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Abstract
Iron oxide nanoparticles (IONPs) have emerged as a promising alternative to con-
ventional contrast agents (CAs) for magnetic resonance imaging (MRI). They have 
been extensively investigated as CAs due to their high biocompatibility and excel-
lent magnetic properties. Furthermore, the ease of functionalization of their surfaces 
with different types of ligands (antibodies, peptides, sugars, etc.) opens up the pos-
sibility of carrying out molecular MRI. Thus, IONPs functionalized with epithelial 
growth factor receptor antibodies, short peptides, like RGD, or aptamers, among 
others, have been proposed for the diagnosis of various types of cancer, including 
breast, stomach, colon, kidney, liver or brain cancer. In addition to cancer diagnosis, 
different types of IONPs have been developed for other applications, such as the 
detection of brain inflammation or the early diagnosis of thrombosis. This review 
addresses key aspects in the development of IONPs for MRI applications, namely, 
synthesis of the inorganic core, functionalization processes to make IONPs biocom-
patible and also to target them to specific tissues or cells, and finally in vivo studies 
in animal models, with special emphasis on tumor models.
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1  Introduction

Magnetic resonance imaging (MRI) is one of the main in vivo imaging modalities, 
along with positron emission tomography (PET), computed tomography (CT) and 
ultrasound imaging. MRI is the most versatile of all of these, being able to provide 
both anatomical and functional information with excellent image quality, and, most 
importantly, using non-ionizing radiation, which allows longitudinal studies to be 
performed without the risk of side effects. The MRI signal comes from the radiof-
requency signal of protons magnetized by an external magnetic field. These protons 
originate mainly from water molecules. The application of radiofrequency pulses is 
used to excite the magnetization, and magnetic field gradients are used to provide 
spatial localization. Contrast in MRI reflects differences in signal intensity, which 
depends on the concentration of water molecules within the tissue, the relaxation 
times, T1 and T2, of the water protons and the mobility of the water molecules (dif-
fusion, flow) [1]. Additionally, image contrast can be further enhanced using con-
trast agents (CAs), with Gd-chelates being used most commonly in clinical prac-
tice. However, CAs lack specificity and have recently been related to toxicity issues 
caused by the unexpected release of free Gd. Magnetic nanoparticles have emerged 
as a promising alterative with improved properties in terms of specificity and bio-
compatibility. Over the past two decades, many studies have aimed at the develop-
ment of new magnetic nanomaterials that can serve to improve the diagnosis and 
treatment of many different diseases. Among these nanomaterials, iron oxide nano-
particles (IONPs) have been investigated most extensively as CAs for MRI due to 
their magnetic properties, that is, the superparamagnetism that leads to very high 
relaxivity, their high biocompatibility, since they can be incorporated into iron 
metabolism, and also the easy functionalization of their surfaces with target mol-
ecules for molecular imaging purposes [2].

The first step in the development of IONPs is synthesis of the magnetic core, 
for which many different methods have been proposed, all aiming at strict con-
trol of the size, shape and magnetic properties, so that the synthesis process can 
be performed under highly reproducible conditions, which is one of the essential 
requirements for the potential clinical translation of these new nanomaterials [3]. 
Functionalization of magnetic nanoparticles is then needed to make them soluble 
in aqueous media and to provide them with stability and biocompatibility [4]. 
Further functionalization may include the addition of different molecules to target 
specific tissues or cells [5]. The most relevant functionalization strategies will be 
discussed in detail in this review. Finally, the in vivo characterization of IONPs 
is the most critical aspect in the development of IONPs for biomedical applica-
tions. Although many new nanomaterials show excellent in vitro properties, most 
of them fail when tested in vivo. Thus, around 6500 studies (PubMed database) 
on magnetic nanoparticles have been published since 2010, in which IONPs 
often appear as promising new CAs for MRI. However, up to now, extremely low 
clinical translation has been achieved [6]. Therefore, comprehensive studies with 
appropriate in  vivo experimental models are of paramount importance for the 
successful development and eventual clinical translation of these nanomaterials.
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In this review, we describe the recent advances in regard to the synthesis, func-
tionalization and in  vivo applications of IONPs as MRI CAs for the diagnosis of 
several pathologies, with special emphasis on cancer diagnosis.

2 � Methods for the Synthesis of IONPs

Over the past few decades, various procedures to synthesize IONPs have come to 
fruition. The ultimate goal of these procedures is to gain complete control over the 
properties of IONPs, such as size, shape, saturation magnetization, etc. However, 
this has not yet been achieved completely. The main hindrance behind this failure 
is the inability to fully determine the science behind the processes and their mutual 
interactions, but it is not so distant in the future that we will be successful. Figure 1 
shows different methods to synthesize IONPs, which are described in detail below, 
along with their pros and cons.

2.1 � Coprecipitation

Coprecipitation is the method most commonly used for the synthesis of IONPs due 
to its facile nature. Massart [7] pioneered the existing scientific knowledge estab-
lished by Le Fort [8] and Elmore [9] regarding the synthesis of magnetic colloids, 
and stressed the importance of the stoichiometric ratio between Fe(II):Fe(III) being 
1:2. The synthesis process described by Massart requires the addition of alkaline 
medium (pH ~ 11, slowly or rapidly) into the iron salts solution at room tempera-
ture or at elevated temperature. This mixture requires an inert atmosphere to prevent 
nanoparticles from oxidizing. It was later established that the synthesis of particles 
follows the LaMer’s model of nucleation and growth [10]  (Fig.  2). The synthesis 
process has been described to occur in two steps, as shown below [11–14]

However, Lagrow et  al. [15] recently challenged this mechanism of synthesis. 
They claimed that while increasing the pH via sodium carbonate, two intermediate 
phases are formed, one poorly crystalline ferrihydrite and another crystalline iron 
hydroxide carbonate. This ferrihydrite eventually grows into iron oxide at the cost 
of iron hydroxy carbonate. Even though Lagrow’s proposed mechanism seems to 
answer a few loopholes undescribed by Massart, improving the homogeneity and 
reproducibility of the nanoparticles, it fails to ascertain if the same mechanism is 
followed when ammonia or ammonium hydroxide is used.

