
ThinkingISsues

Tony Clear
School of Computer and Information Sciences

Auckland University of Technology,
Private Bag 92006, Auckland 1020, New Zealand

Tony.Clear@aut.ac.nz
Comprehending Large Code Bases - The Skills Required for Working in a

“Brown Fields” Environment

In the search for answers to the effective teaching
of programming at the beginner level, we are now
seeing broader programs of research investigate the
distinctions between reading, comprehending and
writing small programs [1], [2]. In New Zealand
we have joined this work with the “Bracelet”
project, in which multiple institutions will
investigate how students comprehend small
computer programs. We hope this may help answer
critical teaching and assessment questions.
A contrasting stream of research [8], [9], [10] has
been investigating how professional programmers
comprehend the often large and complex software
artefacts which they must maintain. The
importance of this work is demonstrated in the
figures provided in [8] who assert that “program
comprehension is a major part of software
development…up to 70% of lifecycle costs are
consumed within the maintenance phase and that up
to 50% of maintenance costs relate to
comprehension alone”.
As I prepare to teach our undergraduate software
engineering course this semester, I find myself
grappling with the question of how to effectively
convey to students the twin notions, critical to
Software Engineering, of scale and complexity.
Our SE course comes as a mid-degree course in the
three year AUT Bachelor of Computer and
Information Science, in the semester prior to the
final year capstone. The course attempts to simulate
reality by adopting an “authentic learning”
approach [12], and providing a project context to

which the concepts taught in the accompanying
lecture program may be related.
The single semester duration and size of the course
naturally constrain the scope and complexity of the
tasks that may be assigned. The challenge is to
select a project of a suitable scale and complexity to
enable SE processes and practices to be sensibly
exercised, while having an assignment that can be
successfully completed within the allotted time.
Invariably we find ourselves in the situation where
perceived complexity is insufficient for students to
actively adopt the relevant practice, e.g.
configuration management by use of a source
control tool; careful use of work break down
structures in the assignment of roles, tasks and
responsibilities; selection of a suitable O.O.
architecture and relevant design patterns; planning
for quality assurance and risk management
strategies and techniques; and regular monitoring
and recalculating of estimates.
One alternative to this approach that we have been
considering is to have the teams work on an
existing, large code base to produce a manageable
extension module.
This, at first glance, encapsulates all the aspects that
we are seeking to include in the course: scope,
complexity, use of others’ code; integration into an
existing architecture; possible refactoring of
designs, the motivation of a possible contribution to
a code base for an existing open source application;
exposure to an existing set of development practices
and standards; and a clear demonstration of the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AUT Scholarly Commons

https://core.ac.uk/display/56361341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

need for documentation deliverables at key stages
in the process.
We have indeed adopted this approach in the course
of our capstone projects [which are larger and of
longer duration] where students have operated in a
“brown-fields” (pre-existing) environment
contributing to or extending an existing application.
These projects have been very effective learning
exercises for the teams involved, but the work
involved in comprehension of the software has
proven very time consuming. Fully grasping what
Naur has called “the theory of the program” [4] is a
challenging conceptual task, involving not only
comprehension of the problem domain, but also
how it has been addressed by the software artefact
under study.
Therefore in our far more compressed SE projects
we do not adopt a brown-fields approach. One
superficially attractive project could involve
extending Eclipse. Billed as “a kind of universal
tool platform - an open extensible IDE for anything
and nothing in particular”, [4] Eclipse offers a large
open source code base and considerable scope for
the writing of extensions and add-ons. Yet our past
capstone experience suggests that SE students
would struggle: firstly in comprehending this
complex environment; secondly with determining
how the existing code operates and thirdly with
understanding where any necessary changes might
be applied. With some preparatory work on our
part we might be able to reduce the scope of these
problems, but at this stage we have not conceived a
suitable design for this development.
This set of reflections raises some critical issues for
software engineering education. The SWEBOK
[5] has defined a body of knowledge for the
discipline, but is remarkably silent on the skills,
knowledge and abilities required to master
development in a “brown-fields” environment. Yet
all too often this is the environment in which
developers operate, integrating new components
into existing software contexts, and interfacing with
large and complex application frameworks, suites
or software packages. Modification, interconnection

and extension are increasingly the norm in software
development.
So how does one go about comprehending an
existing software environment? In [8] it is
suggested that a combination of top down and
bottom-up strategies are used by professional
programmers. A more specific model of
comprehension has been proposed in [10] involving
a combination of three models:

- a top down model representing knowledge
schemas about the application domain;
- a program model built from the bottom-up
as a control flow abstraction of the program;
- a situation model also built from the
bottom-up and using the program model to
create a data-flow/ functional abstraction.

