
ThinkingISsues

Tony Clear
School of Computer and Information Sciences

Auckland University of Technology,
Private Bag 92006, Auckland 1020, New Zealand

Tony.Clear@aut.ac.nz
On the Necessity of Removing “Cruelty” from the Teaching of Computing?

In his famous article [1] Edsger Dijkstra reflected
upon how cruel it would be to truly teach computer
science. For some reason the CS community have
over the years taken the sadistic element of his
entreaties to heart. Why is this so? Does it have
intuitive appeal to those CS educators who believe
in the “hard man” school of computer science and
the “real programmers don’t eat quiche” model of
education.
For those of us who worked in industry I think we
can all identify the type - they used to be called
systems programmers in the old days. They
bewailed the dumbing down of programming, with
COBOL’s grandiose claims to remove the need for
good old assembly language programming. It was
going to make programming easy, as later would
fourth generation languages and all the subsequent
over-hyped marketing exercises proposing the end
of programming. I remember in the early 80’s
working on small Olivetti data capture machines
with one and a half Kilobytes of programmable
memory. These octal machines had cassette drives,
and two programming languages (MPS and TPS)
one of which claimed to be the high level language
which end users would use to program with. They
both looked like quaint, rather obscure assembly
languages to me, and the claims seemed
nonsensical.
However, since those days the scope of computing
and computing careers has ballooned, and while
easy programming may still remain something of a
chimera, there are certainly other aspects of
computing which are more accessible and more

clearly offer a combination of technical and social
careers.
The reducing centrality of programming in the
computing curriculum is something that we now
somehow need to adjust to, a concern also voiced
recently by Denning & McGettrick [2], whose
response is a much broader hybrid curriculum
incorporating applications and centred around a
theme of innovation.
On a more specific front, the growth of the so-
called “Information Technology” discipline and
accompanying curriculum [3] evidences an
increasing need to focus on the design, management
and support of IT infrastructure, and like it or not
this will provide the future careers for many of our
graduates.
Is it fair to provide a curriculum geared primarily to
producing researchers and scientists, (“the small
elite cadre of theoreticians” in Terry Winograd’s
critique of [1]), when graduates will mostly assume
rather more prosaic roles in support of a burgeoning
range of discipline sub-specialties, application
domains and related career options.
In the present climate where the gloss has gone off
computer science as an area for study and there is
diminishing enthusiasm for computing careers in
general, we need more creative strategies to make
our discipline family attractive and relevant to
students. These trends when related to the high
school sector are seeing us attract a much more
mixed student body, in some case weaker students
who have been counseled into Information
Technology electives as an easy study option [4], or
in other cases maybe just a group of students who

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AUT Scholarly Commons

https://core.ac.uk/display/56361349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

are a bit ‘geeky’ and have liked whatever it is that
they have perceived as computing from an early
age. We can probably succeed with the latter well
motivated group, by continuing traditional
strategies, but even then, the abrupt adjustment to a
more rigorous discipline framework may have the
effect of dampening their former enthusiasm for the
subject. Regardless, this dual combination is a
good recipe for turning others off the discipline –
the absence of women and the issues with minority
under representation will be further exacerbated.
Who would students look for as a role model, the
archetypal computing student, and how many
would aspire to be that? Dilbert might even look
relatively “on to it” by comparison.
Considering the ACM curriculum on networked
computing [5], geared towards two year colleges
raises for me some interesting questions. The
graduates of this curriculum, if they go directly into
employment in the industry, are likely to find roles
in IT support. Over time many of them will no
doubt grow in their careers and seek more
challenging options. Will a computing degree be
their logical next choice? Or have we set the
barriers too high? Will they gain any credit for
their studies to date? I ask this question because
ACM’s IT curriculum [3] makes very little
reference to this prior ACM sponsored effort, and it
is unclear to me how two year college students
would progress through a CS or IT curriculum
based upon a prior networked environment course
of study.
The issue is relevant far beyond the US of course.
Many countries have a two tier system in which
vocational institutions may prepare students for
either direct entry to work or for higher university
studies. If, as environmental conditions indicate,
we are, at least for a while, to have a weaker cohort
studying computing, then how long can we hold to
a model of computing as an “elite” subject, with a
Darwinian “survival of the fittest” selection process
through the CS1 and CS2 courses.
In our own institution we have operated a dual tier
model internally for some time. Our Diploma in IT
students have traditionally studied towards careers

