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Abstract 

Ecological modelling problems have characteristics both featured in other modelling 

fields and specific ones, hence, methods developed and tested in other research areas 

may not be suitable for modelling ecological problems or may perform poorly when 

used on ecological data. This thesis identifies issues associated with the techniques 

typically used for solving ecological problems and develops new generic methods for 

decision support, especially suitable for ecological data modelling, which are 

characterised by: (1) adaptive learning, (2) knowledge discovery and (3) accurate 

prediction. These new methods have been successfully applied to challenging real world 

ecological problems. Despite the fact that the number of possible applications of 

computational intelligence methods in ecology is vast, this thesis primarily concentrates 

on two problems: (1) species establishment prediction and (2) environmental 

monitoring. 

Our review of recent papers suggests that multi-layer perceptron networks trained using 

the backpropagation algorithm are most widely used of all artificial neural networks for 

forecasting pest insect invasions. While the multi-layer perceptron networks are 

appropriate for modelling complex nonlinear relationships, they have rather limited 

exploratory capabilities and are difficult to adapt to dynamically changing data. In this 

thesis an approach that addresses these limitations is proposed. 

We found that environmental monitoring applications could benefit from having an 

intelligent taste recognition system possibly embedded in an autonomous robot. Hence, 

this thesis reviews the current knowledge on taste recognition and proposes a 

biologically inspired artificial model of taste recognition based on biologically plausible 

spiking neurons. The model is dynamic and is capable of learning new tastants as they 

become available. Furthermore, the model builds a knowledge base that can be 

extracted during or after the learning process in form of IF-THEN fuzzy rules. It also 

comprises a layer that simulates the influence of taste receptor cells on the activity of 

their adjacent cells. These features increase the biological relevance of the model 

compared to other current taste recognition models. The proposed model was 

implemented in software on a single personal computer and in hardware on an Altera 

FPGA chip. Both implementations were applied to two real-world taste datasets. 
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In addition, for the first time the applicability of transductive reasoning for forecasting 

the establishment potential of pest insects into new locations was investigated. For this 

purpose four types of predictive models, built using inductive and transductive 

reasoning, were used for predicting the distributions of three pest insects. The models 

were evaluated in terms of their predictive accuracy and their ability to discover patterns 

in the modelling data. 

The results obtained indicate that evolving connectionist systems can be successfully 

used for building predictive distribution models and environmental monitoring systems. 

The features available in the proposed dynamic systems, such as on-line learning and 

knowledge discovery, are needed to improve our knowledge of the species distributions. 

This work laid down the foundation for a number of interesting future projects in the 

field of ecological modelling, robotics, pervasive computing and pattern recognition 

that can be undertaken separately or in sequence. 
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Chapter 1 
Introduction 

1.1 Motivation 

Worldwide, the necessity for bio-protection is increasing. Rapidly growing inter-

country trade and tourism leads to increased biosecurity risk (Dobesberger, 2002; 

Peterson & Vieglais, 2001). Failure to manage the distribution of invasive pest species 

could seriously unbalance the ecosystems of an area. An invasion of pest species can 

have significant consequences for the environmental sustainability of and can 

substantially affect the economic development of a country (Cohen, 1998). This is 

particularly true for countries with smaller economies that rely heavily on their 

agriculture. The potential costs are considerable. For example, the failure to control the 

spread of the didymo alga could cost New Zealand $57-$285 million over the eight year 

period from 2004/05 to 2011/12 (NZ Ministry of Agriculture and Forestry, 2006). 

Dealing with bio-protection threats and other ecological problems require the 

development of intelligent decision support systems (DSS) based on state-of-the-art 

sensor techniques, species identification systems and novel modelling techniques 

capable of efficient environmental and ecological data modelling, prediction and 

knowledge discovery (La Morgia et al., 2008; Paterson et al., 2008; Woodford, 2008; 

Park et al., 2007; Gevrey et al., 2003, Remm, 2004; Rushton et al., 2004). 

Ecological processes are difficult to model because they contain complex dynamic 

interactions that are not well understood (Watts & Worner, 2008; Baker, 2002; 

Bradshow et al., 2002; Worner, 2002; Fielding, 1999). This research aims to encourage 

the use of advanced computational intelligence (CI) methods, such as neuro-fuzzy 

networks, for extracting useful knowledge from ecological datasets. As will be shown in 

the course of this thesis, there are many ecological research groups across the world 

using traditional neural networks, mainly multi-layer perceptron (MLP) networks 

trained with a back-propagation algorithm. While MLP networks are appropriate for 

modelling complex nonlinear relationships, they have rather limited exploratory 

capabilities and therefore can only modestly contribute to a better understanding of 

ecological systems (Olden et al., 2006; Kolman & Margaliot, 2005; Gevrey et al., 

2003). Furthermore, MLP networks cannot easily adjust their structure in an adaptive, 
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on-line way to accommodate new data and changes that can happen in the future 

(Kasabov, 2003a, 2007a). Clearly, these characteristics are limiting factors when the 

networks are used on ecological data which is complex, noisy and may change over 

time (Eyre et al., 2005; Pearson et al., 2002; Guisan & Zimmermann, 2000). To 

overcome the above problems, new improved methods are required, such as 

connectionist local and personalized evolving models (Kasabov, 2003a, 2007a). 

While the main objective of this thesis was to develop new modelling techniques, the 

focus was on applying these techniques for modelling problems encountered in the area 

of biosecurity, particularly for modelling invasive pest insect distributions. In this thesis 

different modelling approaches are evaluated for the first time on bio-climatic pest 

insect data and the following two questions are answered: “Can local and „personalised‟ 

modelling techniques be employed for modelling insect pest distributions to determine 

the risk of pest invasions?“ and “What are the benefits of using these techniques for 

modelling pest distributions?”. 

In addition, this research aims to increase the awareness of the wider connectionist 

community on the complexity and unique characteristics of ecological modelling 

problems. Although, studies on and guidelines for pest risk management have been 

produced by different government agencies to help researchers to conduct pest risk 

management (Baker, 2002), the researchers in the area of modelling species distribution 

dynamics are still facing two big obstacles that are usually not encountered in other 

research areas: (1) a lack of prior knowledge required to accurately model species-

habitat relationships and to assess those models (Worner, 2002), and (2) a lack of good 

quality species distribution data (Rafoss, 2003; Baker, 2002). Particularly the real-world 

bio-climatic distribution data has characteristics typically not found in data from other 

modelling fields and therefore methods developed and tested in other research areas 

might not be appropriate for use on this data. 

Recently, the uniqueness of the problems faced in ecological modelling has been 

recognised by the IEEE Computation Intelligence Society, IEEE CIS, 

(http://www.unesco-ihe.org/hi/sol/TF_CIEES/) and the International Neural Network 

Society, INNS, (http://www.unesco-ihe.org/hi/sol/SIG_CIEES/). They established two 

special interest groups solely dedicated to encouraging their members to develop 

methods that match the specific characteristics of environmental and ecological 

datasets. 
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This research was also motivated by the prospect of increasing the efficiency of 

environmental monitoring by introducing an intelligent taste recognition system 

(Gutiérrez et al., 2008; 2002; Krantz-Rülcker et al., 2001). The system can either be 

stationary or embedded into a robot. The robots could learn to taste, for instance, safe 

drinking water, and detect when the water becomes undrinkable. They could also 

express what they have learnt by using high-level knowledge representation, e.g. a IF-

THEN rules. In this thesis we show a new concept of extracting knowledge from a 

trained spiking neural network with rank coded inputs. As will be shown in the course 

of this thesis, the use of spiking neurons for taste recognition in an adaptive system is a 

novel approach. There have been previous models that can perform taste recognition 

(Gallardo et al., 2003; de Sousa et al., 2002; Toko, 2000); however the model proposed 

here is more biologically realistic than those other models. The model is adaptive and its 

structure evolves as it learns to recognise tastants. The model explains what it has learnt 

about the tastants. The proposed taste recognition model was implemented in a field 

programmable gate array (FPGA) making the model suitable for integration in mobile 

robots used in monitoring applications where the tasting and classification of liquids is 

required. 

1.2 Objectives 

The main goal of this thesis was to propose a generic methodology for connectionist-

based decision systems (CBDS) that would allow for (1) adaptation to new data, (2) 

knowledge discovery from real-world datasets, and (3) accurate prediction. The first 

objective was to propose a method for risk assessment. This thesis proposes an 

approach based on the dynamic evolving neuro-fuzzy inference system (DENFIS) and 

evolving clustering method (ECM) first used by N. Kasabov (1998). The model has a 

probability evaluation module for reducing the influence of noisy data samples. This 

approach was validated on two benchmark problems and then applied on four real-

world bio-climatic datasets. In addition, it was used to prepare a predictive map for one 

pest insect. 

The second objective was to evaluate local and „personalised‟ modelling techniques for 

the purpose of building adaptive predictive models for knowledge discovery and their 

applicability in the field of ecological modelling. The models were evaluated in terms of 

prediction accuracy and their knowledge discovery ability. 
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The third objective was to propose a new biologically plausible neural network model. 

This model would be appropriate for taste recognition. This thesis proposes a model 

based on a very simple version of the integrate-and-fire spiking neurons with rank order 

coded inputs first used by S. J. Thorpe and his group for rapid visual processing 

(Gautrais & Thorpe, 1998; Van Rullen et al., 1998). The novelty of our model is in 

using a layer of receptive fields to perform a population encoding of input signals 

before they are presented for processing to the neurons with rank order encoding. While 

the population encoding enhances the accuracy of the new model compared to the 

accuracy of the same network without this encoding, it also simulates the influence of 

one taste receptor cell on the activity of its adjacent taste cells (Huang et al., 2005). 

Furthermore, the proposed model evolves its structure through learning. Therefore it is 

able to learn new patterns as they become available. Accordingly, we propose a new 

method of knowledge extraction from the proposed model. The spiking neurons, the 

cell-to-cell interaction layer, the adaptive nature of the proposed model and knowledge 

discovery make our simulations of the taste perception more biologically realistic than 

any other published taste recognition model. The model was used on two real-world 

taste datasets. 

The final objective was to propose a low-cost hardware implementation of the taste 

recognition model. Our implementation was hosted in an Altera FPGA chip. The 

highlight of our FPGA implementation is that all its modules (including on-line 

learning) are hosted on a single FPGA chip. The FPGA-implemented taste recognition 

model was used on the same real-world taste datasets as its software simulation. 

1.3 Research questions 

In the course of this thesis, the aim is to highlight important issues and provide solutions 

to a number of general and specific research questions: 

1. How can we enhance DSS to enable them to efficiently process dynamic real-

world data and perform knowledge discovery? This will be demonstrated on 

case study problems of ecological modelling. 

2. How can we present the information learned by such a DSS to enhance the 

understanding of information contained in the created model? 
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3. How can we take advantage of the temporal information processing in one 

model? This will be demonstrated on the taste recognition problem and will lead 

to a more biologically plausible model of taste recognition. 

4. How can data collected by sensors be represented for analysis by spiking 

neurons in a taste recognition model? What is the advantage of doing that? 

5. Are local modelling techniques suitable for modelling complex nonlinear 

species-environment relationships and what are the advantages of using these 

models? 

6. Can local models be used to aid in the discovery of relationships between 

climatic factors and pest insect distributions? 

7. Is „personalised‟ modelling suitable for building predictive pest distribution 

models? 

8. Can a spiking neural network be used for taste recognition tasks, e.g. to classify 

beverages? 

9. What are the benefits of a hardware implementation of a connectionist system? 

This will be demonstrated on a novel taste recognition system built using 

biologically plausible spiking neurons. 

1.4 Contributions 

This research has made a number of contributions to the field of DSS predictive 

modelling and risk analysis, particularly in the field of ecology and pest insect 

management. The details of these contributions are given in Chapters 4, 5 and 6. First, 

we have proposed a local probability adaptive model named LPAM. The model was 

used for predicting the establishment of pest insects in new locations and to obtain new 

knowledge about what makes an insect invasive. This model was also used to create a 

risk map for a pest insect. To the best of our knowledge, a risk map for that pest insect 

had not been previously generated. Furthermore, we have assessed the advantages and 

disadvantages of building „personalized‟ models of pest insect distributions. The 

accuracy and exploratory capabilities of the „personalized‟ models were compared to 

the accuracy and explanatory capabilities of global and local models using three real-

world eco-climatic distribution datasets. 



 
6 

This research work also made a number of contributions to the field of pattern 

recognition. The details of these contributions are given in Chapters 8 and 9. An 

adaptive model, named ESNN-PC, based on biologically realistic neurons was proposed 

and was first published in (Soltic, Wysoski & Kasabov, 2008). The model was used for 

taste recognition (ESNN-PC-TR) and we show that it is able to learn new tastants as 

they become available. A layer that simulates cell-to-cell interaction that may occur 

within taste buds is included in the model in the form of a Gaussian receptive field 

(GRF) layer. ESNN-PC-TR has been implemented in a software simulation and in 

hardware. An Altera Cyclone II FPGA was chosen for the hardware implementation. 

The FPGA implementation was optimised for speed and network size while the 

accuracy was kept comparable to the accuracy of the software simulations. The whole 

system, including the on-line learning circuitry, was implemented on one FPGA chip. 

The implementations, both software and hardware, have been evaluated on two real-

world taste datasets. The model was used to discover knowledge about what was 

„hidden‟ in those datasets. 

Fig. 1.1 gives an overview of the contributions made in this thesis. On the left-hand side 

of the figure are the existing CI methods that are used in the new adaptive models 

proposed here. Design of new techniques for solving real-world problems in the field of 

ecological modelling was one of the main driving forces in this research work and 

therefore the right-hand side in Fig 1.1 shows the modelling problems from ecology that 

this research work contributed to. 

It can be seen from Fig.1.1 that we built personalized models using a weighted k-nearest 

neighbour algorithm (WKNN) and we built global models based on generalized linear 

models (GLM). The new models proposed in this thesis, i.e. LPAM and ESNN-PC 

(ESNN-PC-TR), are shown in the middle. Both models are adaptive and evolve their 

structure to new data and changing environments. In addition, they can be used for 

knowledge discovery. While the proposed LPAM approach has been used for pest 

distribution modelling we could not see why this approach could not be used for other 

applications where knowledge discovery and adaptation to new data are desirable. 

Likewise, the proposed ESNN-PC offers considerable potential in modelling non-

linearly separable data by means of spatio-temporal encoding. 
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Fig. 1.1.  Overview of contributions of this thesis. The arrows going from the CI Methods to the 

Ecological Applications via New Models show the key contributions of this research in both 

computational models and their application for ecological modelling. 

1.5 Research methodology 
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Used CI 

Methods 

Ecological Applications 

Discovery of  

climate-species 

relationships 

Creation of risk maps 

for invasive species 

Risk assessment of 

invasive potential of pest 

species 

Modelling invasive species 

spatial distributions 

FPGA-based 

hardware 

implementation 

Environmental monitoring ESNN 

DENFIS 

LPAM 

New Models 

ECM 

GLM 

GRF 

Environmental robotics 

Taste recognition 

(wine, water) 

ESNN-PC-TR 

WKNN 

ESNN-PC 
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5. Result validation 

6. Conclusion about the proposed method and analysis of its future applications. 

In Step 1 we identified that there is a need for adaptive predictive models for local 

knowledge discovery in ecological applications. Next, we identified that the task of 

predicting pest distributions would benefit from such a model (Step 2). It is known that 

neural networks are highly dependent on the quality and quantity of training data. 

Therefore, in Step 3, an analysis of the data was conducted that included studying the 

issues associated with data collection methods and consequently the data quality. This 

analysis increased our awareness of the unique characteristics of real-world bio-climatic 

pest distribution datasets. A literature review of the existing modelling techniques used 

for building predictive models in ecology was also conducted. During the literature 

survey the typical problems reported in the published approaches were identified and a 

new dynamic method (LPAM), for building adaptive predictive models was developed 

and validated on two benchmark datasets. The method has two main features: it builds a 

dynamic model, and the resulting model can be used for knowledge discovery. In Step 4 

the model was used for assessing the establishment potential of pest insects. The 

specific pest insects were chosen so that they were relevant to New Zealand‟s 

biosecurity. The performance of the new approach was compared to the performances 

of various local, global and personalized pest insect distribution models built using 

inductive and transductive techniques (Step 5). The models were assessed in terms of 

their accuracy and explanatory capability using leave-one-out (LOO) cross-validation. 

Finally, a possible extension to the model was proposed in Step 6. 

The design of ESNN-PC followed the same design path as design of LPAM. First, our 

review of the current knowledge on taste perception and the existing taste recognition 

models found that the existing taste recognition models are static and cannot easily 

adapt to new data (Step 1). Therefore, we have concentrated on designing a more 

realistic model using biologically realistic neurons, encoding schemes and an on-line 

learning method. We identified that dynamic taste recognition models could be used for 

the environmental monitoring of, for instance, the quality of water or hazardous spills 

(Step 2). As a result, we designed an adaptive model adhesive to the current knowledge 

about taste perception (Step 3). The ESNN-PC model was first implemented in software 

and tested and evaluated on two real-world taste datasets (Step 4 and 5). Prior to 

implementing the model in an FPGA chip, a literature survey of published papers on 
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FPGA implementations of artificial neural networks was conducted. The FPGA 

implementation of ESNN-PC was proposed and tested on the same dataset as the 

software version of the network. That allowed us to explore and emphasise the benefits 

of hardware implementations over software implementations as well as the limitations 

of both implementations. In Step 6, we proposed future extensions and applications of 

ESNN-PC. 

1.6 Published work 

Different aspects of this research have been published to date in the following 

publications (Note that the list is given in chronological order): 

 Soltic, S & Zuppicich, A. (2008). Comparison between software and FPGA 

implementation of ESNN in terms of processing speed. 15
th

 Electronics New 

Zealand Conference ENZCon08, 24-25 November, Auckland, 56-61. 

 Zuppicich, A & Soltic, S. (2009). FPGA implementation of an evolving spiking 

neural network. 15
th

 International Conference on Neural Information Processing 

ICONIP‟08, Workshop on Neurocomputing and Evolving Intelligence, 25-28 

November, Auckland, New Zealand, 23-24, LNCS, vol. 5506/5507. 

 Soltic, S., Wysoski, S. G. & Kasabov, N. (2008). Evolving spiking neural 

networks for taste recognition. International Joint Conference on Neural 

Networks (IJCNN2008), 1-6 June, Hong Kong, 2092-2098. 

 Soltic, S. & Peacock, L. (2006b). A comparison of inductive and transductive 

models for predicting the establishment potential of the exotic scale, Aspidiella 

hartii (Cockerell), in New Zealand. Bulletin of Applied Computing and 

Information Technology, 4 (2), October 2006. 

 Soltic, S. & Peacock, L. (2006a). Evolving connectionist systems in ecological 

modelling. Presented at the 1
st
 Korean-New Zealand Joint Workshop on 

Advance of Computational Intelligence methods and Applications, 8 Feb, 

Auckland, New Zealand. 

 Soltic, S., Pang, S., Peacock, L. & Worner, S. (2004a). Evolving computation 

offers potential for estimation of pest establishment. International Journal of 

Computers, Systems and Signals, 5 (2), pp. 37-44. 



 
10 

 Soltic, S., Pang, S., Kasabov, N., Worner, S. & Peacock, L. (2004b). Dynamic 

neuro-fuzzy inference and statistical models for risk analysis of pest 

establishment. International Conference on Neural Information Processing, 

ICONIP, LNCS 3316, 971-976. 

 Soltic, S., Pang, P., Worner, S. & Peacock, L. (2003). Evolving computation 

offers potential as a probabilistic evaluation for pest risk maps generation. In N. 

Kasabov & Z. S. H. Chan (Eds.). Proceedings of the Conference on neuro-

computing and evolving intelligence 2003, NCEI‟03, 20-21 Nov, pp. 104-106. 

1.7 Thesis structure 

This thesis is divided into ten chapters, including this introductory chapter. Chapters 2 

and 3 are supporting chapters for Chapters 4, 5 and 6, and Chapter 7 supports Chapters 

8 and 9. 

Chapter 2 gives a survey of modelling techniques for DSS concentrating on artificial 

neural networks. In Chapter 3, special attention is given to the modelling techniques in 

the field of ecological modelling and a survey of the benchmark works from this field is 

given. The challenges of assessing the risk of exotic pest insect invasions are also 

addressed. Furthermore, the real-world eco-climatic insect distribution data used in 

experiments described in Chapters 5 and 6 is introduced and its preliminary analysis is 

undertaken. 

Chapter 4 presents a new adaptive model based on local probability for risk prediction, 

named LPAM. The real power of this dynamic model is in the knowledge extraction 

facility that accompanies the inference engine. The knowledge is delivered via IF-

THEN fuzzy rules and this chapter proposes a visualization method for these rules. The 

chapter also shows the results of using LPAM on two benchmark problems. 

Chapter 5 shows the results of using LPAM for assessing the establishment potential of 

a pest insect. We validate the model presented in Chapter 4 and compare the obtained 

results to the results of two more recent works where traditional neural networks were 

used on similar datasets. 

Chapter 6 analyses global, local and „personalized‟ models of pest insect distributions 

created through inductive and transductive reasoning. Four models, including LPAM, 
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were built and evaluated on three eco-climatic insect distribution datasets. The focus in 

this chapter is on the fundamental differences between these modelling approaches. The 

chapter also explores the effect of probability thresholds, used to dichotomise the 

likelihoods of pest occurrence at a location obtained by the models into presences and 

absences, on the performance of all four models. 

Chapter 7 provides an introduction to models of spiking neurons and gives the 

supporting information and background to contributions presented in Chapter 8 and 9. 

This chapter looks at reasons why spiking neurons are more biologically plausible than 

traditional neurons for modelling human neurons and the benefits of using spiking 

neurons in modelling the human sensory systems. It also reviews various coding 

schemes used to model the information encoding in the human brain. 

Chapter 8 presents a new evolving spiking neural network model (ESNN-PC). We used 

the model for modelling taste recognition (ESNN-PC-TR). First, the biological models 

of taste-coding are covered. Next, the results of our survey of the benchmark taste 

recognition systems are given. We discuss the shortcomings of using traditional 

artificial neural networks as pattern recognition tools in modelling taste perception. This 

is followed by a detailed description of the proposed taste recognition model and the 

testing undertaken to evaluate its performance. The model was used on two real-world 

taste datasets whose characteristics are presented in this chapter. It is demonstrated that 

the spiking taste recognition system can model the tasting of water and wine. Finally, 

the model is compared to existing work. While the proposed ESNN-PC has been used 

for taste recognition (ESNN-PC-TR) we could not see why this model could not be used 

for other applications where perception and sensory information is collected in a brain-

like way (e.g. sound, smell, vision, ...) and where adaptive structures and an exploration 

of temporal patterns are desirable. 

Chapter 9 gives the details of the proposed FPGA implementation of ESNN-PC. It 

provides schematic diagrams of all modules and time analysis of signals during learning 

and classification. Also, the implementation‟s processing speed and resource usage are 

evaluated. The chapter begins with a survey of the published literature on FPGA 

implementations of artificial neural networks. It addresses the main challenges of 

hosting a neural network in FPGA and the techniques used to circumvent these 

problems. 
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Chapter 10 concludes and summarises the entire thesis. It includes a review of the 

strengths and weaknesses of the LPAM and ESNN-PC models. It also gives directions 

about how this work can be further utilized in the fields of pattern recognition, robotics 

and pervasive computing. 
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Chapter 2 
Connectionist-based modelling 

techniques for adaptive decision 
support systems: a review 

This chapter gives a survey of modelling techniques for DSS concentrating on 

techniques which are inspired by the structure and operation of the human brain. In this 

chapter, the focus is on knowledge based DSS built using traditional artificial neural 

networks where input signals are rate coded and represented as numbers. The chapter 

also highlights the benefits of using evolving connectionist systems for real-world 

applications where a better understanding of modelled systems is required. 

Furthermore, inductive versus transductive reasoning and global, local and 

„personalised‟ modelling are compared. All these approaches are explored further in 

Chapter 4 and 5 using an ecological case study. 

2.1 Introduction 

Decision making in a complex and dynamic field is very difficult. A decision made can 

have an enormous impact on the life of a group of people (e.g. an environmental 

decision) or can affect an individual‟s wellbeing (e.g. a medical decision). For instance, 

a decision that would allow an animal to be imported to Country A from Country B, 

where the animal could have been infected by a disease, could destroy the meat industry 

in Country A. 

The development of DSS started in the 1960s. At the beginning, DSS were mainly 

developed to help business managers make key decisions (Turban, Aronson & Liang, 

2005). In the 1970s books and journal articles related to DSS started to emerge, and the 

first international conference dedicated solely to DSS was held in 1981. This intensified 

the research on DSS. Development of computer and communication technologies 

further increased DSS popularity. More recently, web-based and web-enabled DSS have 

been developed (Han et al., 2008; Karacapilidis, 2006). Today, DSS are not used only 

for business purposes, researchers from different research fields (e.g. medicine, 

bioinformatics, environmental science, etc.) have recognised the importance of DSS and 
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have come to appreciate the help these systems can offer. They not only use traditional 

decision support methods, but also propose new methods and technologies that are 

suitable for decision making in their own areas of expertise. 

DSS can be found in almost all industries where information systems are used. The 

complexity and the availability of these systems range from off-the-shelf products, e.g. 

StrongWare
®
, to systems designed to tackle very specialized, narrow and specific 

problems, such as decision aids for time critical targeting applications (McGraw, 

Lammers & Steinman, 2004; VonPlinsky & Crowder, 2002), waste management 

(Gomes, et al., 2008), wildlife management (Paterson et al., 2008), internet shopping 

(Mohanty & Bhasker, 2005) and international risk management (Han et al., 2008). In 

the past few years, DSS have been utilized in a variety of tasks, such as: 

 Marketing - design of a line of substitute products (Alexouda, 2005); 

 Politics - analysis of political events (Blanning & Reinig, 2005); 

 Finance - risk analysis and forecasting of evolving economic clusters in Europe 

(Kasabov et al., 2000); 

 Telecommunications - modelling the robustness of wireless networks under 

different operating conditions (Bose, Eryarsoy & He, 2005); 

 Pest management - supporting and improving fruit production in New Zealand 

(Woodford et al., 1999). 

Since DSS have been used in a wide range of applications they have different meanings 

to people from different fields. Consequently, DSS differ in scope. Some DSS are 

created for use by only one user while others are created to be used by many users in an 

organisation or are even available to users through the Internet. Sauther (1997) defines 

DSS as computer-based systems “that bring together information from a variety of 

sources, assist in the organization and analysis of information and facilitate the 

evolution of assumptions underplaying the use of specific models“. On a smaller scale, 

a less ambitious definition might describe a DSS as a system, tool or technology that 

supports the decision-making process. In the latter case, the development of DSS is 

often influenced by the characteristics of its purpose and the availability of modelling 

data. Therefore, the evaluation of the system‟s credibility is done in the context of its 

application. This is particularly important when analysing the performance of a 

predictive system where the true output values cannot be obtained. 
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DSS are categorised using a number of different criterions (Marakas, 2003). Knowledge 

based DSS are the most sophisticated DSS. They are computer-based systems able to 

search for hidden patterns in the problem space. Knowledge based DSS are a major 

point of interest in this research work and they are described in more detail in the next 

section. 

2.1.1 Knowledge based DSS - methods and tools 

Knowledge based DSS are intelligent systems with expert knowledge in the problem 

domain. The tools used to build these DSS are able to extract the most important 

features of a particular problem. These features are then used to choose between 

possible solutions. One of the main requirements for tools used in building knowledge 

based DSS is that they must be able to learn in an on-line mode. Furthermore, they must 

be able to accommodate new data and information without forgetting already learnt 

relationships. They must also have knowledge representation facilities (Kasabov & 

Fedrizzi 1999). Artificial intelligence techniques such as neural networks, fuzzy 

systems, and genetic algorithms (GA) partially meet these requirements. 

A general framework of a connectionist-based decision support system (CBDS) is given 

in (Kasabov, 2003b). The framework consists of 5 parts shown in Fig. 2.1, where the 

Pre-processing unit is responsible for data filtering and feature extraction, the Neural 

network modules are trained on data and contain knowledge, the Higher-level 

knowledge unit produces final decisions, the Adaptation unit adjusts the system‟s 

structure and functionality for a superior performance and the Rule extraction unit 

explains the knowledge in an appropriate way. 

In this work the focus is on CBDS that facilitate: (1) adaptation to new data, (2) 

knowledge discovery and (3) accurate prediction/classification. Fig. 2.2 shows our 

approach. Different types of artificial neural networks (ANN), traditional and spiking, 

were employed for two distinct problems. Firstly, a new approach was used for 

predicting the establishment potentials of different exotic pest insects. Secondly, a 

spiking neural network model was proposed and used for taste recognition. This model 

was implemented into an FPGA device. The proposed models are based on ANN and 

therefore the relevance of ANN when building DSS is described next. 
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Fig. 2.1.  A framework of a connectionist-based decision system proposed by Nikola Kasabov 

(Kasabov, 2003b). 

 

 

Fig. 2.2.  A graphical representation of the approach taken in this thesis. 

2.2 Artificial Neural Networks 

2.2.1 Artificial Neural Networks for DSS 

ANN have proved useful for modelling complex systems. A typical ANN is made up of 

a large number of simple processing units (neurons) highly interconnected in a structure 

than approximates the human brain. As a part of a decision making system, neural 

networks are able to evaluate data in a dynamic environment (Kasabov et al., 2000). In 

the decision support context, a neural network, or a group of networks, receives a set of 

data, processes it and produces an output that can help the users to make a decision (Fig. 

2.3). 

Knowledge based neural networks are particularly interesting for building DSS because 

they provide facilities for knowledge extraction and insertion. Knowledge based neural 

networks manipulate data and knowledge. In these networks, knowledge can be 

expressed in the form of IF-THEN rules (Kasabov, 2003a). For example, a simple 

proposition rule states that IF x1 = A AND/OR x2 = B THEN y = C. More complex 

rules can be built. For instance, the first order Takagi-Sugeno fuzzy rule states that IF x1 
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= A AND x2 = B THEN y = c + ax1 + bx2, where A and B are fuzzy values and a, b, and 

c are constants. There are fuzzy rules in which importance (DI) and certainty (CF) 

degrees are used to represent the importance of each of the conditions to the output and 

strength of the rule, respectively. For example, IF x1 = A with DI1 AND x2 = B with DI2 

THEN y = C with CFc, where DIi represent the importance of each of the conditions to 

the rule output, and CFc represents the strength of the rule. 

 

Fig. 2.3.  An illustration of the knowledge based DSS framework. The circle nodes represent 

different neural networks working together in a DSS. 

Knowledge based neural networks allow rule insertions, rule extractions, adaptation and 

reasoning. They can be built as a combination of different technologies in a manner that 

overcomes the drawbacks of the individual techniques. For example, fuzzy neural 

networks (FuNN) use an ANN and fuzzy logic system (Cherkassky, 1998). Most 

traditional ANN, such as MLP networks, suffer from the black box syndrome because 

they do not provide any knowledge extraction facilities or indicate how the decision was 

made. Thus, the knowledge that traditional ANN acquire is hard or impossible to 

extract. On the other hand, fuzzy logic systems are good at explaining their decisions 

but they are poor learners (Lin & Lee, 1991). FuNN have all the properties of neural 

networks, they can be trained to approximate data, they can generalize and they have the 

ability to learn. Furthermore, they have the properties of fuzzy systems; they are able to 

model uncertainty, they can reason with imprecise information and are good at 

explaining their decisions. Furthermore, they can be trained and rules can be inserted 

and extracted (Kasabov, 2001). The characteristics of FuNN have been summarized in 

(Kasabov & Fedrizzi, 1999): 

 FuNN can be trained to approximate data; 

 FuNN can be used to deal with knowledge in the form of fuzzy rules; 

 FuNN are robust to catastrophic forgetting; 

 FuNN can be used as replicators; 

 FuNN can work both on real input data and fuzzy input data; 
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 When structural learning with forgetting and consecutive pruning is applied, a 

FuNN‟s structure becomes a skeleton structure, i.e. it contains only the 

important input, rule and output nodes, and the valuable connections between 

them. 

An algorithm named the evolving fuzzy neural network (EFuNN) has been proposed for 

on-line, adaptive applications in (Kasabov, 1998). EFuNN are able to learn quickly, 

they adjust to dynamic changes in the operating environment and allow for the 

extraction of rules. These networks have been reported as good performers for decision 

making on mortgage approval (Kasabov, 2002). EFuNN were also used for adaptive 

speech recognition (Kasabov, 1999), camera operations recognition (Koprinska & 

Kasabov, 2000), classification of handwritten digits (Ng et al., 2004), odour recognition 

(Zanchettin & Ludermir, 2004) and sensor management (Kong et al., 2007). Recently, 

an image recognition architecture based on EFuNN for analysis of images of pest 

damage to apples has been proposed (Woodford, 2008). 

2.2.2 Artificial neurons 

Artificial neurons are simple processing units used to build an ANN. A generic artificial 

neuron (Fig. 2.4) receives signals via a number of connecting links (synapses). Each 

neuron is in a unique inner state. The inner state changes as the input signals are 

received. In a conventional artificial neuron, the input signals are reduced to a single 

value by an integration function g. Then, an activation (transfer, squashing) function f 

takes this single value and produces an output. The integration function g is usually the 

addition function and the activation function f is generally chosen to be monotonic 

(Bishop, 1995). The output signals are typically in the range of [0, 1] or [-1, 1]. The 

input signals are normally influenced by a set of synaptic weights. 

The McCulloch-Pitts model of the neuron (McCulloch & Pitts, 1943), also called the 

threshold logic unit, is one of the simplest models of biological neurons (Fig. 2.5). A 

McCulloch-Pitt unit receives and sends only binary values xi {0, 1}. When a neuron 

receives a 1 signal via one of its input, its inner state is incremented by 1 unit. The 

neuron outputs 1 if its inner state exceeds some threshold value θ, and 0 if this threshold 

is not exceeded. The threshold θ is some fixed real number, there are no synaptic 

weights associated with the inputs and the transfer function f is a step function: 
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Fig. 2.4.  A conventional neuron receives n inputs and produces one output (y). g is an 

integration function and f is an activation function. The graphical representation of neurons is 

adopted from (Rojas, 1996). 

The McCulloch-Pitts neurons are able to solve two-class classification problems. The 

decision boundary between these two classes is linear. If the problem is from a two-

dimensional input space the decision boundary is a line. If the problem is from an n-

dimensional space, the decision boundary is a linear n-1 dimensional hyperplane. This 

processing unit is able to process the AND, OR and NOT functions. 

 

Fig. 2.5.  The McCulloch-Pitts neuron and a step transfer function. The inputs xi and output y 

are Boolean values. This unit can process only inputs equal to 1 and 0, i.e. xi {0, 1}. 

Furthermore, a sample fed to one McCulloch-Pitts neuron causes either the 0 output or the 1 

output. 

In 1958 Frank Rosenblatt (Rosenblatt, 1958) proposed a more general threshold model 

of the biological neuron (Fig. 2.6). This model has n inputs, each associated with a 

weight wi which is modelling the synaptic efficiency of the connection. The weights are 

adapted by a learning algorithm. The inputs and outputs are real numbers. The networks 

of these threshold units are called perceptrons. 
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Fig. 2.6.  The perceptron neuron (Rosenblatt, 1958). The weights wi model the synaptic 

efficiency of the connections between two perceptrons. The inputs xi and output y are real 

values. Different activation functions have been proposed over the years. 

Single-layer perceptrons are able to solve problems that are linearly separable. These 

Perceptron Networks are the building blocks for MLP networks, one of the most 

popular types of neural networks. MLP neural networks have a number of hidden 

layers. Each layer in a MLP network has a set of adaptive weights and continuous 

inputs. The neurons have a differentiable activation function and the weights are trained 

by the powerful error back-propagation learning algorithm (Kasabov, 2007). When a 

sigmoid activation function is used the neurons are called sigmoid threshold gates. The 

sigmoid threshold gates were found to be a better model for a neuron than the Boolean 

threshold gates (Maass, Schnitger & Sontag, 1991). MLP networks can perform the 

non-linear separation of the input problem space and can solve the XOR problem. 

Spiking neurons are a more biologically plausible model for biological neurons. 

Furthermore, spiking neurons are more computationally powerful than the McCulloch-

Pitts and sigmoid neurons (Maass, 1997b). However, the computing paradigm of 

spiking neurons is quite different from the one employed by the traditional rate-coded 

neurons. The main difference between traditional neurons and spiking neurons is that 

spiking neurons communicate with spikes (Fig. 2.7) rather than numbers. In rate-coded 

ANN, each neuron sends its activation level to the post-synaptic neurons as a 

continuous value, typically a floating point number in the range [0, 1]. This continuous 

value represents the mean firing rate of that neuron and the exact timing of the spikes 

has no role. 

The spikes arrive from the afferent neurons via inputs in time and influence the 

behaviour of the spiking neuron, changing its inner state (post synaptic potential or 

PSP). When the PSP of a spiking neuron exceeds a certain threshold value the neuron 

itself generates a spike. This type of neurons is very important in this thesis and a 
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separate chapter, Chapter 7, is dedicated solely to the introduction of spiking neuron 

models and information encoding using spikes. 

 

Fig. 2.7.  Spiking neuron receiving three spikes and generating one spike. The spikes arrive via 

three synapses influencing the neuron‟s PSP. When the PSP exceeds a certain threshold the 

neuron itself generates a spike. 

2.2.3 Connectionist Systems 

Neural networks are also referred to as connectionist systems (COS). A COS, as seen in 

this thesis, consists of simple processing units and is able to learn from the samples 

from a problem space. It is characterised by its structure, type of neurons, its parameter 

set and weights, learning algorithm and goal function (Kasabov, 2003a, p. 12). MLP, 

radial basis function (RBF) (Kasabov, 2007), FuNN and self-organising maps (SOM) 

(Kohonen, 1982) are the most important examples of COS. As is stated later on, COS 

are the most frequently used type of neural network in ecological modelling. 

Learning is very important for the success of a COS. There are two main types of 

learning, supervised and unsupervised learning. In supervised learning, a COS is given a 

set of input-output examples to learn the input-output relationship. An error correction 

algorithm to minimize output errors (gradient descendent, least-mean-square, etc.) is 

employed and once the relationship is learnt the COS is ready to classify new data 

examples with unknown input-output relationships. When the examples lack the output 

information, unsupervised learning can be used. Unsupervised learning is used for data 

clustering where the structure of the data is discovered so that data samples that belong 

to the same cluster are similar to each other and data samples that belong to one cluster 

are different from the data samples of the other clusters. 

The main disadvantages of COS are that they (1) suffer from catastrophic forgetting, (2) 

lack a knowledge representation facility, (3) have long training times and (4) are unable 

to change their structure to accommodate new data (Kasabov, 2003a, p. 24-25). 

Furthermore, the structure of a COS must be designed before the COS is trained. This is 

usually a daunting task for networks comprising hidden layers because there are no 

guidelines to determine the number and size of the hidden layers. Although the structure 

PSP 
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of a COS is typically optimized by trial and error, genetic algorithms (GA) have been 

used to optimize COS structures (Castillo et al., 2000; Marshall & Harrison, 1991). The 

main disadvantage of GA optimization procedures is their slow searching speed making 

GA inappropriate for the optimization of an on-line COS. 

2.2.4 Evolving Connectionist Systems 

Evolving connectionist systems (ECOS) overcome the problems related to the static 

structure of COS. Compared to COS, the structure of ECOS is not static, but rather it 

continuously adapts in time through its interaction with the environment and other 

systems (Fig. 2.8). An ECOS is necessary in situations where the complete set of 

training data is not known in advance. ECOS are suitable for on-line clustering as well 

as for on-line classification (Kasabov, 2007a; Kasabov, 2003a). 

 

 

Fig. 2.8.  ECOS interacts with the environment and other systems. 

Kasabov defines an ECOS as a “multi-modular connectionist architecture that facilitates 

the modelling of evolving processes and knowledge discovery” (Kasabov & Benuskova, 

2005). Therefore, an ECOS may consist of one or many evolving connectionist 

modules, with each module possibly using different learning algorithms and structure 

elements. All modules must be able to evolve in a lifelong manner. Furthermore, ECOS 

tools do not suffer from catastrophic forgetting and they facilitate knowledge storage 

without the need to store past experiences. Examples of ECOS are: 

 EFuNN (Kasabov, 2001);  

 Hybrid neural fuzzy inference systems (HyFIS) (Kim & Kasabov, 1999); 

 DENFIS (Kasabov & Song, 2002); 

 Evolving classifier function (ECF) (Huang, Song & Kasabov, 2005). 
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Additionally, a number of COS have been adapted to meet ECOS requirements, such as 

evolving self organizing maps (ESOM) (Deng & Kasabov, 2000) and incremental 

principal component analysis (IPCA) (Ozawa et al., 2005). 

The ability to adapt its structure in time makes the ECOS particularly suitable for 

modelling ever changeable ecological systems. Current models of ecological systems 

are mainly static and their suitability for predicting changeable future environments has 

been questioned (Guisan & Zimmermann, 2000). Having a model that can change its 

structure to accommodate new data as it becomes available would provide more 

accurate future predictions. Furthermore, the ECOS has many other desirable features, 

such as one-pass learning and knowledge extraction (Kasabov & Benuskova, 2005), that 

make it a suitable tool for ecological modelling particularly for modelling the 

establishment potential of exotic species. The former feature allows for building of fast 

on-line predictive models while the latter one makes models suitable for not only 

predicting future outbreaks but also delivering a set of rules explaining the current 

species distributions. 

2.3 Inductive and transductive reasoning 

Inductive reasoning is the most frequently used inference tool in machine learning. 