Irrespective of the mechanism followed, nucleation is judged as the size-
determining step and is exploited to modulate the size of particles [14–16]. The 
nature of particles depends on various other factors, such as the type of salts 
used (e.g. chlorides, sulfates, nitrates, perchlorates, etc.), the Fe2+ and Fe3+ ratio, 
pH and the ionic strength of the media, along with the reaction environment 
[17–30]. Jiang et al. [24] showed that the particle size distribution is narrowed 
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if the homogeneity of pH within the solution is improved by adding urea to the 
reaction mixture. There are also reports suggesting that particle size decreases 
with increasing pH [17]. A similar trend is observed between particle stability 
and iron concentration, but substantial studies are lacking to support this obser-
vation [23]. Particles with different morphologies, such as nanodots, ellipsoid, 

Fig. 1   Methods used in the synthesis of iron oxide nanoparticles (IONPs)
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spherical, clusters or necklace like, can be synthesized by varying their aging 
conditions [25–27]. Itoh et al. [26] synthesized ellipsoidal and spherical hema-
tite nanoparticles by aging them in phosphate ions and nitriloacetic acid (NTA), 
respectively. The relationship between shape/size and the electrostatic surface 
density of particles is linked to the interfacial tension between the oxide and the 
solution, which causes a decrease in the surface energy, thus modulating shape 
and size [28]. If a modern method like ultrasonication is used with coprecipi-
tation, it can yield narrowly distributed particles, as shown by Bui et  al. [31], 
who compared their modified version of the coprecipitation method (using ultra-
sonication instead of stirring) to the solvothermal method, and found the former 
to yield more homogeneous and small sized nanoparticles. However, the com-
parison between their method and the conventional coprecipitation method (with 
stirring) is missing. The major advantages of the coprecipitation method are its 
time saving facile nature, with no requirement of high temperature or pressure, 
and the production of particles with high yield and easily scalable to large quan-
tities. However, the particles synthesized with this method generally lack homo-
geneity and form single and also multicore nanoparticles. Particles thus synthe-
sized also tend to form aggregates, which leads to an undesired assortment of 
blocking temperatures. Another disadvantage of this method is that the pH of 
the resultant solution is too high, thus requiring neutralization before they can 
be used for biological applications.

Fig. 2   LaMer’s model depicting the nucleation and growth process of the nanoparticles. Adapted with 
permission from [10]. Copyright (1950) American Chemical Society
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2.2 � Thermal Decomposition

In this method of synthesis, high temperatures are exploited to break down the 
precursor to yield nuclei as well as their further growth into nanoparticles (Fig. 3). 
It started as a way to ease the study of properties of systems with narrow size dis-
tribution [32]. Smith and Wychlk were among the first researchers who utilized 
this method to synthesize colloidal dispersions of iron using iron pentacarbonyl 
[Fe(CO)5] as a precursor, along with different solvents and the addition of dif-
ferent polymers. They concluded that the polymers added during the reaction not 
only coated the dispersions forming stable particles, but also acted as catalysts for 
the decomposition [33, 34]. They suggested that the decomposition takes place at 
140–160 ℃ in the presence of butadiene polymers while gathering support from 
the mechanistic studies conducted by Bergman and coworkers [35]. Later, their 
hypothesis was verified experimentally, showing the presence of an intermedi-
ate carbonyl complex formed after decomposition of Fe(CO)5 [36]. The reaction 
takes place in two main steps: nucleation and growth. This separation of stages 
can be used advantageously to alter the size and shape of nanoparticles as demon-
strated by Hyeon et al. [37] and Jana et al. [38]. They used iron oleate as precur-
sor and proposed that nucleation starts at 200–240 ℃, initiated by dissociation of 
one of the three oleates available in one molecule of iron oleate [Fe-(oleate)3], 
while the growth begins at 300 ℃ with the subsequent dissociation of the remain-
ing two oleates. The complete mechanism of the reaction is not fully understood 
even though it has been widely studied, both experimentally and computationally 
[39–41]. Nonetheless, these studies led to the discovery of “polyiron oxo clus-
ters” species as the actual precursor for the formation of nanoparticles, as initially 
suggested by Wells [36]. More recent studies have reported the synthesis of a 
new precursor by synthesizing an intermediate between Fe(CO)x and oleylamine 
(OLA), and achieved controllable size of 2.3–10 nm [42].

To date, different precursors have been reported in the literature: iron acety-
lacetonate [Fe(acac)3] [43], iron cupferron [Fe(cup)] [44], iron chloride (FeCl3) 
[45], iron pentacarbonyl [Fe(CO)5] [46], along with different iron complexes such 
as iron oleate [45], iron stearate [38] and iron eruciate [47]. Depending on the 
process involved and the size required, it becomes important to select the right 

Fig. 3   Different stages during the synthesis of IONPs in the thermal decomposition method. Adapted and 
modified with permission from [41]. Copyright (2013) American Chemical Society
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precursor as the reaction proceeds differently depending on the way the precursor 
is broken down [48].

There are several other factors that could affect the size and morphology of parti-
cles, such as temperature, nature of the solvent, reactants ratio, reflux time, and seed 
concentration [45, 49, 50]. Thus, Hyeon found that the heating rate of the reaction, 
along with the boiling point  of the solvent used, is also a crucial factor to adjust 
the size of the nanoparticles [45], and Pellegrino’s group concluded that there is 
an inverse relationship between the size of the nanoparticles and the heating rate 
[49]. However, controversy still exists regarding the role of the temperature ramp in 
the synthesis of IONPs, and, therefore, comprehensive and deeper studies are still 
needed to properly elucidate the mechanism involved.

