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NFI: A Neuro-Fuzzy Inference Method for
Transductive Reasoning
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Abstract—This paper introduces a novel neural fuzzy inference
method—NFI for transductive reasoning systems. NFI develops
further some ideas from DENFIS—dynamic neuro-fuzzy inference
systems for both online and offline time series prediction tasks.
While inductive reasoning is concerned with the development of
a model (a function) to approximate data in the whole problem
space (induction), and consecutively—using this model to predict
output values for a new input vector (deduction), in transduc-
tive reasoning systems a local model is developed for every new
input vector, based on some closest to this vector data from an
existing database (also generated from an existing model). NFI is
compared with both inductive connectionist systems (e.g., MLP,
DENFIS) and transductive reasoning systems (e.g., K-NN) on
three case study prediction/identification problems. The first one
is a prediction task on Mackey Glass time series; the second one is
a classification on Iris data; and the last one is a real medical deci-
sion support problem of estimating the level of renal function of a
patient, based on measured clinical parameters for the purpose of
their personalised treatment. The case studies have demonstrated
better accuracy obtained with the use of the NFI transductive
reasoning in comparison with the inductive reasoning systems.

Index Terms—Adaptive systems, neural-fuzzy inference (NFI),
renal function evaluation, time series prediction, transductive
reasoning.

I. INDUCTIVE VERSUS TRANSDUCTIVE LEARNING AND

REASONING SYSTEMS

MOST learning models and systems in artificial intelli-
gence developed and implemented so far [31], especially

in the area of soft computing [10], [11], [13], [19], [28], [32],
[37], [40], and particularly—in neuro-fuzzy reasoning systems
[5], [6], [8], [20], [21], [30] are based on inductive inference
methods, where a model (a function) is derived from data rep-
resenting the problem space and this model is further applied
on new data. The model is usually created without taking into
account any information about a particular new data vector (test
data). An error is measured to estimate how well the new data
fits into the model.

The models are in most cases global models, covering the
whole problem space. Such models are for example: regres-
sion functions; the multilayer perceptron neural network (MLP)
used in this paper to compare results with, and also—the ANFIS
neuro-fuzzy inference system [20]. These models are difficult
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Fig. 1. Block diagram of an inductive reasoning system. A global modelM is
created based on data samples fromD and then recalled for every new vectorx .

to update on new data without using old data, previously used
to derive the models. Creating a global model (function) that
would be valid for the whole problem space is a difficult task,
and in most cases—it is not necessary to solve. In some con-
nectionist and also fuzzy inference systems [11], [16], [23] the
global model learned in a system consists of many local models
(rules) that collectively cover the whole space and are adjusted
incrementally on new data. The output for a new vector is cal-
culated based on the activation of one or several neighboring
local models (rules). Such systems are the evolving connec-
tionist systems (ECOS) [23], for example—EFuNN [22] and
DENFIS [24].

The inductive learning and inference approach is useful when
a global model (“the big picture”) of the problem is needed even
in its very approximate form. In some models (e.g., ECOS) it
is possible to apply incremental, online learning to adjust this
model on new data and trace its evolution.

In contrast to the inductive learning and inference methods,
transductive inference methods estimate the value of a potential
model (function) only in a single point of the space (the new
data vector) utilizing additional information related to this point
[36]. This approach seems to be more appropriate for clinical
and medical applications of learning systems, where the focus is
not on the model, but on the individual patient. Each individual
data vector (e.g., a patient in the medical area [1], [3]; a future
time moment for predicting a time series [9], [15]; or a target day
for predicting a stock index [17]) may need an individual, local
model that best fits the new data, rather then—a global model.
In the latter case the new data is matched into a model without
taking into account any specific information about this data.

