
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005 1707

Fast Neural Network Ensemble Learning via
Negative-Correlation Data Correction

Zeke S. H. Chan and Nik Kasabov

Abstract—This letter proposes a new negative correlation (NC) learning
method that is both easy to implement and has the advantages that: 1) it re-
quires much lesser communication overhead than the standard NC method
and 2) it is applicable to ensembles of heterogenous networks.

Index Terms—Distributed computing, ensemble learning, negative cor-
relation (NC) learning.

I. INTRODUCTION

There are three aspects desirable for practical neural network en-
semble learning. First, an efficient parallel computing scheme that can
cope with the computationally intensive task of trainingmultiple neural
networks. Second, the capability to integrate different network models
that may be heterogenous or obtained from a third-party source, e.g.,
multilayer perceptrons (MLPs) and radial basis functions (RBFs) to
provide a more diversified output. Third, a cooperative learningmethod
that promotes interaction between networks.

For implementing cooperative learning, negative correlation (NC)
method [1]–[3] has been shown to improve ensemble generalization
performance both theoretically and practically. Standard NC learning
requires modifying the error functions of component networks to incor-
porate a penalty function that promote negatively correlated prediction
errors, which in effect causes the networks to diversify in their out-
puts and each network to specialize in a particular aspect of the data.
However, the methods developed so far can only assemble networks
that use backpropagation training, and can demand prohibitively high
communication bandwidth (between component networks) that hinders
parallel speedup. In addition, every component network must be re-
programmed to include the penalty function in the training objective,
which raises difficulties in using third party codes. These drawbacks
significantly limit the practical application of NC method for ensemble
learning.

To overcome these limitations, we propose a new NC based method
called negative correlation learning via correlation-corrected data
(NCCD). It differs from all previous NC methods that instead of
modifying every component network’s error function to incorporate
error correlation information, NCCD modifies the training data and
creates sets of correlation-corrected data (C-C data) as new training
data, which induce NC learning when the component networks are
trained on them. Thus, without the requirement of recoding each
component network, NC learning becomes very simple to implement
and can be used for assembling heterogenous networks. Another major
advantage is that NCCD significantly reduces network communication
bandwidth, making parallel speedup more effective (due to the higher
computation-to-communication ratio or granularity).

Manuscript received May 13, 2004; revised March 3, 2005. This work was
supported by the Knowledge Engineering and Discover Research Institute
(KEDRI) Postdoctoral Fellow Research Fund.

The authors are with the Knowledge Engineering and Discover Research In-
stitute (KEDRI), Auckland University of Technology, Auckland, New Zealand
(e-mail: shchan@aut.ac.nz; nkasabov@aut.ac.nz).

Digital Object Identifier 10.1109/TNN.2005.852859

II. OVERVIEW OF NEGATIVE CORRELATION LEARNING

Ensemble learning involves two stages: training the networks
and combining their outputs. Here we focus on the application of
NC learning to the former, and assume simple averaging for com-
bining network outputs. NC learning requires: 1) inclusion of a
correlation penalty function in the error function of each network
and 2) periodic communication between component networks. Let
T = fx;dg= f(x(1); d(1)); (x(2); d(2)); . . . ; (x(N); d(N))g
represents the training data where N is the number of patterns and
fx;dg are the input and output (target) vector, respectively. We form
an ensemble ofM networks whose joint output F is the average of the
ith network outputs Fi, 8i = [1; 2; . . . ;M]. Consequently, the error
E is also the average of the ith network errors Ei = kd � Fik

2. F
and E are given by

F(n) =
1

M

M

i=1

Fi(n) E(n) =
1

M

M

i=1

Ei(n) (1)

where n denote the index of the training sample. We define a corre-
lation penalty Pi that measures the error correlation between the ith
network and the rest of the ensemble as follows. Recall that the goal of
generalization is to learn the generating function of the output and not
the target data itself, otherwise “overfitting” of data may occur. We use
F(n) to approximate the generating function such that (Fi(n)�F(n))
approximates the error of the ith network and

8j 6=i
(Fj(n)�F(n))

the joint error of the rest of the ensemble from the generating function.
The error correlation Pi is then obtained as their product

Pi(n) = (Fi(n)� F(n))
8j 6=i

(Fj(n)� F(n)) : (2)

