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1. Introduction 
To cope with variable environmental conditions, plants have evolved a great 

capacity to extensively reprogram their transcriptome in a highly dynamic and 

temporal manner through an integrated network of transcription factors. Among 

these transcription factors, WRKY factors are a group of regulatory proteins 

predominantly involved in stress responses (Pandey and Somssich, 2009). 

Together with other transcriptional regulators, WRKY proteins enable plants to 

better adapt to the changing environment and respond properly to internal and 

external stimuli. 

1.1 Structure and evolution of WRKY transcription factors 

1.1.1 Structure of WRKY transcription factors 

The WRKY protein family is named after the most prominent feature of these 

proteins, the WRKY domain, a highly conserved motif spanning about 60 amino 

acids in all the family members (Eulgem et al., 2000). Within this domain, there is 

an almost invariable heptapeptide signature WRKYGQK at the N-terminus and a 

novel zinc finger-like structure at the C-terminus. The WRKYGQK is the most 

dominant form of the signature followed by WRKYGKK and WRKYGEK (Eulgem 

et al., 2000; Xie et al., 2005b), however, there are at least 35 variants of this motif 

present in plant and non-plant species (Table 1.1). WRKY genes encode 

transcription factors and they are targeted to the nucleus as most of them contain 

a basic nuclear localization signal. WRKY proteins preferably bind to the 

consensus sequence TTGACC/T, the so-called W-box which is usually enriched in 

the promoter region of WRKY target genes such as stress responsive genes. Both 

the WRKY and zinc-finger motif are essential for proper DNA binding capacity of 

the protein (Maeo et al., 2001).  

Table 1. 1. List of WRKY signature variants in WRKY domains from plant and 
non-plant species (sequence from http://supfam.cs.bris.ac.uk/SUPERFAMILY/). 

WRKY 

signature 
Distribution of WRKY variants 

Number of 

WRKY 

domains 

WRKYGQK All plant species 1761 

WRKYGEK All monocots, 47 
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Some dicots (i.e, Glycine max, Lotus japonicus) 

Green algae 

(Volvox carteri, Chlamydomonas reinhardtii, 

Coccomyxa sp. C-169) 

WRKYGKK All vascular plants 88 

WKKYGQK 
All monocots 

Some dicots (i.e, Glycine max, Vitis vinefera) 
16 

WQKYGQK 
Arabidopsis thaliana, 

tomato (Solanum lycopersicum) 
2 

WSKYGQK Tomato (Solanum lycopersicum) 1 

WSKYGQM Barley (Hordeum vulgare) 1 

WTKYGQK Barley (Hordeum vulgare) 1 

WNKYGQK Barley (Hordeum vulgare) 1 

WKRKGQK Rice (Oryza sativa) 1 

WVKYGQK Rice (Oryza sativa) 1 

WRRYGLK Rice (Oryza sativa) 1 

WRKYEDK Soybean (Glycine max) 1 

WRKYGKR Soybean (Glycine max) 1 

WRKYGSK 
Sorghum (Sorghum bicolor), 

Medicago truncatula, Giardia lamblia 
3 

WEKFGEK Sorghum (Sorghum bicolor) 1 

WRKYGQE Wheat (Triticum aestivum) 2 

WKKYGHK Giardia lamblia 1 

WRKCGLK Lotus japonicus 1 

WRKYGQN Lotus japonicus, Moss (Physcomitrella patens) 3 

WKKYGYK Lotus japonicus 1 

WKKYGED Lotus japonicus 1 

WLKYGQK Lotus japonicus 1 

WKKYEEK Medicago truncatula 2 

WKKYGEK 
Medicago truncatula,  

Asteraceae (Helianthus annuus; Lactuca sativa) 
7 

WRKYGRK Medicago truncatula, 3 
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Black cottonwood (Populus trichocarpa),  

Green alga (Ostreococcus) 

WKKYGNK Moss (Physcomitrella patens) 5 

WRKYGQT Brachypodium distachyon 2 

WKKYGPK Brachypodium distachyon 1 

WHKYGAK Micromonas sp. RCC299 1 

WRKYGHK Green alga (Ostreococcus) 1 

WRKYGNK Green alga (Ostreococcus) 2 

WKNNGNT Alga fungi (Phycomyces), Rhizopus 12 

WTKYDQR Strawberry (Fragaria vesca) 1 

WREYDQR Strawberry (Fragaria vesca) 1 

Total  1975 

 

All WRKY proteins contain either one or two WRKY domains. Based on the 

number of WRKY domains and the structural features of the zinc-finger-like motif, 

WRKY protein family was originally divided into three groups. WRKY proteins with 

two WRKY domains are group I proteins while those with a single WRKY domain 

are group II or III. Group II WRKY proteins are further subdivided into five 

subgroups IIa, IIb, IIc, IId and IIe according to the presence of short conserved 

structural motifs. Group III differs from I and II in its variant C2HC zinc finger motif 

CX7CX23HXC (Eulgem et al., 2000). 

Some WRKY proteins exist as chimeric proteins combining NBS-LRR (nucleotide 

binding site - leucine rich repeat) proteins and WRKY domains (Deslandes et al., 

2002; Noutoshi et al., 2005; Rushton et al., 2010). AtWRKY52/RRS1 is such a 

protein that contains a group III WRKY domain C-terminal to a TIR-NBS-LRR 

(Toll/interleukin-1 receptor-nucleotide-binding site-leucine-riche repeat) domain 

and mediates R (resistance)-gene based resistance to the bacterial pathogen 

Ralstonia solanacearum (Deslandes et al., 2003). In addition, AtWRKY16/TTR1 

and AtWRKY19 are also NBS-LRR-WRKY proteins found in Arabidopsis. Other 

examples are GmWRKY176 from soybean (Glycine max), OsiWRKY41 

(DAA05106) from indica rice (Oryza sativa indica) and ABF81432 from black 

cottonwood (Populus trichocarpa). 
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Till now, two reports on crystal structure of WRKY proteins are available (Duan et 

al., 2007; Yamasaki et al., 2005). The WRKY domain of AtWRKY4 consists of a 

four-stranded β-sheet, with the zinc coordinating Cys/His residues forming a zinc-

binding pocket. The WRKYGQK residues correspond to the most N-terminal β-

strand, which partly protrude from the protein surface and enable access to the 

major DNA groove during the interaction with the target DNA. This WRKYGQK-

containing β -strand seems to make contact with an approximately 6-bp region, 

which is in consistent with the length of the consensus W-box (Yamasaki et al., 

2005; Yamasaki et al., 2008). The crystal structure of the AtWRKY1 C-terminal 

WRKY domain is very similar with AtWRKY4 and contains an extral β-strands 

upstream of the WRKYGQK motif, thereby with DNA-binding residues located at 

the second and the third β-strands (Duan et al., 2007).  

 

1.1.2 Distribution and evolution of WRKY transcription factors 

The first WRKY protein described was SPF1 (Sweet-Potato Factor 1) in sweet 

potato which was found to bind DNA upstream of genes coding for sporamin and 

beta-amylase (Ishiguro and Nakamura, 1994). Shortly after the first report in sweet 

potato, some discovery on WRKY proteins was made in other plant species 

including wild oat (Avena fatua), Arabidopsis thaliana and parsley (Petroselinum 

crispum) (de Pater et al., 1996; Rushton et al., 1996; Rushton et al., 1995). Since 

then, knowledge about WRKY transcription factors has substantially accumulated 

(see review Eulgem and Somssich, 2007; Pandey and Somssich, 2009; Ross et 

al., 2007; Rushton et al., 2010). The WRKY gene family has been analyzed in a 

number of plant species including barley (Hordeum vulgare), bittersweet 

nightshade (Solanum dulcamara), chamomile (Matricaria chamomilla), Citrus spp, 

creosote bush (Larrea tridentata), cucumber (Cucumus sativus), grapevine (Vitus 

aestivalis), orchardgrass (Dactylis glomerata), potato (Solanum tuberosum and 

S.chacoense), rice (Oryza sativa), tobacco (Nicotiana tabacum), tree cotton 

(Gossypium arboreum), white weeping broom (Retama raetam), tomato (Solanum 

lycopersicum) and soybean (Glycine max) (Ross et al., 2007; Rushton et al., 2010; 

Ülker and Somssich, 2004). 
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The number of WRKY proteins is expanding from one in the unicellular green alga 

Chlamydomonas reinhardtii to nearly 200 in soybean (Glycine max) (Rushton et al., 

2010). Therefore, it is believed that WRKY proteins had a lineage-specific 

expansion in plants during the evolutionary process. Compared to the green alga 

and moss, flowering plants have the largest WRKY family. Due to their wide 

presence in plants and their unique expansion in dicot and monocot plants, WRKY 

proteins were initially considered as plant-specific transcription factors. However, 

the discovery of proteins with WRKY domains in the protist Giardia lamblia and the 

slime mold Dictyostelium discoideum challenged this concept and implicated a 

much earlier origin of WRKY proteins (Pan et al., 2009; Ülker and Somssich, 

2004). Up to now, proteins with putative WRKY domains have also been found in 

other non-plant organisms including the zygomycetes Rhizopus oryzae, 

Phycomyces blakesleeanus, Mucor circinelloides and the slime mold Dictyostelium 

purpureum.  

Consecutive WRKY domain gain and loss led to an expansion of the WRKY family, 

and that a rapid amplification of the WRKY genes appeared to be earlier than the 

divergence of monocot and dicot plants (Wu et al., 2005). Despite some debate on 

the evolution of WRKY domains, it is now well accepted that group I WRKYs are 

the most ancient WRKY proteins evidenced from the unicellular green alga 

Chlamydomonas reinhardtii. There is evidence supporting a late evolution of group 

II, however, group III was also considered as the last evolved group due to its 

expansion in monocot plants (Mangelsen et al., 2008; Rushton et al., 2010; Ülker 

and Somssich., 2004; Zhang and Wang, 2005). It was revealed that some 

sequence-related homologous WRKY proteins have conserved functions between 

monocots and dicots (Mangelsen et al., 2008; Proietti et al., 2011). 

 

1.2 Biological functions of WRKY transcription factors 

Numerous studies have revealed the significance of WRKY transcription factors in 

multiple processes including development, hormone signalling and responses to 

biotic and abiotic stresses (Rushton et al., 2010). A single WRKY transcription 

factor might mediate transcriptional reprogramming associated with multiple 

signalling pathways. On the other hand, multiple WRKY proteins might act in a 
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single physiological process synergistically or antagonistically (Pandey and 

Somssich, 2009). The interconnected signalling network of WRKY factors 

possesses multiple inputs and outputs (Rushton et al., 2010) 

 

1.2.1 WRKY in biotic stresses 

Plants have evolved two layers of defense mechanisms to antagonize the invading 

pathogens (Jones and Dangl, 2006). These two interconnected branches are 

termed as MAMP-triggered immunity (MTI) and effector-triggered immunity (ETI) 

and they are initiated either relying on the recognition of conserved microbial 

molecules, so-called microbe-associated molecular patterns (MAMPs) or the 

recognition of pathogen-derived specific (a)virulence factors (effectors). The local 

and systemic defense responses activated by MTI or ETI often require the 

modulation from phytohormones such as jasmonate (JA) and salicylic acid (SA) 

(Bostock, 2005; Durrant and Dong, 2004; Pandey and Somssich, 2009). These 

responses upon pathogen invasion require massive transcriptional reprogramming, 

which was achieved by transcription factors including WRKY proteins (Eulgem, 

2005; Naoumkina et al., 2008; Ryu et al., 2006; Wang et al., 2006). Such 

transcriptional reprogramming associated with plant defense leads to timely and 

balanced activation/repression of diverse targets in plant immune responses. Thus, 

WRKY factors are considered as central regulators in plant innate immune system 

(Eulgem and Somssich, 2007). 

Gain- or loss-of-function studies have demonstrated that WRKY proteins are 

critical regulators of plant immune responses either positively or negatively in a 

sophisticated defense response network (Deslandes et al., 2002; Journot-Catalino 

et al., 2006; Kim et al., 2008; Li et al., 2006; Murray et al., 2007; Shen et al., 2007; 

Zheng et al., 2007). The R - gene type protein AtWRKY52 confers strong 

resistance towards the bacterial pathogen Ralstonia solanacearum (Deslandes et 

al., 2002). This R-gene mediated resistance was achieved through its nuclear 

interaction with the bacterial effector PopP2 (Deslandes et al., 2003). Interestingly, 

a single amino acid insertion in the WRKY domain led to conditional activation of 

defense responses and a loss in the DNA-binding capability (Noutoshi et al., 2005). 

In addition, AtWRKY52 provides dual resistance against fungal and bacterial 
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pathogens by synergistically acting with the R protein RPS4. AtWRKY70 was 

described as a shared component in SA and JA-dependent defense pathways and 

played crucial role in the cross-talk of SA and JA signalling (Li et al., 2004; Li et al., 

2006; Ren et al., 2008). Moreover, AtWRKY70 was indispensable for the 

transduction of R gene-mediated resistance and receptor-like protein (RLP)-

mediate immunity (Knoth et al., 2007; Zhang et al., 2010). It was also suggested to 

positively modulate systemic acquired resistance (SAR) (Wang et al., 2006). Other 

positive regulators of resistance in Arabidopsis include AtWRKY3, -4 and -33, 

which play a role in resistance against necrotrophic pathogens Botrytis cinerea 

and Alternaria brassicicola (Lai et al., 2008; Zheng et al., 2006). In addition, 

AtWRKY8 was characterized recently as a positive regulator of basal defense to 

B.cinerea but a negative regulator to Pseudomonas syringae (Chen et al., 2010a). 

Most information about functions of WRKY transcription factors came from the 

model dicot plant Arabidopsis, but their importance in pathogen defense was also 

demonstrated in monocots like rice and barley. In rice, majorities of the OsWRKY 

genes are responsible to pathogen challenge, abiotic stresses and phytohormone 

treatment (Ramamoorthy et al., 2008; Ryu et al., 2006). Overexpression studies 

have demonstrated several WRKYs (OsWRKY3, -13, -31, -45, -53, -71 and -89) to 

be associated with rice resistance towards Magnaporthe grisea and/or 

Xanthomonas oryzae pv. oryzae (Xoo) (Chujo et al., 2007; Liu et al., 2005; Liu et 

al., 2007; Qiu et al., 2007; Qiu et al., 2008a; Qiu and Yu, 2009; Shimono et al., 

2007; Tao et al., 2009; Wang et al., 2007; Zhang et al., 2008). For instance, 

overexpression of OsWRKY13 enhances resistance to the bacterial blight Xoo and 

the rice blast M. oryzae by activating the SA synthesis and suppressing the JA 

pathway (Qiu et al., 2007; 2008a). Similarly, OsWRKY71 was shown to be 

inducible by SA and overexpression of OsWRKY71 enhanced the rice resistance 

to Xoo through the indirect activation of OsPR1b and OsNPR1 (Liu et al., 2007). 

OsWRKY45 plays pivotal role in BTH-induced resistance to rice blast fungus 

through the SA pathway (Shimono et al., 2007; Shimono et al., 2011). 

OsWRKY45-1 (japonica-derived WRKY45) and OsWRKY45-2 (indica-derived 

WRKY45) overexpression resulted in enhanced resistance to the rice fungal 

pathogen M. oryzae, however, they have opposite effects on the resistance to 

Xanthomonas oryzae pv. oryzae (Xoo). The introduction of japonica-derived 
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WRKY45 (WRKY45-1) enhanced susceptibility to Xoo while overexpression of 

indica-derived WRKY45 (WRKY45-2) resulted in resistance to Xoo (Tao et al., 

2009). Overexpression of OsWRKY53 protected the transgenic rice plants from 

the blast fungus M. grisea and stimulated the expression of PR proteins and 

peroxidase enzymes (Chujo et al., 2007). 

Depending on the pathogen, WRKY proteins may have contrasting effects on the 

resistance to diverse pathogens (e.g. the aforementioned AtWRKY8), which is 

also known for SA- and JA-mediated defense responses. But a number of WRKY 

transcription factors act, as far as known till now, only as negative regulators in 

plant defense responses. In Arabidopsis, the sequence-related AtWRKY18, -40 

and -60 function in a partially redundant way in negatively regulating resistance to 

bacterial pathogen Pseudomonas syringae (Xu et al., 2006). The wrky18wrky40 

double mutant exhibited enhanced resistance towards the biotrophic fungus 

Golovinomyces orontii but enhanced susceptibility to the necrotrophic fungus 

Botrytis cinerea (Shen et al., 2007; Xu et al., 2006). This mutant executes 

exaggerated expression of some defense related genes upon pathogen attack. 

WRKY40-complementation of the wrky18wrky40 double mutants was able to 

partially restore susceptibility (Pandey et al., 2010).Therefore, AtWRKY18/40 are 

assumed to act in a feedback repression system that controls basal defense. 

Similarly, the barley orthologs HvWRKY1 and HvWRKY2 were shown to act as 

negative regulators of MTI (Eckey et al., 2004; Shen et al., 2007). The ETI to 

barley powdery mildew (Blumeria graminis f.sp. hordei) is dependent on the 

recognition of the fungal effector AVR10 by the resistance protein MLA (mildew-

resistance locus A) resulting in a hypersensitive response (HR) to the biotrophic 

fungus. Interestingly, activated MLA10 translocates from plant cytoplasm into 

nucleus and interacts with HvWRKY1 and -2, leading to the derepression of MTI.  

Hence, HvWRKY1 and -2 function as a linker between MTI and ETI. Other 

negative regulators in Arabidopsis include AtWRKY7, -11, -17, -23, -25, -27, -38, -

48, -53 , -58 and -62 (Grunewald et al., 2008; Journot-Catalino et al., 2006; Kim et 

al., 2006; Kim et al., 2008; Mao et al., 2007; Mukhtar et al.,  2008; Wang et al., 

2006; Xing et al., 2008). AtWRKY38 and -62 negatively regulate the basal 

resistance to P. syringae and their expressions were modulated by PKS5, a SNF1-

related kinase (Kim et al., 2008; Xie et al., 2010). Likewise, AtWRKY7, -11 and -17 
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play a negative role in the defense responses to P. syringae (Journot-Catalino et 

al., 2006; Kim et al., 2006). Several rice WRKY genes including OsWRKY62 and 

OsWRKY76 were described as negative regulators in immune responses (Peng et 

al., 2008; 2010; Seo et al., 2011). The XA21 protein confers resistance to most 

strains of the bacteria Xoo in rice (Song et al., 1995). Transgenic rice plants 

overexpressing OsWRKY62 or OsWRKY76 are compromised in basal defense 

and XA21-mediated resistance to Xoo (Peng et al., 2008; Seo et al., 2011). 

Recently, expanding reports from other plant species confirmed the importance of 

WRKY proteins in the regulation of biotic stress responses (Giacomelli et al., 2010; 

Guo et al., 2011; Ishihama et al., 2011; Li et al., 2010a; Marchive et al., 2007; 

Molan and El-Komy, 2010; Mzid et al., 2007; Oh et al., 2008; Ramiro et al., 2010; 

Ren et al., 2010b; Skibbe et al., 2008; Van Eck et al., 2010). Ovexpression of 

grapevine VvWRKY1 and VvWRKY2 in tobacco plants reduced susceptibility to 

various fungi (Li et al., 2010a; Marchive et al., 2007; Mzid et al., 2007). CaWRKY1 

from pepper (Capsicum annuum) appears to function negatively in the defense 

based on results from its overexpression and gene silencing (Oh et al., 2008). 

Expression profile studies confirmed the significance of WRKY factors for 

pathogen resistances in sunflower and coffee respectively (Giacomelli et al., 2010; 

Ramiro et al., 2010). In tobacco, WRKY4 and WRKY8 were recently demonstrated 

as positive regulators in pathogen defense (Ishihama et al., 2011; Ren et al., 

2010b). An elegant set of experiments in the native tobacco Nicotiana attenuate 

showed that two WRKY genes, NaWRKY3 and NaWRKY6, coordinate responses 

to herbivory (Skibbe et al., 2008). NaWRKY3 is required for NaWRKY6 elicitation 

by fatty acid–amino conjugates in Manduca sexta larval oral secretions, and gene 

silencing made plants highly vulnerable to herbivores. Similarly, silencing of 

TaWRKY53 in wheat through virus-induced gene silencing (VIGS) resulted in 

susceptible phenotype to aphid infestation (van Eck et al., 2010). In the recently 

sequenced genomes, such as poplar (Populus spp.), sorghum (Sorghum bicolour), 

papaya (Carica papaya) and moss (Physcomitrella patens), the presence of a 

large number of WRKY proteins was observed (Pandey and Somssich, 2009). 

However, their functions in plant immunity are yet to be characterized. 
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1.2.2 WRKY in abiotic stresses 

Though lagging behind the studies in biotic stresses, unravelling the roles of 

WRKY transcription factors in abiotic stress responses has recently become an 

active emerging field. First evidence for the involvement of WRKY protein in 

abiotic stress responses came from expression profile studies (Jiang and 

Deyholos, 2006; Qiu et al., 2004; Ramamoorthy et al., 2008; Sanchez-Ballesta et 

al., 2003; Seki  et al., 2002; Zou et al., 2007). WRKY transcription factors are 

differentially regulated by abiotic stresses including drought (Mare et al., 2004; 

Ramamoorthy et al.,2008; Rizhsky  et al., 2002; Seki et al., 2002), cold (Huang 

and Duman, 2002; Lee et al., 2005; Qiu et al., 2004; Zou et al., 2010), heat (Li et 

al., 2010b; Qiu et al., 2004; Wu et al., 2009), salt (Jiang and Deyholos, 2006; Jiang 

and Deyholos, 2009; Qiu et al., 2004; Wei et al., 2008), nutrient deficiency 

(Devaiah et al., 2007; Kasajima et al., 2010;) and UV radiation (Wang et al., 2007). 

Recent functional analyses have provided direct evidences for their roles in abiotic 

stress tolerance. For example, overexpression of OsWRKY45 in Arabidopsis 

resulted in enhanced salt and drought tolerance (Qiu and Yu, 2009). Similarly, 

overexpression of OsWRKY11 under heat shock inducible HSP101 promoter 

conferred tolerance to heat and drought (Wu et al., 2009). Further examples 

illustrate that WRKY factors are crucial in reprogramming plants when they are 

under drought or dehydration stress. The barley HvWRKY38 (also called 

HvWRKY1) was inducible by drought and cold (Mare et al., 2004). Its ectopic 

overexpression in turf and forage grass (Paspalumnotatum Flugge) enhanced 

drought tolerance (Xiong et al., 2010). Overexpression of AtWRKY39 increased 

thermotolerance whereas mutation of AtWRKY39 caused susceptibility to heat 

stress (Li et al., 2010b). Moreover, the AtWRKY39-mediated thermotolerance 

appeared to be co-regulated by SA and JA. The AtWRKY25 was also reported to 

be involved in the heat stress responses (Li et al., 2009). Recently, the important 

role of AtWRKY63 in ABA response and drought stress was uncovered (Ren et al., 

2010a). The AtWRKY63 mutant abo3 showed enhanced sensitivity to ABA 

treatment and reduced drought tolerance. A good example to elucidate the 

signalling pathways for WRKY-regulated abiotic stresses is from the study on the 

resurrection plant Boea hygrometrica (Wang et al., 2009). Galactinol synthase 

(BhGolS1) is a key regulator mediating drought tolerance and the BhGolS1 gene 
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is inducible by dehydration and ABA. The BhGolS1 promoter contains four W 

boxes and chromatin immunoprecipitation (ChIP) revealed its in vivo binding with 

the dehydration and ABA-inducible BhWRKY1 (Wang et al., 2009). This finding 

provides a link between a dehydration-inducible WRKY factor and a downstream 

target gene that plays a vital role in drought tolerance whereas in most cases the 

native downstream target genes are largely unknown. 

 

1.2.3 WRKY in developmental processes 

Compared with the studies of WRKY genes in stress responses, fewer reports are 

available on their roles in development processes such as trichome development, 

seed germination and senescence. Several evidence suggest that members of 

WRKY proteins are involved in trichome development (Guillaumie et al., 2010; 

Ishida et al. 2007; Johnson et al. 2002; Wang et al., 2010),embryo formation 

(Alexandrova and Conger 2002; Lagace and Matton 2004), seed germination 

(Jiang and Yu, 2009; Zou et al., 2008), senescence (Hinderhofer and Zentgraf 

2001; Miao et al., 2010; Robatzek and Somssich 2001; Robatzek and Somssich 

2002; Zentgraf et al., 2010; Zhou et al., 2011), dormancy (Pnueli et al. 2002) and 

metabolic pathways (Sun et al. 2003). 

In Arabidopsis, AtWRKY44, also known as Transparent Testa Glabra2 (TTG2), 

plays a role in trichome development and tannin synthesis in the seed (Johnson et 

al., 2002). Another study provides evidence that it is controlling lethality in 

interploidy crosses of Arabidopsis (Dilkes et al., 2008). Recently, Wang et al., 

(2010) reported the role of WRKY proteins in controlling the secondary cell wall 

formation and lignifications in dicot plants Medicago truncatula and Arabidopsis. 

Mutation of AtWRKY12 or the Medicago WRKY gene Mtstp1 initiated pith 

secondary wall formation and substantially increased the stem biomass. This 

discovery of negative regulators of secondary wall formation in pith shed lights on 

the possibility of significantly increasing the biomass in bioenergy crops. In rice, 

OsWRKY78 was suggested to be a positive regulator in stem elongation and seed 

development evidenced from semi-drawf and small kernel phenotype in RNAi and 

T-DNA insertion lines (Zhang et al., 2011). Other examples of development-related 

WRKYs include MINISEED3 (AtWRKY10) in seed development, VvWRKY2 in 
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regulation of lignifications and AtWRKY75 in root development (Devaiah et al., 

2007; Guillaumie et al., 2010; Luo et al., 2005). 

In seed germination, the GA-inducible α-amylase enzymes play central roles in 

germination and post-germination. One early study revealed that wild oat WRKY 

proteins (ABF1 and ABF2) could bind to the W-box of the GA-regulated α-Amy2 

promoter (Rushton et al., 1995), thus linking WRKY proteins with seed germination. 

Through transient expression studies, some activators and repressors of GA 

signalling in rice aleurone cells were identified (Xie et al., 2006; Xie et al., 2007; 

Zhang et al., 2004; Zou et al., 2008). For instance, rice OsWRKY51 and 

OsWRKY71 were found to encode repressors of α-amylase whereas OsWRKY72 

and OsWRKY77 appeared to be activators. However, genetic evidence is required 

to validate their real involvement in seed germination. First direct evidence from 

Arabidopsis indicated that AtWRKY2 acted as a mediator in the ABA-dependent 

seed germination and postgermination growth arrest (Jiang and Yu, 2009). 

Similarly, the sequence-related AtWRKY18, -40 and -60 were recently 

characterized as negative regulators of ABA-signalling during seed germination 

and postgermination growth, with AtWRKY40 playing a central role (Shang et al., 

2010). In Arabidopsis, ectopic overexpression of OsWRKY72 caused retarded 

seed germination, enhanced sensitivity to ABA and altered expression of auxin-

responsive genes (Song et al., 2010). 

Senescence in plants is a controlled process involving the timely activation of 

metabolic pathways through transcription factors including WRKY proteins. The 

WRKY factors are reported to be the second largest group of transcription factors 

of the senescence transcriptome (Guo et al., 2004). One well-studied example is 

AtWRKY53, which showed a specific expression at the onset of leaf senescence 

(Hinderhofer and Zentgraf, 2001). It appeared to directly interact with the MEKK1, 

an upstream components in MAPK cascade (Miao et al., 2007). Moreover, 

epigenetic programming was also implicated in the mechanism whereby 

AtWRKY53 regulates senescence (Ay et al., 2009). Recently, degradation of 

AtWRKY53 by E3 ubiquitin ligase UPL5 was found essential in executing the leaf 

senescence at the right time frame (Miao et al., 2010). AtWRKY6 and AtWRKY22 

are also involved in senescence (Robatzek and Somssich 2001; Robatzek and 

Somssich 2002; Zhou et al., 2010). 
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1.3 Transcriptional regulatory network of WRKY 

1.3.1 WRKY signalling transduction 

Expression of many WRKY proteins is induced by the aforementioned diverse 

stresses. But WRKY transcription factors are also thought to be regulated or 

activated on the protein level. Some shared components have been identified or 

postulated upstream of WRKY proteins, for instance, the receptors for microbial-

derived molecular signatures and the mitogen-activated protein kinases 

(Andreasson et al., 2005; Asai et al., 2002; Fiil et al., 2009; Hofmann et al., 2008; 

Kim et al., 2004; Koo et al., 2009; Liu et al., 2004). In Arabidopsis, WRKY22 and 

WRKY29 transcription factors act downstream of the flagellin receptor FLS2, a 

leucin-rich-repeat (LRR) receptor kinase (Asai et al., 2002).  

AtWRKY33 was shown to form nuclear complexes with the MAP kinase MPK4. 

MAMP perception led to the dissociation of the protein complex and release of 

AtWRKY33, which activated the expression of the camalexin synthesis gene 

PAD3. (Qiu et al., 2008b). WRKY38 and WRKY62 were shown to act downstream 

of cytosolic NPR1 in the regulation of jasmonate-responsive gene expression 

(Mao et al., 2007; Xie et al., 2010). In addition, phosphorylation appeared to be a 

very important step in the activation of WRKY protein. The MAP kinase kinase 

kinase (MEKK1) was found to bind directly to the AtWRKY53 promoter and 

meanwhile phosphorylate AtWRKY53 protein to take a shortcut in signalling (Miao 

et al., 2007). 

Very recently, Arabidopsis WRKY33 was shown to be a direct phosphorylation 

target of MPK3/MPK6 following the infection of B. cinerea (Mao et al., 2011). In 

tobacco, overexpression of the MAP kinase SIPK triggers cell death through the 

phosphorylation of WRKY1 (Menke et al., 2005). Moreover, phosphorylation of the 

Nicotiana benthamiana WRKY8 by MAPK has an important role in the defense 

response through activation of downstream genes (Ishihama et al., 2010).  

Induced WRKY expression is often extremely rapid and transient, and seems not 

to require do novo synthesis of regulatory factors (Eulgem et al., 1999; Hara et al., 

2000; Lippok et al., 2007; Rushton et al., 1996). Therefore, many WRKY genes 

are generally considered as early and intermediate stress responsive genes. This 
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fast responsive behaviour indicates a role for the WRKY proteins in regulating 

subsequently activated downstream response genes, which eventually leads to 

protective reactions in plants. As suggested by the binding preference of WRKY 

proteins for W boxes, genes containing these promoter elements are possible 

targets of WRKY proteins. They represent a number of stress-related genes (i.e, 

PR genes) and WRKY genes themselves (Eulgem et al., 2000; Yu et al., 2001). A 

large body of evidences have confirmed the direct targeting of these genes by 

WRKY proteins. For example, AtWRKY40 was demonstrated to have direct in vivo 

interaction with promoter regions of the regulatory gene EDS1, the AP2-type 

transcription factor gene RRTF1 and JAZ8, a member of the JA-signaling 

repressor gene family (Pandey et al., 2010). AtWRKY6 was found to positively 

influence the senescence- and pathogen defense-associated PR1 promoter 

activity (Rabatzek and Somssich, 2002). In addition, it specifically activates the 

promoter of a receptor-like protein kinase SIRK likely through direct W-boxes 

interactions but represses its own promoter activity (Rabatzek and Somssich, 

2002). 

 

1.3.2 Mechanisms of WRKY function 

WRKY proteins can function as transcriptional activator or repressor. In Nicotiana 

benthamiana, ectopic expression of WRKY8 was found to activate defense-related 

genes, such as 3-hydroxy-3-methylglutaryl CoA reductase 2 and NADP-malic 

enzyme (Ishihama et al., 2010). The tobacco NtWRKY6 acts as an activator in the 

induction of PR1a gene expression by SA and bacterial elicitor (van Verk, et al., 

2008). Heterologous expression of OsWRKY6 in Arabidopsis was shown to 

activate the expression of defense related genes (Hwang et al., 2011). Some 

WRKY members may possess both capacities. For example, OsWRKY71 and 

OsWRKY77 have been shown to act as activators in ABA signalling but as 

repressors in GA signalling (Xie et al., 2005). The similar feature was found for 

AtWRKY6 and AtWRKY53, which activate other promoters but repress their own 

promoters (Miao et al., 2008; Robatzek and Somssich, 2002). 

An elegant model was proposed for the derepression of MTI in barley-Blumeria 

graminis interaction (Shen et al., 2007). In this proposed model, HvWRKY1 and 
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HvWRKY2 act as repressors in the basal defense. Following the recognition of 

fungal-derived effector AVR10 by the resistance protein MLA10 in the cytosol, the 

MLA10 protein was activated and translocated into plant nucleus and physically 

interacted with HvWRKY1/2 repressor. This was thought to remove the repression 

from HvWRKY1/2 and activate the promoters of unidentified downstream defense 

genes. Another example is the activation of PcPR1 by PcWRKY1 in parsley (Turck 

et al., 2004; Ülker and Somssich, 2004). It was found that W-box elements are 

generally occupied by WRKY factors. Upon recognition of an elicitor (MAMP) by 

the cognate receptor, the MAPK cascade is activated and translocates a protein 

kinase into the nucleus where it directly interacts with bound WRKY proteins. Thus, 

these WRKY factors are replaced and released from the bound W-boxes resulting 

in the activation of PcPR10. 

Other possible mechanisms of WRKY functions include the operation through 

small RNAs (smRNAs) and histone modifications (Kim et al., 2008; Pandey and 

Somssich, 2009). Small RNAs, including microRNAs (miRNAs) and small 

interfering RNAs (siRNAs), have been shown to play fundamental roles in the 

modulation of gene expression. Some WRKY transcription factors are predicted to 

be targets of certain miRNAs (Pandey and Somssich, 2009). On the other hand, 

WRKY proteins might regulate smRNA synthesis. Nevertheless, it is a novel field 

awaiting further advances. Histone modifications through histone deacetylases are 

often associated with transcriptional repression by reducing the access of DNA for 

transcription factors (Zhou et al., 2005). The WRKY genes AtWRKY38, -53, -62 

and -70 have been implicated in processes involving histone modifications in the 

fine-tuning of plant senescence and immunity (Ay et al., 2009; Kim et al., 2008; Liu 

et al., 2004). The AtWRKY38 and AtWRKY62 function additively as negative 

regulators of basal defense and interact with histone deacetylase 19 (HDA19). 

HDA19 function positively in the basal defense and can abolish the transactivation 

activity of AtWRKY38 and AtWRKY62.  

Due to the enrichment of W-box elements in the promoter region of WRKY genes, 

WRKY proteins might physically interact with their own promoter or the promoter 

of other WRKY genes. This auto-regulation or cross-regulation is a common 

feature for WRKY action. AtWRKY53 was described to involve in both auto-

regulation and cross-regulation (Miao et al., 2008). Likewise, the promoter of 
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parsley PcWRKY1 was found to be bound with WRKY proteins and activation of 

PcWRKY1 promoter was achieved through cross-regulation by other WRKY 

factors that activate transcription (Turck et al., 2004). 

 

1.4 Basal defense in barley-Bgh interaction 

1.4.1 Barley-Bgh interaction  

The obligate fungal biotroph, Blumeria graminis f.sp. hordei (DC) Speer (Bgh), is 

the causal agent of powdery mildew on barley (Hordeum vulgare. L.). Indicated by 

the name, this fungus infects only barley but not other cereals. The genetics and 

physiology of barley-Bgh interaction has been studied since one century ago 

(Biffen, 1907). Upon landing of a conidial spore on the host surface, the fungus 

builds the first germ tube for attachment on the leaf surface and water uptake, 

while a secondary germ tube is built for penetration of the host cuticle and cell wall 

(Thordal-Christensen et al., 1999). By means of hydrolytical and mechanical 

power, a small amount of germinated conidia spores might break the cell wall 

barrier and produce a functional haustorium while others fail to penetrate (Pryce-

Jones et al., 1999). After successful penetration of the host cell, the fungus has 

the ability to reprogram the host cell in the sense that it becomes a nutrient sink 

and supports fungal proliferation (Schulze-Lefert and Panstruga, 2003). One good 

example is the green island effect on powdery mildew infected leaves (Schulze-

Lefert and Vogel, 2000), though the molecular basis of this redefinition of the 

infected site as a nutrient sink is not fully understood. 

The outcome of a fungal penetration attempt on a compatible host relies on the 

fungal virulence and the defense state of the attacked cell. Any fungal penetration 

is only successful when it antagonizes the host defense machinery which is 

evolved in diverse ways. Early defense prevents penetration and is mainly 

achieved by the formation of cell wall appositions (CWAs). This mechanical and 

chemical barrier is constituted of 1,3-glucans (callose), silicon, lignin-like material, 

and various cell wall proteins. The second line of defense inhibits nutrient uptake 

of haustoria and it is mainly achieved via hypersensitive response (HR) which is 

featured by a programmed cell death (PCD) of the attacked and/or the neighboring 

cells. In addition, HR is associated with accumulation of lignin-like material, 
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release of phytoalexins and other defense compounds which are toxic to the fungi 

(Oldach et al., 2001; von Röpenack et al., 1998).  

Though the molecular mechanism of HR is largely unknown, it is accepted that an 

HR reaction is typically triggered by effector-activated resistance (R) proteins 

(Jones and Dangl, 2006). The number of dominant or semi-dominant race-specific 

R proteins in barley was estimated to be around 85 (Jørgensen, 1994). 

Recognition of B.graminis f. sp. hordei is mediated by several loci distributed 

throughout the barley genome which are designated as Ml (Mildew resistance 

locus) (Jørgensen, 1994). As the most prominent locus, Mla (Mildew resistance 

locus A) is located on the short arm of chromosome 1H, with approximately 30 

alleles that mediate race-specific resistance (Jørgensen, 1994; Wei et al., 1999). 

Over the last decades, genetic studies in breeding material have identified a large 

number of functional resistance genes at the Mla locus in breeding material. 

Distinct from the genetic structure of Mla with multiple alleles at a single locus, 

putative AVR genes are scattered throughout the B.graminis f. sp. hordei genome, 

with the cloned AVR10 belonging to a diverse family encoding proteins lacking 

secretion signals (Ridout et al. 2006; Skamnioti et al. 2008). Alleles of Mla encode 

cytoplasmic- and membrane-localized coiled-coil (CC), nucleotide binding site 

(NBS), leucine-rich repeat  (LRR) proteins (Halterman and Wise 2004; Seeholzer 

et al. 2010; Shen et al. 2003) that translocate into the nucleus after recognition of 

a cognate AVR effector from B. graminis f. sp. hordei. Nuclear localization of AVR 

is required to mediate the hypersensitive response (Shen et al. 2007). This may be 

dependent on the direct interaction between appropriate MLA and AVR proteins 

(Seeholzer et al., 2010). Following recognition, the CC domain of MLA interacts 

with the transcription factors WRKY1 and WRKY2 (WRKY1/2) (Shen et al., 2007). 

 

1.4.2 Germin-like proteins (GLP) in plant immunity 

Members of germin-like protein (GLP) genes were originally isolated from 

germinating seeds and were regarded as specific marker for the onset of 

germination (Dunwell et al., 2008; Lane et al., 1993; Thompson and Lane, 1980). 

They belong to the cupin superfamily proteins which exhibit diverse functions 

(Dunwell and Gane, 1998). GLPs have been identified from a number of plant 
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species including Arabidopsis (Carter et al., 1998; Membré et al., 1997; Membré et 

al., 2000), soybean (Klink et al. 2007), grapevine (Cramer et al., 2007; Ficke et al., 

2002; Godfrey et al., 2007), conifers (Mathieu et al., 2006), Medicago (Doll et al., 

2003; Soares et al., 2009) and peanut (Chen et al., 2010b). The majority of germin 

and GLP studies are focused on Gramineae species such as wheat, barley and 

maize (Breen and Bellgard, 2010; Dunwell et al., 2008; Lane, 2002). 

Apart from the role of GLPs in germination and early development (De Los Reyes 

and McGrath, 2003; Federico et al., 2006), they are also implicated in abiotic 

stress responses such as salt, drought and aluminium stress (Cramer et al., 2007; 

Houde and Diallo 2008; Ke et al., 2009). Accumulating evidence suggests that 

GLPs are essential players in plant immune system (Breen and Bellgard, 2010; 

Lane, 2002). Some GLP genes showed induced expression in response to 

pathogen, herbivores as well as the chemical treatments like salicylic acid, 

hydrogen peroxide (H2O2), or ethylene (Dumas et al., 1995; Federico et al., 2006; 

Godfrey et al., 2007; Lou and Baldwin, 2006; Schweizer et al., 1999; Wei et al., 

1998; Zhang et al., 1995; Zhou et al., 1998; Zimmermann et al., 2006). 

The direct involvement of GLP in plant defense has been demonstrated in many 

cases. For instance, overexpression of a wheat germin in sunflower (Helianthus 

annuus) enhanced resistance to pathogens (Hu et al., 2003). Silencing of a GLP in 

native tobacco Nicotiana attenuata increased the performance of native herbivore 

(Lou and Baldwin, 2006). In rice, a cluster of GLPs on chromosome 8 was 

identified to function as the QTL (quantitative trait locus) responsible for broad-

spectrum level resistance (Manosalva et al., 2009). In barley, transient 

overexpression of certain barley GLP subfamilies resulted in enhanced resistance 

to the powdery mildew fungus, and silencing of GER4 resulted in enhanced 

susceptibility to the pathogen (Himmelbach et al., 2010; Zimmermann et al., 2006). 

In both rice and barley, the GER4 subfamily was identified to contribute most to 

disease resistance. Recently, a germin-like protein was identified as a 

transcriptional target of the MLA transcriptional regulon based on quantitative time-

course expression profile (Moscou et al., 2011). This reflects an overlapping of 

basal defense process and R gene-mediated signalling. 

Germins and GLPs are targeted to cell surface and have oxalate-oxidase (OXOX) 

activity (Lane et al., 1993; Lane, 2000) or superoxide dismutase (SOD) activity 
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(Christensen et al., 2004; Godfrey et al., 2007; Zimmermann et al., 2006). Both 

enzyme activities are linked to the generation of hydrogen peroxide (H2O2), which 

has possible roles in a range of defense reactions, including cell wall 

reinforcement, cell death, and induction of PR gene expression (Alvarez et al., 

1998; Bolwell and Wojtaszek, 1997; Chen et al., 1993; Lamb and Dixon, 1997; 

Olson and Varner, 1993; Thordal-Christensen et al., 1997; Wei et al., 1998). 

In barley, eight GLP genes (HvGER4 a-h) are clustered in the GER4 locus and the 

promoter contains multiple WRKY factor binding sites (W-boxes) (Himmelbach et 

al., 2010). Mutational analysis of W-boxes in GER4c promoter-β-glucuronidase 

fusions revealed the enhancing effects of W-boxes in the pathogen-induced 

promoter activity. Enrichment of W-box elements was also observed in the 

promoter of OsRGLP2 and TaGLP3 (Mahmood et al., 2010), implicating a 

potential transcriptional regulation of GLP promoters by WRKY proteins. 

 

1.5 Objectives of this study 

The main objective of the current study was to identify putative WRKY 

transcription factors in barley and characterize the functions of the previously 

identified HvWRKY1 and -2 with a particular focus in the interaction of barley with 

Blumeria graminis f.sp. hordei (Bgh). In order to provide an overview of the WRKY 

family in barley, whole-genome search was performed to identify putative WRKY 

transcription factors based on genomic sequence and transcript databases. 

The specific aims were: 

1). To identify, annotate members of the barley WRKY gene family and analyze 

their phylogenetic relationship. 

2). To analyse the gene structure and function of HvWRKY1 and HvWRKY2. 

3). To identify target genes of HvWRKY1 and HvWRKY2 which were suggested to 

be negative regulators of barley basal defense. 

4). To characterize the disease resistance phenotype of HvWRKY2 

overexpression barley lines and compare the defense-related gene expression. 

5).  To identify candidate genes for further studies and genetic approaches which 

aim at improving broad-spectrum and durable resistance of barley. 



Materials and Methods 

 20

2. Materials and Methods 

2.1 Plant growth condition and pathogen infection 
Blumeria graminis f.sp. hordei (Bgh) race A6 was maintained in a climate cabinet 

and propagated on young seedlings of the susceptible barley cultivar ‘Golden 

Promise’ at 20°C/18°C (day/night) with 60% relative humidity and a photoperiod of 

16 h with 240 μmol m2 s-1 photon flux density. 

Evaluation of powdery mildew resistance was performed on detached leaves. 

Plants from the cultivars Golden Promise, Ingrid, BCIngrid mlo-5(I22) and Sultan 5 

(Mla12) were grown in spore-free Percival growth chamber under a photoperiod of 

16 h with 240 μmol m-2 s-1 photon flux density. Seven days after sowing, the 

primary leaf was cut and placed in 0.5% water agar medium containing 40 mg/L 

benzimidazole in a square (10 × 10 cm) petri dish with the adaxial side of the leaf 

facing upwards. Each petri dish accommodated about 10 leaf segments. 

To use freshly produced conidia for inoculation, old conidia spores from the 

heavily infected Golden Promise seedlings were removed by gentle shaking of the 

plants 2 days prior to inoculation. A settling tower was used for inoculations. 

During inoculation, petri dishes containing the leaf segments were placed inside 

the tower and conidia from Bgh colonized seedlings were blown and allowed to 

settle for 10 minutes. The density of inoculum was monitored by haemocytometer 

and was adjusted to 10-15 conidia per mm2 for macroscopical observation. Five 

days after incubation, the accessions were scored by counting the number of 

powdery mildew pustules per 2 cm2 of leaf segment, using a magnifying glass 

(10x). For evaluation of resistance on single cell level with microscopy, the 

inoculation density was adjusted around 150 conidia spores per mm2. In the 

promoter studies, a much higher inoculation density (over 200 conidia spores per 

mm2) was used to activate the HvGER4c promoter. 

2.2 Hygromycin-based selection of transgenic plants 
Selection of transgenic plants was established and optimized for barley based on 

the method of Wang and Waterhouse (1997). Leaf segments 2 cm in length from 

transgenic and non-transgenic barley plants were cut and immediately placed in 

MS medium containing 200 mg/L of  hygromycin, 0.5mg/L 6-BA (6-

benzylaminopurine) and 8g/L agar. With the cut ends embedded inside of the 
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media, leaf segments were kept at 24 oC under a long-day photoperiod (16h/8h 

light dark regime) for one week until bleaching occurred on the wild type plants. 

2.3 Isolation of DNA and RNA 
DNA was isolated by CTAB method according to a modified protocol of Doyle and 

Doyle (1987). Briefly, plant material was ground into fine powder in liquid N2 and 

transferred into 2.0 ml microcentrifuge tube. 700 μL hot (pre-warmed at 65°C) 

CTAB Extraction Buffer was added and the tubes were indubated for 25 minutes. 