Inductive methods estimate a global model (a rule or a function) from a set of training 

data samples from the problem space. This model is then used to predict outcome values 

for an unseen data vector from the same space (deduction). Inductive models do not 

utilize the additional information related to the individual data samples. Regression 

analysis, largely used in ecological modelling, is an example of inductive reasoning. 

In contrast, transductive reasoning techniques are used to build an individual (personal) 

model to suit a single data sample (Vapnik 1998). These techniques explore the 

knowledge about the location of the sample in the problem space and adjust the model 

to this particular sample. Transductive techniques promise better performance than 

inductive techniques for applications where the emphasis is on a particular data sample 

rather than the entire problem space. They also offer advantages over inductive 

reasoning for small and moderate sets (Derbeko, El-Yaniv & Meir, 2003; Blum & 

Chawla, 2001). This type of modelling was proven to suit clinical and medical 

applications, where the focus is usually on a single patient rather than on a group of 

people (Kasabov & Pang, 2004). In the past few years, transductive reasoning has been 
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successfully implemented for a range of problems, e.g. medical diagnostic (Kukar & 

Grošelj, 2005; Song & Kasabov, 2005; Kukar, 2004; Anderson et al., 1991), benchmark 

dataset classification (El-Yaniv & Gerzon, 2005; Mohan & Kasabov, 2005; Bosnić et 

al., 2003; Chen, Wang & Dong, 2003; Ho & Wechsler, 2003), text classification 

(Zelikovitz, 2004; Joachims, 1999), face surveillance (Li & Wechsler, 2004) and gene 

classification (Pang & Kasabov, 2004). We suggest that this approach can be 

appropriate for risk analysis in environmental studies where the focus is on a particular 

location and species rather than on the whole world. This is further investigated in 

Chapter 6. 

2.4 Global, local and ‘personalised’ modelling 

Modelling techniques can be divided into three main categories, global modelling, local 

modelling and „individualised‟ or „personalised‟ modelling. Consider a collection of 

data samples D, a collection of training data samples Dtr  D and a collection of testing 

data samples Dt  D, where Dtr  Dt. 

Global modelling results in the creation of one model from all training data samples 

(Dtr). The model is described with only one function (Fig. 2.9a), e.g. using a multiple 

linear regression results in a regression function fG where Y = fG(X), Dtr = {X1, X2, ..., Xk 

, Y} is a domain data set, Xi are features of Dtr, and Y is the vector under estimation. A 

global model captures trends in data that are valid for the whole problem space and the 

information included in local patterns may not be discovered. MLP are an example of 

connectionist systems trained using global learning techniques where the weights 

between the network‟s nodes are adjusted based on the error between the network's 

outputs and the known outputs in the training set Dtr. The input samples are repeatedly 

presented to the network until the errors between the predicted and the known outputs 

are minimized (Bishop, 1995). Learning a new data sample causes MLP to forget all 

previously learnt patterns. This is a problem when an MLP has to learn new input 

patterns and/or has to adapt to a change in the modelling environment. 

In local modelling a number of local models are created from all available training 

samples (Fig. 2.9b) where each model represents a cluster of training data, with its own 

function fLi. These fLi are able to capture local patterns contained in the problem 

subspaces. The local modelling approach relies on a clustering algorithm to partition 

data into a certain number of clusters. Samples in a cluster are similar to each other and 
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dissimilar to samples from other clusters. Euclidean distance is the most commonly 

used similarity and difference measure (Xu and Wunsch II, 2005): 

2
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( )
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ij il jl
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D X X         (2.2) 

where d is the dimension of the data and Xi and Xj are two samples from the problem 

space. One of the main characteristics of this modelling is that it does not cause 

catastrophic forgetting. When a new data sample becomes available only a small part of 

the problem space is fine-tuned (adapted) to accommodate this new sample. 

 

Fig. 2.9.  Examples of global (a), local (b) and „personalised‟ (c) modelling on the same set of 

data. fG is a global model, fL1 and fL2 are local models and fPxi is a „personalised‟ model built for 

Xi. 

Global modelling and local modelling are based on inductive reasoning. Personalized 

models are products of transductive reasoning. A „personalised‟ model fPxi is build for 

every single data sample Xi from D (Fig. 2. 9c). Given a data sample Xi from D, a model 

is created based on the knowledge acquired from the nearest training data samples to Xi. 

A parameter specifying the number of nearest neighbours must be optimised for the 

desired accuracy. „Personalised‟ modelling is particularly useful in cases when not only 

might a new data sample become available but this new data sample is described by a 

different set of features. Both global and local modelling typically assumes a fixed set 

of features. The k-nearest neighbour (KNN) method can be used to create „personalised‟ 

models. This algorithm finds the k nearest data samples Xj to data sample Xi (usually 

using the Euclidean distance measure) and calculates the output value for Xi as the 

average of the output values of all Xj samples. When a weighted KNN (WKNN) method 

is used for building the personalized model for Xi, the model is influenced by the 

distances from the k nearest samples to Xi (Kasabov, 2007b): 
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where yi is the output value for Xi from Dt and wj are weights based on the distances d 

between Xi and all k nearest samples to the data sample Xi  

max( ) ( min( ))

max( )

j
j

d d d
w

d
       (2.4) 

Kasabov proposed the weighted-weighted k-nearest neighbour algorithm (WWKNN) 

where the „personalised‟ models are calculated not only based on knowledge about 

neighbouring samples but also based on the importance of each feature in terms of its 

discriminative power within the neighbourhood of k vectors (Kasabov, 2007b). This 

approach allows an evaluation of the importance of each feature to the „personalised‟ 

knowledge contained in the model fPxi. 

To take advantages of the desirable characteristics of global, local and „personalised‟ 

models integrated (hybrid) models could be prepared (Kasabov, 2007a), where the local 

and „personalised‟ models discover the local trends in the data and the global model 

discovers global patterns valid for the whole problem space (Fig. 2.10). The changes 

caused by the availability of new data samples affect a subset of local models and the 

global model will need to adapt less often. 

 

 

 

 

 

 

 

 

 

Fig. 2.10.  An integrated global, local and „personalised‟ multi-agent system. Local and 

„personalised‟ agents capture local information and knowledge and the global agent captures 

global trends to provide computational refinements for complex data. 

Our experiments show that all three modelling approaches are useful for modelling 

complex real-world problems. However, integrating them in a single multi-agent system 
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is a challenging task. We explore and evaluate global, local and „personalized‟ 

modelling in more detail in Chapters 4, 5 and 6 by using an ecological case study. 

2.5 Feature selection and model validation 

2.5.1 Feature selection 

The accuracy of connectionist systems is dependent on the quality of the input data. 

Often the input data contains a limited number of samples with high feature 

dimensionality. One example is bio-climatic data where there are often a small number 

of locations where a species is present while each location is described by a high 

dimensional vector of climate variables (features). Highly dimensional data is a 

challenge for neural networks. In fact, irrelevant features not only slow down the 

processing but can also degrade the performance of a learning algorithm. Therefore, 

feature selection techniques are used as part of data pre-processing to reduce the number 

of features and more importantly to find the most relevant ones. Features can be 

selected (1) prior to a model being created (filter techniques) or (2) on the basis of how 

well the created model performs using the chosen features (wrapper techniques). 

Because wrapper techniques evaluate the performance of a learning algorithm on 

various subsets of available features they are more computationally expensive than the 

filter techniques. However, given a learning algorithm the wrapper techniques can find a 

better suited subset of features. 

Correlation analysis, signal-to-noise ratio analysis (SNR) and principal component 

analysis (PCA) are very popular feature selection techniques. The most commonly 

known correlation measure shows the strength of the linear relationship between two 

features xi and xj based on their mean values (μ) and standard deviations (δ): 
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where n is the number of samples in a dataset D. The value of corr lies between 1 and -

1, where corr(xi, xj) = 1 and corr(xi, xj) = -1 mean complete correlation between xi and xj 

and corr = 0 means xi and xj are totally independent features. The features that are 

highly correlated with other features are removed from D prior to the start of modelling. 

The challenge is to determine which correlations are too high and consequently which 
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feature must be removed from the modelling. This technique cannot capture correlations 

that are not linear in nature. 

The SNR method uses a feature‟s mean and standard deviation values to evaluate the 

importance of this feature in the modelling dataset: 

( )ix jx
x

ix jx

abs
SNR         (2.6) 

where μix and μjx are the mean values of the feature x for the classes i and j and δix and 

δjx are the standard deviation values of x for the classes i and j. Fig. 2.11 shows a 

graphical representation of the SNR ranking of 40 climate variables (features) which 

describe the presence and absence of a pest insect, the dataset DPest. The dataset consists 

of 46 samples, where 27 samples belong to the class „Pest absent‟ and 19 to the class 

„Pest present‟. The analysis was done in a neuro-computing decision support 

environment called NeuCom (NeuCom, 2008). Features 30, 31 and 32 (the red oval) are 

ranked the highest. There are two big changes in the SNR values and therefore 

modelling could start by using the first three highest ranked features and if more 

features are required, they could be included until an accurate model is prepared. 

 

Fig. 2.11.  SNR ranking of 40 features of DPest describing the presence and absence of a pest 

insect. Features 30, 31 and 32 are the three highest ranked of all 40 features. Two big changes 

can be identified in the SNR values. 

The PCA method transforms the original feature space X = {x1, x2, ..., xn} into an 

orthogonal space P = {p1, p2, ..., pn} defined with a new set of uncorrelated variables 

called principal components pi. Principal components pi are a linear combination of the 
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original data features. The first principal component p1 contains the most important 

characteristic of the original dataset. The method itself does not reduce the 

dimensionality of the problem. The reduction is achieved by replacing the original set D 

by a set of data samples where each sample is characterised by k principal components 

(k < n). However, the method transforms the original data space into a new data space 

where variables lose their original meaning. Fig 2.12 shows the results of the PCA 

analysis of DPest. It can be seen that p1 accounts for more than 60% of the information 

present in the original set. When p2 is used as well, the two features account for ~ 90% 

of the information. Other pi together account for ~10% of the information present in the 

original set. So it would be sensible to use only p1 and p2. 

Fig. 2.13 shows the results of a feature selection task where the GA search algorithm 

was used for feature selection on DPest for the ECF method. Features were selected 

while the model was being built (wrapper method). In this feature selection scheme the 

feature‟s importance is measured in terms of the classification performance of the 

trained model. Here, the best model was created using 25 features shown in the „Feature 

Extraction Results‟ part of the modelling tool. The accuracy of the best ECF model was 

91.7%. All together 100 subsets of the original features were created and tested 

(„Generations‟ = 100). The major problem with this technique is that the process of 

finding the best set of features is rather lengthy. It took around 12 minutes to complete 

the feature selection process on this relatively small dataset. When feature selection is 

done on larger datasets the process can take hours which might be inappropriate for 

some modelling tasks. 

 

Fig. 2.12.  PCA analysis of the 40 features of DPest the describing presence and absence of a pest 

insect. The first principal component (p1) accounts for more than 60% of the information 

present in the original set. 
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Fig. 2.13.  Results of using GA for optimization of an ECF model trained on DPest. The selected 

features are shown as red and irrelevant features are shown as blue. 

2.5.2 Model validation 

Model validation generally implies a measure of the classification or predictive power 

of a model. Three main approaches exist for this task. The first approach is to use two 

sets of data, a training set and a test set. For this purpose a single data set D is divided, 

preferably randomly, into two sets: Dtr containing data samples for training a model and 

Dt containing data samples for testing a model. Ratios of 80%-20% (i.e. 80% of all data 

samples are for training and 20% for testing), 70%-30% and 50%-50% are usually used. 

The second approach is to create k subsets of the original dataset D and use k–1 subsets 

for training and one subset for testing. The evaluation is repeated with all possible 

combinations of k–1 subsets and the accuracy is calculated in terms of the mean 

accuracy over all k experiments. This approach is called k-fold cross validation. 

The third approach is called leave-one-out cross-validation. This approach is necessary 

for smaller datasets D where there are not enough samples to create an independent set 

for training and testing. If a training set is too small, the resulting model might have 

unsatisfactory accuracy. During the evaluation, one sample at a time is taken from D 

and moved to Dt, the rest of the samples are used for training. The process is repeated 

for every single data sample from D and the accuracy is measured in terms of the mean 

accuracy over all n experiments, where n is the number of samples in D. 
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The real question is what modelling accuracy classifies a model as excellent? Could a 

model having 80% accuracy be considered as a good model or are only models with 

accuracies above 90% good? We think that a model must be evaluated in the context of 

its application and it is particularly instructive to compare it to the performance of other 

models built using the same set of data. Unfortunately, that is often not possible when 

real-world datasets are used because the access to the data is generally restricted. It is 

even harder to evaluate the quality of knowledge acquired by a model especially in 

cases where prior knowledge about the modelled problem is absent or incomplete. In 

Chapter 4, Section 4.4.1 the knowledge delivered by LPAM is illustrated on the Iris 

benchmark dataset (Asuncion & Newman, 2007). The data samples in the Iris dataset 

are defined by four features and examining these attributes in various 2D spaces was not 

a problem. However, when the number of features increases this analysis becomes 

cumbersome. 

2.6 Conclusion 

This chapter presents existing connectionist techniques and techniques for data pre-

processing and model evaluation. The most important feature selection techniques are 

described and their performance on a pest distribution dataset explained. Inductive and 

transductive reasoning and global, local and „personalised‟ modelling are presented and 

contrasted. Special attention is given to the issues associated with MLP networks 

because they are the most frequently used connectionist systems in ecological 

modelling. While, they are a well understood and very powerful modelling techniques 

they have very limited knowledge discovery capabilities. They are also hard to adapt to 

new data, a characteristic that is becoming increasingly desirable. 

This chapter also talks about evolving connectionist systems highlighting the benefits of 

using them for real-world ecological modelling applications. Two characteristics make 

ECOS favourable over MLP for modelling changeable ecological processes: (1) the 

ability to adapt and (2) its knowledge representation capabilities. The first characteristic 

allows for the building of adaptive models that alter their structure and knowledge to 

accommodate environmental changes (possibly due to climate change). The second 

characteristic has the potential of increasing our knowledge of the interactions within 

and between various ecological systems. 
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Chapter 3 
Ecological modelling, benchmark 

work and bio-climatic distribution 
data 

This work explores the use of new connectionist structures to deal specifically with 

problems from biosecurity. Therefore, special attention is given to the modelling 

techniques in the field of ecological modelling and a survey of the benchmark works 

from this field is given. In particular, the challenges of assessing the risk of an exotic 

pest insect invasion using connectionist techniques are addressed. This chapter also 

acknowledges the specific characteristics of the problems encountered within predictive 

insect habitat modelling and the frustrations associated with such modelling are 

highlighted. Finally, the real-world environmental data used in the case studies 

described in Chapters 5 and 6 is presented. Overall, this chapter gives the support and 

background information to the contributions presented in Chapter 4, 5 and 6 where 

existing and novel modelling techniques for risk estimation with case studies from 

biosecurity are presented. 

3.1 Ecological modelling: benchmark works 

Over the years, a variety of methods have been used to predict the likelihood of a 

species‟ establishment upon its introduction into an area where the species is not 

normally found. These methods range from those using a graphical approach, where 

charts of insect distributions versus climatic characteristics are hand plotted and then 

carefully studied to find favourable and unfavourable climates in the present distribution 

of an insect (Cook, 1931), to those using on line computer based decision support tools, 

such as BIOSECURE (Barker et al., 2002) and GARP (Anderson, Lew & Peterson, 

2003; Peterson & Vieglais, 2001). In particular, geographic information systems (GIS) 

provide many facilities to help with the risk assessment process (Cohen, 1998). GIS 

allow for the storage of data as well as data analysis and data visualization (Monserud & 

Leemans, 1992). They are suitable for spatial analysis but their predictive modelling 

capabilities are limited. Therefore, GIS are often used together with a pattern 

recognition technique in a hybrid system. A GIS and a regression technique have been 

used to model the habitat requirements of leopard in west and central Asia 
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(Gavashelishvili & Lukarevskiy, 2008), assess spatial patterns of fern flora in New 

Zealand (Lehmann, Leathwich & Overton, 2002; Zaniewski, Lehmann & Overton, 

2002), estimate the establishment potential of a bacterial disease of potato in Norway 

(Rafoss, 2003) and forecast distributions of a threatened endemic moth species in Spain 

(Chefaoui & Lobo, 2008). A GIS has been also combined with an artificial neural 

network to model the habitat preferences of a sea cucumber (Drumm, Purvis & Zhou, 

1999). 

In ecological predictive modelling classical pattern recognition techniques have been 

extensively used on their own. For example, logistic regression (LR) was used to 

investigate the distribution of British ground beetle species (Eyre et al., 2005) as well as 

the distributions of families of aquatic invertebrates in Himalayan streams (Manel, 

Williams & Ormerod, 2001). Generalized adaptive models (GAM) were built to model 

the distribution of birds in Spain (Suárez-Seoane, Osborne & Alonso, 2002) and to 

explore the distribution of a variety of flora and fauna species (Pearce & Ferrier, 2000a, 

2000b). A fuzzy logic based model of the algal biomass concentration in the eutrophic 

Taihu Lake in China (Chen & Mynett, 2003) was build to predict the algal biomass 

concentration in that lake. Furthermore, SOM models were built to examine the 

worldwide distribution of insects (Gevrey et al., 2006; Céréghino, Giraudel & Compin, 

2001). Traditional ANN, particularly those based on MLP, are frequently used for 

building predictive habitat distribution models. Fish habitats have been modelled using 

classical statistical methods (Binns & Eiserman, 1979) and ANN (Park et al., 2003; 

Brosse et al., 1999; Aurelle et al., 1999). ANN based predictive models of bird habitats 

in two coastal lakes in the USA (Özesmi & Özesmi, 1999), a coastal habitat of New 

Zealand fur seals (Bradshaw et al.¸ 2002) and a worm in Belgium (Willems et al., 2008) 

have been built. Climatic envelope models (CEM) based on Mahalanobis distances 

(Farber & Kadmon, 2003) and ANN (Pearson et al., 2002) were used to assess the 

influence of climate on species distributions. Artificial neural networks have been 

particularly popular for modelling aquatic habitats (Li et al., 2007; Olden, Poff & 

Bledsoe, 2006; Jeong, Kim & Joo, 2006) and the dynamics of pest insects (Zhang & 

Zhang, 2008; Lippitt et al., 2008; Watts & Worner, 2008). 

An excellent review of predictive distribution models in ecology is given in (Guisan and 

Zimmermann, 2000). The paper has been cited 219 times in the first five years of it 

being published (Jørgensen, 2005). It reviews modelling techniques used for building 

predictive models by looking at the techniques‟ strengths and weaknesses. It also 
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discusses the issues related to model evaluation, credibility and applicability. This paper 

also points out the importance of the data sampling strategy to the building of accurate 

species distribution models. 

3.2 Artificial neural networks in the field of ecological 
modelling 

The use of ANN for ecological modelling is not a new concept. In Lek et al. (1996), 

ANN based models are described as a powerful alternative approach to traditional 

statistical methods for modelling in ecology. In particular, their ability to detect 

complex nonlinear relationships between independent and dependent variables makes 

ANN suitable for modelling very complicated and highly nonlinear relationships that 

characterise ecological models (Lek and Guégan, 1999). Often ecological models based 

on ANN often outperform the statistical ecological models (Jeong, Kim & Joo, 2006; 

Paruelo & Tomasel, 1997; Lek et al., 1996). 

The most frequently used ANN model is the MLP model. The MLP model has been 

used for building various prediction models (Sahoo, Ray & Wade, 2005; Lankin et al., 

2001; Bowers & Shedrow, 2000), species identification systems (Vaňhara et al., 2007), 

insects dynamics models (Zhang & Zhang, 2008), habitat models (Willems et al., 2008; 

Watts & Worner, 2008; Park, Rabinovich & Lek, 2007; Zhang, Gove & Heath, 2005; 

Bradshow et al., 2002; Drumm, Purvis & Zhou, 1999; Manel, Dias & Ormerod, 1999; 

Manel et al., 1999; Özesmi & Özesmi, 1999), and climate change impact models 

(Krasnopolsky et al., 2008; Pearson et al., 2002). However, the lack of knowledge 

extraction facilities in an MLP network is a huge disadvantage when this type of 

network is used for ecological modelling where the understanding of the influence of 

each independent variable on the dependent variable, e.g. the environment on a species, 

is important (Gevrey, Dimopoulos & Lek, 2003; Bradshow et al., 2002). In an MLP 

model the learnt relationships are encoded as weights; a format that cannot be easily 

interpreted (Kolman & Margaliot, 2005). Furthermore, MLP are static networks and 

must be retrained every time when new data becomes available. Therefore, a network 

built for one set of conditions cannot be easily adapted to another set of conditions. 
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3.2.1 Artificial neural networks in ecological modelling versus 
other approaches 

Over the past two decades, researchers have evaluated and compared the performance 

of models based on ANN to models using traditional statistical methods. The 

relationships in ecology are often non-linear and complex and ANN seem to be better 

suited for the task of modelling in this field than the traditional statistical methods 

(Watts & Worner, 2008). However, which of those two types of models performs better 

is still debatable. ANN outperformed the statistical models in the early work carried out 

by Paruelo and Tomsel (1997) and Lek and his team (1996) and were later confirmed as 

a powerful ecological data analysis tool by Lencioni et al. (2007) and Gevrey et al. 

(2003). In the experiments by Manel, Dias and Ormerod (1999) ANN were compared to 

discriminant analysis (DA) and logistic regression LR. They found that the accuracies 

of the ANN (89-100%) were slightly greater than those of the DA (81-95%) and LR 

(75-92%) models. However, Manel also found and reported in another paper from the 

same year (Manel et al., 1999) that when the ROC curves were used to assess the 

performance of the models for predicting species distribution, the LR always 

outperformed the ANN. Their work highlighted the necessity of finding a suitable and 

transparent approach for assessing the performances of predictive ecological models 

that will allow researchers to evaluate their models and communicate their results in an 

adequate and transparent way. Also, they found that the neural networks are more 

complex to compute than conventional statistical methods and require a weight analysis 

to identify possible casual relationships between species distributions and predictor 

variables. However, in a comparison with a local modelling method called geographical 

weighted regression (GWR) a MLP feed-forward network was found to be inferior 

(Zhang, Gove & Heath, 2005). In this case the researchers found that the GWR method 

builds better models for data collected across a large area. Such data often contains a 

number of sub-areas with unique relationships between variables that may not be 

detected and captured by a global model. 

The lack of standardised rules for assessing performance of predictive models (Austin, 

2007) can make the results of comparison analysis misleading, particularly if the results 

are not carefully read. A good example is the work done by Williams and Poff (2006), 

where the performances of ANN, evolutionary algorithms (EA) and 

classification/regression tree (CART) models were compared. While the ANN were 

presented with 4-class problems, the four EA models were built for the same problem 
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with each model built to classify only one 2-class problem. The EA approach was found 

more accurate than the ANN. In this particular case, the authors pointed out that the 

results from the two different models are not directly comparable, as it is easier to 

classify the 2-class data than 4-class data. 

3.2.2 Multi-layer perceptron networks for knowledge discovery 
in ecology 

Without any doubt, the most popular artificial neural network in ecology is the multi-

layer perceptron feed-forward neural network. One of the main drawbacks of this type 

of network when used for ecological modelling is its black box nature. Research, such 

as that carried out by Bradshow et al. (2002), Gevrey et al. (2003) and Olden et al. 

(2006), concentrated on the problem of extracting knowledge from trained MLP 

networks. The ultimate goal of such research is to find the method that will allow an 

evaluation of influences of each of the predictor variables on the output obtained from a 

trained MLP network by studying its architecture and weight values. Gevrey et al. 

(2003) lists seven different methods that are considered suitable for analysis of the 

contribution of each predictor variables. While some of them are better known and used 

for feature selection purposes in other modelling fields, i.e. stepwise selection, some are 

more unusual. For example, one of the methods uses the products of all weight values 

between input and output neurons and all hidden neurons as a measure of the 

importance of the exploratory variables on the calculated output. 

3.3 Invasion of exotic pest insects – a case study 
problem 

3.3.1 Climatic-habitat modelling 

This thesis‟ case studies assess the risk of exotic insect species invasions using 

connectionist techniques. If the invasive potential of an exotic insect can be predicted 

then its establishment and the subsequent negative consequences might be prevented. 

Therefore, the most important goal of a predictive model is to give predictions of 

insects‟ occurrence at new, unoccupied locations. Ideally, these models should give not 

only the predictions of an insect‟s occurrence at unoccupied locations, but also a set of 

ecologically meaningful explanatory (habitat) variables that capture the relationships 

between the insect‟s distribution and the climatic and possible other characteristic of its 

habitat. Explanatory variables extracted from the insects‟ current distribution data 
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would not only greatly improve predictions but also our knowledge of the principles 

that govern the ecology of insect invasion. Unfortunately, meaningful explanatory 

variables do not always arise from predictive distribution models. 

Studies have been conducted to identify which characteristics make some insect species 

more invasive than others. For an insect to establish in a new location the conditions for 

establishment must be fulfilled: 

1. The insect has to reach the location preferably, but not exclusively, in superior 

numbers (Williamson & Fitter, 1996; Worner, 2002). 

2. The insect‟s biological characteristics and the environment of the location being 

invaded must be favourable to its establishment (Baker, 2002). 

Given that the environment is important to the establishment potential of an insect, 

techniques that compare the characteristics of a species‟ ecological niches to those in 

the threatened area have proven popular for building predictive and distribution models 

(Rafoss, 2003; Robertson et al., 2003; Baker, 2002; Worner, 2002; Manel, Williams & 

Ormerod, 2001; Peterson & Vieglais, 2001). These types of methods search for the 

relationships between a species and the habitat in which it occurs. Information about the 

sampled areas where the species can be found is used to predict how likely the species is 

to be present or absent in some other (unsampled) area. 

Particularly, climate matching techniques that compare the climates in the insects‟ 

native habitat with those in the threatened area are often used to predict if an area might 

be invaded. The climatic characteristics of an area are frequently used as the factors 

influencing the establishment potential of pest insects (Rafoss, 2003; Denter et al., 

2002; Lehmann, Leathwick & Overton, 2002; Peterson & Vieglais, 2002; Cohen, 1998; 

Cook, 1931). Temperature, relative humidity, soil moisture, and their combined effects 

are the most important climatic factors (Baker, 2002). The climatic based approach is 

supported by studies on the impact of climate on the likelihood of an insect‟s 

establishment and spread which emphases the importance of climatic characteristics of 

an area for establishment success or failure (Baker, 2002; Dobesberger, 2002; 

Dobesberger, 2000). Acknowledging that climatic based risk forecasting is very 

popular, expert software systems, such as CLIMEX, have been designed to explore the 

relationships between global species distributions and world climates. 
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In climatic based modelling the estimates of the likelihood of an insect‟s establishment 

are solely based on the area‟s climatic characteristics, making the assumptions that 

biotic factors, such as the availability of hosts and natural enemies, and intrinsic factors, 

such as reproductive characteristics and the genetic adaptability of the modelled species, 

are much less important than the climate. Although research analysing the importance 

of the host plants to the distribution of species are rare, they do exist (Pilson, 1992). 

3.3.2 Field collection of eco-climatic data 

Field collection of biological data about species distributions is costly and time-

consuming. Often data is collected and analysed but not made available to the wider 

research community. Therefore, direct comparisons of the performance of two or more 

models and modelling techniques are very rare (Austin, 2007). 

Because the data is hard and expensive to collect, the effects of the size of the collected 

data on the accuracy of biological predictive distribution models have been studied 

(Stockwell & Peterson, 2002; Pearce & Ferrier, 2000b). It was found that abundant data 

does not guarantee high accuracy. Also, there are usually many candidate exploratory 

variables available (Rushton, Ormerod & Kerby, 2004), but which exploratory 

variable(s) should be used is hard to decide due to a lack of knowledge about the 

characteristics of invasive species. Weak relationships between exploratory variables 

and the presence of the species lead to poor prediction accuracies (Eyre et al., 2005; 

Pearce & Ferrier, 2000a). To overcome this problem feature extraction techniques, such 

as PCA and stepwise selection, can be used when there is little known about these 

relationships (Lencioni et al., 2007; Remm, 2004; Barendregt & Bio, 2003; Chen & 

Mynett, 2003, Robertson et al., 2003; Céréghino, Giraudel & Compin, 2001). 

There are two distinctive types of distribution data. The information about the species‟ 

habitat can be collected either only about the locations where the species is known to be 

present (presence-only data), or about the locations where the species is considered 

absent and about the locations where the species is known to be present 

(presence/absence data). It has been suggested that the number of presence and absence 

data samples should be kept equal because unequal group sizes can influence the 

accuracy of the model (Fielding & Bell, 1997). Often, the presence data is the only data 

currently available (Araújo & Williams, 2000). 
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In 2006, the neural network community recognised the specific characteristics and 

importance of environmental modelling problems (Cawley et al., 2007; Harva, 2007). In 

August 2006, two special interest groups, one of INNS and the other of IEEE CIS, were 

established to encourage the use of computational intelligence technologies in the areas 

of environmental studies as well as to encourage its own members to develop and apply 

methods that match the complexity of environmental problems. 

3.3.2.1. Noise in insect distribution data 

In general, there is a substantial amount of noise in environmental datasets. 

Furthermore, the noise is often non Gaussian and common techniques for handling 

noisy data may not be suitable. Unfortunately, how much noise might be in the 

modelling dataset is not known at the modelling stage and it is extremely hard if not 

impossible to deduce. For example, consider a presence/absence dataset for an insect 

with a large number of erroneous or false absences. One location could have been 

recorded as unsuitable for the insect‟s establishment because at the time of data 

collection the insect was not found at this location, while in fact the insect may be 

absent at the location simply because it has never reached it and therefore has never had 

the opportunity to establish, rather than the fact that the climate is unsuitable for its 

establishment. Also, some species are very dynamic and may hide during the sampling 

period. Clearly these situations introduce prediction errors that cannot be verified 

(Andreson, Lew & Peterson, 2003).  

False absences can significantly affect the accuracy of prediction models. In an 

experiment, the models predicted the presence of six insect pests for more than 92% of 

the data of each insect, but the same models correctly predicted absences of the same 

insects with only 59% to 77% accuracy (Ulrichs & Hopper, 2007). Clearly, the failure 

to incorrectly indentify sites suitable for invasion is more serious than incorrectly 

predicting extra presences (Fielding, 1999). 

3.3.3 Validation of the predictive ecological models 

The kappa statistic (Cohen, 1960) has been used for assessing the accuracy of predictive 

ecological models (Willems et al., 2008; Park, Rabinovich & Lek, 2007; Watts & 

Worner, 2008; Lütolf, Kienast & Guisan, 2006; Eyre et al., 2005; McPherson, Jetz & 

Rogers, 2004; Robertson et al., 2003; Farber & Kadmon, 2003; Hirzel & Guisan, 2002; 

Pearson et al., 2002; Manel, Williams & Ormerod, 2001; Cowley et al., 2000). Cohen‟s 



 
40 

kappa coefficient (κ) is a statistical measure of the agreement between the predictions 

and the observed values. This threshold-dependent measure is based on the confusion 

matrix (Fig. 3.1), where PT is the number of present sites correctly predicted by the 

model, AT is the number of absent sites correctly predicted by the model, while PF (false 

negatives – omission error) and AF (false positives – commission error) are the numbers 

of incorrect predicted presences and absences, PT + PF + AT + AF = n and n is the total 

number of data samples. RP and RA are recorded values and PP and PA are predicted 

values. 

 RP RA 

PP PT PF 

PA AF AT 

Fig. 3.1.  Confusion matrix. PT is the number of present sites correctly predicted, AT is the 

number of absent sites correctly predicted, PF is the number of present sites incorrectly 

predicted as absent and AF is the numbers of absent sites incorrectly predicted as present. 

In prediction models where the output is a continuous value, the PT, P, AT and AF values 

are obtained by applying a threshold value θ. Typically in ecology, θ equal to 0.5 is 

used (Fielding and Bell, 1997). If a model generates prediction values within the range 

[0, 1] and θ = 0.5, then all predictions above 0.5 (p ≥ 0.5) are designated as presences 

(P, 1) and all prediction below 0.5 (p  0.5) are absences (A, 0). When the threshold 

value changes, all values in the confusion matrix change as well, affecting the 

performance of the prediction model (Fig. 3.2). Lowering the threshold value results in 

more locations predicted as possible present locations while increasing the threshold 

value results in fewer locations predicted as possible present locations. Therefore, it is 

very important to find an optimal threshold value. Unfortunately, the problem of finding 

the optimal value is not trivial when dealing with streaming new data where a species‟ 

presence/absence is not known (Strauss & Biedermann, 2007). This significantly 

influences the chances of proposing species-habitat relationship models capable of 

delivering accurate predictions over longer periods of time. 

Cohen‟s kappa values are calculated using (3.1). A kappa value of 1 (κ = 1) denotes a 

model with perfect performance, while κ = 0 indicates a model with a very poor 

discrimination power. The model‟s performance can be ranked using Table 3.1 

(Monserud & Leemans, 1992; Landis & Koch, 1977). For example, a κ value of 0.4 or 
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greater is associated with a model showing „Fair‟ performance. For a „Good‟ 

performing prediction model a κ value of 0.55 or greater is required. 

2

2

( )( ) ( )( )

( )( ) ( )( )
1

T T T F T F T F T F

T F T F T F T F

P A P P P A A A A P

n n
P P P A A A A P

n

    (3.1) 

 

Fig. 3.2.  Given a threshold value θ, predictions greater than θ represent the species presence 

(P), otherwise the species is predicted to be absent (A). When θ changes the numbers of 

locations predicted as present and absent change as well. Smaller threshold values result in more 

locations predicted as present while increasing the threshold value results in fewer present 

locations. 

The confusion matrix is used to calculate the model‟s sensitivity (sen) and specificity 

(spe) using (3.2). Sensitivity and specificity are measures of a model correctly being 

able to predict true presences and true absences, respectively. The overall accuracy of 

the model (a) is given by (3.3). 

T T

T F F T

P A
sen spe

P A P A
       (3.2) 

T TP A
a

n           (3.3) 

Relative operating characteristic (ROC) curves (Metz, 1978) have also been used for 

assessing the performance of predictive biological models (Gavashelishvili & 

Lukarevskiy, 2008; La Morgia, Bona & Badino, 2008; García et al., 2007; Gibson et al., 

2004; Schadt et al., 2002; Suárez-Seoane, Osborne & Alonso, 2002; Osborne, Alonso & 

Bryant, 2001). ROC curves are based on the confusion matrix as well. A ROC curve is a 

plot of a model‟s sensitivity (sen) against its specificity (spe) across a range of threshold 

values. Fig. 3.3 shows a typical conventional ROC curve as given in (Metz, 1978). 

Given a model, the larger the area under the curve, the more accurate the model. 

1P 

0A 
θ 
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TABLE 3.1 

The level of agreement between observed and predicted values 

(Monserud & Leemans, 1992) 

κ Agreement 

< 0.05 No agreement 

0.05 – 0.20 Very poor 

0.20 – 0.40 Poor 

0.40 – 0.55 Fair 

0.55 – 0.70 Good 

0.70 – 0.85 Very good 

0.85 – 0.99 Excellent 

> 0.99 Perfect 

 

 

Fig. 3.3.  A typical conventional ROC curve (Metz, 1978). The area under the ROC curve is a 

measure of the model‟s predictive power. 

3.4 Real-world bio-climatic pest distribution data and its 
preliminary analysis 

In this thesis a meteorological dataset introduced in (Peacock, 2005) was used. This 

dataset is comprised of the climatic characteristics of 6458 worldwide sites and the 

presence and absence of 36 pest insects at each of those sites. Fifteen of the species 

from the dataset are present in New Zealand and twenty-one are not. Each site (a sample 

location) is characterised by forty climate variables (Table 3.2) and is given a class label 

indicating insect distribution, i.e. insect present (1) or insect absent (0). All pest insect 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s
e
n

spe



 
43 

data was very sparse. There are many more locations where the insects are considered 

absent than the locations where the pest insects have been found. The climate variables 

listed in Table 3.2 describe the temperature, rainfall and soil moisture characteristics of 

the sampled sites. One of the main characteristics of the dataset is that each insect has 

been recorded absent at significantly more sites than it has been recorded as present at. 

This may significantly influence the accuracy of the predictive model, when estimating 

the true absence of an insect. Therefore, in all experiments the number of absent sites 

was kept roughly equal to the number of present sites by randomly selecting absent sites 

from the pool of available absent data. Furthermore, it is likely that the absent data is 

very noisy while the present data is not. It is important to notice that the data does not 

contain any knowledge about the significance of any of the forty climate variables on 

the establishment potential of any of the 36 species. 

The number of sampled sites differs from pest to pest. Table 3.3 shows the number of 

samples for four pest insects used in this work. While Planoccus citri (P. citri) is 

recorded as being present in NZ the other three species are not, however they are often 

intercepted at New Zealand borders (S. P. Worner, personal communication, 2003) and 

therefore impose a threat to the New Zealand economy. In New Zealand A. hartii, G. 

coffeae and X. perforans have the status of an unwanted insect pest, as they have been 

recognised as pests of potential economic importance (NZ Ministry of Agriculture and 

Forestry). To investigate possible data constraints we performed the following 

explanatory analysis: 

Step 1:  To avoid the influence of the large number of absences on the accuracy of the 

model, the number of locations where the pest is recorded absent was kept 

equal to the number of locations where the pest insect is recorded as present. 

Step 2:  To identify possible geographical outliers, the spatial distributions of the 

locations of the newly formed datasets were checked. For example, Fig. 3.4 

shows the spatial distribution of the pest insect P. citri‟s presence. This data set 

includes a number of island locations, which might appear in Fig. 3.4 as 

geographical errors. 

Step 3:  The insects‟ responses to the most influential explanatory variables were 

investigated. For this purpose (i) the climate space of each predictor variable 

was divided into ten equally spaced ranges, and (ii) the climate distributions of 

the insects in those ranges were assessed. 
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TABLE 3.2 

Climate variables describing the climate of each site. 

Variable Description 

TSmax Maximum summer temp (°C) 

TWmin Minimum winter temp (°C) 

DD5 Degree days above 5°C (days) 

DD15 Degree days above 15°C (days) 

TSum1 Temperature – 1
st
 month of summer (°C) 

TSum2 Temperature – 2
nd

 month of summer (°C) 

TSum3 Temperature – 3
rd

 month of summer (°C) 

TAut1 Temperature – 1
st
 month of autumn (°C) 

TAut2 Temperature – 2
nd

 month of autumn (°C) 

TAut2 Temperature – 3
rd

 month of autumn (°C) 

TWin1 Temperature – 1
st
 month of winter (°C) 

TWin2 Temperature – 2
nd

 month of winter (°C) 

TWin3 Temperature – 3
rd

 month of winter (°C) 

TSpr1 Temperature – 1
st
 month of spring (°C) 

TSpr2 Temperature – 2
nd

 month of spring (°C) 

TSpr3 Temperature – 3
rd

 month of spring (°C) 

Rmean Mean total rainfall (mm) 

RSum1 Rainfall – 1
st
 month of summer (mm) 

RSum2 Rainfall – 2
nd

 month of summer (mm) 

RSum3 Rainfall – 3
rd

 month of summer (mm) 

RAut1 Rainfall – 1
st
 month of autumn (mm) 

RAut2 Rainfall – 2
nd

 month of autumn (mm) 

RAut3 Rainfall – 3
rd

 month of autumn(mm) 

RWin1 Rainfall – 1
st
 month of winter (mm) 

RWin2 Rainfall – 2
nd

 month of winter (mm) 

RWin2 Rainfall – 3
rd

 month of winter (mm) 

RSpr1 Rainfall – 1
st
 month of spring (mm) 

RSpr2 Rainfall – 2
nd

 month of spring (mm) 

RSpr3 Rainfall – 3
rd

 month of spring (mm) 

APE Annual potential evapotranspiration (mm) 

AAE Annual actual evapotranspiration (mm) 

MI Moisture index (soil moisture) (mm) 

MI300 Soil moisture index at 300mm soil depth (mm) 

AMI50d Annual soil moisture deficit at 50mm (mm) 

AMI50s Annual soil moisture surplus at 50mm (mm) 

AMI150d Annual soil moisture deficit at 150mm (mm) 

AMI300d Annual soil moisture deficit at 300mm (mm) 

AMI300s Annual soil moisture surplus at 300mm (mm) 

AMI700d Annual soil moisture deficit at 700mm (mm) 

AMI700s Annual soil moisture surplus at 700mm (mm) 
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TABLE 3.3 

The number of samples for four pest insects used in this thesis. 

PEST 
Planoccus 

citri 

Aspidiella 

hartii 

Geococcus 

coffeae 

Xyleborus 

perforans 

Samples 454 78 75 191 

Present 223 36 38 92 

Absent 231 42 37 99 

 

Fig. 3.4.  Spatial distribution of the insect P. citri‟s presence. Please note that a number of 

island locations might appear as geographical errors. 

Fig. 3.5 shows the distribution of the insect P. citri. Each bar on the histogram in Fig. 

3.5 shows the total number of sampled locations (n) for the particular TSmax range. The 

black portion of each bar represents the number of locations the species is present in 

(np) and the gray portion represent the number of locations where the species is 

considered absent (na). The ratio r between sites where the species is present with 

respect to all locations within each range is written on the top of each bar, i.e. r = np ÷ n 

expressed as %. It can be seen that the value of r increases with an increase in TSmax. 

This indicates that summer temperature may be one of the dominant factors influencing 

this insect‟s distributions. 

