Maule 

Talca, Chile 
shernandez@ucm.cl 

 
 
 

Abstract— Real time weather forecasting is a 
highly influential tool in decision making for 
agriculture.  Geographic Information Systems 
(GIS) can be built to provide information 
about topographic data such as elevation and 
distance to oceans or water reservoirs. This 
data has begun to have increased availability, 
providing easier access for developing new 
applications. By using geographic information 
together with terrestrial measurements from 
weather stations, the spatial and temporal 
scales of the climatic variables can be analyzed 
by interpolation and forecasting. 
Most of the interpolation methods provided in 
common GIS tools are only related to the 
spatial domain, limiting its use in numerical 
modelling and prediction of climatic states. 
However, by adopting a Bayesian approach, it 
appears possible to estimate the dynamic 
behaviour of the unobserved climate pattern 
using a state-space representation. Using this 
framework, the ensemble Kalman filter or a 
more general sequential Monte Carlo method 
could be used for the estimation procedure. A 
wireless sensor network providing continuous 
data to populate such a model is described here 
for potential application of this approach. 
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I. INTRODUCTION 

Meteorological models for weather forecasting 
have been proved to be useful for strategic 
planning and management in agriculture [1, 2] 

even though some precision is mitigated by 
random events in nature [3]. 

The success of agro-climatic models is 
dependent on the range and resolution of the 
forecast [4] so adequate physical modelling is 
required for determining the state of the 
atmospheric values.  In the early 1960's, 
researchers and engineers from different fields 
were concerned with the problem of forecasting 
non-stationary dynamic signals. The focus in 
meteorology using data assimilation was mainly 
based on deterministic non-linear filters, where 
the dynamic model is a perfect representation of 
the physical system [5] 

Nevertheless, one of the main issues in weather 
forecasting systems based on data assimilation is 
their sensitivity to initial conditions, which puts 
fundamental limits on the prediction. 
In general terms interpolation methods for 
geospatial data modelling are best appreciated 
when we consider how changes occur from one 
data point to another over time. Change point 
analysis [6] improves the detection of variable 
value shifts, especially over large historical sets of 
data.  We consider this precision to be essential 
for micro-climate modelling where time intervals 
are typically small because of the short 
topographic distances between data points and yet 
condition changes can be large.   For this reason, 
when we model a large historical climate data set 
(described below) we ask the questions, did a 
change occur?  Did more than one change occur?  
When did the changes occur?  With what 
confidence can we state that the changes did 
occur?  We have adopted this analytical 
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framework approach because change point 
analysis is a method capable of detecting multiple 
changes and for climate variation plotting we need 
to incorporate multiple levels of abstraction from 
the data we are observing. 
 

II. INTERPOLATION METHODS 

Linear least squares estimation algorithms in the 
form of the GeoStatistical Kriging methods [7] are 
probably the most popular for geospatial 
interpolation because they enable the prediction of 
unknown data point conditions (values) 
determined from a known set of values from 
neighboring data points. This way we can model 
change across a plane with a high degree of value 
expectation certainty.  Data points with geo-
referenced values for latitude and longitude (x and 
y) can be interpolated with their elevation data (z) 
to provide a terrain map in three dimensions.  The 
greater the number of data points the better the 
expectation confidence.   So when values from 
three or more data points are known, greater 
precision can be observed in the output value. 
When we describe Ensemble methods [8] for 
modelling geospatial data, we do so holistically, 
which is an intrinsic attribute of the approach.  
These methods provide even greater estimation 
precision to the data model because they utilise a 
multiple analysis approach and apply several 
hypothesis algorithms to a single learning 
proposition.  A refinement of the hypotheses is 
possible when taking this approach because the 
intrinsic learning algorithm of the method prunes 
so-called weak learners to focus on the strength of 
results produced by one of them.  This method is 
more computationally intensive than using for 
example, a single supervised neural network 
algorithm. 
While modelling of historical climate data is 
useful for anticipating future trends, there does 
exist a challenge for modelling continuous rather 
than discrete point data.   This challenge forms 
part of our ongoing work.  
Synoptic and planetary circulation models [9] 
provide a large scale hydrodynamic 
approximation to the climatic patterns while 

