A Tabu Search Environment for Engineering Design Optimisation

Andy Connor
Software Engineering Research Lab
Auckland University of Technology
Introduction

• Assumptions
• Background and History
• Introduction to Tabu Search
• Software Structure
• Applications
• Current Development Status
• Challenges
• Conclusions
Assumptions

• You know nothing about:
 – Me
 – SERL & AUT
 – Tabu Search

• Apologies if these assumptions are incorrect
Personal Background

• A mechanical engineer by education
• A software engineer by osmosis
• Ten years of academic and commercial experience in applying optimisation methods
• Previously focussed on practical application and “good” results
• At SERL the focus can be on the method and “elegance”
SERL and AUT

• The Software Engineering Research Lab is one of four research groups in Computer Science at AUT, the Auckland University of Technology
• SERL is a small, multidisciplinary team with research interests in:
 – Natural language processing
 – Numerical methods
 – Multi-agent systems
 – Software forensics
Project History

- Tabu Search first implemented whilst at the University of Bath for Fluid Power System design
- Further developed at the University of Cambridge and successfully applied to a wide range of problems
- Currently being refined and “repackaged” to enhance usability at AUT
Introduction to Tabu Search

- Tabu search is an optimisation method developed by Fred Glover in the late 80s
- It has been successfully applied to a wide range of both classical and practical real world problems
- Tabu search has always been the “poor cousin” to Genetic Algorithms and Simulated Annealing
 - A Google search returns 32,000 references for “Tabu Search”, 130,000 references for “Simulated Annealing” and 360,000 references for “Genetic Algorithms”
What Actually is Tabu Search?

- Tabu search is a meta-heuristic that can be used to guide a search method to a global optima.
- Rather than avoid local optima, the approach locates and “moves through” these optima.
- The method utilises “cyclic memory” to retain information regarding the search and this information is used to guide the search into new areas of the solution space.
Tabu Search Implementation

- The Tabu Search implementation presented here is based on a Hooke and Jeeves method.
- Three different memory cycles are used:
 - Short term memory is used to escape local optima.
 - Intermediate term memory focuses the search.
 - Long term memory expands the search.
- Aspiration criteria are not implemented.
Short Term Memory

- Short term memory is implemented as a list of recently visited solutions that are classed as “tabu”
Intermediate and Long Term Memory

• Intermediate memory is a similar list of previously visited “good” solutions
 – The search is focussed by examining and reinforcing characteristics that “good” solutions have in common
• Long term memory is a list of previously visited solutions stored at fixed intervals
 – The search is expanded by generating new solutions that are dissimilar to those in both the intermediate and long term memory
Search Control

• Progression through the solution space is monitored
• Search parameters are defined that determine at what point intensification (increasing focus) and diversification (expanding focus) occur
• Similarly, when progression has not resulted in improvement the step size is adjusted
 – Variable step size has been found to improve performance
Variations to the Algorithm

- The basic implementation is a single search thread for single objective problems
- Variations available in the algorithm include:
 - Multiple search threads that share information
 - Multi-objective search
A Tabu Search Environment for Engineering Design Optimisation

Software Structure

- Algorithm Library
- Search Controller
- Analysis Software
- Standard Problem Interface

Analyses problem, choose algorithm and sets control parameters
Application: Fluid Power Systems

- An electrical proportional servo valve is used to modulate the flow from the pump so that the speed of the motor follows a desired profile.
- The design parameters are the pump and motor displacements and the integral gain of the control system.
Application: Fluid Power Systems

• The Tabu Search algorithm finds “reasonable” solutions in one quarter of the time than the previously used GA
Application: Structural Design

- The ten bar truss is a classic structural design problem.
- The design variables are the x-sectional area of the struts and the position of the unfixed nodes.
- A comparison has been made to a mature Simulated Annealing algorithm.
Application: Structural Design

- The Tabu Search implementation finds elegant, low weight solutions
- These solutions do not violate the problem constraints
- The solution is different (but comparable to) that found by SA, but the search was more efficient
Application: MRI Pole Shape Design

- MRI scanning requires a constant magnetic field in the imaging area.
- The aim of this study was to investigate different parameterisations of the pole shape.
MRI Pole Shape Optimisation

- By parameterising the pole shape, very efficient searches were enabled by allowing complex pole shapes to be described.
- Search efficiency was an order of magnitude greater than allowing “free form” pole shapes.
Application: Gas Turbines

- The objective of the design effort is to minimize the secondary-flow kinetic energy (SKE) of a nozzle-guide vane (NGV).
- Results for two design categories namely lean (YCENT) and sweep (XCENT) are combined.
Application: Gas Turbines

- The contours of the SKE at the exit plane of the base and optimised geometry using 14 design parameters including lean and sweep design categories are plotted.
- The optimised geometry shows a reduction in the secondary flow kinetic energy.
Current Development Status

Algorithm Library

Search Controller

Analysis Software

Standard Problem Interface
Challenges

• Capturing implicit knowledge regarding algorithm selection and setting control parameters and embedding this into the environment
• Defining a common interface to allow different analysis software to be easily accommodated
• Improving the user interface
Conclusions

• Tabu Search is a fun method
• Tabu Search works on a variety of different problem types
• Tabu Search can find good solutions more efficiently than other heuristic methods…….

• ….. but there’s still a lot to do!