Step 4: Correlation analysis on the explanatory variables was carried out for each 

species. The results of the analyses, together with an expert‟s knowledge about 

the species‟ dynamic behaviour were used to decide which climatic attributes 

of their habitats were to be used as predictor variables. 
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However, it must be noted that the real factors regulating the distributions of the studied 

insects are unknown. 

 

Fig. 3.5.  Distribution of the insect P. citri over a range of maximum summer temperature (TSmax, 

°C). Each bar represents the distribution of all locations (n), where the dark areas represent the 

number of plots occupied by the insect (np). The number written on top of each bar shows the 

percentage of all sites occupied by the insect (r = np ÷ n %). 

3.5 Conclusion 

In this chapter, special attention is given to the modelling techniques and problems in 

the field of ecological modelling. By far the most utilized neural network in ecology is 

MLP. Despite the disadvantages associated with MLP networks and the fact that a 

number of new and improved connectionist models have been designed and applied in 

other research areas, new models are rarely considered as possible tools in ecology. 

Much of this chapter focuses on building predictive habitat distribution models for the 

assessment of the risk of exotic pest insect invasions. In general, building predictive 

models of an insect establishment potential is a difficult task due to the complexity of 

the problem and availability of data. Namely, the models should give the prediction of 

the insect‟s occurrence at new unoccupied locations, as well as deliver a set of 

ecologically meaningful explanatory variables that capture the relationship between the 

insect establishment and the characteristics of its habitat. Clearly, MLP networks are not 

the ideal models for this task. While they can give very accurate predictions their 

exploratory capability is minimal. 

A frustration associated with modelling predictive distribution models is that the 

accuracy of such models is greatly influenced by the quality of the modelling data. 

Sampling data about an insect‟s habitat is a costly and time consuming task, often 

0

20

40

60

80

100

120

140

160

4.2 7.6 11 14.4 17.8 21.2 25 28 31 34.8

n

TSmax

69 

0 50 0 
0 

18 
44 

46 

57 
36 



 
47 

resulting in a noisy and/or sparse dataset. Particularly, insect distribution data may 

contain a large amount of noise in the absence data and much less or no noise in the 

presence data. As a result, the accuracy of predicting absences may be much lower than 

the accuracy predicting presences. Unfortunately, quality benchmark datasets readily 

available to researchers for testing their approaches are rare. As a result, comparative 

studies of models are uncommon. 

Climate matching techniques that use data on climate and species distributions are 

increasingly used for modelling insect habitats. The importance of climate on the 

invasive characteristics of insects has been recognised. However, the information about 

what makes an insect invasive is lacking, making the process of assessing the true 

accuracy of predictive habitat models difficult. 

We conclude that using dynamic habitat models in ecology is a new concept, as the vast 

majority of models currently used are static. Static models cannot operate in dynamic 

environments and improve their performance over the time and therefore they cannot be 

easily transferred into a climatically unpredictable future environment. Furthermore, 

MLP-based models suffer from the black-box syndrome and these models cannot easily 

provide an interpretation of the effects of individual predictor variables on the species 

establishment. In the next chapter, an adaptive prediction model tackling the above 

issues is presented. 
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Chapter 4 
Local probability based adaptive 

model (LPAM) for risk evaluation and 
knowledge discovery 

As stated earlier, the vast majority of predictive distribution models are static. As a 

result, these models cannot operate in dynamic environments and they cannot improve 

their performance over time. In this chapter, an adaptive model based on local 

probability named the local probability adaptive model (LPAM) for risk prediction is 

presented. LPAM is based on ECM and DENFIS and contains a local probability 

module. This dynamic model delivers knowledge about the contributions of each 

predictor variable to the response variable. In other words, the knowledge extracted 

from LPAM explains the influence of each predictor variable on the modelled output. 

First, the LPAM building blocks are explained. Then, we propose a method used for the 

visualization of the extracted knowledge. The model has been applied on two 

benchmark problems and the results of those experiments are given at the end of this 

chapter. Finally, the features of the proposed model are summarised. LPAM was first 

published in (Soltic et al., 2003) and further evaluated in (Soltic et al., 2004a & 2004b). 

4.1 Introduction  

The black-box nature of MLP networks is without a doubt an important issue when 

these networks are used for building predictive models and eco-climatic knowledge 

discovery. Novel approaches that can overcome this issue are required. The proposed 

model, named LPAM, has many desirable features that are unavailable in MLP 

networks: 

1. An LPAM has a knowledge extraction facility delivering the knowledge learnt 

by the networks in the form of IF-THEN rules. When a LPAM is used as an 

insect distribution model the extracted knowledge explains how habitat 

characteristics influence the insect‟s distributions. 

2. An LPAM facilitates incremental learning. It can learn new data without the 

need to be retrained on the old data samples. This characteristic makes the 
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LPAM suitable for on-line applications and for applications where a complete 

set of training data is not given in advance and some new training data samples 

might become available in future. 

3. An LPAM is based on local probability and therefore is a logical approach for 

modelling the habitat of invasive insects over smaller geographical areas rather 

than on a global scale. Thus, the information about insect locations is better 

conserved in the estimations. A LPAM builds a set of adaptive local models 

through the clustering of data samples and by employing inductive reasoning. 

Each model represents a cluster of locations with similar characteristics. 

An LPAM includes three modules or components (Fig. 4.1): 

1. A clustering module,  

2. A probability evaluation module, and 

3. An inference module. 

 

 

Fig. 4.1.  Block diagram of an LPAM. The clustering and inference stages are based on ECM 

and DENFIS, respectively. The local probability evaluation stage lowers the model‟s sensitivity 

to noise. 

The clustering and inference modules employ ECM and DENFIS, respectively. As a 

result, LPAM are able to operate both on-line and off-line. The clustering and 

probability evaluation modules make the predictive model less sensitive to noise. 

Together they minimize the influence of the noisy data on the performance of the 

model. They also transform the binary input vectors representing locations into vectors 

with continuous output (cluster probabilities). The output of the LPAM is confined to 

values between 0 and 1, therefore a probability threshold (θ) must be used to 

dichotomise these output values into either 0 or 1. The output values p ≥ θ are 

designated as Class 1 and p  θ are Class 0. When LPAM are used for building 

distribution models these continuous values represent the distributions at various 

locations with similar climate characteristics. The cluster probabilities are used to train 

the inference stage and consequently to obtain the establishment potential predictions at 
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test locations as well as to form the IF-THEN rules explaining what the model has 

learnt. We show later that the extracted rules can be used to determine the influence of 

each predictor variable on the distribution of the pest in a specific area defined by 

climatic variables. The end result is a flexible model with accurate predictive 

performance and the ability to identify the species-habitat relationships (Soltic et al., 

2004a & 2004b; Soltic et al., 2003). The building blocks of LPAM and their role in the 

proposed approach are explained in the next section. 

4.2 The proposed model 

4.2.1 Problem definition 

Given a domain data set: D = {S1, S2, …, Sn, Y} where Si(i=1,…, n) are data samples of 

D and Y = y1, y2,…, yn is the vector under estimation. Suppose S= x1, x2,…, xl. The target 

is to predict Y in terms of S by modelling an estimation function f, where Y = f(S). When 

used to model the risk of insect invasions the model fits response surfaces as a function 

of predictors in the environmental space E = {S1, S2,…, Sn} and then uses the spatial 

pattern predictor surfaces to predict the responses in the geographical space G = {g1, 

g2,…, gk}, where the data samples are of type gi = (latitudei, longitudei). 

4.2.2 ECM Clustering 

The clustering module was introduced to allow the LPAM to deal with noisy data sets. 

The data samples are clustered and each cluster is given a local probability value pi 

based on the ratio of class one samples to class two samples within the cluster. The eco-

climatic data for an insect may contain many false-absence samples. Examples of false-

absences include sites where the insect was not found and therefore the location is 

considered unsuitable for its establishment when in reality the insect did not have a 

chance to establish at these locations due to other factors. Replacing class labels with pi 

values lowers the influence of the incorrect data on the training of the LPAM. 

The clustering stage utilizes an evolving clustering module called ECM. ECM is a fast, 

one-pass algorithm for dynamic clustering of input stream data, where there is no prior 

knowledge about the optimum number of clusters (Kasabov, 2002; Kasabov & Song, 

2002). Each cluster is described by a centre Ccj and radius Rcj. This algorithm is a 

distance-based clustering method where the cluster centres (called prototypes) are 

determined on-line such that the maximum distance dmax between an input sample si and 
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the closest prototype(s) cannot be larger than some threshold value Dthr. Therefore, the 

number of clusters created with this algorithm depends on the characteristics of data 

samples being clustered. However, the number of created clusters is user-controlled by a 

suitable value for Dthr. Furthermore, Dthr can be adjusted during the on-line clustering 

process (Kasabov, 2002). This algorithm ensures that the distance from each cluster 

centre to the furthest sample in the cluster is less than Dthr. ECM partitions a data set D 

into ξ clusters, where ξ > 1: 

1 21
, , ,

n
i i

D s C C C         (4.1) 

The ECM algorithm is very straight forward. One sample at a time is taken from the 

training data set and its similarity, measured as the normalized Euclidean distance dij, to 

the already formed cluster centres Cc is evaluated. 

Let Xi be the nearest sample to Ccm. If the distance dim is less than this cluster‟s Rcm (i.e., 

dim < Rcm) Xi belongs to this cluster and Rcm and Ccm stay unchanged (Fig. 4.2.a). 

However, if dim is greater than 2×Dthr (i.e., dim > 2×Dthr) Xi does not belong to any 

cluster and a new cluster is created with the centre Cci = Xi and radius Rci = 0 (Fig. 

4.2.b). Otherwise (i.e., dim ≤ 2×Dthr), the sample belongs to the cluster and the cluster‟s 

Rcm and Ccm are updated (Fig. 4.2.c). The centre CcmNew is moved along the line 

connecting Xi and CcmOld so that dimNew = RcmNew: 

2

imOld cmOld
cmNew

d R
R         (4.2) 

 

 

Fig. 4.2.  ECM clustering (Kasabov & Song, 2002). The current sample Xi is represented by „ „. 

(a) dim < Rcm, neither the cluster (Ccm, Rcm) is updated nor a new cluster is created, (b) dim > 2Dthr, 

a new cluster is created (Cci = Xi and Rci = 0), (c) dim ≤ 2Dthr, Xi belongs to the Cm cluster and Ccm 

and Rcm are updated. 
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4.2.3 Local probability evaluation 

The clusters found using ECM are further analysed with a probability evaluation unit. If 

{C1, C2,…, Cξ} are the clusters from the clustering module. For each cluster Ci  

{C1,C2,…,Cξ} the mean vector of predictor variables (features) is calculated using: 

1

Ci

j
jc

i

i

S

M
C

          (4.3) 

where i = 1,…,ξ and Sj = xj1, xj2,…, xjl are features of the Xj sample. 

The local probability for the samples from the cluster Ci is given by: 

1 1 1
1 2
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C lmi

a b
j a bc

i l

i

p y x

p y x x x
C

       (4.4) 

According to Bayesian theory (Neter, Wasserman & Kutner, 1990) p(ya|x1,…, xl) = 

p(ya|xb) and therefore (4.4) can be reformulated as  

1 2
1 1

1 2

( , , , )
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a l
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i l
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

      (4.5) 

In the special case when m = 1, (4.5) can be further simplified: 
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Finally, each cluster Ci  {C1, C2,…, Cξ} is represented by a pair (Mi
c
, pi

c
) where Mi

c
 

and pi
c
 are obtained from (4.3) and (4.6). A new dataset DM = {M1

c
, M2

c
,…, Mn

c
, P

c
} is 

used to train the inference module. 

The probability evaluation module reduces the influence of noisy data on the prediction 

accuracy of the LPAM. The clusters containing only the locations where the pest is 

present have pi
c
 = 1. The clusters without any location where the pest is present have pi

c
 

= 0. However, most clusters are made up of various numbers of pest present and pest 

absent locations. More present than absent locations result in a greater pi
c
 (pi

c
 > 0.5) and 



 
53 

vice versa. Calculating the establishment potential for a whole cluster ensures that small 

variations of data do not affect the result. 

4.2.4 Knowledge discovery in DENFIS 

DENFIS is a fuzzy inference system introduced by Kasabov and Song (2002). This 

system employs the first-order Takagi-Sugano fuzzy rules (Kasabov, 2002). DENFIS is 

an ECOS model (watts, 2009). Its structure evolves through on-line, incremental, hybrid 

(unsupervised and supervised) learning. DENFIS accommodates new input data, 

features and classes through local element tuning and calculates the output through a 

dynamic fuzzy inference. New fuzzy rules are created and updated during the learning 

process. The rules can be extracted at any time during (and after) the learning stage. 

This feature is very desirable for predictive ecological modelling because it delivers an 

explanation of how a species‟ population is influenced by climate variables in the form 

of easy to read IF-THEN rules. 

DENFIS has been used on real-world financial data (Huang, Pasquier and Quek, 2008), 

for time series modelling and prediction (Kasabov, 2002), for software reliability 

estimation (Kiran & Ravi, 2007), software development cost estimation (Kumar et al., 

2008) and for the prediction of a primary transformer‟s waveform (Kasabov, Venkov & 

Minchev, 2003). 

One of the disadvantages of DENFIS is that it requires larger data sets than other 

networks, such as the MLP network. Also, error rates depend on the characteristics of 

the data samples. Namely, during training, DENFIS partitions the problem space into a 

number of regions. If test data does not fall into those regions the system produces 

lower prediction accuracy. Despite its disadvantages DENFIS is a particularly 

promising tool for building predictive ecological models because it can deliver fuzzy 

rules created during the training stage: 

IF x1 = R11 AND x2 = R12 AND ... AND xl = R1l  

THEN y = f1( x1, x2,..., xl ) 

                               . . . 

IFx1 = Rm1 AND x2 = Rm2 AND ... AND xl = m1l  

THEN y = fm( x1, x2,..., xl ) 
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where fi are linear functions in the form y = β0 + β1 x1 +...+ βl xl and m is the number of 

local models. In Section 4.3 these rules are detailed and their graphical representation 

proposed. 

4.2.5 Model implementation 

The proposed model can be implemented according to the following steps: 

Step 1:  Partition training data from D into ξ clusters using ECM. 

Step 2:  Given that {C1, C2,…, Cξ } are clusters from the clustering module. Represent 

each cluster by a pair (Mi
c
, pi

c
). The new dataset DM = {M1

c
, M2

c
,…, Mξ

c
, P

c
} is 

then used to train the inference module. 

Step 3:  Perform regression in DM. Performing regression in DM allows the model to 

estimate probability without losing the key information in the clusters. 

Step 4:  Risk estimation in the D domain. 

Step 5:  Predict the response in the geographical space G. This step is optional. It is 

used when a LPAM models species distributions. For this purpose, the 

predictive maps are drawn to visualise possible hotspots. In this work, the map 

contours were created using the biharmonic spline interpolation method with 

1° grid spacing (MATLAB). 

The MATLAB code for the LPAM is given in Appendix A. 

4.3 Local knowledge extraction with the use of LPAM 
and its visualization 

As stated earlier, LPAM deliver knowledge in the form of IF-THEN rules. Consider an 

LPAM model with three predictor variables (x1, x2, x3) and two extracted rules (Rule 1, 

Rule 2) as shown in Table 4.1. The proposed visualization is given in Fig. 4.3. 

Rule 1 states that  

IF the value of x1 is in the area defined by a Gaussian function with the 

mean value c11 and the standard deviation σ11  

AND the value of x2 is in the area defined by a Gaussian function with the 

mean value c12 and the standard deviation σ12  
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AND the value of x3 is in the area defined by a Gaussian function with the 

mean value c13 and the standard deviation σ13  

THEN the response is calculated by the following formula  

y = a10 + a11 x1 + a12 x2 + a13 x3,  

where a11, a12 and a13 are regression coefficients in Rule 1. 

Rule 2 is characterised with its own set of Gaussian functions and regression lines and 

states that  

IF the value of x1 is in the area defined by a Gaussian function with the 

mean value c21 and the standard deviation σ21  

AND the value of x2 is in the area defined by a Gaussian function with the 

mean value c22 and the standard deviation σ22  

AND the value of x3 is in the area defined by a Gaussian function with the 

mean value c23 and the standard deviation σ23  

THEN the response is calculated by the following formula  

y = a20 + a21 x1 + a22 x2 + a23 x3, 

where a21, a22 and a23 are regression coefficients in Rule 2. 

In all the extracted rules, ai0 is the predicted value of y when all variables xi are equal to 

zero. 

TABLE 4.1 

Example of two rules extracted by the LPAM 

 c σ y = ar0 + ar1 x1 + ar2 x2 + ar3 x3 

Rule 1: 

x1 

x2 

x3 

 

c11 

c12 

c13 

 

σ11 

σ12 

σ13 

a10 + a11 x1 + a12 x2+a13 x3 

Rule 2: 

x1 

x2 

x3 

 

c21 

c22 

c23 

 

σ21 

σ22 

σ23 

a20 + a21 x1 + a22 x2+a23 x3 
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We propose here that the centres of the Gaussian curves and coefficients of the 

regression lines can be used to explain the influence of each predictor variable on the 

output. Fig. 4.3 shows the visualization of the rules from Table 4.1. The red circles 

illustrate the Rule 1 contributions and the blue circles illustrate the Rule 2 contributions. 

In this example Rule 1 describes the data samples with high predictor values. The 

contributions of x1 and x3 are positive and a decrease in x2 causes an increase in the 

response. The main contributor is x3 (a13 > a11 > |a12|). Rule 2 describes the data samples 

with low and moderate predictor values. All regression coefficients are positive and the 

main contributor is x1 (a21 > a22 > a23). 

 

Fig. 4.3.  Contributions of predictor variables in two fuzzy rules. Each rule explains the 

influence of three variables, x1, x2 and x3. Rule 1: higher x2  lower response (a12 is negative), 

the main contributor is x3 (a13). Rule 2: all positive contributors, the main contributor is x1 (a21). 

4.4 Validation of the LPAM using benchmark datasets 

The proposed model was initially validated using two very popular benchmark datasets 

from the UCI Machine Learning Repository database, i.e. the iris plant dataset and the 

wine recognition dataset (Asuncion & Newman, 2007). Both datasets contain 3 classes, 

where each class, Ci, refers to a type of iris plant or a type of wine, respectively. The 

LPAM is designed to be used on two-class problems and therefore three subsets of the 

original datasets were prepared, where Subset 1 comprised the C0 and C1 samples, 

Subset 2 contained C1 and C2 samples and the C1 and C2 samples were in Subset 3. In 

all experiments the subsets were shuffled before leave-one-out cross validation was 

performed: 
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Step 1: Let i = 1. 

Step 2: Remove data sample Xi from the original dataset D. 

Step 3: Train on reduced dataset. 

Step 4: Evaluate the performance using Xi. 

Step 5: Return Xi back into the original dataset D. 

Step 6: Let i = i + 1 

Step 7: IF there are more samples THEN repeat Steps 2 to 6 ELSE 

Step 8: Finish the modelling. 

Because the output of the LPAM is confined to values between 0 and 1, a probability 

threshold (θ) must be used to dichotomise these output values into either 0 (Class 0) or 1 

(Class 1). As stated earlier, the output values below θ are assigned a „0‟ and the output 

values above θ are assigned a „1‟. Here, the results for θ = 0.5 are given, although a 

better accuracy might be achieved at some other, usually higher, threshold θ. 

4.4.1 Validation on the iris dataset 

The iris dataset is one of the most popular benchmark datasets. The set contains 3 

classes of 50 samples each, where Class 0 refers to the iris Setosa flower, Class 1 refers 

to the iris Versicolour flower and Class 2 refers to the iris Virginica flower. Each 

sample is characterised by 4 features: sepal length (Sl), sepal width (Sw), petal length 

(Pl) and petal width (Pw), all given in cm, and it is given one of three class labels (0, 1 or 

2). Table 4.2 and Fig. 4.4 detail the dataset‟s characteristics showing average values (μ) 

and standard deviations (ζ) of the features in this dataset. While the values of Sl and Sw 

are similar in all 3 flowers, iris Setosa plants have much lower Pl and Pw values than the 

other two plants. 

The LPAM perfectly classified the iris Setosa and iris Versicolour (Class 0 and Class 1) 

samples and the iris Setosa and iris Virginica (Class 0 and Class 2) samples with an 

accuracy of 100%. It had the accuracy of 98% with θ equal to 0.5 when classifying the 

iris Versicolour and iris Virginica (Class 1 and Class 2) samples. However, the accuracy 

of classifying these two flowers was 100% when θ was set to 0.6, 0.7, 0.8 and 0.9. 

Overall, the LPAM was successful on the iris benchmark problem. A global model built 
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using a generalised linear model resulted in the accuracy of 87.5% (θ = 0.5) and 100% 

when θ was set to 0.6, 0.7, 0.8 and 0.9  

TABLE 4.2 

Details of the iris dataset. Averages (μ) and standard deviations (ζ) of the features  

in the iris dataset are expressed in centimetres and rounded to 2 decimal places (2.d.p.) 

Class  Sl Sw Pl Pw 

0 
μ 5.01 3.42 1.46 0.24 

ζ 0.35 0.38 0.17 0.11 

1 
μ 5.94 2.77 4.26 1.33 

ζ 0.52 0.31 0.47 0.20 

2 
μ 6.59 2.97 5.55 2.03 

ζ 0.64 0.32 0.55 0.27 

 

  

Fig. 4.4.  The iris dataset - average values and standard deviations of the features of 50 samples 

in each of the three different classes, each class representing one type of iris plant. 

Due to the low number of features this dataset is useful for validating the knowledge 

discovering capabilities of the LPAM. Two rules were extracted for the iris Versicolour 

and iris Virginica (Class 1 and Class 2) flowers (Table 4.3 and Fig. 4.5). Rule 1 

describes iris flowers with smaller sepals and petals and Rule 2 describes iris flowers 

with larger petals and sepals. Based on regression coefficient values it can be seen that 

the petal features (a1Pl = 1.36, a1Pw = 0.98, a2Pl = 1.65 and a2Pw = 0.80) are more 

important in the classification of irises than the sepal features (a1Sl = -0.55, a1Sw = -0.60, 
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a2Sl = -0.84 and a2Sw = -0.35). The LPAM found that an increase in sepal features 

decreases the overall response (all aiSj were negative) of the LPAM model. 

To assess the validity of the rules delivered by the LPAM, we plotted the Class 1 and 

Class 2 samples in two 2D spaces (Fig. 4.6). The rules favoured the petal features over 

the sepal features when deciding if a flower is an iris Versicolour plant (Class 1) or an 

iris Virginica plant (Class 2). By examining the Fig. 4.6 plots it can be seen that the 

samples are easier to distinguish in the petal space (Fig. 4.6.b) than in the sepal space 

(Fig. 4.6.a). There is a considerably bigger overlap of samples in the 2D sepal space 

than in the 2D petal space. Therefore, the LPAM rules that give bigger values to the 

petal regression coefficients than to the sepal ones are correct. 

TABLE 4.3 

Two rules extracted by the LPAM for the iris Versicolour and iris Virginica dataset. 

 c σ y = ar0 + arSl Sl + arSw Sw + arPl Pl + arPw Pw 

Rule 1: 

Sl 

Sw 

Pl 

Pw 

 

0.32 

0.05 

0.26 

0.25 

 

0.21 

0.28 

0.23 

0.24 

 

0.89 – 0.55 Sl – 0.60 Sw + 1.36 Pl + 0.98 Pw 

 

Rule 2: 

Sl  

Sw 

Pl 

Pw 

 

0.57 

0.57 

0.64 

0.64 

 

0.18 

0.18 

0.18 

0.18 

 

0.84 – 0.84 Sl – 0.35 Sw +1.65 Pl + 0.80 Pw 

 

4.4.2 Validation on the wine dataset 

The wine dataset is also a very popular benchmark dataset from the UCI Machine 

Learning Repository database. This dataset comprises samples of 3 types of wine (Class 

0, Class 1 and Class3), where each sample is described by 13 features: alcohol (Al), 

malic acid (Ma), ash (A), alcalinity of ash (Aa), magnesium (Mg), total phenols (Tp), 

flavanoids (F), nonflavanoid phenols (Np), proanthocyanins (Pa), colour intensity (Ci), 

hue (H), OD280/OD315 of diluted wines (OD) and proline (P). The average values (μ) 

and standard deviations (ζ) of all features in each of the three different wines are shown 
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in Table 4.4. Note that this dataset has a different number of data samples in the 

different classes. There are 59 Class 0 data samples, 71 Class 1 data samples and 48 

Class 3 data samples. 

 

Fig. 4.5.  The contributions of predictor variables in the two fuzzy rules for the iris Versicolour 

and iris Virginica dataset. In both rules Pl and Pw are more influential than Sl and Sw. 

Again, the LPAM was successful in perfectly classifying Class 0 and Class 1 wines and 

Class 0 and Class 2 wines with an accuracy of 100%, but it had the accuracy of 94% (θ 

= 0.5) when classifying Class 1 and Class 2 wine samples. Nevertheless, the accuracy of 

classifying these two wines was 100% for θ = 0.6, 0.7, 0.8 and 0.9. The global model 

built using a generalised linear model had an accuracy of 87.5 on the same set of data. 

 

Fig. 4.6.  Two features for the iris Versicolour and iris Virginica plotted in a 2D space. (a) 2D 

sepal space, Sl vs. Sw (b) 2D petal space, Pl vs. Pw. 

Because there are 13 features in the wine dataset it is harder to examine the rules 

extracted about this dataset than that the rules that were extracted about the iris flowers. 
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We present here what the LPAM had discovered about the Class 0 and Class 1 wines 

(Table 4.5 and Fig. 4.7). To make the visualization of the rules more clear Rules 1 and 2 

are shown in separate scatter charts. It is interesting to see that in both rules the same set 

of features are the most influential positive contributors, i.e. alcalinity of ash (Aa) with 

a1Aa = 0.96 and a2Aa = 0.79, proanthocyanins (Pa) with a1Pa = 0.33 and a2Pa = 1 and total 

phenols (Tp) with a1Tp = 0.40 and a2Tp = 1.12. This does not mean that the influences of 

other features are less important. On the contrary, these features are essential for the 

classification. They contribute to the recognition of samples. For example, in Rule 2 F 

is the most influential negative contributor with a2F = -2.4. The same feature has a very 

small influence in Rule 1 (a1F = -0.08). In both rules, the sign of the contributions of all 

features but magnesium (Mg) and alcohol (Al) are the same, thought the values of their 

contributions are different. While Mg has a positive contribution in Rule 1 (a1Mg = 0.06) 

its contribution is negative in Rule 2 (a2Mg = -0.34). There are also features with the 

same contributions. Here, the contributions of Ma are exactly the same in the both rules 

(a1Ma = a2Ma = -0.37). 

TABLE 4.4 

Details of the wine dataset. Averages (μ) and standard deviations (σ) of the features 

in the wine dataset are rounded to 2.d.p. 

 Class 0 Class 1 Class 2 

 μ σ μ σ μ σ 

Al 13.74 0.46 12.28 0.54 13.15 0.53 

Ma 2.01 0.69 1.93 1.02 3.33 1.09 

A 2.46 0.23 2.24 0.32 2.44 0.18 

Aa 17.04 2.55 20.24 3.35 21.42 2.26 

Mg 106.34 10.50 94.55 16.75 99.31 10.89 

Tp 2.84 0.34 2.26 0.55 1.68 0.36 

F 2.98 0.4 2.08 0.71 0.78 0.29 

Np 0.29 0.07 0.36 0.12 0.45 0.12 

Pa 1.90 0.41 1.63 0.60 1.15 0.41 

Ci 5.53 1.24 3.09 0.92 7.40 2.31 

H 1.06 0.12 1.06 0.20 0.68 0.11 

OD 3.16 0.36 2.79 0.50 1.68 0.27 

P 1115.71 221.52 519.51 157.21 629.90 115.10 
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TABLE 4.5 

Two rules extracted by the LPAM for the Class 0 and Class 1 wines. 

 c σ y = ar0 + arAl Al + arMa Ma + ... + arP P 

Rule 1: 

Al 

Ma 

A 

Aa 

Mg 

Tp 

F 

Np 

Pa 

Ci 

H 

OD 

P 

 

0.79 

0.27 

0.51 

0.26 

0.38 

0.80 

0.52 

0.30 

0.53 

0.78 

0.44 

0.68 

0.75 

 

0.23 

0.24 

0.21 

0.21 

0.20 

0.18 

0.19 

0.19 

0.22 

0.22 

0.22 

0.19 

0.22 

2.29 - 0.25 Al - 0.37 Ma - 0.66 A +0.96 Aa + 0.06 Mg + 

0.4 Tp - 0.08 F + 0.01 Np +0.33 Pa - 0.1 Ci – 0.15 H – 

0.85 OD - 0.8 P 

Rule 2: 

Al 

Ma 

A 

Aa 

Mg 

Tp 

F 

Np 

Pa 

Ci 

H 

OD 

P 

 

0.12 

0.27 

0.53 

0.48 

0.21 

0.40 

0.24 

0.71 

0.33 

0.13 

0.95 

0.36 

0.17 

 

0.20 

0.17 

0.19 

0.20 

0.20 

0.16 

0.19 

0.22 

0.17 

0.20 

0.29 

0.19 

0.20 

2.03 + 0.06 Al - 0.37 Ma - 0.56 A + 0.79 Aa - 0.34 Mg + 

1.12 Tp - 2.40 F + 0.11 Np + Pa - 0.18 Ci - 0.09 H - 

0.41 OD - 0.71 P 
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Fig. 4.7.  The contributions of predictor variables in the two fuzzy rules for the Class 0 and 

Class 1 wines. 

4.4.3 Comment on the knowledge discovery 

Using the benchmark datasets to test the performance of a new model and particularly to 

assess the quality of the accumulated knowledge is useful before the model is applied 

on more complex real-world datasets. In this thesis a well understood benchmark 

dataset, i.e. the iris dataset, whose features can be examined in a 2D data space has been 

selected to initially test the proposed LPAM model. This evaluation approach revealed 

that the LPAM can indeed correctly learn and explain the data patterns in the iris 

datasets. 
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The local learning utilised by the LPAM resulted in two local models and the LPAM 

assembled knowledge in two rules. The response functions, yRule1 and yRule2, were fine-

tuned to capture local patterns in two classes of iris flowers. 

yRule1 = 0.89 – 0.55 Sl – 0.60 Sw + 1.36 Pl + 0.98 Pw 

yRule2 = 0.84 – 0.84 Sl – 0.35 Sw +1.65 Pl + 0.80 Pw 

Unfortunately, in many applications the influence of data characteristics on the 

modelled process is less obvious (e.g. a multi-dimensional datasets). For that reason, the 

LPAM was validated on a more complex dataset, i.e. the benchmark wine dataset where 

13 features describe two brands of wine. Again, the LPAM created two local models, 

each favouring a different set of wine characteristics: 

yRule1 = 2.29 - 0.25 Al - 0.37 Ma - 0.66 A +0.96 Aa + 0.06 Mg + 0.4 Tp - 

              0.08 F + 0.01 Np + 0.33 Pa - 0.1 Ci – 0.15 H – 0.85 OD - 0.8 P 

yRule2 = 2.03 + 0.06 Al - 0.37 Ma - 0.56 A + 0.79 Aa - 0.34 Mg + 1.12 Tp - 

              2.40 F + 0.11 Np + Pa - 0.18 Ci - 0.09 H - 0.41 OD - 0.71 P 

We show later in this thesis that in datasets that exhibit bigger variations between 

samples belonging to a class, the LPAM approach builds more than two local models. 

This not only has potential to increase the modelling accuracy but also to deliver more 

precise knowledge. The LPAM partitions the problem space into clusters of similar 

patterns and explores patterns in each of clusters to acquire knowledge in local areas. 

We believe that a set of local models have a more powerful explanatory capability than 

a single global model. Even when no significant difference in terms of accuracy 

between two modelling approaches is obtained, the knowledge extracted from local 

experts is more detailed than one extracted from a one for all model. In the following 

chapter we show that the LPAM could be successfully used for risk evaluation in a 

more complex modelling environment, i.e. modelling the global distributions of pest 

insects. 

4.5 Conclusion 

In this chapter, an adaptive model based on local probability, named LPAM, for risk 

prediction was introduced. The model can be used to estimate risks, while also allowing 

us to determine, in a transparent way, the influence of each predictor variable on the 
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modelled output. The LPAM can also be used for classification by applying a threshold 

to the output value. In addition, a simple technique for visualising the predictor-

response relationships based on the rules extracted during the training of an LPAM is 

proposed. 

Two main features of the LPAM must be highlighted. First, it is an adaptive model as it 

evolves to accommodate new data samples as they become available. This feature has 

already been recognised in the ecological modelling community as necessary for 

modelling of effects of climate change on ecological processes. Second, it has a 

knowledge extraction facility that allows an easy extraction and identification of 

contributing variables. The proposed approach identifies a number of local clusters in a 

set of input data samples, each with unique predictor-response relationships. Adopting 

the LPAM can lead to acquiring knowledge that is impossible to extract through the use 

of traditional neural network models. However, to achieve this two LPAM parameters 

must be optimised, the number of local models ξ and the threshold value Dthr. In our 

work, these parameters were manually tuned and therefore there is an opportunity for 

future work to look at automating this process. 

The LPAM was evaluated on two benchmark problems from the UCI Machine Learning 

Repository database. The accuracy of the LPAM on both benchmark problems was 

100%. The first dataset, the iris dataset, was chosen because it has a small number of 

features. As a result, a thorough evaluation of the knowledge discovery capabilities of 

the LPAM was possible. We proved that the LPAM was successful both in terms of 

classification accuracy and knowledge discovery. The second dataset, the wine dataset, 

was employed to evaluate the performance of the LPAM on sets with an unequal 

number of samples per class as well as to see how the model performs on high-

dimensional sets. Again, the LPAM was successful on this dataset. In the next chapter, 

we present the results of using the LPAM for assessing the establishment potential of a 

pest insect and validate the obtained results and compare our work to two more recent 

works where traditional neural networks were used on similar datasets. 

  



 
66 

Chapter 5 
Modelling and prediction of 

establishment of the insect P. citri 
using LPAM 

As discussed in Chapter 3, MLP networks are the most popular neural networks for 

building species distribution models. Unfortunately, MLP-based models cannot easily 

provide an interpretation of the effect of the individual modelling variables on the 

species establishment nor can they adapt their structure to environmental and data 

changes. To see if we can get around these problems in this chapter we apply the LPAM 

for assessing the establishment potential of a pest insect and compare the results to 

those of two more recent studies where traditional neural networks (MLP and SOM) 

were used on similar datasets. 

Acknowledging that data is important to the performance of an ecological model a 

thorough analysis of the characteristics of the data used in the modelling is conducted 

and the results of this analysis are presented. The details of these results are given 

together with an explanation of the discoveries that were made by using the LPAM for 

the case study data. Finally, for the first time, a predictive map is produced and 

presented to facilitate the visual inspection of the distributions of the studied insect. 

5.1 Introduction 

An LPAM was used to develop a forecasting model to predict the establishment 

potential of the citrus mealybug, Planoccus citri (Risso). Unfortunately, currently there 

is little known about the response of this insect to influential environmental variables. 

This interpretation would be very useful to researchers who study insect-environment 

relationships and for those working on pest management. 

It must be noted that this pest species is very widespread. Consequently, it has been 

challenging to forecast its dynamics. Yet, as will be shown in this thesis, the LPAM 

delivered valuable results that could not be obtained using traditional analysis tools 

usually employed for solving ecological studies problems. For example, with the 

LPAM, we explain how the climatic characteristics at various locations influence the 
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insect‟s potential distribution. The LPAM also provides a mechanism to reduce the 

influence of false data on the modelling accuracy. Overall, the experimental results 

show that the LPAM is able to learn to predict the establishment potential of insect 

species from eco-climatic data with the accuracy similar to the accuracy obtained in 

other studies. 

5.2 Data characteristics 

For this study, the meteorological data for more than 6000 worldwide geographic areas 

where the Planoccus citri (Risso) has been recorded as either present (P, 1) (223 

locations) or is considered absent (A, 0) was assembled from published sources 

(Peacock, 2005). This insect is extremely widespread (Waterhouse & Sands, 2001), and 

so data is represented from all continents. The P. citri is recorded in the dataset as 

present in New Zealand (CABI, 2004) but the New Zealand biosecurity community 

consider this insect absent since the 1980s. In an experiment studying the establishment 

potential of the 106 pest species with potential to establish in New Zealand P. citri was 

found to have the highest establishment potential (Worner & Gevrey, 2006). 

The influence of various climate variables on the establishment of P. citri was studied 

by Peacock, Worner and Sedcole in 2006. They used discriminate analysis to determine 

the climatic preferences of 35 insects including P. citri and found that the presence of 

different species is influenced by a different set of climatic variables. Out of 34 climate 

variables, soil moisture, rain, temperature and evapotranspiration were found to 

influence the establishment potential of insects more than any other climate 

characteristics which were studied. However, which variables represent the limiting 

factor differs from species to species and more often than not the true limiting factors 

are not known. In another study annual actual evapotranspiration was used with other 

climatic factors to predict reptile and amphibian species richness (Rodrígues, Belmontes 

& Hawkins, 2005) and to predict the distribution of various insects (Rodriguero & 

Gorla, 2004; Bayoh, Thomas & Lindsay, 2001). An aridity factor indicating the dryness 

of an area together with the temperature and some other climatic characteristics were 

used to model the distribution of a moth species (Chefaoui & Lobo, 2008) and melon 

thrips (Dentener, Whiting & Connolly, 2002). Another study found that temperature is 

one of the most important climatic variables influencing the distribution of pest insects 

(Zhang & Zhang, 2008; Ulrichs & Hopper, 2007; Watts & Worner, 2008). In our 

experiments we used a mixture of climate variables shown in Table 5.1. 
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TABLE 5.1 

Climate variables used to model the establishment potential of the insect P. citri. 

Variable name (unit) Symbol Range Average 

Maximum summer temperature (°C) TSmax 2.5 – 36.6 24.8 

Minimum winter temperature (°C) TWmin -35.2 – 27.2 11.1 

Mean total rainfall (mm) Rmean 1 – 4331 1090.6 

Annual actual evapotranspiration (mm) AAE 1 – 1903 691.5 

Moisture index (mm) MI 0 – 8.1 1.1 

To investigate the dataset the exploratory analyses explained in Chapter 3 Section 3.4 

was conducted. First, to avoid the influence of a large number of locations where a 

species is absent, the number of locations where this pest insect is recorded absent was 

kept similar to the number of locations where this pest insect is recorded as present. 

Second, the spatial distribution of the locations was checked to identify possible 

geographical outliers. Third, the insect‟s response to the chosen predictor variables was 

investigated. Fig. 3.5 (Chapter 3) shows the distribution of P. citri over the TSmax range. 

Fig. 5.1 (a) – (d) shows the distributions over the other climatic variables‟ ranges. From 

these figures it is possible to deduce that the value of the present (np) to absent (na) ratio 

r increases with an increase in temperatures, particularly with TWmin, and with an 

increase in Rmean and AAE. Also, there is a noticeable lack of sampled locations which 

have a drier climate (i.e. higher MI values). Finally, a correlation analysis on the 

predictor variables was carried out (Table 5.2). The highest correlation was between 

Rmean and AAE (r = 0.84). This higher correlation was not a problem for our method 

because evolving systems such as the LPAM tolerate learning from correlated variables 

(Kasabov, 2002). As expected, correlations between MI and both temperature attributes 

were negative, as higher temperatures will decrease the MI towards increasing dryness. 

The influence of TWmin on MI is lower (r = -0.08) than the influence of TSmax (r = -0.45). 

TABLE 5.2 

Correlation matrix of the predictor variables for the insect P. citri. 

Rmean 0.84 0.71 0.07 0.44 

0.84 AAE 0.39 0.26 0.59 

0.71 0.39 MI -0.45 -0.08 

0.07 0.26 -0.45 TSmax 0.58 

0.44 0.59 -0.08 0.58 TWmin 
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Fig. 5.1.  Distributions of the insect P. citri over a range of TWmin (a), Rmean (b), AAE (c) and MI 

(d). Each bar represents the distribution of all locations (n), where the dark areas represent the 

number of plots occupied by the insect (np). The number written on top of each bar shows the 

percentage of all sites occupied by the insect (r = np ÷ n %). The distribution over the TSmax is 

given in Chapter 3 Fig. 3.5. 
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Next, the results of our modelling are presented. First, we present the results of the 

cluster analysis. This is followed by the explanation of the rules discovered by the 

LPAM. Then, we present the predictive map for the modelled pest insect. Finally, we 

compare our results to those achieved when MLP and SOM were used. 

5.3 Clustering information 

The results of the ECM clustering are summarised in Table 5.3. The cluster size varies 

from one hundred locations to only one location. The r column shows the number of 

locations at which the insect is present against the total number of locations for a given 

cluster, i.e. r = np ÷ n. Cluster 4 is the largest cluster with 100 locations. It contains 

locations in Central and South America; Central, East and Southern Africa; South, East 

and Southeast Asia and North and East Australia. The locations in this cluster have the 

third highest ratio (r = 0.73) between present and absent locations (i.e. the P. citri is 

present at 73 and absent from 27 locations). The highest ratio (r = 0.85) is in Cluster 8, 

which includes 13 locations, mainly from Southeast Asia. The smallest clusters 

(containing one location) are Cluster 15 (Switzerland), Cluster 18 (Chile), Cluster 19 

(Canada) and Cluster 20 (Guinea). The P. citri is absent from all of these four clusters. 