Kovalenko et al. [51] showed the importance of surfactants, not only to prevent 
aggregation, but also to modulate shape and size. They displayed the use of fatty 
acids, such as oleic acid (OA) or salts of OA, to synthesize spheres and cubic nano-
particles, respectively. Later, several groups have tried to shed light on the role of 
OA as well as other fatty acids regarding the size and shape of IONPs, but up to 
now, a fully elucidated theory is still lacking [52–59]. Quality of particles can be 
further improved by the controlled addition of water and oxygen in the inert environ-
ment to decrease crystal defects, and improve magnetic properties and homogeneity 
[60, 61].

In summary, thermal decomposition, albeit a bit complex and time-consuming, 
yields very homogenous and monodisperse nanoparticles, making it one of the most 
used methods to synthesize nanoparticles for biological applications. The shape and 
size of nanoparticles can be controlled by tuning the parameters described above. 
Major drawbacks of this method include the inability to properly scale up and the 
lack of dispersibility of the particles in aqueous solvents, although this can be reme-
died by surface modifications in situ, as described by Li et al. [56, 62], or using post 
preparative methods, as explained in greater detail in later sections of this review.

2.3 � Hydrothermal and Solvothermal Synthesis

In this method, the hydrolysis and oxidation (or neutralization) reaction takes place 
in a reactor or autoclave at high temperature and pressure. Depending on the reac-
tion solvent, it is either referred to as hydrothermal (if the solvent is water) or sol-
vothermal (any other solvent or combination). Both reactions follow the aforemen-
tioned model of nucleation and growth [63, 64]. There have been several reports [4, 
37, 65–68] on the use of this method to synthesize magnetic nanoparticles as well as 
its comparison with other methods [69].

The reaction parameters, such as temperature, reactor size, time, concentration of 
the reactants, and the nature of the solvent and capping agents, affect the size, shape 
and other properties of the final product. Out of all these parameters, the effect of the 
solvent has been studied the most [70, 71], closely followed by that of the surfactant 
[72, 73]. The particles show a preferential surface binding towards the carboxylate 
from the OA rather than the amine from the oleylamine [72], which very likely is the 
case for every method described in this article, although it still needs verification. 
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This preferential binding was recently used by Brewster et al. [73] to present a new 
way to control the particle size and crystal phase. They varied the carbon chain 
length in the iron carboxylate, which was used as the precursor, and showcased the 
effect of two different ligands, amine and carboxylic acid, which were added to the 
reaction [73]. They demonstrated that the size of the particles decreased as the car-
boxylate chain length increased in the presence of amine ligands, while no definite 
trend was observed when varying the carboxylate free ligands.

The hydrothermal/solvothermal method has also been used to synthesize other 
ferrites [74]. Kim et al. [75] recently demonstrated a gram scale yield of magnet-
ite nanoclusters by modifying the procedure and utilizing trisodium dihydrate, but, 
to the best of our knowledge, this is the only report for large scale synthesis using 
this method. To further exploit the particles thus formed for biological applications, 
surface coating becomes necessary, as will be discussed in detail in the subsequent 
section. Polymers such as polyvinylpyrrolidone (PVP), polyacrylic acid (PAA) and 
polyethanolimine (PEI), have been shown to improve the magnetic properties when 
used in the synthesis of monodispersed clusters [76]. Recently, Köçkar et  al. [77] 
explained a way to get in-situ capping of IONPs with tartaric acid/ascorbic acid/
mixture of two, which led to the synthesis of uniform, un-agglomerated, biocom-
patible particles of less than 8 nm with good saturation magnetization. The hydro-
thermal/solvothermal method is, therefore, an ideal method for the synthesis of iron 
oxide nanoparticles, mainly nanoclusters. However, the main disadvantage of this 
method is that, due to the lack of stirring inside the autoclave, monodispersity, as 
well as scalability, can sometimes be hindered.

2.4 � Polyol Method

This method is an iteration of the solvothermal method, with polyols being used 
as solvents to synthesize nanoparticles by dissolving the precursor, solubilizing 
in the diol at high temperatures, and eventually leading to the formation of metal 
nuclei and particles. Following previous works pertaining to synthesis of metallic 
powders [78–84], Caruntu et  al. described this method to synthesize nanocrystal-
line metal oxide nanoparticles by synthesizing magnetite nanoparticles [85]. They 
explained the mechanism stating that reduction starts from the liquid state rather 
than the solid, and the nanoparticles are formed in two steps: hydroxides are formed 
first and then metal centers are chelated. Heterogeneous nucleation performs bet-
ter than homogeneous nucleation as it has been studied to provide a better separa-
tion between nucleation and growth, thus giving better control over the size, shape 
and crystallinity [78]. Polyols play multiple roles, acting as reducing agent, stabi-
lizer and solvent [86], modulating the process to yield large and small clusters [87], 
nanoparticles [88] or single-core/multicore nanoparticles [89]. Different polyols 
have been exploited for the synthesis of iron oxide nanoparticles, such as diethyl-
ene glycol, giving 3  nm particles [90], or triethylene glycol, giving 10  nm parti-
cles [91]. However, Cai et al. [92] reported that only triethylene glycol gives non-
aggregated nanoparticles. To our knowledge, there are no reports on the use of tetra 
or penta ethylene glycol, which could have ameliorated the agglomeration problem 
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even more, if the trend described holds to be true. Other parameters that have been 
identified to modulate the size, shape, crystallinity and saturation magnetization are 
temperature, time, precursor concentration, and surfactant. The role of water was 
studied by Hemery et al. [93], when its importance was revealed by inability of the 
anhydrous iron chloride to produce magnetic particles [93]. The impact of stoichi-
ometry in polyol synthesis has been studied by Wetegrove et al. [94], showing that 
the increase in Fe3+ concentration forms larger crystallites and the increase in Fe2+ 
content promotes nucleation [94].