mesoscale circulation models are used to 
characterize horizontal scale, which are smaller 
than the synoptic scale. Because of the lack of a 
high resolution meteorological network, 
mesoscale models such as MM5 and MOS [10] 
have been used for forecasting surface 
meteorological and agroclimatic variables in 
central Chile. The authors of this research 
reported a spatio-temporal interpolation method 
for temperature, wind speed, relative humidity, 
and daily solar radiation in grid cells with a spatial 
resolution of 15 kms. 
     In another context, the signal processing 
community has been interested in stochastic linear 
filters for signal tracking with uncertain 
observations. In this case, the dynamic model is 
not perfect and it is considered as being corrupted 
with random noise. The Ensemble Kalman filter 
(EnKF)[11] has been proposed in data 
assimilation situations to model uncertain initial 
conditions in numerical weather prediction. The 
EnKF overrides the linearity assumption of the 
standard Kalman filter by using a Monte Carlo 
approximation of the optimal probability forecast. 
Because of the inherent so-called ‘curse of 
dimensionality problem’ of stochastic 
approximation methods such as with a sequential 
Monte Carlo, the EnKF uses a low-rank 
approximation to the covariance of the posterior 
density, which also introduces spurious 
correlations in the filter estimates. 
 
III. APPLICATION OF THE ENSEMBLE METHOD 
 
Experiments with forecasting climatic states using 
spatial interpolation and ensemble methods is 
ongoing in the research programme to which this 
paper refers.  Because it is an early stage project 
no results are yet available but we offer our 
approach  as being conceptually appropriate for 
the problem domain.   Only now is the wireless 
sensor network (WSN) intended for model 
propagation being installed and a large set of data 
will eventually be available for analysis and 
modeling. We intend to use a Digital Elevation 
Model (DEM) and the distance from the sea 
generated by a Geographic Information System 



(GIS) to interpolate temperature from the weather 
stations [12].      The interpolated values will then 
be used as observations for a sequential Monte 
Carlo method for estimating the dynamic climate 
pattern. 
It should be noted here that obtaining a large set 
of complete data including elevations is not as 
simple as it might seem.  In our ongoing work we 
are assembling similar data sets from both Chile, 
see [13] for an example of integrating macro and 
micro climate data for frost prediction in Chilean 
vineyards and New Zealand [14] for comparative 
purpose to test the interpolation method and 
observe the output models for similarities and 
differences.  A wider research programme to 
which the work described in this paper relates, 
consists of a wireless sensor network (WSN) with 
28 data collection stations in 8 countries.   Each 
station has a minimum of three sensor arrays, each 
consisting of 17 sensors for atmosphere, climate, 
plant and soil.   This research relates to 
monitoring and modeling in viticulture, 
horticulture and agriculture for precision 
information provision with a view to effective 
sustainable management [15].  The accession of 
this data is expected to provide a large volume of 
continuous data suitable for our ongoing work 
with change point analysis and ensemble methods. 
 
 IV. SPATIAL INTERPOLATION OF CLIMATIC 
VARIABLES 
 
     State-space modelling for land surface 
temperature forecasting [16] is an integral 
component of our approach.  A state-space model 
contains two equations for describing the dynamic 
behaviour of the system and the observational 
process. As seen below the state-space 
representation is conceptually a graph for 
sequential probabilistic inference over a partially 
observed stochastic process. The state x is an 
unobserved first-order Markov process and the 
observations are conditionally independent given 
the state process. 
 

,     process equation 
,         observation equation 

The state of the system  at time k is a Markov 
process observed via the measurement zk. 
The noise sources vk and wk are assumed as being 
mutually independent and identically-distributed 
(i.i.d.) sequences of random variables, which are 
also independent of the state and the observations 
xk and zk respectively. The functions f and g 
represent possibly non-linear mappings from xk-1 
to xk and from xk to zk respectively. 
    When the state-space is linear with Gaussian 
additive noise, the well-known Kalman filter 
achieves the solution for the optimal estimation 
problem. The Kalman filter is the most popular 
technique for handling linear models with 
Gaussian distributed noise. When the state-space 
can be written as a linear dynamic model with 
zero-mean Gaussian noise sources vk, N(0,Qk) and 
wk, N(0,Rk), the posterior density is also Gaussian 
so it can be completely parameterized by its mean 
and covariance. Let Ak and Bk be two matrices 
defining a linear transformation for the process 
and observation equations. Qk and Rk represent 
the process and observation noise covariance 
respectively. 
The linear Gaussian state-space with a seasonal 
component can be written as: 
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    The Kalman filter computes the optimal 
conditional mean and covariance of xk by 
recursively predicting and updating a Gaussian 
belief distribution. The recursive method is 
optimal since using the following equations 
minimizes the mean square error of the 
observations and the predicted state. 
    The term Sk denotes the covariance of an 

innovation matrix εk = zk-Bkxk|k-1 that generates a 
sequence of uncorrelated terms. The superscript T 
denotes matrix transposition and Kk is the so-
called Kalman gain. Both terms Sk and Kk can 
also be written as: 

 



 

 

 
 
 