700 μL of Chloroform:Isoamyl-Alcohol (24:1,CIA) was added and mixed by 

inversion for 5 minutes. The samples were centrifuged at 10000 rpm for 15 

minutes under room temperature. Supernatant was transferred to a new 

Eppendorf tube containing 600μl of CIA, mixed by inversion for 5 minutes and 

centrifuged at 10000 rpm for 15 minutes (RT). The supernatant was thoroughly 

mixed with 500 µL of isopropanol and placed on ice for 15 minutes. Supernatant 

was discarded and pellet was washed with 70% ethanol/10mM NH4OAc. Finally, 

dry pellet was resuspended in 100 μL ddH2O. The DNA concentration was 

measured by NanoDrop N1000 (peqLab Biotechnologie GmbH, Erlangen). 

CTAB Extraction Buffer  

2%   CTAB 

20mM  EDTA 

100mM  tris-Cl, pH 8.0 

1.4M   NaCl 

0.2%   mercaptoethanol (add prior to use) 

 

Wash Buffer 

70%   ethanol 

10mM  NH4OAc 

 

Extraction of total RNA was performed by phenol-chloroform extraction method. 

Barley leaves from mock treated or powdery mildew infected samples were 

harvested at the indicated time points and immediately frozen in liquid nitrogen. 

Leaf samples were crushed into fine powder in liquid nitrogen using mortar and 

pestle. 1 mL RNA Extraction Buffer was added to the sample and vortexed 

vigorously. 200 μL chloroform was added and vortexed again. Thereafter, samples 
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were vortexed for 15 seconds and centrifuged at 13500 rpm for 15 min at 4°C. The 

supernatant was transferred into a clean Eppendorf tube with 850 uL chloroform 

and vortexed briefly. Then all the samples were centrifuged at 13500 rpm for 15 

min at 4°C. The supernatant was transferred to a new tube with 1 mL 5 M LiCl and 

mixed by brief vortex. After overnight incubation at -20°C for precipitation of RNA, 

pellet was spinned down at 13500 rpm for 20 min at 4°C. The supernatant was 

carefully discarded and the pellet was washed with 70% ethanol by short vortex 

followed with centrifugation at 13500 rpm for 10 min at 4°C. The washing step was 

repeated once and the liquid was removed completely. Then, the pellet was air 

dried under clean bench for 15 min and dissolved in 50 μL H2ODEPC. RNA 

concentration was measured by Nanodrop ND-1000 Spectrophotometer (peqLab 

Biotechnologie GmbH, Erlangen) and the RNA integrity was examined on 

denaturing 1.5% agarose-gel containing 5% formaldehyde. Trace DNA was 

removed using 1 μL DNaseI per μg sample RNA prior to cDNA synthesis. 

RNA Extraction Buffer 

38%   phenol 

0.8 M   guanidin thiocyanat 

0.4M   ammonium thiocyanat  

0.1M   sodium acetate, pH 5  

5%   glycerol  

2.4 Expression analysis 
For gene expression analysis, Golden Promise and pUbi::WRKY2 plants were 

inoculated with Blumeria graminis f.sp hordei A6 or mock treated and harvested at 

0, 4 and 12 hours. Total RNA was extracted as described in section 2.3. One μg of 

RNA was reverse-transcribed using Fermentas reverse transcriptase kit 

(Fermentas, Sankt Leon-Rot) according to the manufacturer’s instruction. The 

cDNA was diluted 5-fold (estimated equivalent concentration 10 ng/μL) and used 

for expression analysis with semi-quantitative PCR and quantitative real-time PCR. 

In the quantitative real-time PCR, the expression level of IGS, synaptotagmin, 

HvPR2 and HvPR5 was determined using the 2-∆Ct method (Schmittgen and Livak, 

2008). Amplifications were performed with 20 μl  SYBR green JumpStart Taq 

ReadyMix (Sigma–Aldrich, Munich) with 350 nM oligonucleotides and an Mx3000P 

thermal cycler with a standard protocol (Stratagene, La Jolla, CA). Briefly, the 
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amplification was performed with an initial denaturation step at 95°C for 8 min 

followed with 40 cycles (94°C for 30 s, 60°C for 30 s, 72°C for 30 s, and 82°C for 

15 s). Three fluorescent reading were monitored once at 72°C and twice at 82°C 

during each cycle. Melting curves were determined at the end of cycling to ensure 

specific amplification. Ct (cycles of threshold) values were determined and 

processed with the Mx3000P V2 software. For comparison of expression level, Ct 

values were generated by deducting the raw Ct values of the candidate genes 

from the respective raw Ct values of the reference gene barley ubiquitin 

(Accession Nr., M60175). 

In the semi-quantitative RT-PCR, the amplification was performed in 25 μL 

reaction with 20 ng cDNA as template. The barley ubiquitin gene was used as 

internal control for equal cDNA usage in PCR reactions.  Amplification was 

achieved by incubation in a DNA thermal cycler for 28-32 cycles, each consisting 

of 30 s of denaturation at 94 °C, 30 s of annealing at 60 °C, and 30 s of extension 

at 72 °C.  

Semi-quantitative RT-PCR (25 μL) 

2 μL   cDNA (10ng/ul)  

2.5 μL  10×PCR Buffer 

2.5 μL  2 mM dNTPs-Mix 

1.5 μL  25 mM MgCl2 

1.0 μL  forward primer (10 pM)  

1.0 μL  reverse primer (10 pM)  

0.15 μL  Taq polymerase (5 U/μl )  

14.35 μL MilliQ-H2O 

2.5 Molecular cloning and plasmids constructions 

Primer design was mainly performed with the online tool Primer 3 

(http://frodo.wi.mit.edu/primer3/). Restriction sites were introduced on 5’ ends of 

the primers to facilitate cloning when necessary. In this case, 2-4 bp extra 

protection nucleotides were added at the ends to improve digestion efficiency of 

PCR products. All primers used in this study were ordered from Eurofins MWG 

Operon and listed in Appendix 3. The freeware pDRAW32 

(http://www.acaclone.com/) was used for vector information management and in 

silico cloning. During cloning, the digestion was performed with restriction 
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enzymes from Fermentas (Fermentas, Sankt Leon-Rot). Selection of suitable 

reaction buffer system for double digestion was assisted by the online tool 

DoubleDigest™ (http://www.fermentas.com/en/tools/doubledigest).  

Standard transformation procedure was followed using 60 seconds heat shock of 

E.coli strain DH5at 42 oC. Positive colonies grown on antibiotic selection plates 

were verified by colony PCR. The colonies were further confirmed by restriction 

digestion and sequencing (LGC Genomics, Berlin).  

Vector constructs were generated following standard cloning procedure. Maps for 

all the vectors generated in this study were included in Appendix 4. The wild-type 

and truncated HvGER4c promoter GUS fusion constructs were provided by Dr. 

Patrick Schweizer (IPK, Gartesleben). Plasmid pGY1-mCherry (4213 bp) was 

generated from p123mCherry and pGY1-GFP. In principle, GFP in pGY1-GFP 

was replaced by mCherry released from p123mCherry after NcoI/EagI digestion. 

For cloning of pUbi::AtWRKY40, AtWRKY40 CDS was amplified by AtW40Bam_F 

and AtW40Hind_R from pDONR-AtWRKY40, which was kindly provided by Dr. 

Imre E. Somssich (Max Planck Institute for Plant Breeding Research, Köln). As the 

stop codon was absent in the original cDNA clone, the codon TAA was added in 

the reverse primer AtW40Hind_R. Ligation of BamHI/HindIII digested AtWRKY40 

PCR product and the backbone pUbi-AB yielded pUbi::AtWRKY40. 

HvWRKY1 promoter was amplified using primer pHvW1Bam_F1/ pHvW1EcoR_R 

(954 bp) and pHvW1Bam_F2/ pHvW1EcoR_R (1940 bp) from barley (cv. Golden 

Promise) genomic DNA. PCR products were digested with BamHI/EcoRI and 

ligated with linearized pGusi-AM (5.3 kb). HvWRKY2 promoter (2876 bp) was 

amplified by pHvW2Bam_F and pHvW2Hind_R. 

To clone artificial microRNA for HvWRKY2 silencing, a 21-bp-long sequence 

(TTCAGACGTAGTCACCGACTA) was selected by WMD (Web MicroRNA 

designer, http://wmd.weigelworld.org/cgi-bin/mirnatools.pl) for specific targeting of 

HvWRKY2. Four primers including HvW2-394ImiR-s, HvW2-394IImiR-a, HvW2-

394IIImiR*s and HvW2-394IVmiR*a were used to run PCR using pNW55-

osaMIR528 as template (kindly provided by Prof. Detlef Weigel). Three PCR 

products were fused by the primer pair amiRPCR4_F and amiRPCR4_R. The final 

PCR product was digested with EagI/SpeI and ligated at the compatible ends of 
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pGY1-GFP produced by EagI/XbaI digestion. The resulting plasmid was named 

pGY1-GFP-amiRWRKY2. 

2.6 Isolation of plasmid DNA 
The recombinant bacterial were cultured with LB-medium including 100 mg/L 

ampicillin. The mini-preparation of plasmid DNA was performed using PureYield™ 

Plasmid Miniprep System (Promega) from 4 mL overnight bacterial culture 

following the manufacturer’s instructions (Technical Bulletin #TB374). For midi-

preparation, PureYield™ Plasmid Maxiprep System (Promega) was used for 

plasmid isolation from 75 mL overnight culture. As the last step, all plasmids were 

eluted in ddH2O instead of TE buffer to facilitate further analysis. Plasmids 

concentration and purity were examined with NanoDrop N1000 spectrophotometer 

(NanoDrop Technologies, Wilmington, USA).  

2.7 Particle bombardment 
A home-made helium biolistic system was used for particle bombardment-

mediated transient transformation of barley epidermal cell as described previously 

(Schultheiss et al. 2002; Schweizer et al., 2000).  For each shot, 312 µg of 1.1-µm 

tungsten particles were coated with pUbi-AtWRKY40 (1 µg) together with 

35S::GFP (0.5 µg) as a transformation control. In the control bombardment, the 

empty vector pUbi-AB (1 ug) was used together with the GFP construct. 24 h after 

the bombardment, leaf segments were inoculated with Bgh race A6. Inoculation 

density was adjusted ca. 150 conidia mm-2. The interaction outcome (penetration 

efficiency, PE) was analysed 48 h after inoculation by fluorescence microscopy. 

Transformed GFP expressing cells and the presence of haustorium were identified 

under blue light excitation. Surface structure of the powdery mildew fungus was 

detected using fluorescence staining with 0.3% calcofluor (w/v in water) for 30 s. 

Transformed GFP cells were categorized into three groups as penetrated cells that 

contained a haustorium, cells that were attacked by a Bgh appressorium but did 

not generate a haustorium, and cells that were not infected by fungus. Cells with 

more than one haustorium or that contained haustoria but less than fungi attacked 

were recorded as only one penetrated cell. The penetration efficiency (PE), 

referring to the haustorium index (%) in the transformed GFP cells was obtained 

based on a set of a minimum of three experiments each consisting of at least 100 
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interaction sites. PE was calculated for each experiment as the number of 

penetrated cells (presence of a functional haustorium) divided by the total number 

of attacked cells multiplied by 100. 

In the promoter study, particle bombardment was performed using the same 

biolistic system. For normalization of GUS expression, a plasmid containing the 

GFP reporter under the control of maize ubiquitin promoter was co-bombarded 

(pUbi-GFP). In the bombardment, a mass ratio of 2:1:1 for pHvGER4c::GUS (or its 

truncated forms), 35S::WRKY (HvWRKY1 or HvWRKY2) and pUbi::GFP and 2 ug 

total DNA was adopted. In the control bombardment, same amount of the empty 

vector pGY1 was used instead of the WRKY constructs. Bombarded leaves were 

transferred to 0.5% agar plates supplemented with 40 mg/L Benzimidazole and 

incubated at 18°C for 48 h before adequate inoculation with B. graminis spores. 

2.8 GUS assay 
Bombarded leaf segments were inoculated with powdery mildew (B.graminis f.sp 

hordei A6) 48 h after transformation. The number of GFP expressing cells was first 

counted under fluorescence microscope (Zeiss Axioplan Imaging 2) for each shot. 

Thereafter, the leaf segments were stained histochemically for GUS expression. 

Leaf segments were placed in 2 mL Eppendorf tubes and GUS staining solution 

was added until the leaf tissue was immersed. Short vacuum infiltration was 

performed till the leaves were completely water-soaked. After 24 h incubation in 

GUS staining solution at 37oC in dark, the solution was removed and GUS-stained 

leaves were cleared in clearance solution with shaking. The clearance solution 

was changed once after 48 hours of incubation. Subsequently, the number of GUS 

cells per bombardment was counted under macroscopy. The obtained numbers of 

GUS-stained cells were normalized together to the number of GFP expressing 

cells from cobombarded pUbi-GFP. Eventually, the normalized number of GUS 

cells per bombardment was taken as a measure for the HvGER4c promoter 

activity as previously described (Himmelbach et al., 2010). Average values were 

based on raw data from at least three independent bombardment experiments. 

 GUS staining solution 

0.1 M    Na2HPO4/NaH2PO4, pH 7.0 

1.4 mM   potassium hexacyanoferrat (II)  

1.4 mM   potassium hexacyanoferrat (III),  
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0.5 mg ml–1  5-bromo-4-chloro-3-indoxyl-b-D-glucuronic acid, 

cyclohexylammonium salt (X-Gluc; Duchefa, Netherlands) 

0.1% (v/v)   triton X-100 

 

Clerance solution (1L) 

250 ml  chloroform 

750ml   technical ethanol 

1.5g   trichloroacetic acid (TCA) 

2.9 Purification of recombinant protein 
To produce recombinant HvWRKY2 protein, the full-length coding sequence of 

HvWRKY2 was PCR amplified using HvWRKY2Sal_F and HvWRKY2Hind_R. The 

fragment was fused to the C-terminal of thioredoxin-6xHis-S-tag in the expression 

vector pET32a(+) (Novagen) and resulted in pET32a-HvWRKY2. Subsequently, 

the construct was electro-transformed into E. coli strain BL21 (DE3) pLysS 

(Stratagene, La Jolla, USA) using Bio-Rad E.coli Pulser Apparatus at 2.5 kV with 

0.2 cm cuvettes. 

The bacterial clones containing 6xHis-HvWRKY2 were first verified for the rate of 

protein production and the solubility of the protein using a small scale protein 

induction. Large scale (1L) protein production was performed in Luria-Bertani (LB) 

medium overnight under shaking at 37°C. After inoculation of fresh medium with 

the overnight culture, bacteria were allowed to grow until mid log phase (OD600 of 

0.5-0.8) before isopropyl-β-D-thiogalactopyranoside (IPTG) was added to a final 

concentration of 1 mM and further incubated for 4 hours for protein induction. The 

bacteria pellets were harvested by centrifugation at 4000 rpm for 20 min at 4°C 

and dissolved in 30 ml lysis buffer for 30 minutes. The bacterial cells were 

disrupted by sonication eight cycles with 20 seconds intervals. As the recombinant 

is present in the inclusion body, the sonicated lysate was centrifuged at 9500 rpm 

for 30 min at  4°C and the pellet was dissolved in Buffer B and incubated under 

shaking for 1 hour at room temperature. Afterwards, the cell debris was removed 

from the lysate solution by centrifugation for 30 min (12000 rpm). The supernatant 

was collected and stored at 4°C. To prepare the column for purifying the 6× His-

tagged fusion protein, 1 ml of Ni-NTA resin (Qiagen, Hilden, Germany) was 

pipetted into the column that was clamped onto a stand. The resin was allowed to 
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settle down and once settled the valve was opened to drain off the residual liquids 

in the column. Thereafter, the supernatant containing soluble protein was loaded 

onto a Ni-NTA prepared column and washed three times with 4 ml washing buffer 

and thereafter, the column was eluted three times with elution buffer. Finally, 

proteins were desalted and concentrated using an ultra-filtrate column (VIVASPIN 

6 ml concentrator) with a molecular weight cut-off (MWCO) at 10 kDa (Vivascience, 

Lincoln, UK) and stored at -80°C. Protein concentration was estimated by Bradford 

assay. Different concentrations of bovine serum albumin (BSA) were prepared and 

used to create a standard curve. Purity and integrity of HvWRKY2 recombinant 

protein was determined by separating protein aliquots using sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After electrophoresis, gel 

was fixed by fixation solution (one part Acetic Acid, 3 parts Isopropanol and 6 parts 

Water) for 30 min. Eventually, the gel was visualized with colloidal Coomassie blue 

(Roth, Karlsruhe, Germany). Staining solution was added to the gel and shaking at 

room temperature overnight. To minimize the background staining, destaining was 

performed using destaining solution for 30 minutes. 

LB (Lauria Bertani) Broth  
1 %   tryptone peptone  
0.5 %   yeast extract  
0.5 %   NaCl  
1%  agar 
 

lysis buffer (pH 8.0) 

50 mM  NaH2PO4 

300 mM  sodium chloride  

10%   glycine,  

1 mg/ml  lysozyme,  

0.5 mM  PMSF  

 

Buffer B  

10 mM  Tris-HCl (pH 8.0)  

8 M   urea 

100 mM  NaH2PO4 
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washing buffer  

8 M   urea,  

25 mM  imidazole 

100 mM  NaH2PO4 

10 mM  Tris-HCl, pH 6.3 

 

Elution Buffer 

8 M   urea 

500 mM  imidazole,  

100 mM  NaH2PO4 

10 mM  Tris-HCl, pH 4.5 

 

Staining Solution  

20 % (v/v)  coomassie blue stock 

20 % (v/v)  methanol  

60 % (v/v)  H2O 

 

Destaining Solution 

40%  (v/v)  methanol 

10% (v/v)  glacial acid 

50% (v/v)  H2O 

2.10   Electrophoretic mobility shift assay (EMSA) 
To investigate the binding of HvWRK2 and the HvGER4c promoter, we employed 

Electro mobility shift assays (EMSA) with HvGER4c promoter fragments 

containing the consensus W-box cis-elements. The fragment consisting of a single 

W-box (W-box 1, W-box2, W-box5 or W-box 6) in the HvGER4c promoter region 

was picked to design probes. Accordingly, all the mutated probes (mW-box1, mW-

box2, mW-box5 and mW-box6) harboring a point mutation in the core sequence of 

consensus W-box from TGAC to TGAA were designed as control. At 5’-end of the 

36 bp fragments, two additional nucleotides AA were added to facilitate the 

labeling with DIG-11-dUTP. The sense and anti-sense primers corresponding to 

each probe were synthesized by Eurofins MWG Operon. Double stranded DNA 
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was generated using the complementary single stranded DNA. The DIG-labeling 

was performed in a 5’-overhang fill-in reaction using T4 DNA polymerase. 

W-box1  aaGTTGGGCGGTTCCACTTGACTATGTCCATTACTCATuu 

mW-box1 aaGTTGGGCGGTTCCACTTGAaTATGTCCATTACTCATuu 

W-box 2    aaAAGATTTGAATATGGCTGACCACATCTCAAAAGTTTuu  

mW-box 2  aaAAGATTTGAATATGGCTGAaCACATCTCAAAAGTTTuu  

W-box 5 aaCATTTGGAGAGAAATTTGACCAGGCAACTGTATATC uu 

mW-box 5  aaCATTTGGAGAGAAATTTGAaCAGGCAACTGTATATCuu 

W-box 6 aaCTAGTCATGAACCTTAGTCAGGACTAGATTGTTAGAuu  

mW-box 6 aaCTAGTCATGAACCTTAtTCAGGACTAGATTGTTAGAuu  

Amy32b aaGCCCGGATTGACTTGACCATCATCTGuu 

The non-labeled double strand oligonucleotides were used as competitors. 

Another probe made from the promoter fragment of Amy32b was used as a 

positive control based on its demonstrated binding affinity to HvWRKY1 protein in 

a previous study (Marè et al., 2004). The assays for all binding reactions contained 

the following components: probe, poly (dI-dC), 10 mM Tris–HCl (pH 7.6), 50 mM 

KCl, 0.5 mM EDTA, 50 uM ZnCl2, and 10% glycerol. Recombinant His-HvWRKY2 

protein (2 ug) was added with or without the presence of competitor (50-fold molar 

excess) and incubated at room temperature for 30 min. Reactions were resolved 

by electrophoresis on 5% polyacrylamide gel in 0.5x TBE (45 mM Tris, 45 mM 

boric acid, and 1 mM EDTA) buffer for 2 h. Signals were detected with DIG 

detection system. 

2.11   Database search and sequence annotation 
Protein sequences of the assigned WRKY genes for Arabidopsis thaliana were 

retrieved from NCBI using the accession numbers listed online (http://www.mpiz-

koeln.mpg.de/english/research/pmi-

dpt/somssich/WRKY_Superfamily/Arabidopsis_WRKY_Superfamily/index.html). 

For protein sequences of rice WRKY family, they are downloaded from the WRKY 

Wide Web 

(http://systemsbiology.usm.edu/PhytoTech/WRKY07012011/Species.html) using 

the list of OsjWRKY from Oryza sativa ssp. japonica. OsWRKY33, OsWRKY38 

and OsWRKY41 are obtained from O. sativa ssp. Indica.  
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To obtain the barley WRKY protein sequences, a blastp search was performed 

using the WRKYGQK signature as query sequences against non-redundant 

proteins dataset for barley (Organism: Hordeum vulgare, date: May 30, 2011). The 

search resulted in 100 hits, among which 9 sequences did not contain WRKY 

signature and was removed. The remaining 91 sequences were used for 

alignment in Clustal W and 32 sequences were found to be duplicates. As a result, 

59 non-redundant HvWRKY protein sequences were obtained. To prevent 

confusion, I adopted the nomenclature for from HvWRKY1 to HvWRKY46 as 

described previously (Mangelsen, et al., 2008). HvWRKY35 and HvWRKY41 were 

combined as HvWRKY35. Two WRKY domains were found for HvWRKY25 and 

therefore assigned as group I WRKY. Whenever possible, the accession numbers 

for complete WRKY protein sequences were used. To identify more putative 

WRKY members in barley, the translated nucleotides corresponding to 

WRKYGQK were used in blastn search against the barley genome draft assembly 

(http://webblast.ipk-gatersleben.de/barley/index.php). In addition, tblastn search 

against the barley genome was performed using protein sequences of rice WRKY 

representatives from different groups (OsWRKY3, -6, -7, -13, -15, -45,-62, -66, -71 

-78,-88 and -97) as queries. The best matching contigs were downloaded and 

subjected to gene prediction with online Genescan tools using maize as a model. 

Gene prediction was confirmed by FGENESH using the model of monocots. Some 

contigs failed in the prediction using monocot as model but contained WRKY 

domains using Arabidopsis as model (HvWRKY66, -88, -90, -91, -93, and -95). 

Altogether, 41 additional peptides containing at least one putative WRKY domain 

were identified. Taken together, 100 putative WRKY proteins were obtained and 

used for further analysis. 

WRKY protein sequences from the other species are retrieved from Superfamily 

1.75 (http://supfam.cs.bris.ac.uk/SUPERFAMILY). Redundant sequences or 

sequences lacking a WRKY domain were removed after alignment. 

2.12   Data alignments and phylogenetic analysis  
Sequence data processing was performed as shown in Figure 2.1. For the group I 

WRKY proteins which have two conserved WRKY domains, they were manually 

spliced from the middle into N-terminal and C-terminal fragments, each containing 

the consensus WRKY domains, and was regarded as independent sequences. 
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Protein sequences from Arabidopsis thaliana, Oryza sativa, Hordeum vulgare and 

other species were aligned using MUSCLE programm which is integrated in 

MEGA5 software (Tamura et al., 2011). The alignment was then manually 

adjusted to reduce opened internal gaps. WRKY domains were kept starting 4 aa 

in front of WRKY signature and ending 2 aa after the zinc-finger motif (position of 

the last C or H in the motif C2HC or C2H2). The final sequences contain a 

conserved region spanning about 60 aa plus gaps with a region of 64 sites. 

Phylogenetic reconstruction was performed by MEGA5 (Tamura et al., 2011). In 

the analysis for 844 WRKY domains, about 90 aa crossing the conserved regions 

were included in multiple alignment. 

 

Figure 2. 1 Overview of the pipeline used in the sequence data processing.  
Arrows represent the direction followed in the phylogenetic analysis of barley 
WRKY transcription factors. 
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3.  Results 

3.1 Phylogenetic analysis of barley WRKY transcription factors  

3.1.1 Identification and annotation of WRKY proteins in barley genome 

Previously, the first phylogenetic analysis of barley WRKY gene family was 

performed by Mangelsen and coworkers (2008). The identified 45 putative barley 

WRKY genes were estimated to cover 50% of the whole gene family. Four of them 

had been described to play crucial roles in barley development, abiotic stresses 

and biotic stresses (Eckey et al., 2004; Mare et al., 2004; Shen et al., 2007; Sun et 

al., 2003; Xie et al., 2007). HvWRKY1 and HvWRKY2 played a role in negatively 

regulating barley responses to powdery mildew (Blumeria graminis) infections 

(Shen et al., 2007). HvWRKY38, also known as HvWRKY1, was found to be 

involved in drought and cold responses as well as the regulation of α-amylase 

during seed germination (Mare et al., 2004; Xie et al., 2007; Xiong et al., 2010). 

SUSIBA2, annotated as HvWRKY46, is involved in sugar signalling and regulation 

of starch biosynthesis (Sun et al., 2003). Despite the significant importance in 

stress responses and development, barley WRKY transcription factors were less 

studied and this field is lagging much behind the model plants Arabidopsis and rice. 

A well-resolved phylogenetic analysis of the barley WRKY family would facilitate 

the intra- and interspecies comparisons and help to functionally characterize 

further WRKYs with important roles in pathogen resistance, as there is much 

reference information available from Arabidopsis and rice. To fill in this gap, I 

screened the available EST data in GenBank and take advantage of the newly 

available barley genome information for discovery of novel putative barley WRKYs.  

I used WRKYGQK as query to BLASTP search against the GeneBank protein data 

set for Hordeum vulgare. 59 non-redundant putative WRKY-encoding proteins 

were identified. The recent release of over 24,000 full-length barley cDNAs 

allowed me to obtain 42 full-length sequences for the barley WRKY genes 

(Matsumoto et al., 2011). The rest 17 WRKY sequences are not complete. Among 

them, two domains were found for HvWRKY25 and therefore re-assigned as 

Group I WRKY. HvWRKY35 and HvWRKY41 were merged to HvWRKY35 

because they match the same genomic contig. 
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To identify more putative barley WRKY genes, I performed blastn search using the 

nucleotides corresponding to WRKYGQK as queries against barley genome 

database. In parallel, TBLASTN search was performed against the genome 

database of barley using representative WRKY domains from rice as query 

(OsWRKY3, -6, -7, -13, -15, -45,-62, -66, -71 -78,-88 and -97). The best matching 

genomic sequence contigs were downloaded and the exon prediction was done 

with Genescan using the model of maize (Zea mays). Gene prediction was 

confirmed by FGENESH using the model of monocots. Some genomic contigs 

failed in the exon prediction using maize as model but contained WRKY 

sequences using the gene model of Arabidopsis. As a result, 41 additional WRKY 

proteins were predicted from HvWRKY62 to HvWRKY102 and 25 of them were 

predicted to be full-length (Table 3.1). Altogether, 100 barley WRKYs were 

predicted with 67 full length sequences. 

 

Figure 3. 1 Organization of WRKY domains and WRKY signatures. A, 
Schematic structure of WRKY domains in WRKY proteins group I, II and III. Zinc-
finger motif and the WRKY signatures in each group are displayed. B, Sequence 
LOGO view of the consensus WRKY domain sequences based on all the WRKY 
domains from barley WRKY family. MEME tool (Bailey and Elkan, 1994) was used 
to generate the plot. The height of the letter (amino acid) at each position 
represents the degree of conservation. The four β-strands are shown in red at the 
top of the plot. 
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EST data are available for eight of the predicted barley WRKY genes HvWRKY63, 

HvWRKY64, HvWRKY65, HvWRKY74, HvWRKY77, HvWRKY81, HvWRKY87 

and HvWRKY94. For HvWRKY50, the NCBI database wrongly assigned it to a 

non-WRKY protein. In addition, HvWRKY19 has two variants named HvWRKY19-

1 and HvWRKY19-2. The cumulative information of the 100 members from barley 

WRKY gene family is shown in Table 3.1. Using all-to-all blast, the orthologous 

genes in Arabidopsis and rice for each barley WRKY member were identified 

based on the similarity of full-length sequences. The best hit from AtWRKYs and 

OsWRKYs is included in Table 3.1. Organization of WRKY domains and WRKY 

signatures for barley WRKY proteins are shown in Figure 3.1. 
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Table 3. 1. List of barley WRKY genes in comparison with Arabidopsis thaliana and rice (Oryza sativa). The group names, 
accession number of cDNA and proteins (if available), genomic contigs and the best hit in AtWRKY and OsWRKY are included. 
For the predicted WRKY proteins, the gene model of Zea mays was used for prediction by Genescan if not indicated. na, not 
available; H, hypothetical protein deduced from the predicted CDS; At, exon prediction was based on the model of Arabidopsis 
thaliana. 
 

Name Group 
cDNA 

Accession. 
Genomic Contig 

Protein 

Accession 

Complete 

CDS 
Best hit in 
AtWRKY 

Best hit in 
OsWRKY 

HvWRKY1/38 IIa AJ536667 contig_1006384 CAD60651 YES 40 71 

HvWRKY2 IIa AJ853838 contig_2162573 CAH68818 YES 40 28 

HvWRKY3 IIa AK359706 Contig_342474 BAJ90915 YES 40 76 

HvWRKY4 III AK371133 contig_121742 BAK02331 YES 70 47 

HvWRKY5 IIc AK358362 contig_50952 BAJ89576 YES 50 77 

HvWRKY6 I EF488106 
contig_1014506 

contig_48252 
ABR87003 YES 4 82 

HvWRKY7 IId DQ840406 

contig_407077 

contig_300787 

contig_1622612 

contig_370278 

contig_1139064 

contig_249381 

contig_144351 

ABI13373 YES 17 68 
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HvWRKY8 IId AK374747 contig_2159503 BAK05943 YES 74 83 

HvWRKY9 IId DQ840408 contig_47880 ABI13375 NO 21 87 

HvWRKY10 IId DQ840409 contig_47808 ABI13376 YES 17 51 

HvWRKY11 IId AK370043 contig_5720 BAK01244 YES 15 6 

HvWRKY12 IIc AK354853 
contig_42619 

contig_1011363 
BAJ86072 YES 75 73 

HvWRKY13 IIc DQ840412 contig_2162994 ABI13379 NO 24 23 

HvWRKY14 IIc DQ840413 
contig_1014483 

contig_2184465 
ABI13380 NO 13 79 

HvWRKY15 IIc AK370299 contig_2165862 BAK01500 YES 48 3 

HvWRKY16 IIc DQ840415 nd ABI13382 NO 50 67 

HvWRKY17 IIc AK357196 contig_47911 BAJ88410 YES 50 67 

HvWRKY18 IIc DQ840417 contig_45869 ABI13384 NO 51 26 

HvWRKY19-1 IIc 
BY846302 

BE412464 
contig_257635 na YES, 50 7 

HvWRKY19-2 IIc AK363783 contig_257635 na YES 50 7 

HvWRKY20 IIc AK363451 contig_1006739 BAJ94655 YES 50 7 

HvWRKY21 III AK356339 contig_50431 BAJ87557 YES 53 15 

HvWRKY22 III AK377066 contig_1035021 BAK08260 YES 41 74 

HvWRKY23 IIa DQ863131 contig_352217 ABI13413 NO 40 28 
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HvWRKY24 I DQ863108 contig_53603 ABI13390 NO 41 15 

HvWRKY25 I DQ863109 nd ABI13391 NO 41 15 

HvWRKY26 III AK369804 contig_2231621 BAK01005 YES 53 19 

HvWRKY27 III DQ863111 contig_110298, ABI13393 NO 53 19 

HvWRKY28 III AK355533 
contig_43617 

contig_225483 
BAJ86752 NO 41 74 

HvWRKY29 III AK362234 contig_50375 BAJ93438 YES 53 19 

HvWRKY30 III AK361795 contig_17373 BAJ92999 
YES 

 
41 69 

HvWRKY31 III DQ863115 contig_10262 ABI13397 NO 70 48 

HvWRKY32 III AK360029 

contig_9580 

contig_2164723 

contig_2165093 

BAJ91238 NO 70 45 

HvWRKY33 III AK363340 contig_43596 BAJ94544 YES 46 55 

HvWRKY34 III AK365657 contig_94785 BAJ96860 NO 46 46 

HvWRKY35 I AK365469 contig_79457 BAJ96672 YES 3 96 

HvWRKY36 IIc AK362686 
contig_39931 

contig_1038033 
BAJ93890 YES 13 101 

HvWRKY37 IIb AK368042 contig_126234 BAJ99245 YES 61 97 

HvWRKY39 IIe AK367643 contig_140874 BAJ98846 YES 65 13 
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HvWRKY40 I 
DQ863123+ 

FD518408 
contig_123835 na YES 34 102 

HvWRKY42 I AK362158 contig_254252 BAJ93362 YES 2 80 

HvWRKY43 I AK376482 contig_59998 BAK07677 YES 33 70 

HvWRKY44 IIe DQ863129 contig_246056 ABI13411 NO 27 39 

HvWRKY45 IIe AK356823 contig_1032364 BAJ88038 YES 65 14 

HvWRKY46 1 
AY323206 

AK369730 

contig_120368 

contig_195112 
BAK00931 YES 20 78 

HvWRKY47 III DQ900687 

contig_5918 

contig_39219 

contig_384 

contig_1122796 

ABL11228 YES 53 93 

HvWRKY48 IIb AK248555 contig_1015996 na NO 61 97 

HvWRKY49 I AK250089 contig_353367 na NO 4 84 

HvWRKY50 IIc AK361512 contig_353208 na YES 50 10 

HvWRKY51 I AK357671 contig_62027 BAJ88885 YES 33 24 

HvWRKY52 I AK376765 

contig_52325 

contig_2156719 

contig_38638 

BAK07959 YES 2 35 

HvWRKY53 IIc AK358052 contig_54575 BAJ89266 YES 71 16 
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HvWRKY54 IIa AK368514 
contig_1014802 

contig_2222013 
BAJ99717 NO 40 76 

HvWRKY55 IIe AK368513 
contig_352685 

contig_124987 
BAJ99716 YES 27 12 

HvWRKY56 IIe 
AK368994 

AK372278 
contig_49022 

BAK00197 

BAK03476 
YES 14 66 

HvWRKY57 IIb AK357452 contig_53770 BAJ88666 YES 6 1 

HvWRKY58 I AK363803 contig_123099 BAJ95006 NO 58 4 

HvWRKY59 IIb AK363247 contig_2168077 BAJ94451 YES 9 32 

HvWRKY60 IIc AK367216 contig_58302 BAJ98419 YES 23 8 

HvWRKY61 IId AK375802 
contig_142440 

contig_123665 
BAK06997 YES 74 83 

HvWRKY62 IIc na contig_8315 na YES, H 71 11 

HvWRKY63 IId na contig_2165457 na YES, H 17 68 

HvWRKY64 III BM372327 contig_1016776 na YES, H 63 22 

HvWRKY65 IIa EX577594 contig_318509 na YES,H 18 62 

HvWRKY66 I na contig_254811 na YES, H, At 2 30 

HvWRKY67 III na contig_1038013 na NO, H 54 48 

HvWRKY68 IIe na contig_39744 na YES, H 35 88 
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HvWRKY69 IIc na contig_327948 na NO,H 35 66 

HvWRKY70 IIc na contig_2160593 na YES,H 12 34 

HvWRKY71 IIc na contig_93119 na NO,H 13 17 

HvWRKY72 IId na contig_51501 na YES,H 17 68 

HvWRKY73 III na contig_50885 na NO,H 70 45 

HvWRKY74 III GH209861 contig_251171 na NO,H 41 86 

HvWRKY75 IIc na contig_116342 na YES,H 48 29 

HvWRKY76 III na contig_52137 na YES,H 54 50 

HvWRKY77 IIc EX585854 contig_50538 na YES,H 12 36 

HvWRKY78 I EX596185 
contig_2161300 

contig_249258 
na NO,H 4 85 

HvWRKY79 IIc GH227897 contig_1023762 na YES,H 71 49 

HvWRKY80 IIe na contig_120171 na YES,H 22 92 

HvWRKY81 IIc BM370096 contig_52837 na YES,H 71 60 

HvWRKY82 III EX572151 contig_153208 na NO,H 70 47 

HvWRKY83 III na contig_6987 na NO,H 53 75 

HvWRKY84 IIe na contig_2168101 na YES,H 22 92 

HvWRKY85 III na contig_2231621 na NO,H 53 19 

HvWRKY86 III na contig_60821 na YES,H 30 21 

HvWRKY87 IIe BQ763606 contig_42181 na YES,H 22 21 
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BY872404 

HvWRKY88 III na contig_2161133 na YES,H,At 70 44 

HvWRKY89 III na Contig_9731 na NO,H 62 48 

HvWRKY90 III na contig_202409 na YES,H,At 41 18 

HvWRKY91 III na contig_1064624 na YES,H,At 30 69 

HvWRKY92 III na contig_1008793 na YES,H 70 91 

HvWRKY93 III na contig_75387 na YES,H,At 38 90 

HvWRKY94 III na contig_1006364 na YES,H 38 64 

HvWRKY95 IIb na contig_4298 na YES,H,At 6 97 

HvWRKY96 IIb na contig_2185084 na NO,H 31 43 

HvWRKY97 III na Contig_121639 na NO,H 41 91 

HvWRKY98 III na contig_2161480 na NO,H 38 90 

HvWRKY99 III na contig_1034909 na YES,H 38 90 

HvWRKY100 III na contig_45438 na NO,H 55 75 

HvWRKY101 IIc na contig_19074 na NO,H 45 73 

HvWRKY102 IIc na contig_48863 na NO,H 75 23 
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3.1.2 Distribution of WRKY members in each subgroup 
The WRKY protein family can be classified into seven subgroups based on the 

sequence characteristic and structure. To classify the members of barley WRKYs 

into the predefined groups, multiple alignments were performed with 72 AtWRKYs, 

96 OsWRKYs and 100 HvWRKYs. In combination with the local all-to-all blast 

results, the barley WRKY proteins were placed into the corresponding groups. The 

number of each WRKY subgroup is listed in Table 3. 2.  

Table 3. 2. Number of each WRKY subgroup in Arabidopsis, rice and barley 

WRKY Group AtWRKY OsWRKY HvWRKY 

I 14  12  14  

IIa 3  4  6  

IIb 8  7  6  

IIc 18  20  24  

IId 7  9  8  

IIe 8  11  9  

III 14  33  33  

Total 72  96  100  

 

As shown in Figure 3. 2, the total number of WRKYs in the monocot crop rice and 

barley is higher than that of Arabidopsis, a dicot model plant. From the distribution 

pattern of the WRKY members in each subgroup, the number of WRKY members 

in group III differs a lot between the dicot plant Arabidopsis and the two monocot 

plants rice and barley whereas the other subgroups have similar sizes among the 

three plant species. In rice and barley, group III WRKY account for 34% and 33% 

in the whole family respectively. However, the percentage of WRKY III members in 

Arabidopsis WRKY family is only 19%. The difference in group III indicate an 

expansion of group III WRKY members in barley and rice compared to Arabidopsis.  
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Figure 3. 2. Distribution of WRKY members in each subgroup from Arabidopsis, 
rice and barley.  

3.1.3 Phylogenetic analysis of barley WRKY transcription factors 
To resolve the phylogenetic relationships of the barley WRKY family, an unrooted 

phylogenetic tree was generated using the conserved WRKY domain spanning 

about 60 amino acids (section 2.12). Representative Arabidopsis WRKY members 

from each subgroup were selected to facilitate the group assignments. For group I 

WRKYs which contain two conserved WRKY domains, they were manually split to 

I-N terminus and I-C terminus and treated as independent sequences. Multiple 

alignment was performed with MUSCLE algorithm which is integrated in MEGA5 

(Edgar, 2004; Tamura et al., 2011). Sequences causing gaps (HvWRKY74, 

HvWRKY76, HvWRkY89, HvWRKY93, HvWRKY94, HvWRKY95, HvWRKY96, 

HvWRKY98, HvWRKY99, HvWRKY100, HvWRKY101, and HvWRKY102) or too 

short sequences (HvWRKY25C) were eliminated in the further analysis. In total, 

119 WRKY domains were included in the final alignment for phylogenetic 

reconstruction (Appendix 2.1). As a result, most of the barley WRKYs could be 

clearly classified into corresponding pre-defined subgroups I, II and III (Figure 3. 3; 

Appendix 2.2). 
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Figure 3. 3. Phylogenetic tree of barley WRKY transcription factors.  
The unrooted phylogenetic tree of 119 WRKY domains comprising the identified 
barley WRKYs and some representative WRKYs from Arabidopsis was 
constructed using MEGA5 (Tamura et al., 2011.). The resolved clades were 
compressed and represented by black triangles.The labels and bolded Arabic 
numerals at the black triangles indicate the respective WRKY groups and number 
of WRKY members included in the group. The labels I-N and I-C indicate N-
terminal and C-terminal domains from group I WRKY members, respectively. The 
evolutionary history was inferred using the Neighbor-Joining method based on the 
conserved WRKY domain spanning about 60 amino acids. The confidence 
probability in percentage estimated from bootstrap test (1000 replicates) higher 
than 50 are included. The multiple alignment and complete phylogenetic tree 
shown in extended way is shown in Appendix 2.2. Bar lengths indicate the number 
of amino acid differences per site.  
 

As suggested by the modified classification system for WRKY family (Zhang and 

Wang, 2005), the group IIa and IIb were actually one group whereas group IId and 

IIe should be combined. My phylogenetic reconstruction supports their suggestion. 

However, three barley WRKYs namely HvWRKY36, HvWRKY71 and HvWRKY81 

could not be clearly assigned into any of the subgroups. Based on their full-length 

sequence similarity, their best hits in AtWRKYs were AtWRKY13 and AtWRKY71, 
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both of which are group IIc members. Therefore, these three HvWRKYs are 

nonetheless classified as group IIc members in this study. In agreement with the 

previous report, HvWRKY36 could not be assigned into the subgroups 

unambiguously solely based on phylogenetic analysis of the conserved domain 

(Mangelsen et al., 2008). 

As mentioned above, there are differences in the total number of WRKY proteins 

in Arabidopsis and monocot plants rice and barley. This difference is mainly 

attributed to the size of group III subfamily between these species (Figure 3. 2). I 

speculated that the monocot plants might have highly distinct and specific WRKY 

members in group III. Therefore, I constructed a second phylogenetic tree 

including all the identified WRKYs to compare the differences between the three 

plant species. Altogether, 291 WRKY domains were used in the phylogenetic 

reconstruction These WRKY proteins divided into three groups (Figure 3. 4). In all 

the subclades of group I and II, there is co-presence of WRKY members from the 

three plant species. However, the subclades of group III revealed differences 

between monocots and dicots. In the three subclades within group III, there is one 

branch comprising AtWRKYs, one with WRKY members solely from rice and 

barley and one with members from both dicot and monocot. The first branch in 

group III therefore appears to be dicot-specific. The second branch is considered 

to be monocot-specific group and might result from gene expansion after the 

diversification of monocots and dicots. They may have particular functions in 

monocots development and adaptation. 

I compared the sequences in this monocots-specific branch with the other 

members in group III and observed that some of these members contain a 

WRKYGEK signature instead of the canonical WRKYGQK in the highly conserved 

domain. Interestingly, this WRKYGEK motif was not observed in any WRKY 

proteins of the dicot model Arabidopsis. To verify the specificity of these 

WRKYGEK members, I retrieved WRKY domain sequences from 22 plant species 

including 2 green algae, 1 moss (non-vascular plant), 1 spikemoss (ancient 

vascular plant), 11 dicot plants and 7 monocot plants. These plant species were 

selected due to the completion or nearly completion of their genome sequencing. 

After multiple alignments and sequence comparison of the identified 1940 WRKY 

domains, I found that WRKYGEK motif is present in WRKYs of the single-celled 
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green algae Chlamydomonas reinhardtii and multi-cellular green algae Volvox 

carteri. This indicates an ancient origin of WRKYGEK signature. However, the 

WRKYGEK members were absent in moss (Physcomitrella patens) which is 

considered as close relative for vascular plants, and in spikemoss (Selaginella 

moellendorffii), a primitive vascular plant. 

 

Figure 3. 4. Monocot-specific and dicot-specific subclades in group III WRKYs. 
Phylogram of group III WRKY domains from Arabidopsis, rice and barley is shown 
in the tree. The unrooted phylogenetic tree of 291 WRKY domains comprising all 
the WRKYs from Arabidopsis, barley and rice was constructed using MEGA5 
(Tamura, et al., 2011). The evolutionary history was inferred using the Neighbor-
Joining method spanning about 60 conserved amino acids. The resolved clades 
were compressed and represented by black triangles. The labels indicate the 
number of respective WRKY groups from the corresponding species. The 
confidence probability in percentage estimated from bootstrap test (1000 
replicates) higher than 50 are shown. The evolutionary distances were computed 
using the p-distance method. Bar length indicates the number of amino acid 
differences per site.  
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Figure 3. 5. Expansion of WRKYGEK members in monocot plants.  
Genome-wide data mining was performed from the available datasets for 22 plant 
species including algae, mosses, 11 dicot plants and seven monocot plants. 
Shown is the distribution of WRKYGEK-containing WRKYs in these plant species . 
Chr, Chlamydomonas reinhardtii; Voc, Volvox carteri; Sm, Selaginella 
moellendorffii; Pp, Physcomitrella patens; At, Arabidopsis thaliana; Vv, Vitis 
vinefera (wine grape); Rc, Ricinus communis (castor bean); Sl, Solanum 
lycopersicum(tomato); Cs, Cucumis sativus (cucumber); Fv, Fragaria vesca 
(Alpine strawberry);Pt, Populus trichocarpa(Black cottonwood);Md, Malus x 
domestica (apple); Mt, Medicago truncatula (Barrel medic); Lj, Lotus japonicus; 
Gm, Glycine max (soybean); Bd, Brachypodium distachyon; Ta, Triticum aestivum 
(wheat); Hv, Hordeum vulgare (barley); Sb, Sorghum bicolor (sorghum);Os, 
Oryzae sativa (rice); Zm, Zea mays (maize);Si, Setaria italica. 
 
In addition, the WRKYGEK members were absent in 9 out of 11 selected dicot 

species (Figure 3. 5). The two exceptions from dicots are soybean (Glycine max) 

and Lotus japonicus, two members in the family Fabaceae, with three and one 

WRKYs having the WRKYGEK motif respectively. Interestingly, all the seven 

selected monocot plants contain at least three WRKYGEK-type WRKY members. 