As stated above, hydrophilicity is important, which is generally lacking in parti-
cles synthesized using the polyol method. However, there are reports of the synthesis 
of hydrophilic nanoparticles using this method [88, 95] but their limitations include 
the lack of a surface functionality for bioconjugation. This problem has further been 
remedied by the use of polyamines [96], polyimine with polyol [97], polyamine with 
polyol [98] and PAA [99]. The research done by Babić-Stojić et al. [100], wherein 
they esterified 3 nm IONPs in situ, implied the importance of the surface layer in the 
properties of nanoparticles.

The morphology of the particles is of equal importance as size in in vivo applica-
tions and has been shown to be altered by the addition of halide ions [101]. There 
have also been advancements in solvents, such as the thermostable ionic solvent 
[P6,6,6,14][Tf2N], which has been shown to be capable of synthesizing quasi spher-
ical magnetite nanoparticles of around 14 nm [102].

In conclusion, the method described herein has the advantage of being environ-
ment friendly, scalable, and good for synthesizing both single and multicore parti-
cles. However, it has the drawback that the particles thus formed lack homogeneity.

2.5 � Sol–Gel Method

This is a two-step chemical method, with the first step being the synthesis of the sol 
(particles in a solution) via hydroxylation of the precursors, and the second step, 
the formation of a gel by condensation and polymerization. Eventually, heat treat-
ments are used to achieve a proper crystalline state. Costa et al. [19] were among 
the first to synthesize magnetic nanoparticles using this method, but they failed to 
identify the correct mechanism. Subsequently, the work of Portugal et  al. [103], 
made the mechanism a bit clearer upon finding signatures of iron hydroxide, but the 
exact mechanism is still unknown. Like in the polyol method, the solvent is shown 
to affect the ferrite grain as well, but changes in grain size have been attributed to a 
different growth model with two different solvents [104]. Water concentration is also 
shown to improve hardness and structural defects [105].

Size and shape are also affected by other parameters such as solvent ratio, time, 
pH, stirring, gelating agent and, temperature. Liu et al. [106] used different calcina-
tion temperatures to synthesize different phases of IONPs, and this transformation 
has been attributed to two separate mechanisms, crystal regrowth and chemisorp-
tion, depending on the temperature. Akbar et al. claimed to have synthesized three 
different phases of iron oxide (α-Fe2O3, γ-Fe2O3, and Fe3O4) simply by varying the 
precursor to solvent ratio, thus suggesting the importance of that ratio [107]. The 
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particles were shown to possess higher saturation magnetization. They also observed 
differences in hematite particle size and morphology when using different precur-
sors, with iron acetate giving rise to smaller spherical particles, while iron nitrate 
led to larger, quasi cubic particles. These differences were due to the water con-
tent as well as the presence of nitrate and carboxylate in the precursors [108]. More 
recently, Hu et al. [109] reported a new explosion-assisted sol–gel method in which 
they used ferric nitrate as precursor and citric acid as chelating agent to form a gel. 
The gel was then homogenized and heated with picric acid to attain highly pure, 
well dispersed and crystallized magnetite nanoparticles ranging from 3 to 20 nm. 
The synthesis was proposed to be resulting from the combined action of the com-
plexing of citric acid with metal ions, and the explosion, thus explaining the impor-
tant role of citric acid, not only as a carbon source, but also to allow the combustion 
and reduction of the dried gel simultaneously. The chemistry of the sol–gel method 
is vast, with the involvement of different precursors, gelators as well as chelators, 
but it is beyond the scope of this review. It is, however, nicely explained by Danks 
et al. [110].

This method is more recommended for synthesizing thin films [111] and nano-
composites [112, 113] since it can form thin films in just 2 min if the heating source 
is changed to microwaves, and pure phases can be formed by using high microwave 
power (600–800 W).

2.6 � Microemulsion Method

The microemulsion method is a form of coprecipitation performed in a confined 
space such as micelles. It generally involves two immiscible liquids with surfactants 
forming the interfacial layer [114], and is classified as either the water-in-oil method 
or oil-in-water method [115]. Inouye et al. [116] were the first to report the synthesis 
of magnetic particles using this method, exploiting the faster oxidation of ferrous 
ions in micelles.

In water-in-oil microemulsion, a hydrophobic phase is used with aqueous drop-
lets separated by a surfactant [117]. The most common surfactants used are PVP 
and cetyltrimethylammonium bromide (CTAB). In this method, particles gener-
ally collide and coalesce, and break again, leading to the growth of particles, the 
particle size being determined by the size of the droplets. In a final step, particles 
are centrifuged and lyophilized to get pure nanoparticles [118–120]. Many arti-
cles have been published on the use of this method to synthesize iron oxide nano-
particles [121–124]. Although surfactant concentration is not shown to affect the 
size, precursor concentration and temperature are important influencers, together 
with pH [125] and the choice of surfactant [126, 127]. Recently, Singh et al. [128] 
showed the importance of ionic concentration and temperature on the morphol-
ogy, size and crystallinity by claiming that, in order to obtain monophasic par-
ticles, [Fe2+] and [Fe3+] should be ≤ 0.09  M and ≤ 0.184  M, respectively, with a 
temperature range of 65–72 ℃. They also observed changes in the morphology of 
the particles, from cubes to pentagons to spheres, when increasing the concentra-
tion of the surfactant (CTAB) between 0.01 and 0.1 M, but they did not describe 