Transductive inference is concerned with the estimation of a
function in a single point of the space only. For every new input
vector that needs to be processed for a prognostic task, the

nearest neighbors, which form a sub-data set , are derived
from an existing data set and, if necessary, generated from
an existing model . A new model is dynamically created
from these samples to approximate the function in the point
(see Figs. 2 and 3). The system is then used to calculate the
output value for this input vector (Figs. 2 and 3).
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Fig. 2. Block diagram of a transductive reasoning system. An individual
modelM is trained for every new input vector x with the use of samplesD
selected from a data setD, and samplesD generated from an existing model
(formula) M (if such a model is existing). The data samples in both D and
D are similar to the new vector x according to defined similarity criteria.

Before the proposed method, called NFI, is discussed in de-
tail, a very simple transductive inference method— -nearest
neighbor method (K-NN) is briefly introduced to compare with
NFI. In the K-NN method, the output value for a new vector

is calculated as the average of the output values of the
nearest samples from the data set . In the weighted K-NN
method (WKNN) the output is calculated based on the dis-
tance of the K-NN samples to :

(1)

where is the output value for the sample from and
are their weights measured as

(2)

In (2), the vector is defined as the
distances between the new input vector and nearest
neighbors for to ; and are the
maximum and minimum values in , respectively. The weights

have the values between and 1; the sample
with the minimum distance to the new input vector has the
weight value of 1, and it has the value in case
of maximum distance. Although both K-NN (or WKNN) and
NFI are trainsductive models, for most cases, the NFI has much
higher accuracy than K-NN because a K-NN model simply
takes the average value of outputs of the nearest neighbors as
its output, while the NFI uses the samples to create and train a
local fuzzy inference system.

This paper is organized as follows. Section II gives the
description of NFI and its learning algorithm and in Sec-
tion III, different NFI models are applied on two benchmark
data sets—Mackey–Glass and Iris, and on a clinical data
set—glomerular filtration rate (GFR) [29]. The results are com-
pared with the results obtained by the use of MLP, DENFIS,
ANFIS and WKNN. Section IV presents a detailed comparative
analysis on both the accuracy and time complexity of the pre-
sented NFI model and one global model—in this case, ANFIS.
Conclusions and directions for further research are presented
in Section V.

II. NFI: A NEURO-FUZZY INFERENCE METHOD FOR

TRANSDUCTIVE REASONING

A. General Principles

NFI is a dynamic neural-fuzzy inference system with a local
generalization, in which, either Zadeh–Mamdani [7], [38], or
Takagi–Sugeno [35] type fuzzy inference is used. The local
generalization means that in a sub-space of the whole problem
space (local area) a model is crated that performs generalization
in this area. In the NFI model, Gaussian fuzzy membership
functions are applied in each fuzzy rule for both antecedent and
consequent parts (Zadeh–Mamdani type), or for the antecedent
part only (Takagi–Sugeno type). A back propagation (BP) [2]
learning algorithm is used for optimizing the parameters of
the fuzzy membership functions (in both Zadeh–Mamdani and
Takagi–Sugeno types). The distance between vectors and is
measured in NFI as the normalized Euclidean distance defined
as follows (the values are between 0 and 1):

(3)

where .
To partition the input space for creating fuzzy rules and

obtaining initial values of fuzzy rules, the evolving clustering
method (ECM) is applied [24] and the cluster centres and
cluster radiuses are respectively taken as initial values of the
centres and widths of the Gaussian membership functions (for
both Zadeh–Mamdani and Takagi–Sugeno types). The ECM
performs a scatter partition that has relatively small number of
clusters covering the space. The data in a cluster are used for
creating a linear function (Takagi–Sugeno type fuzzy inference)
as a local model for output function evaluation as described
here.

B. NFI Learning Algorithm

Suppose that data have been normalized (the values are be-
tween 0 and 1) and, for each new data vector , the NFI per-
forms the following learning algorithm, as also shown in Fig. 4.

1) Search in the training data set in the input space to find
training examples that are closest to . The value

for can be pre-defined based on experience, or—op-
timized through the application of an optimization proce-
dure. Here we assume the former approach.
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Fig. 3. In the center of a transductive reasoning system is the new data vector (here illustrated with two of them—x and x ), surrounded by a fixed number of
nearest data samples selected from the training data D and generated from an existing modelM .