Phylogenetic analysis using all the WRKYGEK-containing WRKYs from monocots 

and dicots support its monocot-specific expansion. The WRKYGEK members from 

monocots stand separately as an independent branch in group III. However, the 

WRKYGEK-containing WRKY members from dicots and the ancient green algae 
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are classified in distant divisions (Figure 3. 6). Therefore, it is more likely to be a 

gain of these specific branches in monocots than a loss of WRKYGEK members in 

dicot plants during evolution. Though not functionally verified, the expanded 

WRKYGEK members in monocot plants might be of specific significance in 

regulating the processes of development, adaptation to environmental changes 

and .pathogen resistance. 

 

 

Figure 3. 6. Expansion of WRKYGEK members in monocots. All the WRKYGEK 
motif-containing WRKY proteins from monocots (Brachypodium distachyon; 
Triticum aestivum;, Hordeum vulgare; Sorghum bicolor; Oryzae sativa; Zea mays 
and Setaria italica) and dicots (Glycine max, Lotus japonicus and Helianthus 
annuus) were included in the phylogenetic reconstruction together with the whole 
family of WRKY proteins in Arabidopsis.The tree was inferred using Neighbor-
Joining method in MEGA5 (Tamura et al., 2011). The WRKY subfamilies are 
indicated; I-NT and I-CT represent the N-terminal and C-terminal domains of 
Group I members, respectively. Bar length represent the number of amino acid 
differences per site. 
 
The evolution and plant specific expansion of WRKY protein family is interesting 

but still under active debate. As the only WRKY present in the single-celled green 

algae Chlamydomonas reinhardtii belongs to group I, it is well accepted that group 

I WRKYs are the ancestors of the WRKY family (Rushton et al., 2010). However, 

there are contrasting viewpoints on the evolving order of group II and III. Due to 
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the expansion of group III WRKY in monocot plants (i.e, rice), it was suggested 

that group III WRKYs are the most advanced and last evolved group in higher 

plants (Zhang and Wang, 2005). To address this question, I constructed a 

phylogenetic tree including sequences from 9 plant species (Figure 3. 7, Figure 3. 

8). In the tree, 844 WRKY members were included and they clearly classified into 

seven subgroups (Figure 3. 7). The members from moss (Physcomitrella patens) 

and spikemoss (Selaginella moellendorffii) were marked red and dark violet in the 

tree (Figure 3. 8). WRKY members from these two ancient species were 

distributed in most of the subgroups. However, IIe and IIa WRKY members do not 

appear in Physcomitrella patens, which is a non-vascular plant (Wang et al., 

2010b). In the lycophyte Selaginella moellendorffii, group IIe WRKY member 

appears but IIa members are not present. Selaginella is considered an ancient 

vascular plant (Banks et al., 2011), the absence of group IIa in Selaginella genome 

indicated that it is the last group evolved in higher plants. 

 

Figure 3. 7. Phylogenetic tree of the WRKY family in plants. 844 WRKY domains 
from 9 plant species are included to infer the evolutionary history of WRKY gene 
family using the Neighbor-Joining method. The conserved region spanning about 
90 amino acids are included in the multiple alignment. The WRKY subfamilies are 
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indicated; I-NT and I-CT represent the N-terminal and C-terminal domains of group 
I members, respectively. The tree supports the pre-defined subgroups of group I, 
group II (IIa+IIb, IIc, IId+IIe) and group III. The tree is drawn to scale, with branch 
lengths in the same units as those of the evolutionary distances used to infer the 
phylogenetic tree. The evolutionary distances were computed using the p-distance 
method. Bar length represent the number of amino acid differences per site. 
Phylogenetic analyses were conducted in MEGA5 (Tamura et al., 2011). 
 

 

Figure 3. 8. Subgroup IIa is the last group to evolve in plants. The phylogenetic 
tree from Figure 3. 7 is presented in a simplified manner. Spikemoss (Selaginella 
moellendorffii) and moss (Physcomitrella patens) are indicated as red and dark 
violet, respectively. The tree support the absence of group IIa WRKY members in 
both ancient species which appears to be the close living relatives of higher plants 
or primitive vascular plants (Banks et al., 2011; Rensing et al., 2008). 
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3.2 Expression studies of HvWRKY1 and HvWRKY2 

3.2.1 Expression profile of barley WRKY during Bgh infection  
In our group, HvWRKY1 was previously identified as a differentially regulated gene 

after inoculation with the powdery mildew fungus Blumeria graminis f.sp. hordei 

(Bgh) (Eckey et al., 2004, Figure 3.10). In addition, several barley WRKY genes 

were identified as Bgh-responsive genes such as HvWRKY2 (Leib, 2005).  

 

Figure 3. 9 Expression of putative WRKYs present on the Barley1 GeneChip. 
Gene expression profiles of 26 putative WRKYs identified on the Affymetrix 
Barley1 GeneChip in wild-type barley cv. Golden Promise 12 h after Bgh 
inoculation are shown in the Eisen plot after hierarchical clustering with dChip. 
Note that there are two probes for HvWRKY20, HvWRKY23 and HvWRKY32. 
 

From previous microarray data, the expression profile of barley WRKY proteins 

were shown in Figure 3. 9 (Langen et al., unpublished). Most identified members 

of WRKY groups II and III present of Affymetrix Barley1 GeneChip respond to Bgh 

infection. The prominent up-regulated barley WRKYs include HvWRKY1, 
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HvWRKY5, HvWRKY6, HvWRKY8, HvWRKY 9, HvWRKY19, HvWRKY20, 

HvWRKY23, HvWRKY28, HvWRKY30, HvWRKY32, HvWRKY51 and HvWRKY56. 

Remarkably, several members of group I are down-regulated after Bgh challenge. 

For example, HvWRKY41, HvWRKY42, HvWRKY46 and HvWRKY87 were down-

regulated after Bgh attack (Figure 3.9). 

 

Figure 3. 10. Pathogen induction of HvWRKY1 (A, contig4386_at) and HvWRK2 
(B, contig4387_at). Shown is induction pattern of HvWRKY1 and HvWRKY2 after 
the infection of B.graminis or F.graminearum. The experiments showing the 
highest induction ratio relative to non-inoculation control are selected from 
Genevestigator database (Zimmermann et al., 2004). 
 

3.2.2 Gene structure of HvWRKY1 and -2 

To elucidate the gene structure of HvWRKY1 and HvWRKY2, a blastn search was 

performed using their cDNA sequence (Genebank Accessions, AJ536667 and 

AJ853838) as query sequence against the barley genome draft assembly 

(http://webblast.ipk-gatersleben.de/barley/index.php). Genomic sequence 

Contig_1006384 and Contig_2162573 perfectly match HvWRKY1 and HvWRKY2 

respectively. Based on comparison of cDNA sequences with the genomic contig 

sequences, the online tool GeneSeqer (http://www.plantgdb.org/cgi-
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bin/GeneSeqer/index.cgi, Usuka et al., 2000) allowed the identification of exons 

and introns. Both genes contain one intron 109 bp in length at the N-terminal side 

of the conserved WRKY DNA-binding domain (Figure 3. 11). The distances from 

the intron to the WRKY domain are different for HvWRKY1 and HvWRKY2. The 

intron of HvWRKY1 is 418 bp upstream of the WRKYGQK-encoding region, 

whereas the HvWRKY2 intron is directly (19 bp) adjacent to the region for the 

conserved WRKYGQK signature (Figure 3. 11). According to blastn search in 

ESTdb, no alternative splice variant was found for either gene. 

 

Figure 3. 11. Gene structure of HvWRKY1 and HvWRKY2. Sequence 
comparisons of cDNA sequences and genomic sequences are performed using 
the online tool GeneSeqer (Usuka et al., 2000). Exons and introns are shown in 
scale. WRKY domains are represented with black boxes. Start codons and stop 
codons are indicated by arrow heads above the plot.  

3.2.3 Artificial microRNA-based silencing of HvWRKY2  
In a previous study, transient overexpression of HvWRKY2 resulted in enhanced 

susceptibility whereas virus-induced gene silencing (VIGS) of HvWRKY2 

enhanced resistance to Blumeria graminis f.sp. hordei (Bgh) (Shen et al., 2007). 

The VIGS approach might have some problems, such as compromised specificity 

due to the silencing of sequence-related non-target genes. Moreover, the virus 

infection could negatively interfere with the real effect of target gene during the 

study of plant-pathogen interaction. A novel gene silencing strategy was 

established based on the use of artificial microRNA (amiR) in plants and promised 

to provide higher specificity and less side effect in reverse genetics studies. 

Artificial microRNA-based efficient gene silencing has been successful used on 

both rice and Arabidopsis (Schwab et al., 2006; Warthmann et al., 2008). The Web 
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MicroRNA Designer (WMD) tool allows researchers to design amiRNAs against 

the specific targets, either individual genes or groups of sequence-related genes, 

in a highly specific and efficient way. 

 

Figure 3. 12. Artificial microRNA-based silencing of HvWRKY2. A, Schematic 
diagram of the constructs for control and artificial microRNA of HvWRKY2 (amiR-
WRKY2). B, Procedure for the generation of amiR-WRKY2 construct. Three 
overlapping PCR were performed with the primer combinations A+IV, III+II and I+B 
using the rice miRNA precursor osa-MIR528 stem loop in pNW55 as template 
(Warthmann et al., 2008). A final PCR fragment was amplified by primer pair A+B 
using the mixture of the three PCR products as template to yield amiR-WRKY2. C, 
amiR-WRKY2 overexpression enhanced resistance in barley epidermal cells 
infected with Blumeria graminis f.sp. hordei (Bgh). Either the control plasmid or 
amiR-WRKY2 plasmid was bombarded in seven-day-old primary leaves of cv. 
Golden Promise. After transformation, leaves were densely inoculated with Bgh 
conidia. Determination of Bgh penetration efficiency in GFP transformed cells was 
performed under fluorescence microscopy 2 days post inoculation. Data from 
three independent experiments are shown. The last column represents mean 
values of penetration efficiency (PE) from the three experiments. Bars represent 
standard errors.  
 

To test the feasibility of amiR-approach for specific and efficient HvWRKY2 

silencing, an artificial microRNA was designed and cloned using the rice osa-

MIR528 precursor backbone (accession number: MI0003201) in pNW55 as 

template (Warthmann et al., 2008). The amiR fragment targeting HvWRKY2 was 

double digested by EagI and SpeI, thereafter cloned downstream of GFP in pGY1-

GFP, which contains the fluorescence reporter GFP under the control of CaMV 

35S promoter (Figure 3. 12, A; section 2.5). To analyze the silencing effect, the 
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construct was used for barley transient transformation through particle 

bombardment (section 2.6). Penetration efficiency of powdery mildew fungus was 

examined in the transformed epidermal cells in both the amiR-WRKY2 treatment 

and the control bombardment (pGY1-GFP). From three biological replicates, the 

HvWRKY2 silencing construct resulted in lower penetration efficiency than that of 

control (Figure 3. 12). The result is in agreement with the previous study using 

double-stranded RNA interference (dsRNAi) approach, which revealed that 

silencing of HvWRKY2 enhanced the barley resistance to Bgh (Leib, 2005). To our 

knowledge, this is the first report that the rice microRNA precursor osa-MIR528 

functions properly in barley. The result confirmed the role of HvWRKY2 as 

negative regulators in barley-Bgh interaction. 

3.3 HvGER4c promoter as a target of HvWRKY1 and -2 

3.3.1 Repression of the HvGER4c promoter by HvWRKY1 and -2 
The Germin-like protein (GLPs) family in barley basal defense has been well 

documented previously and several members are strongly expressed upon 

powdery mildew infection in leaf epidermal cells (Zimmermann et al., 2006). One 

member of the barley GLP family, HvGER4c, was identified as a factor of basal 

defense showing a linear correlation between protein accumulation and Bgh 

resistance. Transient silencing of HvGER4 induced hypersusceptibility, while 

overexpression of HvGER4 increased the plant resistance (Zimmermann et al., 

2006). Numerous W-boxes are present in the HvGER4c promoter and were 

functionally identified to be required for pathogen inducibility (Himmelbach et al., 

2010) but specificity of WRKY binding proteins were still unclear. 

I speculated that there might be interaction of HvWRKY1 or -2 with HvGER4c 

promoter and tested the possible regulation of HvGER4 promoter by HvWRKY1 

and -2 through the use of transient expression of a GUS reporter gene under 

control of various HvGER4c promoter variants. Co-bombardment of HvWRKY1 or 

-2 overexpression plasmids with pUbi::GUS reporter plasmids had no effect on the 

GUS activity (Figure 3. 13, A, left; section 2.7 and 2.8). In contrast, the powdery 

mildew-induced GUS activity in co-bombardment of pHvGER4c::GUS with the 

HvWRKY1 construct was significantly lower than that of control. HvWRKY2 co-

bombardment almost abolished the Bgh-induced GUS activity of HvGER4c::GUS 
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(Figure 3. 13, A, right). The results indicate that both HvWRKY1 and HvWRKY2 

are transcriptional repressors of HvGER4c promoter and HvWRKY2 showed a 

much stronger repression capacity. The fact that they repress HvGER4c promoter 

but not the Zea mays ubiquitin promoter demonstrated the transcriptional 

repression in a highly specific manner. 

Previous studies revealed that HvWRKY1 and -2 conferred susceptibility to 

powdery mildew in wild type plants Ingrid (Mlo, Ror1) but not in cultivar A89 (mlo-5, 

ror1) (Leib, 2005). The cultivar A89 is a moderately susceptible cultivar which is 

mutated in Ror1 (required for mlo-specific resistance) in mlo-5 background. The 

WRKY1/2-mediated compatibility might require a functional Mlo. In addition, the N-

terminal coiled coil (CC) domain of a MLA resistance protein was shown to 

physically interact with HvWRKY1 and HvWRKY2 in an effector-dependent 

manner (Shen et al., 2007). I therefore included cultivars harbouring Mlo, mlo-5 

and MLA12 to compare the suppression of HvGER4c promoter by HvWRKY2. 

Interestingly, a similar suppression of HvGER4c promoter by HvWRKY2 was 

observed in the back cross (BC) line Ingrid (mlo-5), backcross line Pallas (mlo-5) 

and Sultan 5 (MLA12, incompatible interaction with Bgh race A6) compared with 

the wild type Ingrid (Mlo) (Figure 3. 13, B).This indicate that the HvWRKY2-

mediated repression of HvGER4c promoter is independent of Mlo or Mla12. 
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Figure 3. 13. Specific repression of the Bgh-induced promoter activity of HvGER4c 
by HvWRKY1 and HvWRKY2. HvGER4c promoter was fused to the wheat WIR1a 
intron and the GUS reporter gene. The pathogen-dependent activation of reporter 
constructs was tested by a histochemical GUS assay using a transient expression 
system in barley leaves. GUS-positive cells were evaluated 48 hours post 
inoculation with Bgh. The GUS expression in each experiment was normalised to 
a co-bombarded pUbi::GFP construct. Mean values ± SE of three independent 
biological replicates are shown. Statistically significant reduction of promoter 
activity compared with control is indicated (**, p<0.01, Student’s t-test). EV, empty 
vector. A, Bgh-induced promoter activity of HvGER4c was repressed by 
35S::WRKY1 and 35S::WRKY2. B, Repression of HvGER4c promoter by 
35S::WRKY2 was independent of Mlo or Mla12. BCIngrid (mlo-5) and BCPallas 
(mlo-5) are race-nonspecific powdery mildew-resistant back-cross lines from Ingrid 
and Pallas, respectively. 

3.3.2 Repression of truncated promoter HvGER4c by HvWRKY1 and -2 
The consensus TGAC core sequence (W-boxes) is the potential binding motif 

recognized by WRKY proteins. In the HvGER4c promoter, there are enriched W-

boxes and at least four functionally redundant W-boxes are important for high-level 

pathogen-induced gene expression (Himmelbach et al., 2010). To test if the 

individual W-boxes have different binding affinities to WRKY proteins or activities, 

a series of point-mutated HvGER4c promoters were further evaluated. Consistent 

with the recent report (Himmelbach et al., 2010), my results showed that mutation 
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of individual W-box 1, -2, -5, and 6 in HvGER4c promoter resulted in reduced 

activity compared to wild-type promoter after powdery mildew induction (Figure 3. 

14). This result support the notion that each tested W-box can positively modulate 

expression in compatible interaction and all the four W-boxes appeared to be 

required for full pathogen-inducibility of HvGER4c promoter. After co-

bombardment with 35S::WRKY1, HvGER4c promoter and its mutated derivates 

showed less activity than the empty vector control bombardment (Figure 3. 14). 

The reduction of HvGER4c promoter activity was much stronger in the co-

expression with 35S::WRKY2 (Figure 3. 14) demonstrating that both WRKY1 and 

WRKY2, when transiently over-expressed, negatively modulate HvGER4c 

promoter activity. 

 

Figure 3. 14. Repression of truncated HvGER4c promoter by 35S::WRKY1 and 
35S::WRKY2. HvGER4c promoter derivatives were fused to the wheat WIR1a 
intron and the GUS reporter gene. The W-box position in bp relative to the 
HvGER4c transcriptional start (position +1) was indicated by arrowheads and 
numbers, respectively. Stringent W-box sequences ([C/T]TGAC[T/C]) are shown 
as closed squares and W-boxes motifs comprising shorter consensus sequences 
are shown as open squares. The 543-bp-long wild-type HvGER4c promoter was 
labelled -543. The mutant promoters m1, m2, m3 and m4 harbour a point mutation 
(TGAC to TGAA) in the W-box 1, 2, 5 and 6 respectively. The pathogen-
dependent activation of reporter constructs was tested by a histochemical GUS 
assay using a transient expression system in barley leaves. GUS-positive cells 
were counted 48 hours post inoculation with Bgh. The GUS expression in each 
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experiment was normalised to a co-bombarded pUbi::GFP construct. Mean values 
± SE of three independent biological replicates are shown. 

 

Figure 3. 15. Relative repression of HvGER4c promoter activity by 35S::WRKY1 
and -2.GUS cells from control bombardments were set to 100. A, Co-
bombardment of 35S:.WRKY1 had different repression efficacy on the individual 
versions of mutated HvGER4c promoter. B, Relative suppression of HvGER4c 
promoter by 35S::WRKY2. Error bar indicates mean values ± SD from three 
independent experiments. 
 

To analyze the binding affinities of the individual W-boxes 1, 2, 5 and 6, I 

normalized the GUS activity by setting the GUS cells from control bombardment 

as 100 (Figure 3. 15). Typically, HvWRKY1 caused approximately 50% of activity 

reduction in the wild-type HvGER4c promoter. Mutation of W-box 5 had almost no 

influence on its repression by HvWRKY1, which indicates a very weak binding of 

W-box 5 with HvWRKY1 protein. When the W-box 1 or W-box 6 was inactivated, 

HvWRKY1 appeared to exhibit less repression capacity on the promoter activity. 
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This implies a reduced binding affinity of the promoter because of the W-box 

mutation. Therefore, W-box 1 and W-box 6 might have strong binding affinity with 

HvWRKY1 protein. Interestingly, mutation in W-box 2 resulted in even stronger 

repression by HvWRKY1. One explanation could be that there are potential 

unknown positive WRKY proteins which bind to W-box 2 and activate the 

HvGER4c promoter. Mutation of W-box 2, therefore, facilitated the HvWRKY1 

suppression of HvGER4c promoter. In the case of HvWRKY2, its suppression 

capacity is much stronger and it appeared to abolish all the mutated HvGER4c 

promoter activities. However, the strongest repression by HvWRKY2 was 

observed for the wild-type promoter (Figure 3. 15, B). The truncated HvGER4c 

promoters with mutations in W-boxes showed less repression by HvWRKY2, 

implicating a requirement of W-boxes in the transcriptional repression. 

3.4 Cross activity of AtWRKY40 protein in barley 
In Arabidopsis, three IIa WRKY members AtWRKY18, -40 and -60 are 

homologous to HvWRKY1 and HvWRKY2. They function redundantly as negative 

regulators in the defense towards the bacterial pathogen Pseudomonas syringae 

and the powdery mildew fungus Golovinomyces orontii (Pandey et al., 2010; Shen 

et al., 2007; Xu et al., 2006), with AtWRKY40 playing a central role. Evolutionary 

conserved functions have been described for sequence-related WRKY genes 

between monocot and dicot plants (Mangelsen et al., 2008; Prioietti et al., 2011). 

 

Figure 3. 16 Overexpression of AtWRKY40 enhanced susceptibility in barley 
epidermal cells infected with Blumeria graminis f.sp. hordei (Bgh). Report 
construct 35S::GFP was co-expressed pUbi::AtWRKY40 (n=3). Control cells were 
co-bombarded with 35S::GFP and empty vector (EV) pUbi-AB. After 
transformation, leaves were densely inoculated with Bgh conidia. Microscopic 
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determination of Bgh penetration efficiency in GFP-transformed cells was 
assessed 2 days post inoculation. Columns represent mean values of penetration 
efficiency from three independent experiments. Bars represent standard errors. 
Significant enhanced penetration efficiency compared to comtrol (EV) was 
indicated (*, p<0.05, Student’s t-test) 
 

To verify possible cross activities of Arabidopsis WRKY proteins in barley, 

AtWRKY40 was selected in the present study to examine its effect in barley-

Blumeria graminis interaction. The coding sequence of AtWRKY40 (cDNA clone 

provided by Imre E. Somssich, Köln) was cloned downstream of the maize 

ubiquitin promoter to yield pUbi::AtWRKY40 (section 2.5, Appendix 4.4). The 

construct was co-bombarded with a reporter construct 35S::GFP in barley 

epidermal cells. Microscopical evaluation showed that the transient AtWRKY40 

overexpression in barley leaves resulted in significantly higher penetration 

efficiency of the barley powdery mildew fungus as compared with the empty vector 

control pUbi-AB (P <0.05, Student’s t-test). The results indicated that AtWRKY40 

was facilitating the Bgh infection similar as HvWRKY1 and HvWRKY2, whose 

transient overexpression enhanced susceptibility to Bgh in barley epidermal cells 

(Shen et al., 2007). The cross-activity of the dicot-derived AtWRKY40 in monocot 

crop barley provides additional evidence supporting the evolutionary conserved 

functions of sequence-related WRKY genes. 

3.5 Interaction of HvWRKY2 protein with HvGER4c promoter 

3.5.1 Production of His-WRKY2 recombinant protein 
To reveal the possible physical interaction of HvWRKY2 protein with HvGER4c 

promoter, recombinant HvWRKY2 protein was produced. The complete coding 

sequence of HvWRKY2 was sub-cloned and fused to a N-terminal 

thioredoxin(TRX)-6xHis-S-tag (THS) in the expression vector pET32a(+) (section 

2.5, Appendix 4.1). The resulted pET32a-HvWRKY2 was electroporated into E. 

coli strain BL21(DE3) pLysS. Induction of His-HvWRKY2 protein by IPTG 

confirmed the protein accumulation after induction at the calculated size of 52.9 

kDa (Figure 3. 17, A). 
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Figure 3. 17. Production of recombinant HvWRKY2 protein. A, Induction of the 
recombinant protein by IPTG. E.coli cells were harvested at the indicated time 
points after addition of 1 mM IPTG to check the abundance of HvWRKY2 
recombinant protein. B, HvWRKY2 protein was present in inclusion bodies. 
Several temperatures (25 oC, 30 oC and 37 oC) were tested for bacterial culture. E. 
coli cells were harvested after IPTG induction and disrupted by TissueLyser 
(Qiagen) or sonication. S1, supernatant from TissueLyser, S2, supernatant from 
sonication, P, pellet. C, Purification of recombinant HvWRKY2 protein. Protein 
samples were purified using Ni-NTA column under denaturing condition with the 
presence of 8 M urea. M, protein marker; FL, flow through; W, wash; E, elution. 
The calculated size of Thioredoxin-6xHis-S tagged HvWRKY2 protein is shown on 
the right side. 
 
As the recombinant protein was present in the form of inclusion body (Figure 3. 17, 

B), the purification of recombinant His-HvWRKY2 was performed under denaturing 

conditions (8M urea) using Ni-NTA columns (Figure 3. 17, C). Afterwards, the 

protein was refolded using a dilution method (Maidment et al., 1999), concentrated, 

aliquoted, and stored at -80 oC for further use. 

3.5.2 Binding of HvWRKY2 protein to HvGER4c promoter 
To test the hypothesis on the negative regulation of HvGER4c promoter by 

HvWRKY1 and HvWRKY2 protein, electrophoretic mobility shift assay (EMSA) 

was performed to assess the potential binding of HvWRKY2 protein to HvGER4c 

promoter. DIG-labeled probes containing the wild-type and point-mutated W-boxes 
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1, 2, 5 and 6 in the proximal 543 bp of HvGER4c promoter were generated and 

tested in the EMSA assay with recombinant thioredoxin-6xHis-S (THS)-WRKY2 

protein (section 2.10). From the EMSA assay, I observed that the occurrence of 

retarded bands is dependent on the presence of HvWRKY2 protein (Figure 3. 18). 

It seems promising that the band shifts are specific reactions but the specificity 

should be further examined based on two unexpected observations. Firstly, point 

mutation of TGAC to TGAA in the mutated probes mW1, mW2, mW5 and mW6 

showed very similar binding with WRKY2 protein as the corresponding non-

mutated probes. Secondly, the specific competitors at 50 folds excess appeared to 

have no competition with the W-box probes (Figure 3. 18).  

 

Figure 3. 18. Binding of W box elements in the HvGER4c promoter with 
HvWRKY2 protein. The presence or absence of the reaction components are 
indicated by + or -. Wild-type W-boxes (W1, W2, W5 and W6) and the 
corresponding point-mutated W-boxes (mW1, mW2, mW5 and mW6) with the 
TGAA replacing TGAC in the core sequences are used as probes in the 
electrophoretic mobility shift assay (EMSA).Recombinant Thioredoxin-His-S 
tagged WRKY2 protein was purified from E.coli cells and used for DNA binding 
assays with the above mentioned probes. The binding reactions (20 μL) contained 
2 ng labelled oligo DNA and 2 μg recombinant protein. The non-labelled double 
stranded oligos were used as competitors in 50x excess amounts.  

3.6 Promoter analysis of HvWRKY1 and -2  

3.6.1 In silico analysis of cis-elements in the HvWRKY1 and -2 promoter 
Auto-regulation as a feature for WRKY factors was described as regulation of its 

own promoter by the WRKY protein, i.e. because of the presence of W-boxes 

(Miao et al., 2008). Another possibility is that other activated WRKY factors induce 

the promoter. To gain insight into the possible self/auto-regulation of HvWRKY1 
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and -2, I searched for the putative W-box elements in the HvWRKY1 and -2 

promoter regions. From the recently release barley genome database, a fragment 

of 1.9 kb and 3 kb for HvWRKY1 and -2 promoter region is available. The 

transcription start site is predicted at position -149 (relative to start codon ATG, +1) 

and -111 for HvWRKY1 and HvWRKY2 respectively. Six and eight W-boxes are 

present as putative WRKY-binding sites in HvWRKY1 and -2 promoter (Figure 3. 

19). Within the proximal 1 kb region, there are two and one stringent W-boxes. 

They may be conditionally occupied by HvWRKY1/2 themselves or other WRKY 

proteins. 

 

Figure 3. 19  In silico analysis of HvWRKY1 and HvWRKY2 promoter. The 
distribution pattern of W-box elements in 1.9 kb and 3 kb region upstream of the 
start codon ATG (position +1) for HvWRKY1 and HvWRKY2 were shown. Black 
boxes and white boxes indicate stringent W-boxes (TTGACT/C) and invariant core 
W-boxes (TTGAC) respectively. Arrows represent the orientation of W-boxes. W-
box scanning was performed by PLACE. 

3.6.2 Cloning of HvWRKY1 and HvWRKY2 promoter 
Two fragments of HvWRKY1 promoter were PCR amplified from barley genomic 

DNA (Figure 3. 20, A). One 1940 bp fragment contains six W-box elements and 

the second fragment is 954 bp in length with two stringent W-boxes. These 

fragments were cloned upstream of GUS coding sequence in pGusi-AM and yield 

pWRKY1::Gusi-AM constructs. The schematic graph of the resulted construct 

(1940 bp) is shown in Figure 3. 20, C. One fragment of 2876 bp in length for 

HvWRKY2 promoter was amplified as well (Figure 3. 21, A). However, the 

subcloning of HvWRKY2 promoter fragment into pGusi-AM to yield 
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pWRKY2::Gusi-AM failed (Figure 3. 21, B). These constructs can be used as tools 

for uncovering the potential auto/cross-regulation of WRKY proteins. 

 

Figure 3. 20. Cloning of HvWRKY1 promoter. A, PCR amplification of 954-bp and 
1940-bp fragment of HvWRKY1 promoter. B,Double digestion of pW1::Gusi-AM 
with BamHI and EcoRI. 1-2, pW1(954 bp); 3-4, pW1 (1940bp), M, 1 kb plus DNA 
ladder .C, Schematic representation of pWRKY1::Gusi-AM construct (1940 bp 
promoter fragment). 

 

Figure 3. 21. Cloning of HvWRKY2 promoter. A, PCR amplification of 2876-bp 
fragment of HvWRKY2 promoter. M, 1 kb plus DNA ladder. B, Schematic 
representation of pWRKY2::Gusi-AM construct.  
 

3.7 Analysis of HvWRKY2 overexpression (OE) lines 

3.7.1 Transgene identification  
Stable transgenic barley plants overexpressing HvWRKY2 under the strong maize 

ubiquitin promoter (pUbi::WRKY2) were generated and propagated at IPK 

Gartesleben. The F2 generation of pUbi::WRKY2 plants available was a 

segregating population and thus a reliable selection of the real transgenic 
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individuals was a prerequisite for further analysis. I optimized a leaf tip selection 

method based on the presence of hygromycin resistance marker gene (section 

2.2). 

 

Figure 3. 22. Transgene identification of pUbi::WRKY2 plants. A, Selection of 
transgenic plants based on the hygromycin-resistance. Leaf segments from the 
wild-type cv.Golden Promise (GP), 35S::GFP (hygromycin-resistant, in the 
background of GP) and pUbi::WRKY2 plants (in the background of GP) placed on 
MS medium with or without 200 mg/L hygromycin for 7 days are shown. B, 
Elevated background expression of HvWRKY2 in pUbi::WRKY2 plants. Total RNA 
was isolated from mock or Bgh-inoculated barley leaves that were harvested from 
one-week-old Golden Promise and hygromycin-resistant pUbi::WRKY2 plants (line 
E40b, F2 generation) at indicated time points. Gel photographs after ethidium 
bromide staining of two-step reverse-transcription polymerase chain reaction (RT-
PCR) products are shown. Amplification of ubiquitin served as control for 
constitutive gene expression. 
 
As shown in Figure 3. 22, the leaves of homozygous 35S::GFP exhibited a 

complete resistance to 200 mg/L hygromycin and the wild-type Golden Promise 

(GP) are bleaching in the hygromycin-containing medium. Some pUbi::WRKY2 

plants stayed green and alive and the others showed complete bleaching as wild-

type, indicating the reliability of the selection method. In addition, the hygromycin-

resistant individuals were used to compare HvWRKY2 expression levels. Indeed, 

the pUbi::WRKY2 transgenic plants (line E40b, F2 generation) are showing an 
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elevated transcript level of HvWRKY2 as compared with Golden Promise under 

unchallenged condition (Figure 3. 22, B). 

3.7.2 Powdery mildew resistance of pUbi::WRKY2 plants 
Transient overexpression of HvWRKY2 in barley epidermal cells conferred 

enhanced susceptibility to Blumeria graminis. f.sp hordei (Bgh) (Leib, 2005; Shen 

et al., 2007). To characterize the powdery mildew resistance of stable transgenic 

pUbi::WRKY2 plants, they were inoculated with Bgh strain A6 (section 2.1). 

Compared with azygous plants and wild-type plants, no significant increase of 

fungal growth was observed on pUbi::WRKY2 plants based on ten biological 

repetitions (Figure 3. 23). In contrast, the mean number of pustules on WRKY2 

overexpressing plants is slightly reduced compared with control plants. Thus 

HvWRKY2-mediated susceptibility was not observed on the stable pUbi::WRKY2 

overexpression plants. Moreover, microscopic evaluation of Bgh penetration 

efficiency showed no difference between the pUbi::WRKY2 plants and azygous 

plants or the wild-type Golden Promise (Figure 3. 24). 
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Figure 3. 23. Non-altered response of pUbi::WRKY2 plants against Blumeria 
graminis f.sp. hordei (Bgh). Primary leaves from one-week-old plants were 
inoculated with Bgh. The second leaves from the segregating pUbi::WRKY2 plants 
were used in the hygromycin-selection for identification of transgenic individuals. 
Columns are mean values from ten independent experiments. In each experiment, 
at least 15 leaves were used for each line. Errors bars represent standard error. 
No significant difference was observed between the HvWRKY2 overexpression 
lines, Golden Promise and azygous plants. 
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Figure 3. 24. Penetration efficiency of Blumeria graminis f.sp. hordei (Bgh) in 
Golden Promise, azygous plants and 35S::WRKY2 plants. Columns are mean 
value from three independent experiments. Errors bars represent standard error. 
In total, more than 500 interaction sites for each sample were included for the 
determination of penetration efficiency. 

3.7.3 Candidate gene expression in HvWRKY2 overexpression plants 
In this study, HvWRKY2 overexpression was confirmed in transgenic plants but 

they did not show expected susceptibility which was observed in single-cell 

transient transformations (Leib et al., 2005; Shen et al., 2007). To provide insight 

into the molecular mechanisms and putative altered gene expression in HvWRKY2 

OE plants, expression analysis of some Bgh-inducible genes was performed by 

quantitative real-time PCR (qRT-PCR) (section 2.4). The candidate genes IGS 

(contig10115), synaptotagmin (contig24167), HvPR2 (contig01637) and HvPR5 

(contig02787) were selected from a preliminary microarray experiment (Langen, 

unpublished). IGS, HvPR2 and HvPR5 (thaumatin-like proteins) appeared to have 

reduced expression at 12 h post Bgh inoculation in pUbi::WRKY2 plants (Figure 3. 

25). Especially in the case of PR5, the expression is much lower in pUbi::WRKY2 

plants in comparison with Golden Promise at 12 h post inoculation. Synaptotagmin 

showed minor changes between mock treatment and Bgh inoculation. It also 

showed little difference between wild-type and pUbi::WRKY2 plants. Interestingly, 

there was an early induction of PR2 expression at 4 hours post inoculation in 

HvWRKY2 transgenic plants (Figure 3. 25). It seems that HvWRKY2 has a dual 

role in both activation and repression of target genes. 
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Figure 3. 25. Expression of some candidate genes. Total RNA was isolated from 
mock or Bgh-inoculated leaf samples in the indicated time points. Four candidate 
genes were selected based on existing microarray expression profile (IGS, 
synaptotagmin, HvPR2 and HvPR5). Quantitative real-time PCR was performed 
for analysis of the expression. The relative expressions normalized to ubiquitin are 
shown in the plots (The expression value of Golden Promise mock 4 h was set to 
1). 
 
Expression of some other genes including BAX Inhibitor 1, PR1b, Xylanase 

inbibitor and NH1 were also examined in pUbi::WRKY2 plants. Interestingly, BAX 

Inhibitor 1 appeared to have higher expression in WRKY2 overexpression plants. 

Moreover, the early induction of HvPR2 in pUbi::WRKY2 plants observed by 

quantitative RT-PCR was reproducible in the semiquantitative RT-PCR (Figure 3. 

26, A). PR1b displayed no difference between wild-type and WRKY2 transgenic 

plants. Xylanase inhibitor showed little alteration, however, NH1 expression 

appears to be slightly enhanced in pUbi::WRKY2 plants.  
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Figure 3. 26. Expression of candidate genes by RT-PCR. A, Early induction of 
HvPR2 and enhanced expression of BAX Inhibitor 1 in pUbi::WRKY2 plants. B, 
Expression of PR1b, xylanase inhibitor and HvNH1 (NPR1-homolog1) in Golden 
Promise and pUbi::WRKY2 plants. PR1b (Genebank: Z21494), xylanase inhibitor 
(contig04633), HvNH1 (Genebank: AM050559) 
 

3.8 Suggestion of candidate barley WRKY genes for pathogen resistance 
Expression profil from publicly available microarry database is a useful tool for 

gene function prediction. To search for expression data for barley WRKY genes 

and suggest further candidate WRKYs with a potential role in pathogen responses, 

I used the cDNA sequences of the putative WRKYs to search for their 

corresponding probe sets on Barley1 Chip (22k). These probeset IDs were 

identified from PLEXDB and are listed in Table 3. 3. There are altogether 32 

WRKY genes with at least one probeset on Barley1 Chip.  
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Table 3. 3.  List of probes for barley WRKY on Barley1 Chip 

HvWRKY  Barley1 Chip Probeset HvWRKY Barley1 Chip Probeset 

HvWRKY1 Contig4386_at HvWRKY33 Contig15869_at 

HvWRKY2 Contig4387_at HvWRKY34 Contig10471_at 

HvWRKY4 Contig20450_at HvWRKY35/41 Contig12033_at 

HvWRKY5 Contig18462_at HvWRKY39 Contig13375_at 

HvWRKY6 Contig14308_at  Contig15657_at 

HvWRKY7 Contig7798_at HvWRKY45 HVSMEa0001M23r2_at 

HvWRKY8 Contig23011_at HvWRKY46 Contig7243_at 

RBAAL15J13_S_AT 

HvWRKY9 Contig22226_at  HvWRKY51 Contig23697_at 

HvWRKY10 Contig16040_at HvWRKY54 EBro02_SQ004_H10_at 

HvWRKY13 Contig13268_at HvWRKY56 EBro08_SQ008_D15_at 

HvWRKY19 Contig10167_at HvWRKY57 Contig7517_at 

HvWRKY20 Contig10168_at HvWRKY60 HF06A04r_at 

HvWRKY23 HB25K10r_s_at HvWRKY67 EBro03_SQ006_A01_at 

HvWRKY28 Contig12005_at HvWRKY69  S0001000058B11F1_at 

HvWRKY30 Contig21110_at HvWRKY79 HVSMEn0012L05r2_at  

HvWRKY32 

 

Contig15957_at, 

S0001000055P18F1_S_AT 

HvWRKY87  Contig20358_at 

 

The probesets listed above is an updated list. It is notable that the previous report 

from Mangelsen et al., (2008) incorrectly assigned the following probesets, 

HB25K10r_s_at (HvWRKY2, should be HvWRKY23), contig21110_at 

(HvWRKY23, should be HvWRKY30), contig12005 (HvWRKY30, should be 

HvWRKY28), EBro02_SQ004_H10_at (HvWRKY3, should be HvWRKY54). 
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Figure 3. 27. Expression of HvWRKY19, HvWRKY20, HvWRKY32, HvWRKY51 
and HvWRKY57 after pathogen infection. Probeset ID on Barley1 Chip was 
obtained from PLEXDB and used as query for expression data in Genevestigator. 
Strong upregulation (over eight folds induction relative to control) of the selected 
genes by pathogen are shown. 
 

Based on their expression data in Genevestigator, many of these WRKYs were 

found to be up-regulated or down-regulated under biotic stresses. HvWRKY20 is 

specifically responsive to B. graminis attack through the early and late infection 

stage. HvWRKY19 and HvWRKY51 showed very strong responsiveness to B. 

graminis at intermediate phase and to Fusarium graminearum at late phase of 

infection (Figure 3. 27). HvWRKY57 can be induced by both B. graminis and F. 

graminearum at the late stage of infection. In addition, HvWRKY57 is up-regulated 

by the stem rust fungus Puccinia graminis over eight folds at early and 

intermediate time points (Figure 3. 27).  
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Figure 3. 28. Expression of HvWRKY4, HvWRKY5, HvWRKY10, HvWRKY28, 
HvWRKY30, HvWRKY54 and HvWRKY79 after pathogen infection. Probeset ID 
on Barley1 Chip was obtained from PLEXDB and used as query for expression 
data in Genevestigator. Upregulation of the selected genes by pathogen to a less 
extent (two to eight folds induction) are shown. 
 

Apart from HvWRKY1 and -2, other barley WRKY genes that are less strongly 

responsive to pathogen attack include HvWRKY4, HvWRKY5, HvWRKY10, 

HvWRKY28, HvWRKY54 and HvWRKY79 (Figure 3. 28). They are induced by 

pathogens within a range between two to eight folds. Among them, HvWRKY10 is 

responsive to P. graminis at early stage. HvWRKY4, HvWRKY5, HvWRKY28 and 

HvWRKY54 are induced by B. graminis at late infection stage. HvWRKY30 is up-

regulated by B. graminis at early stage and P. graminis at late stage. HvWRKY79 

is responsive to both F. graminearum and B. graminis. Analysis of publicly 

available expression data is restricted to the WRKYs which are present on the 22k 

Barley 1 microarrays. However, majorities (68 members) of the barley WRKY 

genes are not represented on the Barley1 Chip. Many of them might also be 

interesting candidate genes involved in stress response or pathogen resistance. 
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4. Discussion 

4.1 Identification and annotation of WRKY transcription factors in barley 
Due to the economic importance of barley crops and the central role of WRKY 

transcription factors in plant development and stress responses, the function 

characterization of barley WRKY genes would facilitate the understanding of 

barley metabolic pathways and application of the knowledge to make plants better 

in coping with environmental changes and pathogen attack. Genome-wide 

discovery of WRKY genes in barley and phylogenetic analysis will provide 

valuable information for the origin and expansion of the superfamily. Recently, the 

public availability of a large-scale full-length cDNA set and the barley genome draft 

assembly opens the door to the comprehensive search for WRKY genes in barley 

(Matsumoto et al., 2011; Mayer et al., 2011). 

In this study, I describe the identification and annotation of 100 members of the 

WRKY gene family in barley and their classification into group I to III (Table 3.1; 

Figure 3.3). Around two thirds of them (68 %) are supported by full-length cDNA or 

EST sequences as expressed genes (Table 3.1). There is no match in the dbEST 

for the rest 32 predicted WRKY genes. There are several possible reasons. First 

of all, the dbEST for barley is not saturated yet. It’s not unusual that some genes 

can not be found in the dbEST data set. Secondly, some WRKY genes might only 

express in a highly temporal and spatial manner or at a hardly detectable level. 

Last but not least, it’s also possible that GENSCAN/FGENESH generate 

mispredictions from the genomic sequence. Some of these genes could be only 

pseudogenes that contain WRKY domain sequence in the genomic region. Thus, 

these 32 putative WRKYs require further experimental verification to confirm the 

sequence prediction and their expression. 

From comparative analysis of WRKY genes in lower and higher plants, it has been 

demonstrated that there is an expansion of WRKY members during the evolution 

of plants from simpler, unicellular to more complex, multicellular forms (Zhang and 

Wang, 2005). In the unicellular green algae (Chlamydomonas reinhardtii), there is 

only one WRKY protein present in the genome. The number increases to 37 in 

moss (Physcomitrella patens) and nearly 200 in soybean (Glycine max) (Rushton 

et al., 2010). In the genome of the japonica group rice (Oryza sativa ssp. japonica), 
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the number of WRKY proteins is 102 according to the latest annotation (source: 

http://systemsbiology.usm.edu/PhytoTech/WRKY07012011/Rice.html). Barley has 

a much bigger genome than rice and the estimated gene numbers in barley is 

around 32, 000 which is less than that of rice (41,000) (Jung et al., 2008; Mayer et 

al., 2010). If the WRKY proteins in barley have the same richness and gene 

duplications as in rice, the calculated barley WRKY numbers would be around 80 

( 80 = 32,000x102/41,000). In an earlier study, 45 members of barley WRKY are 

identified and they were estimated to cover about 50% of the WRKY family 

(Mangelsen et al., 2008).I have identified 100 members in this family and there 

might be an overestimation due to the possible presence of pseudogenes. A 

precise identification may require a better assembly in future. In other monocot 

plants, the number of putative WRKY genes is close to barley. For instance, there 

are 91 putative WRKY genes identified in sorghum (Sorghum bicolor) and 127 

putative WRKY genes in maize (Zea mays).  

Among the 100 barley WRKY genes identified, both the hallmark WRKYGQK motif 

and its variants were identified in the WRKY domains. Like in other higher plants, 

WRKYGQK signature is the dominant motif (97 found out of 114 domains) in 

barley WRKY proteins (Appendix 2.1). The WRKY motif variants include 4 

WRKYGEK, 8 WRKYGKK, 2 WKKYGQK, 1 WSKYGQM, 1 WTKYGQK and 1 

WNKYGQK (Appendix 2.1). Notably, the WRKYGEK and WKKYGQK motif are 

absent in the dicot model Arabidopsis thaliana but present in all the monocot 

plants surveyed (data not shown). The motif WSKYGQM (HvWRKY24), 

WTKYGQK (HvWRKY89) and WNKYGQK (HvWRKY25) were solely found in 

barley not in other plant species. These unusual WRKY signatures could be 

resulted from sequencing errors or misprediction. Recent study indicated that 

Arabidopsis WRKY proteins with WRKYGQK motif exhibit binding site preferences, 

which are partly influenced by the adjacent DNA sequences spanning the 

TTGACY-core motif (Ciolkowski et al., 2008). WRKY proteins with signature motif 

other than the canonical WRKYGQK sequence, therefore, may prefer a binding 

sequence different from W-box element (TTGAC/T). For instance, the soybean 

WRKYGKK-containing GmWRKY6 and GmWRKY21 lose their binding capability 

to W-box (Zhou et al., 2008). In tobacco (Nicotiana tabacum), NtWRKY12 with a 

WRKYGKK motif is recognizing the WK box (TTTTCCAC), a DNA element distinct 
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from W-box (van Verk et al., 2008). Seven group IIc barley WRKYs (HvWRKY5, --

16, -17, -18, -19, -20, -50 and one group I (HvWRKY66N) harbouring the 

WRKYGKK motif might be able to bind to WK boxes and may have different target 

genes.  

The WRKYGQK motif is found in all the WRKY-containing species including the 

unicellular green algae Chlamydomonas reinhardtii and the slime mold 

Dictyostelium discoideum (Table 1.1). This demonstrates the ancient origin of this 

motif. The WRKYGEK motif also appears to have an ancient origin due to its 

presence in the genome of Chlamydomonas reinhardtii (Table 1.1; Figure 3.5), 

which is a single-celled green algae and its evolutionary position is located before 

the divergence of land plants. Interestingly, this motif is absent in spikemoss 

(Selaginella moellendorffii, Sm) and moss (Physcomitrella patens, Pp) but present 

in all the monocot plants (Figure 3.5). 