1 3

Topics in Current Chemistry          (2020) 378:40 	 Page 11 of 43     40 

the mechanism, or explain why the shape of the CTAB nanodroplets changes upon 
varying concentration. Nor did they explain why particle size changed with concen-
tration [128]. Bonachhi et al. [129] achieved ultra-small magnetic nanoparticles by 
using γ-cyclodextrin by hydrolyzing Fe2+ ions in aqueous solution, while Lee et al. 
[130] varied the ratios of the precursor and solvent from 3.6 to 8.1, and achieved 2 to 
10 nm magnetite particles. Vidal et al. showed the importance of oleylamine as sur-
factant to prevent aggregation [131], while Pileni et al. explained the importance of 
using functionalized surfactants and pH to improve the crystallinity and morphology 
of the nanoparticles [132]. Following a similar approach, Han et al. used a nonionic 
surfactant, C16E15, to synthesize nanoparticles with high saturation magnetization 
(74.8  emu/g) [133]. It is worth mentioning that if the surfactant described in this 
method is replaced by a phospholipidic molecule to form particles within liposomes, 
they are termed magnetoliposomes, which show significantly higher blood half-life 
[134–136]. However, if the particles are formed within the aqueous compartment, 
they are known as magnetovesicles. These special particles can be synthesized using 
film hydration and extrusion [137], sonication [66], phase evaporation [138] and 
nanoreactor [139], and are very promising for biomedical applications.

Recently, even metallosurfactants have been used as precursors to synthesize par-
ticles of around 3 nm [140]. This method has also been utilized in exchanging the 
capping of iron oxide nanoparticles to improve solubility [141–143].

Similarly, oil-in-water has a hydrophilic solution with oil droplets used as a reac-
tor. Recently, spinel ferrites have been shown to be synthesized using this method, 
with metal ethylhexanoates as precursors and a pseudo ternary solvent system, 
which includes oil, surfactant and water in the ratios of 20:20:60 [144]. The oil in 
water method has also been used as a strategy to cap nanoparticles [145].

The microemulsion method has several advantages, such as providing a narrow 
range of particles with relative ease, good morphology and without the need for 
high temperatures. But it also has disadvantages, including scalability, the toxicity 
of some surfactants, the amount of surfactant used, as well as the need for ligand 
exchange.

2.7 � Aerosol Method

This is also a chemical method, which leads to high production of particles. This 
method can be subdivided in two categories. The first is spray pyrolysis, in which 
precursor salts are sprayed into the reactors, where they are condensed and solvent 
is evaporated, which in turn also means that the size of the particles depends on the 
droplets [146].

Serna’s group [147] were among the first to synthesize Fe2O3 nanoparticles using 
this method. Their study claimed that if small size is the most important feature 
for the application, iron acetylacetonate should be used because of its exothermic 
decomposition reaction; however, if crystallinity is to be considered, then iron chlo-
ride is favored due to solvent elimination at higher temperature. This leaves other 
precursor benefits open for exploration. The importance of intraparticle reactions in 
controlling the size of particles was established later, along with the solvent, rate 
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of evaporation, time spent in the reactor, and temperature. These studies concluded 
that the heating time and temperature, along with the type of evaporation or reaction 
taking place during the drying stage, will conform the particle structure as hollow, 
dense, foam-like, etc. [148, 149]. Zheng et al. [150] recently reported that chloride 
ions prevent phase transition from γ-Fe2O3 to α-Fe2O3 at higher temperatures, lead-
ing to higher magnetization, which highlights the importance of chloride ions in the 
reaction. Das et al. proposed a new strategy to decrease size with high crystallinity 
by adding ethanol to the ultrasonic pyrolysis [151]. It was explained that the faster 
evaporation rate of ethanol compared to water, as well as a decrease in surface ten-
sion of the water–ethanol solution, led to the formation of smaller droplets and even-
tually smaller particles. Since the rate of evaporation of the solvent has been stressed 
and linked to particle size, it might be interesting to see how methanol, or any other 
solvent with a boiling point lower than that of ethanol, affects the size and crystallin-
ity of particles.

The second category is Laser pyrolysis, a gas phase method that utilizes the heat 
generated by a laser to heat the precursors and the flow of a gas or a mixture of gases 
to produce nanoparticles. The sizes of the particles can be controlled by modulating 
the power of the laser since a direct relationship exists between the two [152, 153]. 
Zhao et al. [154] were the first to improve on the TEA laser using a cw CO2 laser, 
which yielded particles with higher purity. There have also been reports on use of 
this method to synthesize hybrid silica-iron oxide composites [155]. Laser pyroly-
sis has a new iteration, flame spray pyrolysis (FSP), which uses a flame to heat the 
precursor [156]; the size of the nanoparticles can be controlled by varying the flame 
length or the oxidant flow rate, and the precursor/fuel composition. Lower flow rate 
of the oxidant leads to reduced flame length, with higher temperatures thus forming 
smaller particles and vice versa [157].

The main advantage of this method is that it helps in achieving very high homo-
geneity and monodispersity irrespective of the complexity of particles, including 
hybrid silica-iron oxide composites [155].

2.8 � Sonochemical Method

This method utilizes acoustic cavitation, which means the formation, growth and 
collapse of bubbles generated by ultrasound, to synthesize nanoparticles. Instead of 
using high temperature or pressure directly, this method creates them indirectly by 
using bubbles or cavities formed in the liquid by the acoustic waves. Further oscilla-
tion of such waves helps them gather and store ultrasonic energy, creating a hot spot 
(~ 5000 K) and leading to the synthesis of particles of different shapes and sizes. 
This method works for both volatile and non-volatile solvents [158–160]. The reac-
tion medium was already considered the most important factor in controlling the 
properties of nanoparticles by Suslick et al. [160] when they proposed the method, 
since the bubbles formed will depend on the vapor pressure of the media. The nature 
of the particles can also be altered by changing the ultrasonic frequencies based on 
the inverse relationship between oxidation of Fe2+ to Fe3+ and ultrasonic frequencies 
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[161]. The synthesis of particles in the presence of different ligands has also been 
performed, giving rise to particles between 5 and 16 nm [162].