For NC learning, the new error functionEi is a weighted sum of the
original error function and the penalty function Pi, given by

Ei(n) =
1

2
kFi(n)� d(n)k

2 + �Pi(n) (3)

where 0 � � � 1 is the hyperparameter (a term used to describe a sim-
ilar instance in network regularization) that adjusts the strength of the
correlation penalty. For learning the weights of the ith network through
standard backpropagation, the partial derivative of the ensemble error
E with respect to Fi is obtained using (1)–(3)

@E(n)

@Fi(n)
=

1

M
[(Fi(n)� d(n))� 2� (Fi(n)� F(n))] : (4)

For network training, the derivative in (4) requires periodic updating
of the ensemble output F(n). In Liu and Yao’s CELS [3], which is
the best NC learning algorithm reported to date, the updating is on a
pattern-by-pattern basis, making the communication bandwidth very
high. To measure the communication overhead, we define nex to be
the total communication cost for sending each network’s prediction for
every training sample to updateF(n) during the entire training period.
Given gtot denote the total number of training epochs, CELS requires
a communication overhead of nex = gtot �N .

III. NCCD

C-C data are transformed training data that induce NC learning when
the networks are trained on them. Each network is assigned its own set
of C-C data that is updated periodically. The principle of NCCD is il-
lustrated in the example of training the ith network in an ensemble of

1045-9227/$20.00 © 2005 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AUT Scholarly Commons

https://core.ac.uk/display/56361386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1708 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

Fig. 1. Illustration of the principle of C-C data. a) Output errors of the ith network and the rest of networks, denoted byEi andE�i , respectively, are positively
correlated. b) After training to the C-C data, Ei and E�i become negatively correlated.

M network in Fig. 1. Let Ei denote the prediction error of the ith net-
work and E�i = j 6=i

Ej denote the joint prediction error of all but
the ith networks. Initially, the output errors are positively correlated
[both Ei and E�i have the same directional vector Fig. 1(a)], causing
a large joint error j

i
Ej j > jEij+ jE�ij. This is often known as the

co-linearity problem [4]. NCCD creates a new set of training data called
the C-C data, denoted T(c)

i = fx; cig, for the ith network. It consists
of the original training input data x and the transformed target data ci
whose error to the original training data is negatively correlated with
the joint output [note that ci appears above the true output Fig. 1(b)].
Now by training the ith network on the C-C data T(c)

i , Ei becomes
negatively correlated with E�i. The two errors cancel each other out,
yielding a smaller joint error j

i
Ej j < jEij+ jE�ij, therefore alle-

viating the co-linearity problem.
The critical procedure of NCCD is the generation of the transformed

target data ci, which is derived as the desired network output F0
i that

minimizes the ensemble errorE. It is obtained by setting the derivative
of E (4) to zero

At
@E(n)

@Fi(n)
= 0; F

�
i (n) = ci(n) =

d(n)� 2�F(n)

1� 2�
: (5)

The transformed target ci in (5) must be periodically updated with the
latest ensemble outputF to promote network interaction. Since ci em-
beds all relevant error-correlation information, it can be used for inde-
pendent network training for a long period of time without updating
and still induce NC learning. In fact, the update interval for ci must be
long enough to allow the networks to capture the salient features of ci
and yet short enough to allow network interaction. By empirical exper-
iment, we find that the optimal update interval is problem-dependent
and is in the range of 1–1000 epochs (each epoch represents one pass
of all training patterns). This is markedly different from CELS that em-
phasizes simultaneous learning of all networks through pattern-by-pat-
tern updating of the partial derivative in (4). The longer updating in-
terval reduces communication bandwidth dramatically, making NCCD
effective for speedup using parallel computing.

Fig. 2 shows the distributed computing environment applicable for
implementing NCCD. Each component network of the ensemble op-
erates on a different processor node. A control center is used to cen-
tralize all information flow and its tasks are to: 1) generate the C-C
data for each network, 2) send them out, and 3) collect the trained net-
work outputs. Let gupdate and gtot denote the length of C-C data up-
date period (in epochs) and the total number of training epochs allow-
able per network, respectively. The updating of the C-C data ci may be
implemented synchronously (after all networks have finished training
for gupdate epochs) or asynchronously (whenever a network has fin-
ished training for gupdate epochs). Here, we implement the later as both

Fig. 2. Example of distributed computing environment suitable for
implementing NC learning using C-C data on an ensemble of three component
networks.

methods perform similarly. The procedures are summarized in the fol-
lowing pseudo codes.