4.2 Phylogenetic analysis of barley WRKY family 
Phylogenetic tree constructed for barley WRKY family using the conserved 60 aa 

WRKY domains assigns most of the HvWRKYs ambiguously into the predefined 

seven subgroups I-N, I-C, IIa, IIb, IIc, IId, IIe and III (Figure 3.2). However, 

HvWRKY36, HvWRKY71 and HvWRKY81 couldn’t be clearly assigned to any of 

the seven subgroups (Figure 3.2). In the study by Mangelsen et al. (2008), 

grouping of HvWRKY36 in group IIc was based on the analysis with sequences 

extending over the WRKY domain. Using the full-length sequence for a BLASTP 

search, the most related AtWRKYs identified for HvWRKY36, HvWRKY71 and 

HvWRKY81 are AtWRKY13, AtWRKY13 and AtWRKY71 respectively. All these 

AtWRKY members belong to IIc subfamily. Therefore, I also assign HvWRKY36, 

HvWRKY71 and HvWRKY81 as group IIc members based on the full-length 

sequence similarity (Appendix 2.1). However, this classification might not 

necessarily reflect the evolutionary relationships among the groups. From the 

evolutionary tree constructed, HvWRKY36, HvWRKY71 and HvWRKY81 

appeared more close to the group IId+IIe (Figure 3.3).  

For group I HvWRKYs bearing two WRKY domains, the phylogenetic analysis 

clearly distinguishes the N-terminal and C-terminal WRKY domains (Figure 3.2; 

Appendix 2.2). This clear distinction rules out the possibility that group I proteins 

originate from recent fusion or duplication of two single-domain WRKY proteins but 
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indicates a more ancient fusion event. Exceptions from group I members are 

HvWRKY24 and HvWRKY25, which are placed in group III by phylogenetic 

analyses (Appendix 2.2). Since both the N-terminal and C-terminal of these two 

group I WRKYs are clustered in group III, they may result from a recent fusion 

event of two group III domains. Similar situation was found for OsWRKY41, with 

both N-terminal and C-terminal WRKY domain clustered in group III. In addition, 

OsWRKY57 and OsWRKY102 which have a single WRKY-domain are clustered 

with members in group IN. This might indicate a loss of the C-terminal domain 

during their evolution. 

It was believed that group III WRKYs have most successfully evolved in flowering 

plants and are greatly expanded in monocot plants (Zhang and Wang, 2005). 

Therefore, group III members are suggested to be the most advanced and recent 

in evolution. However, the discovery of group III WRKYs in the genome of moss 

(Physcomitrella patens) is challenging this concept. The presence of group III 

WRKY members in the moss genome implied its ancient origin (Figure 3.7). Based 

on comparative genomic observation, I examined the distribution pattern of 

PpWRKYs and SmWRKYs in the predefined subgroups. It appeared that 

PpWRKY or SmWRKY are clustering with six out of seven WRKY subfamilies. The 

only group that lacks a PpWRKY or SmWRKY member is group IIa (Figure 3.8). 

The absence of group IIa members in moss and spikemoss genome clearly 

indicate that WRKY IIa was the last group evolved (Figure 3.8). Notably, the 

WRKY superfamilies are under constant diversification and caution should be 

taken when comparing the evolution of individual WRKY members from different 

subgroups. For instance, certain WRKY members such as HvWRKY24 and 

OsWRKY41 from the most ancient group I may have evolved very recently due to 

domain duplication or fusion of two individual WRKYs. 

I observed a great expansion of group III WRKYGEK members in monocot plants 

(Figure 3.2). These members are found in all monocot plant species surveyed but 

absent from most of the dicot genomes (Figure 3.2). To confirm its unique feature 

for monocot plant species, BLASTP search was performed using the WRKYGEK 

signature as query. WRKY proteins with this non-canonical motif were found in the 

genome of a few dicot plants as well. As example, one in Lotus japonicus, three in 

soybean (Glycine max), one in sunflower (Helianthus Annuus) and one in tobacco 
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(Nicotiana tabacum) (data not shown). However, none of these dicot-derived 

WRKYGEK members could be classified into group III (Figure 3.6). On the other 

hand, most of the WRKYGEK members from monocots are clustered in group III 

and distant from dicots-derived group III members (Figure 3.6). The expansion of 

WRKYGEK-containing WRKY members in group III appeared to occur exclusively 

in monocot plants. The divergence of this monocot-specific group is therefore 

postulated to happen after the split of dicot and monocot lineage. Though it is not 

known how these unique members have been evolved, I speculate they resulted 

from a recent mutation event in group III members. Based on two reasons, it is 

less likely that they evolved from the ancient WRKYGEK-motif members such as 

the one found in N-terminal WRKY domain of Chlamydomonas reinhardtii. Firstly, 

the other residues in the ancient WRKYGEK domain shared low sequence 

similarities with the WRKYGEK-containing members in monocots. Secondly, 

WRKYGEK domains were completely absent in the spikemoss (Selaginella 

moellendorffii), moss (Physcomitrella patens) and dicot plants which were 

considered to have earlier origin than monocot plants. Likewise, species-specific 

WKKY domain was reported recently for Asteraceae (Giacomelli et al., 2010). The 

WKKY group contains a WKKYGEK motif and was mainly found in Asteraceae 

plants such as sunflower (Helianthus spp) and lettuce (Lactuca spp). Though a 

few WRKY proteins with the WKKYGEK motif were found in genomes of Sorghum 

bicolour, Zea mays, Oryza sativa and Vitis vinifera, they contain the WKKY amino 

acid residues but not the additional conserved sequences. I also found a WRKY 

member containing WKKYGEK sequence in the genome of Medicago truncatula, 

however, phylogenetic analysis placed it distantly from the WKKY group in 

Asteraceae. The presence of monocotylenoneae-specific WRKYGEK group and 

Asteraceae-specific WKKYGEK group strongly indicates a general diversification 

of functions associated with distinct WRKY proteins. Functional characterizations 

of these proteins would enable researchers to better understand the diversification 

events. 

 

4.3 Role of WRKY transcription factors in plant immunity 
WRKY transcription factors have been extensively studied in the aspects of 

senescence, development, abiotic stresses and plant immunity (Pandey and 
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Somssich, 2009; Rushton et al., 2010). Some barley WRKY transcription factors 

have been shown to involve in starch synthesis, drought and cold tolerance, and 

innate immunity (Eckey et al., 2004; Mare et al., 2004; Sun et al., 2003; Xiong et 

al., 2010). HvWRKY1 and HvWRKY2 were identified as the targets of effector-

activated R protein MLA (Shen et al., 2007). The interaction between the 

resistance protein MLA10 and HvWRKY1/2 is dependent on the recognition of a 

corresponding fungal-derived avirulent protein AVR10. Following the activation by 

AVR10, a portion of cytoplasm-localized MLA10 protein translocates into the plant 

nucleus and physically interacts with HvWRKY1/2. Transient virus-induced 

silencing of HvWRKY1/2 enhanced resistance towards Blumeria graminis f .sp. 

hordei and overexpression of HvWRKY1/2 facilitate the fungal penetration. Thus 

they are regarded as negative regulators in basal defense. The excellent work 

from Shen et al., (2007) provided a link between basal defense and race-specific 

defense via HvWRKY1/2. 

However, there are some questions remaining to be answered. The concept that 

HvWRKY1/2 act as negative regulators in basal defense towards Blumeria 

graminis is based solely on transient expression assays. This has to be verified in 

stable transgenic plants. In addition, the target promoters of HvWRKY1/2 and 

downstream elements are largely unknown regardless of compatible or 

incompatible interactions.  

Analysis of HvWRKY1 and -2 gene structure demonstrated the presence of one 

intron in each gene (Figure 3.11). The intron size for HvWRKY1 and -2 is the 

same and the intron position is conserved similar as described previously for many 

WRKY proteins in other species such as rice (Zhang and Wang, 2005). Both the 

HvWRKY1 and HvWRKY2 gene expressions are inducible by powdery mildew 

fungus according to the microarray data (Figure 3.10) and previous reports (Eckey 

et al., 2004; Leib, 2005; Shen et al., 2007). Such a pathogen-inducibility is likely 

attributed to the cis-elements (i.e, W-boxes) in their promoter sequences (Figure 

3.19). For instance, three tandem W-box elements in OsWRKY53 promoter were 

essential to the elicitor-responsiveness (Chujo et al., 2009).  Cloning of the 

promoters might facilitate the functional analysis of these cis-acting regulatory 

DNA elements. In addition, the fusion constructs of WRKY promoter and reporter 
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gene can be a useful tool to uncover the auto- or cross-regulation of HvWRKY1 

and HvWRKY2 proteins (Figure 3.21). 

Based on a recently available silencing tool using artificial microRNA (amiR), I was 

able to discover that HvWRKY2 silencing enhanced the resistance to Blumeria 

graminis in barley epidermal cells (Figure 3.12). The result is consistent with the 

previous findings using dsRNAi or virus-induced gene silencing (VIGS) (Leib, 2005; 

Shen et al., 2007). It is notable that the amiR-based silencing of HvWRKY2 is a 

good proof of concept for the further use of the silencing system in cereals 

especially in barley. The rice microRNA precursor osa-MIR528 was used to 

generate the microRNA silencing construct in barley. As a first report, the 

successful application of artificial microRNA in HvWRKY2 silencing confirms the 

conservation of microRNA processing machinery between rice and barley, which 

are believed to have colinearity in the genome. amiR-based gene silencing has 

been successfully used in a number of plants including Arabidopsis, rice, moss 

and green algae (Khraiwesh et al., 2008; Molnar et al., 2009; Schwab et al., 2006; 

Warthmann et al., 2008). Compared to the traditional RNAi approach using long 

dsRNA, amiR approach overcomes the self-silencing problems and promises to be 

more specific in the gene targeting (Molnar et al., 2009). Thus, amiR approach can 

be used as a high-throughput and high specific silencing system. In this study, the 

amiR-WRKY2 fragment was placed downstream of GFP coding sequence (Figure 

3.12). Such a design combines the reporter gene and the silencing fragment in the 

same construct and allows simutaneous and precise monitoring of targeted cells 

compared with the traditional two-plasmids co-expression approach. However, 

there might be some drawbacks. Because the expression of amiR-WRKY2 could 

initiate the inhibition of the upstream GFP transcription, those cells highly 

expressing amiR-WRKY2 thus may have very weak green fluorescence.  

To verify the enhanced susceptibility due to over-expression of HvWRKY2, 

transgenic barley lines were generated (Langen, unpublished). Under my tested 

conditions, barley lines constitutively expressing HvWRKY2 under the control of 

strong maize ubiquitin promoter showed no alteration in growth behaviour or plant 

morphology compared with the wild type Golden Promise and azygous plants. 

Surprisingly, the stable transgenic plants also showed no altered resistance 

towards Blumeria graminis f.sp. hordei (Bgh) compared with control plants (Figure 
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3.23; Figure 3.24). This is an unexpected result as the transient overexpression of 

HvWRKY2 resulted in enhanced penetration of the fungus (Leib, 2005; Shen et al., 

2007). I checked the construct sequence which was used for barley transformation. 

There was no sequence error or frame shift in the coding region. The transgenic 

population can be clearly selected on hygromycin-containing medium and they 

indeed proofed to have elevated transcript levels of HvWRKY2 under 

unchallenged condition (Figure 3.22). Notably, the total HvWRKY2 expression 

level 12 h after Bgh infection is very close to each other in control plants and 

overexpression lines (Fig. 3.22, B). In this regards, the endogenous HvWRKY2 

expression was negatively regulated by the overrepresented HvWRKY2 protein in 

the transgenic plants. Therefore, it is interesting to analyse the promoter of 

HvWRKY2 and examine the potential self-regulation behaviour in vitro and in vivo. 

4.4 Targets of WRKY transcription factors 
As demonstrated previously, WRKY proteins have a binding preference for the 

consensus sequence TTGACC/T (W-box) (Eulgem et al., 2000). Those genes with 

enriched W-box sequences in the promoter region are considered as potential 

targets for WRKY proteins. For example, wheat TaWRKY78 was shown to target 

at PR4 gene by binding directly to the W-box element in the promoter (Proietti et 

al., 2010). In barley, the germin-like protein HvGER4c plays a positive role in the 

basal defense against Blumeria graminis f.sp. hordei (Zimmermann et al., 2006; 

Himmelbach et al., 2010). In the promoter of HvGER4c, there is an enrichment of 

W-box elements. Therefore I tested the possible interaction of WRKY proteins and 

HvGER4c promoter. The powdery mildew-induced promoter activity of HvGER4c 

was substantially suppressed by co-expressed HvWRKY1 or HvWRKY2, the latter 

with a much stronger suppression capacity (Figure 3.13; Figure 3.14). This 

suppression is a specific effect as HvWRKY1 and HvWRKY2 did not exhibit any 

repression on the activity of the maize ubiquitin promoter (Figure 3.13, A left). In 

addition, those HvGER4c promoter derivates with single W-box mutation are also 

shown to be repressed by co-expressed HvWRKY1 and HvWRKY2 (Figure 3.14.). 

Interestingly, the repression appeared to be independent of Mla12 or Mlo (Figure 

3.13, B). In the previous study using transient overexpression assay, it was implied 

that the HvWRKY1/2-mediated susceptibility might require a functional Mlo 

(Langen, unpublished). Moreover, there was an effector-dependent physical 
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interaction between HvWRKY1/2 and the R protein MLA10 (Shen et al., 2007). In 

my experiments, I found that the in the resistant cultivar Sultan5 (Mla12) and 

BCPallas (mlo-5) which harbours a functional Mla12 gene and recessive mlo-5 

respectively, the Bgh-induced promoter activity of HvGER4c was as strongly 

repressed as in the wild type plants (Mlo). 

HvWRKY1/2 targets the HvGER4c gene by repression of the transcription. This 

might explain on the molecular level at least partially the mechanism of 

HvWRKY1/2-mediated susceptibility. It was found that members of the HvGER4 

famly were the most abundant pathogenesis-related proteins in Bgh-infected 

epidermal cells (Zimmermann et al., 2006; Himmelbach et al., 2010). This cluster 

of PR protein is positively involved in basal defense towards Blumeria graminis. 

Hence, suppression of their transcription would reduce the abundance of the 

accumulated protein and negatively influence the plant resistance status. Many 

WRKY proteins were demonstrated as negative regulators in plant innate immunity. 

For example, the HvWRKY1/2 homologous genes in Arabidopsis, AtWRKY18, -40 

and -60 are known to function partially redundantly as negative regulators in the 

resistance to the powdery mildew fungus Golovinomyces orontii and bacterial 

pathogen Pseudomonas syringae (Pandey et al., 2010; Shen et al., 2007; Xu et al., 

2006). Mutation of AtWRKY18 and AtWRKY40 resulted in enhanced resistance to 

powdery mildew G.orontii (Shen et al., 2007). Other examples include AtWRKY7, -

11 and -17 which act redundantly in Pseudomonas syringae resistance (Journot-

Catalino et al., 2006; Kim et al., 2006). AtWRKY38 and -62 also negatively 

regulate the basal resistance to P. syringae and they are under the regulation of a 

SNF1-related kinase (Kim et al., 2008; Xie et al., 2010). In rice, the IIa member 

OsWRKY62 negatively regulates XA21-mediated immune response (Peng et al., 

2008). Rice plants overexpressing OsWRKY62 are compromised in XA21-

mediated immunity to Xanthomonas oryzae pv.oryzae (Xoo) and suppressed the 

activation of defense-related genes including OsPR1 and OsPR10 (Peng et al., 

2008). 

OsWRKY28, OsWRKY71, OsWRKY62 together with OsWRKY76 are clustered in 

the rice WRKY IIa subfamily (Peng et al., 2010).Transgenic rice plants 

overexpressing all the four genes enhanced resistance against Xoo and showed 

activation of OsPR10 expression. These results indicate a functional interaction 
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between WRKY IIa members in regulating plant innate immunity. Based on 

phylogenetic tree of the WRKY IIa subfamily, HvWRKY1,-2, -3, -23, -54 and -65 

are within IIa subgroup (Figure 4. 1). How the other IIa HvWRKY members are 

involved in the innate immunity remains to be assessed. Goup IIa WRKY 

members have putative leucine zipper motifs at the N-terminus, suggesting 

potential dimerizations between proteins. Studies from Xu et al., (2006) have 

revealed the importance of leucine zipper motifs for the physical interaction of 

WRKY IIa proteins AtWRKY18, -40 and -60 in Arabidopsis.  

 

Figure 4. 1 Phylogenetic tree of Group IIa WRKY members from Arabidopsis, 
rice and barley. Thirteen sequences of conserved WRKY domains from 
Arabidopsis, rice and barley were aligned using MUSCLE with default parameters. 
The evolutionary distances were computed using the JTT matrix-based method. 
Neighbor-Joining (NJ) tree was constructed using MEGA 5.0 with pairwise deletion. 
The scale bar represent 0.5 substitutions per site and the values next to the nodes 
are bootstrap values from 1000 replicates. 
The HvGER4 gene cluster contains a dense cluster of tandemly duplicated genes 

(GER4a-h) that resulted from several cycles of duplication (Himmelbach et al., 

2010). W-boxes are overrepresented in the promoters of all these duplicated 

genes. In the present study, HvGER4c was selected as a representative to study 

the targeting from HvWRKY1/2. However, HvWRKY1/2 might act on the W-box 

elements of all these GER4c promoters. This hypothesis requires further 

verification. 

Through the WRKY signalling network, there is co-presence of positive regulators 

and negative regulators in the process of transcriptional regulation. For instance, 

in rice aleurone cells, OsWRKY24 and OsWRKY45 were found to repress ABA-

inducible promoter whereas OsWRKY72 and OsWRKY77 were shown to act as 
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activators of the same promoter (Xie et al., 2005). Regarding the promoter of 

defense-related gene HvGER4c, there are potentially positive WRKY factors or 

other types of transcription factors acting as transcriptional activators. To search 

for potential transactivators, I performed homology search for barley WRKYs using 

the known activators from rice WRKYs. HvWRKY12 and HvWRKY5 were found to 

be the homologous gene for OsWRKY72 and OsWRKY77. They might act as 

activators in the similar manner as OsWRKY72 and OsWRKY77, however, not 

necessarily acting on the corresponding ABA-inducible promoter in barley. The 

wheat and Arabidopsis WRKY factors TaWRKY78 and AtWRKY20 are known to 

be activators of PR4 promoters (Proietti et al., 2010). To verify their possible 

activation on HvGER4c, these two WRKY constructs together with its barley 

homolog HvWRKY46 (also known as SUSIBA2) were used in co-bombardment 

with pHvGER4c::GUS constructs and they were found to be unable to activate 

pHvGER4c (data not shown). 

4.5 Gene expression in HvWRKY2 overexpression lines 
HvWRKY2 overexpression plants in the present study did not display enhanced 

susceptibility under the experimental conditions. Expression analysis of some Bgh-

inducible genes might provide additional information as explanations. The 

candidate genes were selected from a primary microarray experiments. IGS, 

HvPR2 and HvPR5 (thaumatin-like proteins) appeared to have reduced 

expression at 12 h post Bgh inoculation (Figure 3.25; Figure 3.26). However, there 

was an early induction of HvPR2 expression at 4 hours post inoculation in 

HvWRKY2 transgenic plants. Therefore, HvWRKY2 might have a dual role in both 

activation and repression of target genes either directly by itself or indirectly 

through other transcription factors. 

4.6 Conserved activity of WRKY proteins across species 

Due to the high conservation of WRKY protein family, the homologous WRKY 

genes from distinct plant species may retain their functions in the context of cross-

species comparison (Mangelsen et al., 2008). Recently, it was reported that wheat 

TaWRKY78 showed cross-activity with the Arabidopsis AtWRKY20 (Proietti et al., 

2011). In wheat, TaWRKY78 was able to bind to and positively regulate the 

wPR4e promoter. In Arabidopsis, the promoter of PR4-type AtHEL was activated 
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by AtWRKY20, the orthologue of TaWRKY78. Interestingly, both WRKY factors 

were shown to activate the orthologous cognate promoters of wPR4e and AtHEL, 

suggesting a conserved mechanism across monocot and dicot species (Proietti et 

al., 2011). In my study, the Arabidopsis orthologue AtWRKY40 was transiently 

overexpressed in barley epidermal cells and resulted in enhanced susceptibility to 

Blumeria gramini f.sp. hordei (Bgh) (Fig. 3.16). This indicated that AtWRKY40 has 

a similar function in barley as its orthologs HvWRKY1 and HvWRKY2 and retained 

its function in another species as a negative regulator in the basal defense to 

powdery mildew fungus. The results support the notion from Mangelsen et al. 

(2008) that gene orthology implies similar gene function and diversification 

between monocot and dicot has most likely occurred after the specialization of 

some WRKY proteins. 

4.7 Suggestion of candidate WRKY genes for disease resistance 
The WRKY transcription factors, like the NF-kB factors in animals, are the central 

regulators of immune responses in plants (Eulgem, 2005). Such a superfamily is a 

valuable pool of disease resistance-related factors. During pathogen attack, many 

of the genes encoding WRKY transcription factors could be up-or down-regulated. 

Though the up- or down-regulation by pathogens does not necessarily indicate 

their direct role in conferring resistance to the pathogen, the expression profile 

provide precious information about the related signalling cascade and potential 

involvement in plant immunity. The expression patterns of barley WRKY genes 

from microarray database together with the orthologs based comparison would be 

a powerful tool to preselect some candidates WRKY genes. In further studies, 

researchers and breeders may give priority to these candidate genes in the sense 

of gene cloning, functional validation and application in crop improvement practice. 

From Genevestigator data set, five barley WRKY genes were found strongly (over 

eight folds induction) responsive to pathogen infection (Figure 3.27) and seven 

additional WRKYs were induced to a less extent (two to eight folds) (Figure 3.28).  

HvWRKY19 and HvWRKY20 are the orthologs of AtWRKY50, AtWRKY51 and 

OsWRKY7. These orthologous genes contain the WRKYGKK motif and belong to 

group IIc subfamily. Both HvWRKY19 and HvWRKY20 are strongly up-regulated 

after Blumeria graminis infection with the latter showing a stronger induction 

(Figure 3.27). Their Arabidopsis ortholog AtWRKY50 and AtWRKY51 were 
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recently found to be mediators of SA and low oleic acid-dependent repression of 

JA signalling and function positively in basal defense to biotrophic pathogens (Gao 

et al., 2011). Both AtWRKY50 and AtWRKY51 are SA-inducible and they suppress 

the JA-mediated induction of PDF1.2 and VSP1 expression. In rice, the 

orthologous gene OsWRKY7 was not characterized yet but the expression profile 

of OsWRKY7 (Os.8961.1.S1_s_at) showed an eight folds induction 2 days after 

inoculation with the rice blast fungus Magnaporthe oryzae. RT-PCR experiment 

confirmed the significant induction of OsWRKY7 after blast fungus infection 

between 24 and 48 hours (Ryu et al., 2006). Moreover, OsWRKY7 transcript was 

increased rapidly at early time points (4–12 h) after infection with the bacterial 

blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) (Ryu et al., 2006). In 

addition, the mock treatment also induced OsWRKY7 expression and suggested a 

possible role in abiotic stress as well. With K to Q substitution in the signature 

motif, AtWRKY50 protein was still able to bind W-box elements and even the 

mutated W-box (Brand et al., 2010). 

The group III member HvWRKY32 is orthologous to AtWRKY70 and OsWRKY45. 

It is highly induced by Blumeria graminis infection at late stage and responsive to 

stem rust fungus Puccinia graminis at early-intermediate stage (Figure 3.27). 

Therefore, HvWRKY32 might be involved in the resistance to the biotropic 

pathogen B. graminis and P. graminis. The Arabidopsis AtWRKY70 has been well-

known as a mediator in the cross-talk between SA and JA signalling as well as 

being crucial for R-gene mediated resistance (Li et al., 2006; Knoth et al., 2007). 

AtWRKY70 overexpressors showed enhanced resistance to E. cichoracearum 

while the wrky70 mutants are impaired in resistance to E. cichoracearum (Li et al., 

2006). It is also required for full RPP4-mediated resistance and basal defense 

against H. parasitica (Knoth et al., 2007). Likewise, the rice orthologous gene 

OsWRKY45 plays an important role in resistance towards bacterial and fungal 

pathogens (Shimono et al., 2007, 2011; Tao et al., 2009). Overexpression of 

OsWRKY45 conferred extremely strong resistance to the fungal pathogen M. 

grisea and bacterial pathogen Xoo. However, OsWRKY45 overexpressors are 

susceptible to the necrotrophic pathogen Rhizoctonia solani (Shimono et al., 2011), 

which might limit further use of this gene in resistance breeding. 
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HvWRKY51, similar to AtWRKY33 and OsWRKY24, belongs to the group I 

subfamily. It is highly responsive to B. graminis at early and intermediate infection 

phase but highly accumulated after P. graminis inoculation at late time point 

(Figure 3.27). Its Arabidopsis ortholog AtWRKY33 was known to confer resistance 

to the necrotrophic pathogens Botrytis cinerea and Alternaria brassicicola (Zheng 

et al., 2006). In contrast, the AtWRKY33 overexpressor displayed susceptibility to 

the hemibiotrophic pathogen Pseudomonas syringae DC3000 (Zheng et al., 2006). 

In rice, OsWRKY24 (LOC_Os01g61080) was known to be a repressor of ABA and 

GA signalling (Zhang et al., 2009). Though its role in defense has not been 

described, expression data supports its potential participation in rice disease 

resistance. For instance, OsWRKY24 (Os.31521.1.S1_at) was induced by M. 

grisea 16 folds at 2 and 4 days after inoculation. In addition, OsWRKY24 was 

down-regulated by abiotic stresses such as drought stress in 2-week-old seedlings, 

indicating a role in the drought tolerance as well (Ramamoorthy et al. 2008). 

HvWRKY57 belongs to group IIb and is similar to AtWRKY6 and OsWRKY1. 

HvWRKY57 is highly accumulated by Fusarium graminearum at late time point 

and induced by P. graminis at early and intermediate infection phase (Figure 3.27). 

It is also responsive to B. graminis at late stage of infection. The Arabidopsis 

orthologous gene AtWRKY6 was known to be associated with senescence and 

defense (Robatzek and Somssich, 2001; Robatzek and Somssich, 2002). In rice, 

OsWRKY1 (OsAffx.11050.1.S1_x_at) was not characterized but the high induction 

(8-16 folds) by M. grisea at late infection phase hints a possible function in 

pathogen resistance. 

Other HvWRKY genes that are inducible by pathogens include HvWRKY4, -5, -10, 

-28, -30, -54 and -79. Among them, HvWRKY4 and -28 might be specifically 

involved in B. graminis resistance as both of them are induced nearly eight folds at 

late stage of B. graminis infection. They are similar to AtWRKY70, a known 

regulator of SA and JA signalling and R-gene mediated resistance in Arabidopsis 

(Li et al., 2006; Knoth et al., 2007). HvWRKY30 is homologous to AtWRKY41, 

which is flagellin-inducible and also suggested to be a regulator during the cross-

talk of SA and JA signalling (Higashi et al., 2008). OsWRKY69 (Os.11945.1.S1_at), 

the rice ortholog of HvWRKY30, is induced by M.  grisea at 2 and 4 days after 

inoculation. From the microarray data, HvWRKY54 is only weakly induced by B. 
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graminis. Together with other IIa group WRKY members, it might act in a similar 

way as its orthologous genes AtWRKY40 and OsWRKY76 (Pandey et al., 2010; 

Peng et al., 2010; Xu et al., 2006). 

Taken together, the interspecies retained functions of sequence-related WRKY 

genes would aid future functional analysis of the understudied barley WRKY family. 

On the basis of expression profiling, the selected candidate genes can be further 

verified through knock-down or overexpression approach either in transient system 

or stable genetic transformation. The elucidation of signalling transduction 

pathways such as the upstream and downstream components and the interaction 

partners will help to better understand the plant transcriptional regulation network 

during biotic and abiotic stresses.  
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5. Summary 
WRKY transcription factors are a conserved superfamily distributed in eukaryotes 

and extremely expanded in flowering plants. They are central regulators of diverse 

plant cellular responses such as biotic and abiotic stresses. Despite the economic 

importance of the crop plant barley (Hordeum vulgare L.) and the significance of 

WRKY transcriptional network, the barley WRKY transcription factors are largely 

understudied and undetermined. The present work aimed to perform a whole-

genome gene discovery of barley WRKY family and functionally characterize two 

of the important genes HvWRKY1 and HvWRKY2 in the interaction with barley 

powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh). 

Based on the NCBI databases and the draft sequence of barley genome, blastp, 

blastn and tblastn searches were performed to find putative barley WRKY 

sequences. As a result, 100 unique WRKY members containing at least one 

WRKY domain were found in the barley genome. Apart from the previously 

annotated 45 HvWRKY members, the novel sequences were designated 

HvWRKY47-HvWRKY102. Phylogenetic analysis of the conserved WRKY domain 

spanning about 60 amino acids using MEGA5 clearly placed them into the 

predefined subgroups I, IIa+IIb, IIc, IId+e, and group III. The homologous WRKY 

members between barley, Arabidopsis and rice were assigned according to the 

phylogenetic analysis. 

Expansion of group III members was found in barley compared with the model 

plant Arabidopsis thaliana. Within the group III members, WRKYs with a non-

canonical WRKYGEK motif were proven to be a monocot-specific group and this 

diversification implicates special functions in monocot plants. In addition, 

phylogenetic analysis using WRKY sequences from 22 plant species clearly 

indicate that IIa group is the last group evolved.  

Expression of two IIa members HvWRKY1 and HvWRKY2 was transiently and 

rapidly up-regulated in response to powdery mildew challenge. Using artificial 

microRNA-based transient silencing of HvWRKY2, I observed on single-cell level 

enhanced resistance to Bgh. Together with previous findings this result confirmed 

its nature as negative regulator in barley-Bgh interaction. Whereas the R-protein 

Mla10 was identified as an upstream factor for HvWRKY1 and HvWRKY2, 
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downstream target promoters are unknown for barley WRKYs. HvGER4c is one of 

the most abundant pathogenesis-related (PR) genes induced in Bgh-infected 

barley leaf epidermal cells and contains enriched WRKY-binding sites in the 

promoter. The wild-type and W-box mutated versions of HvGER4c promoter GUS 

fusion constructs were used in the co-bombardment assay with 35S::HvWRKY1/2 

plasmids to verify their possible interaction. Co-expression of 35S::HvWRKY1/2 

constructs with pHvGER4c::GUS significantly and specifically suppressed the 

Bgh-induced activity of HvGER4c promoter, with HvWRKY2 showing stronger 

repression activity than HvWRKY1. The finding indicates a negative transcriptional 

regulation of HvWRKY1/2 on the defense-related gene HvGER4c. In addition, it 

was observed that the HvWRKY2-mediated repression of HvGER4c was 

independent of Mla12 or Mlo, which were previously identified as an effector-

dependent interaction partner of HvWRKY1/2, or assumed to be required for 

HvWRKY2-mediated compatibility respectively. Moreover, electrophoretic mobility 

shift assay (EMSA) was used to analyze the binding of HvWRKY2 recombinant 

protein with W-box elements in HvGER4c promoter. HvWRKY2 protein showed 

binding affinity to all the tested W-boxes but with questionable specificity. 

Transient overexpression of the Arabidopsis homologue AtWRKY40 resulted in 

enhanced susceptibility to Bgh in barley. The retained activity of AtWRKY40 

between dicot and monocot indicated evolutionary conserved functions of IIa 

WRKY factors as negative regulators in basal defense. 

Furthermore, the promoters of HvWRKY1 and HvWRKY2 were isolated through 

PCR amplification and two constructs of pHvWRKY1::Gusi-AM were successfully 

generated. These constructs might be deployed as a useful tool for studies on 

spatial and temporal activation of HvWRKY1/2, functional analysis of cis-elements 

and auto/cross-regulation of WRKY factors.  

HvWRKY2 overexpression plants were analysed regarding the resistance towards 

Blumeria graminis. Unexpectedly, the transgenic plants exhibited wild-type 

resistance to Bgh according to the development of powdery mildew pustules and 

microscopical evaluation. Expression studies of the candidate genes HvPR1, 

HvPR2, HvPR5 and HvBI-1 using quantitative RT-PCR indicated conditional 

suppression and activation of marker genes in HvWRKY2 overexpression plants. 



Summary 

 93

The outcome of barley-Bgh interaction might be dependent on the sophisticated 

balancing of integrated activation and repression of gene sets. 

Taken together, HvWRKY1 and HvWRKY2 act as negative regulators largely 

dependent on their transcriptional repression of the downstream target genes, 

including the verified HvGER4c gene. Some further candidate WRKY genes 

involved in plant immune responses were suggested based on the microarray 

expression profile after pathogen challenge. Whole-genome annotation and 

phylogenetic analysis of barley WRKY transcription factors might provide insights 

into further characterization and cross-species comparison of the conserved family. 
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6. Zusammenfassung 
Die konservierte Superfamilie der WRKY Transkriptionsfaktoren findet sich in 

Eukaryoten, besonders in blühenden Pflanzen ist diese Gruppe sehr ausgedehnt. 

In Pflanzen sind WRKY Transkriptionsfaktoren zentrale Regulatoren von 

verschiedenen zellulären Antworten, zum Beispiel auf biotischen und abiotischen 

Stress. Trotz der ökonomischen Bedeutung von Gerste (Hordeum vulgare L.) und 

der zentralen Rolle des WRKY- Transkriptionsnetzwerks sind die Gersten-WRKY-

Transkriptionsfaktoren kaum erforscht. Das Ziel der vorliegenden Arbeit war die 

Identifizierung der WRKY- Familie aus dem gesamten Gerstengenom und die 

funktionelle Charakterisierung von zwei bedeutsamen Genen, HvWRKY1 und 

HvWRKY2, in der Interaktion mit dem Gerstenmehltau Blumeria graminis f. sp. 

hordei (Bgh). 

Unter Nutzung der Datenbanken des NCBI und der vorläufigen Sequenzierung 

des Gerstengenoms wurde eine Suche mit den Programmen blastp, blastn und 

tblastn durchgeführt, um putative WRKY-Sequenzen der Gerste zu finden. Es 

konnten 100 einzelne WRKY- Mitglieder mit mindestens einer WRKY- Domäne im 

Gerstengenom identifiziert werden. Neben 45 bereits annotierten Mitgliedern der 

HvWRKY-Gruppe wurden die neuen Sequenzen als HvWRKY47 bis HvWRKY102. 

Die phylogenetische Analyse der konservierten, etwa 60 Aminosäuren langen 

WRKY Domäne mittels MEGA5 ermöglichte eine klare Zuordnung der WRKY-

Sequenzen in die zuvor definierten Untergruppen I, IIa+b, IIc, IId+e und Gruppe III. 

Die homologen WRKY Mitglieder von Gerste, Arabidopsis und Reis wurden 

gemäß der phylogenetischen Analyse eingeordnet.  

Die Gruppe III der WRKY Transkriptionsfaktoren ist in Gerste im Vergleich zu der 

Modellpflanze Arabidopsis thaliana erweitert. Es konnte gezeigt werden, dass die 

innerhalb der Gruppe III identifizierten WRKYs mit einem nicht-kanonischen 

WRKYGEK-Motiv eine spezielle Gruppe bei Monokotylen darstellen. Diese 

Erweiterung deutet auf spezielle Funktionen in monokotylen Pflanzen hin. 

Zusätzlich ergab die phylogenetische Analyse mit WRKY-Sequenzen von 22 

verschiedenen Pflanzenarten, dass sich die Gruppe IIa wahrscheinlich als letzte 

Gruppe ausgebildet hat.  
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Als Antwort auf die Inokulation mit Mehltau war die Expression der beiden IIa-

Mitglieder HvWRKY1 und HvWRKY2 kurzzeitig und schnell hochreguliert. Die 

transiente Ausschaltung von HvWRKY2 mittels artifizieller microRNA führte zu 

einer erhöhten Resistenz gegenüber Bgh auf Einzelzellebene. Zusammen mit 

früheren Erkenntnissen bestätigte diese Beobachtung die Eigenschaft von 

HvWRKY2 als negativer Regulator in der Gersten-Bgh-Interaktion. Während das 

R-Protein Mla10 als vorgeschalteter Faktor von HvWRKY1 und HvWRKY2 bereits 

bekannt ist, konnten nachgeschaltete Ziel-Promotoren für Gersten-WRKYs bisher 

nicht gefunden werden. HvGER4c ist eines der am stärksten induzierten 

Pathogenese-assoziierten Gene (pathogenesis-related genes, PR-Gene) in Bgh-

infizierten Epidermiszellen der Gerstenblätter. Das HvGER4c-Gen hat in seinem 

Promotorbereich eine Anreicherung von WRKY-Bindungsstellen. Deshalb wurden 

Wildtyp- sowie W-Box-mutierte Versionen von HvGER4c-Promotor-GUS-

Fusionskonstrukten in einer Co-Bombardement-Untersuchung mit 

35S::HvWRKY1/2 Plasmiden getestet, um eine mögliche Interaktion zu prüfen. Die 

Co-Expression von 35S::HvWRKY1/2 Konstrukten mit pHvGER4c::GUS 

unterdrückte signifikant und spezifisch die Bgh-induzierte Aktivität des HvGER4c-

Promotors. Hierbei zeigte HvWRKY2 eine stärkere Unterdrückung als HvWRKY1. 

Dieses Ergebnis deutet auf eine negative transkriptionelle Regulation des Abwehr-

assoziierten Gens HvGER4c durch HvWRKY1/2 hin. Zusätzlich konnte beobachtet 

werden, dass die HvWRKY2-vermittelte Repression von HvGER4c unabhängig 

von Mla12 oder Mlo ist, welche bereits als Effektor-abhängige Interaktionspartner 

von HvWRKY1/2 identifiziert wurden oder die als notwendig für die HvWRKY2-

vermittelte Kompatibilität angesehen werden. Des Weiteren wurde eine EMSA-

Untersuchung (EMSA = electrophoretic mobility shift assay) durchgeführt, um die 

Bindung von HvWRKY2 rekombinantem Protein mit W-box-Elementen des 

HvGER4c Promotors zu studieren. Das HvWRKY2 Protein zeigte Bindungsaffinität 

zu allen getesteten W-Boxen, jedoch konnte die Spezifität nicht abschließend 

geklärt werden.. Die transiente Überexpression des Arabidopsis- Homologs 

AtWRKY40 in Gerste führte zu einer erhöhten Anfälligkeit gegenüber Bgh. Die 

Aktivität von AtWRKY40 sowohl in dikotylen als auch in monokotylen Pflanzen 

deutet auf evolutionär konservierte Funktionen von IIa WRKY- Faktoren als 

negative Regulatoren in der basalen Abwehr hin.  
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Außerdem wurden die Promotoren von HvWRKY1 und HvWRKY2 durch PCR 

Amplifikation isoliert und zwei Konstrukte mit pHvWRKY1::Gusi-AM wurden 

erfolgreich hergestellt. Diese Konstrukte könnten ein nützliches Hilfsmittel für 

Studien der räumlichen und zeitlichen Aktivierung von HvWRKY1/2, der 

funktionalen Analyse von cis-Elementen und Auto-/Kreuz-Regulation von WRKY-

Faktoren verwendet werden.  

HvWRKY2 überexprimierende Pflanzen wurden bezüglich ihrer Resistenz 

gegenüber Blumeria graminis untersucht. Unerwarteter Weise zeigten die 

transgenen Pflanzen keine veränderte Resistenz gegenüber Bgh, die anhand der 

Entwicklung von Mehltaupusteln und mikroskopischer Studien untersucht wurde. 

Expressionsstudien mit den Genen HvPR1, HvPR2, HvPR5 und HvBI-1 mittels 

quantitativer RT-PCR wiesen auf eine konditionale Unterdrückung bzw. 

Aktivierung von Markergenen in HvWRKY2 überexprimierenden Pflanzen hin. Das 

Ergebnis der Gerste-Bgh-Interaktion könnte von einer ausgeklügelten Balance 

zwischen Aktivierung und Repression verschiedener Gensets abhängen.  

Zusammenfassend lässt sich feststellen, dass HvWRKY1 und HvWRKY2 als 

negative Regulatoren zur transkriptionellen Unterdrückung von nachgeschalteten 

Zielgenen führen, eingeschlossen das überprüfte HvGER4c-Gen. Einige weitere 

WRKY Kandidaten-Gene, die an der pflanzlichen Immunantwort beteiligt sind, 

konnten anhand von Expressionsprofilen nach Pathogenbefall identifiziert werden. 

Die vorgenommene WRKY-Annotation basierend auf dem vorläufig identizierten 

Gersten-Genom und die phylogenetische Analyse von Gersten- WRKY-

Transkriptionsfaktoren können weitere Erkenntnisse für die Charakterisierung und 

Art-übergreifende Vergleiche dieser konservierten Familie liefern.  



References 

 97

7. References 
 
Alexandrova, K.S. and Conger, B.V. (2002) Isolation of two somatic 

embryogenesis-related genes from orchardgrass (Dactylis glomerata). Plant 
Sci. 162, 301-307. 

Alvarez, M., Pennell, R., Meijer, P., Ishikawa, A., Dixon, R. and Lamb C (1998) 
Reactive oxygen intermediates mediate a systemic signal network in the 
establishment of plant immunity. Cell, 92, 773-784. 

Andreasson, E., Jenkins, T., Brodersen, P., Thorgrimsen, S., Petersen, N.H., Zhu, 
S., Qiu, J.L., Micheelsen, P., Rocher, A., Petersen, M., Newman, M.A., Bjorn, 
Nielsen. H., Hirt, H., Somssich, I., Mattsson, O. and Mundy, J. (2005). The 
MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO 
J. 24(14), 2579-2589. 

Asai, T. (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. 
Nature, 415, 977-983. 

Ay, N., Irmler, K., Fischer, A., Uhlemann, R., Reuter, G. and Humbeck, K. (2009) 
Epigenetic programming via histone methylation at WRKY53 controls leaf 
senescence in Arabidopsis thaliana. Plant J. 58, 333-346. 

Bailey, T.L. and Elkan, C. (1994) Fitting a mixture model by expectation 
maximization to discover motifs in biopolymer, Proceedings of the Second 
International Conference on Intelligent Systems for Molecular Biology, pp. 28-
36, AAAI Press, Menlo Park, California 

Banks, J. A., Nishiyama, T., Hasebe, M., Bowman, J. L., Gribskov, M., 
dePamphilis, C., et al. (2011) The Selaginella genome identifies genetic 
changes associated with the evolution of vascular plants. Science, 332, 960-
963 

Biffen, R. (1907) Studies in the inheritance of disease-resistance. J. Agric. Sci. 2, 
109-128. 

Bolwell, G. and Wojtaszek, P. (1997) Mechanism for the generation of reactive 
species of oxygen species in plant defence: a broad perspective. Physiol Mol 
Plant Pathol. 51, 347-366. 

Brand, L.H., Kirchler, T., Hummel, S., Chaban, C. andWanke. D. (2010) DPI-
ELISA: a fast and versatile method to specify the binding of plant transcription 
factors to DNA in vitro. Plant methods, DOI.25.10.1186/1746-4811-6-25. 

Breen, J. and Bellgard, M. (2010). Germin-like proteins (GLPs) in cereal genomes: 
gene clustering and dynamic roles in plant defence. Funct. Integr. Genomics, 
1-14. 

Carter, C., Graham, R.A. and Thornburg, R.W. (1998) Arabidopsis thaliana 
contains a large family of germin-like proteins: characterization of cDNA and 
genomic sequences encoding 12 unique family members. Plant Mol Biol. 38, 
929-943. 

Chen, H., Lai, Z., Shi, J., Xiao, Y., Chen, Z., and Xu, X. (2010a) Roles of 
arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant 
responses to abscisic acid and abiotic stress. BMC Plant Biol. 10, 281. 

Chen, X.,Wang, M.L.,Holbrook, C.,Culbreath, A.,Liang, X.,Brenneman, T.,Guo, B. 
(2010b) Identification and characterization of a multigene family encoding 
germin-like proteins in cultivated peanut (Arachis hypogaea L.). Plant Mol. Biol. 
Rep. 29, 389-403. 



References 

 98

Chen, Z., Silva, H. and Klessig, D. (1993) Active oxygen species in the induction of 
plant systemic acquired resistance by salicylic acid. Science, 262, 1883-1886. 

Christensen, A., Thordal-Christensen, H., Zimmermann, G., Gjetting, T., Lyngkjaer, 
M., Dudler, R. and Schweizer, P. (2004) The germinlike protein GLP4 exhibits 
superoxide dismutase activity and is an important component of quantitative 
resistance in wheat and barley. Mol Plant Microbe Interact. 17, 109-117. 

Chujo, T., Takai, R., Akimoto-Tomiyama, C., Ando, S., Minami, E., Nagamura, 
Y.,Kaku,H., hibuya,N., Yasuda,M., Nakashita, H., Umemura, K., Okada, A., 
Okada, K., Nojiri,H. and Yamane,H. (2007) Involvement of the elicitor-induced 
gene OsWRKY53 in the expression of defense-related genes in rice. BBA-
Gene Struct.Expr. 1769, 497-505. 

Chujo, T., Sugioka, N., Masuda, Y., Shibuya, N., Takemura, T., Okada, K., et al. 
(2009) Promoter analysis of the elicitor-induced WRKY gene OsWRKY53, 
which is involved in defense responses in rice. Biosci Biotech Bioch, 73, 1901-
1904. 

Ciolkowski, I., Wanke, D., Birkenbihl, R. P. and Somssich, I. E. (2008) Studies on 
DNA-binding selectivity of WRKY transcription factors lend structural clues into 
WRKY-domain function. Plant Mol. Biol. 68, 81-92. 

Cormack, R.S., Eulgem, T., Rushton, P.J., Köchner, P., Hahlbrock, K. and 
Sommsich,I.E. (2002) Leucine zipper-containing WRKY proteins widen the 
spectrum of immediate early elicitor-induced WRKY transcription factors in 
parsley. Biochim. Biophys. Acta. 1576, 92-100. 

Cramer, G.R., Ergül, A., Grimplet, J., Tillett, R.L., Tattersall, E.A.R., Bohlman, M.C., 
Vincent, D., Sonderegger, J., Evans, J., Osborne, C., Quilici, D., Schlauch, 
K.A., Schooley, D.A. and Cushman, J.C. (2007) Water and salinity stress in 
grapevines: early and late changes in transcript and metabolite profiles. Funct. 
Integr. Genomics, 7,111-134. 

De Los Reyes, B.G. and McGrath, J.M. (2003). Cultivar-specific seedling vigor and 
expression of a putative oxalate oxidase germin-like protein in sugar beet (Beta 
vulgaris L.). Theor. Appl. Genet. 107, 54-61. 

de Pater, S., Greco, V., Pham, K., Memelink, J. and Kijne, J. (1996). 
Characterization of a zinc-dependent transcriptional activator from Arabidopsis. 
Nucleic Acids Res. 24, 4624-4631. 