Vijayakumar et al. [163] used a similar route to synthesize IONPs. They proposed 
a mechanism stating that ultrasonic waves produce the vaporization of water and 
further pyrolyzation into H and OH radicals due to prolonged temperature and pres-
sure, which leads to the formation of hydrogen (H2) and hydrogen peroxide (H2O2) 
from the reaction between H2 and hydroxyl radicals, respectively. Meanwhile, the 
same energy also breaks down iron acetate into Fe(II) ions. These Fe(II) ions are 
later oxidized to Fe(III) using H2O2 as oxidant and forming Fe3O4 by using OH radi-
cals [163]. There are several studies showing the effect of surfactants on the parti-
cles. Mukh-Qasim et al. [164] used SDS as stabilizer to get around 8.5 nm amor-
phous but water dispersible Fe3O4 particles, while Rahamwati et al. used iron sands 
along with different concentrations of PEG-6000. This latter group showed that, as 
PEG concentrations increased, the crystallite size of the particles increased [165]. 
They also showed that the morphology of the particles shifted from flower-like 
to cubes to spheres with increasing PEG concentrations. Kim et  al. [166] synthe-
sized OA-capped IONPs, which form a ferrofluid when dispersed in chitosan, with 
a hydrodynamic diameter of 65  nm, thus being potential MRI CAs. This method 
can also be used to synthesize composite nanoparticles [167] or other ferrites [168, 
169].This method has also been used for surface functionalization in very short time 
[170].

The main advantage of this method is its accelerated nature to produce nanoparti-
cles with good yield, but it falls short when it comes to phase homogeneity.

2.9 � Microwave Synthesis

This is a modern-day hydrothermal method of synthesizing nanoparticles and one of 
the most used in recent days due to its much-improved kinetics of crystallization. It 
requires as low as 10 s and yields small and monodisperse particles due to homog-
enous heating [171].

Palchik et al. were among the first to use this method in a domestic microwave 
oven and suggested that the synthesis of particles was happening due to thermal 
breakdown of Fe(CO)5, which in turn was taking place due to heating of chloroben-
zene, since Fe(CO)5 is a microwave resistant compound [172]. This indirectly marks 
the importance of the solvent. On the other hand, Liu et al. demonstrated the impor-
tance of water in maintaining a stable heating environment, along with the role of 
stoichiometry [173]. Another important parameter that have been studied extensively 
is the nature of the surfactant, with studies reporting the use of different concentra-
tions of OA [174], amino acids [175], polyethylene glycol (PEG) [176], and different 
ratios of OA and oleylamine (OLA) [177]. OA is shown to increase saturation mag-
netization with increasing concentration, with no definite trend in size. However, 
concentrations beyond 0.35 mmol/dm3 led to agglomeration and the product became 
difficult to isolate. Recently, amino acids such as glycine have been shown to reduce 
the crystallite size of IONPs, opening the path to explore other amino acids [175]. 
The presence of PEG in the reaction has also been shown to lead to smaller IONPs, 
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as compared to the reaction in its absence. When the reaction is performed in the 
presence of PEG, it tends to favor the formation of magnetite instead of maghemite. 
This happens due to PEG being sacrificial in nature and thus preventing oxidation. 
High microwave power and low synthesis time also favors the formation of magh-
emite [176]. Other studies have shown that the presence of OA during the synthesis, 
along with OLA, reduces aggregation among particles [177]. Temperature has also 
been shown to transform phases in IONPs [178]. Blanco-Andujar et  al. proposed 
a facile method to synthesize citric acid coated IONPs and potentially scale them 
up [179]. The importance of aging temperature on crystallinity can be seen when 
Fe2O3 nanocubes are synthesized by decomposing iron oleate in a microwave and 
aging it in an autoclave at 180 ℃ for different time intervals [180]. Particles aged for 
20 h showed cubic shape and higher saturation magnetization. Hu et al. [181] argued 
that the precursor is the most important parameter by synthesizing three phases of 
iron oxide, hematite, magnetite and maghemite, using FeCl3 alone or in combination 
with FeCl2.

Literature suggests that the morphology and composition of the particles 
can also be controlled using this method. Different morphologies, such as lamel-
lar sheets [182], octahedrons [182] and hexagonal plates [183] are synthesized by 
slight changes in salts. Cu-doped IONPs with good colloidal stability are obtained 
in 10 min [184] using the microwave method. In fact, even using a domestic micro-
wave, sizes of 8–10 nm can be easily achieved [185].

This method has been shown to be better than hydrothermal [186] or thermal 
decomposition [187] in terms of size, crystallinity and saturation magnetization. 
However, particles thus synthesized display lower surface reactivity than those syn-
thesized using the thermal decomposition method, although with more ease of sta-
bilization. The versatility of this method is acknowledged by its association with 
different methods: coprecipitation [179], thermal decomposition, [177] polyol [188] 
and sol–gel methods [189]. The particle size can be varied by modulating the power 
and hence the temperature, the time spent in the reactor, the cooling rate, etc. This 
method has become more popular recently due to its multiple advantages.

2.10 � Biosynthesis

This is an eco-friendly method as most of the constituents needed are available from 
nature directly or indirectly. It generally involves the use of microbes [190] or plant 
extracts [191] to synthesize nanoparticles. Lovely et al. [192] were the first to use a 
microbe, GS-15, to form magnetite nanoparticles. Thereafter, many different magnetic 
bacterial strains were found and studied in order to produce IONPs [193–197].These 
nanoparticles are formed by the reduction/hydrolyzing capabilities of these biological 
entities. However, when a bacterium is used, its nature as well as its incubation time 
becomes an important parameter since it allows changes in size and morphology [198, 
199]. Even fungi such as Fusarium oxysporum and Verticillium sp., have been shown 
to possess hydrolyzing capabilities to form different sizes and shapes of nanoparticles 
[200]. Viruses such as tobacco mosaic virus (TMV) have also been used as templates 
to synthesize nanotubes [201]. Iron oxides formed by microbial reduction have been 
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shown to lead to phase transformation with better crystallinity, although decreasing 
their reducibility [202].The scalability issue has also been answered by using a 30-l 
reactor, although there is only one report of such nature [203].