2) Calculate the distances , , between
each of these data samples and . And calculate the
weights , ,

is the minimum value in the distance vector
.

3) Use the ECM clustering algorithm to cluster and partition
the input sub-space that consists of selected training
samples.

4) Create fuzzy rules and set their initial parameter values
according to the ECM clustering procedure results; for

each cluster, the cluster centre is taken as the centre of a
fuzzy membership function (Gaussian function) and the
cluster radius is taken as the width.

5) Apply the steepest descent method (back-propagation) to
optimize the parameters of the fuzzy rules in the local
model following (4)–(23).

6) Calculate the output value for the input vector ap-
plying fuzzy inference over the set of fuzzy rules that con-
stitute the local model .

7) End of the procedure.
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Fig. 4. Block diagram of the proposed NFI learning algorithm.

The parameter optimization procedure is described below:
Consider the system having inputs, one output and

fuzzy rules defined initially through the ECM clustering proce-
dure, the th rule has the form of

If is and is and is

then is Zadeh- Mamdani type (4)

or

If is and is and is

then is Takagi- Sugeno type (5)

Here, are fuzzy sets defined by the following Gaussian type
membership function:

GaussianMF (6)

and are of a similar type as and are defined as

GaussianMF

for Zadeh- Mamdani type (7)

or

for Takagi- Sugeno type (8)

Using the modified centre average defuzzification procedure
[5] the output value of the system can be calculated for an input
vector as follows:

for Zadeh- Mamdani type (9)

or:

for Takagi- sugeno type (10)

Suppose the NFI is given a training input-output data pair
, the system minimizes the following objective function

(a weighted error function):

are defined in step 2 (11)

The steepest descent algorithm (BP) [2] is used then to obtain
the formulas for the optimization of the parameters , , ,

and of Zadeh–Mamdani type NFI such that the value of
from (11) is minimized

(12)

(13)

(14)

(15)

(16)
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here

(17)

The steepest descent algorithm (BP) is also used to obtain the
formulas for the optimization of the parameters , , and

of the Takagi–Sugeno type NFI such that the value of from
(11) is minimized

(18)

(19)

(20)

(21)

(22)

here

(23)

where , , , , and are learning rates for updating
the parameters , , , , and respectively.

In the NFI training algorithm, the following indexes are used

• training data samples: ;
• tnput variables: ;
• tuzzy rules: ;
• tearning epochs: .

III. APPLICATIONS OF THE TRANSDUCTIVE NFI METHOD ON

THREE CASE STUDY PROBLEMS: PREDICTION,
CLASSIFICATION, AND IDENTIFICATION

A. Time Series Modeling and Prediction

In this section, the NFI model is applied for modeling and
predicting the future values of a chaotic time series—the
Mackey–Glass (MG) data set [12], [15] which has been used as

Fig. 5. Mackey–Glass case study data: the first half (118–617) is used as
training data, and the next half (618–1117)—as testing data.

TABLE I
TEST RESULTS ON MG DATA

a bench-mark problem in the areas of neural networks, fuzzy
systems and hybrid systems. Here, a Takagi–Sugeno type NFI
is used. This time series is created with the use of the MG
time-delay differential equation defined here

(24)

To obtain values at integer time points, the fourth-order
Runge–Kutta method was used to find the numerical solution
to the previous MG equation. Here we assume that: the time
step is 0.1; ; ; and for .
The task is to predict the values from input vectors

for any value of the
time . The following experiment was conducted: 1000 data
points, from to , were extracted, the first 500
data was taken as the training data and another 500 as testing
data. For each of the testing data sample a local transductive
model is created and tested on this data. Fig. 5 displays the
target data. Table I lists the simulating results represented
by NDEI—nondimensional error index which is defined as
the root mean square error (RMSE) divided by the standard
deviation of the target series. For the purpose of a comparative
analysis, we have quoted the prediction results on the same data
produced by some other methods [27], which are also listed in
Table I.
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TABLE II
CLASSIFICATION TEST RESULTS ON IRIS DATA

The NFI transductive reasoning system performs better than
the other inductive reasoning models. This is a result of the fine
tuning of each local model in NFI for each tested example, de-
rived according to the NFI learning procedure. The finely tuned
local models achieve a better local generalization.