It is interesting to observe that the insect is also absent from the two larger clusters, 

Cluster 11 (12 locations) and Cluster 13 (24 locations). The table also includes the mean 

values of the attributes for all clusters. Higher r are obtained for clusters with higher 

average values for the temperature parameters TSmax and Twmin, which supports the 

observation that the insect prefers warmer sites. Nine New Zealand locations can be 

found in four clusters, Clusters 1, 3, 5 and 13 (Table 5.4). The ratio r is equal to 0.45, 

0.28, 0.5 and 0 respectively. There are seven New Zealand locations (78%) in clusters 

where r ≤ 0.28. The remaining two locations belong to the clusters where r = 0.45 and r 

= 0.5. 

Overall, the insect is more frequently present (i.e. there is a high ratio r) in Clusters 8, 7, 

4, etc, which do not contain any NZ locations, and less often present (i.e. there is a low 

r) in the clusters which include NZ locations. Thus, the P. citri is more strongly 

associated with sites that are not clustered or associated with New Zealand sites. 
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TABLE 5.3 

Details of the ECM cluster analysis. 

Cluster Samples r Rmean AAE MI TSmax TWmin 

1 91 0.45 1102.6 715.4 1.34 24.3 7.1 

2 76 0.51 328.8 260.8 0.34 27.6 11.1 

3 98 0.28 720.01 500.3 1.03 20.3 5.6 

4 100 0.73 1407 1026.5 1.08 27.2 20.4 

5 6 0.50 2509.5 651.3 3.77 17.4 6.3 

6 61 0.21 643.7 471.7 0.96 22.5 -2.7 

7 38 0.79 2105.8 1355.2 1.35 28.0 23.2 

8 13 0.85 3591.2 1681.3 2.03 28.1 25.6 

9 56 0.64 914.3 717.6 0.72 28.0 18.7 

10 18 0.39 225.17 216.9 0.11 33.4 18.5 

11 12 0 385.25 304.3 0.71 19.6 -15.7 

12 4 0.5 2223.3 764.7 2.90 24.5 4.3 

13 24 0 1124 556.2 1.86 17.3 1.1 

14 25 0.68 1728.5 855.8 1.79 22.9 17.7 

15 1 0 2744 338 8.12 5.8 -8.9 

16 10 0.70 2730.6 1190.1 1.86 27.6 22.4 

17 2 0.50 1151 338 3.49 5.6 -10 

18 1 0 398 349 0.72 10.8 1.7 

19 1 0 112 104 0.31 7.2 -35.2 

20 1 0 4003 943 2.51 27.6 25 

 

TABLE 5.4 

Clustering results for New Zealand. There are seven New Zealand locations (78%) in clusters 

where r ≤ 0.28. The P. citri is more strongly associated with sites that are not clustered or 

associated with New Zealand sites. 

Cluster NZ r 

1 1 0.45 

3 4 0.28 

5 1 0.50 

13 3 0 
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5.4 Establishment and climatic variables 

The trained LPAM was used to establish the relationship between the response variable 

(presence/absence) and the set of predictor (climate) variables (Table 5.1). The climate 

variables used to model the establishment potential of the insect P. citri were suggested 

by an ecological expert (Worner, personal communication). During the learning phase 

its DENFIS module created three climatic environmental clusters (environmental sub-

envelopes), each representing locations with unique climatic characteristics. Locations 

are represented by three fuzzy rules (Table 5.5). For example, Rule 1 states that IF the 

value of Rmean is in the area defined by a Gaussian function with the mean of 0.29 (i.e. 

c1Rmean = 0.29) and the standard deviation of 0.29 (i.e. ζ1Rmean = 0.29) AND AAE is in the 

area defined by a Gaussian function with c1AAE = 0.41 and ζ1AEE = 0.17 AND MI is in 

the area defined by a Gaussian function with c1MI = 0.19 and ζ1MI = 0.16 AND TSmax is 

in the area defined by a Gaussian function c1TSmax = 0.69 AND ζ1TSmax = 0.32 and TWmin 

is in the area defined by a Gaussian function with c1TWmin = 0.91 and ζ1 c1TWmin = 6.13 

THEN the response is calculated using the following formulae y = 0.61 - 1.47 Rmean + 

1.46 AAE + 1.91 MI + 0.44 TSmax + 0.28 TWmin. 

The contributions of the predictors in each rule are shown in Fig. 5.2. It is possible to 

deduce from these graphs the extent to which the predictors influence the response. As 

explained in Chapter 4 Section 4.3, the centres of Gaussian functions (cri) and the 

coefficients of the regression lines (ari) are used explain the influence of each climatic 

variable on the establishment of the modelled pest insect. 

Rule 1 describes the locations with a high minimum winter temperature (c1TWmin = 0.91); 

a moderate maximum summer temperature (c1TSmax = 0.69) and annual actual 

evapotranspiration (c1AAE = 0.41); dry soil (c1MI = 0.19) and a low total mean rainfall 

(c1Rmean = 0.29). MI (a1MI = 1.91) has the greatest effect. Also, a decrease in Rmean causes 

an increase in the response. 

The locations described by Rule 2 have a low mean for the annual actual 

evapotranspiration (c2AAE = 0.18) and maximum summer temperature (c2TSmax = 0.05) 

values; a moderate mean for rainfall (c2Rmean = 0.66) and winter temperatures (c2TWmin = 

0.44) values; but they have very wet soil (c2MI = 0.95). AAE (a2AAE = 8.26) has the 

greatest effect for this group of locations, and a decrease in winter and summer 

temperature causes an increase in the response. 
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All five variables in Rule 3 have the low or very low mean value (c3Rmean = 0.18, c3AAE = 

0.03, c3MI = 0.06, c3TSmax = 0.11, c3TWmin = 0.04); low c3Rmean and c3AAE values indicate 

overall dry conditions, and low c3TSmax and c3TWmin values indicate low temperatures. It is 

interesting to see that the influence of the predictor variables on the response is high; 

especially the influence of the rainfall variable (a3Rmean = -13.93, i.e. less rain results in a 

higher response), annual actual evapotranspiration (a3AAE = 11.63), and MI (a3MI = 8.21). 

AAE is one of the most influential predictors in all three rules (aAAE = 1.46, a2AAE = 8.26 

and a3AAE = 11.63). 

TABLE 5.5 

Knowledge extracted by the LPAM. 

 
c σ 

y = ar0 + arRmean Rmean + arAAE AAE + arMI MI +  

      arTSmax TSmax + arTWmin TWmin 

Rule 1: 

Rmean  

AAE 

MI 

TSmax 

TWmin 

 

0.29 

0.41 

0.19 

0.69 

0.91 

 

0.29 

0.17 

0.16 

0.32 

6.13 

0.61 - 1.47 Rmean + 1.46 AAE + 1.91 MI + 0.44 TSmax + 

0.28 TWmin 

Rule 2: 

Rmean  

AAE 

MI 

TSmax 

TWmin 

 

0.66 

0.18 

0.95 

0.05 

0.44 

 

0.25 

0.20 

0.29 

0.20 

0.19 

1.52 + 2.01 Rmean + 8.26 AAE - 2.30 MI - 3.77 TSmax - 

2.07 TWmin 

Rule 3: 

Rmean  

AAE 

MI 

TSmax 

TWmin  

 

0.18 

0.03 

0.06 

0.11 

0.04 

 

3.37 

0.05 

0.17 

0.21 

0.06 

0.65 - 13.93 Rmean + 11.62 AAE + 8.21 MI - 0.51 TSmax  

- 1.60 TWmin 
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Fig. 5.2.  Contributions of predictor variables in three different fuzzy rules. Each rule explains 

the influence of five climate characteristics on the establishment of the pest insect. Rule 1: 

higher rainfall  lower response, the main positive contributors are a1MI = 1.91 and a1AAE = 

1.46. Rule 2: higher MI, TSmax and TWmin  lower response, the main positive contributor is a2AAE 

= 8.26. Rule 3: all contributors have low mean values, higher Rmean  lower response, the main 

positive contributors are a3AAE = 11.62 and a3MI = 8.21. 

The trained LPAM can be used to estimate the insect‟s establishment potential for each 

location from the original data set D. Table 5.6 summarizes the result for 20 selected 

locations. 
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TABLE 5.6 

The results for 20 selected locations. The first 10 locations were chosen because they were 

given the highest establishment potential estimates. The second 10 locations were given the 

lowest overall estimates. 

 

The first 10 locations were chosen because they were found to have the highest risk of 

establishment of the pest insect. The second 10 locations were given the overall lowest 

establishment potential estimates. In other words, it is unlikely that the pest insect will 

establish at these 10 locations. Each location is described by a pair of geographic 

coordinates (latitude, longitude), which are given in the second column. The model 

predictions are tabulated in the „Risk index‟ column. For the purpose of comparison, the 

„P or A‟ column (present = 1, absent = 0) shows the known (recorded) establishment 

status of the pest insect. The highest establishment was predicted for two locations from 

Australia (-15.4, 128.5) and (-28.4, 153.2). Even though these two locations do not 

Location (Lat, Long) Risk index P or A 

Australia, Kununurra ( -15.4, 128.5 ) 1 0 

Australia, Tyalgum ( -28.4, 153.2 ) 0.95 0 

Sardinia, Sassari ( 40.7, 8.6 ) 0.95 1 

Malta, ( 35.5, 14.3) 0.95 1 

Brazil, Rio Grande do Sul ( -30, -53 ) 0.94 1 

Mozambique, Mungari ( -17.2, 33.5 ) 0.94 0 

Galapagos, ( 0, -91 ) 0.94 1 

Peru, Lima ( -12.1, -77 ) 0.91 1 

UK ( 53, -2 ) 0.91 0 

Burkina Faso, Upper Volta ( 12, -1 ) 0.91 1 

Argentina, Misones ( -27, -55 ) 0.42 1 

Madagascar, Ankavandra ( -18.8, 45.3 ) 0.39 0 

Turkmenistan ( 39, 59 ) 0.38 1 

USA, Tustin ( 33.7, -117.8 ) 0.33 0 

South Africa, Matroosberg ( -33.4, 19.8 ) 0.31 0 

USA, Pearl ( 32.7, -103.4 ) 0.29 0 

China, Datong ( 40.1, 113.33 ) 0.29 0 

New Zealand, Eyrewell forest ( -43.4, 172.3 ) 0.27 0 

USA, Winslow/Mun. AZ ( 35.02, -110.73 ) 0.07 0 

Saudi Arabia, Hafr al Batin ( 28.33, 46.12 ) 0 0 
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currently have this pest insect the model suggests that they should be treated as areas 

where this pest insect could potentially establish upon its introduction. Again, we must 

bear in mind that the status of this pest at these two Australian locations, as recorded in 

the modelling data, may be incorrect, as it is possible that the insect could thrive there if 

introduced. 

5.5 Risk map 

To complete the modelling, a predictive map showing a general trend of establishment 

potential for P. citri in different areas of the world was compiled (Fig. 5.3). The areas 

were classified into 6 ranges with the establishment potential of 0, 0.2, 0.4, 0.6, 0.8 and 

1, where the lower values represent a lower risk of insect establishment, and the higher 

values represent possible hot spots (biharmonic spline surfaces were created using the 

interpolation method with 1° spacing). Results plotted in Fig. 5.3 are very similar to the 

spatial distribution of the insect P. citri shown in Chapter 3 Fig. 3.4. The highest 

establishment potential (0.8 or 80%) was predicted for the Caribbean, north of South 

America, Oceania, and South, Southeast and East Asia, where the insect has already 

established. Most of New Zealand is in the range of 0.4 (40%). These results indicate 

that caution should be exercised when dealing with produce coming into New Zealand 

from the countries where the insect has been established. 

 

Fig. 5.3.  The establishment probability map for the insect P. citri showing distributions 

predicted by the LPAM. Higher values represent the possible hot spots – the locations where the 

climate is suitable for the pest insect establishment. The map contours were created using the 

biharmonic spline interpolation method with 1° grid spacing available in MATLAB. 
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5.6 Influence of the threshold parameter 

As stated earlier, The LPAM can be used for classification. In that case, the threshold 

parameter θ is used to convert the continuous output values generated by the LPAM 

model into binary presence or absence predictions. Changing θ changes all values in the 

confusion matrix affecting the performance of the models. Given a threshold value θ 

and a location gi, a response greater than or equal to θ (i.e. where the „Risk indexi‟ ≥ θ) 

means that the pest is likely to establish at this location (yi = 1 or presence), while a 

response where the „Risk indexi‟ < θ means the location‟s climate is not favourable for 

the insect‟s establishment (yi = 0 or absence). Typically, θ is equal to 0.5. If yi is equal 

to the recorded presence/absence value, then the prediction is correct. 

The proposed model was evaluated over 7 probability thresholds, from 0.3 to 0.9 in 

steps of 0.1, at which the presence of the insect might be accepted (Fig. 5.4). The 

accuracy a, defined in (3.3), was assessed over the range θ  [0.3, 0.9]. As shown in Fig 

5.4, the model‟s accuracy in predicting the presence of the insect increases as θ 

increases, exhibiting values greater or equal to 80% for θ = 0.8 and θ = 0.9. For θ = 0.7 

a = 78.6%. 

The accuracy of the LPAM was also measured using Cohen‟s Kappa statistic (3.1) at θ 

= 0.5. As stated earlier in Chapter 3 Cohen‟s Kappa statistic (κ) is often used for 

assessing the accuracy of predictive ecological models. The confusion matrix is given in 

Fig. 5.5 where sen = 0.57, spe = 0.75 and κ = 0.33 indicate that the model has difficulty 

modelling this species. 

 

Fig. 5.4.  The accuracy a of the predictive distribution model as a function of the threshold 

parameter θ. The accuracy is above 80% for θ = 0.8 or 0.9. 
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A number of factors could have influenced the performance of the model. First, it is 

possible that the climatic variables are poor predictors of the P. citri‟s distribution 

patterns at the locations assessed here. Second, the results might be influenced by the 

way the data was collected. Particularly, the number of false absences was too high. 

Having the spe greater than the sen indicates that the model is biased to the absence data 

which is known to be very noisy. Third, there are suggestions that the distribution of 

this particular pest insect is particularly hard to model. This is further explored in the 

following section. Nevertheless, building predictive habitat models is a complex task 

and low κ values are not uncommon (Willems et al., 2008; Watts & Worner, 2008; Eyre 

et al., 2005). 

 RP RA 

PP 128 57 

PA 95 174 

Fig. 5.5.  Confusion matrix. RP and RA are the number of recorded presences and absences and 

PP and PA are the number of predicted presences and absences. 128 locations are correctly 

predicted as presences and 174 locations as absences. 

5.7 Informative comparison 

The proposed model and the results of the case study were published in 2003 and 2004 

(Soltic et al., 2004a & 2004b; Soltic et al., 2003). Since then two similar studies 

involving the insect P. citri and its establishment potential have been conducted by Sue 

Worner and her team at Lincoln University, Canterbury, New Zealand where the 

traditional neural networks, i.e. MLP and SOM networks, were used as modelling tools 

(Watts & Worner, 2008; Gevrey et al., 2006). In both studies, the establishment 

potentials of 844 insect pest species including P. citri were assessed. Despite their 

datasets and objectives not being exactly the same as the ones in this thesis, their work 

is the most similar currently published study available for comparison with this thesis. 

By looking at their work and how the results compare to our study, we can evaluate the 

significance and the benefits of the results achieved in this case study. 

In (Watts & Worner, 2008) MLP networks were used to determine the relative 

contribution of various climatic variables to the establishment potential of 844 insect 

pest species at 495 geographic regions. The finding from their work that rain and 
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temperature variables were the predominant climatic variables influencing the 

distributions of pest insects supports the selection of predictor variables used in our case 

study. Furthermore, Watts and Worner concluded that P. citri‟s complex behaviour is 

very hard to model. In their study, the performance of the model for P. citri was the 

lowest compared to the performance of the models built for all other species. While the 

accuracy of the model predicting the establishment potential of P. citri in this thesis is 

similar to theirs, the approach proposed here has additional benefits over the approaches 

using the MLP networks. Firstly, the training process of the proposed model consists of 

only one epoch compared to the 750 training epochs reported in (Watts & Worner, 

2008). Secondly, our proposed approach does not suffer from catastrophic forgetting or 

the black-box syndrome. Clearly, there are advantages of the LPAM compared to the 

MLP. Thirdly, in the proposed approach there is no need for post-training descriptor 

variable analysis because the contribution analysis is done at the same time the network 

is trained. Fourthly, the knowledge extracted from the trained LPAM network is 

transparent. 

In (Gevrey et al., 2006) the establishment potential of 844 species, including P. citri, 

were analysed through the means of a SOM. The objective was to estimate the threat of 

various insect pest establishments in New Zealand. Whereas the approach in this thesis 

is based on climate, they modelled an insect‟s distribution at a particular area as a 

function of the species assemblages at this area. They ranked the studied species in term 

of their strength of association with species assemblages. A SOM was employed to find 

the pest insect specie‟s assemblages and the weight values of the trained SOM were 

interpreted as risk estimates. The risk of P. citri invasion in New Zealand was found to 

be 0.93, much higher than the predictions reported in this work and in (Watts & 

Worner, 2008). The same SOM estimated a low risk of establishment for several species 

that are already established in New Zealand. 

5.8 Conclusion 

In this chapter, the results of using the LPAM for the modelling distribution of an 

invasive pest insect, Planoccus citri (Risso), are given. In comparison with two more 

recently published works, the LPAM approach had a similar accuracy but provided 

more knowledge about the variables involved. In other words, the LPAM approach 

builds predictive models that can be used to determine the establishment potential of 

species, while also allowing us to determine the influence of each exploratory variable 
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to the distribution of the modelled species. This is a new approach to ecological 

modelling, where models have been typically built using either the classical statistical 

methods or traditional neural networks. 

Predicting the establishment potential of a species is challenging, especially when the 

species is a widespread pest insect such as the one used in this study. The quality of the 

modelling data is often questionable since the data includes information about the 

species‟ absences along with the species‟ presences. The results presented in this work 

were compared to similar work by Sue Worner and her team. Their more recent results 

support the results obtained in this work. They favour the usage of traditional neural 

networks for a pest insects risk assessment. While the accuracies achieved in this work 

and their work are similar, our approach has advantages over the other methods which 

are discussed in the text above. The two main advantages must be highlighted. First, the 

LPAM is an evolving model ready to accommodate new data samples as they become 

available. This feature has already been recognised in the ecological modelling 

community as necessary for successful modelling. Second, the LPAM has a local 

knowledge extraction facility that allows for easy extraction and identification of 

contributing variables to the establishment potential and distribution of species in the 

form of IF-THEN rules. These rules are easily extracted from the trained model and 

they are intended to support expert knowledge. 

In this case study, the LPAM identified three unique climatic regions, each with unique 

climate-insect relationships: 

1. Dry sites with warm winters and moderate summer temperature where the soil 

dryness is the most influential factor and where the sites with more rain are less 

likely to be invaded by the insect; 

2. Wet sites with lower summer temperatures and moderate winter temperatures 

with annual actual evapotranspiration having the highest influence and where 

decreases in summer and winter temperatures increase the risk of establishment; 

3. Dry and cool regions where the establishment is positively influenced by annual 

actual evapotranspiration and soil dryness and reduced by the amount of rainfall. 

Furthermore, an establishment probability map for the insect based on the modelling 

results was generated. To our knowledge this was the first map of its type created for 

this pest insect. For the P. citri the LPAM has given New Zealand the establishment 

probability of around 40%. This result generally agrees with the fact that the insect used 
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to be present in New Zealand and therefore it is likely that this insect would establish a 

viable population again if it was given the chance. The highest likelihood of 

establishment was found for locations where the insect has already been established 

validating the proposed approach. 

This case study has shown how the LPAM can be used to predict the establishment of 

species and determine the role of various explanatory variables in a pest insect‟s 

distributions. Although, the approach was tested on a case study involving one pest 

insect there are no reasons to believe that the approach will not work for other species 

and other set of exploratory variables. 

Finally, it is clear that the approach must be tested further and evaluated by experts from 

biosecurity, species biology and entomology. Adopting the LPAM might lead to 

acquiring knowledge that is impossible to extract through the use of the traditional 

neural network models.  
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Chapter 6 
Transductive approach for 

‘personalised’ modelling and 
knowledge discovery with case 

studies from biosecurity 

This chapter reports on the applicability of transductive modelling techniques for the 

estimation of the establishment potentials of pest insects. The focus is on the case 

studies where the presence and absence of species are described by a set of climatic 

attributes. To study this, four modelling approaches, including the LPAM, based on 

inductive and transductive reasoning, were used on three different real-world insect 

datasets. The models were compared and their effectiveness in predicting and 

interpreting the pest insect distributions are discussed. 

6.1 Introduction 

A vast majority of predictive models in ecological modelling apply inductive inference 

where a model is created from all training data and then is applied to the available test 

data (or new data). According to Vapnik (1998), building a model based on all available 

training data might be unnecessary. He proposes the use of a paradigm, referred to as 

transductive reasoning and transductive inference, where the focus of the modelling is 

on one single data sample. Accordingly, the predictive models are built on the basis of 

the knowledge of one particular data sample at the time. 

Transductive methods were found to perform better than inductive methods for datasets 

with high and medium noise levels (Schwaighofer & Tresp, 2002) and for small and 

moderate datasets (Derbeko, El-Yaniv & Meir, 2003; Blum & Chawla, 2001). 

Acknowledging that real-world eco-climatic data, such as the data used in this thesis, is 

noisy and sparse, transduction rather than induction might produce more accurate 

species-habitat distribution models. Therefore, the suitability of using transductive 

reasoning in modelling the establishment potential of pest insects has been investigated 

in this thesis by building personalized models to model the distribution of three insects: 

Aspidiella hartii (Cockerell), Geococcus coffeae and Xyleborus perforans. These insects 
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are not currently present in New Zealand, but they are frequently found on fresh 

produce coming into New Zealand from various overseas locations where the insects are 

established (S. P. Worner, personal communication, 2003). 

Four approaches were used to build predictive habitat models for each insect: 

 Model 1 is based on a classic statistical method (linear regression) and inductive 

reasoning. Therefore, each Model 1 is a global model built from all available 

training data. 

 Model 2 is a collection of local models based on DENFIS and built using 

inductive reasoning. These local models collectively model the distribution of a 

pest insect. 

 Model 3 is the LPAM, the new model introduced in Chapter 4. This model is 

also a collection of local models. 

 Model 4 is a model based on transductive modelling and therefore it is a 

collection of „personalized‟ models, were each model is built for a specific 

locality. These models were built using weighted KNN method described in 

Chapter 2 Section 2.4 by (2.3) and (2.4). 

To summarise, the objectives of this case study were to: 

1. Apply inductive and transductive modelling techniques to model the 

relationships between an insect and its habitat; 

2. Evaluate the performance of those models on different real-world insect data 

sets; and 

3. Assess the knowledge delivered by the models. 

The models were assessed in terms of their accuracy (measured in terms of the Cohen‟s 

Kappa statistics κ) and explanatory capability. The results achieved in this case study 

have been partially published in (Soltic & Peacock, 2006a & 2006b). 

6.2 Data characteristics 

Three bio-climatic distribution data sets (Peacock, 2005) were used to assess the 

transductive and inductive approaches. In Chapter 3, Table 3.3 gives a summary of the 

number of samples in each dataset, together with the number of sites where each insect 

is recorded present or absent. Data for the insect A. hartii was compiled from 78 

worldwide sites where the insect has been recorded as either present (36 sites) or where 

it is considered absent (42 sites). Data for the insect G. coffeae was compiled from 75 

worldwide sites and data for the insect X. perforans from 191 worldwide sites. G. 
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coffeae had been recorded as present at 38 sites and absent from 37 sites, while X. 

perforans had been recorded present at 92 sites and absent from 99 sites. Each site is 

labelled either as a location where the particular pest insect is present (1), or absent (0). 

The presence and absence of these insects are related to three climatic variables: 

maximum summer air temperature (TSmax), minimum winter air temperate (TWmin) and 

annual potential evapotranspiration (AAE) (Table 6.1). Note that three climatic variables 

approximately cover the same range of values in all three datasets, though the lowest 

TSmax values in the X. perforans dataset and the lowest TWmin values in the G. coffeae 

dataset are significantly lower than those in other two sets. 

TABLE 6.1 

Range of three climate variables used to model the establishment potential of the following 

insects: A. hartii, G. coffeae and X. perforans. 

Symbol A. hartii G. coffeae X. perforans 

TSmax (°C) 13.3 – 33.8 16.6 – 38.3 8.6 – 35.6 

TWmin (°C) -21.9 – 27.2 -9.9 – 27 -28.9 – 27.2 

AAE (mm) 447 – 2376 534 – 3081 441– 3081 

 

Note that the number of sampled locations within each climatic range and datasets 

differs significantly (Figs. 6.1, 6.2 and 6.3). Again, the number written on top of each 

bar in the graphs shows the percentage of all sites occupied by the insect (r = np ÷ n %). 

Fig. 6.1 shows the distribution of the insect A. hartii over the ranges of TSmax (Fig. 6.1a), 

TWmin (Fig. 6.1b) and AAE (Fig. 6.1c). This insect prefers higher summer and winter 

temperatures. It occurs more often than not at the warmer locations where TSmax > 25°C 

and TWmin > 13°C. There are 29 locations in the 6 lower summer temperature ranges 

where the pest insect is either not found or very rarely found, 32 locations in the 7 lower 

winter temperature ranges and 37 locations in the 4 lower AAE ranges. Overall this pest 

insect prefers locations with higher temperature and annual evapotranspiration (AAE > 

1290mm) values. 

The insect G. coffeae prefers locations with relatively high but not very hot summer 

temperature and warmer winter temperatures, but moderate to high annual 

evapotranspiration (Fig. 6.2). This pest insect was found more often at locations where 

24°C< TSmax < 30.8°C, TWmin > 16°C and 1000mm< AAE < 1986mm. Two thirds of the 
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sampled locations are in the TSmax ranges not preferred by this pest insect. The number 

of present and absent locations in the TWmin and AAE ranges is more balanced. 

 

 

 

Fig. 6.1.  Distributions of the insect A. hartii over a range of TSmax (a), TWmin (b) and AAE (c). 

Each bar represents the distribution of all locations, where the dark areas represent the number 

of locations where the insect is present. The number written on top of each bar shows the 

percentage of all sites occupied by the insect (r = np ÷ n %). 

Fig. 6.3 shows the distribution of the insect X. perforans over the ranges of TSmax (Fig. 

6.3a), TWmin (Fig. 6.3b) and AAE (Fig. 6.3c). This insect was more often found at sites 

with higher summer temperatures (24.8°C< TSmax < 32.9°C), warmer winter 

temperatures where TWmin > 16.1°C and moderate annual evapotranspiration (241mm< 

AAE < 2004mm). The pest insect is present less frequently at the locations where the 
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annual evapotranspiration is greater than 2040mm. The number of samples in the ranges 

preferred by this pest insect and in the ranges where the insect pest is mostly absent is 

balanced across all three climatic variables. 

 

 

 

Fig. 6.2.  Distributions of the insect G. coffeae over a range of TSmax (a), TWmin (b) and AAE (c). 

Each bar represents the distribution of all locations, where the dark areas represent the number 

of locations where the insect is present. The number written on top of each bar shows the 

percentage of all sites occupied by the insect (r = np ÷ n %). 

Finally, it must be noted that the species-habitat relationships of the pest insects used in 

this thesis are explained solely on the basis of the data samples from the available 

datasets and therefore the explanation completely depends on the sampling method 

employed to collect these data samples. 
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Fig. 6.3.  Distributions of the insect X. perforans over a range of TSmax (a), TWmin (b) and AAE 

(c). Each bar represents the distribution of all locations, where the dark areas represent the 

number of locations where the insect is present. The number written on top of each bar shows 

the percentage of all sites occupied by the insect (r = np ÷ n %). 

6.3 Discussion of results 

6.3.1 Model evaluation 

We assess the models‟ discrimination capabilities with four threshold dependent 

measures: sensitivity (sen), specificity (spe), Cohen‟s kappa (κ) and overall accuracy (a) 

as explained in Chapter 3 Section 3.3.3. Leave-one-out cross validation was performed 

on all three pest insect datasets as explained in Chapter 4 section 4.4. Additionally, 
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effects of threshold variation on the performance of each model over the range θ  [0.3, 

0.9] were plotted and evaluated in terms of the sen, spe, κ and a. Since the accuracy of 

the transductive models depends on the number of nearest samples (nn) used to build the 

particular model, the effect of the size of the neighbourhood was explored by evaluating 

Model 4‟s performance with different nn. Only the performances of the best transductive 

models were compared against the performances of other models. 

6.3.2 Evaluation of the A. hartii distribution models 

To begin with, the graphs shown in Figs. 6.4, 6.5, 6.6 and 6.7 are examined. In these 

graphs the effect of threshold variation on the performance of each of the four models is 

illustrated by plotting the sensitivity (sen), specificity (spe), Cohen‟s kappa (κ) and 

overall accuracy (a) against the threshold θ. As expected the overall accuracy (a) values 

are between the sen and spe values. All four models generate predictions that have a 

value within the range of [0, 1]. These predictions are dichotomised into presences (1) 

and absences (0) using a threshold value θ. Recall, that predictions (P) above or equal to 

θ are assigned a 1 (presence), while if P < θ we assign a 0 (absence). When the θ is 

altered, all threshold dependent measures are affected. To examine in detail the models‟ 

behaviour, the performance variables are plotted over the range of threshold values 0.3 

< θ < 0.9 in steps of 0.1, yielding seven plotted points for each model or 28 points per 

figure in total. 

Fig. 6.4 shows the effect of different thresholds on the performance of Model 1 (the 

global model). The accuracy a is in the range of [0.53 0.90] with the maximum at 

θOptimal = 0.5 and θOptimal = 0.6. At higher thresholds (i.e. θ = 0.8 and θ = 0.9) the κ 

shows „poor‟ or „no agreement‟ between observed and predicted outcome values. The 

highest κmax („very good‟) was achieved at thresholds θ = 0.5 and θ = 0.6. The highest 

sensitivity (senmax = 0.85) of this model was at θ = 0.6. Both spe and sen deteriorated 

down to sen = 0.33 and spe = 0.53 at θ = 0.9. This deterioration pulled a from its 

maximum value amax = 0.9 down to its minimum value amin = 0.53 at θ = 0.9. At θ = 0.5 

(the typically used θ), a = 90% and κ = 0.80 („very good‟). 

Fig. 6.5 shows the results obtained with Model 2. This approach built the predictive 

model that exhibits „very poor‟ and „poor‟ κ at low θ thresholds values, i.e. θ  0.5. The 

κ value of 0.77 („very good‟) was achieved at θ = 0.7 and then κ exhibits a sharp decline 

at the higher thresholds, from κ = 0.77 at θ = 0.7 to κ = 0.47 at θ = 0.9. The overall 

accuracy a was in the range of [0.53 0.88] with the maximum at θOptimal = 0.7. 
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Sensitivity sen was in the range of [0.49 0.82]. This model predicted absence with a 

very high accuracy, namely the spe was in the range of [0.80 1]. At the typically used 

threshold θ = 0.5, the accuracy was relatively low a = 64% and κ = 0.32 („poor‟). 

 

Fig. 6.4.  The effect of θ on the performance of the global model built for A. hartii expressed in 

terms of sensitivity (sen), specificity (spe), Cohen‟s kappa (κ) and overall accuracy (a). The 

highest κmax = 0.80 („very good‟) and amax = 90% are at θOptimal = 0.6 & 0.5. Note that a θ of 0.5 

is typically used. 

   

Fig. 6.5.  The effect of θ on the performance of the local model built for A. hartii expressed in 

terms of sensitivity (sen), specificity (spe), kappa (κ) and overall accuracy (a). The highest κmax 

= 0.77 („very good‟) and amax = 88% are at θOptimal = 0.7. At θ = 0.6 and θ = 0.7 all measures but 

the κ values are above 0.7. 

The graphs for Model 3, the LPAM, are shown in Fig. 6.6. It is interesting to see that 

this model performed better at the lower threshold values (θ = 0.3 and θ = 0.4) and that 

the κ values decreased for θ ≥ 0.4. Its maximum accuracy was 88%. At θ = 0.5, the 

accuracy was satisfactory a = 85% and κ = 0.69 („good‟). 
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Fig. 6.6.  The effect of θ on the performance of the LPAM for A. hartii expressed in terms of 

sensitivity (sen), specificity (spe), kappa (κ) and overall accuracy (a). The highest κmax = 0.77 

(„very good‟) and amax = 88% are at θOptimal = 0.3 & 0.4. At θ = 0.5, a = 85%. 

The graph for Model 4 (Fig. 6.7) shows smaller variations for all four performance 

indicators at lower threshold values (θ  0.7). In this range the sen, spe, κ and a values 

were high (sen = 0.88, spe = 0.97, κ = 0.85 and a = 0.92, θ = 0.7), particularly the κ was 

„excellent‟. However, when θ > 0.7 spe, κ and a sharply decreased. In contrast, sen 

firstly decreased to sen = 0.85 at θ = 0.8 and then bounced back to sen = 0.88 at θ = 0.9. 

At θ = 0.5, a = 91% and κ = 0.82 („very good‟). 

Due to the importance κ has in assessing the performance of predictive ecological 

distribution models, κ values were plotted at the different probability thresholds θ (Fig. 

6.8). The performance of Model 4 (the individual model), when measured in terms of κ, 

was higher than the performance of the other models. In particular, its κ values at θ = 

0.5, 0.6 and 0.7 were 0.82, 0.85 and 0.85, respectively. 

Each model achieved a maximum accuracy (amax) at different θ designated by θOptimal 

(Table 6.2). Model 4 was found to be the most accurate for modelling the distribution of 

A. hartii, followed by Model 1, while Model 2 and Model 3 (the local models) were the 

least accurate. 
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Fig. 6.7.  The effect of θ on the performance of individual models built for A. hartii expressed in 

terms of sensitivity (sen), specificity (spe), kappa (κ) and overall accuracy (a). The highest κmax 

= 0.85 („excellent‟) and amax = 92% are at θOptimal = 0.6 & 0.7. 

 

 

Fig. 6.8.  The κ values for the studied models. The performance of transductive model, when 

measured in terms of κ, is better than the performance of all other models. 

TABLE 6.2 

θOptimal for which each model performed the best when performance was measured  

in terms of overall accuracy a. 

Model θOptimal amax(%) 

1 0.5, 0.6 90 

2 0.7 88 

3 0.4 88 

4 0.6, 0.7 92 
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6.3.3 Evaluation of the G. coffeae distribution models 

The models based on inductive and transductive reasoning were also used for 

forecasting the establishment potential of G. coffeae. The performance of Model 1 is 

examined in Fig. 6.9. The overall accuracy a was in the range of [0.55 0.88]. The 

highest κmax = 0.76 („very good‟) and amax = 88% were achieved at an optimal threshold 

θOptimal equal to 0.8. This model performed better at the higher threshold values (θ ≥ 0.6) 

than at the lower, the accuracy was a = 67% and κ = 0.33 („poor‟) at θ = 0.5. 

 

Fig. 6.9.  The effect of θ on the performance of the global model built for G. coffeae expressed 

in terms of sensitivity (sen), specificity (spe), Cohen‟s kappa (κ) and overall accuracy (a). The 

highest κmax = 0.76 („very good‟) and amax = 88% are at θOptimal = 0.8. 

Model 2 also gave better results at the higher thresholds (Fig. 6.10). Its κmax and amax 

were higher than Model 1‟s. The overall accuracy a was in the range of [0.56 0.91]. At a 

θ equal to 0.7, the κmax is 0.81 and amax is 91%. At θ = 0.5 the overall accuracy a was 

slightly higher (a = 68%) than the Model 1‟s accuracy. At θ = 0.5, the κ value was 0.35 

(„poor‟). 

Graphs for Model 3 and Model 4 are given in Fig. 6.11 and Fig. 6.12, respectively. 

Model 3 had the best performance at θ = 0.8 (κmax = 0.71 and amax = 85%). Its overall 

accuracy a was in the range of [0.56 0.85]. At θ = 0.5, the accuracy values (a = 63% and 

κ = 0.25). Model 4 performed better at the lower threshold values (θ  0.6). Its overall 

accuracy a was in the range of [0.49 0.76]. The highest κmax = 0.52 („fair‟) and amax = 

76% were achieved at thresholds θ = 0.4 & 0.5. Model 4‟s accuracy at θ = 0.5 was the 

highest of all studied models. 
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Fig. 6.10.  The effect of θ on the performance of the local model built for G. coffeae expressed 

in terms of sensitivity (sen), specificity (spe), kappa (κ) and overall accuracy (a). The highest 

κmax = 0.81 („very good‟) and amax = 91% are at θOptimal = 0.7. 

 

 

Fig. 6.11.  The effect of θ on the performance of the LPAM built for G. coffeae expressed in 

terms of sensitivity (sen), specificity (spe), kappa (κ) and overall accuracy (a). The highest κmax 

= 0.71 („very good‟) and amax = 85% are at θOptimal = 0.8. 

Fig. 6.13 reveals that the κ of the transductive model had quite different behaviour than 

the κ of the other models. While the κ of the other models was higher at larger θ, the κ 

of the transductive model decreased at the higher values of θ. In particular, at θ = 0.5 the 

accuracy of Model 4 was the highest in terms of κ. But then at θ = 0.7 this changed and 

Model 4 became the worst performing model. Overall, all the models had more 

problems with the predicting establishment potential for G. coffeae than for A. hartii. 
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Fig. 6.12.  The effect of θ on the performance of individual models built for G. coffeae 

expressed in terms of sensitivity (sen), specificity (spe), kappa (κ) and overall accuracy (a). The 

highest κmax = 0.52 („fair‟) is at thresholds θ = 0.4 & 0.5, amax = 76% is at θOptimal = 0.5. 

 

                                

Fig. 6.13.  The κ values for the studied models. The performance of the transductive model 

exhibits a different trend than performances of the other three models. 

6.3.4 Evaluation of the X. perforans distribution models 

All four distribution models for X. perforans were less accurate, in terms of κ, than the 

models built for the other two species. This can be seen exploring plots in Figs. 6.14, 

6.15, 6.16, and 6.17. Fig. 6.14 shows plots for Model 1. The overall accuracy a of this 

model is in the range of [0.51 0.81]. The best κmax and amax values are equal to 0.62 

(„good‟) and 81%, respectively, while at θ = 0.5 the accuracy was considerably lower (κ 

= 0.46, a = 73%). Model 2‟s a is in the range of [0.51 0.81] (Fig. 6.15). The maximum 

values were achieved at θOptimal = 0.5 (i.e. amax = 81% and κmax = 0.61 („good‟)). Model 

3 (Fig. 6.16) had amax = 77% and the a values were in the range of [0.50 0.77]. Model 4 
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(Fig. 6.17) had the same maximum accuracy amax = 77% but slightly different κ 

(κmaxModel3 = 0.55, κmaxModel4 = 0.54). Its overall accuracy a is in the range of [0.52 0.77]. 

Both models achieved a „fair‟ accuracy at θ = 0.5 (aModel3 = 75% and κModel3 = 0.50, 

aModel4 = 77% and κModel4 = 0.54). 

 

Fig. 6.14.  The effect of θ on the performance of the global model built for X. perforans 

expressed in terms of sensitivity (sen), specificity (spe), Cohen‟s kappa (κ) and overall accuracy 

(a). The highest κmax = 0.62 („good‟) and amax = 81% are at θOptimal = 0.6. 

 

 

Fig. 6.15.  The effect of θ on the performance of the local model built for X. perforans 

expressed in terms of sensitivity (sen), specificity (spe), kappa (κ) and overall accuracy (a). The 

highest κmax = 0.61 („good‟) and amax = 81% are at θOptimal = 0.5. 

None of the models had κ in the „very good‟ range (Fig. 6.18). However, all κ plots 

show the same behaviour. They are lower at the lower θ values and increase as θ 

increases, reaching a maximum at either θ = 0.5 or θ = 0.6 and then sharply decrease. 

When θ = 0.5 Model 2 is the best performing model, followed by Model 4, Model 3 and 

Model 1. However, at θ = 0.6 the order changes. Model 1 becomes the best performing, 
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followed by Model 2, Model 3 and Model 4. Model 4 was the best performing model 

for θ ≥ 0.7. 

 

Fig. 6.16.  The effect of θ on the performance of the LPAM built for X. perforans expressed in 

terms of sensitivity (sen), specificity (spe), kappa (κ) and overall accuracy (a). The highest κmax 

= 0.55 („good‟) and amax = 77%, are at θOptimal = 0.6. 

 

 

Fig. 6.17.  The effect of θ on the performance of individual models built for X. perforans 

expressed in terms of sensitivity (sen), specificity (spe), kappa (κ) and overall accuracy (a). The 

highest κmax = 0.54 („fair‟) and amax = 77%, are at θOptimal = 0.5. Note: 15% samples have been 

used to create the model. 

6.3.5 Comparative analysis of the four approaches when used 
for predicting the establishment potential of three different pest 
insects 

The bar charts in Fig. 6.19 summarise the maximum accuracy of the four models when 

used for assessing the establishment potential of A. hartii (AH), G. coffeae (GC) and X. 

perforans (XP). The three sets of bars on the left, one for each insect, show the models‟ 
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accuracy in terms of a while the three sets on the right show the accuracy in the terms of 

κ. Recall that the maximum values were achieved at different threshold values (θOptimal). 

Clearly, the threshold value θ must be optimised to attain the best results. 

 

Fig. 6.18.  The κ values for the studied models. None of the models achieved „very good‟ κ 

values. 