It was observed in 1995 [9] that research in the area
of program comprehension is still in its infancy.
Now ten years on, we seem little further ahead.
So if the “brown fields” environment is indeed a
typical development scenario today, how are we
going about preparing our students for such work?
From my observations of SE texts such as [6] & [7]
they tend to address the creation of new systems,
rather than the comprehension of an existing
context and base of software, and only loosely
touch on the topic of maintenance. While object
oriented design techniques may help in designing
modular applications, have we really moved far
from the scenario painted by Fred Brooks [11]
thirty years ago “All repairs tend to destroy
structure … even the most skilful program
maintenance only delays the program’s subsidence
into unfixable chaos, from which there has to be a
ground-up redesign”.
Given the paucity of extant theory in this area, I
suspect we have a reality of everyday practice that
greatly impacts the work of professional
developers. The corollary is that we have a limited
theory base relating to the comprehension of code,
from which to devise suitable curricula and
approaches to developing and assessing the
required student capabilities. Our state of the art

seems akin to studying reading without the key
notions of comprehension level or reading age.
In a recent discussion with a commercial software
development colleague, she even made the point
that the complexity and incomprehensibility of
most modern development environments actively
discourages code re-use, and standard practice is to
develop code components “from scratch”, the
purpose and impact of which the developer can at
least comprehend.
So I return to my conundrum with the SE course.
How much of a large existing code base can
students realistically be expected to comprehend,
when developing a non-trivial extension? How can
a project best be designed as an “authentic
learning” [12] experience to exercise the software
engineering principles and practices in a
meaningful way?
1. Lister, R., Adams, E., Fitzgerald, S., Fome,

W., Hamer, J., Lindholm, M., McCartney,
R., Mostrom, J., Sanders, K., Seppala, O.,
Simon, B. and Thomas, L. A Study of the
Programming Knowledge of First-Year CS
Students - Draft Working Group Report,
Innovation and Technology in Computer
Science Education Conference.
Impagliazzo, J. ed. Innovation and
Technology In Computer Science Education
Conference, ACM, Leeds, UK,
(Forthcoming).

2. M. McCracken, V. Almstrum, D. Diaz, M.
Guzdial, D. Hagen, Y. Kolikant, C. Laxer,
L. Thomas, I. Utting, and T. Wilusz, "A
Multi-National, Multi-Institutional Study of
Assessment of Programming Skills of First
Year CS Students," in SIGCSE Bulletin, vol.
33, 2001.

3. Naur, P. Programming as Theory Building.
Microprocessing and Microprogramming,
15 (1985), 253-261.

4. Eclipse. The Eclipse.org Website
[http://www.eclipse.org], Eclipse
Foundation, 2005.

5. Abran, A., Moore, J., Bourque, R., Dupuis,
P. and Tripp, L. (eds.). Guide to the

Software Engineering Body of Knowledge.
IEEE Computer Society Press, New Jersey,
2001.

6. R. Pressman, Software Engineering - A
Practitioner's Approach, 5th International
ed. Singapore: McGraw-Hill, 2001.

7. Bruegge, B. and Dutoit, A. Object Oriented
Software Engineering using UML, Patterns
and Java. Prentice Hall, Upper Saddle
River, New Jersey, 2004.

8. M. O'Brien, J. Buckley, and T. Shaft,
"Expectation-based, inference based, and
bottom-up software comprehension,"
Journal of Software Maintenance and
Evolution: Research and Practice, pp. 427-
447, 2004.

9. A. von Mayrhauser and M. A. Vans,
"Program comprehension during software
maintenance and evolution," Computer, pp.
44-55, 1995.

10. A. von Mayrhauser and M. A. Vans,
"Program Understanding Behaviour During
Debugging of Large Scale Software,"
presented at 7th Workshop on Empirical
Studies of Programmers, Alexandria, VA,
1997.

11. F. Brooks, The Mythical Man-Month,
Anniversary ed. Boston: Addison Wesley
Longman, 1995.

12. J. Herrington, R. Oliver, and T. Reeves,
"Patterns of engagement in authentic online
learning," Australian Journal of
Educational Technology, vol. 19, pp. 59-71,
2003.