Step 1) InitializeM networks with random weights. Partially train
each network to the training data T = fx;dg for gupdate
epochs and then obtain network output.

Step 2) Wait upon receipt of the ith network outputFi at the control
center:
a) update the ensemble output F;
b) create the C-C target data ci using (5);
c) send C-C data T(c)

i = fx; cig to the ith network and
train it for gupdate epochs;

d) send network output Fi to control center.
Step 3) Stop if each network has trained for a total of gtot epochs;

else go to Step 2).

IV. EXPERIMENTS AND RESULTS

We apply NCCD to both regression and classification problems. The
regression problem is on predicting the Mackey–Glass chaotic time-
series, generated by

_x(t) = �x(t) +
�x(t� �)

1 + x10(t� �)

with parameters � = 0.2, � = 0.1 and � = 14 and initial conditions
x(0) = 1.2, x(t� �) = 0 for 0 � t � � and time-step = 1. The input
variables are fx(t); x(t�6); x(t�12); x(t�18)g and the output vari-
able is x(t + 6). Both the training set and test set consist of 500 data
points taken from the 118th–617th time point and the 618th–1117th
time point, respectively. Performance is assessed by the prediction error
on the test set measured in normalized root-mean-square (NRMSE)
error, which is the root-mean-square error divided by the standard de-
viation of the series. Our ensemble setup follows that for CELS [3]. It
contains M = 20 MLP networks. Each network contains one hidden
layer of six neurons. The hidden and output activation functions are

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005 1709

Fig. 3. Error plots showing the convergence of NCCD on the Mackey–Glass data. (a) Plot of test set errors versus update interval gupdate. (b) Plot of C-C data
errors, training set errors, and validation set errors.

hyperbolic tangent and linear function, respectively. The total number
of training epochs gtot is set to 10 000.

First of all, we investigate the convergence property of NCCD at
different parameter settings. NCCD is evaluated 5 times at each com-
bination of update intervals gupdate = [10; 20; 40; . . . ; 2; 560] and
� = [0:1; 0:2; . . . ; 0:5] (beyond 0.5 the system diverges1 and the re-
sults are plotted in Fig. 3(a). First, we see that performance is very sen-
sitive to �; in this case, the higher the value of �, the lower the predic-
tion errors become, and the optimal value is 0.5. At fixed values of � the
error curves are generally similar: errors are highest at gupdate = 1, but
then decrease rapidly with increasing gupdate until they stabilize after
gupdate > 100. Performances are most consistent (with small error
variances) in the range 100 < gupdate < 500. This result agrees with
the previous discussion that the length of gupdate must be balanced to
facilitate both network interaction and network learning of the salient
features of the C-C data. A large value of optimal gupdate is of signifi-
cant advantage in terms of efficiency because it reduces communication
bandwidth. We can use empirical methods like cross validation to de-
termine the optimal values of � and gupdate .

Next, we use gupdate = 100 and � = 0.5, randomly choose a com-
ponent network and plot 1) the error between its C-C data and the orig-
inal training data (denoted the C-C data error), 2) its prediction error
on the training set (the training error), and 3) on the validation set (the
validation error) over the training process of 10 000 epochs in Fig. 3(b).
Note that the C-C data error decreases unilaterally as the training error
and the validation error decreases, showing that lesser correlation-cor-
rection on the original target is required to create the C-C data as the
network predicts with higher accuracy. We can use this property of
the C-C data error for diagnosis of convergence problems and adap-
tive-control of NCCD parameters such as � (e.g., lower � if C-C data
error starts rising). It contributes to an important advantage of NCCD
and will be further investigated in future works.

Performance comparison between independent training, CELS and
NCCD is shown in Table I. Both NC learning methods outperform in-
dependent training. NCCD is more cost-effective than CELS in terms
of communication overhead: at gupdate = 100 and � = 0:5, it scores
slightly higher error (0.0115 c.f. 0.0100), yet it requires communication

1NC learning diverges above a certain maximum value of �. In [3], the max-
imum value of � is 1.0, but this value is based on a mistake made in the deriva-
tive of E [3, eq. (12)], which is corrected in a later publication [6, eq. (10)]. The
correction leads to a maximum value of roughly 0.5, which corresponds to the
divergent point we discover here.