While transductive reasoning was beneficial for building predictive model for A. hartii, 

the same approach delivered less accurate predictions for the other two species. The 

model based on DENFIS was the most accurate for G. coffeae and the global model was 

winner for X. perforans. As mentioned earlier, all the models had problems modelling 

the distribution of X. perforans. The importance of θ on modelling accuracy must be 

highlighted and it is clear that the comparative analysis would have had different results 

if the models were assessed using different threshold values. 

 

Fig. 6.19.  The maximum accuracies of the studied models in terms of a and κ values. Note that 

the maximum values were achieved at different θOptimal. 
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6.3.6 Knowledge discovery for different modelling techniques 

Predictive models can contribute to our understanding of the factors that control 

patterns of species distribution. In order to investigate the knowledge discovered 

through the use of the different modelling techniques, the global, local and 

„personalised‟ models were used to assess the suitability of Bombay (India) and 

Wellington (New Zealand) for establishment by the insect A. hartii and to detail the 

insect-habitat relationships. This insect is known to be present in Bombay, while it is 

considered absent in Wellington. For this purpose, these two locations were removed 

from the original data set D and the remainder of the data was used to create the 

distribution models. It can be seen in Table 6.3 that all models predicted a low risk of 

these insects establishing at the New Zealand location and high risk of establishment at 

Bombay. Hence, the models correctly predicted the establishment potential at both 

locations. 

Assessing the quality of the knowledge discovered by the use of different modelling 

techniques is even less straightforward. Proving that one model better describes species-

habitat relationships than the other models is often impossible, especially when there is 

little or no available information about the species‟ habitat preferences. The true 

relationships are generally impossible to obtain for insect species for the reasons 

explained in Chapter 3 Section 3.3. One solution would be to release a pest insect into a 

new location to see if it would survive. This approach is risky and not used very often. 

Or, a controlled environment could be built where the climate variables would be 

controlled and their influences on the pest observed. This approach is either expensive 

or impractical, or both. Therefore, due to the lack of knowledge on how the studied pest 

insects are influenced by their surrounding climate, we can only make suggestions. 

These suggestions must be further studies by biosecurity scientists and biologists. 

First we examine the knowledge discovered using the global model. According to 

Model 1, the global model in this study, the establishment potential of the insect A. 

hartii increases with AAE and TWmin, but decreases with TSmax. The influence of AAE is 

negligible (aAAE = 0.00057) compared to the influences of summer (aTSmax = -0.02) and 

winter (aTWmin = 0.01) air temperatures: 

yM1 = 0.12 + 0.00057 AAE – 0.02 TSmax + 0.01 TWmin. 
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The negative relationship between the species and TSmax is questionable because 

according to Fig. 6.1(a), the percentage of all sites occupied by this pest insect increases 

at the locations with higher TSmax values. 

TABLE 6.3 

The prediction results obtained using the different models for Bombay, where the species is 

established (1) and Wellington where the species has not yet established (0). 

Model Bombay Wellington 

1 0.767 0.259 

2 0.810 0.113 

3 0.765 0.039 

4 0.973 0 

Local modelling, using Model 2, discovered two clusters of locations (two local models, 

LM1 and LM2) both with a positive relationship between the insect‟s distribution and 

TWmin. Intuitively, having two models explaining the pest insect‟s worldwide distribution 

is a more sensible approach than explaining all the locations with only one model. Fig. 

6.20 shows the contributions (based on the regression coefficients) of selected 

predictors in each of the two rules. LM1 is applicable for warmer locations with average 

AAE values. At those locations, the likelihood of the insect‟s establishment has a 

positive relationship with all three climatic variables, with TWmin being the main 

contributor: 

yLM1 = 0.14 + 0.26 AAE + 0.08 TSmax + 1.57 TWmin. 

LM2 describes the establishment potential at cooler locations with lower AAE values, at 

which the likelihood of the insect‟s establishment increases with warmer TWmin, but 

decreases slightly with TSmax and AAE. The contribution of TWmin is an order higher than 

the negative contributions of the other two climatic variables: 

yLM2 = 1.00 - 0.03 AAE - 0.05 TSmax + 0.21 TWmin. 

As said earlier, the performance of the „personalised‟ model (Model 4) is dependent on 

the number of neighbouring samples k used during the modelling stage, a parameter that 

is not known in advance and must be optimised. If the number of samples is too low the 

model can be overfitting and if the number is too high we can get a poorly performing 
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model. The influence of k on the predictions of Model 4 is shown in Fig. 6.21, where 

the likelihood of the insect establishment at two locations (Bombay and Wellington) is 

plotted against the number of neighbouring samples (k) used during the modelling. Each 

plot includes the range of k values investigated, from 5% to 45%, in steps of 5%, where 

k is expressed as a percentage of the total number of samples available for modelling. 

Note that there are nine points for each locality (Bombay (●) and Wellington (○)). 

Although, the predicted establishment potential at Bombay varies with k (Pmin = 0.84, 

Pmax = 0.97), these variations are not significant. The establishment potential of this 

species is found to be 0 at Wellington for all k from k = 5% to k = 40% and 0.05 for k = 

45%. 

 

Fig. 6.20.  The contributions of predictor variables in two different fuzzy rules. Each rule 

explains the influence of three climate characteristics on the establishment potential of A. hartii. 

LM1: higher TSmax, TWmin and AAE  higher response, the main positive contributor is aTWmin = 

1.57. LM2: higher TWmin  higher response, the main positive contributor is aTWmin = 0.21. 

 

 

Fig. 6.21.  The influence of the number of neighbouring samples k on the accuracy of predicting 

establishment potential of A. hartii using transductive reasoning. 
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6.3.7 Comment on the knowledge discovery using the 
‘personalised’ modelling 

The one disadvantage of the transductive approach used in this thesis is that it delivers 

the predictions for pest distributions but with no clear explanation of how these 

predictions were made. For each data sample Xi  D a „personalised‟ prediction yi is 

calculated as a weighted average of the output values yk of k most similar data samples 

to Xi, Xk form a sub-training dataset DTRi for Xi. The similarity between data samples is 

calculated in their feature space using (6.1), where d is the dimensionality of data 

samples, i.e. the number of features, and xif and xkf are values of the f-th feature of the i-

th and k-th data samples. 

2

1

( )
d

i k if kf
f

X X x x         (6.1) 

The calculation of yi is rather simple. Given a problem space shown in Fig. 6.22, yi is 

calculated as 

12

1
12

1

k k
k

i

k
k

w y

y

y

          (6.2) 

where weight w1 > w2 > ... > w12 represent the importance of the Xk samples to the 

output value of the Xi sample. 

 

 

 

 

 

 

 

 

Fig. 6.22.  A hypothetical problem space D. The output value for Xi is calculated as a weighted 

average of the output values of the X1, X2, ... , X12 data samples. 

Using (6.2) „personalised‟ rankings of the importance for each Xk sample can be derived 

for any new Xi. However, no explicit knowledge of the variable importance is available 

in these „personalised‟ models. This is an obvious disadvantage of using (6.2). 

Xi 
X1 

X2 X12 
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However, once a DTRi sub-training dataset is identified a learning system capable of 

knowledge discovery and representation can be applied to derive a piece of 

„personalised‟ knowledge, Mij, for each new Xi (Fig. 6.23). Having this knowledge, the 

invasive predisposition of specific geographical regions, Xi, could be evaluated. 

 

 

 

 

 

Fig. 6.23.  A piece of „personalised‟ knowledge – a „personalised‟ model Mij is created for each 

new data sample. 

6.4 Conclusion 

The purpose of this investigation was to assess the applicability of transductive 

reasoning for forecasting the establishment potential of pest insects into new locations. 

For this purpose four types of predictive models were used to predict the distributions of 

three pest insects that are of potential economic importance to New Zealand. Model 1 

was a global model, Model 2 and 3 were local models and Model 4 was built using (2.3) 

and (2.4) given in Chapter 2 and transductive reasoning. The models were assessed 

using leave-one-out cross validation and Cohen‟s kappa over the range of threshold 

values, from 0.3 to 0.9. The models‟ ability to discover knowledge from data was also 

discussed. The assessment of the results was based on the important assumption that the 

modelling data sets are the real representation of the pest insects‟ distributions under the 

climatic conditions. 

Solely on the criteria of correctly predicting the presence or absence of A. hartii, Model 

4 performed better than all the other models. Its κ = 0.85 („excellent‟) is the highest of 

all the models‟ κ values in the θ < 0.8 range. The same model predicted the distribution 

of G. coffeae with the highest accuracy (κ = 0.52, „fair‟ κ) for θ = 0.5, but its 

performance deteriorated at higher thresholds. Other models have κ in the „poor‟ range 

at the same θ. However, Model 4 was the worst performing model at thresholds θ ≥ 0.7. 

We also found that all the models had with problems predicting the distribution of X. 

perforans. The highest κmax = 0.62 („good‟) was achieved at θOptimal = 0.6 by Model 1. 

Model 4‟s highest κmax = 0.54 („fair‟) at θOptimal = 0.6. 

Xi1 
Xi 

Mi1 Mi2 
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Overall the performance of all the models was very similar and it is hard to suggest one 

technique that is better than the others. If ecologists are interested in studying the 

influence of the contributions of each explanatory variable to the output response then 

the models based on DENFIS (Model 2 and 3) are preferable due to their capability to 

deliver a set of rules describing species-habitat relationships. 

Unfortunately, in ecological modelling the „true‟ model is often not available to assess 

the validity of a model. Furthermore, eco-climatic data is prone to noise and interactions 

are complex and nonlinear. Therefore, a number of different techniques must be used, 

their results carefully compared and their validity evaluated in the predefined context of 

their applications. Due to the huge number of species and diversities of possible 

habitats, the models that are appropriate for one species may be totally inappropriate for 

others, and comparing results across the discipline can potentially lead to misleading 

conclusions. 
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Chapter 7 
Spiking neural networks for evolving 

connectionist systems – a review 

Many real-world applications, including applications in ecology and bio-security, 

require data mining in the temporal domain. It is not easy to explore temporal patterns 

using neural networks with traditional rate-coded neurons. Therefore, a different 

approach to temporal data analysis must be considered. A more realistic and 

biologically plausible network of neurons can be used. Chapter 7 deals with the third 

generation of artificial neurons, i.e. spiking neurons. Firstly, it provides the advantages 

of using spiking neurons rather than the more familiar rate coded traditional neurons. 

Secondly, this chapter provides an introduction to the main characteristics and dynamics 

of biological neurons, along with a survey of some popular computational models. The 

survey begins by looking at the Hodgkin and Huxley‟s description of the influences of 

conductance of three ion channels on the spike activity of the giant axon of squid. 

Following this there is a review of threshold models, which includes a review of 

integrate-and-fire models. The survey of computational models finishes with the 

Izhikevich‟s model, which combines the biologically plausibility of the Hodgkin-

Huxley model with the computational efficiency of the integrate-and-fire models. 

Thirdly, we discuss the encoding of analogue values. The real life modelling data is 

often obtained through various sensors that measure steady-state values and those 

values must be represented internally for spiking neurons. In other words, the 

continuous values must be changed to temporal spike patterns. 

Overall, this chapter gives the support and background to the contributions presented in 

Chapters 8 and 9 where an evolving spiking neural network is proposed and then used 

for taste recognition and an FPGA implementation of this same network is introduced 

and compared to its software implementation. 
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7.1 Why to use spiking neurons and spiking neural 
network models? 

Spiking neural networks (SNN) are comprised of spiking neurons that are more 

biologically plausible than their predecessors. Although all artificial neural networks 

mimic the human brain with very simplified models of biological neurons, the spiking 

neurons differ greatly from their predecessors in the way that they convey information 

between them. The spiking neurons communicate using pulses or spikes, i.e. discrete 

voltage events within a continuous time period, which is similar to real neurons. The 

spiking neurons receive individual spikes from their afferent (pre-synaptic) neurons and 

generate spikes by themselves. Because these spikes have a very similar form 

(amplitude and duration) their shapes are considered insignificant in the transfer of 

information and only the firing times, i.e. timing of the spikes, are thought important for 

information processing. Contrary, the traditional neurons, which we discuss in Chapter 

2, use rate codes, continuous signals with amplitudes that typically fall within a range of 

0 and 1, where higher amplitudes correspond to higher average firing rates. 

For decades, rate coding has been used as the coding scheme for encoding input data for 

artificial neural networks. The use of rate codes is in line with the findings that cortical 

neurons transmit information as rate codes in ensembles of 50-100 neurons (Shadlen & 

Newsome, 1998). However, there is experimental evidence that suggests that neurons 

generate high resolution temporal patterns (Wagner et al., 2005; Tetko & Villa, 2001; 

Prut et al., 1998; Buračas et al., 1998; Softky, 1995; Abeles et al., 1993) and therefore 

representing them with rather simple rate codes might be too simplistic. Furthermore, 

some researchers argue that rate coding is too slow to model speeds with which sensory 

systems can operate (Gautrais & Thorpe, 1998). As a result, pulse coding was found to 

be more appropriate than the slower rate coding for modelling fast processing 

modalities (Thorpe, Delorme & Van Rullen, 2001). Particularly, the importance of the 

first post-stimulus spike for cortical coding of stimulus has been highlighted (Furukawa, 

Xu & Middlebrooks, 2000; Oram & Perrett, 1992). An experiment on the sensory 

cortex of rats found that the majority of the information was contained in the timing of 

the first spike, and the remaining information was encoded within the spike patterns 

(Peterson, Panzers & Diamond, 2002; Peterson, Panzari & Diamond, 2001). Others are 

also in favour of temporal coding that relies on the timing of a single spike (Bothe, 

Poutré & Kok, 2002; Maass, 1997a & 1997b; Gerstner et al., 1996). While neural 

coding is still a topic of debate, more and more evidence has been collected that shows 
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that brain processing must rely, to some extent, on the time structures of the spike 

patterns. A survey of recent experimental discoveries on coding in neural systems can 

be found in (Van Rullen, Guyonneau & Thorpe, 2005) and (Bothe, 2004). Given that 

the exact encoding schemes utilised by the human brain are unknown, a number of 

encoding schemes need to be employed to represent the different aspects of a stimulus 

variable (Van Rullen, Guyonneau & Thorpe, 2005). 

It has been recognised that spike trains can carry more information than rate codes 

(McClurkin et al., 1991; Stein, 1967). Furthermore, networks of spiking neurons have 

been proven to be more computationally powerful for the same number of neurons than 

the networks built from traditional neurons (Maass, 1997b). Sejnowski (1995) 

questioned if it is time to start using a new neural code. Many researchers agreed that it 

is. However, while the ability to learn temporally encoded patterns is one advantage of 

spiking neurons, particularly in tasks where the time component is available, they are 

typically computationally more complex than their predecessors. 

There are two distinctive groups of applications of networks of spiking neurons:  

1. SNN are used for modelling brain functions with the purpose of better 

understanding and reproducing the spike processing in the brain (Vogelstein et al., 

2007; Iannella & Kindermann, 2005, Kasabov, Benuskova & Wysoski, 2005, 

Knoblauch, 2005),  

2. SNN are used as a tool for information processing, particularly for image 

processing (Wysoski, Benuskova & Kasabov, 2006; Thorpe, Delorme & Van 

Rullen, 2001; Delorme et al., 1999; Van Rullen et al., 1998), olfactory processing 

(Ambard & Martinez, 2006; Allen, Abdel-Aty-Zohdy & Ewing, 2005; Brody & 

Hopfield, 2003; Allen et al., 2002; White & Kauer, 1999), speech recognition 

(Wysoski, Benuskova & Kasabov, 2007b; Verstraeten et al., 2005) and in robotics 

(Alnajjar & Murase, 2006; Kubota & Sasaki, 2004; Nielsen & Lund, 2003). There 

are examples of SNN being applied to benchmark datasets to perform supervised 

classification, (Belatreche, Maguire & McGinnity, 2007; Wu et al., 2006; Booij & 

tat Nguyen, 2005), function approximation (Wu et al., 2006) and time series 

prediction (Sohn, Zhang & Kaang, 1999). 

The work in this thesis belongs to the second group of applications of SNN, that is, we 

use spiking neurons for the purpose of modelling human taste recognition. As will be 

discussed later on in Chapter 8, the gustatory system is one of the less understood 
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human sensory systems. Therefore, an attempt to build a biologically plausible model 

for this system would be naive. Instead, a very simple model of taste recognition was 

build to show that spiking neurons are a promising new solution for building 

approximations of the taste recognition system. Below is a brief introduction to various 

artificial models of biological neurons. 

7.2 Spiking neural models: a review 

7.2.1 A brief introduction to natural neurons and neural 
networks 

In order to understand how spiking neural models simplify the biological neuron the 

physiology of a generic cortex neuron needs to be explained. Fig. 7.1 shows an 

approximation of the structure of a tiny portion of the mammalian cortex. Each neuron 

consists of three functional parts; namely a number of dendrites, a soma and an axon. 

Given that the soma is a processing unit, its associated axon is the output where its own 

spikes are released to other neurons and the dendrites are the inputs where the incoming 

spikes are received. The junction „points‟, shown as black circles, denote synapses, i.e. 

the area where an axon and a dendrite meet. 

 

 

Fig. 7.1.  On the left, an approximation of the structure of a tiny portion of the mammalian 

cortex is shown. See the text for the description of each functional part. In reality, the neurons 

are numerous and very closely packed. On the right, the schematic diagram of the soma as a 

processing unit with a number of inputs and one output is given. 

The synapse is a highly complex part of the neuron. It is responsible for passing the 

spikes (Fig. 7.2) that originated at a pre-synaptic neuron (the source of a spike) to a 

post-synaptic neuron (the destination of a spike). The synapses are influenced by the 

transmitted spikes, resulting in an increase or decrease in their synaptic strength (Zucker 

synapse dendrites 

soma 

axon 

. . . 

Processing 

unit 

Inputs 

Output 



 
108 

& Regehr, 2002; Abbott & Nelson, 2000; Kistler & van Hemmen, 1999). As a result, 

the amplitudes of the incoming spikes are modulated accordingly. The neurons are also 

dynamic. Their membrane potentials change under the influence of incoming pre-

synaptic spikes. The arrival of a spike causes a chain of bio-chemical reactions which 

result in a change in the membrane potential (PSP, post-synaptic potential) of the post-

synaptic neuron (Gerstner & Kistler, 2002). The change is positive (EPSP, excitatory 

post-synaptic potential) if the spike comes via an excitatory synapse or negative (IPSP, 

inhibitory post-synaptic potential) if the synapse is inhibitory (Fig. 7.3). The time it 

takes for a spike to arrive from a pre-synaptic neuron j is denoted by tj
f
. As the spikes 

arrive from the pre-synaptic neurons, the post-synaptic potentials of a neuron add up 

and if the total value exceeds some threshold value PSPθ the post-synaptic neuron itself 

generates a spike. This spike is propagated along the axon to other post-synaptic 

neurons connected to this firing neuron. Immediately after the post-synaptic spike is 

generated the neuron enters an absolute refractory period during which no spikes can be 

generated by the neuron. This is followed by a relative refractory period in which it is 

harder for the neuron to produce a spike (Vreeken, 2003; Kunkle & Merrigan, 2002; 

Papoyan, 1997). At the end of the synaptic action the neuron‟s PSP returns to its resting 

value (PSPrest) and the neuron is ready to spike again. 

 

Fig. 7.2.  This is a reproduction of the drawing by Gerstner and Kistler (Gerstner & Kistler, pg. 

2, 2002) of a neural action potential (or spike) with an amplitude of about 100 mV. The spike‟s 

duration is around 1-2 ms. In this thesis the spikes are approximated by a vertical bar, as shown 

on the right-hand side of this figure. 

Fig. 7.4 illustrates a situation where four pre-synaptic spikes arriving via two excitatory 

synapses cause the membrane potential PSP of the post-synaptic spike to cross the 

threshold PSPθ resulting in a post-synaptic spike. Note that the figure is an exaggeration 

of what actually occurs in reality, i.e. four spikes, each causing a voltage increment in 

the range of 1 mV are not enough to push the membrane potential of the post-synaptic 

neuron above its PSPθ value, which is typically at about 20 to 30 mV above PSPrest. 

Clearly, 20-40 pre-synaptic spikes must arrive via the excitatory synapses in a short 

period of time in order for a post-synaptic neuron to spike. In addition, the amplitudes 
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of all voltages in Fig. 7.4 are not in proportion to the actual values measured in 

biological neurons. 

 

Fig. 7.3.  Typical forms of the post-synaptic potential of a neuron as a reaction to a received 

spike when the neuron is at rest. EPSP is caused by a spike arriving via an excitatory synapse 

and IPSP is caused by a spike arriving via an inhibitory synapse. 

 

 

Fig. 7.4.  A postsynaptic spike is caused by four pre-synaptic spikes arriving via two excitatory 

synapses. When the PSP crosses PSPθ, the post-synaptic spike is created and propagated along 

the axon. Note that the figure is an exaggeration of what occurs in reality, i.e. four spikes, each 

causing a voltage increment in the range of 1-2 mV are not enough to push the membrane 

potential PSP of the post-synaptic neuron above PSPθ. In addition, the amplitudes of all 

voltages are not in proportion to the actual values. 

7.2.2 Hodgkin-Huxley model 

The Hodgkin-Huxley model is based on the experimental studies by Hodgkin and 

Huxley. It gives a detailed description of the influences of the conductance of three ion 

channels on the change of the membrane potential. The model is shown in Fig. 7.5, 

where the leakage channel is modelled with a parallel resistor-capacitor circuit and the 

sodium (Na) and potassium (K) channels are represented by voltage-dependent 

resistors. The conductances of the channels are represented by GNa, Gk and GL. 
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Fig. 7.5.  The Hodgkin-Huxley model: schematic diagram (Gerstner, 1999). There are three 

channels: sodium (Na), potassium (K) and leakage channel. 

Consider a time-dependent input current i(t) being injected into this circuit. Using 

Kirchhoff‟s current law one can describe the circuit in Fig. 7.5 with the following 

equation: 

( ) ( ) ( )C ch
ch

i t i t i t          (7.1) 

where iC is the capacitor‟s charging current and ∑ich(t) is the sum of the ionic currents. 

The current through an ideal capacitor C (iC) is proportional to a change of voltage 

across the capacitor (vC): 

( ) C
C

dv
i t C

dt
          (7.2) 

Substituting (7.2) into (7.1) and reorganising (7.1) yields: 

( ) ( )C
ch

ch

dv
C i t i t

dt
        (7.3) 

The total of three current components was given by Hodgkin and Huxley as: 

3 4( ) ( ) ( ) ( )ch Na K L Na C Na K C K L C L
ch

i t I I I G m h v V G n v V G v V  (7.4) 

where GNa, GK and GL = 1/R are each the conductance of the sodium, potassium and 

leakage channels, respectively, VNa, VK and VL are constants called reverse potentials, 

the variables m and n control the Na channel and variable h controls the K channel. The 

m, n and h variables are described by three differential equations: 

( )i t  

LG  KG  NaG  
C
C 

NaV  LV  KV  
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dh
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       (7.5) 

where α and β are empirical functions of vc. The conductance, reversal potentials and 

channel controlled variables are empirical parameters. They have been adjusted to fit 

the data obtained for the squid axon. Although, (7.4) and (7.5) describe the processes 

involved in spike generation in the giant axon of squid, the model can be adjusted for 

modelling the spike generation of the soma of the neuron through the addition of further 

ion channels (Maass, 1999). 

Because of its biological relevance the model is commonly used by neuroscientists. The 

main disadvantage of this model is its complexity which makes the model 

computationally difficult and therefore not practical for modelling large networks of 

neurons. It has been shown that this model can be successfully reduced to a single 

variable threshold-fire model where a spike is created when the membrane potential 

crosses a threshold value (Kistler, Gerstner & van Hemmen, 1997). 

7.2.3 Spike response model 

The spike response model (SRM) is a simplified threshold-based model of a biological 

neuron that is based on the fact that all spikes are very similar in shape, amplitude and 

duration. Therefore, it is more logical to use the time of a spike concurrency rather than 

the spike shapes to convey information. This model does not consider the neuron‟s 

dynamics at the ion level like in the Hodgkin and Huxley model; instead it uses the 

membrane potential PSP of a neuron to describe the neuron‟s dynamics. In this model, a 

neuron is approximated as a threshold element by two response kernels, one describing 

the neuron‟s reaction to an incoming pre-synaptic spike (ε(t - tj
f
)) and one describing the 

neuron‟s reaction to its own post-synaptic spike (η(t - ti
f
)): 

( ) ( )
f

i j

f f
i i ji jii j

t j t

PSP t t w t t       (7.6) 

where ti
f
 and tj

f
 are the firing times of the post-synaptic and pre-synaptic neurons, 

respectively. The membrane potential of the post-synaptic neuron is equal to 0, i.e. PSPi 
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= 0, before any pre-synaptic spikes arrive. A pre-synaptic spike at tj
f
 increases or 

decreases the post-synaptic neuron‟s PSPi by wji×ε(t - tj
f
). This amount is dependent on 

the synaptic strength of the connection between the pre-synaptic and post-synaptic 

neurons, represented by wji. The neuron fires when its PSPi cross some constant 

threshold value. The η(t - ti
f
) kernel models the neuron‟s post-synaptic spike and its 

activity during the refractory period (Fig. 7.4). The typical shapes of the ε kernel are 

given in Fig. 7.3. The main characteristic of this model is that PSPi depends on the time 

since the last output spike as well as on the times of the incoming spikes, i.e. ti
f
 and tj

f
. 

In the next subsection, we introduce a special case and the best known realization of 

spike response models (Gerstner & Kistler, 2002), namely the leaky integrate-and-fire 

model. 

7.2.4 Leaky integrate-and-fire model 

The leaky integrate-and-fire model (LIF) is a very popular model of the soma of a 

neuron. This model is easy to explain through the use of principles from the field of 

electronics. The soma is modelled by an RC circuit (Fig. 7.6.). The synapses are 

modelled by a low-pass filter that receives an incoming pre-synaptic spike and 

transforms it to a current that charges RC. The comparator on the output of the RC 

circuit is used to model the spike creation. When the voltage across C crosses some 

threshold value (PSPθ) the circuit generates a spike. 

To satisfy Kirchhoff‟s current law, i(t) must be equal to sum of all currents through C 

and R: 

( ) ( ) ( )R Ci t i t i t          (7.7) 

Substituting iR(t) = v(t)/R and iC(t) = C dv/dt in (7.7), 

( )
( )

PSP t dPSP
i t C

R dt
        (7.8) 

We arrange (7.8) and introduce the membrane decay time constant of the neuron 

η=R×C. 

( ) ( )
dPSP

PSP t R i t
dt

        (7.9) 
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Fig. 7.6.  The leaky integrate-and-fire model of a neuron. The resistor R in parallel with a 

capacitor C models the soma of the neuron. The current i(t) charges C. When the voltage across 

C exceeds PSPθ the neuron produces a post-synaptic spike. 

When PSP exceeds PSPθ the neuron produces a post-synaptic spike. After the spike the 

PSP is reset to its resting value (PSPrest) and the integration process starts again for 

every incoming spike. In the absence of pre-synaptic spikes the neuron‟s PSP gradually 

decreases (ruled by η) and after some time reaches PSPrest. The leakage can be removed 

by setting η to 0. This transforms a leaky integrate neuron to an integrate-and-fire 

neuron (IF), a neuron that does not exhibit the gradual decrease of PSP in the absence of 

incoming spikes. 

One of the simplest implementations of IF neurons can be found in (Allen, Abdel-Aty-

Zohdy & Ewing, 2004) where the membrane potential is modelled as a counter which is 

incremented each time a pre-synaptic spikes arrives. When the counter reaches a 

threshold a postsynaptic spike is generated and the counter is reset to zero. In this model 

the membrane potential is not continuous, but rather it exhibits steps of constant 

amplitudes. In the next subsection we introduce the Thorpe‟s model, where the 

membrane potential is also increased in steps, but where the steps are not constant and 

instead depend on the relative order of the firing times of the pre-synaptic neurons. 

7.2.5 Thorpe’s model 

Thorpe‟s model is a simple version of an integrate-and-fire neuron without leakage in 

which the membrane potential of a post-synaptic neuron i at time t depends on the firing 

order of all its pre-synaptic neurons j (Delorme, Perrinet & Thorpe, 2001): 

( ) mod jorder
i ji

j

PSP t w         (7.10) 

( )i t  

R

 
C
C PSP  

pre-synaptic post-synaptic 

axon synapse soma spike generation 
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where mod  [0,1] is the modulation factor, orderj is the firing order of a pre-synaptic 

neuron j, orderj  [0, m-1] where m is the number of pre-synsptic neurons connected to 

neuron i, wji is the synaptic efficacy (weight) of the synapse connecting neuron i and 

neuron j. The synaptic modification is proportional to the firing order of the spikes 

received: 

mod jorder
jiw          (7.11) 

with the same convention as in (7.10). Connections to superior order pre-synaptic 

neurons are given a higher weight. Higher weights results in stronger connections. 

When a spike is received via one of the neuron‟s synapse, the neuron‟s potential PSPi 

builds up. When the PSPi reaches a threshold PSPθi, neuron i fires a spike. After the 

spike is fired the PSPi is set to 0: 

, ( )

0 , ( )

i

i

i ji i

i
i

PSP P PSP PSP spike received
PSP

PSP PSP spike emitted
    (7.12) 

This model has been proven to be an efficient way of modelling the visual system 

(Thorpe, Delorme & Van Rullen, 2001) and it has been used to create an audio model 

(Wysoski, Benushova & Kasabov, 2007b). The suitability of the Thorpe‟s model as a 

tool for modelling taste recognition is discussed in Chapter 8. 

7.2.6 Izhikevich’s model 

Integrate-and-fire models are computationally efficient but not very biologically 

accurate. Izhikevich‟s model combines the biologically plausibility of the Hodgkin-

Huxley model with the computation efficacy of the integrate-and-fire models. It is a 

simple model of cortical neurons which uses two differential equations with four 

dimensionless parameters a, b, c and d (Izhikevich, 2003): 

20.04 5 140
dv

v v u I
dt

       (7.13) 

( )
du

a bv u
dt

         (7.14) 

The auxiliary after-spike resetting is given by: 
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30
v c

IF v mV THEN
u u d

       (7.15) 

where v and u are dimensionless variables representing the membrane potential and 

membrane recovery variables that each account for the activation K
+
 and the 

inactivation Na
+
 of ion currents, respectively. Synaptic currents or injected DC-currents 

are represented by I. The parameter a describes the time scale of u, while b describes the 

sensitivity of u to v. The parameters c and d describe the after-spike reset value of v 

caused by fast high-threshold K
+
 and slow high-threshold Na

+
 and K

+
 conductance. The 

threshold potential PSPθ is dependent on the history of PSP and it is in the range of  

[-55mV,-40mV]. Despite its simplicity this model has been able to describe different 

types of neocortical neurons dynamics (regular, fast and low-threshold spiking, 

intrinsically bursting, chattering, etc.) (Izhikevich, 2003). 

7.3 Information encoding 

Spiking neurons communicate using spikes, so to pass information to a SNN the 

information must be appropriately encoded. This typically requires the encoding of 

some analogue values to the temporal domain, e.g. a value from a sensor is encoded as a 

spike pattern. W. Gerstner (1999) divides the encoding techniques used into two basic 

categories, rate coding and pulse coding.  

Rate codes calculate averages, such as: 

1. Firing rate averages over time; 

2. Average responses of one neuron when stimulated repeatedly with the same input 

many times; 

3. Average activity over a population of neurons. 

Gerstner argues that a very popular pulse code based on the time-to-first-spike is 

consistent with rate coding, i.e. if the mean firing rate is high, then the first spike is 

expected to occur earlier. 

The time-to-first-spike coding scheme is visualised in Fig. 7.7 where each neuron spikes 

only once during some small given period of time (∆t). Given three mean firing rates fr1, 

fr2 and fr3, where fr1 < fr3 < fr2, the time-to-first-spike coding scheme may result in the 



 
116 

spike-firing times set out in Fig. 7.7, where the neuron associated with the highest 

average rate (fr2) spikes first. 

 

 

 

 

 

 

 

 

Fig. 7.7.  The three average firing rates fr1, fr2 and fr3, where fr1 < fr3 < fr2, have been converted to 

the temporal domain using the time-to-first-spike encoding scheme. The neuron associated with 

the highest average rate spikes first. 

Alternatively, one could use frequency encoding based on probability (Fig. 7.8). Higher 

values would result in more spikes being produced in some small period of time ∆t (Fig. 

7.9). A survey of the temporal codes suitable for representation of sensory information 

can be found in (Cariani, 2004). 

 

Fig. 7.8.  Pseudo code for frequency encoding based on the probability in which the higher 

variable values result in more spikes being produced in the same period of time. 

 

 

Fig. 7.9.  Three average firing rates fr1, fr2 and fr3, where fr1 < fr3 < fr2, have been converted to the 

temporal domain using a frequency encoding scheme. The neuron associated with the highest 

average rate produces the highest number of spikes. 
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7.3.1 Rank order coding 

Rank order coding (ROC) is based on empirical evidence which proves that the 

reactions of the visual system to stimuli are very quick. Therefore the encoding in the 

visual system must be based on the relative timing of spikes rather than on the precise 

timing of spikes or on average rate codes (Thorpe, Delorme & Van Rullen, 2001). The 

model has been studied extensively by Thorpe and his team at CERCO, Toulouse (Van 

Rullen, Guyonneau & Thorpe, 2005; Perrinet et al., 2001; Delorme, Perrinet & Thorpe, 

2001; Thorpe, Delorme & Van Rullen, 2001; Van Rullen & Thorpe, 2001; Van Rullen 

et al., 1998; Gautrais & Thorpe, 1998) and it has proved appropriate for modelling the 

human visual system. This code is robust to noise and can be used to rapidly transmit a 

large amount of information (Gautrais & Thorpe,1998). Their studies also suggested 

that this coding could be appropriate for encoding information for other sensory 

modalities. Consequently, this coding scheme has been employed for image processing 

tasks (Wysoski, Benuskova & Kasabov, 2006; Thorpe, Delorme & Van Rullen, 2001), 

sound localization (Amin & Fujii, 2004) and speech recognition (Loiselle et al., 2005). 

It was also used in a preliminary audio model (Wysoski, Benuskova & Kasabov, 

2007a). 

In ROC a neuron can spike at most once and the earlier spikes are given the highest 

importance. Consider a vector v = {p1, p2, p3} where p1 < p3 < p2. Using this encoding 

scheme p1 is given rank 2, p2 is given rank 0 and p3 is given rank 1 (Fig. 7.10). This 

results in a new representation of the vector v as vencoded = {2, 0, 1}.  

 

Fig. 7.10.  Rank Order Coding. The highest value (p2) is given the highest rank (0) and the 

lowest value (p1) is given the lowest rank (2). 

7.3.2 Population coding 

Population coding was proposed by Bothe, La Poutré and Kok for encoding continuous 

input variables in spike-times with a population of neurons (Bothe, 2003; Bothe, La 

Poutré & Kok, 2002; Bothe, Kok & La Poutré, 2002). Their work extends the network 

from Natschläger and Ruf (1998) who in turn extended the work carried by Hopfield 
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where he used time-delay networks to model the features of the olfactory systems 

(Hopfield, 1995). This model consists of simple integrate-and-fire neurons where each 

connection between two neurons i and j consists of multiple connections with different 

delays (Fig. 7.11). 

 

Fig. 7.11.  This figure shows how two neurons are connected in the model proposed in 

(Natschläger & Ruf, 1998). Each connection consists of a set of connections associated with 

their own delays. 

To achieve multiple paths with different delays, each continuous input variable is 

encoded with a population of m neurons containing overlapping Gaussian receptive 

fields (Fig. 7.12). Each input variable is encoded into a m-dimensional vector of spike 

times. Given m = 6, six Gaussian values representing the excitations of six new neurons 

are defined by the intersection points of the vertical line representing a variable v with 

the six Gaussian curves. Those values are translated into firing times (t
f
) where the most 

stimulated neuron fires first (t
f
 = 0) and the least stimulated neuron fires some time later 

(t
f
 = tmax). Therefore, the range [vmin, vmax] is translated to firing times in the range [0, 

tmax]. Clearly, different sets of receptive fields result in different sets of firing times. 

 

                             

Fig. 7.12.  An input variable v is encoded with six Gaussian receptive fields. The highest 

excited neuron (n3) is given the shortest firing time, the second most excited neurons (n4) is 

given some later firing time and so on. The lowest excited neurons (n1 and n6) are given 

increasing later firing times (tmax). 
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The centres (ci) and widths (ζ) of the receptive fields can be calculated using the 

following two equations (Bothe, Kok & La Poutré, 2002): 

min
max min

(2 3)

( 2)( )
i

i
c v

m v v
       (7.16) 

max min)

1

( 2)(m v v
        (7.17) 

where [vmin, vmax] is the range of a variable v, m is the number of Gaussian receptive 

fields where m > 2, and β is a constant optimised for the data set at hand. 

In Fig. 7.12 all Gaussian curves have the same width. However, a mixture of broadly 

and sharply tuned Gaussian receptive fields can be used to increase coding accuracy 

(Zhang & Sejnowski, 1999). Furthermore, different widths can be used to encode 

different variables. An optimal combination of broadly and sharply tuned Gaussian 

receptive fields could be found if one variable is encoded accurately, with narrow 

Gaussians for this variable, and wider Gaussians for the other variables (Eurich & 

Wilke, 2000; Zhang & Sejnowski, 1999). Fig. 7.13 shows one possible scenario in 

which data samples from three classes labelled as Class 1, Class 2 and Class 3 are 

plotted in a 2D space where p2 values are plotted against p1 values. It is apparent that 

Class 2 and Class 3 samples are very similar, and that they are both quite different to the 

Class 1 samples. If population coding using receptive fields with constant widths is not 

sufficient, one possible development is to have a combination of broadly and sharply 

tuned receptive fields, where the sharply tuned receptive fields are used to increase the 

sparseness of the Class 2 and Class 3 data samples. 

Population encoding increases the dimensionality of the input data. If a data sample is a 

n dimensional vector and m receptive fields are used, then the encoding scheme results 

in n  m input neurons (Fig. 7.14). While this may cause the curse of dimensionality 

problem in traditional neural networks, this increase of neurons is desirable in the 

spiking neural networks. Precision can be improved by increasing the number of 

neurons, and given enough neurons any precision can be achieved (Thorpe, Delorme & 

Van Rullen, 2001). We explore this concept in Chapter 8. 
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Fig. 7.13.  Clusters of samples from three different classes in 2D (p2 vs. p1). Broadly and sharply 

tuned receptive fields might be required to further differentiate the data samples (Soltic, 

Wysoski & Kasabov, 2008). 

 

 

 

 

 

 

 

Fig. 7.14.  Population encoding increases the dimensionality of input data from n to n  m. This 

might cause a problem in traditional neural networks but it is desirable when computing with 

spiking neural networks. Increased dimensionality allows more information to be conveyed and 

leads to higher system accuracy (Soltic, Wysoski & Kasabov, 2008). 

Population encoding increases the sparseness in the original data. A smaller number of 

input neurons than before the data is encoded are activated. In other words, only a 

subset of connections conveys spikes. While sparseness is desirable when modelling the 

visual processing of natural images (Baddeley, 1996; Olshausen & Field, 1996) and in 

odour representation (Martinez & Hugues, 2004), the main motivation for the use of 

population coding in Bothe‟s work was to the increase clustering accuracy and the 

capacity for information transfer (Bothe, Kok & La Poutré, 2002). 
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7.4 Evolving spiking neural network architecture and 
training 

7.4.1 Evolving spiking neural network architecture 

In this thesis the neural networks capable of taste recognition are built using an SNN 

evolving learning algorithm similar to one proposed by Wysoski et al. (Wysoski, 

Benuskova, and Kasabov, 2006). The networks are hierarchically organized into two 

layers (L1 and L2) of IF neurons (Fig. 7.15). The latency of the neurons‟ firing is 

decided by the order of the incoming spikes. The spikes are propagated from the input 

layer (L1 neurons) to the output layer (L2 neurons) in a feed-forward manner. All 

connections between the neurons are excitatory. Each L1 neuron has a single one-to-one 

connection (win = 1) to its input and one weighted synaptic connection to each of the 

output neurons via a weight wji. The wji values are found during the training of the 

network by using (7.11). Note that to keep the figure readable the weights are not shown 

in Fig. 7.15. 

 

Fig. 7.15.  The structure of the evolving spiking neural network (ESNN) comprises L1 and L2 

neurons. The L2 neurons are created during the learning stage. Each class Ci is represented with 

an ensemble of neurons (Gi), and each ensemble is trained to represent one class. For the sake of 

figure clarity, the weights between the input and the L1 neurons, which are equal to 1, as well as 

the weights wji between the L1 and the L2 neurons are not shown. The wji weights are found 

during the training of the network. 

The L1 neurons represent receptors (sensors) whose values are encoded using the 

coding scheme proposed in Chapter 8, Section 8.3. The L2 neurons are sensitive to the 

order of the incoming spikes and can generate at most one spike, each when a pattern is 

presented to the network. They model the signal recognition process by learning to 

extract information about the input patterns. L2 neurons are created during the training 

phase. The L2 layer is initially empty and all L2 neurons are created during the evolving 

process. An ensemble of L2 neurons (Gi) learns to recognise samples from a class Ci. 
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The number of L2 neurons differs from one ensemble to another, i.e. different classes 

are learnt by a different number of L2 neurons. The number of L2 neurons created for a 

class depends on the variation of samples taken for that class. If the samples exhibit 

large variations, more L2 are created in the Gi. The number of L2 neurons in the 

ensembles is controlled by a network parameter Sθ. It may seem like the network simply 

grows to provide a unique path to an output for each input, but that is not the case. One 

L2 neuron learns a number of input patterns and is able to classify correctly a previously 

unseen input pattern. 

