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A novel global clustering method called the Greedy Elimination

Method is presented. Experiments show that the proposed method

scores significantly lower clustering errors than the standard K-means

over two benchmark and two application datasets, and it is efficient for

handling large datasets.

Introduction: The K-means algorithm is used widely either as a

stand-alone clustering method, or as a fast method for computing

the optimal initial cluster centres for more expensive clustering

methods. It employs a simple iterative scheme that performs hill

climbing from initial centres, whose values are usually randomly

picked from the training data. Although the algorithm is very

efficient, it suffers two well-known problems: (i) the solutions are

only locally optimal, and (ii) their qualities are sensitive to the initial

conditions (i.e. the values of the initial centres). This Letter presents

an efficient global clustering method called the Greedy Elimination

Method (GEM) for alleviating these problems.

Problem definition and Greedy Elimination (GEM) algorithm: With

the conventional K-means algorithm, the clustering task is to cluster N

samples of training data X¼ {x1, . . . ,xN} into K Voronoi partitions

defined by the cluster centres M¼ {m1, . . . ,mK}. The most common

clustering criterion E(X,M) is the minimisation of the clustering

error, which is defined as the sum of squared Euclidean distances

between each data point to its nearest cluster centre. Let

Ck, k¼ [1, 2, . . . , K ] represent K disjoint subsets such that (xn2Ck)

if k¼ arg mini(kxn�mik
2). E(X,M) is given by

EðX;MÞ ¼
PN

n¼1

PK

k¼1

I ðxn 2 Ck Þkxn �mkk
2 ð1Þ

where I(X )¼ 1 if X is true and 0 otherwise.

Let a >1 represent the enlargement factor for the desired number of

centres K. GEM begins by obtaining a solution of aK centres using the

standard K-means (with random initialisation), and then eliminates

them one-by-one until K centres remain in the solution. Let M*(J )

denote the optimal solution for J centres. The kernel operation of GEM

is the greedy elimination of the centres for obtaining M*(J� 1) given

M*(J ), and it proceeds as follows. From M*(J ) we extract J sets of

reduced solutions M�j j¼ [1,2, . . . , J], where M�j is given as M*(J )

minus the jth centre. Next we perform K-means on each reduced

solution M�j to obtain the corresponding optimal solutions M�j* and

clustering errors. The solution that yields the lowest clustering error is

regarded as M*(J�1), which is the optimal solution for (J�1) centres.

Thus for GEM to compute the optimal solution for K centres, we set the

initial solution to M*(aK) and then compute M*(ak�1) from M*(aK)
using the greedy method. Next, we compute M*(aK�2) from

M*(aK�1) and so on until M*(K) is obtained. An illustration of

GEM is shown in Fig. 1.

Fig. 1 Demonstration of GEM on clustering an artificial dataset into four
clusters

a We use an enlargement factor of a¼2 to begin with eight initial centres, which
provide knowledge on the global distribution of the data
b The centres are eliminated one-by-one until only four centres remain

At each stage of eliminating one centre from M*(J ), GEM requires

J runs of K-means to evaluate the clustering errors of the reduced

solutions M�j, j¼ [1,2, . . . ,J]. It must be noted that the computational

intensity of each K-means run varies according to the number of centres

used. In the efficiency comparisons, we ignore this factor because it is

insignificant relative to the total number of K-means run incurred by

different algorithms. This operation constitutes the main computational

bottleneck, costing GEM a total of (KstartþKstart� 1þ . . . þK)�

(a2� 1)K2=2 runs of K-means. A much faster version of GEM can

be achieved by using the upper bound of clustering errors instead of the

K-means optimised clustering errors, which can be computed efficiently

by: (i) storing the table that records the Euclidean distance between

the data points and the centres from computing M*( j), and (ii)

summing the minimum distance between each data point to all except

the jth centre in the table. Let U�j (X,M*(J )) denote the upper bound

clustering error for the reduced solution M�j. It is formally given as

U�jðX;M*ðJ ÞÞ ¼
PN

n¼1

PK

k¼1;k 6¼j

I ðxn 2 Ck Þkxn �mk*k
2 ð2Þ

We apply K-means to the reduced solution that yields the least upper-

bound error to retrieve M*(J� 1). The fast GEM requires only one run

of K-means for each stage of centre reduction, and therefore a total of

(aK�K)¼ (a� 1)K runs of K-means. Empirical tests show that the fast

GEM yields very competitive results to the standard GEM, yet requires

much shorter computational time.