TABLE I
COMPARISON OF TEST ERRORS ACHIEVED BY DIFFERENT METHODS

ON THE MACKEY–GLASS DATA. nex REPRESENTS THE

NUMBER OF NETWORK COMMUNICATIONS REQUIRED

overhead of only nex = (M �gtot=gupdate) = (20�10 000=100) =
2000 rather than nex = (N � gtot) = (500 � 10 000) = 5 � 106,
which is lesser by a factor of 2500.
The classification problem is a real-life problem of Australian credit

card approval. The task is to assess credit card applications based on a
number of attributes. The data set consists of 690 cases and each case
has two output classes and 14 input variables.We use the first 518 cases
for training and the remaining 172 cases for testing, following that for
CELS [3]. The ensemble output is obtained using the “winner-take-
all” (WTA) method, i.e., the output node that has the highest activation
among all networks wins. Performance of NCCD is measured in test
error averaged over 30 runs.
In this problem, we demonstrate NCCDs capability to 1) ensemble

heterogenous networks that may use nonbackpropagation type learning
and to 2) improve the generalization performance of the ensembles
through NC learning. We create ensembles of 1) four MLPs, 2) two
MLPs plus two RBFs, 3) four RBFs, and 4) four support vector regres-
sion networks (SVRs) [5] and compare their performances with and
without NCCD training. For NCCD settings, we use gupdate = 1 and
� = 0.25 based on limited trials. The parameter settings for the net-
works are as follows. Each MLP has ten hidden nodes and the total
number of training epochs is set to 25 (following that for CELS [3]).
The RBFs use a two-stage learning method that first positions the basis
functions (10 spherical Gaussians) with the Expectation Maximiza-
tion algorithm, and then adjusts only the connection weights using
the least square method in subsequent training. The SVRs use linear
"-insensitive cost function with Gaussian kernel and parameters2 C =

2Here we use the same symbols " and C common for formulating support
vector machines or regression networks: " is the maximum prediction deviation
allowable from the observations, and C is the hyperparameter that determines
the tradeoff between the flatness of the prediction function and the amount up
to which deviations larger than " are tolerated.

1710 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

TABLE II
PERFORMANCE COMPARISON BETWEEN INDEPENDENT TRAINING, NCCD (ON
THE ENSEMBLES OF 1) FOUR MLPS, 2) FOUR RBFS, AND 3) TWO RBFS PLUS
TWO MLPS AND 4) FOUR SVRS ON AUSTRALIAN CREDIT CARD ASSESSMENT.
nexREPRESENTS THE AMOUNT OF REQUIRED NETWORK COMMUNICATIONS.

NOTE THAT CELS IS ONLY APPLICABLE TO ENSEMBLES OF MLPS

10�4 and " = 0:1, and they are trained using the quadratic program-
ming method. Note that neither the RBFs nor SVRs use backpropaga-
tion-type learning algorithms.

Results are shown in Table II. Although each ensemble performs
differently from each other, NCCD improves the generalization
performance of all by 0.2%–1.0%. Comparing with CELS on
the ensemble of four MLPs, NCCD scores slightly higher error
(12.2% c.f. 12.0%), yet requiring 130 time lesser network com-
munications ((M � gtot=gupdate) = (4 � 25=1) = 100 c.f.
(N � gtot) = (518 � 25) = 12950). NCCD is clearly the more
cost-effective method.

V. CONCLUSION

The theory and experiments have demonstrated the proposed NC
learning method.

ACKNOWLEDGMENT

The authors would like to thank the various reviewers for their
helpful comments.

REFERENCES

[1] R. T. Clemen and R. L. Winkler, “Limits for the precision and value of
information from dependent sources,” Oper. Res., vol. 33, pp. 427–442,
1985.

[2] M. Perrone and L. N. Cooper, “When networks disagree: ensemble
methods for hybrid neural networks,” in Neural Networks for Speech
and Image Processing, R. J. Mammone, Ed. London, U.K.: Chapman
& Hall, 1993.