III. CONCLUSIONS 

Confidently identifying and determining values 
for discrete data points across a three dimensional 
plane to model climate variation is a non-trivial 
challenge for any single interpolation method.  
Outlying values that may not conform to the 
expected variations to a mean may in fact, be 
significant indicators of a change point yet to be 
observed.   Kriging for instance, would prune 
such a value and complete the interpolation 
without including it in the cluster of predictors for 
new data point instances.   Ensemble methods 
provide a multi algorithmic approach that does not 
discard any values until computations of all 
possible permutations of the data are exhausted.  
They also allow for a temporal variable to be 
meaningfully incorporated into the model without 
distorting the intrinsic geospatial properties of the 
former interpolation methods.   Using a Kalman 
Filter to maintain data integrity and reduce noise 
in the data set during computation produces a 
clean and reliable model and a result.  We hope to 
illustrate this by comparing the two model outputs 
when sufficient appropriate data is available from 
the WSN referred to here. Our work continues 
with installation of the WSN and continuing 
exploration of the interpolation methods and 
models using trivial data sets in order to gain 
insights to their dynamics. 
 
 
 

REFERENCES 

 
[1] Caprio, J M, and Quamme H A. (1998) Weather conditions 

associated with apple production in the Okanagan Valley of British 
Columbia., Agriculture and Agri-Food Canada Pacific Agri-Food 
Research Centre, Summerland, British Columbia, Canada, V0H 1Z0 
1998, Vol. Contribution no.1075 129-137 

[2] Van Leeuwen, C., Friant, P., Choné, X., Tregoat,O., Koundouras,S., 
and Dubourdieu,D. (2004) Influence  of Climate, Soil, and Cultivar 
on Terroir  Am. J. Enol. Vitic. 2004, pp.55:3:207 

[3] Delyam, A.M. Chaotic Climate Dynamics. Lunivar Press, 2007.  
ISBN-13  978-1-905986-07-1 

[4] Jones, G V, and Davis, R E,. (2000) Climate Influences on Grapevine 
Phenology, Grape Composition, and Wine Production and Quality for 
Bordeaux, France. Vols. Am. J. Enol. Vitic., Vol. 51, No. 3, 2000 
pp249-261. 

[5] Holton,J. An introduction to dynamic meteorology.  Academic Press, 
2004 

[6] Berger, J. O., De Oliveira, V. and Sansó, B. (2001). Objective 

Bayesian analysis of spatially correlated data. Journal of the 
American Statistical Association, 96, 1361—1374 

[7] Drignei, D. A kriging approach to the analysis of climate model 
experiments. (2009) Journal of Agricultural, Biological and 
Environmental Sciences.  Springer New York 2009 Vol. 14(1) pp 99-
114. ISBN 1085-7117 (Print) 1537-2693 (online) 

[8] Okun, Oleg; Valentini, Giorgio (Eds.) Supervised and Unsupervised 
ensemble methods and their applications IN Springer series, Studies 
in Computational Intelligence, vol 126 2008  

[9] Barry, RJ and Carleton, AM. “Synoptic and dynamic climatology” 
Routledge,2001 

[10] Silva, D, Meza, FJ and Varas E.  Use of mesoscale model MM5 
forecasts as proxies for surface meterorological and agroclimate 
variables. Cienc. Inv. Agr. [online], 2009, vol 36, no.3 

[11] Grewal, M. S. Kalman Filtering: Theory & Practice. Englewood 
Cliffs, NJ: Prentice-Hall, 1993 

[12] Petrosyan, AS.  GIS in meteorology and climatology.  The needs and 
the challenges.  European Geophysical Society. XXVI General 
Assembly.  Nice, 25-30 March 2001 

[13] Sallis, P., Jarur, M., and Trujillo, M.(2009). Frost prediction 
characteristics and classification using computational neural 
networks. In Australian Journal of Intelligent Information Processing 
Systems (AJIIPS) volume 10.1, 2008 (ISSN 1321-2133) pp50-58. 
Also published in M. Kppen et al. (Eds.): ICONIP 2008, Part I, LNCS 
5506,  2009. Springer-Verlag Berlin Heidelberg 2009. pp. 1211-1220. 

[14] National Institute of Water & Atmospheric Research. The National 
Climate Database, National Institute of Water & Atmospheric 
Research,. http://cliflo.niwa.co.nz/ 

[15] Ghobakhlou, A., Sallis, P., Diegel, O., Zandi, S. and Perera, 
A.  (2009).  Wireless sensor networks for environmental data 
monitoring. IEEE Sensor 2009 Conference 25-28 Oct 09, 
Christchurch, New Zealand. 

 
 

 