GEM achieves two important objectives: global clustering and

efficiency. It achieves global clustering because, by using an initial

solution of more than K centres, GEM covers a larger portion of the

search space, and therefore gains more knowledge on the global

distribution of the data in the beginning of the clustering process. By

comparing the optimality of different centre solutions and eliminating

the sub-optimal centres during the greedy elimination process, GEM

uses this knowledge to guide the search towards the globally optimal

region. One can draw an analogy between the use of more than K

centres in GEM for global clustering, and the use of multiple search

points in evolutionary algorithms (such as genetic algorithms) for

global optimisation.

GEM is also more efficient than many global clustering methods

proposed in the literature because of two factors. First, empirical tests

show that a small enlargement factor of a¼ 2 is often sufficient.

Second, the required number of K-means runs scale only as K2 for

the standard version and as K for the fast version. Since K is usually a

small number lying in the range [2,20] and is much smaller than the

number of data points N, this requirement is much smaller than other

global clustering methods, like the Greedy method by Likas [1] that

scales as NK, and the genetic algorithm by Maulik [2] that scales as

(population size�max.generation), where the values of the population

size and maximum generation are [10,100] and 1000, respectively.

In addition to its global clustering property and efficiency, GEM has

two other advantages: first, GEM generates the clustering error of the

solutions for the aK to K centres during the greedy elimination process.

We use this information to determine the optimal number of centres

using criteria like Akaike or Bayesian Information Criteria. Second, the

algorithmic structure of the standard version of GEM is suitable for

parallel computing and we can easily achieve significant speed-up

through distributing the task of evaluating the clustering error of each

reduced solution on multiple nodes.

Experiments: We compare the performance between the standard

K-means, the fast GEM and the standard GEM over clustering

(unsupervised) two benchmark datasets and two application datasets

into 2 to 10 clusters. Performance is measured in sum square clustering

error. For the standard K-means, we perform 20 runs of clustering for

each of the 2 to 10 clusters. For both the fast GEM and standard GEM,

we initialise with Kstart¼ 20 centres (which gives the scaling factor a¼ 2

for K¼ 10 centres) and then obtain the optimal solutions and clustering

errors for (10, 9, . . . ,2) centres progressively in the same run. Results

from 20 runs are obtained. The stopping criterion for the K-means

iterations is if the clustering error decreases by less than 0.01%. All

algorithms initialise the centre values by sampling randomly from the

training data. They are coded in Matlab and tested on a P4 2.4 GHz PC.

The sizes and the dimensions of the datasets span a large range of

[58, 2000] and [9, 256], respectively. The two benchmark datasets are

the Breast Cancer dataset, which consists of 683 samples of nine

features, and the Glass Identification dataset, which consists of 214

samples of nine features. Both datasets are obtained from the UCI
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database. The first application dataset comes from a gene expression

classification problem and it consists of the microarray data of 58

diffuse large B-cell lymphoma (DLBCL) patients [3]. The values of 11

selected genes are used as the feature variables. The second application

dataset is a texture segmentation problem and it consists of 2000

patches of 16� 16 pixel images randomly sampled from ten

256� 256 pixel Brodatz texture images [4]. Each 16� 16 pixel

images is expressed as a 256� 1 vector of feature variables.

Fig. 2 Boxplot of clustering errors scored by standard K-means, fast GEM
and standard GEM for clustering datasets of 2–10 clusters

The markers indicate the median value and the lines indicate the quartiles.
a Breast cancer b Glass c DLBCL d Brodatz

The comparisons of the clustering errors for 2–10 clusters are shown

in Fig. 2, and the comparisons of the computational times for clustering

the data into ten clusters are shown in Table 1. For all four datasets, the

GEM methods score much lower clustering errors, and much smaller

variance (the quartile marker lines are much shorter) than the standard

K-means. The improvements are bigger with more cluster centres

because the number of sub-optimal solutions increases, making the

global clustering property of GEM more prominent over the local

clustering property of standard K-means. In all cases, the fast GEM

performs as well as or only slightly worse than the standard GEM, but

requires much shorter computational time. It requires only �K times

more than that of the standard K-means, which is much lesser the

greedy method by Likas [1] and the genetic algorithm by Maulik [2]

mentioned earlier. Considering that K is a small integer in most

applications, the fast GEM is hence a very cost-effective solution. Its

feasibility for large datasets is demonstrated in the task of clustering the

Brodatz dataset that consists of 2000 samples of 256 variables into ten

clusters, for which it only spends 5.4 s.

Table 1: Computation time required by standard K-means, fast
GEM and standard GEM to cluster the Breast Cancer,
Glass, DLBCL and Brodatz datasets into ten clusters

No. data No. dim

Computational time, s

std. K-means std. GEM fast GEM

Breast Cancer 683 9 0.059 5.11 0.49

Glass 214 9 0.026 1.78 0.18

DLBCL 58 11 0.0085 0.66 0.066

Brodatz 2000 256 0.8 104 5.4
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