Once the network is trained, it can be used to classify samples. During the classification 

only the first spikes from the L2 neurons are considered. Given that sample pki, 

representing some class (e.g. tastant task), is presented to a trained network. This sample 

pki has not been used for training of the network and is yet to be classified. Let the 

neuron L2m, L2m  Gk, spikes before than any other L2i neuron from the other 

ensembles, i.e. L2i  Gk. The sample pki is classified as a Ck sample. If two or more 

neurons from different ensembles spike at the same time the network is unable to 

classify the sample. However, the classification can take place if multiple neurons from 

the same ensemble spike at the same time. In the other words, if a number of L2 

neurons {L21, ... , L2n} where {L21,..., L2n}  Gk spike at the same time then pki is 

classified as Ck (e.g. tastant task). 

For a given input pattern, the membrane potential PSPi of an output L2i is the sum of the 

postsynaptic potentials PSPji. The membrane potential PSPji is caused by a single 

weighted spike received from L1j that is connected to L2i: 

1

m

i ji
j

PSP PSP          (7.18) 

where m is the number of L1 neurons connected to L2i, and PSPji is given by (7.10). 

The spikes from the L1 neurons serve as inputs to the L2 neuron. Thus, each spike 

received via one of L2i‟s synapses, builds up the L2i‟s membrane potential PSPi. When 

PSPi reaches some critical value PSPθ, L2i fires a spike. After L2i generates a spike its 

PSPi is reset to 0 as noted in (7.12). 

L2 neurons have dynamic thresholds and their selectiveness can be controlled by 

adjusting their PSPθ. The threshold values PSPθ are found during the training of the 
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network. The threshold value PSPθi of L2i is set to a proportion of its maximum 

membrane potential value: 

maxi iPSP c PSP          (7.19) 

where c  [0, 1] is the constant shared by all L2 neurons. 

7.4.2 Evolving spiking neural network training 

As stated earlier, the L2 neurons are trained to respond selectively to the presence of a 

given sample by an incremental learning algorithm proposed in (Wysoski, Benuskova, 

and Kasabov, 2006). During training, a new neuron, L2n, is created for a training pattern 

pi. The newly created neuron L2n is trained using (7.11) and (7.19). Let the current 

pattern pi belong to a class Cc. The Euclidean distances between L2n to all pre-existing 

L2o  {L2|C = Cc} are calculated and used as a similarity measure. If the similarity 

between L2n and L2o is below some threshold value Sθ (Sθ > 0) then L2n is aggregated 

with L2o. During aggregation the weights and threshold of L2n are averaged into the 

values of L2o, and L2n is discarded. The network‟s structure continuously evolves 

through the creation and merging of neurons based on incoming data. 

All training patterns are presented to the network only once, making this a fast 

algorithm. When some new patterns become available, the network learns them without 

the need to be trained on the old samples. This type of learning is much faster than the 

learning used to train MLP networks where the training data must be repeatedly 

presented to the network during the training. Furthermore, when new data samples are 

obtained the MLP network must be trained again on both the new and the old samples. 

The incremental learning employed here allows the network to learn new classes of 

input data (signals) as they become available. 

The learning used to create and train the L2 neurons is a type of local learning. As the 

neural network is created (and trained) the ensembles (clusters) of L2 neurons are 

produced. The L2 neurons from an ensemble Gi are trained on the characteristics of only 

one class, i.e. only on the samples pj belonging to one class Ci (positive examples). The 

L2 neurons, L2  Gi(Ci.), learn to respond with earlier spikes when presented with data 

samples from Ci. Each L2 in Gi could have been updated upon the presentation of more 

than one sample pj, but all these samples came from the same class of samples Ci. 
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7.5 Spiking neural networks for Ecological Decision 
Support: an unexplored potential 

The biggest strength of spiking neural networks is their ability to discriminate between 

events in time. They are therefore suitable for modelling systems that require an 

analysis of temporal data. Many applications in ecological modelling require data 

mining in the temporal domain, but as we discussed in the earlier chapters the modelling 

of these processes is frequently done using methods that cannot explore temporal 

patterns. 

Lately, the application of arrays of sensors teamed with a pattern recognition system for 

ecological modelling has been explored. These systems have been used for air quality 

monitoring (Zampolli et al., 2004; Andò et al., 1998), for detection of volatile gasses in 

the air (Zanchettin & Ludermir, 2004; Korenman & Kalach, 2003), and for monitoring 

the quality of potable water (Gardner, et al., 2000). In the past, the analysis of the 

sensory data was done using a traditional neural network or PCA analysis; both 

techniques are unable to process temporal signals. However, recently biologically 

plausible olfactory models based on spiking neurons have been proposed. The examples 

of this type of modelling can be found in the work done by Raman et al. (2006), 

Martinelli, Amico and Di Natale (2006), Allen, Abdel-Aty-Zohdy and Edwing (2005), 

Brody and Hopfield (2003), Allen et al. (2002) and Rochel et al. (2002). Electronic 

tongues have been also proposed for environmental monitoring. For example, an 

electronic tongue was used for monitoring the contamination of natural (Gutiérrez et al., 

2008) and drinking water (Krantz-Rülcker et al., 2001), where the sensory data was 

analysed with a traditional neural network and a PCA analysis. While much effort has 

been put into designing taste sensors with better discrimination characteristics (Gutés et 

al., 2007), there are no taste recognition models based on SNN. 

If SNN be considered are to be considered for environmental modelling researchers 

need to see that there are new advantages that these networks can offer. One appealing 

advantage of SNN is that the utilization of spiking neurons allows for a more 

biologically realistic model. If we can create more biologically realistic models of the 

sensory systems scientists will be able to build intelligent autonomous robots for tasks 

that are impractical and harmful for humans to perform. Another advantage of SNN that 

should be considered is that spiking neurons can process temporal information. The 

reasons for using SNN are further explored in Chapter 8 where a taste recognition 

model based on spiking neurons is proposed and evaluated. However, the 
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meteorological datasets used in Chapters 5 and 6 contain static spatial data and applying 

SNN to these datasets were not appropriate. 

7.6 Conclusion 

In this chapter the operation of spiking neurons, the third generation of artificial 

neurons, has been presented. Even though spiking neurons offer a more realistic 

description of biological neuron behaviour than their predecessors, they are still 

oversimplified approximations of biological neurons. Over the past decade a number of 

spiking neuron models have been proposed. The more detailed and accurate models are 

usually the ones that are harder to implement. Often a model is chosen due to its 

simplicity, rather than its biological plausibility. As a result, the simple integrate-and-

fire models and their leaky versions have been very popular. 

One of the main characteristics of spiking neurons is that they communicate using spike 

trains. Their dynamics are characterised by the membrane potential that changes under 

the influence of incoming (pre-synaptic) spikes. The main advantage of spiking neurons 

is their ability to process temporal data. However, this becomes a burden when 

designing a system based on spiking neurons for some real-world modelling problems. 

The real-world data is often obtained through various sensors that measure steady-state 

values. That data must be transformed to a form that the spiking neurons can handle. 

There are many coding schemes used for this purpose, some of which are based on the 

measured responses of the human brain. It is still unclear how the exactly human brain 

works and therefore it is hard to choose one coding scheme over another. 

This chapter gives the background information to support the main contributions 

presented in Chapter 8 and Chapter 9, where a novel spiking neural network is 

introduced and employed for taste recognition. The design of the taste recognition 

model was complicated by the fact that even thought the human gustatory system is 

very important to our wellbeing it is a poorly explored compared to other sensory 

systems such as the visual and olfactory systems. Also, there are no current spiking 

neural network models for taste recognition that this work could take inspiration from. 

The work presented in the following chapters is the first of its kind and the results aim 

to contribute to the promotion of SNN as a new tool for building taste recognition 

systems. A detailed explanation of the new model follows in Chapter 8. 
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Chapter 8 
An evolving spiking neural network 

model for taste recognition  
(ESNN-PC-TR) 

As mentioned before, taste recognition systems can be used for environmental 

monitoring. The human brain has an amazing ability to recognise hundreds of thousands 

of different tastes. We ask, “Can we build artificial systems that can achieve that?”. This 

chapter explores how spiking neurons could be employed for building more biologically 

plausible and efficient taste recognition systems. It presents a new approach for taste 

recognition in a simple artificial gustatory model. To start with, the current knowledge 

on taste perception is reviewed. Several recent discoveries that have contributed to a 

better understanding of taste perception are then discussed. Furthermore, the benchmark 

works from this field are surveyed, concentrating on the taste recognition models based 

on neural networks. 

The survey of the benchmark works is followed by a description of a novel spiking 

neural network model, the evolving spiking neural network with population coding 

ESNN-PC. The ESNN-PC is based on the ROC integrate-and-fire type of neurons. We 

apply ESNN-PC for taste recognition and call this model ESNN-PC-TR. To simulate 

the influence of taste receptor cells on the activity of adjacent cells the population 

encoding of sensory data is used. As proven in this work, using population encoding 

makes the proposed model of the gustatory system more biologically plausible and 

more accurate. We propose and then evaluate a novel knowledge discovery technique 

for extracting accumulated knowledge from a trained ESNN-PC-TR. 

The new modelling approach was implemented in software and hardware. In this 

chapter the model and its implementation was tested on two real-world taste datasets 

where the effectiveness of the information encoding and the network‟s adaptive 

properties were explored. The results of this analysis are presented and discussed. The 

proposed approach is compared with an approach based on MLP that was previously 

applied to the same modelling problem. The hardware implementation of the model 

proposed here is discussed in Chapter 9. 
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8.1 Taste perception 

8.1.1 Biological models of taste-coding 

It is now widely accepted that there are five different basic tastes, i.e. the bitter taste, 

salt taste, sour taste, sweet taste and umami or savoury taste (Chandrashekar et al., 

2006; Margolskee, 1993). In addition, the taste for fats has been suggested as a possible 

sixth basic taste (Mattes, 2005; Gilbertson, 1998). Taste perception starts in the mouth 

where chemicals in foods excite taste receptors or taste receptor cells (TRC) that are 

organised in taste buds which are positioned throughout the mouth cavity. To some 

degree all tastes can be sensed through parts of the tongue and mouth cavity 

(Chandrashekar et al., 2006). The taste receptors are connected to the gustatory nucleus 

of the brain via three types of sensory fibres (Dulac, 2000). Exactly how the taste 

signals are coded and transmitted to the brain is still arguable. For years, two biological 

models of taste-coding have been favoured, namely the „labeled-line‟ model and the 

„cross-fiber‟ model (Chandrashekar et al., 2006; Reed, Tanaka & McDaniel, 2006, 

Bradbury, 2004; Dulac, 2000; Margolskee, 1993). The labeled-line model assumes the 

existence of dedicated TRC to a taste. In other words, this model states that TRC are 

specialized sensory cells for detection of only one taste. Each tastant, a chemical that 

stimulates the sensory cells in a taste bud, stimulates specialized TRC which in turn 

convey their signals via a dedicated fibre to the brain. In the cross-fiber model, TRC are 

broadly tuned to more than one taste and a pattern of activity across a number of TRC 

characterizes the taste sensation. 

For years the cross-fibre model has been preferred to the labeled-line model. Broadly 

tuned TRC have been simulated using an array of non-selective sensors with partially 

overlapping selectivity where the sensors‟ electrical characteristics, for example 

capacitance, change under the influence of the chemical composition of the tastants 

(Fig. 8.1). The sensors as a group have different responses to different tastants and the 

measured responses form the taste signatures of the measured tastants. These arrays of 

sensors simulating broadly tuned TRC are called electronic tongues (Cortina et al., 

2006; Mikhaleva, and Kulapina, 2005; Gallardo et al., 2003; Riul Jr. et al., 2002; de 

Sousa et al., 2002; Ivarsson et al., 2001; Toko, 2000; Hauptmann et al., 2000). An 

electronic tongue provides multidimensional data vectors that can be presented for 

analysis to a pattern recognition system. The electronic tongue and the pattern 

recognition system represent an artificial gustatory system (Fig. 8.2). Various artificial 
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models based on measuring the responses of an array of non-selective taste sensors in 

the presence of various tastants have been proposed. The survey of benchmark works in 

this field is provided in Section 8.2.1 Table 8.1. 

 

Fig. 8.1.  An array of n non-selective taste sensors (represented by      ) converts the chemical 

composition of tastants into the electrical domain. The sensors are referred to as an electronic 

tongue (Soltic, Wysoski & Kasabov, 2008). 

 

 
 

Fig. 8.2.  Block diagram of an artificial gustatory system. The artificial gustatory system 

comprises a sensor array modelling the tongue, i.e. the electronic tongue, and a pattern 

recognition system modelling the taste recognition. 

Even though the cross-fibre model has historically been favoured, results from recent 

studies support the labeled-line model of taste perception for at least the bitter, sour, 

sweet and umami tastes. Three families of TRC have been identified, each responsive to 

a different taste modality (Chandrashekar et al., 2006): 

 The T1R family (three genes T1R1, T1R2 and T1R3) play an important role in 

the perception of sweet taste, and a combination of T1R1 and T1R3 forms a 

broadly tuned umami receptor. 

 The T2R family of around 30 TRC are responsive to bitter taste. 

 The PKD2L1 TRC are responsive to sour tastes. 

Despite the intrinsic differences between the labeled-line and cross-fiber models these 

models share two common features; they are both unimodal and static (Katz, Nicolelis 

& Simon, 2002). In keeping with the static nature of the models, Varkevisser et al. 

(2001) measured dynamic taste responses and then rate coded these responses prior to 

tastants 
El. tongue 

Taste 

signatures Pattern recognition 

system 
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analysing them by a second generation neural network. Both models are unimodal 

because they ignore the influences of other sensory modalities on the perception of 

taste. They assume that taste perception only depends on the taste information processed 

by the gustatory neurons and is not influenced by any other non-gustatory system, i.e. 

the auditory, olfactory, visual, somatosensory systems. 

8.1.2 Dynamics of taste-coding 

The suitability of the above mentioned models of taste perception is disputed by 

empirical evidence that gustatory neural system responses are dynamic. Patricia Di 

Lorenzo and her team conducted experiments where they observed significant 

contribution of the spike timing to the discrimination of taste stimuli (Di Lorenzo and 

Victor, 2003). They performed repetitive measurements of the activities in the nucleus 

of the solitary tract of the rat while the rats were influenced by four taste stimuli. The 

stimuli were delivered using a custom-built system allowing the authors to accurately 

measure action potentials over multiple repetitions of the same experiment, thus 

overcoming the difficulty of keeping a stimulus flow constant over multiple trials (Katz, 

2003). They concluded that the timing of spikes contains information about taste stimuli 

indicating that temporal coding of taste information must not be ignored. However, Di 

Lorenzo and Victor found that temporal coding played a larger role in the response 

transient (initial 2 of 10 seconds of response) than in the remainder of the taste 

response. Furthermore, some cells showed more temporal rich responses than others, 

suggesting that taste coding is indeed very complex. Glendinning, Davis and Rai (2006) 

are also in favour of temporal coding. They measured how the taste system of an insect 

responds to three bitter tastants and concluded that temporal information is indeed 

essential for the discrimination of bitter stimuli. 

The unimodal nature of the labelled-line and cross-fiber models is also contradicted. 

Humans are intrinsically aware that their perception of the taste of food and beverages is 

governed by more than just taste information. Evidence shows that the smell-taste 

interaction is particularly significant to the perception of taste (Stein and Stoodley, 

2006). A smell-taste fusion algorithm has been proposed in (Wide et al., 1998) to 

provide an overall taste opinion similar to that of human beings. In this smell-taste 

fusion algorithm, data from electrical smell and tongue sensors was first classified using 

two ANN, each dedicated to the classification of either smell or taste, and then the 

results from those networks were fused using the fusion algorithm. This approach 
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improved the overall discrimination of three types of juice, i.e. apple, orange and 

pineapple. In recent years, a lot of attention has been given to the multimodal property 

of taste perceptions (Verhagen and Engelen, 2006; Yoshimura et al., 2004; Dulac, 2000; 

Toko, 2000), and if this continues it will not be long till more integrated systems are 

proposed. 

In summary, the coding of the gustatory system is quite complex. Clearly, the current 

biological and computational models of taste-coding are not sufficient to describe 

complicated taste processing. The evidence on the temporal dynamics of taste coding is 

too compelling to be ignored. However, the knowledge of how exactly the taste 

information is conveyed from the taste receptors to the brain is rather limited and 

breakthrough findings on taste coding are still to come. In the next section, a survey and 

selection of references to artificial taste recognition models are provided. The survey 

shows that modelling taste recognition is an emerging topic. 

8.2 Artificial taste recognition models 

8.2.1 Benchmark works 

The static and unimodal cross-fiber model of taste perception has been used as the 

backbone to many artificial taste recognition systems. As shown earlier in Fig. 8.2, 

models of the artificial gustatory systems consist of an array of taste sensors mimicking 

the taste receptor cells and a pattern recognition system modelling the neural activities 

in the brain. The number and type of utilized sensors in the sensor array differ from 

model to model. In some cases features are extracted from the captured responses in 

order to lower the number of inputs into the pattern recognition system. It could be said 

that the most popular sensing techniques are based on (Table 8.1): 

 Potentiometry, where the taste is measured as the potential difference between 

working and reference electrodes,  

 Voltammetry, where the current measurements taken at different voltammetric 

waveform pulses are the measure of taste, 

 Conductometry, where the changes in the conductivity of sensors characterise 

the tastant. 
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TABLE 8.1 

The results of our survey of taste recognition systems, with references. 

Tastants 
Electronic 

tongue 

Method for 

analysis 
References 

Hydrocarbons frequency PCA Hauptmann et al., 2000 

Various beverages potentiometry PCA Toko, 2000 

teas, detergents 
voltammetry, 

potentiometry 
PCA Ivarsson et al., 2001 

wines, mineral waters conductometry PCA Riul Jr. et al., 2002 

wines, mineral waters conductometry 
ANN 

PCA 

Riul Jr. et al., 2004; de 

Sousa et al., 2002; 

juice voltammetry ANN Wide et al., 1998 

ammonium, 

potassium 
potentiometry ANN Gallardo et al., 2003 

phenolic compaunds voltammetry ANN Gutés et al., 2005 

Nanylphenol 

homologues 
potentiometry ANN 

Mikhaleva & Kulapina, 

2005 

chlorine, nitrate, 

bicarbonate 
potentiometry ANN Cortina et al., 2006 

The pattern recognition system is usually based on an ANN, although PCA is also 

popular. It is interesting to observe that ANN have proven highly accurate even in cases 

where PCA could not provide good discrimination among samples (Riul Jr. et al., 

2004). Several examples of using multilayer feed-forward neural networks (MLP) for 

taste recognition also exist in the literature. As stated earlier, these networks have a 

fixed structure that is typically optimized by trial and error. Moreover, they learn offline 

which makes them less flexible and means they have a limited ability to learn new tastes 

as they become available. The traditional ANN and not the SNN have been used for 

modelling taste recognition. Even when the dynamic responses were measured, they 

were rate coded and fed to a traditional neural network. For example, traditional 

artificial neural networks were used for sorting neural spikes contained in mixed spike 

trains recorded from the taste organs of an insect (Stitt et al., 1997). Also, in one other 

experiment, the traditional neural networks were used to analyse the patterns of action 

potential in a hamster‟s single taste bud (Varkevisser et al., 2001). The responses were 
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recorded and rate coded by several features. These features were then presented to a 

feed forward neural network for pair wise comparison of the tastants. 

8.2.2 Taste recognition models based on traditional neural 
networks and their shortcomings 

The traditional artificial neural networks have been used as pattern recognition tools in 

modelling taste perception. In these systems the inputs into the network are either 

values obtained from an array of taste sensors or rate coded action potentials recorded 

from the taste buds of a species. Although, traditional neural networks have been found 

to be accurate, a number of difficulties associated with such networks could be avoided 

by using either a different type of traditional neuron model, by employing a different 

learning algorithm or by employing spiking neurons. For instance, the black-box 

syndrome found in the traditional neural network models and encountered in 

(Varkevisser et al., 2001) can be avoided by using a fuzzy neural network and the hand-

tuning of the network parameters in (Stitt et al., 1997) could be automated by using 

genetic algorithms. Furthermore, the problem of finding the appropriate size for the 

hidden layers (Cortina et al., 2006; Gallardo et al., 2003; de Sousa et al., 2002) can be 

avoided by using an evolving training algorithm. If modelling needs to be more 

biologically plausible, then an SNN can be used. Moreover, traditional feed forward 

networks of artificial neurons are slow to learn. Training these networks consists of 

repetitively presenting the network with large training data sets. The number of 

repetitions (epochs) is usually found by trial-and-error. Also, these networks must be 

retrained on old and new data every time a new data sample is obtained. Both these 

disadvantages can be avoided by employing an evolving, one-pass learning algorithm, 

as demonstrated in the SNN model described in the next section. 

8.3 ESNN model for taste recognition 

The ESNN principles introduced in Chapter 7 Section 7.4 are used here to build a taste 

recognition model that circumvents most of the issues described in the previous section. 

This novel taste recognition model is trained using an evolving algorithm similar to the 

one explained in Chapter 7 Section 7.4.2 where all L2 neurons are created and trained 

during one-pass training. Furthermore, the training patterns can be presented to the 

network only once. The trained network is also able to learn new tastants as they 

become available. Because the model is based on simple integrate-and-fire neurons 
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which are explained in Chapter 7 Section 7.2.5, it is more biologically realistic than the 

approaches that use rate-coded neural networks. The details of the new model are 

described below (Fig. 8.2). 

The latency of the L2 neurons‟ firing is decided by the order of the incoming spikes. To 

recall, as described in Chapter 7 Section 7.3.1, ROC is a simple and easy to implement 

technique that encodes information with a set of neurons where each neuron can spike at 

most once. The spikes are ranked over a set of neuronal units. Earlier spikes are given a 

higher importance. In other words, earlier spikes are given a lower rank order (0, 1, ...) 

and later spikes are given a higher rank order (..., n-1, n). Here, the higher the taste 

sensor value, the lower the rank, and the sooner the L1 that is connected to the sensor is 

fired. This type of coding has been chosen because of the following reasons: 

1. ROC is capable of modelling spiking neural dynamics. As explained in Section 

8.1.2, the dynamics of the gustatory system are important for taste coding and 

recognition. 

2. In ROC the exact timing of the spikes is not explicitly present in the model, only 

the order is important. This makes ROC appropriate for our data which lacks a 

temporal component. The data and its features are detailed later in Section 8.5. 

3. ROC has been proven as an efficient and effective way of modelling the visual 

system (Thorpe, Delorme, and Van Rullen, 2001) and it has been used in a 

preliminary audio model (Wysoski, Benuskova, and Kasabov, 2007b). A simple 

way of integrating visual and auditory modalities using fast neurons with ROC 

has also been suggested (Wysoski, Benuskova, and Kasabov, 2007a). Although 

the reaction times of the taste recognition system are slower than those of the 

visual system (Bonnet et al., 1999), ROC is still preferred over other encoding 

scheme. As discussed earlier in Section 8.1.2, the perception of food is 

multimodal, i.e. influenced by the visual, auditory, somatosensory and olfactory 

systems. Therefore, using encoding that can model the signals from a variety of 

sensory systems can help create a more accurate artificial model of the human 

multimodal perception of food and beverages. 

4. ROC is a simple and easy to implement. At the moment, this is not a very 

important feature because the networks built in this thesis comprise a small 

number of neurons and work in an off-line mode. But the simplicity of this 
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algorithm might be beneficial in the future when more tastant data becomes 

available. 

The above approach is extended by introducing population coding of individual features 

with multiple Gaussian receptive fields. In Chapter 7 Section 7.3.2, we reviewed the 

work by Bothe, Kok and La Poutré where multiple Gaussian receptive fields were used 

to encode each feature with a population of m neurons. They translated each feature into 

an m-dimensional vector of spike times. In their work, each feature value is encoded 

with m real values in the range [0, 1] where each value represents the firing time of the 

neurons encoding the respective variable. Here, each input pattern p is encoded into s  

m neurons and rank order coded, where s is the number of taste sensors, and m is the 

number of equally spaced Gaussian receptive fields. The Gaussian fields‟ centre values 

ci were determined by: 

                                                                                    (8.1) 

                                                                                                     (8.2) 

                                                                                                    (8.3) 

                                                                                                          (8.4) 

where dmax and dmin are the maximum and minimum values of the input data and i  (1, 

m). In this design, the input data was normalised (i.e. dmax = 1 and dmin = 0). Therefore, 

the proposed coding method is a two-pass process; first, each input pattern is encoded 

into s  m neurons, second, each of the s  m neurons is assigned a rank. 

Fig. 8.3 shows how one sensor value v is encoded with m = 6. The dashed lines show 

the range of data ([0, 1]). The input value v is translated into an order of firing. Six 

Gaussian values (L1 neurons) are obtained from six points where the vertical line 

representing v crosses the six Gaussian curves. The values below some positive constant 

β (in this work β = 0.01) were set to 0 and they do not contribute to the post-synaptic 

potentials of the L2 neurons. All newly created L1 neurons are rank coded. The highest 

value L1 neuron (L14) is given the order O = 0, the second highest L1 neuron (L13) is 

given order O = 1, L15 is given order O = 2, and so on. Thus, the input value v is 

translated into an m-dimensional order vector O = {-, 3, 1, 0, 2, -}, where „-‟ represents 

the values that do not contribute to the membrane potential of the L2 neurons, i.e. the 
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values below β. A number of experiments observing how m affects the classification 

accuracy of the trained network, and consequently the taste recognition system, were 

conducted. The results of these experiments and the observations regarding m and the 

classification accuracy are reported later in Section 8.6. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.3.  Coding of an input sensor value v, and its corresponding orders O defined by the 

intersections of the vertical line representing v with all six Gaussian curves (m = 6). The value v 

is translated into orders O = {-, 3, 1, 0, 2, -}, where „-„ represents pi  β. 

There are several reasons why population coding should be used for encoding of taste 

data: 

1. As presented in (Bothe, La Poutré and Kok, 2002), population coding increases 

the capacity of information transition. The number of different patterns that can 

be transmitted in ROC is n! (n factorial) where n is the number of pre-synaptic 

neurons (Gautrais and Thorpe, 1998). Therefore, increasing the number of L1 

neurons from n to m  n increases the number of patterns that can be transmitted 

from n! to (m  n)!. 
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2. Population coding has the potential to increase the accuracy of a network of 

spiking neurons (Bothe, Kok and La Poutré, 2002). 

3. Using population coding for taste recognition tasks is supported by several 

recent findings that taste receptor cells may modify the activity of adjacent cells 

(Huang et al., 2005; Zhao et al., 2005; Katz, Nicolelis & Simon, 2002). In our 

model, this influence is simulated by encoding each input variable with Gaussian 

receptive fields. The reaction of the L1 neurons to the signals coming from the 

taste sensors decrease according to the Gaussian formula described by 8.1. – 8.4. 

Namely, one cell (v) influences m L1 neurons (p1 - pm) where each L1 is given a 

different excitation (Fig. 8.3). Using population coding makes our simulation of 

the gustatory system more biologically reasonable. 

4. Population coding increases the temporal distance between the taste samples. 

This is discussed in Section 8.5 where the properties of the data employed in this 

work are introduced. 

The schematic representation of the proposed taste recognition system is given in Fig. 

8.4. The system consists of an electronic tongue, a Gaussian receptive field (GRF) layer 

and an evolving spiking neural network (ESNN). The model is named ESNN-PC-TR. In 

the illustration in Fig. 8.4, the electronic tongue contains only seven sensors (s = 7) for 

sampling liquids. Each sensor value is coded using m equally spaced receptive fields. At 

the moment all values are encoded using the same number of receptive fields, although 

the number of receptive fields (m) differs from experiment to experiment. The spiking 

neural network comprises two layers, L1 and L2, similar to the network explained in 

Chapter 7 Section 7.4.1. 

8.4 Software simulation of the ESNN-PC 

Spiking neurons and spiking neural networks have been implemented in hardware 

(Murray, 1999) and simulated in software on a general-purpose computer. To date, the 

majority of hardware implementations of artificial neural networks are implementations 

of MLP. Recently the use of FPGA as the hardware platform suitable for the 

implementation of SNN as well as other artificial neural networks has been explored 

(Al-Kazzaz & Khalil, 2008; Chalhoub, Muller & Auguin, 2006; Brunelli et al., 2005). 

FPGA are high density digital devices that can operate in a highly parallel manner. This 

makes them a logical choice for building parallel processing systems such as artificial 
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neural networks (Reaz et al., 2002). We propose an FPGA implementation of the 

ESNN-PC in Chapter 9.  

SNN are most often simulated using custom-build software or off-the-shelf simulating 

environments that allow for detailed biophysical simulations (Delorme et al., 1999) 

such as NEURON and GENESIS. Brette et al. (2007) divide algorithms for the 

simulation of spiking neural networks into: 

 Synchronous (clock-driven), in which all the neurons‟ membrane potentials are 

calculated and threshold conditions are checked simultaneously at the same 

time; 

 Asynchronous (event-driven), in which the neurons‟ membrane potentials are 

calculated only for the activated neurons when they receive pre-synaptic spikes 

or when they produce post-synaptic spikes; 

 Hybrid, a combination of the above. 

 

 

Fig. 8.4.  The proposed taste recognition system comprises three layers: an electronic tongue 

that samples tastants, a GRF layer with m equally spaced Gaussian receptive fields which 

perform the population coding of sensor values, and an ESNN in which L1 represents the taste 

receptors whose values are encoded using ROC and L2 are the simple integrate-and-fire units 

sensitive to the order of the incoming spikes (Soltic, Wysoski & Kasabov, 2008). 

Pseudo-code for the basic clock-driven and event-driven algorithms are given in Fig. 

8.5. Clock-driven algorithms are simpler to implement, mainly due to the fact that post-

synaptic spikes are determined at the same time as the post-synaptic potential is 

calculated. The determination of the post-synaptic spikes in the event-driven simulators 
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is more complex because the post-synaptic spikes do not need to occur at the times of 

the incoming spikes. For the sake of simplicity only the pseudo-code for a simple event-

driven model is given in Fig. 8.5, where updating the post-synaptic potential of the 

neurons and checking the threshold conditions is done at the same time. Analysis of the 

clock-driven and event-driven algorithms is outside the context of this thesis however 

an in-depth analysis can be found in (Marian, 2002). 

 

Fig. 8.5.  Pseudo-code for the clock-driven and event-driven algorithms. Note that the post-

synaptic spikes in the event-driven algorithm occur at the arrival time of the pre-synaptic spikes 

and updating the post-synaptic potential of the neurons and checking the threshold conditions is 

done at the same time. If this was not the case, the algorithm would be more complex. 

A simulation tool specially designed for this investigation has been implemented in Java 

and the model was also hosted in FPGA (see Chapter 9). The simulations were run on a 

general-purpose computer (Intel Core 2, 2 GHz, 1 GB RAM, Windows XP). The 

neurons were updated and their spiking checked at the times of the incoming spikes (a 

version of the event-driven approach). The simulator allows the entry of the model 

parameters and for browsing the memory for the input data. It provides information 

about the status of the simulation and the final classification results (Fig. 8.6). The 

simulator is available on www.manukau.ac.nz/departments/e_e/staff/soltic.asp. 

A leave-one-out cross-validation version of the ESNN-PC-TR simulator to test the 

performance of the ESNN based taste recognition system was also developed. 

// clock-driven 

t = 0 

while t < T 

  for every neuron    

    calculate PSP 

  end 

  for every neuron 

    if PSP > PSPθ 

      emit spike 

      PSP = 0 

    end 

  end 

  t = t + dt 

end 

// event-driven 

t = 0 

while there are spikes and t < T 

  get earliest spike 

  calculate PSP of targetNeuron  

  if PSP > PSPθ 

    for all downstream connections 

      insert spike in the queue 

    end 

    PSP = 0 

  end 

end 
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Fig. 8.6.  A snapshot of the simulator‟s GUI. The interface allows the ESNN-PC parameters to 

be customised. 

8.5 Data characteristics 

In order to investigate the suitability of the ESSN-PC-TR model for taste recognition 

two subsets of datasets that have been previously successfully used in the experiments 

reported by Humberto de Sousa (de Sousa et al., 2002) and Antonio Riul Jr. (Riul Jr. et 

al., 2004) and their teams were employed. In their work, the pattern recognition systems 

were based on MLP networks, but they suggested that the data is also appropriate for 

use in other techniques. The samples were generated by an array of seven non-selective 

sensor units (taste sensors) based on conducting polymers that are able to discriminate 

the basic tastants (Riul Jr. et al., 2002). The sensor units are made of 5-layer Langmuir-

Blodgett ultra thin (to the order of nm) films made up of four different types of material; 

polypyrrole (PPy), 16-mer polyaniline (16-mer), stearic acid (SA), a natural polymer 

(chitosan), and a layer-by-layer mixed film of PPy and SA, 16-mer and SA, and PPy 

and 16-mer. The sensors convert the chemical composition of a tastant into the electrical 

domain as illustrated earlier in Fig. 8.1. Each tastant excites each sensor to a lower or a 

greater degree by changing the sensor‟s capacitance (the cross-fiber model of taste-

coding). Collectively the sensors acquire enough information for the discrimination of 

the liquids. Measured signals have no time-dependent structure (Riul Jr. et al., 2002). 
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Two sets of data have been used. Set 1 (small and unbalanced), the water set, contains 

49 measured patterns, 10 patterns of two different mineral water brands (Water Class1 

and Water Class2), 16 patterns of Milli-Q water (Water Class3) and 13 patterns of one 

other water (Water Class4). Set 2 (large and balanced), the wine set, contains 750 

measured patterns, 150 patterns of each of the five wines; same brand but different 

vintages (Wine Class1 and Wine Class2), same brand but different grapes (Wine Class 

3 and Wine Class5) and one other wine (Wine Class4). 

Fig. 8.7 shows the average responses of the 7-sensor array to different water types. 

Three important features can be observed in this figure: (i) there is a similarity between 

the Class1 and Class2 averages and between the Class3 and Class4 averages; (ii) the 

difference in magnitude between Class3 and Class4 averages and the Class1 and Class2 

averages; (iii) the small standard deviations which are shown as the error bars, 

especially for the Class2 samples. 

 

Fig. 8.7.  Averages and standard deviations of the water samples. Note: the Class1 and Class2 

averages are very similar, as are the Class3 and Class4 averages; the Class3 and Class4 averages 

are obviously of lesser magnitude than the Class1 and Class2 averages. The standard deviations 

in this data set are small. 

Fig. 8.8 shows the result of encoding the water Class1 and Class3 patterns with rank 

order coding (ROC, on the left) and rank order with population coding using six 

receptive fields (RO-POP C, m = 6) on the right. The encoded dataset contains 10 

Class1 patterns and 16 Class3 patterns. The greyscale levels represent the level of 

excitation of each L1 neuron. Darker levels are associated with more excited neurons 

and the white levels represent the inactive neurons, i.e. those neurons that do not have 

an effect on the postsynaptic potential of the connected L2 neurons. While the ROC plot 

is rather puzzling, there is a visible temporal deference between the excitations of the 

L1 neurons „belonging‟ to different classes in the RO-POP C plot. There is clearly a 
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pattern when population coding was used. Because all values are coded using the same 

set of Gaussian receptive fields, the small sample differences result in L1 neurons with 

the same or very similar rank orders. 

 

Fig. 8.8.  Water Class1 and Class3 data encoded using rank order coding (ROC) and rank order 

population coding (RO-POP C) with six receptive fields (m = 6). See Chapter 7 Section 7.4.1 

for an explanation of the L1 neurons. The greyscale levels represent the levels of excitation for 

each of the L1 neurons. Darker levels are associated with more excited L1 neurons (Soltic, 

Wysoski & Kasabov, 2008). 

The sensors‟ average responses (µ) to Class1 and Class3 samples and the classes‟ 

standard deviations (ζ) are detailed in Table 8.2. All values are expressed in nF and 

rounded to 2 significant figures. The sparseness of the data has been increased, resulting 

in more accurate classification results which are reported later on in Section 8.6. 

TABLE 8.2 

Details of Class1 and Class3 samples. Averages (µ) and standard deviations (ζ) of Class1 and 

Class3 samples are expressed in nF and rounded to 2 s.f. (Soltic, Wysoski & Kasabov, 2008) 

  S1 S2 S3 S4 S5 S6 S7 

C1 
μ 90 27 39 50 41 58 18 

ζ 0.63 0.57 0.69 0.58 3.9 2.9 7.8 

C3 
μ 1.4 2.1 2.5 2.2 3.4 3.7 3.4 

ζ 1.4 1.8 2.8 2.7 1.7 1.8 3.1 
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As introduced earlier, the wine dataset includes 750 measured patterns of five different 

wine brands/vintages (Class1, Class2, Class3, Class4 and Class5). Each wine is 

represented by 150 samples with average and standard deviation values shown in Fig. 

8.9. It is interesting to observe that this dataset has bigger inner-class and inter-class 

variations than the water dataset. The inner-class variations can make the signatures of 

two samples from different classes very similar or identical, affecting the training of the 

ESNN-PC-TR and the overall system accuracy. 

 

Fig. 8.9.  Wine dataset - average values and standard deviations of the 150 samples in each of 

the five different wine classes. 

8.6 Applications of the ESNN-PC-TR model for water 
and wine recognition 

The ESNN-PC-TR was evaluated on six different scenarios of taste recognition as 

summarized in Table 8.3. The training datasets (Dtr) were obtained by taking random 

subsets, typically about 50%, of the original data D. The remaining samples made up 

the testing sets (Dt) used to validate the trained network. Because the order of training 

data can influence the creation of the network and affect the network‟s classification 

accuracy, each scenario was repeated 10 times; each time the data was randomly split, 

the network was created and evaluated and the average accuracy was calculated. The 

network parameters mod, c and ζ were kept constant in all experiments, i.e., mod = 

0.95, c = 0.33, and ζ = 0.333. These parameters were hand tuned to achieve the 

maximum classification accuracy. Changing one of these values can result in poorer 

accuracies. Other network parameters, m and Sθ, were hand tuned to achieve the highest 

classification accuracy for the particular data set. The data was normalized to [0, 1] 

before being encoded. 
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TABLE 8.3 

Details of the six scenarios designed to test the ESNN-PC-TR taste recognition model 

(Soltic, Wysoski & Kasabov, 2008) 

Scenario Class Samples Classes Balanced 

1 Water 1&3 12 2 No 

2 Water 1&2 10 2 Yes 

3 Water 1-4 40 4 Yes 

4 Wine 2&3 300 2 Yes 

5 Wine 1-4 600 4 Yes 

6 Wine 1-5 750 5 Yes 

8.6.1 Water recognition 

The aim of these simulations was to discriminate between the samples of different types 

of water. Scenario 1 and 2 were designed to evaluate the ROC and RO-POP C coding 

schemes. In these scenarios the model was tested only on 2-class problems, i.e. binary 

classification. Particularly, networks were built and trained to distinguish between 

Class1 and Class3 samples, and Class1 and Class2 samples. Note that both subsets had 

a small number of samples and that in the first scenario using Class1 and Class3 there 

were 60% more Class3 samples than Class1 samples. 

As stated earlier, the distance threshold (Sθ) influences the number of L2 neurons (the 

neurons in the output layer) representing different classes, i.e., smaller values for Sθ 

result in more L2 neurons and vice versa. It is possible to build a network with one 

dedicated L2 neuron for each training sample. Although, in this case the accuracy of the 

model would be high for the samples the network is trained on, its generalization 

capability might be affected. Furthermore, it would be impractical and unnecessary to 

do this for a large number of training samples. For the sake of comparison, Sθ was set to 

allow the creation of only two L2 neurons, one per each class. 

In both scenarios, the sparseness of data introduced by population coding increased the 

average accuracy. The accuracy of classifying the Class1 and Class3 samples increased 

from 50% to 100% (m = 6) and the accuracy of classifying the Class1 and Class2 

samples increased from 66% with ROC encoding to 100% (m = 8) with RO-POP C. 

With RO-POP C coding two L2 neurons each representing one class, were sufficient to 

achieve this excellent accuracy. Note that, more receptive fields were needed to classify 
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the Class1 and Class2 samples than to classify the Class1 and Class3 samples. The 

higher number of receptive fields needed to classify Class1 and Class2 samples can be 

attributed to the fact that the Class1 and Class2 samples exhibit a higher similarity than 

the Class1 and Class3 samples (please revisit Fig. 8.7). This indicates that more 

receptive fields might be required to discriminate between classes with low inter-class 

distances. Note that in this evaluation equally spaced receptive fields with the same 

width ζ were used. Changing ζ or placing the receptive fields in a different place can 

affect the performance. 

Since population coding improved the accuracy of classifying the water samples, the 

RO-POP C coding of sensory data was further evaluated in a more complex scenario. 

Scenario 3 investigated the ability of the network to discriminate between more than 

two classes. Ten networks (m = 6, Sθ = 0.5) were trained to classify four water types 

with 5 training samples per class. The network parameters m and Sθ were again kept 

constant in all ten runs. On average 4.7 L2 neurons were created and an accuracy of 

91% ± 3.94% was achieved. This scenario was explored in more detail using leave-one-

out cross-validation. The experiments were repeated ten times, keeping the network 

parameters constant (m = 6, Sθ = 0.75) in all runs. In all 10 simulations five L2 neurons 

were created and trained and 37 samples out of 40 were classified correctly (92.5%). 

The same three samples are misclassified in all ten trials. As expected, these three 

samples were Class3 and Class4 samples. 

8.6.2 Wine recognition 

The proposed system was successful in discriminating four types of water. Clearly, the 

ESNN-PC-TR model did not have problems classifying water samples from a small 

dataset (40 samples). What happens if the model is faced with numerous samples? The 

scenarios with the wine datasets were designed to address this question. All wines were 

represented with 150 samples. 