Deslandes, L., Olivier, J., Peeters, N., Feng, D.X., Khounlotham, M., Boucher, C., 
Somssich, I., Genin, S. and Marco, Y. (2003) Physical interaction between 
RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III 
effector targeted to the plant nucleus. Proc. Natl. Acad. Sci. U.S.A. 100, 8024-
8029. 

Deslandes, L., Olivier, J., Theulières, F., Hirsch, J., Feng, D.X.,Bittner-Eddy, P., 
Beynon, J. and Marco, Y. (2002) Resistance to Ralstonia solanacearum in 
Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of 
a novel family of resistance genes. Proc. Natl. Acad. Sci. U.S.A. 99, 2404-2409. 

Devaiah, B.N., Karthikeyan, A.S. and Raghothama, K.G. (2007) WRKY75 
transcription factor is a modulator of phosphate acquisition and root 
development in Arabidopsis. Plant Physiol. 143,1789-1801. 

Dilkes, B. P., Spielman, M., Weizbauer, R., Watson, B., Burkart-Waco, D., Scott, R. 
J. and Comai, L. (2008) The maternally expressed WRKY transcription factor 
TTG2 controls lethality in interploidy crosses of Arabidopsis. PLoS Biol. 6, 
2707-2720. 



References 

 99

Doll, J., Hause, B., Demchenko, K., Pawlowski, K. and Krajinski, F. (2003) A 
member of the germin-like protein family is a highly conserved mycorrhiza-
specific induced gene. Plant Cell Physiol. 44, 1208-1214. 

Doyle, J.J. and Doyle. J.L. (1987) A rapid DNA isolation procedure for small 
quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15. 

Duan, M-R., Nan, J., Liang, Y.H., Mao, P., Lu, L., Li, L., Wei, C., Lai, L.,Li, Y. and 
Su, X.D. (2007) DNA binding mechanism revealed by high resolution crystal 
structure of Arabidopsis thaliana WRKY1 protein. Nucleic Acids Res. 35, 1145-
1154. 

Dumas, B., Freysinet, G. and Pallett, K. (1995) Tissue-specific expression of 
germin-like oxalate oxidase during development and fungal infection of barley 
seedlings. Plant Physiol. 107, 1091-1096. 

Dunwell, J. and Gane, P. (1998) Microbial relatives of seed storage proteins: 
conservation of motifs in a functionally diverse superfamily of enzymes. J. Mol. 
Biol. 46,147-154. 

Dunwell, J.M., Gibbings, J.G., Mahmood, T. and Naqvi, S.M.S. (2008) Germin and 
germin-like proteins: evolution, structure, and function. Crit. Rev. Plant Sci. 27, 
342-375. 

Durrant, W.E. and Dong, X. (2004) Systemic acquired resistance. Annu. Rev. 
Phytopathol. 42, 185-209. 

Edgar, R. (2004) MUSCLE: a multiple sequence alignment method with reduced 
time and space complexity. BMC Bioinformatics, 5, 113. 

Eckey, C., Korell, M., Leib, K., Biedenkopf, D., Jansen, C., Langen, G., and Kogel, 
K.H. (2004). Identification of powdery mildew-induced barley genes by cDNA-
AFLP: Functional assessment of an early expressed MAP kinase. Plant Mol. 
Biol. 55, 1–15. 

Eulgem, T. (2005) Regulation of the Arabidopsis defense transcriptome. Trends 
Plant Sci. 10, 71-78. 

Eulgem,T. and Somssich, I.E. (2007) Networks of WRKY transcription factors in 
defense signaling. Curr Opin Plant Biol. 10, 366-371. 

Eulgem, T., Rushton, P.J., Robatzek, S. and Somssich, I.E. (2000) The WRKY 
superfamily of plant transcription factors. Trends Plant Sci. 5, 199-206 

Eulgem, T., Rushton, P.J., Schmelzer, E., Hahlbrock, K. and Somssich, I.E. (1999) 
Early nuclear events in plant defence signalling: Rapid activation by WRKY 
transcription factors. EMBO J. 18, 4689-4699. 

Federico, M., Iñiguez-Luy, F., Skadsen, R. and Kaeppler, H. (2006) Spatial and 
temporal divergence of expression in duplicated barley germin-like protein-
encoding genes. Genetics, 174, 179-190. 

Ficke, A., Gadoury, D.M. and Seem, R.C. (2002) Ontogenic resistance and plant 
disease management: a case study of grape powdery mildew. Phytopathol. 92, 
671-675. 

Fiil, B.K., Petersen, K., Petersen, M. and Mundy, J. (2009). Gene regulation by 
MAP kinase cascades. Curr. Opin.Plant Biol. 12, 615-621. 

Gao, Q.-M., Venugopal, S., Navarre, D., and Kachroo, A. (2011) Low oleic acid-
derived repression of jasmonic acid-inducible defense responses requires the 
WRKY50 and WRKY51 proteins. Plant Physiol. 155, 464-476. 

Giacomelli, J.I., Ribichich, K.F., Dezar, C.A., and Chan, R.L. (2010) Expression 
analyses indicate the involvement of sunflower WRKY transcription factors in 



References 

 100

stress responses, and phylogenetic reconstructions reveal the existence of a 
novel clade in the Asteraceae. Plant Sci. 178, 398-410. 

Godfrey, D., Able, A. and Dry, I. (2007) Induction of a grapevine germin-like 
protein (VvGLP3) gene is closely linked to the site of Erysiphe necator infection: 
a possible role in defense? Mol. Plant Microbe Interact. 20, 1112-1125. 

Grunewald, W., Karimi, M., Wieczorek, K., Van de Cappelle, E., Wischnitzki, E., 
Grundler, F., Inze, D., Beeckman, T. and Gheysen, G. (2008) A role for 
AtWRKY23 in feeding site establishment of plant-parasitic nematodes. Plant 
Physiol. 148, 358-368. 

Guillaumie, S., Mzid, R., Méchin, V., Léon, C., Hichri, I., Destrac-Irvine, A., 
Trossat-Magnin, C., Delrot, S., and Lauvergeat, V. (2010). The grapevine 
transcription factor WRKY2 influences the lignin pathway and xylem 
development in tobacco. Plant Mol. Biol. 72, 215-234. 

Guo, R., Yu, F., Gao, Z., An, H., Cao, X., and Guo, X. (2011). GhWRKY3, a novel 
cotton (Gossypium hirsutum L.) WRKY gene, is involved in diverse stress 
responses. Mol. Biol. Rep. 38, 49-58. 

Guo, Y., Cai, Z. and Gan, S. (2004) Transcriptome of Arabidopsis leaf senescence. 
Plant Cell Environ. 27, 521-549. 

Halterman, D. A., and Wise, R. P. 2004. A single-amino acid substitution in the 
sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on 
RAR1 for disease resistance signaling. Plant J. 38, 215-226. 

Hara, K., Yagi, M., Kusano,T., and Sano, H. (2000) Rapid systemic accumulation 
of transcripts encoding a tobacco WRKY transcription factor upon wounding. 
Mol. Gen. Genet. 263, 30-37. 

Higashi, K., Ishiga, Y., Inagaki, Y., Toyoda, K., Shiraishi, T. and Ichinose, Y. (2008) 
Modulation of defense signal transduction by flagellin-induced WRKY41 
transcription factor in Arabidopsis thaliana. Mol Genet Genomics, 279, 303-312. 

Higo, K., Ugawa,Y., Iwamoto, M and Korenaga, T. (1999) Plant cis-acting 
regulatory DNA elements (PLACE) database:1999. Nucleic Acids Res. 27, 
297-300. 

Himmelbach, A., Liu, L., Zierold, U., Altschmied, L., Maucher, H., Beier, F., Müller, 
D., Hensel, G., Heise, A., Schützendübel, A., Kumlehn, J., and Schweizer, P. 
(2010). Promoters of the barley germin-like GER4 gene cluster enable strong 
transgene expression in response to pathogen attack. Plant Cell, 22, 937-952. 

Hinderhofer, K. and Zentgraf, U. (2001) Identification of a transcription factor 
specifically expressed at the onset of leaf senescence. Planta, 213, 469-473. 

Hofmann, M.G., Sinha, A.K., Proels, R.K. and Roitsch, R. (2008) Cloning and 
characterization of a novel LpWRKY1 transcription factor in tomato. Plant 
Physiol. Biochem. 46, 533-540. 

Houde, M. and Diallo, A.O. (2008) Identification of genes and pathways associated 
with aluminum stress and tolerance using transcriptome profiling of wheat 
near-isogenic lines. BMC Genomics, 9, 400. 

Hwang, S-H., Yieb, S.W. and Hwanga, D-J. (2011). Heterologous expression of 
OsWRKY6 gene in Arabidopsis activates the expression of defense related 
genes and enhances resistance to pathogens. Plant Sci. 181, 316-323. 

Hu, X., Bidney, D.L., Yalpani, N., Duvick, J.P., Crasta, O., Folkerts, O. and Lu, G. 
(2003) Overexpression of a gene encoding hydrogen peroxide-generating 
oxalate oxidase evokes defense responses in sunflower. Plant Physiol. 
133,170-181. 



References 

 101

Huang, T. and Duman, J.G. (2002) Cloning and characterization of a thermal 
hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet 
nightshade, Solanum dulcamara. Plant Mol. Biol. 48, 339-350. 

Ishida, T., Hattori, S., Sano, R., Inoue, K., Shirano, Y., Hayashi, H., Shibata, D., 
Sato, S., Kato, T., Tabata, S., Okada, K. and Wada, T. (2007) Arabidopsis 
TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB 
transcription factors and is involved in regulation of GLABRA2 transcription in 
epidermal differentiation. Plant Cell, 19, 2531-2543. 

Ishiguro, S. and Nakamura, K. (1994). Characterization of a cDNA encoding a 
novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' 
upstream regions of genes coding for sporamin and beta-amylase from sweet 
potato. Mol. Gen. Genet. 244, 563-571. 

Ishihama, N., Yamada, R., Yoshioka, M., Katou, S., and Yoshioka, H. (2011). 
Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by 
MAPK functions in the defense response. Plant Cell, 23, 1153-1170. 

Jiang, W. and Yu, D. (2009) Arabidopsis WRKY2 transcription factor mediates 
seed germination and post-germination arrest of development by abscisic acid. 
BMC Plant Biol. 22, 994-996. 

Jiang, Y. and Deyholos, M.K. (2006) Comprehensive transcriptional profiling of 
NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. 
BMC Plant Biol. 6, 25. 

Jiang, Y. and Deyholos, M.K. (2009) Functional characterization of Arabidopsis 
NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. 
Plant Mol Biol. 69, 91-105. 

Johnson, C.S., Kolevski, B. and Smyth, D.R. (2002) TRANSPARENT TESTA 
GLABRA2, a trichome and seed coat development gene of Arabidopsis, 
encodes a WRKY transcription factor. Plant Cell, 14, 1359-1375. 

Jones, J.D. and Dangl, J.L. (2006) The plant immune system. Nature, 444, 323-
329. 

Journot-Catalino, N., Somssich, I.E., Roby, D. and Kroj, T. (2006) The 
transcription factors WRKY11 and WRKY17 act as negative regulators of basal 
resistance in Arabidopsis thaliana. Plant Cell, 18, 3289-3302. 

Jørgensen, J. H. (1994). Genetics of powdery mildew resistance in barley. Crit. 
Rev. Plant Sci. 13, 97-119. 

Jung, K.-H., An, G. and Ronald, P. C. (2008) Towards a better bowl of rice: 
assigning function to tens of thousands of rice genes. Nat. Rev. Genet, 9, 91-
101. 

Kasajima, I., Ide, Y., Hirai, M.Y., and Fujiwara, T. (2010) WRKY6 is involved in the 
response to boron deficiency in Arabidopsis thaliana. Physiol. Plant. 139, 80-92. 

Ke, Y., Han, G., He, H. and Li, J. (2009) Differential regulation of proteins and 
phosphoproteins in rice under drought stress. Biochem. Biophys. Res. 
Commun. 379, 133-138. 

Khraiwesh, B., Ossowski, S., Weigel, D., Reski, R. and Frank, W. (2008) Specific 
gene silencing by artificial microRNAs in Physcomitrella patens: An alternative 
to targeted gene knockouts. Plant Physiol. 148, 684. 

Kim, C.Y. and Zhang, S. (2004) Activation of a mitogen-activated protein kinase 
cascade induces WRKY family of transcription factors and defense genes in 
tobacco. Plant J. 38, 142-151. 



References 

 102

Kim, K.C., Fan, B. and Chen, Z. (2006) Pathogen-induced Arabidopsis WRKY7 is 
a transcriptional repressor and enhances plant susceptibility to Pseudomonas 
syringae. Plant Physiol. 142, 1180-1192. 

Kim, K,C., Lai, Z., Fan, B. and Chen, Z. (2008) Arabidopsis WRKY38 and 
WRKY62 transcription factors interact with histone deacetylase 19 in basal 
defense. Plant Cell, 20, 2357-2371. 

Klink, V.P., Overall, C.C., Alkharouf, N.W., MacDonald, M.H., Matthews, B.F. 
(2007) Laser capture microdissection (LCM) and comparative microarray 
expression analysis of syncytial cells isolated from incompatible and 
compatible soybean (Glycine max) roots infected by the soybean cyst 
nematode (Heterodera glycines). Planta, 226, 1389-1409. 

Knoth, C., Ringler, J., Dangl, J.L. and Eulgem, T. (2007) Arabidopsis WRKY70 is 
required for full RPP4-mediated disease resistance and basal defense against 
Hyaloperonospora parasitica. Mol Plant Microbe Interact. 20, 120-128. 

Koo, S.C., Moon, B.C., Kim,J.K., Kim,C.Y., Sung,S.J., Kim, M.C., Cho, M.J. and 
Cheong,Y.H. (2009) OsBWMK1 mediates SA-dependent defense responses 
by activating the transcription factor OsWRKY33. Biochem. Biophys. Res. 
Commun. 387, 365-370. 

Lagace, M. and Matton, D.P. (2004) Characterization of a WRKY transcription 
factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta, 
219, 185-189. 

Lai Z, Vinod, K.M., Zheng, Z., Fan, B. and Chen, Z. (2008) Roles of Arabidopsis 
WRKY3 and WRKY4 transcription factors in plant responses to pathogens. 
BMC Plant Biol. 8, 68. 

Lamb, C. and Dixon, R. (1997) The oxidative burst in plant disease resistance. 
Annu. Rev. Plant Physiol. Mol. Biol. 48, 251-275. 

Lane, B. G. (2000) Oxalate oxidases and differentiating surface structure in wheat: 
germins. Biochem. J. 349, 309–321. 

Lane, B. (2002) Oxalate, germins, and higher-plant pathogens. IUBMB Life, 53, 
67-75. 

Lane, B.G., Dunwell, J.M., Ray, J.A., Schmitt,M.R. and Cuming, A.C. (1993) 
Germin, a protein marker of early plant development, is an oxalate oxidase. J. 
Biol. Chem. 268, 12239-12242. 

Leib, K. (2005) Untersuchungen zum Resistenzmechanismus der Gerste 
(Hordeum vulgare L.) gegenüber dem Gerstenmehltaupilz (Blumeria graminis 
f.sp.hordei). In: Fachbereich Biologie, Chemie und Geowissenschaften. 
(ed.^eds.). Gießen: Justus-Liebig-Universität Gießen, pp. 1-195. 

Lee, B.H., Henderson, D.A. and Zhu, J.K. (2005). The Arabidopsis cold responsive 
transcriptome and its regulation by ICE1. Plant Cell, 17, 3155-3175. 

Li, H., Xu, Y., Xiao, Y., Zhu, Z., Xie, X., Zhao, H., and Wang, Y. (2010a) 
Expression and functional analysis of two genes encoding transcription factors, 
VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata. 
Planta, 232, 1325-1337. 

Li, J., Brader, G., Kariola, T. and Tapio, P. E. (2006) WRKY70 modulates the 
selection of signaling pathways in plant defense. Plant J. 46, 477-491. 

Li, J., Brader, G. and Palva, E.T. (2004) The WRKY70 transcription factor: a node 
of convergence for jasmonate-mediated and salicylate-mediated signals in 
plant defense. Plant Cell, 16, 319-331. 



References 

 103

Li, S., Fu., Q., Huang, W. and Yu, D.(2009) Functional analysis of an Arabidopsis 
transcription factor WRKY25 in heat stress. Plant Cell Rep. 28, 683-693. 

Li, S.J., Zhou, X., Chen, L.G., Huang, W.D. and Yu, D.Q. (2010b) Functional 
characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol. Cells, 29, 
475-483. 

Lippok, B., Birkenbihl, R.P., Rivory, G., Brümmer, J., Schmelzer, E., Logemann, E. 
and Somssich, I.E. (2007) Expression of AtWRKY33 encoding a pathogen-
/PAMP-responsive WRKY transcription factor is regulated by a composite DNA 
motif containing W box elements. Mol. Plant Microbe Interact. 20, 420-429. 

Liu, Q., Zhang, Y.C.,Wang, C.Y., Luo, Y.C., Huang, Q.J., Chen, S.Y., Zhou, H., Qu, 
L.H., Liu, X., Bai, X., Wang, X. and Chu, C. (2007) OsWRKY71, a rice 
transcription factor, is involved in rice defense response. J. Plant Physiol. 164, 
969-979. 

Liu, X.Q., Bai, X.Q., Qian, Q.,Wang, X.J., Chen, M.S and  Chu, C.C. (2005) 
OsWRKY03, a rice transcriptional activator that functions in defense signaling 
pathway upstream of OsNPR1. Cell Res. 15, 593-603. 

Liu, Y., Schiff, M., Dinesh-Kumar, S.P., Lou, Y. and Baldwin, I.(2004) Involvement 
of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and 
CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J. 38, 800-809. 

Lou, Y. and Baldwin, I. (2006) Silencing of a germin-like gene in Nicotiana 
attenuata improves performance of native herbivores. Plant Physiol. 140, 1126-
1136. 

Luo, M., Dennis, E. S.,Berger, F.,Peacock, W. J. and Chaudhury, A. (2005) 
MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich 
repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc. 
Natl. Acad. Sci. USA. 102, 17531-17536. 

Maeo, K., Hayashi, S., Kojima-Suzuki, H., Morikami, A. and Nakamura, D. (2001) 
Role of conserved residues of the WRKY domain in the DNA-binding of 
tobacco WRKY family proteins. Biosci. Biotechnol. Biochem. 65, 2428-2436. 

Mahmood, T., Nazar, N. and Abbasi, B. (2010) Comparative analysis of regulatory 
elements in different germin-like protein gene promoters. Afr. J. Biotechnol, 9, 
1871-1881. 

Maidment, J. M., Moore, D., Murphy, G. P., Murphy, G. and Clark, I. M. (1999) 
Matrix metalloproteinase homologues from Arabidopsis thaliana. J. Biol. Chem. 
274, 34706-34710. 

Mangelsen, E., Kilian, J., Berendzen, K., Kolukisaoglu, U., Harter, K., Jansson, C. 
and Wanke, D. (2008). Phylogenetic and comparative gene expression 
analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals 
putatively retained functions between monocots and dicots. BMC Genomics, 9, 
194. 

Manosalva, P., Davidson, R., Liu, B., Zhu, X., Hulbert, S., Leung, H., Leach, J. 
(2009) A germin-like protein gene family functions as a complex quantitative 
trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol. 
149, 286-296. 

Mao, P., Duan, M., Wei, C., Li, Y. (2007). WRKY62 transcription factor acts 
downstream of cytosolic NPR1 and negatively regulates jasmonate responsive 
gene expression. Plant Cell Physiol. 48, 833-842. 

Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z. and Zhang, S. (2011) 
Phosphorylation of a WRKY transcription factor by two pathogen-responsive 



References 

 104

MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell, 
doi/10.1105/tpc.111.084996. 

Marchive, C., Mzid, R., Deluc, L., Barrieu, F., Pirrello, J., Gauthier, A., Corio- 
Costet, M.F., Regad, F., Cailleteau, B., Hamdi, S. and Lauvergeat, V.(2007) 
Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, 
and its effect on responses to fungal pathogens in transgenic tobacco plants. J. 
Exp. Bot. 58, 1999-2010. 

Mare, C., Mazzucotelli, E., Crosatti, C., Francia, E., Stanca, A.M. and Cattivelli, L. 
(2004). Hv-WRKY38: A new transcription factor involved in cold- and drought-
response in barley. Plant Mol. Biol. 55, 399-416. 

Mathieu, M., Lelu-Walter, M.A., Blervacq, A.S., David, H.,Hawkins, S. and 
Neutelings, G. (2006) Germin-like genes are expressed during somatic 
embryogenesis and early development of conifers. Plant Mol. Biol. 61,615-627. 

Matsumoto, T.,Tanaka, T.,Sakai, H.,Amano, N.,Kanamori, H.,Kurita, K.,Kikuta, 
A.,Kamiya, K.,Yamamoto, M.,Ikawa, H.,Fujii, N.,Hori, K.,Itoh and T.,Sato, K. 
(2011). Comprehensive sequence analysis of 24,783 barley full-length cDNAs 
derived from twelve clone libraries. Plant Physiol. 156, 20–28. 

Mayer, K. F. X., Martis, M., Hedley, P. E., Šimkovác, H., Liu, H., Morris, J. A., 
Steuernagel, Burkhard,.T, Stefan,R, Stephan,G, Heidrun,K, Marie, S, Pavla, 
Murat, F., Felder, M., Nussbaumer, T.,Graner, A.,Salse, J., Endo, T.,Sakai, H., 
Tanaka, T., Itoh, T., Sato, K., Platzer, M., Matsumoto, T., Scholz, U., Doleželc, 
J., Waugh, R. and Stein, N. (2010) Unlocking the barley genome by 
chromosomal and comparative genomics. Plant Cell, 23, 1249-1263. 

Membré N, Bernier F, Staiger D and Berna A (2000) Arabidopsis thaliana germin-
like proteins: common and specific features point to a variety of functions. 
Planta, 211, 345-354. 

Membré, N., Berna, A.,Neutelings, G., David, A.,David, H., Staiger, D., Vásquez, 
J.S., Raynal, M., Delseny, M. and Bernier, F. (1997) CDNA sequence, genomic 
organization and differential expression of three arabidopsis genes for 
germin/oxalate oxidase-like proteins. Plant Mol. Biol. 35, 459-469. 

Menke, F.L.H., Kang, H.G., Chen, Z., Park, J.M., Kumar, D. and Klessig, D.F. 
(2005) Tobacco transcription factor WRKY1 is phosphorylated by the MAP 
kinase SIPK and mediates HR-like cell death in tobacco. Mol. Plant Microbe 
Interact. 18. 1027-1034. 

Miao, Y., Laun, T., Smykowski, A. and Zentgraf, U. (2007) Arabidopsis MEKK1 
can take a short cut: it can directly interact with senescence-related WRKY53 
transcription factor on the protein level and can bind to its promoter. Plant Mol. 
Biol. 65, 63-76. 

Miao, Y. and Zentgraf, U. (2010) A HECT E3 ubiquitin ligase negatively regulates 
Arabidopsis leaf senescence through degradation of the transcription factor 
WRKY53. Plant J. 63, 179-188. 

Molan, Y.Y., and El-Komy, M.H. (2010). Expression of Sl-WRKY1 transcription 
factor during B. cinerea tomato interaction in resistant and susceptible cultivars. 
Int. J. Plant Breed. Genet. 4, 1-12. 

Molnar, A., Bassett, A., Thuenemann, E., Schwach, F., Karkare, S., Ossowski, S., 
Weigel, D. and Baulcombe, D (2009) Highly specific gene silencing by artificial 
microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J. 58, 165-
174. 



References 

 105

Moscou, M. J., Lauter, N., Caldo, R.A., Nettleton, D. and Wise R.P.. (2011). 
Quantitative and temporal definition of the Mlat transcriptional regulon during 
barley powdery mildew interactions. Mol. Plant Microbe Interact. 24, 694-705. 

Mukhtar, S.M., Deslandes, L., Auriac, M.C., Marco, Y. and Somssich, I.E. (2008) 
The Arabidopsis transcription factor WRKY27 influences wilt disease symptom 
development caused by Ralstonia solanacearum. Plant J. 56, 935-947. 

Murray, S.L., Ingle, R.A., Petersen, L.N. and Denby, K.J. (2007) Basal resistance 
against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein 
with homology to a nematode resistance protein. Mol. Plant Microbe Interact. 
20, 1431-1438. 

Mzid, R., Marchive, C., Blancard, D., Deluc, L., Barrieu, F., Corio-Costet, M.F., 
Drira N, Hamdi, S. and Lauvergeat, V. (2007) Overexpression of VvWRKY2 in 
tobacco enhances broad resistance to necrotrophic fungal pathogens. Physiol. 
Plant, 131, 434-447. 

Naoumkina, M.,He, X. and Dixon, R. (2008) Elicitor-induced transcription factors 
for metabolic reprogramming of secondary metabolism in Medicago truncatula. 
BMC Plant Biol. 8, 132. 

Noutoshi, Y., Ito, T., Seki, M., Nakashita, H., Yoshida, S., Marco, Y., Shirasu, K. 
and Shinozaki, K. (2005). A single amino acid insertion in the WRKY domain of 
the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 
(sensitive to low humidity 1) causes activation of defense responses and 
hypersensitive cell death. Plant J. 43, 873-888. 

Oh, S.K., Baek, K.H., Park, J.M., Yi, S.Y., Yu, S.H. Kamoun, S. and Choi, D. (2008) 
Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of 
pathogen defense. New Phytol. 177, 977-989. 

Oldach, K.H., Becker, D. and Lörz, H. (2001) Heterologous expression of genes 
mediating enhanced fungal resistance in transgenic wheat. Mol. Plant Microbe 
Interact. 14, 832-838. 

Olson, P. and Varner, J. (1993) Hydrogen peroxide and lignification. Plant J. 4, 
887-892. 

Pan, Y-J., Cho, C-C., Kao, Y-Y. and Sun, C-H. (2009) A novel WRKY-like protein 
involved in transcriptional activation of cyst wall protein genes in Giardia 
lamblia. J. Biol. Chem. 284, 17975-17988. 

Pandey, S.P. and Somssich, I.E. (2009) The role of WRKY transcription factors in 
plant immunity. Plant physiol. 150, 1648-55. 

Pandey, S. P., Roccaro, M., Schön, M., Logemann, E. and Somssich, I. E. (2010) 
Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates 
powdery mildew infection of Arabidopsis. Plant J. 64, 912-923. 

Peng, Y., Bartley, L.E., Canlas, P.E. and Ronald, P.C. (2010) OsWRKY IIa 
transcription factors modulate rice innate immunity. Rice, 3, 36-42. 

Peng, Y., Bartley, L.E., Chen, X., Dardick, C., Chern, M., Ruan, R., Canlas, P.E. 
and  Ronald, P.C. (2008) OsWRKY62 is a negative regulator of basal and 
Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol. 
Plant. 1, 446-458. 

Pnueli, L., Hallak-Herr, E., Rozenberg, M., Cohen, M., Goloubinoff, P.,Kaplan, A. 
and Mittler, R. (2002) Molecular and biochemical mechanisms associated with 
dormancy and drought tolerance in the desert legume Retama raetam. Plant J. 
31, 319-330. 



References 

 106

Proietti, S., Bertini, L., Van der Ent, S., Leon-Reyes, A., Pieterse, C.M.J., Tucci, M., 
Caporale, C. and Caruso, C. (2011). Cross activity of orthologous WRKY 
transcription factors in wheat and Arabidopsis. J. Exp. Bot. 62, 1975-1990. 

Pryce-Jones, E., Carver, T. and Gurr, S.J. (1999) The roles of cellulase enzymes 
and mechanical force in host penetration by Erysiphe graminis f.sp. hordei. 
Physiol Mol. Plant Pathol. 55, 175-182. 

Qiu, D., Xiao, J., Ding, X., Xiong, M., Cai, M., Cao, Y., Li, X., Xu, C. and Wang, S. 
(2007) OsWRKY13 mediates rice disease resistance by regulating 
defenserelated genes in salicylate- and jasmonate-dependent signaling. Mol. 
Plant Microbe Interact. 20, 492-499. 

Qiu, D., Xiao, J., Xie, W., Liu, H., Li, X., Xiong, L. and Wang, S. (2008a) Rice gene 
network inferred from expression profiling of plants overexpressing 
OsWRKY13, a positive regulator of disease resistance. Mol. Plant, 1, 538-551. 

Qiu, J.L., Fiil, B.K., Petersen, K., Nielsen, H.B., Botanga, C.J., Thorgrimsen, 
S.,Palma, K., Suarez-Rodriguez, M.C., Sandbech-Clausen, S., Lichota, J., 
Brodersen, P.,Grasser, Klaus D.,Mattsson, O.,Glazebrook, J.,Mundy, J. and 
Petersen, M. (2008b) Arabidopsis MAP kinase 4 regulates gene expression 
through transcription factor release in the nucleus. EMBO J. 27, 2214-2221. 

Qiu, Y., Jing, S., Fu, J., Li, L. and Yu, D. (2004) Cloning and analysis of 
expression profile of 13 WRKY genes in rice. Chin. Sci. Bull. 49, 2159-2168. 

Qiu, Y. and Yu, D. (2009) Over-expression of the stress-induced OsWRKY45 
enhances disease resistance and drought tolerance in Arabidopsis. Environ. 
Exp. Bot. 65, 35-47. 

Ramamoorthy, R., Jiang, S.Y., Kumar, N., Venkatesh, P.N. and Ramachandran, S. 
(2008) A comprehensive transcriptional profiling of the WRKY gene family in 
rice under various abiotic and phytohormone treatments. Plant Cell Physiol, 49, 
865-879. 

Ramiro, D., Jalloul, A., Petitot, A.-S., Grossi De Sá, M., Maluf, M., and Fernandez, 
D. (2010). Identification of coffee WRKY transcription factor genes and 
expression profiling in resistance responses to pathogens. Tree Genet. Genom. 
6, 767-781. 

Ren, C.M., Zhu, Q., Gao, B.D., Ke, S.Y., Yu, W.C., Xie, D.X. and Peng, W. (2008) 
Transcription factor WRKY70 displays important but no indispensable roles in 
jasmonate and salicylic acid signaling. J. Integr. Plant Biol. 50, 630-637. 

Ren, X., Chen, Z., Liu, Y., Zhang, H., Zhang, M., Liu, Q., Hong, X., Zhu, J. and 
Gong, Z. (2010a) ABO3, a WRKY transcription factor, mediates plant 
responses to abscisic acid and drought tolerance in Arabidopsis. Plant J. 63, 
417-429. 

Ren, X., Huang, W., Li, W. and Yu, D. (2010b) Tobacco transcription factor 
WRKY4 is a modulator of leaf development and disease resistance. Biol. 
Plantarum, 54, 684-690. 

Rensing, S. A., Lang, D., Zimmer, A. D., Terry, A., Salamov, A., Shapiro, H. et al. 
(2008). The Physcomitrella genome reveals evolutionary insights into the 
conquest of land by plants. Science, 319, 64-69. 

Ridout, C. J., Skamnioti, P., Porritt, O., Sacristan, S., Jones, J. D., and Brown, J. K. 
(2006) Multiple avirulence paralogues in cereal powdery mildew fungi may 
contribute to parasite fitness and defeat of plant resustance. Plant Cell, 18, 
2402-2414. 



References 

 107

Rizhsky, L., Liang, H. and Mittler, R. (2002) The combined effect of drought stress 
and heat shock on gene expression in tobacco. Plant Physiol. 130, 1143-1151. 

Robatzek, S. and Somssich, I.E. (2001) A new member of the Arabidopsis WRKY 
transcription factor family, AtWRKY6, is associated with both senescence- and 
defence-related processes. Plant J. 28, 123-133. 

Robatzek, S. and Somssich, I.E. (2002) Targets of AtWRKY6 regulation during 
plant senescence and pathogen defense. Genes Dev. 16, 1139-1149. 

Ross, C.A., Liu, Y. and Shen, Q.J. (2007) The WRKY gene family in rice (Oryza 
sativa). J. Integr. Plant Biol. 49, 827-842. 

Rushton, P.J., Macdonald, H., Huttly, A.K., Lazarus, C.M. and Hooley. R. (1995). 
Members of a new family of DNA-binding proteins bind to a conserved cis-
element in the promoters of alpha-Amy2 genes. Plant Mol. Biol. 29, 691-702. 

Rushton, P.J., Torres, J.T., Parniske, M., Wernert, P., Hahlbrock, K. and Somssich, 
I.E. (1996). Interaction of elicitor-induced DNA-binding proteins with elicitor 
response elements in the promoters of parsley PR1 genes. EMBO J. 15, 5690-
5700. 

Rushton, P. J., Somssich, I. E., Ringler, P. and Shen, Q. J. (2010) WRKY 
transcription factors. Trends Plant Sci. 15, 247–258. 

Ryu, H.S., Han, M., Lee, S.K., Cho, J.I., Ryoo, N., Heu, S., Lee, Y.H., Bhoo, S., 
Wang, G.L., Hahn, T.R. and Jeon, J.S. (2006) A comprehensive expression 
analysis of the WRKY gene superfamily in rice plants during defense response. 
Plant Cell Rep. 25, 836-847. 

Sanchez-Ballesta, M.T., Lluch, Y., Gosalbes, M.J., Zacarias, L.,Granell, A., 
Lafuente, M.T. (2003) A survey of genes differentially expressed during long-
term heat-induced chilling tolerance in citrus fruit. Planta, 218, 65-70. 

Schmittgen, T.D. and Livak, K.J. (2008) Analyzing real-time PCR data by the 
comparative C(T) method. Nat Protoc. 3, 1101-1108. 

Schultheiss, H., Dechert, C., Kogel, K.H. and Hückelhoven, R. (2002) A small 
GTP-binding host protein is required for entry of powdery mildew fungus into 
epidermal cells of barley. Plant Physiol. 128, 1447-1454. 

Schulze-Lefert, P. and Panstruga, R. (2003) Establishment of biotrophy by 
parasitic fungi and reprogramming of host cells for disease resistance. Annu. 
Rev. Phytopathol. 41, 641-667. 

Schulze-Lefert, P. and Vogel, J. (2000) Closing the ranks to attack by powdery 
mildew. Trends Plant Sci. 5, 343-348. 

Schwab, R., Ossowski, S., Riester, M., Warthmann, N. and Weigel,D. (2006) 
Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 
18, 1121-1133. 

Schweizer, P., Christoffel, A. and Dudler, R. (1999) Transient expression of 
members of the germin-like gene family in epidermal cells of wheat confers 
disease resistance. Plant J. 20, 541-552. 

Schweizer, P., Pokorny, J., Schulze-Lefert, P. and Dudler, R.. (2000) Double-
stranded RNA interferes with gene function at the single cell level in cereals. 
Plant J. 24, 895-903. 

Seeholzer, S., Tsuchimatsu, T., Jordan, T., Bieri, S., Pajonk, S., Yang, W., Jahoor, 
A., Shimizu, K. K., Keller, B., and Schulze-Lefert, P. (2010). Diversity at the Mla 
powdery mildew resistance locus from cultivated barley reveals sites of positive 
selection. Mol. Plant-Microbe Interact. 23, 497-509. 



References 

 108

Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., 
Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., 
Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and 
Shinozak, K. (2002) Monitoring the expression profiles of 7000 Arabidopsis 
genes under drought, cold and high-salinity stresses using a fulllength cDNA 
microarray. Plant J. 31, 279-292. 

Seo, Y.S., Chern, M.,Bartley, L.E.,Han, M.,Jung, K.H.,Lee, I.,Walia, H.,Richter, 
T.Xu, 
X.,Cao,P.,Bai,W.,Ramanan,R.,Amonpant,F.,Arul,L.,Canlas,P.E.,Ruan,R.,Park,
C.J.,Chen,X.,Hwang,S.,Jeon,J.S. (2011) Towards establishment of a rice 
stress response interactome. PLoS Genet. 7, e1002020. 

Shang, Y., Yan, L., Liu, Z.-Q., Cao, Z., Mei, C., Xin, Q., Wu, F.-Q., Wang, X.-F., 
Du, S.-Y., Jiang, T., Zhang, X.-F., Zhao, R., Sun, H.-L., Liu, R., Yu, Y.-T., and 
Zhang, D.-P. (2010). The Mg-chelatase H subunit of Arabidopsis antagonizes a 
group of WRKY transcription repressors to relieve ABA-responsive genes of 
inhibition. Plant Cell, 22, 1909-1935. 

Shen, Q.H., Saijo, Y., Mauch, S., Biskup, C., Bieri, S., Keller, B., Seki, H., Ulker, B., 
Somssich, I.E. and Schulze-Lefert, P. (2007) Nuclear activity of MLA immune 
receptors links isolate-specific and basal disease-resistance responses. 
Science, 315, 1098-1103. 

Shen, Q-H., Zhou, F., Bieri, S., Haizel, T., Shirasu, K. and Schulze-Lefert, P. (2003) 
Recognition Specificity and RAR1/SGT1 Dependence in Barley Mla Disease 
Resistance Genes to the Powdery Mildew Fungus. Plant Cell, 15, 732-744. 

Shimono, M., Koga,H., Akagi, A., Hayashi, N., Goto, S., Sawada, M., Kurihara, T., 
Matsushita, A., Sugano, S., Jiang, C-J., Kaku, H., Inoue, H. and Takatsuji, H. 
(2011).Rice WRKY45 plays important roles in fungal and bacterial disease 
resistance. Mol. Plant Pathol. DOI: 10.1111/j.1364-3703.2011.00732.x. 

Shimono, M., Sugano, S., Nakayama, A., Jiang, C.J., Ono, K., Toki, S. and 
Takatsuji, H. (2007) Rice WRKY45 plays a crucial role in benzothiadiazole-
inducible blast resistance. Plant Cell, 19, 2064-2076. 

Skamnioti, P., Pedersen, C., Al-Chaarani, G. R., Holefors, A., Thordal-Christensen, 
H., Brown, J. K., and Ridout, C. J. 2008. Genetics of avirulence genes in 
Blumeria graminis f.sp. hordei and physical mapping of AVRa22 and AVRa12. 
Fungal Genet. Biol. 45, 243-252. 

Skibbe, M., Qu, N., Galis, I. and Baldwin, I.T. (2008) Induced plant defenses in the 
natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate 
responses to herbivory. Plant Cell, 20, 1984-2000. 

Soares, N.C., Francisco, R., Vielba, J.M., Ricardo, C.P. and Jackson, P.A. (2009) 
Associating wound-related changes in the apoplast proteome of medicago with 
early steps in the ros signal transduction pathway. J. Proteome Res. 8, 2298-
309. 

Song, W-Y., Wang, G.L., Chen, L., Kim, H.S., Pi, L.Y., Gardner, J., Wang, B., 
Holsten, T., Zhai, W.X., Zhu, L.H., Fauquet, C. and Ronald, P.C. (1995) A 
receptor kinase-like protein encoded by the rice disease resistance gene Xa21. 
Science, 270, 1804-1806. 

Song, Y., Chen, L., Zhang, L., and Yu, D. (2010) Overexpression of OsWRKY72 
gene interferes in the abscisic acid signal and auxin transport pathway of 
Arabidopsis. J. Biosci. 35, 459-471. 



References 

 109

Sun, C., Palmqvist, S., Olsson, H., Borén, M., Ahlandsberg, S. and Jansson, C. 
(2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar 
signaling in barley by binding to the sugar-responsive elements of the iso1 
promoter. Plant Cell, 15, 2076-2092. 

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) 
MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, 
evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 
doi:10.1093/molbev/msr121. 

Tao, Z., Liu, H., Qiu, D., Zhou, Y., Li, X., Xu, C. and Wang, S. (2009) A pair of 
allelic WRKY genes play opposite roles in rice-bacteria interactions. Plant 
Physiol. 151, 936-948. 

Thompson, E.W. and Lane, B.G. (1980). Relation of protein synthesis in imbibing 
wheat embryos to the cell-free translational capacities of bulk mRNA from dry 
and imbibing embryos. J. Biol. Chem. 255, 5965-5970. 

Thordal-Christensen, H., Gregersen, P.L. and Collinge, D.B. (1999) The 
barley/Blumeria (sy. Erysiphe) graminis interaction. In Mechanisms of 
resistance to plant diseases. Slusarenko A, Fraser R, van Loon K (eds.). 
Kluver Academis Press, Netherlands. pp 77-100. 

Thordal-Christensen, H., Zhang, Z., Wei, Y. and Collinge, D.B. (1997) Subcellular 
localization of H2O2. in Plants. H2O2 accumulation in papillae and 
hypersensitive response during the barley-powdery mildew interaction. Plant J. 
11, 1187-1194. 

Turck, F., Zhou, A. and Somssich, I.E. (2004) Stimulus-dependent, promoter-
specific binding of transcription factor WRKY1 to its native promoter and the 
defense-related gene PcPR1-1 in parsley. Plant Cell, 16, 2573-2585. 

Usuka, J., Zhu, W. and Brendel, V. (2000) Optimal spliced alignment of 
homologous cDNA to a genomic DNA template. Bioinformatics, 16, 203-211. 

Ülker, B. and Somssich, I.E. (2004) WRKY transcription factors: from DNA binding 
towards biological function. Curr. Opin. Plant Biol. 7, 491-498. 

Van Eck, L., Schultz, T., Leach, J.E., Scofield, S.R., Peairs, F.B., Botha, A.-M., 
and Lapitan, N.L.V. (2010) Virus-induced gene silencing of WRKY53 and an 
inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance. 
Plant Biotechnol. J. 8, 1023-1032. 

van Verk, M.C., Pappaioannou, D., Neeleman, L., Bol, J.F. and Linthorst, H.J.M. 
(2008) A novel WRKY transcription factor is required for induction of PR-1a 
gene expression by salicylic acid and bacterial elicitors. Plant Physiol. 146, 
1983-1995. 

von Röpenack, E., Parr, A. and  Schulze-Lefert, P. (1998) Structural analyses and 
dynamics of soluble and cell wall-bound phenolics in a broad spectrum 
resistance to the powdery mildew fungus in barley. J. Biol. Chem. 272, 9013-
9022. 

Wang, D., Amornsiripanitch, N. and Dong, X. (2006) A genomic approach to 
identify regulatory nodes in the transcriptional network of systemic acquired 
resistance in plants. PLoS Pathog. 2, e123. 

Wang, H., Avci, U., Nakashima, J., Hahn, M.G., Chen, F., and Dixon, R.A. (2010a). 
Mutation of WRKY transcription factors initiates pith secondary wall formation 
and increases stem biomass in dicotyledonous plants. Proc. Natl. Acad. Sci. 
USA. 107, 22338-22343. 



References 

 110

Wang, H., Hao, J., Chen, X., Hao, Z., Wang, X., Lou, Y., Peng, Y. and Guo, Z. 
(2007) Overexpression of rice WRKY89 enhances ultraviolet B tolerance and 
disease resistance in rice plants. Plant Mol. Biol. 65, 799-815. 

Wang, M.-B. and Waterhouse, P.M. (1997) A rapid and simple method of assaying 
plants transformed with hygromycin and PPT resistance genes. Plant Mol. Biol. 
Rep. 15, 209-215. 

Wang, X., Kuang, T. and He, Y. (2010b) Conservation between higher plants and 
the moss Physcomitrella patens in response to the phytohormone abscisic acid: 
a proteomics analysis. BMC Plant Biol. 10, 192. 

Wang, Z., Zhu, Y., Wang, L., Liu, X., Liu, Y., Phillips, J. and Deng, X. (2009) A 
WRKY transcription factor participates in dehydration tolerance in Boea 
hygrometrica by binding to the W-box elements of the galactinol synthase 
(BhGolS1) promoter. Planta, 230, 1155-1166. 

Warthmann, N., Chen, H., Ossowski, S., Weigel, D. and Herve, P.(2008) Highly 
specific gene silencing by artificial miRNAs in rice. PLoS ONE, 3, e1829. 

Wei, F., Gobelman-Werner, K., Morroll, S. M., Kurth, J., Mao, L., Wing, R., Leister, 
D., Schulze-Lefert, P., and Wise, R. P. (1999). The Mla (powdery mildew) 
resistance cluster is associated with three NBS-LRR gene families and 
suppressed recombination within a 240-kb DNA interval on chromosome 5S 
(1HS) of barley. Genetics, 153, 1929-1948. 

Wei, W., Zhang, Y., Han, L., Guan, Z. and Chai, T. (2008) A novel WRKY 
transcriptional factor from Thlaspi caerulescens negatively regulates the 
osmotic stress tolerance of transgenic tobacco. Plant Cell Rep. 27, 795-803. 

Wei, Y., Zhang, Z., Andersen, C., Schmelzer, E., Gregersen, P., Collinge, D., 
Smedegaard-Petersen, V. and Thordal-Christensen, H. (1998) An 
epidermis/papilla-specific oxalate oxidase-like protein in the defense response 
of barley attacked by the powdery mildew fungus. Plant Mol. Biol. 36,101-112. 

Wu, K.L., Guo, Z.J., Wang, H.H. and Li, J. (2005) The WRKY family of 
transcription factors in rice and Arabidopsis and their origins. DNA Res. 12, 9-
26. 

Wu, X., Shiroto, Y., Kishitani, S., Ito, Y. and Toriyama, K. (2009) Enhanced heat 
and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 
under the control of HSP101 promoter. Plant Cell Rep. 28, 21-30. 

Xie, C., Zhou, X., Deng, X., and Guo, Y. (2010). PKS5, a SNF1-related kinase, 
interacts with and phosphorylates NPR1, and modulates expression of 
WRKY38 and WRKY62. J. Genet. Genomics, 37, 359-369. 

Xie, Z., Ruas, P. and Shen, Q.J. (2005) Regulatory networks of the phytohormone 
abscisic acid. Vitam. Horm. 72, 235-269. 

Xie, Z., Zhang, Z. L., Hanzlik, S., Cook, E., Shen, Q. J. (2007) Salicylic acid 
inhibits gibberellin-induced alphaamylase expression and seed germination via 
a pathway involving an abscisic-acid-inducible WRKY gene. Plant Mol. Biol. 64, 
293-303. 

Xie, Z., Zhang, Z.L., Zou, X., Huang, J., Ruas, P., Thompson, D. and Shen, Q.J. 
(2005) Annotations and functional analyses of the rice WRKY gene superfamily 
reveal positive and negative regulators of abscisic acid signaling in aleurone 
cells. Plant Physiol. 137, 176-189. 

Xie, Z., Zhang, Z-L., Zou, X., Yang, G., Komatsu, S., Shen, Q.J. (2006) 
Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin 
signaling in aleurone cells. Plant J. 46, 231-242. 



References 

 111

Xing, D.H., Lai, Z.B., Zheng, Z.Y., Vinod, K.M., Fan, B.F., Chen, Z.X. (2008) 
Stress and pathogen-induced Arabidopsis WRKY48 is a transcriptional 
activator that represses plant basal defense. Mol. Plant, 1, 459-470. 