Plants or plants extracts have been used for the synthesis of nanoparticles [204]. 
Most recently, IONPs have been synthesized using figs, Ficuscarica and Plantago 
major extracts, which, apart from reducing precursors, also cap and stabilize the parti-
cles. These reactions have been concluded to take place due to the presence of phenols, 
and normally lead to sizes ranging from 2 to 50 nm [205, 206].

The main advantages of this method are that it is energy saving and non-toxic. Also, 
there is an unlimited supply of reducing agents, making it economically viable. On 
the other hand, its major disadvantage is unpredictability regarding the nature of the 
particles, with less control over the shape and size, along with uncertainty of yielding 
monodisperse particles when scaled up.

2.11 � Other Methods

Several different methods for the synthesis of IONPs have not been described above 
due to a dearth of information in the literature. Alvarez et al. [207] developed a novel 
flow injection synthesis (FIS) method to fabricate magnetite nanoparticles in a capil-
lary reactor, and produced homogenous particles of 2–7 nm with high reproducibility. 
There have been reports of the use of metal rods as anodes and electrochemical deposi-
tion in the presence of surfactants to yield 3–8 nm particles [208–210]. Chemical vapor 
deposition (CVD) [211, 212] has been used to fabricate thin films and morphology-
controlled nanoparticles. Other methods, such as synthesis in a reactor [213], the solu-
tion combustion method [214], and the use of microfluidic channels on a chip [215, 
216], have also been introduced.

All the methods described above have their own pros and cons, and the choice of 
one or the other depends on the application for which the nanoparticles are being devel-
oped. Thus, for nanoparticles to be used as MRI CAs, the most suitable methods appear 
to be the thermal decomposition or microwave methods, since they provide a very nar-
row size distribution, high saturation magnetization and good morphology control.

3 � Functionalization of IONPs

One of the most important topics in the design of IONPs for in vivo applications is 
functionalization, which provides NPs with high stability in physiological media, 
stealth and vector targeting properties. In this section, we summarize the most relevant 
methods to functionalize IONPs for clinical purposes.

3.1 � Organic Supra‑structures

In recent decades, a class of highly branched and monodispersed macromolecules 
with well-defined three-dimensional (3D) architectures, such as nanomicelles, 
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dendrimers, liposomes and nanogels, have been developed to create hybrid 
nanoscale materials for imaging and therapeutic applications.

3.1.1 � Nanomicelles

Nanomicelles are formed by the self-assembly of surfactant molecules or copoly-
mers that adopt a core–shell like structure, thus entrapping in their inner core hydro-
phobic materials, such as drugs, dyes or inorganic nanoparticles (Fig. 4). The small 
size is another advantage of the micelles, which can be synthesized between 5 and 
100 nm. This provides nanomicelles with long blood circulation times, which favor 
their active or passive accumulation in the target sites. Consequently, nanomicelles 
are generating great interest in the development of promising payload nanocarri-
ers for theranostics [217–219]. Particularly interesting are the results obtained with 
hybrid nanosystems using polymer micelles loaded with IONPs. For instance, Jian-
ping Bin and coworkers described the synthesis of a tumor-targeted MRI vehicle 
through the encapsulation of IONPs in self-aggregating polymeric folate-conjugated 
N-palmitoyl chitosan micelles [220]. In vitro and in vivo studies demonstrated the 
efficacy of folate-conjugated superparamagnetic iron oxide nanoparticle (SPION)-
micelles in targeting and visualization by MRI of folate receptor overexpressed 
tumor cells. Torchilin et  al. [221] created a diagnostic and therapeutic agent for 
in  vivo use based on poly (ethylene glycol)-phosphatidylethanolamine (PEG-PE) 
micelles loaded with Paclitaxel (PTX), a poorly water soluble anticancer drug, and 
IONPs. The combination of both multi-modal cargos inside the micelles showed 
no property changes, either in the relaxivity of the IONPs or in the apoptotic anti-
tumour activity of PTX.

3.1.2 � Dendrimers

Dendrimers are a class of well-defined nanostructured macromolecules consisting 
of three critical architectural domains: the multivalent surface, the interior shells 
surrounding the core, and the core. These domains can be tailored for a specific 

Fig. 4   Synthesis of chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide 
nanoparticles (SPIONs) [308]
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purpose, such as a dendritic sensor [222, 223] or a payload carrier, the encapsu-
lation of molecules in their interior shell being the most used application of den-
drimers [224, 225]. One of the most common dendrimers is based on the chemi-
cal structure poly (amidoamine) (PAMAM), which has a large number of reactive 
amine groups on the periphery, making them an excellent platform to construct 
nanomaterials for biomedical applications [226–228]. Luong et al. [229] designed a 
promising theranostic agent based on the combination of IONPs and a hydrophobic 
anticancer drug loaded in a PAMAM dendrimer decorated with folic acid (FA). The 
design of this hybrid theranostic agent starts with functionalization of the SPIONs 
with activated carboxyl groups that bind folic acid-PAMAM dendrimers. The engi-
neered SPIONs@FA-PAMAM showed great potential as MRI diagnostic agents, 
with increased internalization in cancer cells and better image contrast. Moreover, 
the encapsulation of hydrophobic anticancer drugs, such as 3,4-difluorobenzylidene-
curcumin (CDF), in the dendrimers of the SPIONs@FA-PAMAM, enhances their 
anticancer activity by delivering a higher dose of CDF with high specificity to target 
cancer cells expressing folate receptors.