in IT support, a two year study programme from
which at one stage we wholly removed
programming. But the quite distinctly separate
courses mean that they gained little credit towards
our heavily software development focused
Computer and Information Sciences degree. In
many cases they were better to progress through our
Business Degree which had Information
Technology (IS) and E-Business options as majors.
This was also a curriculum with minimal
programming at which they could succeed, and
many good graduates have resulted from that hybrid
study progression.
More recently we have modified the structure of
our Computer & Information Sciences degree so
that while omitting Computer Engineering, it now
encompasses the majority of the remaining four
computing disciplines [cf. 6] from Computer
Science, Software Engineering, Information
Technology and Information Systems. Majors
include Computer Science, Software Development,
Net-centric Computing, IT Security, Information
System Sciences and IT Services.
The benefits of this we hope are that the tracks will:
accommodate a wider variety of student interests;
produce useful and employable graduates; meet the
changing needs of the IT industry and offer viable
“staircasing” or study progressions for students of
varying abilities.
The programming thread has been adapted with a
relatively standard programming intensive CS1 and
CS2 option (employing JAVA as the programming
language), alongside a less intensive programming
sequence (programming fundamentals at a lower
(perhaps CS0) level (employing Javascript as the
programming language) followed by a high-level
scripting languages course (still being finalised but
including either one or a mix of PERL, Python and
UNIX shell scripting). We hope this will prepare
students for the forms of programming required in
the systems infrastructure space, where small glue-
like cooperating program routines are common.
We also hope this will offer a suitable grounding
for studying the higher level courses in the new
degree majors, or signifying to students who simply

cannot navigate the lesser level of programming
within this course of study, that another degree
option may be more sensible.
While the jury is out on this initiative, we have
moved in this direction to provide meaningful and
achievable courses of study in computing for the
students who elect to study with us. For our
institution which has a proud history of quality
education producing work ready graduates, this
seems like a reasonable strategy. For other
institutions the paths may be quite different, with
the Denning & McGettrick model [2] being one
possible solution.
Many of the problems today’s Computer Science
educators are facing may essentially be due to the
inherent tensions and contradictions of teaching a
‘modern’ discipline in a ‘post-modern’ world [6].
Whatever the response to the present challenges,
persisting with a curriculum and performance
expectations set by elite institutions, is something
akin to cruel and unusual punishment for the
student cohorts we are now seeing. Justifiably they
are voting with their feet.

1. Dijkstra, E. On the Cruelty of Really
Teaching Computer Science.
Communications of the ACM, 32 (12).
1398-1404.

2. Denning, P. and McGettrick, A.
Recentering Computer Science.
Communications of the ACM, 48 (11).
15-19.

3. Ekstrom, J., Gorka, S., Kamali, R.,
Lawson, E., Lunt, B., Miller, J. and
Reichgelt, H. Computing Curricula
Information Technology Volume
[retrieved from:
http://www.acm.org/education/IT_2005.
pdf, 21/07/2005], ACM SIGITE
Curriculum Committee, New York,
2005, 115.

4. Clear, T. and Bidois, G. Fluency in
Information Technology – FITNZ: An
ICT Curriculum Meta-Framework for
New Zealand High Schools Bulletin of

Applied Computing and IT (retrieved
from:
http://www.naccq.ac.nz/bacit/0303/2005
Clear_FITNZ.htm, 14/12/2005), 2005.

5. Klee, K., Austing, R., Campbell, R.,
Cover, C. and Currie-Little, J.
Guidelines For Associate-Degree
Programs To Support Computing In A
Networked Environment. (retrieved
from:
http://www.acm.org/education/ACMGui
de.pdf, 12./03/2004], ACM Two-Year
College Education Committee, New
York, 2000, 1-39.

6. Shackelford, R., Cassel, L., Cross, J.,
Davies, G., Impagliazzo, J., Kamali, R.,
Lawson, E., LeBlanc, R., McGettrick,
A., Slona, R., Topi, H. and vanVeen, M.
Computing Curricula 2005 The
Overview Report including The Guide
to Undergraduate Degree Programs in
Computing [retrieved from:
http://www.acm.org/education/Draft_5-
23-051.pdf, 21/07/2005], Joint Task
Force ACM, AIS, IEEE-CS, New York,
2005, 46.

7. White, L. and Taket, A. The Death of
the Expert. Journal of the Operational
Research Society, 45 (7). 733-748.