Xiong, X., James, V., Zhang, H., and Altpeter, F. (2010). Constitutive expression of 
the barley HvWRKY38 transcription factor enhances drought tolerance in turf 
and forage grass (Paspalumnotatum Flugge). Mol. Breed. 25, 419-432. 

Xu, X., Chen, C., Fan, B. and Chen, Z. (2006) Physical and functional interactions 
between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 
transcription factors. Plant Cell, 18, 1310-1326. 

Yamasaki, K., Kigawa, T., Inoue, M., Tateno, M., Yamasaki, T.,Yabuki, T., Aoki, M., 
Seki, E., Matsuda, T., Tomo, Y., Hayami, N.,Terada, T., Shirouzu, M., Tanaka, 
A., Seki, M., Shinozaki, K. and Yokoyama, S. (2005) Solution structure of an 
Arabidopsis WRKY DNA binding domain. Plant Cell, 17, 944-956. 

Yamasaki, K., Kigawa, T., Inoue, M., Watanabe, S., Tateno, M., Seki, M., 
Shinozaki, K. and Yokoyama, S. (2008) Structures and evolutionary origins of 
plant-specific transcription factor DNA-binding domains. Plant Physiol Biochem. 
46, 394-401. 

Yu, D., Chen, C. and Chen, Z. (2001) Evidence for an important role of WRKY 
DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell, 13, 
1527-1539. 

Zentgraf, U., Laun, T., and Miao, Y. (2010) The complex regulation of WRKY53 
during leaf senescence of Arabidopsis thaliana. Eur. J. Cell Biol. 89, 133-137. 

Zhang, C.Q., Xu, Y., Lu, Y., Yu, H.X., Gu, M.H. and Liu, Q.Q. (2011) The WRKY 
transcription factor OsWRKY78 regulates stem elongation and seed 
development in rice. Planta, DOI 10.1007/s00425-011-1423-y. 

Zhang, J., Peng, Y. and Guo, Z. (2008) Constitutive expression of pathogen 
inducible OsWRKY31 enhances disease resistance and affects root growth 
and auxin response in transgenic rice plants. Cell Res. 18, 508-521. 

Zhang, Y. and Wang, L. (2005) The WRKY transcription factor superfamily: its 
origin in eukaryotes and expansion in plants. BMC Evol. Biol. 5,1-12. 

Zhang, Y., Yang, Y., Fang, B., Gannon, P., Ding, P. and  Li, X.. (2010). 
Arabidopsis snc2-1D activates receptor-like protein-mediated immunity 
transduced through WRKY70. Plant Cell, 22, 3153-3163. 

Zhang, Z., Collinge, D. and Thordal-Christensen, H. (1995) Germin-like oxalate 
oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the 
powdery mildew fungus. Plant J. 8, 139-145. 

Zhang, Z. L., Shin, M., Zou, X., Huang, J., Ho, T. H. and Shen, Q. J. (2009) A 
negative regulator encoded by a rice WRKY gene represses both abscisic acid 
and gibberellins signaling in aleurone cells. Plant Mol. Biol, 70, 139-151. 

Zhang, Z. L., Xie, Z., Zou, X., Casaretto, J., Ho, T. H. and Shen, Q. J. (2004) A 
rice WRKY gene encodes a transcriptional repressor of the gibberellin 
signaling pathway in aleurone cells. Plant Physiol. 134, 1500-1513. 

Zheng, Z., Mosher, S., Fan, B., Klessig, D. and Chen, Z. (2007) Functional 
analysis of Arabidopsis WRKY25 transcription factor in plant defense against 
Pseudomonas syringae. BMC Plant Biol. 7, 2. 

Zheng, Z., Qamar, S.A., Chen, Z. and Mengiste, T. (2006) Arabidopsis WRKY33 
transcription factor is required for resistance to necrotrophic fungal pathogens. 
Plant J. 48, 592-605. 



References 

 112

Zhou, C., Zhang, L., Duan, J., Miki, B., and Wu, K. (2005). HISTONE 
DEACETYLASE19 is involved in jasmonic acid and ethylene signalling of 
pathogen response in Arabidopsis. Plant Cell, 17, 1196-1204. 

Zhou, F., Zhang, Z., Gregersen, L., Mikkelsen, J., de Neergaard, E., Collinge, D 
and Thordal-Christensen, H. (1998) Molecular characterization of the oxalate 
oxidase involved in the response of barley to the powdery mildew fungus. Plant 
Physiol. 117, 33-41. 

Zhou, Q.Y., Tian, A.G., Zou, H.F., Xie, Z.M., Lei, G., Huang, J., Wang, C.M., Wang, 
H.W., Zhang, J.S. and Chen, S.Y. (2008) Soybean WRKY-type transcription 
factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential 
tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol. 
J. 6,486-503. 

Zhou, X., Jiang, Y. and Yu, D. (2011) WRKY22 transcription factor mediates dark-
induced leaf senescence in Arabidopsis. Mol. Cells, 31, 303-313. 

Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L. and Gruissem, W. (2004) 
GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. 
Plant Physiol. 136, 2621–2632 

Zimmermann, G., Baumlein, H., Mock, H., Himmelbach, A. and Schweizer, P. 
(2006) The multigene family encoding germin-like proteins of barley: regulation 
and function in basal host resistance. Plant Physiol. 142, 181-192. 

Zou, C., Jiang, W., and Yu, D. (2010). Male gametophyte-specific WRKY34 
transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. J. 
Exp. Bot. 61, 3901-3914. 

Zou, X., Neuman, D. and Shen, Q.J. (2008) Interactions of two transcriptional 
repressors and two transcriptional activators in modulating gibberellin signaling 
in aleurone cells. Plant Physiol. 148, 176-186. 

Zou, X.L., Shen, Q.J. and Neuman, D. (2007) An ABA inducible WRKY gene 
integrates responses of creosote bush Larrea tridentata to elevated CO2 and 
abiotic stresses. Plant Sci. 172, 997-1004. 



Appendix 1 

 113

Appendix 1 
 

Appendix 1.1  
Predicted CDS or partial CDS from HvWRKY62 to HvWRKY102 
 
>HvWRKY62_complete CDS 
ATGTCTTCTGGTGGTGGCGGGGGAGGGGATCAAGGCCGTCATGGCGTCTACCACCAGCATGGC
CACGGCCAACTCACCCGCAACGATGGCGCCGGTGGCTACGAGTTCAGCAACGACGACATGGAG
AGCTTCTTCTTCAACCAGCCTGAGGGCGTCGTCGGTGGTGTGCGCGCCGACGAGATCGAGCCG
TACTCGAGCCTCACGAGCTACCTGCAGGGCTTCTTGGACCCCACCGGGCTAGCTCGGCATCTC
GACGTGCCGGCCAAGCACGAGCTGTCGGTCGACGTTAGGACCCATGACCAAGACAGCCAGGGC
ACCGGCAGCGCTGCTGGCGAAAGCGCTCCGCTGCTAACACCCAACTCATCCGTATCTTTCTCG
TCCGGAGGCGGGGACGGCGAGGGGAAGTCTCACCGGAGCAAGAAGGGTCGGGCGCAGGAGGCG
GATAACCAGGAGGATGGGGAAAGTTCCAAGAAAGCGAATAACAAACCCAAAAAGAAAGCCGAG
AAGAGGCCGCGTCTTCCCCGCGTCTCCTTCCTCACCAAGAGCGAGGTCGATCACCTCGAGGAC
GGCTACCGCTGGCGCAAATACGGCCAGAAGGCCGTCAAGAACAGCCCTTACCCAAGGAGCTAC
TATCGGTGCACGACGCCAAAGTGCGGGGTGAAGAAGCGGGTGGAGCGGTCGTACCAGGACCCG
TCGACGGTGATCACCACGTACGAAGGGCAGCACACGCACCACAGCCCCGCCAGCTTCCGGGGA
ACCTCAGCGCACCTCTTCATGCCC 
CCCGGCGTCCACGGGCTCCCGCCGCCACACCTCATGCCGCCGGGGGTGTTCCACCCGGAGCTG
ATGAGCATGATGCGCATGCCGTACCCCAGCCCTAACATGCACCTGCCGAGTGTGCCACCGCCT
CCCCATCATCATCCAATGGCGGGAACTCCTCTCCAGCAGCACCATTTCACTGACTACGCGCTA
TTGCAAGACCTCTTCCCTTCCACAATGCCCAACAACCCATGA 
>HvWRKY63_complete CDS 
ATGGCCGTCGACCACATGGGATGCCGCTACGCCACGCATGGGCACGCGGCCGAGGAGCAGTTC
CAGGAGGCCGCTGCCGCGGGGCTCCGCAGCCTCGAGCTCGTCCGCTCGTCCTTCTCCTCCCGT
GCCGGCTGCGCGCCGCCGCCCCTCGGAGAGATGGCCGACCAAGCGGTGTCCAGGTTCCACCGG
GTCATCAACATCCTCGACCGCACCGGCCACGCCCGCTTCCGCCGCGGCCCTGGACCGGCAGTC
TTGCTGCAGCTGGCGCCGCAGAAAAGCATGACGCTGGACTTCACGAAGCCTTTGAAGGCGCCG
GCCGCCCCTTCCGTGACGTCGACGTCCTTCTTCTCGTCCGTGACGGCCGGGGGCGAGGGCAGC
GTGTCCAAGGGCTGGAGCCAGCTCGTCTCCTCCGGCAAGCCGCCGCTCCCAGCTGGGACCAAA
CGCAAGCAACGCCAACAGCAGACGCGCTTCGCGCACTCCGACACCGCTGCCGGTGCCCGGTGC
CATTGTCTGAAGAAGGGCAAGCACCGGGTGAAGTACACGACGCTCGAGCCCACGGTAACCTCG
CGCGCGGTGGACGTCCCCGGCGTCGGCGACAAGTACTCGTGGCGCAAGTACGGGCAGAAGACT
ATCAAGGGGTCCCCTCACCCCCGCTGCTACTACAGGTGCGGCACCGTCAAGGGCTGCCCGGCG
CGGAAGCACGTGGAACGCGCCACCGACGACCCCGCCATGCACCTCGTCACCTACGAGGGCGAC
CACCGCCACGACACTTGGCCGCCG 
GCGGCCGCAAATTAA 
>HvWRKY64_complete CDS 
ATGAGGGGGAGCAGCATGCTCAGCTCCATTGGGAGCAACAAAAGGATGCTGCAGCAGGACTGC
AGTGGCGGCAGCCATGCCCAGGAGCACACCAAGAAGAAGGCACGTGTCGGCATGAGAACAGAC
TACACATATGCACCGTATCATGATGGCTTCCAGTGGAGGAAATATGGGCAGAAGGTGATCCGG
GGCAATGCCTTCCCAAGGTGCTACTACAGGTGCACGTACCACCAAGATCATGGCTGTTCGGCG
AGCAAGCACGTGGAGCAGCACAACTCAGCGGACCCGCCGCTGTTCCGCGTGGTGTACACGAAC



