
ThinkingISsues

Tony Clear
Faculty of Business

Auckland University of Technology,
Private Bag 92006, Auckland 1020, New Zealand

Tony.Clear@aut.ac.nz
“Programming in the Large” and the Need for Professional Discrimination

A common goal in teaching capstone project and
software engineering type courses is to develop in
students the capabilities required of a professional
software developer. Unfortunately their prior
educational experiences in the computing discipline may
have done anything but prepare them for professional
practice. Although the situation may vary considerably
from country to country and institution to institution,
there are several common deficiencies to be addressed.
Often the introductory “programming in-the-small”
courses may have consisted of several small exercises
and assignments completed by the students acting as
individuals. This does little to prepare them to function
effectively as a member of a team, as commonly
demanded by “programming in the large” in a
professional context.
Likewise, earlier courses are typically oversimplified to
enable students to engage in manageable, while
challenging, design and coding level activities. Early
assignments typically come neatly packaged, with a
well-specified set of requirements to be implemented.
But this emphasis only echoes the CS ‘91 definition of
programming as “activities that surround the
description, development, and effective implementation
of algorithmic solutions to well-specified problems.”[1]
The emphasis upon “well-specified” problems becomes
problematic when the focus shifts from “programming
in the small” to “programming in the large”, or from
programs to systems. The CS 2000 curriculum
recommendations [2] again emphasize algorithms, and
maintain that “The real-world performance of any
software system depends on only two things: (1) the
algorithms chosen and (2) the suitability and efficiency
of the various layers of implementation.” While this
viewpoint may be valid, it is at best only a half-truth,

and omits several other considerations, when larger
systems are to be developed.
Parnas cited in [3] includes among his nine tasks
performed by software engineers, “analyze the intended
application to determine the requirements that must be
satisfied, and record these requirements in a precise,
well ordered and easy to use document.” This
deceptively simple task description belies a huge area of
complexity and challenge for practicing software
developers, let alone for students. Read simplistically it
implies that students are actually able to write such a
document – often a major challenge for those who have
flocked to computing courses as a haven for the
functionally illiterate. Unfortunately, some early
programming courses may have sheltered students from
the requirement to express themselves extensively in the
written mode.
But the written expression is far from the main challenge
in this area. Parnas’ comments suggest a waterfall
methodology, whereby the wise software engineer can
come into a complex application domain, rapidly
acquire the knowledge necessary, and document a
flawless requirement statement for subsequent
implementation. This drastically understates the process
of requirements elicitation, and omits the essentially
interactive and iterative nature of the software
development process.
The process of developing software for a client involves
a large range of variables and several, often conflicting,
demands. In capstone courses where live clients are
involved, students will often fail to address these
conflicting demands and instead of confronting issues
will often simply acquiesce to the demands of their
client. The resultant risks are that students may produce
a poorly engineered product based upon the client’s

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AUT Scholarly Commons

https://core.ac.uk/display/56361346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

unduly narrow view of their own domain area or pet
software product or design preferences. Students may be
led to conduct their analysis or requirements engineering
insufficiently rigorously to meet the “implied” as
opposed to the stated or “specified” user requirements,
or may allow an unacceptable degree of scope creep.
Even in a “taught” software engineering course it will be
common for the specification to have areas of
ambiguity, deficiency or inconsistency, and students will
frequently be expected to ask questions of the instructor
as surrogate client, to clarify the requirements before
they continue.
Where students fail to see the need to consult their client
to gather the necessary information, or fail to confront
the client over differences and merrily forge ahead in
their own way to produce a result to their own
specification, a potential disaster looms.
Moving students away from this unconscious arrogance
of the technocratic designer, is an important preparation
for informed and sensitive professional practice. The
software development process is better modeled as one
of joint learning, wherein the user and designer’s
expertise are equally acknowledged, resulting in a more
active and balanced development process. The role of
the software developer is not simply to focus on solving
problems, but on envisioning possibilities and enabling
opportunities. This envisioning process is very similar to
that used in corporate strategic planning and visioning
processes. [4] In working with a client it is important to
work actively to create a shared vision informed by
sponsor need and technology capabilities, within the
overall project constraints. Thus, active management of
this visioning process and maintaining good
communication and shared expectations is demanded of
students to ensure a process that is respectful of the
needs of the parties to the development.
Use of a sound project management process, including a
project plan, a methodology with agreed deliverables,
predefined review points and regular progress reporting,
is a useful mechanism to control the evolution of a
project. Yet success demands more than formal
management mechanisms and techniques. Developing
professional judgement and discrimination is a complex
area, and one with which students previously schooled
in highly structured courses will struggle.
Let us take the case where a standard software process is
mandated, whether that be a software engineering
standard, a methodology imposed by a consulting firm

such as Arthur Andersen, a Department of Defense
standard, a development framework such as the
Microsoft Solutions Framework, the client’s own in-
house methodology or one imposed by a CASE tool set
such as the Rational Unified Process. In each of these
situations there will be a number of standard processes
and deliverables.
Is it then simply a matter of the student developer
reading through the guides and ticking off the tasks in
order? That would be a recipe for project overrun and
failure. Each project has its own unique characteristics,
context and requirements. While the common aspects of
the methodology or toolset may be applied in a fairly
standard manner, the selection of which steps to omit or
adapt to the project or client circumstances requires
considered judgement. How are students to acquire this
judgement and be prepared to avoid mistakes, such as
applying the costly, large scale corporate or military
approaches in a micro business context, such as a fixed
price development contract quoted by a small software
house? And furthermore, how do they judge what is a
professional piece of work in such a context?
This year in our capstone project course I have given
students the responsibility for planning their own
projects by selecting an appropriate methodology and set
of deliverables. Some students have reacted well and
consciously chose a suitable development approach.
The incremental, the spiral model and some approaches
based upon prototyping or a modified waterfall lifecycle
have all been adopted. Some weaker students and teams
have only rather loosely clarified their approach and the
requisite deliverables. I am presently reviewing
progress with each team or student and have
supplemented their course guidebooks with a more
detailed deliverables guide to assist students in both re-
planning their projects and ensuring they are able to
complete all the items demanded for their final project
portfolio. But I have refused to adopt a checklist
approach, both to ensure that students critically assess
the needs of their own projects, and because the “one-
size- fits-all” mentality is not helpful in reinforcing this
need for critical evaluation and adaptation based upon
reflection as the project progresses.
In conclusion, the teacher’s task in developing
professional discrimination also requires discrimination,
in this case about the degree of supervision and support
required and when to intervene.

1 ACM/IEEE-CS Joint Curriculum Task Force. Computing
Curricula 1991. ACM Press, 1991.

2 Cross J., Chang C., Denning P., et al. (2001), (Eds.),
Computing Curricula 2001 Volume II Computer Science,
Iron man Draft —(February 1, 2001), Appendix A,
CS Body of Knowledge, The Joint Task Force on
Computing Curricula, IEEE-CS, ACM

3 Bourque P., Dupuis R., et al. (1998), (Eds.), SWEBOK
Guide to the Software Engineering Body of Knowledge,
Straw Man Version, IEEE-CS

4 Lipton M., (1996), Demystifying the Development of an
Organizational Vision, Sloan Management Review,
Summer pp. 83 - 92