B. Transductive NFI For Classification

In this section, the transductive NFI (Zadeh–Mamdani type)
is used as a classifier on a benchmark data set—Iris data. Iris is
perhaps the best known data set to be found in the pattern recog-
nition and classification literature. The data set contains three
classes of 50 instances with four numeric, predictive attributes:
1) sepal length; 2) sepal width; 3) petal length; 4) petal width.
Each class refers to a type of iris plant. One class, Iris Setosa,
is linearly separable from the other two classes, Iris Versicolor
and Iris Virginica; the latter are not linearly separable from each
other.

To compare the performance of the NFI method we conducted
the following experiments. We used ECMC (evolving clustering
based classifier) [34], ECF (evolving classifying function) [25],
ZISC [39] and a multiplayer perceptron (MLP) on the same data.
All experimental results listed in Table II are based on 10 ex-
periments with the same model and parameters and the results
(Rn—number of neurons or rules, and TestError—the number
of errors on the testing data) are averaged. In each experiment
50% of the whole data set is randomly selected as training data
and another 50% as testing data.

The results from Table II show that NFI outperforms the other
classification methods.

C. Transaductive NFI For Personalised Modeling in Medical
Decision Support Systems

The transductive NFI method can be applied for the creation
of a personalised model of a patient for a medical diagnosis, dis-
ease prognosis, and treatment planning. Personalised medicine
is a growing area of research where this method can be utilized
broadly.

Here, the transductive NFI (Zadeh–Mamdani type) is applied
for the creation of personalised (individualised) models for the
evaluation (identification) of renal function of patients in a renal
clinic. Real data is used collected in a clinical environment.

The accurate evaluation of renal function is fundamental to
sound nephrology practice. The early detection of renal impair-
ment will allow for the institution of appropriate diagnostic and
therapeutic measures, and potentially maximize preservation of
intact nephrons [18].

TABLE III
COMPARISON BETWEEN THE TEST ERROR FOR GFR RENAL FUNCTION

EVALUATION WITH THE USE OF THE PROPOSED NFI TRANSDUCTIVE

REASONING METHOD VERSUS THE MDRD FORMULA, MLP, DENFIS,
AND WKNN MODELS

Fig. 6. Comparison of the absolute error of a global ANFIS model trained for
the prediction of GFR and tested on 10 new randomly selected samples, and the
error of personalised NFI models built individually for each of these 10 samples
(dark color bars represent ANFIS errors, and light color bars represents NFI
errors).

Glomerular filtration rate (GFR) is traditionally considered
the best overall index to determine renal function in healthy and
in diseased people. Most clinicians rely upon the clearance of
creatinine (CrCl) as a convenient and inexpensive surrogate for
GFR. CrCl can be determined by either timed urine collection,
or from serum creatinine using equations developed from re-
gression analyzes such as that by Cockcroft–Gault formula, but
the accuracy of CrCl is limited by methodological imprecision
and the systematic bias [29].

Recently, the modification of diet in renal disease (MDRD)
study group developed a new formula to more accurately eval-
uate the GFR [29]. The formula uses six input variables: age,
gender, Screat, Race, Salb and Surea and is defined as follows:

Screat Age if female

if race is black Surea Salb (25)

In this formula, Screat (Serum creatinine) is a protein which is
expected to be filtered in the kidneys and the residual of it—re-
leased into the blood. The creatinine level in the serum is de-
termined by the rate it is being removed in the kidney and is
also a measure of the kidney function. Surea (Serum urea) is a
substance produced in the liver as a means of disposing of am-
monia from protein metabolism. It is filtered by the kidney and
can be reabsorbed to the bloodstream. Salb (Serum albumin) is
the protein of the highest concentration in plasma. Decreased
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TABLE IV
AVERAGE EXPERIMENTAL RESULTS OF THE ANFIS GLOBAL MODEL AND THE NFI PERSONALIZED MODELS ON THE 10 RANDOMLY SELECTED

SAMPLES FORM FIG. 6

serum albumin may result from kidney disease, which allows
albumin to escape into the urine. Decreased albumin may also
be explained by malnutrition or liver disease.