Appendix 1 

 114

GATCACACATGCAGCGGCGCTGCTGCTGCGGCATCGGACTACATGGCCTCATCCATGCACATC
CAGCAGATCGCCGACGCTTCTCTGAGAAAGGCCGACACGGAACCGGAAAGGCCGCCGCGCCCG
CAGCAGCCTCGCTCCGGCGGTGGTTGCGCCGCAGCGATAAAAGAGGAGAAAGATGTCATCGTC
TCCTCCCTGCTCGCCGTCATCAGAGGCAGCTGCGACGTTGCGAAATCTGACGCTGCGCACCAG
GGCTATAGCAGTGCGTCGTCGTTGGCTAGTGCTAACTGCTATGCGATGTCACCGTCGGTGGCC
GGAGGTAGCCGTGAGGGTAGCAGCAGCTCTTCGGTTTCGCCCGCGGTGCTGCCGGCGCCAGAC
GACATGGGATTGGGACTGGACTTCATGGTGGAGTCCCACTGGTTCGAGCCTTTGGATTTGGGT
TGGTTCGTAGAATAG 
>HvWRKY65_complete CDS 
ATGGACGACGGTTCGTCATGTCCGACCAACAGCGCCGGGCTTCTGCCGCTCTCCGCCGGCTCC
CCGACGCTGCAGTCGTTGCTGATCACTGCGTTCTTGAACGCGGAGCAGGCTGAGGGTCTCGAA
GAGAAGCTGAGGCGAGTGCGCGAGGAGAACCGGCGGCTGGCCGGCACACTGGGCGCCATACTC
GCCGATCGCCCCGACCTGCGTGCTCTCATGAGGGCGCCAGCGTCAGCTGTCGCCTGCGCTAGG
GCGCCGAGCGGCTCTGCCTCCAATGCAGCGAGGGAGGAGGCCGCCGGCGTGACGGTGGAGCCG
CGGCCCAAGGTCAGGACGGTCTGCGCGCGCGCGGAGCCGGCCGACACCGACGCCAACCTTAGC
GTCAAGGACGGGTACCAGTGGAGGAAGTACGGGCAGAAGGTGACGCGCGACAACCCGCACCCA
AGATCCTACTTCCGCTGCGCGTTTGCTCCATCTTGCCCCGTGAGGAAGAAGGTGCAGAGAGAC
GCGGAGGACACGTCAAAGCTAGTGGCGACGTACGAGGGCGAGCACAACCACGCTAGATCCCCG
GAGAGAGAATTCGTCTGCAACGAGTCCATAGCCATAGGCCACAGGCCGTGCTCAGTCTCCATT
AACCCGTCCGGCCGGACGATCAGGCTAGAAGATATGACGAACCATGGAGTAGTCAGGAGAGCA
GATCAGAGGCCAAGCCAGGACGTAGCAGGAGACTTGCACGTCGTGGCTGTCCGTGGCATGGCC
GTCAGAGGCGAGGATAAGTAG 
>HvWRKY66_complete CDS 
ATGAGGGCAGGACTTGCAGACAGATCAGCTACCCGAGAAGCCATTGATATCTCGCCGCCGACG
CTCTCCGGTGAAGACAGTAAGAGGGAGGCACATGGTACTGTTTCTTCGGGCATCGAGAGGGAC
AAAGATTTGGCCGAGTCGAAGAGAAGAATGATGGATTATGTCACTCCAGCCACCGCCATTGGT
ACCATAGACATAGGGGCTCTGGCGTCGAGAGCTGTCCGAGAGGCCCGCGTCATCGTGCAGACC
ACAAGCGAGGTCGATGTGCTCGACGACGGCTACCGCTGGCGCAAGTACGGTCAGAAAGTTGTC
AAAGGCAATCCAAATCCAAGGAGCTACTACAAATGCACGCACCCGAGCTGCCCGGTGCGCAAG
CACGTGGAGAGGGCGTCGAATGACCCGAAATCGGTCATCACGACGTACGAGGGCAGGCACACC
CATGAGGTTCCGACTGACAGAAACAATGGCCACCCAAGCTCGGGCCATGGTGGCGTTGCGCCG
CCGCCGGCACAAGGAGGAGGAGGCATCATCCCTCAGTACACCGGAGCAGCCGCATATGGCTCG
ATTGCGCAGCTCGGTGTAGCAGACGGCTTCCCCTTCGGAGTGCTCCCCCGTGGCCTGGCGCTC
GTTCCGGTGCCGGCGCAGATGATGGCCGGTGATCCGTCGGCGATGCAGGGGAGCCCGAGGCTT
GTGCTGCAGGCAAGGGAGGTGAAGGGGAATCCGGCGGCACGGCCAGCAGGCCAGAGTGGAACT
GGTCCGGCGGCTTACCAGCAGCTGATGAGCAGGCTGTCTCAGAGTCCTAACATGTAG 
>HvWRKY67_partial CDS 
NNCAGGAAGCGCAAGTCGGAGCCCGACGGCGCCGCCGCCGCCCAGACGAGGCCGAGAAGAAGG
ATGCGCGCGAGCAGCGGACTGACGGCGGCGAGGGTCGAAAAGCGGTGGACGGCGGAGGACGGG
TTCATATGGAGGAAGTACGGGCAGAAGGAGATCACGCACAGCAAGAACCCGAGGCTATACTTC
AGGTGCACCTACAAGCACGACAGCGGCTGCCCGGCGACGAGGCAGGTCCAGCAGTCGGACGAC
GACCACTCCCTCTACATCATCACCTACTTCGGCGACCACACCTGCTGCCAAGGCGATGACGGA
GCCGTCGCCGCTGCAGAGGAAGAGGACGTCAAGATGCAGCCGTTCGTCATCAACTTCGGCTCG
GCGACTACAGCGAGCAGCACCAGCGGTTCGCCTTGGCAAAACTCTGACGACATTGATGGCCGG
AGCGAGATCTCACGGTCGCCGCAGGCAGTATGCTTGCCGGAGGGAGGAGGAGACGAACTACGA
GTGAAGGTGACCAAGGTTGAGACAACTTCGTCAGACTCGCAGACAGCGGGGCCGACGGCGGCA
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CATCTGAGTCCGTCGGCCGAGGTTTCATGTGCTTCCCCTGCATGGGATCCTTTGTCCATCTGC
TTGGAGTGGGATCAATTCGTCGAGAGTTCATTCGATTTCGTCAGTGAATTCATCAATTTTGAT
GGCATTGTCTTGTAGCAATAGCATGGTTAATTTTCCCGTGTGATGCATCATGAAGATGCCCGA
CGTAAATTTGTGAGGGGTGTATTTCTTCTACAGGAGCGTGAAAGCAAGTGTGGTT 
>HvWRKY68_complete CDS 
ATGGAGGAGCAAGCCAACGCCGCCGCCACTGCTGCGCGAGAAGGCGACCTCGCCGACGTCGTG
GCCCGTGCCAACGCAATGGTCTACTCCACTGGAGCCCGTCGCCAACCACCACCACCTCCTCCT
TCTGCGCCAGCTCGTGTCATGATCCCCTACGAGGAGCGGCCTGCGAACGTCGCCTGCGGCGGC
GGCGACGGCGAGGTTACGCTCGAGGCGTCGCCGTCGACCGTTGTCGTCGACCCGTACCTGCTG
GTTGCGGCCGGCGGATATGGACTGCTGCCGCAGCAGCAGCAGCAGCAGCACCAGCACCAGCCA
CTGCTGGCTTTCCAGATCTCTGAGCACGCGTGCTGCGCCGCCGCCGACAGCGACGACCCCATG
AGGATCTCGCCACCACCACCTGCTCCTCATCATCAGATGATCATGAGAAGGAACGATGTGAGG
AAGGTGGTGTGCATCCCGGCGCCACCGGTGATGAGCAACCGGGCAGGAGGGGGAGGAGAGGTG
ATTCCATCTGACCTATGGGCATGGAGAAAGTATGGCCAGAAACCAATCAAGGGCTCTCCTTAT
CCAAGGGGTTACTACAGATGCAGCAGCTCCAAAGGGTGCCTAGCCCGGAAACAGGTGGAGCGC
AGCCGCAGCGACCCCAACATGCTGGTTATCACCTACACCGCGGAACACAACCACCCATGGCCC
ATGCAGCGCAACGTCCTTGCAGGATACGCTCGTGCTCACACCCACGCCGCTGCCAAGAAGCAG
CACAAGATCAGCAGTAGTAGCACCACTGATAATGCCGCAAGCTCGTCCTCCAGCAACAATTTC
CATGTCGAGCAGAACAATCTGATCGCCGGCGACCAGCTTCCCGTCAATTGCATGATGCCTAAT
AGCACCGCCTATGCTGGGGACGATGGTGGTGGCCTGGTGTTTGAAGGCATCCAGCCTGACGAG
GTCTTTGCAGAGCTGGAAGAGTTGGAGGAGACTGATAATTGTCCCATGGTGATCGGTGCAAAC
GTCTACGGATCAAGGGGGATTATAGTGTAG 
>HvWRKY69_partial CDS 
GCCAGAGGGGGGGGGGGGAGGGGGGGGGGCGGGGGCGGCGTGGGCGGCGGGGGGGGGGGGGGG
GCGAGCGGCCGGCATAGCACGAGCGGCGAGGTGGTGCCGTCGGACCTGTGGGCGTGGAGGAAG
TACGGGCAGAAGCCCATCAAGGGGTCGCCGTACCCGAGGGGCTACTACCGGTGCAGCAGCTCC
AAGGGGTGCCCGGCGAGGAAGCAGGTGGAGCGCAGCCGCACCGACCCCAACATGCTCGTCATC
ACCTACACCTCCGACCACAACCACCCGTGGCCGACCCAGCGCAACGCCCTCGCCGGATCAACC
CGTCCGTCCTCCTCCTCCGCCGCGAGGATCGCCGCCTCCTCTTCTTCTTCTTCGTTGGCGGCC
ACAGCAGCTCGTAATAGTAGCAACACCAACGTCGACGTCGACTGTGCCGGTGTTCATCATCAG
CTAAAGCAAGAGAGCGACCTGGACCTGTTCGCGGACATGGATGCCCTCAACGTCTTCTCCTCC
ATCAACAAGATCCAGGAAGATGACAGCAAGCAGCAGCTGTTTGATCCGTTCAGCTCCGGCTTC
TGCGACTACATCTAATCCAGAATTCATCATCTGCCTCTACCGCTGAAGGCTACGAATCAAGCC
AGCAATCGATGCTTACACTGTACTGATGATGATACCTTTTACTAGTCTCAGTAGTAGCTTCTA
TTGTGCCTTTTTAATGTTTATTTACTGGATGGAAGGAAGAGCATGTCACTATAGATAGGG 
>HvWRKY70_complete CDS 
ATGGCCGCGGGGAGAGGGCCTCTCCAGATGCCATTGGACCACGAAGAAGCAGTGATGCTCTCT
TCTGACCATTGTGGGCTATACCCGCTGCCAGCGCTTCCGTTCGGCCACGGCCACTCCGGCGCC
GTCGTCTCCAAGAAGCCCGCGGTCGGTTTCATTCCTAATATTGGGGCTGAGGAGGTGGGCACA
TCGACGGTGACGGCAAGAGTTGGCTATGAGGGTGCTACTGCCTGTAATACATGGTGGAGGGCC
TCGACGGCGGGGGAGAAGGGGAAGATGAAGGTGAGGAGGAAGATGAGGGAGCCGAGGTTTTGC
TTCCAGACCAGAAGCGACGTGGATGTGCTGGACGATGGCTATAAGTGGAGGAAATACGGGCAG
AAGGTTGTCAAGAACAGCCTCCATCCCAGGAGCTACTTCAGGTGCACGCACAGCAACTGCCGC
GTGAAGAAACGAGTGGAGCGGCTGTCGACGGACTGCCGCATGGTGATCACCACGTACGAAGGC
CGCCACACGCACCCCCCTTGCGACGACAACTCCTCCTCCTCTGGCGACAACACCACCACCTGC
TTCTGA 
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>HvWRKY71_partial CDS 
ATGGGGCAGGAGAGCAGCAGGTATCCATGGCAGGACTACGACCTCGGCTTCGGGGAGGAGCTC
ATGAGGGAGCTCCTCGACGAGACGGCGGCGGCGGCACCGTCGCCAACACCAACGGCGGCCGGC
GCTGGTTGCGCTGATAATTCTTCTTCTTCCAATAAGGGGATTGGTGATGATGAGGAGGAAGGT
GGGGAGGGGCCGGCGGGTAGGCGCCGGGAGTCCATGGTGAACAGGCTCATGTCCACGGTCTAC
TCCGGGCCCACCCTCAGCGACATCGAGAGCGCCCTCTCCTTCACCGGCGCTGGCGCCGGCGAC
CCGCTGGACGGCCGCGGCAAGTACCACTACACCCCCTCCAGCCCAGTGGTTTTCTCGCCGGAG
AAGGTGCTGGGCAAGATGGAGAACAAGTACACGATGAAGATCAAGAGCTGCGGTAACGGGCTC
GCCGACGATGGGTACAAGTGGAGGAAATACGGCCAGAAAGCCATCAAGAACAGCCCCAACCCA
AGGAGTTACTACCGGTGCACGAACCCGCGGTGCAACGCGAAGAAGCAGGTGGAGCGCGCCGTC
GACGAGCCGGACACGCTCGTCGTCACCTACGAAGGCCTCCACCTCCACTACACCTACTCCCAC
TTCCTCCAGCACCAGACCACACCTCCACCCGCCGCCGCC 
>HvWRKY72_partial CDS 
NCCTCGCTGCAGTTGGCGCCCCAGAAAAGCCTGACGCTGGACTTCACTAAGCCTTTGAAGGCG
CCGGCGACGGCAGCCGCTGCTTCGGTGACGTCGACGTCTTTCTTCTCGTCGGTGACGGCGGGG
GGCGATGGCAGCGTGTCCAAGGGCCGGGGCCAAATGGTGTCCTCCGGCAAGCCGCCGCTCGCG
GCTGGTACCAAACGCAAGCAACAGCAGCAGCAGACGCCCTGCGCGATCGGCGCGCACTCCGAC
GCCGTCGCCGCCGTCGCCGGCGACCGGTGCCACTGTTCGAAGAAGCGCAAGCACCGGGTGAAG
TACACGACGCGCGTGCCCGCGGTGAGCTCGCGCACGGCGGACATCCCCGGCGACGACTACTCG
TGGCGCAAGTACGGGCAGAAGCCCATCAAGGGGTCCCCTTACCCCCGCTGCTACTATAGGTGC
AGCACCGCCAAGGGCTGCCCGGCGCGGAAGCACGTCGAACGCGCCACCGACGACCCCGCCATG
CTCGTCGTTACCTACGAGGGCGAACACCGGCATGACACATCGCCGCCAGCCGCCGCAAATTAA 
>HvWRKY73_partial CDs 
ATGGAGGTGTGCATGGAGACCCCGTTCGCGCAGGTGACGGATGATCTGATCAAGGGGCGGGAG
TTGGCAACGCAGCTGCAGGGCCTCCTCCGGGACTCCCCCAAGTCCGGCCTCATAATGGACCGG
ATCCTCCACGCCTTCTCCCGTTCCATCCATGCCGCCAAGGCCGCGGTCGCCACCAGCGAGAGG
GCGTCGTCCGACGTGCAGAGCGAGGTCATCGACGGAGTGAGCGGCGGCGGGAAGAGGAAGCCC
GCCTCCGCCGCCGCTGGAGGAAACCGCAGGGCCTGCCGGAGAAGCAGGACCCAGCAATCGTCC
GTCGTCTTCACGAAAAGCATCAAGAGCTTGGACGACGGGCATGCATGGCGCAAGTACGGGCAG
AAGGAGATACACAACTCCAAGCACTCGAGGGCCTACTTCCGGTGCACGCACAAGTACGACCAG
CTGTGCGCGGCGCAGCGGCAGGTCCAGCGCTGCGACGACGACGAGGGCATGTTCAGGGTCACC
TACATCGGCGTGCACACCTGCCGGGACCCTGCCGCCGCCGTGGCGCCGCACGTCCTCCACCTG
ACCGGCACCGCCGAAGGCATGCACGCCGGCCGCCGCCCCTTCCGCTTTGTGCCC 
>HvWRKY74_partial CDS 
CAGCAAAGCTCTATACTATACAACGAATTAACTCTTGCGCGCGCACAGAACTCTTACTCGATA
ACGGCGTCGGCAGCCAGGTCGCGAGGCAGCACAACCATGCAGGCGCAGTCCCGTCTCATCATG
AACCCCAACGTCGGCGTCGCCGGCTACGACGACTCCGCGGCGGCCGACGAGCAGCACAAGGCG
GTGCTGAGGGAGCTGACGCACGGGCACGAGCTGACGGCGCACCTGCAGGCGGAGGCGCTGCGG
GCGCTGCGCGGGCAGGGCCAGGCCGAGGCCACCGCCGCATTGATCCTGCAGGAGGTGTCCCGC
GCCTTCTCCGTCTGCATCTCCATCATGGGCGGCTCCGCCCCGGCCGCGCCGCCGCCCGACGCG
ACCCCCGTCGTTGCCACCGGCGCCGCGAGCGCGCGCCGTCCTAGAGACGACGGCGTCCCGAGA
AAGGTAACAGTGACTTCCTCGCCATACTCCGACGGGTACCAGTGGAGGAAGTACGGCCAGAAG
AGGATCATGAGGACGAGCTTCCCAAGGTGCTACTACCGATGCTGCTACCATCGCGAGCGCAGC
TGCCCGGCGACGAAGCTGGTGCAGCAGCAGCAGCCGCACGGCGACGGCGACCAGACCATGTAC
AACGTCATCTACGTCCACGAGCACACGTGCGACCACGCTGCTCCGGCCGAGCCGGCGGCGCGC
GGCTCCGCGCCCGCCCCGCTCGGCTTCGCCGCCGGGCAGCAGCGGGGCGGTGTCGGCCTGGAC
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CGCGGCTCCATGGAGGAGCTCGAGCGGCAGGCGCTCGCCGCGCCCCCCCCCTGCGCGCCCCTA
GCGCGCCCn 
>HvWRKY75_complete CDS 
ATGGCCGGCGTCGCGTGCGGCGGGGGGGACTGGCCCTTCTCCGCCGAGGAAGCGTACGCCGAT
TCCTCTGCGCTGTTGGCGGAGATCGGCTGGGCGGCCGGTTTCGTGGACGATGGCTGCGCCGGG
GAGCTGCTTCCGCCGCTGGATCTGCCTCCGGCGACGCCGGCGGGGTCCATGGAAGGGGCCGGC
GCGTCGTCGAGCTCCACCGATGACGGTGCAACGCGGGAGGCTGCGGACGCCGACGGGAGGCCG
GCCGCCGCGACAGAGGCAGCGAGCAAACCGGCGCCAGCGCCGGCCCCGGGGAAGGCGATGAAA
AAGCAGAAGCGGGCGCGACAGCCGCGGTTCGCGTTCATGACTAAGACGGAGATCGACAACCTC
GAGGACGGATACCGCTGGAGGAAGTACGGCCAGAAGGCCGTCAAGAACAGCCCTTTCCCAAGG
AGCTACTACCGATGCACCAACAACAAGTGCACGGTGAAGAAGCGCGTGGAGCGCTCCTCCGAA
GACCCCTCCGTCGTCATCACCACGTACGAGGGCCAGCACTGCCACCACACCGTCACGTTCCCC
CGCGGCGCCGGCGCCGCCACCCTCGCCAGTCAGATGGCCTTCTCCGCACACCACCACCACCTC
ATGTACAATGACTTGCCGGCACTGCACTCGCCAACCGCTCAAAACCCTCTCTTCAGCGTGTCG
GCGATGTCGTCGTCGCTGCTCCAGCCGCTACACTGCAACCGACAGGAGCTGCAAGTTGCGAGC
TACACAGCCCAGACATCATCCATCTCGTCGCCGGGGAGTGTTCCCGCCGTCGACAAGGGGCTT
CTCGATGACATGGTGCCTCCATCGATGAGGCATGGATAG 
>HvWRKY76_complete CDS 
ATGCAGAGGAGCAGAGGTTGTGCCCCGGGTGGTGAGCACGGCTGGGCAGCGGCGGACGGCGGC
GGGATGCAGCTGCAGCGCCGGGAGAGGGAGCTGGTGGCGCAGCTGCACGAGCTGCTGTACCCG
TCCACGTCGCCGTCTCGAAGCGGCGCGTCCTCGTGTTCTGGCCTTGCGGCTGAGTTGTACTGG
GAGCACGGCAGCTCGCAGGTGAAGGCAACGGCGTCGTGCGGCGGAGGCAAACGGCGCGGGGGT
CGCAAGAGAGCCCGGGAGGATGAACGGCACGAGGAGGGGCAAGGACAACGCGCCGGTGCTGCG
ACTGCGACGAAGGCTACTACTCGTTGCAGGAGGAAGAAGCTAGGCACAACGACGAGGACGCTC
GTCACGACGGTGCCGGATTTCGACGGTTACCAGTGGAGGAAGTACGGCCAGAAGCAGATCGAA
GCGGCCATGCACCCCAGGAGTTACTACCGGTGCACCAACAGCACGAACCAGGGCTGCCCGGCC
AAACGGACGGTGCAGCGCAATGACGACGATGGCAACGACAATGGACGGCCGAAGTATACGGTG
GTGTACATCTCGGAGCACAGCTGCAAGTCGACAGAGTCGGCGGCAGTGCCGGTGATCCTCGAG
ACCACCGTCCGCGCCGACACGGCAGCAGCTCCAGACGTCGACGTCGTTCCCGGTAGCAGCTCT
AGTGCTATCAGTTCGGAGACTCAGTCGCCGGCAAGCTCCTCGGATCTAACATGGAGCAGCGGC
GGGAGTGAAGACGGTGCCAATCCGCCGCCGAGAGCGCGCGACGATTATTCGCGTCTGTTCGCT
ATCGAGGATGAGTGCTGGTGGTGGAACCCGTCGCCGGCGCCCGCTGTTGCTCCTGCGTTGCTC
CAGGAGATGGACTTCGACGGGCCGATCAGGTCGCCGGTGCACGTCGCGGCAGCGGACGGAAGT
TGGATTAACGACTTGTTCGTGAACGAACCACCATTTGTTCTCAACAGCTGCCACTTGTTTGCT
CTCTAG 
>HvWRKY77_complete CDS 
ATGGAAGGCGGTAGCCAGCTGGGGGCGTGCCTTCCCAGCCTCTACGCGCTCGATCCGTACGCA
TCCCCTCCCCTCCTCGCTCCATTGCCGAACCAGCACAAGCTTCACCAGATGCCGTTGGTGCTC
CAAGAACAGCCCGGGAACCACGGCGTGATGTTCTCTTCGGACCATGGCGGTGGCCTGTACCCG
CTGCTTCCGGGGATCCCCTTTTGCCACTCCGCCGCCTCCCTCGAGAAGCCCACCGGGTTCGCG
CCCTTGGGCGGCACCGGCGAGGAATTTTGGGCTTTTTCTCAGGCGGGCACATCGGCGGCCAGA
GCGGGCAACGAGATTGCTGCTACTACTACCACTACCACCACAGCCAGCTGCCATGGCCCGAGC
TCATGGTGGAAGGGGGCGGAGAAGGGGAAGATGAAGGTGAGGAGGAAGATGAGGGAGCCGCGG
TTCTGCTTCCAGACCAGGAGCGAAGTGGACGTGCTGGACGACGGATACAAGTGGAGGAAGTAC
GGCCAGAAGGTTGTCAAGAACAGCCTTCATCCCAGGAGCTACTACCGGTGCACCCACAGCAAC
TGCCGCGTGAAGAAGCGCGTGGAGCGGCTGTCGGAAGACTGCCGCATGGTGATCACCACCTAT
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GAGGGCCGCCACACCCACACCCCCTGCAGCGACGACGACGCCGGCGGCGACCACACCGGTAGC
TGCACCTTCACCTCCTTCTGA 
>HvWRKY78_partial CDS 
NNCCCCTCCGGCTTTTTCGACTCCCCCGGTCTAATCTTCTCGCCGGCCATGGGGGGTTTCGGC
ATGTCGCATCAACAGGCTCTTGCCCAAGTCACAGCCCAAGCAAGCCATTCTCCACTCAGAATG
TTTGATCACACTGAACAGCCATCGTTTTCAGCAGCTGCAACATCATCTGGAGCTCTACAGAAT
ATGAGCTCTGCAGCCAATGTTGCAGAGATGTCAGAGATGGCGACAACCATATCGAACAATGAG
CATGCAGTCTTCCAATCTGCTGAGGCTTCTCACAGGTACCAAGTTCCTGCCCCAGTTGATAAG
CCTGCTGATGATGGCTATAATTGGCGGAAGTATGGTCAGAAGGTGGTGAAGGGCAGTGATTGC
CCAAGGAGCTACTACAAATGTACTCATCCCAGTTGTCCTGTGAAGAAAAAAGTAGAGCACGCA
GAAGATGGCCAAATATCTGAGATAATATATAAGGGAAAACACAATCACCAACGTCCACCAAAT
AAGCGGGCAAAAGATGGCAGCTCTTCAGCAGCCGAGCAAAATGAGCAATCCAATGACACAGCA
TCTGGGTTGTCAGGCGTTAGGAGAGATCAGGAAGCTGTATATGGAATGTCTGAACAATTATCT
GGTTTAAGTGATGGAGATGATAAGGATGATGGTGAATCTCGGCCAAATGAGATTGATGATAGA
GAGAGTCACTGCAAAAGAAGGAATATACAAATTTCCTCACAGAAGGCTCTTACAGAGTCTAAG
ATCATTGTACAAACAACCAGTGAGGTTGACCTTTTGGACGATGGTTATAGATGGCGCAAGTAT
GGCCAGAAGGTGGTCAAAGGAAATCCTCATCCAAGGAGTTACTATAAGTGCACGTTTGCTGCG
TGCAATGTTAGGAAGCACATTGAGAGAGCCTCGTCAGACCCAAAGGCTGTCATTACAACTTAT
GAAGGAAAACATAACCATGAACCACCGGTTGGTAGGGGCAGCAACCAGAATGGAGGAAATTCC
AACCGGGCACAACAGAAAGGGCAGAACAGCATGTCTAGCAATCAAGCTTCGCATGCAAGAACA
GACCTCGGCAACATTAACCAGGGTCAGATTGGGGTCTTGCAGTTTAAAAGGGAAGAATAAACT
CTGGGCCCTGGCTACTGAGTTGCCGCGGTGGTGTTTGGTTGACTTTATTCTGGCAAAGGATTG
CATGAGAGGATATCGCTCCAGACATTCATGCTGTCAAATAATATAACGTTAGCATCATTTGCA
GTTTTCC 
>HvWRKY79_complete CDS 
ATGCTGGCGGTGGACGGTGCCGCCGCTGGCGTCGCGGGGATGCCTGGCGGCGGGCCGGGCGGG
ACGGCGCACAGCGTGTCGGTGTCGTCCACGTCCAGCGAGGCCGGGCTCGGCGGCGGCGGCGCC
GTGGAGGACGAGGCCGGGAAGTGCAAGAAGGAGGATGGCGACGGCGACGGCGACGACGAGAGC
AAGGAGGCCGCGGCCGTGGGCGGCGGCGATGGAGACGCGGACAAGACCAAGAAAGGGGCGGCG
AAGGGGAAAGGGGCGGCCAAGGTCAAGGGCGAGAAGCGGCCGCGGCAAGCGCGGTTCGCGTTC
ATGACCAAGAGCGAGGTTGACCATCTCGAGGACGGCTACCGCTGGCGCAAGTACGGCCAGAAG
GCCGTCAAGAACAGCCCATTCCCAAGGAGCTACTACCGGTGCACGACGCAGAAGTGCCCGGTG
AAGAAGCGGGTGGAGCGGTCGTACCAGGACGCCGCCGTGGTGATCACCACCTACGAGGGCAAG
CACATCCACCCCATCCCGGCCACGCTCCGCGGCGCCAACCACCTCCTCGCCGCGCACGCCCAC
GCGCACGGAGGGCAGGGGCTCATCCACCCCAGCATGTTCCGGATGCCGGCGCCGCCCGGCGCC
GCCTTCCGTCCTGGCGACGCGCTCGGCAGCTTCCTGCAGCAGCAACACGCCGCCATGCAGCAC
CAGCAGCAGGTCGCCGCGGCGGGGATGGCGATGCGGCAGGCGAACGCCATGGCTGGCGGCCAC
ATGCAGGCGCCTCCTGCTGATCATCGTGGCCTGGCCGGTGGTACGACGGGGAACAATACCCAT
GCTATCAGCAGCAGCAGTAGTGCTACTGATCCACTACGGATGGAGCACCTGATGGCGCAGGAC
TACGGCCTGCTGCAGGACATGCTCATGCCGCCGTCGTCCTTCGCCCACAGCGACAACAGCAAT
AACAACCACAACCGCCGTTGATCGGGAGAGATCGAGCTTCCAGCTAGCCCTGACAGTGATCCA
TCGATCGATTTGGCGTTCCTTTGCTTGTTAATTGACTCTTTTTGCACGGT 
>HvWRKY80_complete CDS 
ATGGACGCCGACGACTGGGGTCTCGGGGCGGTCGTGAGGAGCTGCGGCGGCACTGTCGTCTCC
GGCTACGAAGCGGAGTCTCCTCGCCGAGAAGCCGTGCGTGCGCGGGATGATCCGGCCGAGTTC
GTGCGGCGACCGGCGAGGGCGGCGTCCACGCCGTCGTCCCTGTACGACGTGCTGGAGTACCTT
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GACCTGGAGCACGAGCAGCTGCACCAGAGGGCGCCGTTTTCTATCACGCCTTCGTCCGGCAGT
GACCGCGCGCCGGATCATCACGAGGTGCTCATCTCCTTCCCTGCAGCCGCTGCCTCGACGTCT
GGGCAGGCGCTGCCGGTGAAGAAGCAGGCCGGACGGAAGCCGGGAGGTGCTGGAGCCGTCCGG
CGGCCGAAGAGAGGCAAGAGCAAGAAAAGCCAGATGAAGAAGGTGGTGCGCGAGGTGCCGATG
GCCGAGGGCGGCGTCAACGGTCCCGACGACCAGTGGGCGTGGCGCAAGTACGGCCAGAAGCCC
ATCAAGGGCTCCCCCTACCCTCGAGGGTACTACAAGTGCAGCAGCATGAAGTCCTGCACGGCG
CGGAAGCTGGTGGAGCGCAGCACGGCCAAGCCCGGCGTGCTCCTCGTCACCTACATCGCCGAC
CACTGCCACGCCGTGCCCACCACCATAAGCGCGCTCGCTGGCACCACGCGCAACCCGCCCCAG
TCGCCCGCGTCCGACGACACGGCACTGAACCGCGGGGACGACAGCGCCGACGTGTCGTCGTCC
GCGGCTGGGGCAGACGACGAGTCCGAGCTCTGGTCGCCCGTGGACATGGACGATTTCTTCGCC
TCCTTTGATGACGAGTTTGATAATTTCTTCGAGGACGACGCCCTCGGGCGACGGGTCTCGCTA
CTCACCAGCGACCGCCAATTCGGCGCCACAAGAGCGTATAACGGCGCCAAGCAAGGAACATCA
TCACAACACGTCAATGTTGTGCCGGTCGCCGCTCGCTCCGTCGCGGCCGCCCTTGTCCCAATT
GTCCAACAAACGAGAGTACCGAACGTTGGCCAAGGCAAGAAAATCACGACGATGCTGGTGGCG
CTGCTTGCCTCTCGCAACTTTGATGACACCTCCTCCACCTTCGTCGTCCAAGGCGACAAACAT
CACGACGACGTTGGTGAAGAATAA 
>HvWRKY81_EST_BM370096 
CCATCCGTTCATGTAGCTAGGTATAGCAGCAGCATGAGCTTGGAAGCTCTCCGGTGACCAGCT
AGACTCGTCCATATCTCCACCATGGCCTCAACCTCACAGCCCGCCATGGCCACAGCAGGGAGC
GGTCATGGCGACGAGCAGGTTCAGCGGCAGGCGACTTGGCCGGAGGAGGCAGACGGCGGTAGC
CAGCCGCTGGTGATGCCGGAGGACGGGTACCAGTGGAAGAAGTACGGCCAGAAGTTCATCAAG
AACATCCAGAAAATCAGGAGCTACTTCCGGTGCCGCGACAGGCGGTGCGGCGCCAAGAAGAAG
GTGGAGTGGCAGCCGGGCGACCCCAGCCTCCGCGTCGTCTACGACGGCGCGCACCAGCACGGC
TCCCCGTCGTCGTCGTCGTCGCACGGCGGCGGCGGCGGCCANGACGGCGACGGCAACCGGTAC
GAGCTCAGCGCCCAGTACTTCGGCGGCGGGGCTCCCACGCCACAGGCGCGGTGATCAGACCAG
ACCGAACATCGGCGACGCACGGCAGCGCCAGACGGACGCATGGCCGCGGTTGCATGGCCGGCG
GGGCGCCGCCGGCGCGACGCGGTCTACGGATGGATGGAT 
>HvWRKY82_partial CDS 
NNGATGAAGAGCCCTCTAATCAAGACGGTCACCACTACAATGCTCACGGATGGCAAGTCATGG
AGGAAATACGGACAGAAGCAGATAAATGACTCTACTAGGAGCTACTACCGGTGCACGCATAAG
CCAGACCAAGGCTGCCAGGCCAAGAGGCACGTCCAGGAATCCGAGTCCAACCCGGCGGAGTAC
ACCATCGACTACTACGGCCAGCACACCTGCAGGGATCCCTCCACATTCCCATCACTCATCGCT
CAAGGCGCCGCCGCAGCTGCCCCGCCGCCGGACTTCGCAAACCTCATCAGCTTCGCGCCCATC
AATGGATCCAACCGCGGTTTCACCGCAAGCACGAGCACAAGTGCTTTTGCTCATCATCTCATG
AAAGAAGCGGCTGATCATCATTCTATGCTCTTCTCCCGCTTCTCCAACCACAGCTCCTCGCCG
CCGGCTCAGGAGGGCGTGTCCAGTGGCTCACCGTCGCCGGCTTGCCACGGGAAGTTCATGCAG
TACGCCGGCGGACAGTTCATCAACGTTACTGGCTTAAGCACATCGCCGTTGACTGTGGGATCG
GCGCCAGCGGAGTACTGGCCAGTGGTGGGGGTCGCCGGTGTCGACATGGATGCTGGCGCGGCC
ATGGACAGCTTCGCTTCCCCGCCGAGCAGCCCGGGGGTTCTGTCGCGCTCGTTGGAGGGATCA
TTTGGCAACAACGTTTGCCACTGGCGAATCTAG 
>HvWRKY83_partial CDS 
NCGCCACCGCACGCGGTGGCGGACGTCGCGGGCACGTCCGGCGGCCCGGTGAGGAGGCTGGCG
TCGTCGAGGTCCCCGCCGCCGGCGCAGCCACGCCAGGGCAGGAGGAGGTACGTGCGCGAGCTA
GCACAGCACGTACGGAGGGACAGCGGGCACAGGGAGACGATGCTGGTGCCGGCGCACCGTGTG
GGCAACACCGAGATTCCACCGGACGACGGCTACACGTGGCGCAAGTACGGCCAGAAGGACATC
CTCGGCTCCAGGTTCCCCAGGAGCTACTACCGTTGCACCCACAAGAACTACTACGGGTGCGAC
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GCCAAGAAGAAGGTGCAGCGCCTGGACGACGACCCCTTCATGTACGAGGTCACGTACTGCGGC
AGCCACAGCTGCCTCACCTCCACCACCCCTCTGCTCAACTTCCCCACCGCCACCGCCACCGCT
ACCAACTCTCCGACCGCCGCGACAGGCTCATCCGGCCTCGCCCGTGCAGACCAATTCATGGCA
CCGGCCGAGCAGGTGGCCGTGTCGACATCGATGCACCTCGGCGTCGGCTGGATGCCGGTAAGC
TTCCAGGGAGTTGTGGCGGGGTCCGGCGCTGGCCGGGGAAGCGGCGCCGACATGCTGACCAAC
GTGTCCACCGCAGCGAGGGACACAGATTACCCGGCCCTGGACCTCGCCGACGTCATGTTCAAC
TCCGGCGGTGGTACGGGCATCGGCATGGACGGCATCTTCTCTTCTCATCATCGAAGTGATGGC
TAG 
>HvWRKY84_complete CDS 
ATGACACGCTCCAAGAAGCCCGCGCCGAAGTCAACCACACTCTCCTCTCCTCTCCTCTCCTCT
GCCTCGGCCAAACTGATCATGGACTCCGGCGATTGGGGCCTCGAGGCCGTCGTGAGGAGCTGC
GGCGGCTCGACCGTAGTCCCCGGCTCGGAAGCAGAGCCAGAGCCTCCAGCTGCACGGGCTCGC
CGAGGAGTCGCCGCCCGTGTGGAGTTCGTCGGGCAACGAATGAAAGTGGCGGCCTCCTCGTCG
TTGTACGACGTCCTGGAGGTGCCTCAGCCGCCATTTTCCATCACGCCGTCGTCGGCTTCCCAT
GAGCGCAGCATGTTCTTCTCCCTCCTGTCTGCCTCGACGTCCAGGCAGACGCTGCCGGGAAGG
AAGCAGGCTGGCCGGAAACCGGGCGCTGGTGCTCCCACTCCCAGACGGCCGAAAAGAAGCAAG
AAGAATGTGGTGCGGTTGGTGCCGGTGGCCGACGGCGGCGTCAACAACAGCACCGTGGATGAC
CTGTGGGCGTGGCGCAAGTACGGCCAGAAACCTATCAAGGGCTCCCCGCATCCTCGACGTGGG
AGACTGAAAAATGCTAGCTTGTGCAGAGCGTACTACAAGTGCAGCAGCCTCAGAGCGTGCACG
GCGCGGAAGCTGGTGGACCGCAGCCCGGCCGAGCCCGAGGCGCTCATCGTCACGTACATCGAC
GACCATTGCCACGCCGTGCCCGTGCTGATCAACACGCTCGCCGGCACCGCCCACCACCCACCC
AAGTCACCGCGCGGCACGACGGCGTCAGGCGAGGCGGCCCCGGCCAGCCGCGAGGTGGACGAC
GCCGACGTACCGTCTTCCATCGCTGCGGAGTTGGCGGACGACAAGTCCAAGCTCCGGGCACGG
GCGCGCGTGGAGCTGGACGATTTCTTCGGCTCTTTCCAGTTTCCACAACACCGTGTTTTCGAG
GACGTGGGCGACCACGTTTGA 
>HvWRKY85_partial CDS 
NNGGCGTGCGTGAACGGCCGGCTCAGGAGCGGCAGGAATGCGGCGGCAGTGCGGGCGCAGGTC
CGGGTGGCGTCGATGCATGACCTCGGCCCCCTCGACGACGGGCTCAGCTGGCGCAAGTACGGC
CAGAAGGACATCCTGGGCGCCACGTACCCCAGAGCATACTTCCGGTGCACGCACCGGCACTCG
CAGGGCTGCCAGGCCACCAAGCAGGTGCAGCGCGCCCACGCCGACCCGCTGCTCTTCGACGTC
TACCACGGCGCGCACACCTGCGCCCAGGCCGCCGCGGCCCTGGCCGGCCCGGAGCACCAGCCC
CCCGCCGCC 
>HvWRKY86_complete_CDS 
ATGGCTAAGGAGTTGATTAGGGCCTTGTGGCAACACGACTGGTGTCACGTATGCATCACCCCG
TACGTCAGGTATCACTGGGAAAGGGAGGGAGGTACTGAGCTCGGTTTCGGCCGCCTTCCATGC
ACCTTCCCCGTTGTTCCCCTGCCCGAGGTTTCCTATAAATTGTCGAGGATATGGCACGACCAG
CCGATCCATTCGCACTCACAACACAAGCTCGACAACGAGAAGCCAGAAGAAAAGTTGGTGCAC
GACGTACTGTCCAGTCCAGTTATAGGGACTGCCAAGTTCGATCGAGGTAGCAGAGGCGGAGAG
ACCCTTGCCATGGCGCTGGCCACCCCAACAGCGGTGGTGCTGGAGCTGATGACGATGGGGCAG
CAGTCCGCGGCGCACCTCGGGGACCTTCTCCGGGCGGCCTCCCCGCCGGTGCGGGCGGAGCAC
CAGGCGCTCGCCGCGGAGATCCTCCGCTGCTGCGACCGGGTGATCGCCGCGGTGAGCGCCGGC
GCCGCCGGTAAAAAGAGGAAGGCGATGGACCCAGGCAGCCATCCTCACGCTCACGCGGCCGCG
ATGCCGTGCAAACGAAGGGTGCGTGGCGCGGAGGCGCACAGGGAGGTCCATGCCGGCACGACG
GCGGACGGGTTCGCGTGGAGGAAGTACGGGCAAAAGGACATCAACGGAAGCAACCACCCGAGG
CTCTACTACCGCTGCGCGTTCAGAGGCGAGGGGTGCGCCGCGACCCGTCGGGTGCAGCGGGCG
CAGGAGGAGCCCGCGGCGTTCGTGATCGCCTACTACGGCGAGCACACCTGCGGAGCCGCCGTC
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TGTCGGCAAAGCGCGGAGCCACTGCCTCCTAGTGTCGTCGACTCCGGCTCAAACGCTCGTGGA
ATCGTCGGTGCCACTGCCATCGACCAGAACAGGGGCTCGCCTCTGCTGCCGGCGGGCGACCAG
CACGGCGCACAGCGTCACGGCCAGGCGCCCTGTGACACGTCGCGGGGATGGTTGTCGCCGTCG
TCCTCGTCATACTCGTCGGAGGAGTTTCTCGATGGCAGCTTCGACTGGGAGTGGGAGACCGTC
GTCAACTCCCTCAGTTACGGCGATCTGCTTCAGTAG 
>HvWRKY87_complete CDS 
ATGGCGCTCGGCACCCCGACCGCCGTGGTGCTGGAGCTGATGACGATGGGGCAGCAGTCCGCG
GCGCACCTCGGGGAGCTGCTCCGGGCGGCGTCCCCGCCGGTGCAAGCAGAGCACCAAGCGCTC
GCCGCGGAGATCATCCGCTGCTGCGACAGGGTGATCGCCGCGGTGACCGCGGTCGCCGCCGAT
AAAAAGAGGAAGGCTATGGACCCCGGCGCTACATCCCGCCGTCCAGGTCCCGCGGCCGCGATG
CCGTCCAAAAGAAGGGTGCGTGGCGCGGAGGCGCACAGGGAGGTCCATGCCGGCACGACGGCG
GACGGGTTCGCGTGGAGGAAGTACGGGCAAAAGGACATCAACGGAAGCAACCACCCGAGGCTC
TACTACCGCTGCTCGTCCAGTGGCGAGGGCTGTGCCGCGACTCGGCGGGTGCAGCGGTCGCAA
GAGGATCCCGCGGCGTTTATTATCGCCTACTACGGCGAGCACACCTGCGGAGCCGGCCTCGGC
GACGCGTGCCAGCAGCAACGGGCGGCGCCAGCGCCTCCTACCGTCGTTGACACCGGCTCAATC
GCTCGTGGAATCGTCGGTGCCGACGACTGGAACAGGAACTCTCCTCTGCTGCTACCGCTCTCG
GCCGAGCACAGCGCCCATGCGGCGCCCGGCGACACGTCGCGGCGATGGTTGTCGCCGTCGTCC
TCCTCGTCCTACTCGTCGGAGGTGGAAGTGGAGCTTGGTGCTTCTCCTGTCGAGGAGTTTCTC
GATGGCAACTTCGACTGGGAATGGGAGACTGTCGTCAACTCCCTCCGTTTCGGTGATCTGCTT
CAGTAGAGCTTAGTAGATGCCTGCCTCAGCGTGCGACACACACAACCTCTGCACTATTTGGTG
GACAGATCGGGAGT 
>HvWRKY88_complete CDS 
ATGGCATCTTCGGACAGCGCGGGGAGAGACTTGCCGGCGGCGAGGGCGGCCGCGGCGGTAAAC
GACCTGATCGAGGTGCGCGAGGGGGCGATGAGGCTGAAGGGCATGCTGCAGGAGCAGTCGTCG
GGTTTTGCAGAGCTGATGGACGGGATACTAAACAAGCTGTCCAGCGCTCTGTCGGCGTTGGAC
ACCGGCTGCACGGCCGGAGCATCCGCGTCCGGGGCGTCCGATGGGGTGATCAGGGCGAGGGCG
GAGAGCTCGACCGGGAGGACGAGGAAACGCAGCTTCAGCAGAAGATTAGAACGCTCATCGGGC
AAGCGAGTAACTGACACGCTGGTTGATGGTCACATATGGCGGAAATATGGGCAGAAGGAAATT
CAAAACTCAACTCATCCGAGGAGCTATTACAGGTGTACGCACAAATCAGACCAAGGTTGCAAC
GCCAAGAGGCAAGTCCAGATCTGCGAGACCCATCCAATCAAGTACGCCGTCACGTACTACGGC
GAGCACACCTGCAAGGCCCCCTCCAATACCCCAATGATCATAGTCCCCGCTAGCGGCGACCGC
GCAGACAACCTCGTCAGTTTTGCCCCGACGTTACCTCAGTTGCTCCCGGCCACTACTCAGCTG
TCGTCCTCCTGGTGCACCAGCGTAGACGACGTGTTCAGCTCCTCGTCCGATCCGTTCGTGCAG
GCAGACGAGCTCGCCGTCATCGTGGGATCGGCCGGGAAGACGTCCTCAACGGTGGGGTCGGTG
CCGGACTACAGCGGGAGCGGGATCGGCGACATGGCGAGAGGCGGCACGGGCAGTTTCGCGTCG
TCGCCGAGCAGCCTCGGGTTCGTGGTCGGTTCTCTGGGCAGCATCGTTGATGACGATTTCTTC
CAGTTCGATCCATGA 
>HvWRKY89_partial CDS 
ATGGCGAAGGGACGCAAGTCAGCCGCGGCCCTCGAGGCCCTGCTACCGCTCCAGGACCACGCC
GGCATCCGGGAGCTCACCGCCGATATCCTCCGCTGCTGCGATCGCGCCCTCGCCGCGCTCCAT
GACACAGGCCGGAAGAAGCGCAAGTCGTCGCCCGACGGCAGCGCAGCCACTCAGACAACCAGG
CCCAAACGAAGGACGCGCGCGAGCCGCGGAGAGACGGCGGCGGCGACGACGAGGGTGGAGAGG
AAGCGGAACTGGGACGACGGCTTCCTGTGGACCAAGTACGGGCAGAAGGACATCCGGGGCAGC
GGCCACCCGAGGCACTACTTCAGGTGCGCCTACAAGCTCGACGCCGGTGGATGCCCTGCCAGG
AGGCAGGTCCAGCGGTCAGAGGAGGAGGAGGAGGACGACCCTTACCTCTACGTCATCACCTAC
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TTTGGCGATCACACCTGCTGCCACCGTGGCGCCGAGGCGAACGCCACCTTGGACCACGTCAAG
ACGCACTACCAGTCGCTTGTTCTTGGCTTTGGN 
>HvWRKY90_complete CDS 
ATGCACGCATCCCCACCCCCATCGCTCACACCAGGCCATCCAATGGCGTCACCGCCGCACAAG
AGGGAGTCGTTTGACTTCGCGGATCCACCCGCGCAGGAGGCCATGGGATCTGCCTCCGCGTCC
TACAGCCCTCCCGGAGGCGTCTTCGGCCTCTCCGCGCCGGAGTCATCGCGTCGCGACAGCCGA
AAGAGAAGGAAAGACAGACCTTCATGGGTCAAGAATACGTTCACACCTCATTTTGACGGTCAC
CTGTGGAGAAAGTACGGCCAGAAAAACATCAAGGACTCTGTCTTCCCCAGATGCTCTTACCGT
GAAGACAAGCAATGCCTTGCCTCGAAGCTGGTGCAACAGGAGAACCACGAGGACCCACCGCTG
TTCAAGGTCACCTACACGTACGAGCACACGTGCAACAGCGCTCCCGTCCCAACTCCCGATGTC
GTGGCCGAGCTGCCGGCGCCGGCAACTGGCGACGCGCTCTTTCTGAGGTTCGACTCCACCGGC
GCAGGCCACCGAGATGCGCACCGGATCGAGCAGGAACGGCATTACCAGCAGCCTGCGGCACCC
GGGTCTGGGTGGCCGTCCATGATGCTGAGCTTTGATTCCAATAGCCAGCAGCACGAGCAGTGT
ACGTTCCCTTCCGAGCTGCCGCCGGCTGCATCGTCGTCGTTTTCGACCGAGGGGTTGCCAGCG
CCGCCGTCGACGACCGATGGCGGAGGCGACGGGTTCTCGACGTGGGACTCGTTGAGATACGGG
TTAAATGACCATGTGCACTTCGGCGACCATCCGTATCTCCCAAACAGTGGTAATGATGGTGAC
GATAACTACTGA 
>HvWRKY91_complete CDS 
ATGCATGCTATATTTGGACTGCATGATATGATGCTTGACCTTATTATGCACAAGTGCAGAGAA
GAAAATTTTATCACTGCAACAGATGACATCCAAGACATTATAGGTTTATCCGACAAGGTCCGC
CGACTCTCCCTCTATCTAGACGGTATAATAGATGGCACAATATTGGAAACCACCCAGCTCTCA
CAACACCTGATCGTCCCTTGGAGGACGAATTTGCCCGATGGAATTGGCAACATGAAATCTTTA
TGTACGCTGCAAGAGTTTGATGTGGGCTTGAATTCTGTAGACAACATCAGAGACCTTGGGGAT
CTCATCAATTTGAGGGATCTTCGAATATGTCATAAACTTTCCAACATGGATGCACATCGTTTG
GATGTCTTGAAATGTTCCCTTAAAAAACTTTGCAAGCTCAGATATCTGCACATGGATTCTAAC
ATCAAAATTAGTTATGCATTGAGTTCGCTATTTCTTCAAAGGCTTCATATGTTGTGCCTGTTT
CCAAGGGTTCCTACCGCGATTGGAGAGCTCCATAACCTCTTTGACCTTGATCTCACAATTGAG
GTGTTGGAGGATGATATTGCAGTTCTTGCACAGTTGCAATCTCTTAACCGCCTTAAATTGCAG
ATCAAAGGGAAACATGAAACCGAAGAGAAGGTACTCATTTGTAGAAACGGATTCCCTGTTCTC
AAGCGTTTCTGGCTGTTCTGCAAGAGGATGTCACAACTGACATTTGAGGCAGGGACAATGCCC
AGTCTCGAAAAGCTTGAGGTAAGAATCAATTCGCCGTACGGCGCTGCACCTATGGGCATCGAG
CACCTATTAGGCCTCAAGGAAATCCTTGTAATTATTAGGGGTTATGGTGCCAATGGATCCAGC
ACAAGAGCTGCACTGTCGGCGTTAAGGAAGGCCATTGATACACGCTCAAGTCGTCCTACAGCT
AACATTATGTGTGTTGACAATTCGCTGTTCCGTGGACTCCTCGACGACGGCTTCAGCTGGAAG
AAGTACGGCCAGAAAGATATCCTTGGCACCAAACACCCAAGAGGTTACTTCCGATGCTCTCGC
CGGGAGTCGGAGGGATGCCGAGCGACCAAGGAGGTGCAGCGCACAGACGATTGCGATGAGATC
TTCGATTTTGAGTATAAAGGAAAGCACACTTGTACACCGTCTGAACAGGAGCAGACCATCCAG
CCACGTATCGACCTTCCTGTCCTTTGGGCCCCATAG 
>HvWRKY92_complete CDS 
ATGGCGATGCGGCCCAAGACCGAGATGTCGCCGCCGCCGGCGACCCCATCGCCCTCCGACCAG
AGAGACGCTGTCATCGAGGAGCTCCGGAAGGGCTCTCAGCTGGCGGAGTTCCTCCGGCAGCAG
GTGGAGCTCATCCCGGAGGACCGCTGCCGCGACGCTGCGCTAGCCAACGTGAGCAACATCTCT
ACGGCGCTAGCGTCGTCCCTCTCTGTGCTCCAGTCGGAGAAAGAGCAATACTGCTCCTCCTCT
TCCTATGATCCTGGCCATGCTTCCGGCGCCTCAGGCGGCGGGGTGAGAAATGGCCCCGTGGCA
CGCTCCAGGAACAGGAAGGCGAAGCACCGGCGAGGCACCTATGGCGAGGACCTTCCAATCAAG
GAGATACTAACTGAGGCACCAGAAAATGATCGATTCCACTGGAGGAAATATGGCGAGAAGAAG
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ATCCTCCACGCTGATTTTCCAAGGTTATACTACAGGTGCGGATACAGCGACGAGCACAAGTGC
CCGGCGAAGAAGTACGTGCAGCAGCAGAACAGCGGCGACCAGCCCATGTTCTTGGTCACCCTC
ATCAACGACCATACATGCGATACTTTGTTCCCAGATGAAGACCAAGACCAGCCACCCAGCAGC
CCAAGCAGTGCTAATAACTCGCAGGTGCTCGACTTCTCCAAAGCGTCGCTCTCGTCAGCTGTT
GGTGTCTCGAGGCTGAAGGAGGAGGAAGACGCGGACATGTCCGTCACCGTGCCCAGTTACAAC
TACACGTATGATGAGCTGTCTTCTTCTTCCCTGCCGTTCCTGTCGCCCAAGCAGTGGGAGATG
GAAATGGACATCAAGTCACTTTTTCGTCGTCACTCTGGGGATGGTAACTAG 
>HvWRKY93_complete CDS 
ATGACCAGCAACAGCATGACGGTCGTCCATGGTGGCTCGGAGATGGACGCGTTGCTTAGGCGG
CAGCAGGAGCTCGTGGTTCAGCTCCGAGCGATCATCCTTCCGGCACTTTGCGACGCCGACAGC
AGGTCAGCCGACCTCGCCGTCGACCTCTTCGATGGTGTTATCGGCTGCATCACCGGGGTCATA
TCCAAGCTCCAGAGTATCACTACCGCAGGCTGTGAACCAGCGGCCATCCTCGGCGACGTTATC
TCCAACGGCGCCGGCGAGGGACAAGAGAAGAAGCCCGTGATCAGGAACGCTGGTCAGAAGAGA
AGGAGGAACAACGAAAAGCGGTCAAGATCACTTGTAACAATTGTTCCACATTACGATGGCCAT
CATTGGAGAAAATATGGGCAGAAGAACATCAACGGGAGGCAACATGCTAGGACCTACTACAGA
TGTGCCTACACGAAACGGAACTGCTCAGCAACCAAGACAATCCAACGACAGGATCATAATGGA
AGTCTTAATTGTGAAGATGAAACTGCAAAGTACATTGTTGTGTACTATGGTCATCATAGTTGC
AGGGCTGACATCACAAGAAATGCCGCAAACATTGACCCTAGTGTGGATCTAATTCAAAGTGGC
AAAATGGCCGGAGCAGTAACAGACTTTGAAAAGTTTGACCAGCAGGACTTGGACGTGTCGTCT
CTGATAGAGGTGTTCGACAACCCAGAGCTGAACTGGGACATCATTTGCTAG 
>HvWRKY94_complete CDS  
ATGAAGCACATCAAGAAAAGCAGCAGCTCGTCCAGGCTTTTCTGCGACGACGACCGTTCAGCG
GCGGCGTTGAGGGAGATGGCCAGGGAGCAGTCCCTGGTGACGCAGCTCCGGGCTGTCGTGCTG
CCGGCGATCCAGCTAGCCGGCGGCGAGCGTGCCGAGGTCGTCGCCCAGATGTTCGAGAGCATA
CTTGACTGCTCGGCCAAGGCCATAGCCGCGCTCAAGCTTCTTCGGCTCGATCATTCTCAAGTT
GATGATGAAGTGCTGCTGACGGCGATGGTGGACGACAAGACGAGAGTCAGGAAGATCGTCCCC
GGTGACGGAGGAAAGGACGGCGACGACAATGCCAAGCCCCTTCGCCCGCAAGCGAAGGCGAGG
AACACTACATGCATAATTAGGAGATTAGGCGATGACTCCGTGGCGCTTGAAACGCCTGTTCCT
CACTACGATGGCCATCAATGGAGGAAGTATGGTCAGAAGATCATCAACCACACAAAGCACCCT
AGGAGTTACTACAAATGCACCTACAAACAAGAGCAGGATTGCAAAGCAACAAAGACGGTGCAG
CAGCAGCAACAACAGCAGGATGGCGGCATCGAGGATGAGCCCGTCATGTACGCCGTCGTTTAC
TACGGTCAACACACCTGCAAGCCCGGCCAGACCGATGCCGCCGTCGTCCAGACGGCAAGCAGC
GGTAGGTTTGGTGAGGGCGGGGGAGAGGAGCTTGCACGGAGCAACAGCTGCAGCAATATCTCA
GTGACTTGCTCTTCGGTTGTCGTTGACAACCACCAGCTGATGACAGCGTCCCTCGAGAGCTGT
TGCAACCTGCTGGACATGGCGGGGGACATGGCTACCGCAGAGGTGAACCAGTATGATCAGCTG
TTTGACGTGGCTTCATTTTCGCCGTTTGATTCGGGGACGGCCTGGGCGATGGATGTGAGCGAG
CATGGGCTCCAAAAGTTTGGAGGCTGGTAA 
>HvWRKY95_complete CDS 
ATGGGCGAAGTGAGAAAAGAGAACGAGAGGCTGAAGACGGTGTTGTCACGGATGGTGGAGGAC
CATCGATCCCTTCAGAAGCGGTTTGATGTTCTCCAGCAGCAAGAGCATGGCAAGAACCTCGTC
GTGGGCTCACCGGAGCACACATTGCCCGCCAACAGTGTCAAGGATCCGAGATCTGATGGAAGT
GAGATGAAGGTGCGGCCGGATGTGCTGACGCTGAGCCCTGTAGGCAGCTCCGAGGAAGATGCC
ACAGAGATGCCGACAACCTCGTTGGCGAGCAAGACATTGAAGAACCTGAGGAGAACCGATGCC
GAGGATGACGAACGAGAATGGAAATTCAAATGGGTATATGATTTGAATGTCTGGTTTGTTGGC
CGTGAGATGAATGATGGGTGCCAGTGGAGGAAGTACGGGCAGAAGATATCCAAGGGGAACTCG
TGCCCGCGCGCCTACTACCGCTGCACTGTCGGAACGGGGTGCCCCCTCAGGAAGCAGGGCAGC
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CGAACGGAGGAGCCGGCCATGGCTCGCCGTGGCCAGCTGGCGGATTCGAGGGTTTTCGGCTGT
GGAGGCGGCTCGGTAAGTACTACCGAGTGGCATGAGTGCGGGGGATCGGACTCAGAGATCGAT
CGGAGCCTGGCCTCATCACTCGGGAGGGTCGGAGCCTCCGGGAAAGTGGAGAGCAAAGCATGG
ACCACTGGCTGCCGGCGCCTCTCCTGCCTGGGTATGTACGGCATCGCCATCGGGTGCTCTCTG
GCTGATCGCATCGAAACAAGCTTGCCCGACATGCTAGTGGCCGATCGGGGTTTAGAATGCCGG
ATATTGGAAAAGGCTATGGTGGGCTTTGGGTTGGGCTAG 
>HvWRKY96_partial CDS 
ATGCGCAAGGCCCGGGTCTCCGTGCGCGCCCGCTCCGAAGCCGCCATGATCAGCGACGGGTGC
CAGTGGCGCAAGTACGGGCAGAAGATGGCCAAGGGCAACCCGTGCCCGCGCGCCTACTACCGG
TGCACCATGGCCGCCGGCTGCCCGGTGCGGAAGCAGGTGCAGCGCTGCGCCGAGGACCGGACG
GTGCTCATCACCACGTACGAGGGGAACCACAACCACCCGCTGCCGCCGGCGGCCCCGGGG 
>HvWRKY97_partial CDS 
AAGGGGATACTAACTGAGACACCAGAAAATGATGGATTCCACTGGAGGAAATATGGCGAGAAG
AAGATCCTTAATGCTGTTTTTCCAAGGTCATACTACAGATGCGGATACAGCGACGAGCACGAG
TGCCCGGCAAAGAAACATGTGCAGCAACAAAACAACAGCGACCCTCCCATGTTCATTGTCACC
CTGTTCAACGACCACACATGCAGTGCTTTGTTCCCAGCTAATGAACAACTACCCAGCACCTCA
AACAGTGCTACTGCTAACTCACAAGTGCTCGACTTCACCAAAGCATCGCTCTCTTCAGCTCCT
GGTATCTCGAGGTTGAAAAAAGAGGACGGCGCAGGCTTGTCAGTGACCGTGCCTAGCTACACG
TATGATGAGCTGTCTTCTTACTCCTCACTGCCATTGCTCTCTCCGACGGAGTGGAAGATGGAG
ATGGAGATCAAGTCATTTTTTCATCATCACACAGGAGGCGGAAGATCTGGTCGGATTTTACTT
GGGGTCAAGTGCGAGACACTCGAAGATCAGAATGTGGTATTCGGGGACTTCGTCGTTAAATTT
AGAGTACGCTCAAAATTGGATGGGTTCCGATGGGCACTTGTTTCAATGTATGGAGCTGCTCAA
CCGGATTTAAAGACGGATTTTTTAGCCGATATGGTCCTGAGAGGATGGGCCAAAAATGAAAGT
GGATTATATAGGGTTGAAAAAGAGAGGCTTCTCAACCTTATCAATGAGCTGGATGTGAAGGTT
GAATCCACCCTACTAGATGCGGCA 
GAATGGGCATCTAAGAGGGAAGCCGAGGGTAAATTACGAGCAAAGGGAAGAAGAGATGAGATG
GGCGCTAAGATCATAAGTTAA 
>HvWRKY98_partial CDS 
AGGAACAACGAAAAGCGGTCAAGATCACTTGTAACAATTGTTCCACATTACGATGGCCATCAT
TGGAGAAAATATGGGCAGAAGAACATCAACGGGAGGCAACATGCTAGGAGCTACTACAGATGC
GCCTACACGGAACGGAACTGCTCAACAACCAAGACAATCCAACAACAGGATCATAATGGAACT
CTTAATTGTGAAGATGAAACTGCAAAGTACATTGTTGTGTACTATGGTCATCATAGTTGCAGG
GCTGACATCACAAGAAATGCCGCAAACATTGACCCTAGTGTGGATCTAATTCAAAGTGGCAAA
ATGGCTGGAGCAGTAACCGACTTTGAAAAGTTTGACCAGCAGGACTTGGACGTGTCGTCTCTG
ACAGAGGTGTTCGACAACCCTGAGCTGAATTGGGACATCATTTGCTAG 
>HvWRKY99_complete CDS 
ATGACCGGGCTACTAGCACCGGATAGGATTGCTATGGCATGCATAACCATGCTTTTGTCATGG
ACCGTTTGGAATGAAAGAAACTCTCGTGTTTTCCGGAACAAGGGTGCTCCACCACCAGTTCTG
TTGAGGGCAATCTGCGACAAGGCAAACCTTGGTTACCGCGGTGCTAAGCAGCTAGGGAATATC
ATTAGACGTAGGACAACAAAGATGCATGTTTCTTGGCAAGATGGGTCTCTGCTATCAAGAGCT
TGCAAGCAACCTGACACCCTCACTAGCCCAGAAAACGTAACGGCAAAACATATGGATCATAGC
AAGAACTGCGGCCATGGCCTCACGGAGATCGTGGCGCTCATACAGCGGGAGCAGGAGCTCGTG
ACGCAGCTCCGGGCGCTCATCCTTCCACAACTCCACAACGTGGATAGCAGGTCGGCCGAGCTC
GCCGTCCAGCTCTTCGACGACGTGATCGGCTGCAGCACCAGCGTCGTAACAAAGCTCTTCAGT
GCTGGAAGTGGAAGTCGAGCGACCATCGAGGTCATCGACGACAAGTCCTTGGTGAGGAAGAAC
AGTACTAGTACTGCTGCTGCTGATATCGATGACAAGATGGAAGAACAGGCGAGGCCTAGTTCC
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ATCGTTGGTCGAAAGAGAAGGAGGAACGACGACAAGCAATCAAGATCACTCGTGACCAATGCT
CCGCATTATGATGGTCACCAGTGGAGAAAATATGGGCAGAAGAACATCAATGGAAGACAACAT
GCTAGGAGCTACTACAGATGCACCTACACAGAACGTAACTGCTCAGCAACCAAGACAGTTCAG
CAACAAGATCAAGATGGAGGCAGTTCTATTTATTCCACAGACGATTGTGAGGTTCGGGGTGCA
AAGTACACTGTCGTGTACTACGGTGATCACACATGCAAGGACGGCGACAACATCAGTAACAAC
ATTATCGATCATCTGCCCAATCTTGTAGATATAGATCTTCCGAGGGGTGAAACAGAGCGAGTA
ACGGAAGAAATTTCAGAGTTCGAGGTGGACCTAGATGTGCCGGCTCTGCTAGAGGTGTTCAAC
AATTCTCAGCTTAATTGGGAGATCGTATGCTAG 
>HvWRKY100_partial CDS 
ATGGATGACGCGCTGTCGCAGATTAGCGAGGCGTTCCGGCTCGCCGGCGAGCTCACGGGTGAG
CTCCGGGCGACCCAGAAAGGCCCGGCCTACATCGCCGCACGCTGCCACGGCATCGTCCATGCC
TACAACAGAGCCATCCGCATGTTGGAGCGCTACGGCATGGGCGGCGTGGCCGCAGCCGCGCCA
CGTCGGCTGGACGCCGGGCCGCTGGACACCCCGCGCCTGCGCAGCACGGATGAAGCCGTCGCC
AGCCAGTTTCTCGGAGATACTCCGACGCATTTGCCCCACCGGCAGGAGCCATTCCACATGGAG
GCCGGCGTGTTGGGCGCGCGAGTAGCGCCACCGCATACGATGTGCGCGGCTGCGGGCACGTCC
GGTGGCCCGATGAGGAGGCTGCCGTCCTCGAGGTCTCCGCCGCCCGTCCAGCCACGGCAGGGC
AGGAGGAGGAGGGAAAGCGGGCAGAAGGAGCTGGTGTTGGTAACTGCGCAGGGAACGGGTAAC
ACCGAGCTGCCACCGGACGACGGGTACACGTGGCGCAAGTACGGCCAAAAAGACATTCTTGGC
TCGAGATACCCA 
>HvWRKY101_partial CDS 
AGGGAGGAGACGAAAGGGAAGGGCACCGCGCGCGGGCGGGGGAGCAGGAAGGCCAGCCGGCCG
CGGTTCGCGTTCCAGACCAAGAGCGAAAAAGACGTCCTCGACAACGGCTACCGGTGGAGGAAG
TACGGCCAGAAGGCCGTCAAGAACAACGCCTTCCCA 
>HvWRKY102_partial CDS 
ATGGTGGAGTTGGACTGGTCGTCCATGTTCCAGATGGGTCCGGTGGCTCCGCCAGAGCAGAAG
GAGGAGCAGGCCGCGCAGGCGGATCGGACTCAGGGCGGGGAGAACGACGGCGAGGCGGGTGGC
AGCGGAAGTGGTGGCAAAGACAGGGAGAAGGCGGAGGGAAGCGCGGGGAGATCGGGGAAGAAG
AAGGTGAGCAAGCCGCGATTCGCGTTCCAGACGAGGAGCGAGAACGATATCCTGGACGACGGC
TACCGCTGGAGGAAGTACGGGCAGAAGGCCGTCAAGAACAGCTCCAACCCTAGTTTCTTGTAT
AGATACTCGCATGCTGCATTTGCATGCCCGATTGCGTTCGTTCTTGTGAGATTGGGAACAGAG
CTGGAAGCGGAGGACGTACAGGAGGCTCAACGCCCCCGAACCACTGAATCTGCCGCCATGCCA
TGCATGTAA
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Appendix 1.2 Deduced amino acid sequences of barley WRKYs  
>HvWRKY19-1 
MAAVGAAPVLYQQQAQAVGDACFFSSMSSYFSNEAISSSCSSPASSFSAALGATPPAAPAISP
DPASQFDISEYLYGDGPLAAPLAPVGAAVASSATAVPARSAAESAAAVERPRTERIAFRTRTE
IEILDDGYKWRKYGKKSVKNSPNPRNYYRCSTEGCSVKKRVERDRDDPAYVVTTYEGTHSHAS
PSTVYYASQDAASGPLLRRRHAPAARLPQLSRLATNDGATXRSSTYGAFHFWAKLSQASGLRC
P* 
>HvWRKY19-2 
MAAVGAAPVLYQQQAQAVGDACFFSSMSSYFSNEAISSSCSSPASSFSAALGATPPAAPAISP
DPASQFDISEYLYGDGPLAAPLAPVGAAVASSATAVPARSAAESAAAVERPRTERIAFRTRTE
IEILDDGYKWRKYGKKSVKNSPNPRNYYRCSTEGCSVKKRVERDRDDPAYVVTTYEGTHSHAS
PSTVYYASQDAASGRFFVAGTHPPPGSLN* 
>HvWRKY25_partial 
NMRAHGRKTLPKRRTQVRVSSLQDIEGHDDGFSWRKYGQKDNIFGSKYPRGYYKCNHARGCPA
RKELQATDGDPLLFDATYVGNHTCAHGASLHPQSSISVGVKAEGSLQRLKMVPSWRSKQSIQV
RARSMQEDYPGDDGYSWNKYGQKDIVGSKHPRCYYRCVHRHD 
>HvWRKY27_partial 
FITIHNPRSARTLATPGAAEPNREPGMEDTATAATLATELDGLLAMARELEARVDGDQGAPGA
ARELCAALAESVDRAMRLAGSSEGEGEGNATGRASVSGQVRGGRKSAANKVRTQVRVASVTDV
GPLNDGLSWRKYGQKDILGATYPRAYFRCTHRHTQGCQATKQVQRTHADPLLFEVAYHGEHTC
VQAAVQQQPPACFGQGQQSPPAVAPEGIQWPVTPPSFPSTQDDHVGDCYPSVCQLDGGYGYGA
GGGLGADMGVGSQLDDWFLYLSEVQNL 
>HvWRKY35 
MAAGQWSAIGDGGGLWSPQALESLFPDEQPAAAQLGFFGGSLAQLAPPPPLCAIALLGYPQDN
FDVFNEQDLAQVAAQVAQKKELQEKQAALLHPKGMSTLPSHTGSGSMNTGPTGILQVLQGSST
TLDSINTGSAGVLQVLQGSSTTLDSINTGSAGFLEALQGSSITLDKPADDGYNWRKYGQKAVK
GGKCPRSYYKCTLNCPVRKNVEHSADGRIIKIVYRGQHCHEPPSKRFKDCGDLLNELDELNDA
EEPSTRSLLGCQGYYGKPKPITPNGTMVDGLLPTKEEGDEQLSSLSDIREDDGEIRTVDGDVG
DADANERNAPGQKIIVSTTSDVDLLDDGYRWRKYGQKVVRGNPHPRSYYKCTYQGCDVKKHVE
RSSQEPHAVITTYEGKHTHDVPESRNRSQATGSHHCKEQTYSEQPAASFCSSSEKRKYGTVIL
NDLAF* 
>HvWRKY40 
MQTWKMQSQEKITPVKPVASRPFSSFTSFSKLLEDFTGTGSAQITSLGETVIVRRPKDAGLDT
TREQMVIDPEQVVSCDQMTAFHNINKPIHSMKNRLSYDGYNWRKYGQKQVKGSEFPRSYYKCT
HPTCPVKRKVETTVDGQIAEIVYNGEHNHPQPHPPKKPTSSASTEVLVPGAHGSNDAGAESQL
LLPRHSEAAVIALMNLVILVRSITATQDMTKNNRGQGRPVRRWGISFIVILHLFDPRNAMIEI
FVFQPEGEAIKYHKWPDFFYEAAPAFQSPTECESSRDAAFRWRKYGQKAVNGNSFPRSYYRCS
TARCNARKFVERSSDNSLVTTYEGKHNHAQLK* 
>HvWRKY48_partial 
EEERVGTWKAREAREGGERRFPSSKERYVAGLLLKQIEMIKGDQRQLGGHDERLQDQMRDDHR
ASDGNFFKFLQDQSSTKKEAQEDKIASTRAEMGEVRKENERLKTLLSRMVEDHRSLQKQFDVL
HQQGRGKNPAVGSPEHTSPADGPGFISLRLGTSAGTSRQNMGEEIKGNTNNPDGKGISLGPSS
ARGAVGARTDGSETKVGPDVVTLSPGGSSEEDATTETTTTSAPSKAAKIPRSTGGVEAEEEVA
QQPLAKKARVSVRARCDTPTMNDGCQWRKYGQKISKGNPCPRAYYRCTVAAGCPVRKQVQRCA
EDMSILITTYEGAHNHQLSASAAAMASTTSAAASMLMSGSSTSLGFPSIASSLHGLRFGLPGA
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SSDASSNQLGGRPFFLPAAAGASISATPSYPTITLDLTSQAASQQAFSLSNNNRFSSSFTGSH
GHSSSTGGRYPSTSFSFSGSGATAWPAGVGSYLSYGSSSGAPYIGAGKSSFEAALSGINGRQQ
GSTGSLCQPAQVQQMAAQLSGGSTGRVAPIVLTDTIAKAITSDPGFHTALAAAITSYVGKPAA
GSGKGLEWGEHLGLGPSSAAAAAAACSSSVLARSSSTAAAQSGSPNGKMSFLHASLALSSSSS 
ATASTSPVKKREHIN 
>HvWRKY49_partial 
WSAHHLSFLMAAQEASAGGGEDARRALATPALSLPPRSAVESFFASGATAASFAETSPGPFTL
TAALFQDMPSSAFHGSFTQLLVGAMGSPAAPPAGGPSPPSPFAVPPGLCPTAVLGFPSLFSPT
GNFEMSHQQALAQVTAQAFHSQYTVDSQADYSLPFSSEATSALTSQFINSSANVTSMKETATP
PLRTVHDYLKTYEVSQGFQTSALTVDKPVDDGYNWRKYGQKAVKGGEYPRSYYKCTQASCPVK
KRVEHSAYGQITQIIYRGQHNHQRPPKRRSKDGGNLLNEDDFPENRDALTRSERGSQDHSGKV
EVSNDGIAGPSMSKRRDGGDQSSGSSDREEEDNDEAGDDNGDAGIVNANKRQVPAPAQRIIVQ
TTSEIDLLDDGYRWRKYGQKVVKGNPHPRSYYKCTYQGCDVKKHIERCSQDPTSVITTYEGKH
SHDVPVARSSVAAAASANASSSISLLHRGQKAASSGQRVLPRAALHTSDSSLQLKEENEIT 
>HvWRKY50 
MAASLGLTSHEEACYSAHPAGSSLYNFQDGEPFGAAADGAAAPSFQELVDAARPSDYAPLPAF
GAAGGEAMSMYERSVVFPMTTSSYYCDGAGMFDDDAAARARGGGVGAMAGRPSGRIGFRTRSE
VEVMDDGFRWRKYGKKAVKSSPNLRNYYRCSADGCGVKKRVERDRDDPRYVLTTYDGVHNHVA
PGGGTPSRAAPAYSAPAAPAWTWSELHAAAAAAAHSSESY* 
>HvWRKY61 
MEEVEEANRMAVESCHRVLGLLTQTQGPEQLRSIALGTDEACAKFRKVVSLLGNEPSGGTTHP
RAKVVSRRQTPGFLSQKGFLDNNTPVVVLNSAHPSTSSAQVYPRNSILDSQPAHPIGGPPKLV
QPLSAHFQFGDSSRYNQFQHQHQQQQQKMRAEMFKRSNSGINLKFDSPSGTGTMSSARSFMSS
LSMDGSVASLDAKSSSFHLIGGPAMSDPVNAQQAPRRRCSGRGEDGNGKCAATGRCHCSKRRK
LRVKRTIKVPAISNKIADIPPDEYSWRKYGQKPIKGSPHPRGYYKCSSVRGCPARKHVERCVD
DPSMLIVTYEGEHNHTRMPTQSAQA* 
>HvWRKY62 
MSSGGGGGGDQGRHGVYHQHGHGQLTRNDGAGGYEFSNDDMESFFFNQPEGVVGGVRADEIEP
YSSLTSYLQGFLDPTGLARHLDVPAKHELSVDVRTHDQDSQGTGSAAGESAPLLTPNSSVSFS
SGGGDGEGKSHRSKKGRAQEADNQEDGESSKKANNKPKKKAEKRPRLPRVSFLTKSEVDHLED
GYRWRKYGQKAVKNSPYPRSYYRCTTPKCGVKKRVERSYQDPSTVITTYEGQHTHHSPASFRG
TSAHLFMPPGVHGLPPPHLMPPGVFHPELMSMMRMPYPSPNMHLPSVPPPPHHHPMAGTPLQQ
HHFTDYALLQDLFPSTMPNNP* 
>HvWRKY63 
MAVDHMGCRYATHGHAAEEQFQEAAAAGLRSLELVRSSFSSRAGCAPPPLGEMADQAVSRFHR
VINILDRTGHARFRRGPGPAVLLQLAPQKSMTLDFTKPLKAPAAPSVTSTSFFSSVTAGGEGS
VSKGWSQLVSSGKPPLPAGTKRKQRQQQTRFAHSDTAAGARCHCLKKGKHRVKYTTLEPTVTS
RAVDVPGVGDKYSWRKYGQKTIKGSPHPRCYYRCGTVKGCPARKHVERATDDPAMHLVTYEGD
HRHDTWPPAAAN* 
>HvWRKY64 
MRGSSMLSSIGSNKRMLQQDCSGGSHAQEHTKKKARVGMRTDYTYAPYHDGFQWRKYGQKVIR
GNAFPRCYYRCTYHQDHGCSASKHVEQHNSADPPLFRVVYTNDHTCSGAAAAASDYMASSMHI
QQIADASLRKADTEPERPPRPQQPRSGGGCAAAIKEEKDVIVSSLLAVIRGSCDVAKSDAAHQ
GYSSASSLASANCYAMSPSVAGGSREGSSSSSVSPAVLPAPDDMGLGLDFMVESHWFEPLDLG
WFVE* 
>HvWRKY65 
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MDDGSSCPTNSAGLLPLSAGSPTLQSLLITAFLNAEQAEGLEEKLRRVREENRRLAGTLGAIL
ADRPDLRALMRAPASAVACARAPSGSASNAAREEAAGVTVEPRPKVRTVCARAEPADTDANLS
VKDGYQWRKYGQKVTRDNPHPRSYFRCAFAPSCPVRKKVQRDAEDTSKLVATYEGEHNHARSP
EREFVCNESIAIGHRPCSVSINPSGRTIRLEDMTNHGVVRRADQRPSQDVAGDLHVVAVRGMA
VRGEDK* 
>HvWRKY66 
MEDWMLSTPSPRTLMLSLFNDDFSSSPFSDVSGDSGSNKPRDGTERTKASVDSSLGESSRVNK
TSLHFEPNLFGADEKSSPDNGSPAERNGFCALKIDTSRVGFSASIRSPIIIPPGAQPSPTTGK
LPFLMRTNANTTIPSVHKKAQELSHDDHTISFQQILRSNTTFSIVDNEGPNVIHQNQPSASEN
NHRIPNSEQEDIKANRNGDDSPATIIVRAEDGYNWRKYGKKQVKNSGHPTNYYKCSHQNCPVK
KKVEHCQDGDITEIVYKGSHNHPLPPPDRRPGVVACSRPNDLQADGAENAPADHFQDAHGEVP
ATNLCASLNRAGLADRSATREAIDISPPTLSGEDSKREAHGTVSSGIERDKDLAESKRRMMDY
VTPATAIGTIDIGALASRAVREARVIVQTTSEVDVLDDGYRWRKYGQKVVKGNPNPRSYYKCT
HPSCPVRKHVERASNDPKSVITTYEGRHTHEVPTDRNNGHPSSGHGGVAPPPAQGGGGIIPQY
TGAAAYGSIAQLGVADGFPFGVLPRGLALVPVPAQMMAGDPSAMQGSPRLVLQAREVKGNPAA
RPAGQSGTGPAAYQQLMSRLSQSPNM* 
>HvWRKY67_partial 
XRKRKSEPDGAAAAQTRPRRRMRASSGLTAARVEKRWTAEDGFIWRKYGQKEITHSKNPRLYF
RCTYKHDSGCPATRQVQQSDDDHSLYIITYFGDHTCCQGDDGAVAAAEEEDVKMQPFVINFGS
ATTASSTSGSPWQNSDDIDGRSEISRSPQAVCLPEGGGDELRVKVTKVETTSSDSQTAGPTAA
HLSPSAEVSCASPAWDPLSICLEWDQFVESSFDFVSEFINFDGIVL 
>HvWRKY68 
MEEQANAAATAAREGDLADVVARANAMVYSTGARRQPPPPPPSAPARVMIPYEERPANVACGG
GDGEVTLEASPSTVVVDPYLLVAAGGYGLLPQQQQQQHQHQPLLAFQISEHACCAAADSDDPM
RISPPPPAPHHQMIMRRNDVRKVVCIPAPPVMSNRAGGGGEVIPSDLWAWRKYGQKPIKGSPY
PRGYYRCSSSKGCLARKQVERSRSDPNMLVITYTAEHNHPWPMQRNVLAGYARAHTHAAAKKQ
HKISSSSTTDNAASSSSSNNFHVEQNNLIAGDQLPVNCMMPNSTAYAGDDGGGLVFEGIQPDE
VFAELEELEETDNCPMVIGANVYGSRGIIV* 
>HvWRKY69_partial 
ARGGGGRGGGGGGVGGGGGGGASGRHSTSGEVVPSDLWAWRKYGQKPIKGSPYPRGYYRCSSS
KGCPARKQVERSRTDPNMLVITYTSDHNHPWPTQRNALAGSTRPSSSSAARIAASSSSSSLAA
TAARNSSNTNVDVDCAGVHHQLKQESDLDLFADMDALNVFSSINKIQEDDSKQQLFDPFSSGF
CDYI 
>HvWRKY70 
MAAGRGPLQMPLDHEEAVMLSSDHCGLYPLPALPFGHGHSGAVVSKKPAVGFIPNIGAEEVGT
STVTARVGYEGATACNTWWRASTAGEKGKMKVRRKMREPRFCFQTRSDVDVLDDGYKWRKYGQ
KVVKNSLHPRSYFRCTHSNCRVKKRVERLSTDCRMVITTYEGRHTHPPCDDNSSSSGDNTTTC
F* 
>HvWRKY71_partial 
MGQESSRYPWQDYDLGFGEELMRELLDETAAAAPSPTPTAAGAGCADNSSSSNKGIGDDEEEG
GEGPAGRRRESMVNRLMSTVYSGPTLSDIESALSFTGAGAGDPLDGRGKYHYTPSSPVVFSPE
KVLGKMENKYTMKIKSCGNGLADDGYKWRKYGQKAIKNSPNPRSYYRCTNPRCNAKKQVERAV
DEPDTLVVTYEGLHLHYTYSHFLQHQTTPPPAAA 
>HvWRKY72 
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XSLQLAPQKSLTLDFTKPLKAPATAAAASVTSTSFFSSVTAGGDGSVSKGRGQMVSSGKPPLA
AGTKRKQQQQQTPCAIGAHSDAVAAVAGDRCHCSKKRKHRVKYTTRVPAVSSRTADIPGDDYS
WRKYGQKPIKGSPYPRCYYRCSTAKGCPARKHVERATDDPAMLVVTYEGEHRHDTSPPAAAN* 
>HvWRKY73_partial 
MEVCMETPFAQVTDDLIKGRELATQLQGLLRDSPKSGLIMDRILHAFSRSIHAAKAAVATSER
ASSDVQSEVIDGVSGGGKRKPASAAAGGNRRACRRSRTQQSSVVFTKSIKSLDDGHAWRKYGQ
KEIHNSKHSRAYFRCTHKYDQLCAAQRQVQRCDDDEGMFRVTYIGVHTCRDPAAAVAPHVLHL
TGTAEGMHAGRRPFRFVP 
>HvWRKY74_partial 
QQSSILYNELTLARAQNSYSITASAARSRGSTTMQAQSRLIMNPNVGVAGYDDSAAADEQHKA
VLRELTHGHELTAHLQAEALRALRGQGQAEATAALILQEVSRAFSVCISIMGGSAPAAPPPDA
TPVVATGAASARRPRDDGVPRKVTVTSSPYSDGYQWRKYGQKRIMRTSFPRCYYRCCYHRERS
CPATKLVQQQQPHGDGDQTMYNVIYVHEHTCDHAAPAEPAARGSAPAPLGFAAGQQRGGVGLD
RGSMEELERQALAAPPPCAPLARX 
>HvWRKY75 
MAGVACGGGDWPFSAEEAYADSSALLAEIGWAAGFVDDGCAGELLPPLDLPPATPAGSMEGAG
ASSSSTDDGATREAADADGRPAAATEAASKPAPAPAPGKAMKKQKRARQPRFAFMTKTEIDNL
EDGYRWRKYGQKAVKNSPFPRSYYRCTNNKCTVKKRVERSSEDPSVVITTYEGQHCHHTVTFP
RGAGAATLASQMAFSAHHHHLMYNDLPALHSPTAQNPLFSVSAMSSSLLQPLHCNRQELQVAS
YTAQTSSISSPGSVPAVDKGLLDDMVPPSMRHG* 
>HvWRKY76 
MQRSRGCAPGGEHGWAAADGGGMQLQRRERELVAQLHELLYPSTSPSRSGASSCSGLAAELYW
EHGSSQVKATASCGGGKRRGGRKRAREDERHEEGQGQRAGAATATKATTRCRRKKLGTTTRTL
VTTVPDFDGYQWRKYGQKQIEAAMHPRSYYRCTNSTNQGCPAKRTVQRNDDDGNDNGRPKYTV
VYISEHSCKSTESAAVPVILETTVRADTAAAPDVDVVPGSSSSAISSETQSPASSSDLTWSSG
GSEDGANPPPRARDDYSRLFAIEDECWWWNPSPAPAVAPALLQEMDFDGPIRSPVHVAAADGS
WINDLFVNEPPFVLNSCHLFAL* 
>HvWRKY77 
MEGGSQLGACLPSLYALDPYASPPLLAPLPNQHKLHQMPLVLQEQPGNHGVMFSSDHGGGLYP
LLPGIPFCHSAASLEKPTGFAPLGGTGEEFWAFSQAGTSAARAGNEIAATTTTTTTASCHGPS
SWWKGAEKGKMKVRRKMREPRFCFQTRSEVDVLDDGYKWRKYGQKVVKNSLHPRSYYRCTHSN
CRVKKRVERLSEDCRMVITTYEGRHTHTPCSDDDAGGDHTGSCTFTSF* 
>HvWRKY78_partial 
XPSGFFDSPGLIFSPAMGGFGMSHQQALAQVTAQASHSPLRMFDHTEQPSFSAAATSSGALQN
MSSAANVAEMSEMATTISNNEHAVFQSAEASHRYQVPAPVDKPADDGYNWRKYGQKVVKGSDC
PRSYYKCTHPSCPVKKKVEHAEDGQISEIIYKGKHNHQRPPNKRAKDGSSSAAEQNEQSNDTA
SGLSGVRRDQEAVYGMSEQLSGLSDGDDKDDGESRPNEIDDRESHCKRRNIQISSQKALTESK
IIVQTTSEVDLLDDGYRWRKYGQKVVKGNPHPRSYYKCTFAACNVRKHIERASSDPKAVITTY
EGKHNHEPPVGRGSNQNGGNSNRAQQKGQNSMSSNQASHARTDLGNINQGQIGVLQFKREE* 
>HvWRKY79 
MLAVDGAAAGVAGMPGGGPGGTAHSVSVSSTSSEAGLGGGGAVEDEAGKCKKEDGDGDGDDES
KEAAAVGGGDGDADKTKKGAAKGKGAAKVKGEKRPRQARFAFMTKSEVDHLEDGYRWRKYGQK
AVKNSPFPRSYYRCTTQKCPVKKRVERSYQDAAVVITTYEGKHIHPIPATLRGANHLLAAHAH
AHGGQGLIHPSMFRMPAPPGAAFRPGDALGSFLQQQHAAMQHQQQVAAAGMAMRQANAMAGGH
MQAPPADHRGLAGGTTGNNTHAISSSSSATDPLRMEHLMAQDYGLLQDMLMPPSSFAHSDNSN
NNHNRR* 
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>HvWRKY80 
MDADDWGLGAVVRSCGGTVVSGYEAESPRREAVRARDDPAEFVRRPARAASTPSSLYDVLEYL
DLEHEQLHQRAPFSITPSSGSDRAPDHHEVLISFPAAAASTSGQALPVKKQAGRKPGGAGAVR
RPKRGKSKKSQMKKVVREVPMAEGGVNGPDDQWAWRKYGQKPIKGSPYPRGYYKCSSMKSCTA
RKLVERSTAKPGVLLVTYIADHCHAVPTTISALAGTTRNPPQSPASDDTALNRGDDSADVSSS
AAGADDESELWSPVDMDDFFASFDDEFDNFFEDDALGRRVSLLTSDRQFGATRAYNGAKQGTS
SQHVNVVPVAARSVAAALVPIVQQTRVPNVGQGKKITTMLVALLASRNFDDTSSTFVVQGDKH
HDDVGEE* 
>HvWRKY81 
MASTSQPAMATAGSGHGDEQVQRQATWPEEADGGSQPLVMPEDGYQWKKYGQKFIKNIQKIRS
YFRCRDRRCGAKKKVEWQPGDPSLRVVYDGAHQHGSPSSSSSHGGGGGQDGDGNRYELSAQYF
GGGAPTPQAR* 
>HvWRKY82_partial 
XMKSPLIKTVTTTMLTDGKSWRKYGQKQINDSTRSYYRCTHKPDQGCQAKRHVQESESNPAEY
TIDYYGQHTCRDPSTFPSLIAQGAAAAAPPPDFANLISFAPINGSNRGFTASTSTSAFAHHLM
KEAADHHSMLFSRFSNHSSSPPAQEGVSSGSPSPACHGKFMQYAGGQFINVTGLSTSPLTVGS
APAEYWPVVGVAGVDMDAGAAMDSFASPPSSPGVLSRSLEGSFGNNVCHWR 
>HvWRKY83_partial 
XPPHAVADVAGTSGGPVRRLASSRSPPPAQPRQGRRRYVRELAQHVRRDSGHRETMLVPAHRV
GNTEIPPDDGYTWRKYGQKDILGSRFPRSYYRCTHKNYYGCDAKKKVQRLDDDPFMYEVTYCG
SHSCLTSTTPLLNFPTATATATNSPTAATGSSGLARADQFMAPAEQVAVSTSMHLGVGWMPVS
FQGVVAGSGAGRGSGADMLTNVSTAARDTDYPALDLADVMFNSGGGTGIGMDGIFSSHHRSDG 
>HvWRKY84 
MTRSKKPAPKSTTLSSPLLSSASAKLIMDSGDWGLEAVVRSCGGSTVVPGSEAEPEPPAARAR
RGVAARVEFVGQRMKVAASSSLYDVLEVPQPPFSITPSSASHERSMFFSLLSASTSRQTLPGR
KQAGRKPGAGAPTPRRPKRSKKNVVRLVPVADGGVNNSTVDDLWAWRKYGQKPIKGSPHPRRG
RLKNASLCRAYYKCSSLRACTARKLVDRSPAEPEALIVTYIDDHCHAVPVLINTLAGTAHHPP
KSPRGTTASGEAAPASREVDDADVPSSIAAELADDKSKLRARARVELDDFFGSFQFPQHRVFE
DVGDHV* 
>HvWRKY85_partial 
XACVNGRLRSGRNAAAVRAQVRVASMHDLGPLDDGLSWRKYGQKDILGATYPRAYFRCTHRHS
QGCQATKQVQRAHADPLLFDVYHGAHTCAQAAAALAGPEHQPPAA 
>HvWRKY86 
MAKELIRALWQHDWCHVCITPYVRYHWEREGGTELGFGRLPCTFPVVPLPEVSYKLSRIWHDQ
PIHSHSQHKLDNEKPEEKLVHDVLSSPVIGTAKFDRGSRGGETLAMALATPTAVVLELMTMGQ
QSAAHLGDLLRAASPPVRAEHQALAAEILRCCDRVIAAVSAGAAGKKRKAMDPGSHPHAHAAA
MPCKRRVRGAEAHREVHAGTTADGFAWRKYGQKDINGSNHPRLYYRCAFRGEGCAATRRVQRA
QEEPAAFVIAYYGEHTCGAAVCRQSAEPLPPSVVDSGSNARGIVGATAIDQNRGSPLLPAGDQ
HGAQRHGQAPCDTSRGWLSPSSSSYSSEEFLDGSFDWEWETVVNSLSYGDLLQ* 
>HvWRKY87 
MALGTPTAVVLELMTMGQQSAAHLGELLRAASPPVQAEHQALAAEIIRCCDRVIAAVTAVAAD
KKRKAMDPGATSRRPGPAAAMPSKRRVRGAEAHREVHAGTTADGFAWRKYGQKDINGSNHPRL
YYRCSSSGEGCAATRRVQRSQEDPAAFIIAYYGEHTCGAGLGDACQQQRAAPAPPTVVDTGSI
ARGIVGADDWNRNSPLLLPLSAEHSAHAAPGDTSRRWLSPSSSSSYSSEVEVELGASPVEEFL
DGNFDWEWETVVNSLRFGDLLQ* 
>HvWRKY88 
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MASSDSAGRDLPAARAAAAVNDLIEVREGAMRLKGMLQEQSSGFAELMDGILNKLSSALSALD
TGCTAGASASGASDGVIRARAESSTGRTRKRSFSRRLERSSGKRVTDTLVDGHIWRKYGQKEI
QNSTHPRSYYRCTHKSDQGCNAKRQVQICETHPIKYAVTYYGEHTCKAPSNTPMIIVPASGDR
ADNLVSFAPTLPQLLPATTQLSSSWCTSVDDVFSSSSDPFVQADELAVIVGSAGKTSSTVGSV
PDYSGSGIGDMARGGTGSFASSPSSLGFVVGSLGSIVDDDFFQFDP* 
>HvWRKY89_partial 
MAKGRKSAAALEALLPLQDHAGIRELTADILRCCDRALAALHDTGRKKRKSSPDGSAATQTTR
PKRRTRASRGETAAATTRVERKRNWDDGFLWTKYGQKDIRGSGHPRHYFRCAYKLDAGGCPAR
RQVQRSEEEEEDDPYLYVITYFGDHTCCHRGAEANATLDHVKTHYQSLVLGFX 
>HvWRKY90 
MHASPPPSLTPGHPMASPPHKRESFDFADPPAQEAMGSASASYSPPGGVFGLSAPESSRRDSR
KRRKDRPSWVKNTFTPHFDGHLWRKYGQKNIKDSVFPRCSYREDKQCLASKLVQQENHEDPPL
FKVTYTYEHTCNSAPVPTPDVVAELPAPATGDALFLRFDSTGAGHRDAHRIEQERHYQQPAAP
GSGWPSMMLSFDSNSQQHEQCTFPSELPPAASSSFSTEGLPAPPSTTDGGGDGFSTWDSLRYG
LNDHVHFGDHPYLPNSGNDGDDNY* 
>HvWRKY91 
MHAIFGLHDMMLDLIMHKCREENFITATDDIQDIIGLSDKVRRLSLYLDGIIDGTILETTQLS
QHLIVPWRTNLPDGIGNMKSLCTLQEFDVGLNSVDNIRDLGDLINLRDLRICHKLSNMDAHRL
DVLKCSLKKLCKLRYLHMDSNIKISYALSSLFLQRLHMLCLFPRVPTAIGELHNLFDLDLTIE
VLEDDIAVLAQLQSLNRLKLQIKGKHETEEKVLICRNGFPVLKRFWLFCKRMSQLTFEAGTMP
SLEKLEVRINSPYGAAPMGIEHLLGLKEILVIIRGYGANGSSTRAALSALRKAIDTRSSRPTA
NIMCVDNSLFRGLLDDGFSWKKYGQKDILGTKHPRGYFRCSRRESEGCRATKEVQRTDDCDEI
FDFEYKGKHTCTPSEQEQTIQPRIDLPVLWAP* 
>HvWRKY92 
MAMRPKTEMSPPPATPSPSDQRDAVIEELRKGSQLAEFLRQQVELIPEDRCRDAALANVSNIS
TALASSLSVLQSEKEQYCSSSSYDPGHASGASGGGVRNGPVARSRNRKAKHRRGTYGEDLPIK
EILTEAPENDRFHWRKYGEKKILHADFPRLYYRCGYSDEHKCPAKKYVQQQNSGDQPMFLVTL
INDHTCDTLFPDEDQDQPPSSPSSANNSQVLDFSKASLSSAVGVSRLKEEEDADMSVTVPSYN
YTYDELSSSSLPFLSPKQWEMEMDIKSLFRRHSGDGN* 
>HvWRKY93 
MTSNSMTVVHGGSEMDALLRRQQELVVQLRAIILPALCDADSRSADLAVDLFDGVIGCITGVI
SKLQSITTAGCEPAAILGDVISNGAGEGQEKKPVIRNAGQKRRRNNEKRSRSLVTIVPHYDGH
HWRKYGQKNINGRQHARTYYRCAYTKRNCSATKTIQRQDHNGSLNCEDETAKYIVVYYGHHSC
RADITRNAANIDPSVDLIQSGKMAGAVTDFEKFDQQDLDVSSLIEVFDNPELNWDIIC* 
>HvWRKY94 
MKHIKKSSSSSRLFCDDDRSAAALREMAREQSLVTQLRAVVLPAIQLAGGERAEVVAQMFESI
LDCSAKAIAALKLLRLDHSQVDDEVLLTAMVDDKTRVRKIVPGDGGKDGDDNAKPLRPQAKAR
NTTCIIRRLGDDSVALETPVPHYDGHQWRKYGQKIINHTKHPRSYYKCTYKQEQDCKATKTVQ
QQQQQQDGGIEDEPVMYAVVYYGQHTCKPGQTDAAVVQTASSGRFGEGGGEELARSNSCSNIS
VTCSSVVVDNHQLMTASLESCCNLLDMAGDMATAEVNQYDQLFDVASFSPFDSGTAWAMDVSE
HGLQKFGGW* 
>HvWRKY95 
MGEVRKENERLKTVLSRMVEDHRSLQKRFDVLQQQEHGKNLVVGSPEHTLPANSVKDPRSDGS
EMKVRPDVLTLSPVGSSEEDATEMPTTSLASKTLKNLRRTDAEDDEREWKFKWVYDLNVWFVG
REMNDGCQWRKYGQKISKGNSCPRAYYRCTVGTGCPLRKQGSRTEEPAMARRGQLADSRVFGC
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GGGSVSTTEWHECGGSDSEIDRSLASSLGRVGASGKVESKAWTTGCRRLSCLGMYGIAIGCSL
ADRIETSLPDMLVADRGLECRILEKAMVGFGLG* 
>HvWRKY96_partial 
MRKARVSVRARSEAAMISDGCQWRKYGQKMAKGNPCPRAYYRCTMAAGCPVRKQVQRCAEDRT
VLITTYEGNHNHPLPPAAPG 
>HvWRKY97_partial 
KGILTETPENDGFHWRKYGEKKILNAVFPRSYYRCGYSDEHECPAKKHVQQQNNSDPPMFIVT
LFNDHTCSALFPANEQLPSTSNSATANSQVLDFTKASLSSAPGISRLKKEDGAGLSVTVPSYT
YDELSSYSSLPLLSPTEWKMEMEIKSFFHHHTGGGRSGRILLGVKCETLEDQNVVFGDFVVKF
RVRSKLDGFRWALVSMYGAAQPDLKTDFLADMVLRGWAKNESGLYRVEKERLLNLINELDVKV
ESTLLDAAEWASKREAEGKLRAKGRRDEMGAKIIS 
>HvWRKY98_partial 
RNNEKRSRSLVTIVPHYDGHHWRKYGQKNINGRQHARSYYRCAYTERNCSTTKTIQQQDHNGT
LNCEDETAKYIVVYYGHHSCRADITRNAANIDPSVDLIQSGKMAGAVTDFEKFDQQDLDVSSL
TEVFDNPELNWDIIC 
>HvWRKY99 
MTGLLAPDRIAMACITMLLSWTVWNERNSRVFRNKGAPPPVLLRAICDKANLGYRGAKQLGNI
IRRRTTKMHVSWQDGSLLSRACKQPDTLTSPENVTAKHMDHSKNCGHGLTEIVALIQREQELV
TQLRALILPQLHNVDSRSAELAVQLFDDVIGCSTSVVTKLFSAGSGSRATIEVIDDKSLVRKN
STSTAAADIDDKMEEQARPSSIVGRKRRRNDDKQSRSLVTNAPHYDGHQWRKYGQKNINGRQH
ARSYYRCTYTERNCSATKTVQQQDQDGGSSIYSTDDCEVRGAKYTVVYYGDHTCKDGDNISNN
IIDHLPNLVDIDLPRGETERVTEEISEFEVDLDVPALLEVFNNSQLNWEIVC* 
>HvWRKY100_partial 
MDDALSQISEAFRLAGELTGELRATQKGPAYIAARCHGIVHAYNRAIRMLERYGMGGVAAAAP
RRLDAGPLDTPRLRSTDEAVASQFLGDTPTHLPHRQEPFHMEAGVLGARVAPPHTMCAAAGTS
GGPMRRLPSSRSPPPVQPRQGRRRRESGQKELVLVTAQGTGNTELPPDDGYTWRKYGQKDILG
SRYP 
>HvWRKY101_partial 
REETKGKGTARGRGSRKASRPRFAFQTKSEKDVLDNGYRWRKYGQKAVKNNAFP 
>HvWRKY102_partial 
MVELDWSSMFQMGPVAPPEQKEEQAAQADRTQGGENDGEAGGSGSGGKDREKAEGSAGRSGKK
KVSKPRFAFQTRSENDILDDGYRWRKYGQKAVKNSSNPSFLYRYSHAAFACPIAFVLVRLGTE
LEAEDVQEAQRPRTTESAAMPCM 
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Appendix 2 
Appendix 2.1 Multiple alignment of barley WRKY domains.  
The alignment of conserved WRKY domains spanning ca. 60 aa is performed by 
MUSCLE. Subgroups including representatives from AtWRKYs are indicated. 1-N 
and 1-C represent the N-terminus and C-terminus WRKY domain of group I 
respectively. 
 