[3] Y. Liu and X. Yao, “Simultaneous training of negatively correlated
neural networks in an ensemble,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 29, no. 6, pp. 716–725, Dec. 1999.

[4] B. E. Rosen, “Ensemble learning using decorrelated neural networks,”
Connection Sci., vol. 8, pp. 373–384, 1996.

[5] A. Smola and B. Scholkopf, “A tutorial on support vector regression,”
Statist. Comput., vol. 14, pp. 199–222, 2004.

[6] M. Islam, X. Yao, and K. Murase, “A constructive algorithm for training
cooperative neural network ensembles,” IEEE Trans. Neural Netw., vol.
14, no. 4, pp. 820–834, Jul. 2003.

Exponential -Regulation for Multi-Input Nonlinear
Systems Using Neural Networks

Shaosheng Zhou, James Lam, Gang Feng, and Daniel W. C. Ho

Abstract—This paper considers the problem of robust exponential
-regulation for a class of multi-input nonlinear systems with uncer-

tainties. The uncertainties appear not only in the feedback channel but
also in the control channel. Under some mild assumptions, an adaptive
neural network control scheme is developed such that all the signals of
the closed-loop system are semiglobally uniformly ultimately bounded
and, under the control scheme with initial data starting in some compact
set, the states of the closed-loop system is guaranteed to exponentially
converge to an arbitrarily specified -neighborhood about the origin. The
important contributions of the present work are that a new exponential
uniformly ultimately bounded performance is proposed and that the
design parameters and initial condition set can be determined easily. The
development generalizes and improves earlier results for the single-input
case.

Index Terms—Adaptive control, multi-input system, neural network,
nonlinear system, uncertain system, uniform ultimate boundedness.

I. INTRODUCTION

The study of uncertain nonlinear systems has been one of the most
active research topics in recent years (see, for example, [3]–[5], [7]–[9]
and references therein). Neural network techniques have been found to
be particularly useful for controlling nonlinear systems with uncertain-
ties [5], [8]. Neural network approximators can be used to parameterize
an unknown nonlinear function over a compact set to any degree of ac-
curacy [2]. Representative work can be found in, to just name a few,
[5], [6], [8]–[11], and [13]. By using neural network, Polycarpou and
Mears [8] developed control laws that guarantee semiglobal uniform
ultimate boundedness. Zhang et al. [11], [12] developed control laws
to solve the control problemwith uncertainty in control channel. All the
plants considered in [8] and [10]–[12] are single-input nonlinear sys-
tems with uncertainties. Recently, Kwan and Lewis [5] developed con-
trol laws to control a more general class of multi-input plants without
uncertainty in the control channel. It is noted that the developments in
[5], [8], and [10]–[12] all guarantee uniform ultimate boundedness of
the closed-loop signals. That is, all the closed-loop signals converge
not to a point but to a ball-type residual set (asymptotic bounding). As
the magnitude of the uncertain nonlinearities increases, the size of the
residual set may also increase. Therefore, these control schemes may
not be applicable if the uncertain nonlinearities dominate the system
dynamics to the extent that the achievable residual set is beyond the
application range.
Motivated by [5], [8], and [10]–[12], this paper develops a dynamic

feedback control scheme based on neural networks for a new class of
multi-input plants with dominating uncertain nonlinearity in the feed-
back channel and time-invariant uncertainty in the control channel. The

Manuscript received December 31, 2002; revised April 4, 2005. This work
was supported in part by RGC under Grant 7103/01P and the National Natural
Science Foundation of P. R. China under Grant 60574080.

S. Zhou is with the Institute of Automation, Qufu Normal University, Qufu
273165, Shandong, China (e-mail: zss@myself.com).

J. Lam is with the Department of Mechanical Engineering, University of
Hong Kong, Hong Kong, China (e-mail: james.lam@hku.hk).

G. Feng is with the Department of Manufacturing Engineering and Engi-
neering Management, City University of Hong Kong, Hong Kong, China.

D. W. C. Ho is with the Department of Mathematics, City University of Hong
Kong, Hong Kong, China.

Digital Object Identifier 10.1109/TNN.2005.853335

1045-9227/$20.00 © 2005 IEEE