Scenario 4 is similar to Scenario 2 (2-class problem) but the number of samples per 

beverage was increased more than 10 times. Nevertheless, in all ten simulation runs the 

network (m = 8, two L2 neurons) achieved a 100 % success rate. In Scenario 5, the 

complexity was increased to a 4-class problem. The samples were coded with 16 

receptive fields (m = 16) and the mean accuracy over ten runs was 99.62% with a 

standard deviation of 0.82%. 
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In addition, the simulations were used to observe how the number of L2 neurons 

affected the overall performance of the network. For this purpose the number of 

receptive fields was kept constant (m = 8) while the threshold Sθ was changed in each of 

the runs. This resulted in a different number of L2 neurons being created, which 

consequently affected the accuracy (a) of the model. The results of this experiment, i.e. 

a = f (Sθ), are plotted in Fig. 8.10. The numbers next to the each accuracy point 

represent the average number of L2 neurons created over ten simulations, e.g., on 

average 43 L2 neurons were created when Sθ = 0.1 and 10 when Sθ = 1. For smaller 

values of Sθ the accuracy was near or equal to 100%, but as Sθ increased, accuracy 

declined, reached a minimum value (amin) and then increased slightly. There was no 

significant change in the accuracy with the introduction of the fifth type of wine 

(Scenario 6) with the accuracy reaching 99.69% ± 0.82 with an average of 25.5 L2 

neurons. 

 

Fig. 8.10.  Scenario 5 dataset: accuracy (a) and number of L2 neurons vs. the distance threshold 

(Sθ), m = 8. The numbers next to each accuracy point represent the average number of L2 

neurons created in the ten runs (nL2av) (Soltic, Wysoski & Kasabov, 2008). 

8.6.3 Comparison with existing work 

Here the performance of the ESNN-PC-TR model is compared with the work reported 

in (de Sousa et al., 2002). While the experiments in the two works being compared are 

not exactly the same there is enough similarity to discuss the general accuracy levels 

reached with both approaches. In (de Sousa et al., 2002) conventional neural networks 

were used for the classification of the water and wine samples. The authors 

experimented with MLP networks with 5, 10, 15, 20 and 25 hidden neurons trained with 
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four different algorithms (Standard backpropagation, Backpropagation momentum, 

Quickprop and RPROP). The correct recognition rate was in the range of 84.71 ± 23.1% 

and 100% for the classification of wines and between 65.55 ± 21.8 % and 100% for the 

classification of water samples. In general, our results from Scenarios 1-6 present the 

same accuracy levels with the ESSN-PC-TR model more consistently above the 90% 

mark for both the wine and water datasets. 

8.7 Knowledge discovery from ESNN-PC-TR on the 
case study problems 

One of the goals of this thesis is to design new methodologies for CBDS that would 

allow for knowledge discovery from real-world datasets; therefore it is important to 

evaluate the knowledge discovery compatibilities of ESNN-PC. For this purpose we 

examine the knowledge accumulated by the ESNN-PC-TR about the case study 

problems (Table 8.3). It was proved that ESNN-PC-TR could differentiate between the 

types of mineral water and also between different brands of wine. 

Spiking neural networks receive a lot of research attention. Most of the attention is 

allocated to designing new spiking neuron models (Izhikevich, 2003; Kunkle & 

Merrigan, 2002; Kistler, Gerstner & van Hemmen, 2001), new training algorithms 

(Booij & tat Nguyen, 2005; Bothe, La Poutré & Kok, 2002; Gerstner et. al, 1996), 

design and application of SNN (Belatreche, Maguire & McGinnity, 2007; Brody & 

Hopfield, 2003; Delorme, Perrinrt & Thorpe, 2001) and encoding of input values 

(Martinelli, D‟Amico & Di Natale, 2006; Loiselle et. al, 2005; Eurich & Wilke, 2000; 

Gautrais & Thorpe, 1998; Hopfield 1995). Disproportionally small amount of time is 

allocated to research centred on the representation of knowledge extracted from data by 

a SNN in the form of IF-THEN rules. We propose that ESNN-PC can be used for 

knowledge discovery in applications where information is collected in a brain-like way. 

We are particularly interested in validity, comprehensibility and usefulness of the 

extracted knowledge for the user. 

8.7.1 Knowledge in ESNN-PC 

ESNN-PC is an evolving network that acquires its knowledge from temporal data 

samples as they become available. We show that this knowledge can be represented in a 

form of zero-order Takagi-Sugeno fuzzy rules, e.g.: 
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1 i n j

i i k

IF cond AND cond AND cond THEN C

cond x is s

 
    (8.5) 

where condi are conditions of input variables, xi is an input feature, ski is a linguistic 

value represented by its membership function such as SMALL, MEDIUM, LARGE etc. 

and Cj represents a class label (the output). Conditions, condi, in ESNN-PC are found 

through an analysis of the connections between L1 and L2 neurons in a trained network 

(Fig. 8.4). 

In ESNN-PC the input values are encoded using a family of Gaussian receptive fields. 

A single input value is distributed to multiple L1 neurons through m delayed synaptic 

connections. There is no delay at the centres of Gaussian receptive fields and this delay 

increases towards the receptive field edges. Fig. 8.11 shows an example of encoding of 

two input values vi and vj, where vi < vj (represented by the two dashed lines in the 

figure), both from an interval [0, 1] (represented by the two thick green lines in the 

figure). The values are deliberately chosen so they cause a maximum excitation of two 

different L1 neurons, i.e. two earliest spikes are sent along the L1i3 and L1j4 terminals, 

and two very similar spike patterns occur out of sequence by 1 L1 neuron. There is a 

relationship between which L1 neuron spikes first in a set of L1 neurons and the value 

encoded into this set of L1 neurons. When smaller values are encoded the first neuron to 

spike tends towards the lower end of the observed set (L1i1 in this example). When 

higher values are encoded the first neuron to spike tends towards the higher end of the 

observed set (L1i6 in this example). 

During training, the change in synaptic weight between L1 and L2 neurons depends on 

the firing time of the L1 neurons. The synaptic weights associated with the connections 

which convey earlier spikes increase more than those which convey later spikes. 

Therefore, based on the weight patterns it is possible to deduce the size of an input 

value and the contribution of this input value to the modelled output. 

Let vi and vj belong to classes Ci and Cj, respectively. Assume that two neurons are 

created and trained, L2i and L2j. Their theoretical patterns of weights are shown in Fig. 

8.12. The L2i has been trained to recognise the Ci samples and L2j to recognise the Cj 

samples. The knowledge about the relationship between vi and vj (e.g. that vi < vj) is 

stored in the synaptic weights of the L2 neurons. However, before this relationship is 

deduced, one final step is necessary. Consider the network shown in Fig. 8.13. The 

network comprises two L2 neurons, six L1 neurons and its input is a one-dimensional 
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vector. At time t a spike is arriving to excite the membrane potentials of the two L2 

neurons via the two synaptic terminals (wim, wjm): 

( ) mod

( ) mod

m

m

order
i im

order
j jm

PSP t w

PSP t w  
       (8.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.11.  Population encoding of two values vi and vj is based on the Gaussian receptive fields. 

The values are chosen so they cause patterns of spikes, which appear out of sequence by 1 L1 

neuron. 

The difference between these two excitations is: 

( ) ( ) mod ( )morder
i j im jmPSP t PSP t w w      (8.7) 

Hence the difference in the excitation of the two neurons is a function of difference 

between their synaptic weights. As the spikes arrive the post-synaptic potentials PSPi 

and PSPj increase by different amount and finally one of the two L2 neurons spikes 

first. The |wim - wjm| values for the theoretical pattern in Fig. 8.12 are shown in Fig. 8.14. 

It can be seen that the L2i neuron „favours‟ lower input values, i.e. a lower input value 
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will cause a bigger ∆PSPi. The L2j neuron does the opposite. Hence the lower values 

will be classified as Ci and the higher as Cj or: 

i

j

IF v is SMALL THEN C

IF v is LARGE THEN C
       (8.8) 

 

Fig. 8.12.  A theoretical pattern of weights of the two L2 neurons connected to the same set of 

L1 neurons and trained to differentiate between samples belonging to two classes, Ci and Cj. 

 

 

 

 

 

 

 

 

 

 

Fig. 8.13.  Two L2 neurons receiving spikes from six L1 neurons. As the spikes arrive the post-

synaptic potentials of the two neurons, PSPi and PSPj, increase by different amounts depending 

on their synaptic weight values. 

 

 

Fig. 8.14.  The |wim - wj| values for the theoretical pattern in Fig. 8.12. As a result it is very 

likely that smaller (higher) input values are classified Ci (Cj). 
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8.7.2 Knowledge extracted by ESNN-PC-TR 

We start with an explanation of the knowledge discovered in Scenario 2 where two 

types of water were classified: 

Rule 1: 

IF x1 is SMALL AND x2 is LARGE AND x3 is SMALL AND x4 is LARGE AND 

    x5 is SMALL AND x7 is SMALL THEN C0 

Rule 2: 

IF x1 is LARGE AND x2 is SMALL AND x3 is LARGE AND x4 is SMALL AND 

    x5 is LARGE AND x7 is LARGE THEN C1 

In Fig. 8.15 the values of the synaptic weights in one of the trained ESNN-PC-TR 

networks built in Scenario 2 are shown. To recall, seven sensors were used to sample 

four types of water and five brands of wine. Hence there are seven sub-patterns in the 

weight graphs (the patterns are separated by the red thick vertical lines). In Scenario 2 m 

was 8. Hence each sub-pattern comprises of 16 bars which are split evenly between two 

neurons. Note that some w values are equal to zero. It is interesting to observe that in 

the sixth sensor pattern, x6, the neurons‟ weights are very similar. As a result the 

contributions of the spikes through these terminals to the post-synaptic potential are 

very similar. We believe that the values of the sixth sensor did not contribute to the 

process of distinguishing between the two mineral water samples. This is even more 

visible in Fig. 8.16 where the corresponding |w1m – w2m| values are shown. 

 

 

Fig. 8.15.  The synaptic weights in one of the trained ESNN-PC-TR networks built in Scenario 

2 where the ESNN-PC-TR was trained to distinguish between the two types of mineral water. 
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Furthermore, it can be seen from Fig. 8.16 that the spikes coming from Sensors 1 – 3 

(x1, x2, x3) contribute more to the neurons‟ PSP, than those coming from Sensors 4, 5 

and 7 (x4, x5, x7). In order to enable better validation of the rules the data values of all 

ten samples used to train the ESNN-PC-TR are shown in Fig. 8.17. For example, Rule 1 

states that x3 must be smaller in C0 than in C1. This is justified in Fig. 8.17. As theorised 

all the x3 values in C0 are smaller than the x3 values in C1. 

 

Fig. 8.16.  The |wim - wjm| values for the weights in Fig. 8.15. 

 

 

 

 

Fig. 8.17.  Values of the ten samples (C0, C1) used to train the ESNN-PC-TR in Scenario 2. 

We also illustrate the knowledge discovery capability on the data set from Scenario 4 

where two brands of wine were classified. Each brand was represented by 150 samples, 

randomly shuffled and equally split into training and testing datasets. The |wim - wjm| 

patterns are shown in Fig. 8.18. It is noteworthy that all the sensor values contribute to 

the classification of the wines, including Sensor 6 (x6) which seemed irrelevant in the 

classification of the water types. Using only two membership functions, e.g. SMALL 

and LARGE, the following two rules about how two wines can be distinguished between 

were devised:  
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Rule 0: 

IF x1 is SMALL AND x2 is LARGE AND x3 is SMALL AND x4 is SMALL AND 

x5 is LARGE AND x6 is LARGE AND x7 is SMALL THEN Class 0 

Rule 1: 

IF x1 is LARGE AND x2 is SMALL AND x3 is SMALL AND x4 is LARGE AND 

x5 is LARGE AND x6 is SMALL AND x7 is LARGE THEN Class 1 

 

8.18.  The |wim - wjm| values for the weights in Scenario 4 where the ESNN-PC-TR was used to 

classify the two brands of wine. 

8.7.3 Comment on knowledge extracted by ESNN-PC 

Two membership functions are used in ESNN-PC, representing SMALL and LARGE 

values respectively. In the two problems explained above these membership functions 

were manually defined by us, i.e. they are obtained from human experts. Our approach 

can be further developed as a quantitative way of mapping the real membership function 

from the receptive fields to pre-defined fuzzy membership functions similar to: 

1

( )

i n j

i i i

IF cond AND cond AND cond THEN C

cond x is Rj MD

 
    (8.9) 

where condi are the conditions of the input variables, xi is an input feature, Rj is a fuzzy 

value represented by its membership function. MDi represents membership degree to 

which each xi belongs to the corresponding receptive field and therefore to the 

corresponding membership function. Cj represents the output, i.e. a class label. Similar 

as in EFuNN (Kasabov, 2003), each xi value belongs to the receptive fields to different 

degrees. We also recognise that using only two membership functions in some two-class 
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problems may not be enough. This fuzzification would be too coarse-grained for multi-

class classification problems. Increasing the degree of granularity of the fuzzification 

will come naturally when the real receptive fields will be mapped to a pre-defined set of 

membership functions. The authors are aware that it is still necessary to do quite a lot of 

work to improve the rule extraction technique before ESNN-PC can become a 

knowledge-based neural network such as EFuNN. 

8.8 Conclusion 

For the first time, the applicability of spiking neural networks for the problem of taste 

recognition have been investigated and a special type of ESNN, the ESNN-PC, that 

consists of simple integrate-and-fire neurons with rank order population coded inputs 

was proposed for taste recognition (ESNN-PC-TR). The network architecture evolves 

during the training, accommodating new samples as they become available. The taste 

recognition system has three layers: an electronic tongue that samples the tastants, a 

GRF layer with equally spaced Gaussian receptive fields which perform population 

coding of each of the sensor values, and an ESNN in which the L1 neurons represent 

taste receptors and the L2 neurons are simple integrate-and-fire units sensitive to the 

order of the incoming spikes. 

Six scenarios were designed to test the proposed model, where an ESNN-PC-TR 

network was trained and evaluated on small balanced and unbalanced datasets 

containing samples of 2 and 4 different brands of water and the tests were repeated on 

larger balanced datasets comprising samples of 2, 4, and 5 different types of wine. It 

was demonstrated that the ESNN-PC-TR (ESNN-PC) is capable of learning and 

classifying beverages from small and large datasets with high accuracy. 

Population encoding was successfully applied to the rank order coding model. The 

introduction of population encoding increased the classification accuracy and made the 

model more biologically realistic. The experiments with the number of receptive fields 

(m) showed how the accuracy of the taste recognition system changes as a function of 

m. Representing the input features in a population of receptive field neurons was 

effective in increasing accuracy, however there is an optimal number after which 

additional receptive fields no longer increase accuracy and can even cause accuracy to 

deteriorate. Furthermore, the experiments with the number of neurons in the output 

layer (L2 neurons) revealed that for a given number of receptive fields, the addition of 
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neurons can indeed improve performance, but this will not always be the case (Fig. 

8.10). 

A framework for extracting knowledge from a trained ESNN-PC was proposed. This 

framework was validated in two scenarios where the knowledge about which data 

features (sensor measurements) were important for distinguishing between two mineral 

waters and also between two brands of wine. Our experiments show that ESNN-PC 

could be used for knowledge discovery in temporal datasets. 

Although our intention was not to build a completely realistic model of taste 

recognition, the proposed model is more realistic than the benchmark models based on 

the traditional artificial neurons. The integrate-and-fire neurons used in the proposed 

model are better at modelling the dynamic behaviour of real neurons than the 

summation units fed with rate coded inputs which are used in traditional networks. 

Also, the proposed model can learn new tastants without forgetting the ones that it has 

already learnt. This is a very realistic approach because human beings do not forget all 

the previously learned tastes as they are introduced to new ones. ESNN-PC is also able 

to explain its knowledge in the form of IF-THEN rules. Another advantages of the 

ESNN-PC is that it learns quickly, using one-pass learning algorithms. Furthermore, 

data is encoded using a temporal encoding scheme that simulates the action potentials 

occurring in the brain. Finally, the approach used to encode the taste data is supported 

by several recent findings on the behaviour of taste receptor cells. 

A limitation of the proposed model is that the network parameters (mod, m, ζ, c and Sθ) 

are hand-tuned. This has two drawbacks: (i) the manual tuning is time consuming; and 

(ii) the manual tuning of parameters does not necessarily results in us finding the 

optimal parameters. Thus further work is required if we want to automate the tuning 

process. This may further improve network performance and make the model even more 

biologically realistic. 

The survey of published work on the encoding of tastants at the periphery and in the 

brain showed that regardless of the attention that researchers have given to taste 

processing the physiology of taste is still not fully understood. Therefore, models of 

taste processing are less biologically plausible than models of other better understood 

sense modalities. We believe that the results obtained in the six scenarios simulated in 

our work contribute to the promotion of spiking neural networks as a possible new 

solution for taste recognition systems. 
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Although the proposed system has proven to be suitable when performing the 

classifications of beverages, further developments are envisaged. In Chapter 9, the 

details of an FPGA implementation of the proposed model are detailed. A hardware 

implementation of taste recognition will allow us to build artificial sensory modalities 

based on spiking neurons in hardware and embed them in autonomous robots. These 

robots can then be used in situations where a human‟s presence is not practical. 

Furthermore, despite the results showing that high accuracies can be achieved using 

GRF with only one width it would be interesting to explore how the usage of a GRF 

with different widths for different input variables and/or in different ranges of the input 

variables can influence the model‟s performance. Also, instead of using the same 

number of receptive fields for all features, the number of receptive fields could be 

tailored to each specific feature. In addition, in this work the steady-state sensor values 

were available. It remains to be explored how the model would discriminate sensory 

signals with a time-dependent structure. This could make the use of spiking neurons, 

capable of spatio-temporal processing even more important. Overall, the framework 

proposed here provides huge potential for building a multimodal model of taste 

perception. Therefore, this work should be viewed as the first step rather than an end. 
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Chapter 9 
FPGA implementation of the taste 

recognition model 

A compact and fast hardware implementation of the ESNN-PC-TR would open many 

possibilities for its application. Hardware implementations of the gustatory model 

would enable the creation of autonomous robots that have the ability to taste liquid and 

food as humans do. In turn, these intelligent robots could be employed in situations 

where a human‟s presence is not practical. This chapter proposes a hardware 

implementation of the ESNN-PC model which was proposed in the previous chapter. 

To start with, a review of the literature on the FPGA-based hardware implementations 

of ANN is provided. At a first glance, moving a neural network from a software 

simulation to an FPGA-based hardware implementation seems like a straightforward 

exercise. Unfortunately, this is not the case as many features found in software are not 

available when using hardware. For example, multiplying a number in software is not 

an issue, but when doing FPGA implementations this becomes the number one issue 

due to the limited resources in the FPGA chips. Therefore, a description of the 

challenges faced in FPGA implementation and the techniques to help overcome these 

problems are presented. 

In addition, a detailed description of our FPGA-based implementation of the ESNN-PC 

model is given. This implementation has many desirable features and these are 

presented and described in detail. The descriptions are supported with schematic 

diagrams of all hardware-implemented ESNN-PC units. Special attention is given to the 

implementation of the on-chip and on-line learning feature, recognising that the network 

is not only trained on-line but that it is also built on-line. Building a network on-line is a 

unique approach not often used in implementations which have been published to date. 

Further, in order to verify its performances, the FPGA implementation was tested on the 

real-world taste recognition problem presented in the previous chapter and the results of 

this test were compared to the software simulation results. 
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9.1 Literature review 

The main advantages of building the FPGA-based implementations of artificial neural 

networks are the speed of these implementations compared to the speeds achieved in 

software simulation (Himavathi, Anitha and Muthuramalingam, 2007; Lee and Ko, 

2006) and the re-configurability and flexibility of FPGA (Liu & Liang, 2005). However, 

FPGA implementations are still rare compared to the number of cases where artificial 

neural networks are simulated in software. A survey in 2005 (Liu & Liang, 2005) 

concluded that despite the benefits FPGA implementations there are still no standard 

FPGA-based ANN models. 

FPGA implementations of artificial neural networks are linked to a number of issues, 

such as: data representation, precision, reconfiguration time overheads, limited 

hardware resources and calculation speed. As the FPGA chips become more 

sophisticated, the lack of suitable SNN learning algorithms is starting to emerge as the 

main reason for SNN not being hosted in hardware more frequently (Maguire et al., 

2007; Burgsteiner, 2006). Currently, the learning is often performed in a simulation and 

the final weights are fixed into the FPGA (Schrauwen and Van Campenhout, 2006; 

Pearson et al., 2005). In (Allen, Halliday and Tyrrell, 2006) a hybrid system is proposed 

where a SNN with Hebbian learning is hosted in a FPGA chip and a microprocessor 

based GA evolves the learning rules of the network. 

The first FPGA-based implementations of ANN were published in the early 1990s. In 

1992, a fully digital connectionist classifier named GANGLION was implemented in an 

off-the-shelf Xilinx device (Cox & Blanz, 1992). Even though this first FPGA 

implemented neural network (Zhu & Sutton, 2003) targeted a specific application, it 

tackled some common issues that arise from such hardware implementations. In (Zhu & 

Sutton, 2003), the designers approximated and pre-computed the nonlinear activation 

function and saved its values in a look-up table (LUT) to increase the processing speed 

and reduce resource usage. Furthermore, they also avoided large 8 × 8 multipliers and 

replaced each 8 × 8 multiplication with two 8 × 4 multiplications and one addition. The 

downside of LUT approximations is that they introduce a quantization error (Al-Kazzaz 

& Khalil, 2008). Acknowledging that FPGA chips have finite resources, a number of 

techniques are used to maximise the speed of the implementation and minimise the area 

employment. The main optimization techniques are discussed in the following section. 
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9.1.1 The main challenges for FPGA implementations of 
artificial neural networks  

The presence of multipliers in artificial neural network architectures has been one of the 

main limiting factors for their implementation in FPGA. In 1993, M. Marchesi and his 

team (1993), inspired by the work of White and Elmasry (1992), proposed the power-

of-two or binary-radix MLP where real-value weights are approximated by the integer 

power-of-two values. This allowed them to replace multipliers by shift registers and 

shift-add operations, and lead to the creation of a multiplier-less neural network. A 

reduction to the FPGA resources required for the multiplications can also be achieved 

by encoding input signals into stochastic bit-streams. As a result, the multiplication of 

two bit-streams can be done with a single 2-input logic gate (Bade & Hutchings, 1994). 

Inspired by the idea that multiplier-less neural networks are feasible Hiroomi Hikawa 

proposed a multilayer neural network with a modified back-propagation algorithm and 

on-chip learning (Hikawa, 1995 & 1997). In this network, the error signals were 

represented by pulse signals and the back-propagation algorithm was modified and 

implemented with pulse-mode operations. The multiplications were implemented with a 

bit-serial arithmetic. This approach has evolved in the following years through the work 

of Hikawa (2003 & 1999) and others (Damak et al., 2006; Torres-Huitzil, 2006; Maeda 

& Tada, 2003; Nedjah & de Macedo Mourelle, 2003). A comparison of stochastic and 

binary-radix neural network implementations showed that the former were slightly 

slower but required less resources than the latter (Nedjah & de Macedo Mourelle, 

2003). For a medium sized stochastic network, the speed-resource product was an order 

of magnitude smaller than the product of the same size binary-radix implementation. An 

experiment on the effect of reducing the bits of a floating-point arithmetic unit from 32 

bits to 24 bits reduced the FPGA resource usage by 25% with a 0.32% deterioration in 

the model accuracy (Lee & Ko, 2006). However, bit reduction from 32 bits to 16 bits 

saved 50% of the resources but caused a 55% deterioration in the accuracy. 

Often moving a network from a software simulation to an FPGA hardware 

implementation requires a change from floating-point to fixed-point precision. Using 

shorter integers consumes less FPGA resources but often results in a loss of precision 

(Savich, Moussa & Areibi, 2007), and therefore trade-offs between accuracy and the 

utilised area are often necessary. However, an experiment on the influence of limited 

fixed point precision on the accuracy of a back-propagation multilayer neural network 

trained on a number of benchmark datasets found that the classification accuracy can be 
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affected by the size of the hidden layer rather than the floating-point to fixed-point 

transition (Holt & Baker, 1991). The size of the multipliers can be kept down by 

reducing the internal resolution to 12-bit (Schrauwen & Van Campenhout, 2006; 

Hikawa, 1995) or 8-bit precision (Himavathi, Anitha & Muthuramalingam, 2007; Labib 

et al., 2005). Although more than one internal precision might be required to overcome 

the quantization distortions of some parameters (Ševčik, 2006). 

Activation functions are also often simplified (Larkin et al., 2006; James-Roxby & 

Blodget., 2000; Hikawa, 1995) or replaced by a new function to keep the resource usage 

low. The use of the sinusoidal activation function decreased hardware resource 

employment by about 32% compared to the employment when using the sigmoid 

neuron implementation (Vitabile et al., 2005), and using a spline-based activation 

function approximation can save around 46% of the hardware resources (Larkin et al., 

2006). Activation function values are often stored in the LUT (Himavathi, Anitha & 

Muthuramalingam, 2007; Chalhoub, Muller & Auguin, 2006). Furthermore, various 

optimization techniques can be used in order to achieve an optimal implementation 

(Chalhoub, Muller & Auguin, 2006). 

In time-multiplexed architectures, resource limitations can be overcome at the expense 

of speed. In these architectures a single neuron or a layer of m neurons with one or n 

synapses are implemented at any given time and the connections between the neurons or 

between adjacent layers are time-multiplexed (Vitabile et al., 2005; Pearson et al., 2005; 

Eldredge & Hutchings, 1994). Only the resources needed to implement one or m 

neurons are engaged and other neurons use the same resources later on, resulting in a 

lower percentage of chip usage. The downside is that the time-multiplexing required in 

those implementations may be very time consuming. Implementing a single layer in an 

8-5-5-5-3 MLP saved 50% in resources but introduced a 17.7% speed overhead 

(Himavathi, Anitha & Muthuramalingam, 2007). Pipelining has been used to 

compensate for speed overheads introduced by the time multiplexing of connections 

between neurons in the same or different layer. Various network parameters and data 

are saved in registers or in internal or external memory. Pipelining allows for processing 

of later neurons before finishing the earlier ones. In an implementation of a pulse coded 

neural network pipelining throughput was improved from a little more than a million 

neuron iteration per second to 55 million neuron iterations per second (Waldemark, et 

al., 2000). FPGA‟s limited but in-situ reconfigurable resources inspired Luiz Brunelli et 

al. (2005) to improve resource utilization by an approach they named Execution 
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Patterns. In this approach, data is at fixed locations and processing elements are 

dynamically instantiated next to the data when required by the processing algorithm. 

This approach resulted in a saving of 80% of the reconfigurable interconnect resources 

in respect to the traditional approach. 

FPGA devices with their in-situ re-programmability, ability to work in parallel and 

high-speed processing seem a logical tool for building large neural networks with 

neurons that have changeable synaptic weights. Furthermore, a recent comparison study 

examining the speed of pure software and pure hardware implementation of the multi-

layer back-propagation network found that the pure hardware architecture on FPGA was 

around 500% faster than the pure software implementation (Al-Kazzaz & Khalil, 2008). 

The ever-increasing types of FPGA devices and their speeds suggest that it is very 

likely that the problems researchers reported in the past will become obscure in the 

future. The number of multipliers in an Altera family of FPGA devices is shown in 

Table 9.1. For example, an EE4SE360 has 4506 various multipliers including 260 

single-precision and 140 double-precision floating-point multipliers. 

TABLE 9.1 

The number of multipliers in the Stratix IV E FPGA DSP family devices (Altera).  

FP – floating-point 

MULTIPLIERS 

Device 9×9 12×12 18×18 18×36 36×36 18×18 

complex 

Single 

FP 

Double 

FP 

EP4SE110 512 512 512 256 128 128 128 51 

EP4SE230 1288 1288 1288 644 322 322 322 128 

EP4SE290 800 800 800 400 200 200 200 80 

EP4SE360 1040 1040 1040 502 260 260 260 104 

EP4SE530 1024 1024 1024 512 256 256 256 102 

EP4SE680 1360 1360 1360 680 340 340 340 136 

9.1.2 Learning in FPGA 

Learning is an important feature of all ANN. Two setups exist for FPGA 

implementations: one including an on-chip training facility (Zhuang, Low & Yau, 2007; 

Damak et al., 2006; Maeda & Tada, 2003; Hikawa, 1995; Eldredge & Hutchings, 1994) 

and one without an on-chip training facility (Pearson et al., 2007; Schrauwen & Van 
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Campenhout, 2006). In implementations without on-chip learning the network 

parameters (including weights) are first optimised in software and then frozen in an 

FPGA during the programming phase (Merchant et al., 2006; Schrauwen & Van 

Campenhout, 2006). This enables higher processing speeds and lower resource costs but 

comes at a cost because the network is unable to retrain in-situ for new data. 

An on-chip learning mechanism can occupy as much resource as the network itself and 

this can be impractical for a very large neural network. Therefore, Eldredge and 

Hutchings (1994) suggested that the on-chip learning hardware can be implemented 

during the training in the same area as occupied at other times by the trained network. 

Availability of soft processor cores within a single FPGA enables embedded hardware 

and software co-design. A soft core processor can be used to run a GA for on-line 

evolution and learning (Merchant et al., 2006; de Garis & Korkin, 2002) and as an 

interface between the FPGA and the rest of the system (Roggen et al., 2003). However, 

running GA has a high cost and therefore this type of learning might not be appropriate 

when the processing speed is crucial, such as in some real-time applications. 

9.1.3 FPGA implementations of spiking neural networks 

Whilst implementations of classical neural networks on FPGA continue there are more 

and more papers addressing the issues of FPGA implementations of spiking neural 

networks, predominantly implementations of large networks of IF neurons on a single 

FPGA device. Implementations of SNN often target a specific task. A network of 

spiking neurons was designed for use on mobile robotic devices (Pearson et al., 2007, 

Roggen et al., 2003), for image processing (Waldemark et al., 2000) and for hardware 

modelling of neuronal ion channel dynamics (Mak et al., 2005). Schrauwen and Van 

Campenhout (2006) implemented a LIF model with various synapse models using 

parallel processing and serial arithmetic. They used pipelining and 12 bit precision to 

optimise hardware usage and built the networks on a small, low cost FPGA and on a 

state-of-art FPGA. Whilst the size of neural network increased by 2500% through the 

use of the state-of-art FPGA, the speed only doubled. They also highlighted the fact that 

it is often hard to compare space and speed numerical values between different 

implementations because usually different FPGA devices are used. 

As multipliers still limit the size of FPGA implementations of neural networks, 

including implementations of spiking neural networks, multiplier-less approaches are 

still investigated and proposed (Zhuang, Low & Yau, 2007). Other techniques used to 
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optimise the classical neural networks are also used to optimise spiking neural 

networks. For example, time-multiplexing and fixed-point integer arithmetic was 

studied in (Pearson et al., 2005) and later extended in (Pearson et al., 2007) where a 

spiking neural processing element was designed for the control of a mobile robot. They 

implemented the same network in software and hardware and compared the responses 

of these implementations on repetitive presentations of the same input stimuli generated 

using randomly seeded generators. The observed correlation between responses was 

0.7662. The discrepancies between the two responses were found to be mainly due to 

the differences between the random number generators in the two systems. Custom-

built simulation tools (Hellmich & Klar, 2004) have supported FPGA prototyping. 

The lack of FPGA resources is a significant limiting factor when building large neural 

networks comprising thousands of neurons. McGinnity et al. at the University of Ulster 

have been conducting research in the area of SNN focusing on FPGA implementations 

of large-scale SNN. In their 2005 paper, they proposed a platform for the 

implementation of large scale SNN on FPGA devices based on a time-division 

multiplexing strategy (Glackin et al., 2005). In this scheme, a multi processor system is 

built where each soft-core processor is responsible for processing a portion of the 

network‟s neurons. They showed that networks containing 4200 IF neurons with 

1964200 synapses were feasible. They also introduced a multiplier-less strategy and 

found that the network size that can be implemented on an FPGA chip drops 

considerably with the neuron to synapse ratio (Maguire et al., 2007). The major 

bottleneck was the limited availability of multipliers. 

9.2 FPGA implementation of the ESNN-PC-TR model 

This section proposes a new FPGA implementation of the evolving spiking neural 

network for taste recognition introduced in Chapter 8. This network has also been 

simulated in software and applied to taste recognition problems as explained in Chapter 

8. The classification results showed that the proposed approach is suitable as an 

approximation of the gustatory system. Here, an FPGA-based implementation of the 

same taste recognition model is presented and compared to the software simulations in 

terms of their processing speed and classification accuracy. The complete ESNN-PC-

TR system, including the population encoder, rank order coder and a network of spiking 

neurons, was implemented on a single FPGA (Fig. 9.1). Furthermore, the hardware 

required to build and evolve the network and the network itself was hosted on the same 
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chip. However, the implementation relies on a host PC to deliver data samples for 

evolving the spiking neurons and, once the network is trained, for the classification of 

unseen data samples. 

 

 

Fig. 9.1.  Block diagram of the proposed FPGA implementation of the ESNN-PC-TR. 

The implementation was based on an Altera Cyclone II EP2C35F672C6 FPGA on an 

Altera NIOS II Development Kit. The Cyclone II FPGA chip provides an on-chip 

memory, a NIOS II soft processor core and interfaces to the on-board chips (Fig. 9.2). 

The board was chosen because of its availability and state-of-the-art features. The 

development board was connected to a host computer via a JTAG USB-Blaster and 

RS232 serial cable. A NIOS II soft processor core was used as well. The operating 

frequency of the FPGA model was 50 MHz (tCLK = 20 ns). This development board is 

supported by the Quartus II (version 6.0, build 202, SP1), SOPC Builder (version 6, 

build 202) and NIOS II IDE (version 6.0, build 93.3, SP1) software from Altera. 

The utilization of FPGA resources has been kept down by a careful optimization of the 

word length across the whole implementation. A 32-bit fixed-point mixed integer- 

fractional format was chosen for this FPGA implementation. The Q1.30 number format 

(one integer bit and 30 fractional bits, in a range of [0, 2)) was used for normalised 

sensory data, population encoded data features and synaptic weights, and the Q7.24 (7 

integer bits and 24 fractional bits, in a range of [0, 128)) was used for PSP and PSPΘ. 

Using minimal resources lowers the power consumption. While the main aim was 

ensuring that resource consumption was as low as possible we made sure that numeric 

fidelity was not compromised. 
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Fig. 9.2.  A simplified block diagram of Cyclone II FPGA: NIOS II soft processor core and the 

interfaces needed to connect to other chips (Altera). 

9.2.1 Embedded processor system 

A NIOS 16-bit embedded processor was instantiated alongside the ESNN-PC-TR neural 

network. The processor used a set of 16 and 32-bit I/O ports to control and interact with 

the neural network. The processor was responsible for loading sensory data samples to 

the population-encoding module and retrieving spike times from the spiking network. 

The data was received from and the spike times were sent to the host computer via a 

serial link. Furthermore, during testing the processor was used for retrieving 

intermediate data from encoding and ranking modules as well as the values of all 

network parameters. Once the network was functional the processor‟s tasks were scaled 

down to conveying data samples from the host PC to the system and issuing control 

signals to insure correct functioning of the system‟s modules. 

9.2.2 A novel FPGA implementation of population encoding  

In our novel FPGA implementation, normalized sensory data first undergoes population 

encoding using the module shown in Fig. 9.3. The Gaussian values required to encode 
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the input sensory data are saved in a look-up-table (i.e. the Gaussian Curve LUT). Only 

a half of one Gaussian receptive field values were saved and used to produce the values 

for m receptive fields. This was possible because all Gaussian curves used were 

symmetrical about the centre and had the same width. Other values were calculated by 

subtracting and adding the receptive field centre value ci (Table 9.2) from the sensory 

data value and presenting the difference to the Gaussian LUT. In this work the centre 

values ci were determined by (8.1) – (8.4). Also, an out-of-range detection circuitry is 

used to detect sensory data features too small to contribute to the membrane potential of 

the L2 neurons. The features that exceed three standard deviations from ci are set to 

zero, and consequently L1 neurons conveying these values do not spike. 

 

 

 

Fig. 9.3.  The block diagram of the population encoding module. The encoder has an out-of-

range detection circuitry to detect sensory data features too small to contribute to the membrane 

potential of the L2 neurons. (Zuppicich & Soltic, 2008) 

TABLE 9.2 

Centre values ci for Gaussian receptive fields (m = 6 and m = 8). 

m c1 c2 c3 c4 c5 c6 c7 c8 

6 -0.75 -0.25 0.25 0.75 1.25 1.75 - - 

8 -0.66 -0.33 0 0.33 -.66 1 1.33 1.66 

The sensory data features are received via the embedded processor. The processor also 

issues a „Load‟ signal signalling that a feature is ready to be encoded. The population 

encoding module uses a „Ready/Busy‟ signal to notify the processor when it is ready to 

receive another feature for encoding. When the feature is encoded, a „Store‟ signal is 

sent to the rank order module informing it that the data is available to be received. A 

description of the ranking module used is given in the next section. The population 
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encoding module provides one Gaussian value for every clock cycle (tCLK = 20 ns) and a 

feature is fully encoded every m tCLK or every 0.12 μs (m = 6) and 0.16 μs (m = 8). It 

takes the population encoding module m tCLK s seconds to encode one data sample 

comprising s features (where s is the number of sensors used to taste tastants). However, 

due to the delay introduced by the processor tdCPU = 3μs the whole process of encoding 

the data slows down considerably to s (m tCLK + tdCPU) seconds. While the total time 

needed to encode one data sample with m = 6 is 1.12 μs, when the delay caused by the 

processor is included this time increases to around 22 μs. 

The number of points used in modelling Gaussian curves was critical to the taste 

recognition system‟s classification accuracy. An error at this processing stage could 

potentially decrease the accuracy of the ranking and consequently the correct 

classification of sensory data samples. While higher resolutions are desirable, the 

available FPGA resources limited the implementations. Here, a 22-bit Gaussian LUT 

containing 8192 pre-calculated Gaussian values was implemented. The step size 

between two values was 1.2e-4 with a maximum error of 0.12%. This design allowed us 

to achieve accuracy comparable with the accuracy of the software implementations. The 

population module can be further optimised by interpolating missing values. 

Unfortunately, this would compromise the resource usage and processing speed of the 

implementation. 

9.2.3 A novel FPGA implementation of the rank order coder 

The data from the population-encoding module is sent to the rank order coding module 

for ordering shown in Fig. 9.4. The data components with higher values represent the 

earlier pre-synaptic spikes which are sent to the neural network before the smaller 

values which represent the later spikes. A highly parallel bit-wise rank coder was 

implemented using an N-stage 32-bit shift register and a finite state controller (FSM 

controller). When all N values are received from the population-encoding module and 

loaded into the shift register the processor issues a „Start‟ signal and the ranking begins. 

The FSM controller runs a top-down search through the bit patterns. The rank coder 

produces the first values after 0.06 to 3 μs, while the ranking lasts anything between 6 

and 16 μs. The network informs the ranker that it has processed the current spike and 

that it is ready for a new one through an „Ack‟ signal. The rank order provides the rank 

of a synapse „Index‟ together with a „Valid‟ status signal to the neural network module. 

These „Valid‟ signals inform the network of the presence of a valid incoming spike. A 
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„Done‟ status signal is sent to the processor once all Gaussian values have been ranked 

and the ranker is ready to start receiving a new set representing another sensory data 

sample. By that time, the neural network has also processed all incoming spikes. During 

training, the neural network processes all incoming spikes but during classification the 

processing of spikes stops once the first L2 neuron spikes, signalling that this sample 

has been classified. This detection of the first spikes results in fast classifications. 

9.2.4 A scheme for an FPGA implementation of the spiking 
integrate-and-fire neuron and its synapse 

Integrate and fire neurons used in this work are specified by the membrane equation 

(7.10) where the membrane potential of L2i (i.e. PSPi) at time t depends on the firing 

orders of all its pre-synaptic neurons. The calculation of the membrane potential of one 

neuron consists of three operations: rising to the power, multiplication and summation. 

The influence of an incoming spike via synapse j is calculated by multiplying the 

corresponding synaptic weight (wji) and modulation factor (mod) risen to a power 

dependent on the order of the incoming spike (orderj). The influences of the spikes 

coming from all the pre-synaptic neurons via their synapses are then added together. 

Given that the number of multipliers in an implementation must be kept to minimum, 

the multipliers required to perform the power calculations were avoided by storing the 

mod
order

 values into a look-up table. As a result, the calculation of PSP values was 

reduced from the power-multiply-and-add operations to one multiply-and-add operation 

per synapse. However, multipliers could not be easily circumvented altogether without 

sacrificing the processing speed. 

 

Fig. 9.4.  The block diagram of the proposed parallel bit-wise rank order coding module based 

on an N-stage 32-bit shift register and a FSM controller. N is equal to m×s, where m is the 

number of Gaussian receptive fields and s is the number of features per sensory data sample. 

(Zuppicich & Soltic, 2008) 
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The proposed hardware implementation of the spiking neuron and its synapse is shown 

in Fig. 9.5. Note that the learning circuitry is not shown, as it is described in detail in the 

next section. The neuron operates within a discrete time domain with intervals defined 

by order, where order  (0, N-1) and N= m × s is the number of synaptic inputs. The 

PSP and PSPΘ values are held in the on-chip memory (the PSP memory block and the 

Threshold memory block). At each interval torder the neuron is presented by the ranker 

with a „Rank‟ and index „Synapse Index‟ values signalling the rank and the synapse of 

the incoming spike. The values for mod
order

 and wji are taken from the look-up tables, 

multiplied and added to the post-synaptic potential PSPi of this neuron. If the neuron‟s 

PSPΘi is exceeded, the neuron produces a spike. The process is repeated for all feature 

values. While it is important to process all features to find PSPimax during the neuron 

creation, during the classification the processing is stopped after the first spike is 

detected. 