Group IIa 
HvWRKY2         DGYQWRKYGQKV-TKDNPCPRAYFRCSSA---PSCQVKKKVQRSAEDKTVLVATYD-GDHNHAP 
HvWRKY23        DGYQWRKYGQKV-TKDNPCPRAYFRCSFA---PSCQVKKKVQRSAEDKTVLVATYD-GDHNHAP 
HvWRKY1         DGYQWRKYGQKV-TKDNPCPRAYFRCSFA---PGCPVKKKVQRSAEDKTILVATYE-GEHNHTQ 
HvWRKY3         DGYQWRKYGQKV-TRDNPSPRAYFRCAFA---PSCPVKKKVQRSAEDSSMVEATYE-GEHNHPR 
HvWRKY54        DGYQWRKYGQKV-TRDNPSPRAYFRCAFA---PSCPVKKKVQRSAEDSSVVEATYE-GEHNHQR 
AtWRKY40        DGYQWRKYGQKV-TRDNPSPRAYFKCACA---PSCSVKKKVQRSVEDQSVLVATYE-GEHNHPM 
HvWRKY65        DGYQWRKYGQKV-TRDNPHPRSYFRCAFA---PSCPVRKKVQRDAEDTSKLVATYE-GEHNHAR 
AtWRKY18        DGFQWRKYGQKV-TRDNPSPRAYFRCSFA---PSCPVKKKVQRSAEDPSLLVATYE-GTHNHLG 
AtWRKY60        DGYQWRKYGQKI-TRDNPSPRAYFRCSFS---PSCLVKKKVQRSAEDPSFLVATYE-GTHNHTG 
 

Group IIb 
HvWRKY37        DGCQWRKYGQKI-SKGNPCPRAYYRCTVA---PSCPVRKQVQRCADDMSILITTYE-GTHSHPL 
HvWRKY48        DGCQWRKYGQKI-SKGNPCPRAYYRCTVA---AGCPVRKQVQRCAEDMSILITTYE-GAHNHQL 
HvWRKY59        DGCQWRKYGQKV-AKGNPCPRAYYRCTVA---PACPVRKQVQRCQEDMSILITTYE-GTHNHPL 
HvWRKY57        DGCQWRKYGQKM-AKGNPCPRAYYRCTMA---TGCPVRKQVQRCAEDRTILITTYE-GTHNHPL 
AtWRKY6         DGCQWRKYGQKM-AKGNPCPRAYYRCTMA---TGCPVRKQVQRCAEDRSILITTYE-GNHNHPL 
 

Group I-N 
HvWRKY35N       DGYNWRKYGQKA-VKGGKCPRSYYKCTLN-----CPVRKNVEHSADGR-IIKIVYR-GQHCHEP 
HvWRKY49N       DGYNWRKYGQKA-VKGGEYPRSYYKCTQA---S-CPVKKRVEHSAYGQ-ITQIIYR-GQHNHQR 
HvWRKY78N       DGYNWRKYGQKV-VKGSDCPRSYYKCTHP---S-CPVKKKVEHAEDGQ-ISEIIYK-GKHNHQR 
HvWRKY6N        DGFNWRKYGQKQ-VKSSDNSRSYYRCTNS---S-CLAKKKVEHCPDGR-IIEIIYR-GTHSHEP 
HvWRKY42N       DGYNWRKYGQKQ-VKSSEHPRSYYKCTHP---D-CPVKKKVERSQDGQ-ITEIVYK-SSHNHPL 
HvWRKY66N       DGYNWRKYGKKQ-VKNSGHPTNYYKCSHQ---N-CPVKKKVEHCQDGD-ITEIVYK-GSHNHPL 
HvWRKY40N       DGYNWRKYGQKQ-VKGSEFPRSYYKCTHP---T-CPVKRKVETTVDGQ-IAEIVYN-GEHNHPQ 
HvWRKY51N       DGYNWRKYGQKQ-VKGSENPRSYYKCTFP---N-CPTKKKVETSLEGQ-ITEIVYK-GTHNHAK 
AtWRKY33N       DGYNWRKYGQKQ-VKGSENPRSYYKCTFP---N-CPTKKKVERSLEGQ-ITEIVYK-GSHNHPK 
HvWRKY43N       DGYNWRKYGQKQ-MKGSENPRSYYKCSFA---G-CPTKKKVEQAPDGQ-VTEIVYK-GTHNHPK 
HvWRKY46N       DGYNWRKYGQKH-VKGSENPRSYYKCTHP---N-CEVKKLLERAVDGL-ITEVVYK-GRHNHPK 
HvWRKY52N       DGYSWRKYGQKQ-VKHSEYPRSYYKCTHP---S-CQVKKKVERSHEGH-VTEIIYK-GTHNHPR 
HvWRKY58N       DGYNWRKYGQKQ-LKDAESPRSYYKCTRD---A-CPVKKIVERSFDGC-IKEITYK-GRHTHPR 
AtWRKY1N        DGYNWRKYGQKL-VKGNEFVRSYYRCTHP---N-CKAKKQLERSAGGQ-VVDTVYF-GEHDHPK 
 

Group I-C 
HvWRKY35C       DGYRWRKYGQKV-VRGNPHPRSYYKCTYQ---G-CDVKKHVERSSQEPHAVITTYE-GKHTHDV 
HvWRKY49C       DGYRWRKYGQKV-VKGNPHPRSYYKCTYQ---G-CDVKKHIERCSQDPTSVITTYE-GKHSHDV 
HvWRKY42C       DGYRWRKYGQKV-VKGNPNPRSYYKCTHQ---G-CSVRKHVERASHDLKSVITTYE-GKHNHEV 
HvWRKY52C       DGYRWRKYGQKV-VKGNPNPRSYYKCTHP---G-CSVRKHVERASHDLKSVITTYE-GKHNHEV 
HvWRKY46C       DGYRWRKYGQKV-VKGNPNPRSYYKCTST---G-CPVRKHVERASHDPKSVITTYE-GKHNHEV 
HvWRKY66C       DGYRWRKYGQKV-VKGNPNPRSYYKCTHP---S-CPVRKHVERASNDPKSVITTYE-GRHTHEV 
HvWRKY51C       DGYRWRKYGQKV-VKGNPNPRSYYKCTTV---G-CPVRKHVERASHDLRAVITTYE-GKHNHDV 
AtWRKY33C       DGYRWRKYGQKV-VKGNPNPRSYYKCTTI---G-CPVRKHVERASHDMRAVITTYE-GKHNHDV 
HvWRKY43C       DGYRWRKYGQKV-VKGNPNPRSYYKCTTP---N-CPVRKHVERASQDLRAVVTTYE-GKHNHDV 
HvWRKY58C       DGYRWRKYGQKV-VKGNPRPRSYYKCTAE---N-CNVRKQIERASTDPRCVLTTYT-GRHNHDP 
HvWRKY78C       DGYRWRKYGQKV-VKGNPHPRSYYKCTFA---A-CNVRKHIERASSDPKAVITTYE-GKHNHEP 
AtWRKY1C        DGYRWRKYGQKS-VKGSPYPRSYYRCSSP---G-CPVKKHVERSSHDTKLLITTYE-GKHDHDM 
HvWRKY6C        DGYRWRKYGQKI-VKGNPNPRSYYRCTHD---G-CPVRKHVERAPDDINNMVVTYE-GKHNHGQ 
HvWRKY40C       AAFRWRKYGQKA-VNGNSFPRSYYRCSTA---R-CNARKFVERSSD--NSLVTTYE-GKHNHAQ 
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Group IIc 
HvWRKY17        DGFKWRKYGKKA-VKNSPNPRNYYRCSAE---G-CGVKKRVERDRDDPRYVVTTYD-GVHNHAT 
HvWRKY50        DGFRWRKYGKKA-VKSSPNLRNYYRCSAD---G-CGVKKRVERDRDDPRYVLTTYD-GVHNHVA 
HvWRKY16        DGFKWRKYGKKA-VKNSPNPRNYYRCSTE---G-CNVKKRVERDREDHRYVITTYD-GVHTHPL 
HvWRKY5         DGYRWRKYGKKM-VKNSPNPRNYYRCSSE---G-CRVKKRVERDRDDERFVITTYD-GVHNHLA 
HvWRKY19        DGYKWRKYGKKS-VKNSPNPRNYYRCSTE---G-CSVKKRVERDRDDPAYVVTTYE-GTHSHAS 
HvWRKY20        DGYKWRKYGKKS-VKNSPNPRNYYRCSTE---G-CDVKKRVERDRDDPAYVVTTYE-GTHSHAS 
HvWRKY18        DGYKWRKYGKKS-VKNSPNPRNYYRCSTE---G-CNVKKRVERDKDDANYVVTMYE-GVHNHAS 
HvWRKY70        DGYKWRKYGQKV-VKNSLHPRSYFRCTHS---N-CRVKKRVERLSTDCRMVITTYE-GRHTHPP 
HvWRKY77        DGYKWRKYGQKV-VKNSLHPRSYYRCTHS---N-CRVKKRVERLSEDCRMVITTYE-GRHTHTP 
HvWRKY14        DGYKWRKYGQKV-VKNTQHPRSYYRCTQD---K-CRVKKRVERLAEDPRMVITTYE-GRHVHSP 
HvWRKY15        DGYRWRKYGQKA-VKNSPFPRSYYRCTNS---K-CTVKKRVERSSEDPTVVITTYE-GQHCHHQ 
HvWRKY75        DGYRWRKYGQKA-VKNSPFPRSYYRCTNN---K-CTVKKRVERSSEDPSVVITTYE-GQHCHHT 
HvWRKY53        DGYRWRKYGQKA-VKNSPYPRSYYRCTTQ---K-CVVKKRVERSFQDTAVVITTYE-GKHTHPI 
HvWRKY79        DGYRWRKYGQKA-VKNSPFPRSYYRCTTQ---K-CPVKKRVERSYQDAAVVITTYE-GKHIHPI 
AtWRKY8         DGYRWRKYGQKA-VKNSPYPRSYYRCTTQ---K-CNVKKRVERSYQDPTVVITTYE-SQHNHPI 
HvWRKY62        DGYRWRKYGQKA-VKNSPYPRSYYRCTTP---K-CGVKKRVERSYQDPSTVITTYE-GQHTHHS 
HvWRKY60        DGYRWRKYGQKA-VKNSSFPRSYYRCTAA---R-CGVKKLVERSQQDPSTVVTTYE-GRHGHPS 
HvWRKY12        DGYRWRKYGQKA-VKNNNFPRSYYRCTHQ---G-CNVKKQVQRLSRDEGVVVTTYE-GTHTHPI 
HvWRKY13        DGYRWRKYGQKA-VKNSAFPRSYYRCTHH---T-CNVKKQVQRLAKDTSIVVTTYE-GVHNHPC 
HvWRKY81        DGYQWKKYGQKF-IKNIQKIRSYFRCRDR---R-CGAKKKVEWQPGDP-SLRVVYD-GAHQHGS 
HvWRKY36        DGYRWRKYGQKF-IKNNPHPRSYYKCTSA---R-CSAKKHVEKSTDDPEMLIVTYE-GSHLHGP 
HvWRKY71        DGYKWRKYGQKA-IKNSPNPRSYYRCTNP---R-CNAKKQVERAVDEPDTLVVTYE-GLHLHYT 
 

Group IId 
HvWRKY7         DEYSWRKYGQKP-IKGSPYPRGYYKCSTV---RGCPARKHVERALDDPAMLVVTYE-GEHRHSP 
HvWRKY10        DDFSWRKYGQKP-IKGSPYPRGYYKCSTV---RGCPARKHVERDPSDPSMLIVTYE-GEHRHSP 
HvWRKY9         DEFSWRKYGQKP-IKGSPHPRGYYKCSSV---RGCPARKHVERCVDDPAMLIVTYE-GDHNHNR 
HvWRKY61        DEYSWRKYGQKP-IKGSPHPRGYYKCSSV---RGCPARKHVERCVDDPSMLIVTYE-GEHNHTR 
HvWRKY8         DEYSWRKYGQKP-IKGSPHPRGYYKCSTV---RGCPARKHVERCVDEPAMLIVTYE-GEHSHNR 
AtWRKY7         DEFSWRKYGQKP-IKGSPHPRGYYKCSSV---RGCPARKHVERALDDAMMLIVTYE-GDHNHAL 
HvWRKY63        DKYSWRKYGQKT-IKGSPHPRCYYRCGTV---KGCPARKHVERATDDPAMHLVTYE-GDHRHDT 
HvWRKY72        DDYSWRKYGQKP-IKGSPYPRCYYRCSTA---KGCPARKHVERATDDPAMLVVTYE-GEHRHDT 
HvWRKY11        DNYSWRKYGQKP-IKGSPHPRGYYRCSSI---KDCPARKHVERCRGDAGMLIVTYE-NDHNHAQ 
 

Group IIe 
HvWRKY56        DLWAWRKYGQKP-IKGSPYPRGYYRCSSS---KGCPARKQVERSRTDPNMLVITYT-SEHNHPW 
HvWRKY69        DLWAWRKYGQKP-IKGSPYPRGYYRCSSS---KGCPARKQVERSRTDPNMLVITYT-SDHNHPW 
HvWRKY68        DLWAWRKYGQKP-IKGSPYPRGYYRCSSS---KGCLARKQVERSRSDPNMLVITYT-AEHNHPW 
HvWRKY39        DSWAWRKYGQKP-IKGSPYPRGYYRCSSS---KGCPARKQVERSRTDPTVLLVTYS-YDHNHPW 
HvWRKY45        DSWAWRKYGQKP-IKGSPFPRAYYRCSSS---KGCPARKQVERSQADPDTVLITYS-YEHNHSS 
AtWRKY29        DAWAWRKYGQKP-IKGSPYPRSYYRCSSS---KGCLARKQVERNPQNPEKFTITYT-NEHNHEL 
HvWRKY44        DPWAWRKYGQKP-IKGSPYPRGYYRCSTD---KACEARKMVERCRDDPNSFILTYTGGEHSHPA 
AtWRKY22        DVWAWRKYGQKP-IKGSPYPRGYYRCSTS---KGCLARKQVERNRSDPKMFIVTYT-AEHNHPA 
AtWRKY27        DLWAWRKYGQKP-IKGSPYPRNYYRCSSS---KGCLARKQVERSNLDPNIFIVTYT-GEHTHPR 
HvWRKY55        DLWAWRKYGQKP-IKGSPYPRGYYKCSSM---KGCMARKLVERSPAKPGVLVITYM-AEHCHPV 
HvWRKY80        DQWAWRKYGQKP-IKGSPYPRGYYKCSSM---KSCTARKLVERSTAKPGVLLVTYI-ADHCHAV 
HvWRKY84        DLWAWRKYGQKP-IKGSPHPRAYYKCSSL---RACTARKLVDRSPAEPEALIVTYI-DDHCHAV 
 

Group III 
HvWRKY4         DGKTWRKYGQKC-IHACTNPRSYYRCSHKPDQ-GCQATRQVQESD-SNPSEYLISYYGQHTCKD 
HvWRKY82        DGKSWRKYGQKQ-INDST--RSYYRCTHKPDQ-GCQAKRHVQESE-SNPAEYTIDYYGQHTCRD 
HvWRKY88        DGHIWRKYGQKE-IQNSTHPRSYYRCTHKSDQ-GCNAKRQVQICE-THPIKYAVTYYGEHTCKA 
HvWRKY31        DGLIWRKYGQKE-IHNSTHPRLYFRCTYKHDS-GCPATRQVQQSE-DDPSLYVITYFGDHTCCQ 
HvWRKY67        DGFIWRKYGQKE-ITHSKNPRLYFRCTYKHDS-GCPATRQVQQSD-DDHSLYIITYFGDHTCCQ 
HvWRKY32        DGQTWRKYGQKE-IQNSKHSKAYFRCTHKYDQ-QCPARRQAQRCD-EDPDTYRVTYIGVHTCQD 
HvWRKY73        DGHAWRKYGQKE-IHNSKHSRAYFRCTHKYDQ-LCAAQRQVQRCD-DDEGMFRVTYIGVHTCRD 
AtWRKY70        DAFSWRKYGQKE-ILNAKFPRSYFRCTHKYTQ-GCKATKQVQKVE-LEPKMFSITYIGNHTCNT 
HvWRKY26        DGLSWRKYGQKD-ILGATYPRAYFRCTHRHSQ-GCQATKQVQRAH-ADPLLFDVVYHGAHTCAQ 
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HvWRKY85        DGLSWRKYGQKD-ILGATYPRAYFRCTHRHSQ-GCQATKQVQRAH-ADPLLFD-VYHGAHTCAQ 
HvWRKY27        DGLSWRKYGQKD-ILGATYPRAYFRCTHRHTQ-GCQATKQVQRTH-ADPLLFEVAYHGEHTCVQ 
HvWRKY21        DGFSWRKYGQKD-ILGAMYPRAYFRCTHRHTQ-GCYASKQVQRAH-GDPLLFDVVYHGNHTCAQ 
HvWRKY29        DGMSWRKYGQKG-ILGATYPRSYFRCTHRHTQ-GCAATKQVQRAT-ADPLLFDVVYVGAHTCAG 
HvWRKY22        DGHSWRKYGQKD-ILGAKHPRGYYRCTHRKSQ-GCAATKQVQRAD-EDPTLFDVIYHGEHTCVH 
HvWRKY28        DGHSWRKYGQKD-ILGAHHPRAYYRCTYQKTQ-GCAATKQVQRAD-EDPALFDVIYHGEHTCLH 
HvWRKY30        DGHSWRKYGQKD-ILGAKHPRAYYRCTHRNSQ-GCTATKQVQRAD-EDPVLFDVVYHGQHTCRP 
HvWRKY24C       DGYSWSKYGQMD-ILGSKHPRCYYRCVHKHDK-GCQATKQVQRSD-SDTQLFDIVYHGEHTCAE 
HvWRKY91        DGFSWKKYGQKD-ILGTKHPRGYFRCSRRESE-GCRATKEVQRTD-DCDEIFDFEYKGKHTCTP 
HvWRKY47        DGFSWRKYGQKD-ILGAKFPRGYYRCTYRNAQ-GCAATRQVQRSD-ADLAVFDVTYQGAHTCLQ 
AtWRKY53        DVFSWRKYGQKD-ILGAKFPRSYYRCTHRSTQ-NCWATKQVQRSD-GDATVFEVTYRGTHTCSQ 
AtWRKY30        DGFSWRKYGQKD-ILGAKFPRGYYRCTYRKSQ-GCEATKQVQRSD-ENQMLLEISYRGIHSCSQ 
HvWRKY24N       DGFSWRKYGQKD-ILGSRYPRRYYRCKHRLTQ-GCEAVKQLQATD-GDPLLFNAMYVGNHICIQ 
HvWRKY25N       DGFSWRKYGQKDNIFGSKYPRGYYKCNH--AR-GCPARKELQATD-GDPLLFDATYVGNHTCAH 
HvWRKY86        DGFAWRKYGQKD-INGSNHPRLYYRCAFR-GE-GCAATRRVQRAQ-EEPAAFVIAYYGEHTCGA 
HvWRKY87        DGFAWRKYGQKD-INGSNHPRLYYRCSSS-GE-GCAATRRVQRSQ-EDPAAFIIAYYGEHTCGA 
HvWRKY33        DGHQWRKYGEKK-INNCNFPRYYYRCTYKDNM-NCPATKQIQQKDHSDPPLYQVTYYNEHSCNS 
HvWRKY34        DGHQWRKYGEKK-LSNSNFPRFYYRCTYKTDL-KCPATKQVQQKDMSDPPLFTVTYFNHHSCNT 
HvWRKY90        DGHLWRKYGQKN-IKDSVFP----RCSYREDK-QCLASKLVQQENHEDPPLFKVTYTYEHTCNS 
HvWRKY92        DRFHWRKYGEKK-ILHADFPRLYYRCGYSDEH-KCPAKKYVQQQNSGDQPMFLVTLINDHTCDT 
HvWRKY97        DGFHWRKYGEKK-ILNAVFPRSYYRCGYSDEH-ECPAKKHVQQQNNSDPPMFIVTLFNDHTCSA 
HvWRKY64        DGFQWRKYGQKV-IRGNAFPRCYYRCTYHQDH-GCSASKHVEQHNSADPPLFRVVYTNDHTCSG 
AtWRKY38        DGYLWRKYGQKS-IKKSNHQRSYYRCSYNKDH-NCEARKHEQKIK-DNPPVYRTTYFGHHTCKT 
AtWRKY62        DGFLWRKYGQKQ-IKESEYQRSYYKCAYTKDQ-NCEAKKQVQKIQ-HNPPLYSTTYLGQHICQL 
HvWRKY83        DGYTWRKYGQKD-ILGSRFPRSYYRCTHKNYY-GCDAKKKVQRLD-DDPFMYEVTYCGSHSCLT 
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Appendix 2.2   
Phylogenetic tree of barley WRKY family The multiple alignment is shown in appendix 
2.1. Subgroups are indicated on the right side.  
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Appendix 3  List of primers used in this study. 

Introduced restriction sites are bold italicized. 
 

Primers Sequences (5'-3') 
HvWRKY2Sal_F ACGCGTCGACACATCGAGGAGCAGTGGA 

HvWRKY2Hind_R CCCAAGCTTGCTGGGAGATTTCCGATCA- 
pET-W1EcoRI5 CGGAATTCATGGATCCATGGATGGGCAG 
pET-W1SalI3 ACGCGTCGACTTAATTGATGTCCCTGGTCG 
AtW40Bam_F GCGGGATCCATGGATCAGTACTCATCCTC 
AtW40Hind_R CCCAAGCTTCTATTTCTCGGTATGATTC 

pHvW1Bam_F1 GCGGGATCCAACGTGACGGGGAGGAA 
pHvW1Bam_F2 GCGGGATCCGCTGAGTGAATTTATTTTGAACG 
pHvW1EcoR_R CCGGAATTCTGGTCCCTCAAACACCAC 
pHvW2Bam_F GCGGGATCCCGGCCGTTTTGATTAGTGTT 
pHvW2Hind_R CCCAAGCTTGTCTTCCTCGAATTCACGGT 

HvW3Bam CGCGGATCC ATGGAAACGG CGCGGTGGT 
HvW3EcoRI CCGGAATTCCTAATAATCC GGCAGCTTCC GC 
HVW23SmaI TCCCCCGGGATGGACGAGCAGTGGATGAT 
HvW23HindIII CCCAAGCTTTCAGCTATTGGACGGCGACAG 

HvW2-394ImiR-s AGTTCAGACGTAGTCACCGACTACAGGAGATTCAGTTTGA 
HvW2-394IImiR-a TGTAGTCGGTGACTACGTCTGAACTGCTGCTGCTACAGCC 
HvW2-394IIImiR*s CTTAGTCCGTGTCTACGTCTGAATTCCTGCTGCTAGGCTG 
HvW2-394IVmiR*a AATTCAGACGTAGACACGGACTAAGAGAGGCAAAAGTGAA 

amiRPCR4_F ACACGGCCGTATCTAGATACCGCTGCTGATGCTGATG 
amiRPCR4_R GCCGCTCTAGAACTAGTGGATCCC 

M13_R TCACACAGGAAACAGCTATGAC 
M13_F CGCCAGGGTTTTCCCAGTCACGAC 

pGY1fwd2 CGTTCCAACCACGTCTTCAA 
NosT ATTGCCAAATGTTTGAACGA 

term35S-R GCTCAACACATGAGCGAAAC 
T7Prom TAATACGACTCACTATAGGG 
T7 term ATCCGGATATAGTTCCTCCTTTC 

HvUbi60deg_fF ACCCTCGCCGACTACAACAT 
HvUbi60deg_R CAGTAGTGGCGGTCGAAGTG 

RT04837WRKY2rev CGTGGACGTAGACCTTGGAG 
UBI-Prom5'UTR AACCAGATCTCCCCCAAATC 

HvW2_F AACAACCACCACCAGTCGTT 
HvW2_R TCACCTTCTGCCCGTACTTC 
RT9-10_F GACGAGGGACCCCAGCTTCAA 
RT9-10_R CATGGAAATTATGGAACGGAACATTTG 
HvPR1b-F GGACTACGACTACGGCTCCA 
HvPR1b -R GGCTCGTAGTTGCAGGTGAT 
HvPR2_F TCTACAGGTCCAAGGGCATC 
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HvPR2_R GATGTTCACGGCAGGGTAGT 
HvPR5_F CAAATTCACCACCACTGCAC 
HvPR5_R GTGTAGGAGCACCGGTTGAC 
HvNH1_F CAGGTCGACAACCCTTTCAT 
HvNH1_R GGATCCTTGTAGAGCTCGTCCAT 

IGS_F GCTTGCCTTAGCATCCTCAC 
IGS_R GGTAGCACAGCAGCAATCAA 

HvBI-1_F GTCCCACCTCAAGCTCGTTT 
HvBI-1_R ACCCTGTCACGAGGATGCTT 

synaptotagmin_F AGTTCCAGTTCGTGGTGGAC 
synaptotagmin_R CCTGGAGTTGATGAGGTGGT 

XI_F CACAACACAAGCCCAAAATG 
XI_R CGGAGAGGTCAAAGACCAGT 

Egh16_for GTGTGCCGGTACAAATGATG 
Egh16_rev GCTTCCTTTCCAGCTTCCTT 
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Appendix 4 

Maps of vectors generated in this study 

pET-32a-HvWRKY2 
6878 bp

SalI - 580 - G'TCGA_C

HindIII - 1564 - A'AGCT_T

la
cI

 

Trx His

bla

T7

M
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(
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4
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Appendix 4.1 Vector map of pET32a-HvWRKY2 

pGY1-GFP-amiRWRKY2
4504 bp

EagI - 4504 - C'GGCC_G

amiR-WRKY2

GFP

C
aM

V
35

S

CaMVTerm.

bla

 
Appendix 4.2 Vector map of pGY1-GFP-amiRWRKY2 



Appendix 4 

 141

pGY1-mCherry
4213 bp

EagI - 715 - C'GGCC_G

NcoI - 4213 - C'CATG_G

mCherryCaMV35S

C
aM

V
Term

.

bla

 
Appendix 4.3 Vector map of pGY1-mCherry 
 

pUbi::AtWRKY40
5636 bp

HindIII - 415 - A'AGCT_T

HindIII - 915 - A'AGCT_T

BamHI - 5636 - G'GATC_C

U
bi

-in
tIn

tron

N
os-T

Amp
ColE1

AtWRKY40

 
Appendix 4.4 Vector map of pUbi::AtWRKY40 
(The plasmid pDONR-AtWRKY40 was kindly provided by Dr. Imre E. Somssich) 
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