However, prediction of GFR with the use of the existing for-
mulas that constitute global and fixed models, can be misleading
as to the presence and progression of renal disease [29]. Here,
the transductive NFI method is applied for the prediction of the
GFR through the construction of an individual model for each
new patient.

Using NFI on a GFR data set (447 samples), collected from
hospitals in New Zealand and Australia, we have obtained more
accurate results than with the use of the MDRD formula or the
use of other connectionist and statistical techniques. The results
are listed in Table III. For comparison, the results produced by
the MDRD formula (a global regression model), the MLP (a
globally trained connectionist model), the ANFIS (a global TSK
fuzzy model) and DENFIS (a global model that is a set of adap-
tive local models), all—inductive reasoning systems, along with
the results produced by using the transductive WKNN method,
are also listed in the table.

All experimental results reported here are based on 10
cross-validation experiments with the same model and param-
eter values, and the results are averaged. In each experiment,
70% of the whole data set is randomly selected as training
data and another 30% as testing data. The results are listed
in Table III. They include: Rn—the number of fuzzy rules
(for ANFIS, DENFIS and for NFI); number of neurons in the
hidden layer (for the MLP model), the test root mean square
error (RMSE), and the test mean absolute error (MAE).

The transductive NFI system gives the best accuracy of the
GFR evaluation for each individual patient and overall—for the
whole data set.

IV. COMPARATIVE ANALYSIS AND DISCUSSIONS

Here, we compare the transductive NFI method with global
modeling techniques in terms of accuracy of the model and
the time required. It was shown in Table III that a personalised
model is at average more accurate for the prediction of the
output values for new input vectors than a general model, e.g.,
ANFIS, MLP, when recalled on . This is illustrated more in
detail in Fig. 6 and Table IV on randomly selected ten samples
from the GFR renal function identification problem. For each
of the 10 test samples a global ANFIS model is created (using
the rest of the samples), along with a personalised NFI model
(using only some nearest samples). The error in the predicted
values is compared between the two models for each of the ten

Fig. 7. (a) Training samples and rule nodes of ANFIS in 2D PCA space.
Denotation: “o:” all 446 samples; “+:” sample no. 270; “�:” 64 rule nodes.
(b) Training samples and rule nodes of NFI in the 2-D PCA space. Denotation:
“o:” samples (light); “o:” selected 32 nearest samples (dark); “+:” sample no.
270; “�:” five rule nodes (centres of Gaussian membership functions). The
corresponding rules are given in Table VI.

individual samples. The error produced by the NFI approach
in most of the cases is smaller than the error of the ANFIS
model. Accuracy of prediction is the single most important
issue in medical prognostic systems as that saves lives and
resources due to a more accurate and personalised treatment
and medication of each patient.

Transductive NFI modeling may require a longer time for the
creation of a model for a single input vector than recalling a
global model (e.g., ANFIS, MLP) on this vector. But the time
for a personalised model creation is not at all long as the model
is created with the use of only a subset of samples from the
whole problem space as it is shown in Fig. 7(a) and (b). The
time for the first phase of searching for the nearest samples to
the new one depends on the size of the data set and the search
algorithm. In terms of time required, the time to create a per-
sonalised model is much shorter (e.g., an order of magnitude)
than the time for the creation of a global model, if for every
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TABLE V
EXPERIMENTAL RESULTS OF ANFIS AND NFI ON PATIENT DATA SAMPLE NO. 270

new sample a global model needs to be created (see Table IV).
This is the case when a global model cannot be adapted on in-
coming data continuously. Real time use of personalised mod-
eling would be possible when dealing with not very large data
sets, otherwise some prefiltering of the data may be needed. For
the GFR case study problem, the average time for the creation
of a NFI model is about 20 sec on a standard personal computer
(2.4 MHz Pentium; using an NFI MATLAB uncompiled code).
The time for a global ANFIS model creation is evaluated above
450 sec when a compiled MATLAB code of ANFIS is run.