 

Fig. 9.5.  The block diagram of the proposed circuit for a spiking neuron and its synapse. Note 

that the circuitry required for the on-chip learning is omitted. Synapse weight values and the 

weight contributions are saved in two LUT. The neuron is modelled using two memories and a 

comparator. Note that there is one multiplier in this module. (Zuppicich & Soltic, 2008) 

9.2.5 A method for an FPGA implementation of on-chip learning 

In ESNN-PC all L2 neurons are created during the evolving process. As a L2 neuron is 

created it learns to recognise samples from a class. One L2 neuron can learn a number 

of samples and is able to classify correctly a previously unseen sample. On-chip 

learning is implemented using two modules. One module compares the newly created 

neuron to the pre-existing neurons L2o for the same class of data samples (Fig. 9.6) and 

one module aggregates the newly created neuron if the similarity is found to be less than 

the network parameter Sθ (Fig. 9.7). 
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The block diagram in Fig. 9.6 shows the distance measure module. The weight values 

and the sum are each in the range of [0, 1] and [0, m × s] respectively, where m × s is 

the number of L1 neurons, m is the number of Gaussian receptive fields and s is the 

number of input features. As the comparison starts, a single weight wi of the newly 

created L2i is placed on the „Weight‟ input and a „Store‟ signal is issued. Then the 

weight of an existing L2o is placed on the „Weight‟ input and the two values are 

subtracted, squared and added to the current distance. This process is repeated for all 

weight values. Once all weights are processed, the total distance is compared to Sθ. It 

takes this module 5 tCLK to process one synapse and (5 m s + 2) tCLK to compare one L2i 

to one L2o. This includes 2 overhead tCLK per neuron. If the number of L1 is 42, one 

synapse is processed in 100 ns and two L2 neurons are compared in 4.24 μs. If there are 

56 L1 neurons 2 neurons are compared in 5.64 μs. 

 

Fig. 9.6.  The block diagram of the proposed distance measuring module that compares a newly 

created neuron against all pre-existing neurons for the same class of data. Note that there is only 

one multiplier in this module. (Soltic & Zuppicich, 2008) 

A block diagram of the aggregation module is given in Fig. 9.7. If L2i is found to be 

similar to L2o these two neurons are aggregated. The new weights and the threshold are 

set to the arithmetic averages of L2o and L2i. It takes 10 × tCLK to process one synapse or 

11.2 μs when there are 56 L1 neurons. The aggregation of the neurons‟ thresholds is a 

process similar to that of the aggregation of the weights and therefore two instances of 

this module are created, one for calculating the new threshold and one for calculating 

the new weights. The two modules work in parallel during the update of the weights. 

Sθ 
        Sθ 
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Fig. 9.7.  The block diagram of the proposed aggregation module. Note that there is only one 

multiplier in this module. (Soltic & Zuppicich, 2008) 

9.2.6 A discussion on the size of ESNN-PC-TR when 
implemented on an FPGA 

FPGA implementations of ANN are limited by the availability of FPGA resources. 

Clearly, the problem of limited resources is even more profound when an evolving 

architecture is considered. In an evolving neural network, the number of neurons 

depends on the characteristics of the input data and the values of the network‟s 

parameter. An evolving neural network may create one neuron per sample and if there 

are many samples the network may grow very big. While, it would be great to have an 

FPGA that is sufficiently large to allow the network to evolve freely the reality is that 

this is currently impossible. Therefore, the number of neurons that are allowed in a 

network must be kept under control despite the impact that may have on the accuracy of 

the network. 

In this thesis, the proposed implementation of ESNN-PC-TR is based on the concepts of 

virtual neurons and virtual synapses, namely only a single neuron with one synapse is 

instantiated. The neurons‟ parameters (PSP, PSPΘ, class label and the number of 

aggregated neurons) are saved in the memory and a finite state machine addresses this 

memory space using a 6-bit address bus. This particular design allows the ESNN-PC-

TR network to evolve to 64 neurons with up to 64 synapses each, i.e. have a total of 

4096 synapses, on the Altera Cyclone II EP2C35F672C6 FPGA chip. 

9.3 Implementation results 

One important implication of the limit to the number of neurons in the network was that 

we were not able to repeat all six scenarios designed to test the ESNN-PC-TR. This 
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limitation also meant we were unable to directly compare the performances, advantages 

and disadvantages of the software and FPGA implementations on all six data sets. 

However, it was possible to test Scenarios 1, 2, 3 and 4 shown in Chapter 8 Table 8.3. 

The test showed that the accuracies obtained with the FPGA implemented ESNN-PC-

TR were comparable to the accuracies achieved with the software simulations (Table 

9.3). Unfortunately, Scenarios 5 and 6 could not be repeated with the FPGA 

implementation because the number of required Gaussian receptive fields was far too 

high for the FPGA chip‟s resources. 

Given that processing speed is one of the key drives of hardware implementations of 

ANN, special attention was given to the timing analysis of both implementations. 

Acknowledging that an increase in processing speed cannot be achieved without 

employing additional resources, FPGA resource usage and operating speeds are 

discussed in the next section. 

TABLE 9.3 

The accuracies of the FPGA and software implementations of ESNN-PC-TR 

when used for water and wine recognition. 

Scenario Class Samples Classes Software (%) FPGA (%) 

1 Water 1&3 12 2 100 100 

2 Water 1&2 10 2 100 100 

3 Water 1-4 40 4 91 87 

4 Wine 2&3 300 2 100 100 

 

9.3.1 FPGA resource usage and operating speed 

In order to minimise FPGA resource consumption the number of multipliers was kept to 

a minimum and the evolving networks were built around the virtual neuron concept. 

While instantiating only one neuron with one synapse and the use of a single learning 

circuit kept the number of multipliers low, i.e. down to 23% of the available 

multiplexers, the memory usage was substantial as shown in Table 9.4, 76% of the 

memory space was employed in this design. Half of all memory space was used by the 

population-encoding module and its LUT. It is interesting to see that the processor itself 
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uses only 11% of the memory. On the other hand, the on-chip learning circuit uses 14% 

of the multipliers and 4% of the logic elements. 

TABLE 9.4 

Available FPGA resources and their usage. 

Resources Available NIOS POP Ranking Neuron Learning  % 

Logic elements 33216 7000 252 5000 1200 1460  45 

Memory(kbits) 483 52 180 0 138 0  76 

9×9 Multipliers 70 4 0 0 2 10  23 

As expected the FPGA implementation was faster that the software simulations. In 

order to compare the speeds of both implementations the same set of data samples and 

network parameters were used, the experiments were repeated 10 times and the training 

speeds averaged. While the software simulations were run on a 2 GHz Intel Core 2, the 

FPGA chip was clocked at a much slower frequency of 50 MHz. We must bear in mind 

that the processing speed of the FPGA implementation was influenced considerably by 

the delivery of data samples. 

We examine how long it takes to evolve an ESNN-PC-TR. Table 9.5 show the times 

that the software and FPGA implementations require to train ESNN-PC-TR on one 

sensory data sample. It takes the NIOS processor around 20 μs (tdCPU ≈ 20 μs) to deliver 

one sensory data sample with 7 features compared to the 20 ns required to encode one 

data feature, or 1.12 μs to encode all 7 features with 6 Gaussian receptive fields (m = 8, 

56 L1 neurons). The first value is provided by the ranking unit after 0.06 to 3 μs and all 

values are ranked after 6 to 16 μs. A neuron is created after 30 to 70 μs. In total it takes 

40 – 80 μs to create and train one L2 neuron on a 56-dimensional data sample. This is 

10 to 25 times faster than in software simulations of the same network (tsoft = 1040 μs) 

Both type of implementations are faster during the classification than during the 

learning phase as there is no need to evolve the network and train the L2 neurons. Also, 

the processing of one data sample stops when the first L2 spikes are detected. A sample 

is classified within 6 μs by the FPGA implementation (Table 9.6). It takes 445 μs by the 

software. The time required to population encode one sample by hardware is the same 

as during the training. We can see from Table 9.6 that the FPGA implementation 

classifies one sample 74 times faster than the software tool. 
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TABLE 9.5 

Training times for software (tsoft) and FPGA (tFPGA) implementations required to train an ESNN-

PC-TR network on one sensory data sample (56 L1, tdCPU≈20 μs) (Soltic & Zuppicich, 2008) 

 tsoft (μs) tFPGA (μs) 

Population encoding 123 1.12 + tdCPU 

Ranking 320 6 - 16 

First ranks available 320 0.06 - 3 

Training 600 30 - 70 

Total time 1040 40 - 80 

TABLE 9.6 

Classification times for software (tsoft) and FPGA (tFPGA) implementations required to classify 

one sensory data sample (56 L1, tdCPU ≈ 20 μs) (Soltic & Zuppicich, 2008) 

 tsoft (μs) tFPGA (μs) 

Population encoding 123 1.12 + tdCPU 

Ranking 320 2 

First ranks available 320 0.06 - 3 

Classifying 105 2 

Total time 445 6 

9.3.2 Control signals and timing 

The rank order coder‟s control signals and their timing during the network evolving 

stage is shown in Fig.9.8. Please note that time durations are not to scale. As stated 

earlier, the rank order coder uses four handshaking signals to communicate with the rest 

of the system. The ranking starts when a „Start‟ signal is received. Due to its design, the 

ranker can produce the first spike value (orderj = 0) after as little as 60 ns. Once the first 

spike is ready the neural network can commence with the processing. Every time the 

rank order coder finds the next highest value (i.e. spike) it issues a „Valid‟ signal and 

provides the order (orderj) and the index (j) of that spike. As the ranking progresses, the 

time intervals between two „Valid‟ signals became shorter and shorter as there are fewer 

spikes to rank. While the first spike can be ready for processing after around 600 ns, the 

time required to find the next spike decreases to less than 100 ns. It takes the network 

8TCLK or 160 ns to process one spike. In other words, the network is ready to receive a 
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new spike for processing every 160 ns. An „Ack‟ signal is sent to the ranker from the 

network acknowledging that it is ready to receive a new spike. Without aggregation, it 

takes (8 m s + 4)tCLK to create one L2 neuron. For example, a neuron with 56 synapses is 

created in 15 to 25 μs. However, a possible aggregation introduces a further delay and 

one L2 is created and trained within 40 to 80 μs. When the last synapse is being 

processed, the „Ack‟ signal is delayed to allow for possible L2 aggregations. 

The control signals and their timing during the classification stage are shown in Fig. 9.9. 

The time taken by the network to process one synapse depends on the number of L2 

neurons, i.e it is 5 n tCLK, where n is the number of L2 neurons. Therefore, the time to 

process all synapse is ((5 n + 2) m s + (2 n))tCLK, where m × s is the number of synapses, 

m is the number of Gaussian receptive fields and s is the number of taste sensors. The 

formula includes the time tCLK required to acknowledge that all L2 neurons have been 

processed and to reset the PSP values to zero so that the network is ready to start 

classifying the next data sample. 

 

Fig. 9.8.  Signals and timing during the L2 evolving stage. One L2 is created in 15 to 25 μs but 

a possible aggregation introduces a further delay and one neuron is created and trained in 40 to 

80 μs. (Soltic & Zuppicich, 2008). 
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Fig. 9.9.  Signals and timing during the classification stage. A sample is classified in 6 μs 

(Soltic & Zuppicich, 2008). 

9.4 Conclusion 

The evolving spiking neural network for taste recognition proposed in Chapter 8 has 

been successfully implemented on an Altera Cyclone II FPGA. The complete ESNN-PC 

including the population encoder, rank order coder and network of spiking neurons, 

together with its learning was implemented on a single FPGA. This is a big step towards 

a hardware representation of the human gustatory system. A NIOS embedded processor 

was instantiated alongside the ESNN-PC model. Its main function was to load sensory 

data samples, retrieve results, and control and monitor the operation of the system. 

During the design of the FPGA implementation, the focus was on minimizing hardware 

utilization without slowing down the neural processing and compromising the 

classification precision. To achieve this, a virtual neural based architecture was used 

where only one neuron with one synapse was implemented and all other neurons used 

the same resources. Furthermore, the whole system was implemented around look-up-

tables, minimising the need for multipliers and logic elements. The precision was set to 

32-bit by using two 32-bit fixed-point mixed integer-fractional formats (Q1.30 and 

Q7.24). This design allowed evolving networks of up to 64 integrate-and-fire neurons 

with up to 4096 synapses on the Altera Cyclone II EP2C35672C6 FPGA. The 

implemented network used 45% of the logic elements, 76% of the memory and 23% of 

the dedicated multipliers. The on-chip learning circuitry used 4% of the logic elements 

and 14% of the multipliers. 
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The proposed FPGA implementation of ESNN-PC was successfully applied to the 

classification problem of taste recognition. The performance of the FPGA 

implementation was compared to the performance of the software implementation of the 

same network architecture. The experimental results have shown that the FPGA 

implementation was 10 to 25 times faster during the evolving of an ESNN-PC network 

and 74 times faster during the classification of tastants than the software simulations 

that had similar accuracies. The on-chip algorithm created and trained one L2 neuron 

within 30–70 μs compared to the 600 μs required for training by the software 

implementation. The FPGA implementation relies on a host PC to deliver data samples.  

Obtaining data samples directly from the sensors could not only reduce processing 

speed but also open up the possibility of using the proposed ESNN-PC architecture for 

taste recognition tasks in an autonomous robot. 
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Chapter 10 
Conclusion and future directions 

10.1 Research summary 

In this thesis, two generic computational intelligence methods were developed and then 

applied to two ecological problems. 

First, a new adaptive model for risk prediction based on local probability and named the 

local probability adaptive model (LPAM) was proposed. The LPAM is characterised by 

its dynamic structure, knowledge discovery facility and incremental learning. The 

model was first evaluated on two benchmark problems. It was then successfully 

employed to model the risk of pest insects‟ invasions, to capture and explain the 

relationships between the insects‟ distributions and climatic characteristics of their 

habitats and to prepare species distribution risk maps. A simple technique for the 

visualization of the rules extracted using the LPAM based on the information contained 

in the model was also proposed. 

This thesis described a variety of issues related to ecological modelling, in particular 

when dealing with predictive modelling of species distributions: 

1. There is a lack of good quality benchmark data on species distributions; 

2. Typically, no knowledge usually exists about the quality of the modelling data; 

3. Absence data is hard to validate, i.e. the absence data is often more noisy than 

the presence data, while the volume of noise in the absence and presence data is 

unknown; 

4. There is a lack of knowledge about the characteristics of invasive species, i.e. 

what variables influence the distributions of these species; 

5. The relationships of the predictive variables in ecology are non-linear, complex 

and unknown; 

6. The modelling techniques typically used to model species‟ distributions, e.g. 

MLP or SOM, do not reveal the relationships between the predictor variables 

and the prediction. In other words, the predictions can be very accurate but one 

still cannot deduce the influence of each predictor variable on the modelled 

output. 
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Our dynamic system, LPAM, uses DENFIS and comprises a noise cancelling module. 

The DENFIS module delivers species-habitat relationships while the noise cancelling 

module reduces the influence of noisy data on the prediction accuracy. We suggest that 

adopting the LPAM could lead to acquiring knowledge that is impossible to extract 

using the traditional neural network models. 

In addition, we have examined the suitability of transductive modelling for building 

predictive models in ecology. The performance of „personalised‟ models based on 

transductive reasoning was compared to the performance of local and global models 

built using inductive reasoning. For this purpose, we used the recorded distributions of 

three pest insects (Aspidiella hartii, Geococcus coffeae and Xyleborus perforans) that 

have a high economic importance to New Zealand. The datasets had a rather moderate 

number of samples suggesting that „personalised‟ models would be more accurate than 

global and local models. Our experimental analysis showed that when measured in 

terms of Cohen‟s kappa statistics (κ), the personalized models build for A. hartii were 

the best of all other models over all threshold values (achieving an excellent accuracy, κ 

= 0.85). The transductive approach was less accurate when predicting the establishment 

potential for G. coffeae and the least accurate when predicting the distribution for X. 

perforans. However, none of the studied approaches were particularly successful in 

modelling the distribution of those two insects. In particular, all models had a problem 

modelling the distribution for X. perforans. According to our experiments, the 

suitability of a method is highly dependent on the relationships being modelled. 

Therefore, we suggest that an integrated approach using global, local and „personalised‟ 

models in a hybrid system must be used for an improvement of ecological models. 

Second, the ESNN-PC, an evolving spiking neural network based on the ROC integrate-

and-fire types of neurons with population-coded inputs was proposed. For the first time, 

the Gaussian receptive fields were employed in a ROC network. The ESNN-PC was 

then successfully used for taste recognition (ESNN-PC-TR) where different types of 

wine and water were classified. The ESNN-PC-TR was implemented in software and on 

an Altera FPGA. Both implementations were evaluated in terms of accuracy and 

processing speed. The results of our experimental analysis demonstrated that the ESNN-

PC-TR model of taste recognition is capable of learning to distinguish and classify 

beverages from small and large datasets with a high degree of accuracy and of 

knowledge discovery from the data samples used to train it. 
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In this thesis, we described the issues related to modelling taste recognition and applied 

the developed ESNN-PC-TR on two taste recognition problems. We highlighted that: 

1. There is still very little known about the perception of taste, both in terms of 

taste coding and processing; 

2. The gustatory system is the least explored sensory system; 

3. Taste recognition models are typically built either using MLP or PCA; 

4. There is a lack of benchmark taste data; 

5. Taste data is usually collected using in-house built sensors. 

Our ESNN-PC-TR is a better model of taste recognition than any other taste recognition 

model published in literature because: 

1. It uses integrate-and-fire neurons capable of modelling the dynamic behaviour of 

real neurons; 

2. Data samples are encoded using a temporal encoding scheme that models the 

action potentials occurring in the brain; 

3. It has a layer simulating taste cells-to-cell interactions; 

4. It learns quickly, using a one-pass learning algorithm; 

5. It learns new tastants without forgetting the ones that it has already been learnt; 

6. It has knowledge discovery facility and delivers its knowledge in the form of 

zero-order Takagi-Sugeno rules. 

7. It adapts its structure in time to accept new data samples and tastants. 

We also proposed an FPGA implementation of our ESNN-PC-TR model. The ESNN-

PC, including the hardware required to build the network, was hosted in an FPGA chip. 

We described issues related to the FPGA implementation of artificial neural networks: 

1. Limited hardware resources; 

2. Limited numerical range-precision; 

3. Compromises in terms of speed and accuracy; 

4. Lack of hardware-friendly training and learning algorithms. 

Given that the processing speed is the driver for creating hardware implementations of 

ANN, the following design approaches were taken to obtain an optimal speed without 

sacrificing the network size and accuracy: 
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1. The system was implemented around look-up-tables, minimising the need for 

multipliers and logic elements; 

2. To minimise the hardware usage, a virtual neural based architecture was used 

where only one neuron with one synapse was implemented and all other neurons 

used the same resources; 

3. The quantization errors were kept low by representing data with 32-bit signed 

fixed-point words. 

In the hardware implementation up to 64 neurons with up to 64 synapses each were 

evolved in the particular chip. Our implementation used 76% of the available FPGA 

memory, 45% of the available logic elements and 23% of the available dedicated 

multipliers. The on-chip learning circuit used 14% of the multipliers and 4% of the logic 

elements. 

Finally, we performed some experiments to measure the speed of the proposed FPGA 

implementation. The experimental results have shown that the FPGA implementation 

was 10 to 25 times faster during the evolving of an ESNN-PC-TR network and 74 times 

faster during the classification than the software simulations with similar accuracy. 

Training required between 40 μs and 80 μs per sample vector. We think that this work is 

a big step towards building a hardware representation of the human gustatory system. 

10.1.1 Answering thesis questions 

In Section 1.3 of Chapter 1, nine thesis questions were proposed. Here, we summarise 

to what extent these questions have been answered during the course of this research. 

1. How can we enhance DSS to enable them to efficiently process dynamic real-world 

data and perform knowledge discovery? In Chapter 2 Sections 2.2.1 and 2.2.4 we 

stated why the dynamic knowledge based connectionist systems are promising tools 

for building dynamic DSS. Then in Chapter 3 we concentrated on the benefits of 

using these systems in the field of ecological modelling. We proposed an ECOS 

model named LPAM in Chapter 4 and used the model on pest insect data in 

Chapter 5. We showed that the proposed model has superior knowledge discovery 

capabilities when compared with traditional neural networks. Furthermore, in 

Section 7.5 of Chapter 7 we discussed how the benefits of using spiking neurons for 

building DSS have not been thoroughly explored. This is particularly true for 

ecological DSS where spiking neural networks have never been used. In Chapter 8 
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we proposed an evolving neural network, named ESNN-PC, based on spiking 

neurons capable of processing temporal data and capable of knowledge discovery 

from temporal datasets. We showed how this model can be used for the 

classification of beverages (Section 8.6). We also showed that this model can be 

used for qualitative analysis in environmental monitoring (Section 8.7).  

2. How can we present the information learned by such a DSS to enhance the 

understanding of information contained in the created model? In Section 4.3 of 

Chapter 4, we proposed the visualization of extracted rules using LPAM based on 

the information contained in the local models. The extracted knowledge is plotted 

in 2D diagrams where the regression coefficients of each local model are plotted 

against the values of the local models‟ centres. In Section 8.7 (Chapter 8) we 

proposed a framework for extracting knowledge from a trained ESNN-PC. 

3. How can we take advantage of the temporal information processing in one model? 

Our literature survey of biological and computational models of taste-coding 

resulted in the conclusion that the current taste recognition models are not sufficient 

to describe complicated taste processing (Chapter 8 Section 8.1). We also found 

that while there is evidence that taste recognition is dynamic the existing artificial 

models are based on traditional static neural networks that are unable to explore the 

temporal data collected using taste sensors. Therefore, in Chapter 8 Section 8.3 we 

proposed a novel dynamic taste recognition system based on spiking neurons, the 

ESNN-PC-TR, and then we tested it on two real-world taste datasets. 

4. How can data collected by sensors be represented for analysis by spiking neurons 

in a taste recognition model? What is the advantage of doing that? We 

experimented with the population encoding of sensory data and checked if 

population encoding can improve the classification accuracy of a taste recognition 

model based on spiking neurons. In Section 8.6.1 of Chapter 8, we explored the 

classification accuracy of an evolving spiking neural network with rank order coded 

inputs with and without population encoding of sensory data. We found that the 

accuracy of the network increased when population encoding was used. In addition, 

using population encoding increased the biological plausibility of our taste 

recognition model. 

5. Are local modelling techniques suitable for modelling complex nonlinear species-

environment relationships and what are the advantages of using these models? In 
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Chapter 3 Section 3.3 we introduced the problems associated with modelling 

invasions of exotic pest insects and in Chapter 3 Section 3.2 we reviewed the 

benchmark work in this modelling field. We also summarised the issues 

experienced with the techniques that are currently being used to build predictive 

ecological models. In Chapter 4 we then proposed a dynamic model, the LPAM, 

that addressed most of the issues set out in Chapter 3. We validated the model in 

Chapter 4 on two benchmark problems and in Chapter 5 and Chapter 6 we used the 

model for predicting the distributions of pest insects. We found that local modelling 

is suitable for modelling the establishment potential of pest insects and concluded 

that a number of local models rather than a global model can better explore an 

insect‟s invasion characteristics (Chapter 5 Section 5.4). 

6. Can local models be used to aid in the discovery of relationships between climatic 

factors and pest insect distributions? We stated in Chapter 3 Section 3.2.2 that one 

of the main goals of modelling pest-environmental relationships is to obtain a better 

understanding of which climatic factors govern species invasions. We referenced 

published papers where the structures of trained MLP networks have been studied 

to obtain a better understanding of these relationships. We then proposed a dynamic 

technique that provides a knowledge extraction facility. In addition, in Chapter 4 

Section 4.3 we provide a visualisation tool for assessing the extracted knowledge 

and for studying the contributions of each individual predictor variable to the 

prediction estimates. We also used the proposed model to prepare, for the first time, 

a world risk map for the establishment of the insect P. citri. The map can be 

updated if new data becomes available due to for instance the pest establishing at a 

new location or a climate change at the modelled locations. 

7. Is ‘personalised’ modelling suitable for building predictive pest distribution 

models? Chapter 6 is dedicated to answering this question. „Personalized‟ 

predictive models were built for three pest insects. Through experiments that used 

real-world data with 75, 78 and 191 samples we showed that „personalized‟ models 

performed better or as good as local and global models. However, the explanatory 

capabilities of „personalized‟ models are limited. 

8. Can a spiking neural network be used for taste recognition tasks, e.g. to classify 

beverages? We review various spiking neuron architectures and coding schemes in 

Chapter 7 and the current knowledge about taste perception in Chapter 8 Section 
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8.1. In Section 8.2, we discussed the shortcomings of the currently published taste 

recognition models. We proposed our ESNN-PC-TR model based on spiking 

neurons in Section 8.3. Through software simulations of the ESNN-PC-TR we 

showed that it is possible to build a biologically inspired taste recognition model. 

We concluded that taste perception can be simulated by a network of spiking 

neurons with population encoded inputs. 

 

9. What are the benefits of a hardware implementation of a connectionist system? We 

also built an FPGA implementation of the ESNN-PC-TR model and explained the 

implementation in Chapter 9. We discussed the issues associated with 

implementing an ANN in FPGA in Chapter 9 Section 9.1 and gave the details of 

our implementation in Section 9.2. We tested the implementation on the same set of 

real-world taste data we used to evaluate the ESNN-PC-TR in Chapter 8. Our 

results showed that the FPGA implementation was 10 to 25 times faster than the 

software simulations during the evolving phase and 74 times faster during the 

classification of the beverages. The other benefits of using a hardware 

implementation are the lower implementation costs (Damak, 2006), its scalability 

and suitability for embedded design (Lee & Ko, 2006). 

10.2 Analysis of the proposed models 

Two models inspired by computational intelligence methods are proposed in this thesis; 

a dynamic model for risk evaluation (LPAM) and a dynamic model of taste recognition 

(ESNN-PC-TR). Here, we review their strengths and weaknesses. 

10.2.1 LPAM model strengths and weaknesses 

The strengths of the LPAM model lie in its ability to explain what it has learnt about the 

modelling problem. The LPAM is based on DENFIS and accordingly it has knowledge 

extraction capabilities. This is a very important feature when this model is applied to 

ecological problems because it opens up the possibility of improving our understanding 

of ecological processes. The probability evaluation module included in the LPAM 

makes the model less sensitive to the noise found in the data. This should be useful 

whenever there is an unknown amount of noise in the modelling data. Furthermore, the 

LPAM is trained using incremental learning and therefore can learn new information as 

it becomes available without forgetting what it has already learnt. As a result, the model 

can be built for one set of conditions and it will adjust when those conditions change. 
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This makes the LPAM suitable for modelling the influence of climate change on 

ecological processes. 

We think that local modelling is a logical approach for modelling the habitat of invasive 

insects over smaller geographical areas because the information about insect locations is 

better conserved in the estimation. However, the number of local models must be 

optimised. In our work, this number was hand-tuned and therefore, there is a further 

opportunity to automate this process. 

10.2.2 ESNN-PC model strength and weaknesses 

The main strength of the ESNN-PC model is its biologically inspired processing and 

structure. The model is based on spiking neurons capable of modelling neural dynamics 

and proven as efficient units for modelling the visual (Thorpe, Delorme, and Van 

Rullen, 2001) and audio systems (Wysoski, Benuskova, and Kasabov, 2007b). In this 

thesis we have shown that these neurons are also suitable for modelling taste 

recognition. A possible integration of the taste recognition model leading to the creation 

of a model of multimodal perception of food and beverages is suggested in the future 

work section. The dynamic nature of the model allows it to learn new tastants without 

forgetting the ones that it has already learnt, a feature that is natural to humans. The 

model also delivers its knowledge in the form of IF-THEN rules. One weakness in our 

design is that the model‟s parameters must be optimised for accurate taste recognition. 

While, our optimization which has been done by hand has provided an accurate 

classification, an automated approach would be more desirable. 

Hosting the model in hardware not only improved its processing speed but also created 

new opportunities for the use of this model. Some possible applications are suggested in 

the following section. At the moment, the data samples are fed to the ESNN-PC-TR 

from the host computer via the NIOS embedded processor. This slows down the 

processing considerably. Another weakness in the current design is due to the fact that 

the network evolves as it learns new samples. Evolving results in a new formation of 

neurons and connections. The number of neurons depends on the number of classes 

used to train the ESNN-PC-TR and on the variation among the samples from those 

classes. While neurons are typically aggregated during the evolving stage, if we allow 

the ESNN-PC-TR to operate in a life-long manner it can become too big for the size of 

the FPGA chip used. In the future we can rethink this design and include some safety 
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mechanisms to stop the network evolving when the number of neurons becomes too big 

for the chip. 

10.3 Suggestions for future work 

In this section, we suggest four possible directions where the taste recognition model 

ESNN-PC-TR and the local probability adaptive model LPAM may be used and further 

extended. The directions can be explored separately or in sequence, where for instance, 

the second direction would benefit from the first and the third direction could be 

explored after the first two are completed. 

10.3.1 The ESNN based multimodal taste recognition system 

In this thesis, a taste recognition model based on spiking neurons with rank order coded 

inputs has been proposed and tested on two real-world datasets. The experimental 

results, using both a software simulation and hardware implementation, showed that the 

model was able to differentiate between samples of wine and water. The same type of 

neuron has been proven in modelling the visual (Thorpe, Delorme, and Van Rullen, 

2001) and audio system (Wysoski, Benuskova, and Kasabov, 2007b). The same neurons 

were also used in an integration of the visual and auditory modalities (Wysoski, 

Benuskova, and Kasabov, 2007a). Clearly, the perception of taste is multimodal 

(Verhagen and Engelen, 2006; Yoshimura et al., 2004; Dulac, 2000; Toko, 2000). Not 

surprisingly, a combination of smell and taste data samples give a better result than 

when only one type of data is used (Wide et al., 1998). 

Therefore, one direction in which this thesis can be extended is to build an olfactory 

model (ESNN-PC-O). This model can be based on the same spiking neurons and coding 

scheme as used in our taste recognition model and it can be integrate with the current 

taste model (ESNN-PC-TR) to provide a multimodal model of taste perception (Fig. 

10.1). One could explore different techniques of fusing the information coming out of 

the separate modules to achieve the best discrimination properties. Acknowledging that 

the auditory system plays a role in taste perception (Verhagen and Engelen, 2006), a 

taste-smell-audio model of food perception could also be built. Adding visual 

information could also further increase the biological realism of the taste recognition 

system. Ultimately, the resulting model could be implemented in hardware on one chip 

or on a number of separate chips. 
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Fig. 10.1.  The multimodal taste recognition model based on the ESNN-PC approach. 

10.3.2 Smarter mobile robots 

Spiking neural networks have been used to control robotic behaviour (Alnajjar & 

Murase, 2006; Kubota & Sasaki, 2004; Nielsen & Lund, 2003) where the robots learnt 

to navigate through changing environments. Providing a robot with the ability to taste 

and smell would make the robot an ideal environmental monitoring tool. To achieve this 

goal, two main requirements must be satisfied. Firstly, we need to have quality taste and 

smell sensors that are able to operate continuously outside experimental environments. 

Secondly, we need a robust hardware implementation of the taste recognition system. In 

our current implementation of taste recognition, data samples were collected in advance 

and fed to the system via a personal computer and an on-chip microprocessor. To avoid 

this interface between the tastants and the taste recognition system, the sensors would 

need to be mounted on the robot and measurements fed to the taste module. It is very 

likely that the signals will need to be pre-processed in a fast interface module. The robot 

could be trained on some tastants, but would also be able to acquire new tastes during 

its operational phase. A group of testing and smelling robots could communicate 

wirelessly, forming an autonomous sensor net that could potentially provide continuous 

environmental monitoring for a large area. Some other envisaged applications are in 

biosecurity, the chemical industry, the food industry, security, the automotive industry, 

and in home automation. This leads us to the third avenue of the proposed future work. 
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10.3.3 Pervasive computing 

One direction in which this work can be extended is in its utilization in distributed 

sensory systems. Particularly, the FPGA implementation of the ESNN-PC opens up the 

opportunity to embed this system into various pervasive devices. For example, ESNN-

PC systems could be used to taste (ESNN-PC-TR) or smell (ESNN-PC-O) if beverages 

and foods have passed their „best before‟ dates (Fig. 10.2). Together with an appropriate 

set of sensors capable of „smelling‟ different species, the ESNN-PC could be used to 

detect the presence of unwanted species. ESNN-PC embedded in smart shipping 

containers (Fig. 10.3) could detect unwanted pest species before the containers arrived 

to their destination. Thus would allow risk management in transit or on departure. Our 

design of having the whole system on one chip satisfies the requirement that the 

pervasive device must have a low price and must be easy to fit into a wide range of 

deployed infrastructures (Hansmann et al., 2003). While currently the main obstacle to 

the creation of such system is the lack of off-the-shelf sensors, as technology evolves, 

this obstacle will soon disappear. 

 

 

Fig. 10.2.  An ESNN-PC embedded in a smart refrigerator. 

 

 

 

 

 

 

 

 

 

 

Fig. 10.3.  A ship with container cargo using embedded ESNN-PC modules for in-situ detection 

of unwanted species posing bio-security risks. 

We can also envisage the scenario shown in Fig. 10.4 where different sensors 

(temperature, moisture, pollutant, ...) continuously measure the climatic characteristics 

of an area. These arrays of sensors are paired up with LPAM modules where the LPAM 
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provide data analysis at a local level thus providing local modelling before sending the 

information to a higher-level global monitoring system. The LPAM‟s ability to adapt to 

the environmental dynamics makes the LPAM suitable for life-long monitoring 

operations. 

           

Fig. 10.4.  LPAM for local modelling in a distributed environmental monitoring system. 

10.3.4 Quantum evolving spiking neural networks - QSNN 

In our work, despite the fact that the models are able to evolve their structures, a number 

of the models‟ parameters must be optimised to achieve accurate modelling. As stated 

in Section 10.2, while the manual optimization has provided accurate models, an 

automated approach would be more desirable. Studies by Kasabov (Kasabov, 2007) 

showed that optimising the neural network parameters and selecting the relevant data 

features in one optimisation improved modelling accuracy. However, classical search 

algorithms are slow and inappropriate for building adaptive SNN. In (Defoin-Platel, 

Schliebs & Kasabov, 2007) an extremely fast quantum inspired evolutionary algorithm 

for feature selection is proposed. In (Venayagamoorthy & Gaurav, 2005) quantum-

inspired evolutionary algorithms are used to train MLP networks. 

Encouraged by promises of faster and more accurate neural networks (Narayannan & 

Maneer, 2000), we propose a future extension to the ESNN-PC model. In this extension 

the currently used spiking neurons are replaced by novel quantum spiking neurons 

where the spikes are represented as quantum entities characterised by a probability pi(t) 

which is dependent on, for instance, the time integral between two spikes. In the new 
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QESNN-PC model both the optimization of the features and the network parameters are 

done at the same time as the network is built using a novel quantum inspired search 

algorithm. The QESSN-PC would replace the ESNN-PC in the applications suggested 

in Sections 10.3.1 – 10.3.3. 

10.4 Overall conclusion 

The main goal in this thesis is to develop new generic ECOS for decision support that 

have the following features: (1) adaptive, evolving learning; (2) knowledge extraction 

and knowledge discovery; and (3) accurate predictions. This thesis presented LPAM, a 

new adaptive predictive model based on local probability applied for assessing the 

establishment potential of pest insects, and ESNN-PC-TR, a new adaptive taste 

recognition model based on spiking neurons. Both approaches were evaluated on real-

world datasets and their performances were successful. The LPAM was as accurate as 

other published models but provided a better understanding of modelling problems. The 

ESNN-PC-TR is more biologically plausible than any taste recognition model published 

up to date. The ESNN-PC was implemented in software and hardware and the two 

implementations were compared in terms of processing speed and accuracy. Both 

models, particularly the ESNN-PC and its FPGA implementation, provide very exciting 

avenues for future work. 

The software implementation of the ESNN-PC (ESNN-PC-TR) is available free from 

http://manukau.ac.nz/departments/e_e/staff/soltic.asp. 
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Appendix 
MATLAB code for LPAM 

%========================================================== 

%= Code for LPAM 

%= Takes in data with class designators (data_in) and class 

%= labels 0 and 1.  

%=   

%= Uses: shuffle, ecm1, denfis1 and denfis2s - all from  

%= http://www.aut.ac.nz/research/research_institutes/kedri/ 

%= 

%= @ param data_in - data with the class 

%= @ param th - ECM threshold, determines the number of clusters 

%= @ thD - dichotomising threshold 

%= 

%= @ return predictions - predicted values for all data samples, 

%= @ return acc - accuracy. 

%= Date: Mar, 2005; Dec 2008   

%=============================================================== 

function  [predictions, acc] = LPAM(data_in, dthrV, thD) 

 

[rows, columns] = size(data_in);     

predictions = []; 

mix = []; 

data = []; 

class = []; 

 

% shuffle the original data 

mix = shuffle(data_in);    

data = mix(:, 1: columns - 1); % data without class labels 

class = mix(:, columns);  % extracts the class labels 

 

% ECM clustering 

parm0.dthr = th;  % ECM threshold 

res = ecm1(data, parm0); % run ECM 

[r, NoECMClusters] = size(res.Cluster); 

% Probability evaluation 

Y_Data=[]; 

X_Data=[]; 

for i=1:NoECMClusters 

   tmp=res.Cluster{i}; % Cluster i 

   Y_Data=[Y_Data length(find(class(tmp, 1)==1))/length(tmp)]; 

   [r,c] = size(data(tmp,:)); 

   if r == 1 

      X_Data =  cat(1, X_Data, data(tmp,:)); 

   else  

      X_Data= cat(1, X_Data, mean(data(tmp,:))); 

   end 

end 

 

% knowledge discovery using DENFIS 

resd = denfis1([X_Data Y_Data']); % Training 

ressd = denfis2s(data, resd); % Predictions 

f = ressd.Oriy'; 
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% Normalization of the predicted results 

fmin = min(f); 

fmax = max(f); 

fnorm = (f + abs(fmin)) / (fmax - fmin); 

predictions = cat(2, fnorm, class); 

correct = 0; 

total = 0; 

[rNorm,cNorm]  = size(fnorm); 

for i = 1 : rNorm 

   if fnorm(i) >= thD 

      total = total + 1; 

      switch (class(i)) 

         case 1 

            correct = correct + 1; 

      end 

   end 

end 

acc = correct/total; 

 

disp(' '); 

disp(['       Accuracy: ' sprintf('%5.3f',acc)]); 

 

 

%=============================================================== 

%= Leave-one-out predictions using LPAM. 

%= 

%= Class labels 0 and 1. Seven dichotomising thresholds: 

%=                     0.3, 0.4, 0.5, 0.6, 0.7,0.8 & 0.9 

%= Invokes: shuffle, ecm1, denfis1 and denfis2s - all from 

%= http://www.aut.ac.nz/research/research_institutes/kedri/ 

%= 

%= @ param data_in - input data (must contain the class labels) 

%= @ param th - determines the number of clusters 

%=  

%= @ output predictions - predicted values for all locations, 

%= @ output acc - accuracy over 7 dichotomising thresholds 

%= 

%=  Date: Feb, 2005; Dec 2008                               

%=============================================================== 

function  [predictions, acc] = LPAM_LOO(data_in, th) 

 

[samples, col] = size(data_in); 

mix = [];  // shuffled data 

p = []; 

acc = [];  // accuracy 

 

% shuffle the original data 

mix = shuffle(data_in);   

  

% repeat for each sample 

for i = 1:samples 

 

   % remove current test sample from the original data 

   sample_i = mix(i, 1:col-1); 

   % form a training set 

   train_b = mix(1:i-1, :); 

   train_a = mix(i+1:samples, :); 
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   train= cat(1, train_b, train_a); 

 

   % cluster using ecm 

   parm0.dthr = th; 

   res = ecm1(train(:, 1:col-1), parm0);  

   [r, NoClusters] = size(res.Cluster); 

   % probability evaluation 

   Y=[]; 

   X=[]; 

   for j=1:NoClusters 

      tmp=res.Cluster{j}; 

      Y=[Y length(find(train(tmp, col)==1))/length(tmp)]; 

      [r,c] = size(train(tmp,:)); 

      if r == 1 

         X =  cat(1, X, train(tmp,1:col-1)); 

      else  

         X= cat(1, X, mean(train(tmp,1:col-1))); 

      end 

   end 

 

   % knowledge discovery using DENFIS 

   resd = denfis1([X Y']); % training 

   ressd = denfis2s(sample_i, resd); % estimation 

   f = ressd.Oriy'; 

   p = [ p f ]; 

end 

p = p'; 

 

% normalise predictions 

pmin = min(p); 

pmax = max(p); 

predictions = (p + abs(pmin)) / (pmax - pmin); 

[r,c]  = size(pnorm); 

 

% evaluate accuracy at different thresholds 

for step = 0.3:0.1:0.9 

   t = 0; 

   correct = 0; 

   for i = 1 : r 

      if pnorm(i) >= step 

      t = t + 1; 

      switch (mix(i, col)) 

         case 1 

            correct = correct + 1; 

         end 

      end       

   end 

   correct = correct/t; 

   acc = [acc correct]; 

end     

 