A major advantage of the personalised modeling is that for a
single vector (a single patient data) an individual model is cre-
ated that can be used to explain the calculated output value. Ta-
bles V and VI illustrate this for sample no. 270 from the ten
randomly selected samples in Fig. 6. Table V compares the re-
sults from the NFI personalised model and the ANFIS global
model, while Table VI shows the five fuzzy rules (first-order
Takagi–Sugeno type) that comprise this NFI model. Each rule
represents an output function for each of the five clusters that are
defined for the 32 nearest samples to the sample no. 270. The
rules constitute also a good explanation on the predicted value
for this patient.

If a single linear regression was used for personalized mod-
eling instead of the NFI method, one linear function would have
been derived for the whole set of 32 samples, that would result
in a less accurate prediction.

V. CONCLUSION AND FURTHER RESEARCH

This paper presents a transductive neuro-fuzzy inference
method—NFI, for prediction, classification, and identification
tasks. Both Zadeh–Mamdani and Takagi–Sugeno type fuzzy
models are developed. The NFI transductive inference method
has several advantages when compared to the previously devel-
oped inductive inference methods on the some data sets.

1) It performs a better local generalization over new data
as it develops an individual model for each data vector
that takes into account the new input vector location in
the space. This type of modeling can be called “person-
alised,” and it is promising for medical decision support
systems.

2) It works well in a large dimensional space of many vari-
ables (for example—thousands of genes, proteins and
clinical variables), but with a relatively small number of
examples. According to [36] a sample size is considered

TABLE VI
EXTRACTED FUZZY RULES (FIRST-ORDER TAKAGI–SUGENO TYPE) FROM

THE PERSONALISED NFI MODEL ON PATIENT DATA SAMPLE NO. 270. ALL

VARIABLES ARE NORMALIZED IN [0; 1] INTERVAL AND EACH GAUSSIAN

MEMBERSHIP FUNCTION HAS PARAMETERS (�, m AND �) DEFINED IN (6)

small if the ratio , where is the size of the
data set and is the VC (Vapnik-Chervonenkis) dimen-
sion—an estimate of the possible number of functions in
the space for the defined problem and for the available
data set.

3) The transductive NFI is an adaptive model, in the sense
that input-output pairs of data can be added to the data set
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continuously and immediately made available for trans-
ductive inference of local models.

4) The NFI method can be used at different times on different
number of variables (different dimensions) and over data
vectors characterized by missing values. A personalised
model can be evolved with the use of only the available
variables in the new vector that is not possible when using
global models.

As the NFI method creates a unique submodel for each data
sample, it usually needs more performing time than inductive
models, especially in the case of training and simulating on large
data sets. Although there are some simulating data samples that
are same or very similar to each other, the NFI model will create
the same or very similar models for them repeatedly. It is there-
fore advantageous to use both incremental, inductive reasoning
(e.g., ECOS) to reveal a global model (the “big picture”), and
the NFI transductive reasoning for accurate personalised infer-
ence and decision making, or to store some already evolved per-
sonalised models for a further use, which is one of our current
research topics. Time complexity of the method depends mainly
on the search algorithm—while searching for similar data to
the new vector in a data base. The problem of the efficiency of
search algorithms is beyond the scope of this paper.

Further directions for research include: 1) NFI system param-
eter optimization such as optimal number of nearest samples;
2) Using some signal processing techniques to improve the NFI
model for dealing with noisy data; 3) Investigating different dis-
tance measure methods for the selection of the neighboring sam-
ples; 4) Developing nonlinear local models for each cluster of
the selected samples; and 5) Applications of the NFI transduc-
tive inference method to other decision support problems, such
as: cardio-vascular risk prognosis [3]; biological processes mod-
eling and prediction based on gene expression micro-array data
[4], [14]; business decision support.
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