Dendrimers could also be used in gene therapy as gene delivery platforms. 
Xiao et al. [220] synthesized a nanohybrid dendrimer based on the combination of 
PAMAM dendrimers and IONPs through electrostatic interactions. First, the IONPs 
were functionalized with negatively charged polystyrene sulfonate (PSS), and then 
positively charged PAMAM dendrimers decorated with plasmid DNA were depos-
ited onto the PSS-functionalized NPs, resulting in a nanohybrid material, PAMAM 
dendrimer/pDNA-coated MNPs. The results demonstrated that the efficiency of this 
hybrid system to transfect NIH 3T3 cells is strongly dependent on the dendrimer 
generation, the amine/phosphate groups ratio and the plasmid DNA concentration.

3.1.3 � Liposomes

Liposomes comprise a lipid bilayer surrounding an aqueous core. They can be 
made from different lipid formulation and present different sizes depending on the 
method of preparation. Similarly to the organic macro-structures mentioned above, 
liposomes are able to encapsulate payloads in their hydrophobic or hydrophilic 
inner, which makes them excellent nanocarriers for therapeutic and imaging applica-
tions. Liposomes based on phospholipids are the most common vesicles for in vivo 
applications due to their great advantages, such as biocompatibility, biodegradability 
and reduced toxicity [230–232]. The incorporation of IONPs into liposomes is gain-
ing increased attention of researchers as a way to synthetize more effective magnetic 
nanocarriers for in  vivo applications. Di Corato et  al. [233] designed a liposome 
formulation based on phosphatidylcholine lipids that entraps magnetic NPs and a 
photosensitizer in its interior. In a single synthesis method, higher concentrations of 
hydrophilic IONPs were encapsulated in the core, and a hydrophobic photosynthe-
sizer, Temoporfin (marketed as Foscan), was incorporated into the lipid bilayer. The 
resulting magnetic liposome presented double functionality, magnetic hyperthermia 
and photodynamic therapy, which led to complete death of cancer cells in vitro and 
total ablation of solid-tumor in vivo.
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Zheng et al. [234] synthetized a tumor-specific peptide-decorated liposome contain-
ing payloads of IONPs and an anti-cancer drug in their inner core and lipid bilayer, 
respectively. Like the protocol described above, the combination in a single pot reaction 
of egg phosphatidylcholine, cholesterol, paclitaxel (PTX), different 1,2-distearoyl-sn-
glycero-3-phosphoethanolamine (DSPE) phospholipids, such as DSPE-PEG and cell 
penentrating peptide-modified DSPE-PEG, and hydrophilic SPION, generated a thera-
nostic liposome. The results confirmed the effectiveness for tumor targeting and anti-
tumor activity through MRI in vivo experiments.

3.1.4 � Nanogels

Nanogels (NGs) are nanosized water-soluble particles formed by crosslinked polymer 
networks with loading capacity of therapeutics. Stimuli-responsive NGs are a class of 
smart particles that respond to external physical changes, such as pH, temperature or 
redox agents [235, 236]. This behavior allows the controlled-release of payloads from 
NGs, minimizing possible side effects and avoiding the use of high doses. NGs can also 
be loaded with diagnostic agents, such as magnetic NPs, enabling their visualization 
and follow-up by MRI. These characteristics, together with the ease of uptake by can-
cer cells and tumor tissues due to their softness and fluidity, make NG-based nanosys-
tems a high potential theranostic material [237, 238].

Qian et al. [239] prepared a hybrid NG system based on a thermo-responsive co-
polymer [N-isopropylacrylamide, methacrylic acid and poly (ethylene glycol) meth-
acrylate] that stabilizes hydrophobic IONPs and 10-hydroxy camptothecin (HCPT) in 
its inner compartment. The obtained IONP/HCPT-NG generated an increase in reactive 
oxygen species (ROS), allowed the enrichment of NG at the tumor site by applying an 
external magnetic field, and offered the possibility of being used as nanocarrier for pho-
tothermal therapy due to its absorption in the near infrared (NIR) range. In vivo results 
demonstrated that the combination of PTT and chemotherapy with external magnetic 
fields on IONP/HCPT-NGs, reduced the growth of primary tumors and prevented 
metastasis [239].

Alginate (AG) is a natural polysaccharide that has been gaining attraction in recent 
years for the synthesis of polymeric nanomaterials with biomedical applications thanks 
to its biocompatibility, biodegradability and ease of gelation [240]. For instance, Hao 
et  al. [241] designed alginate NGs loaded with IONPs and bone mesenchymal stem 
cells (BMSCs) for enhanced tumour MR imaging (Fig. 5). The potential advantage of 
using BMSCs as tumor delivery vehicles is that they are not tumorigenic and mini-
mally immunogenic. In this way, polyethilenimine (PEI)-functionalized IONPs were 
crosslinked to AG NGs previously synthesized by a double emulsion method. The 
resulting AG/PEI-NP NGs were taken up by BMSCs without affecting cell characteris-
tics. BSMC-AG/PEI-NP NGs were then used successfully for the in vivo diagnosis of 
different tumor models [241].
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3.2 � Inorganic Coverage

Mesoporous silica is the most important inorganic coating material for IONPs due to 
the ease of functionalization, high stability, and vast surface area and pore volume to 
host large number molecules. These characteristics make hybrid mesoporous silica-
IONPs excellent nanocarriers for controlled drug release therapies [242, 243].

Based on this, Vallet-Regí et al. [244] designed a responsive silica matrix nano-
carrier for tumor therapy based on magnetic NPs that combine the heat release 
mediated by magnetic hyperthermia and doxorubicin release through a thermo-
responsive polymer. The as-prepared OA-capped IONPs are transferred into aque-
ous solution with CTAB, which helps the growth of the silica matrix by addition of 
tetraethyl orthosilicate (TEOS) as a silica precursor. Then, the silica-matrix-coated 
IONPs are functionalized with a methacrylate molecule as a polymer precursor to 
perform, using N-isopropylacrylamide (NIPAM), N-(hydroxymethyl)acrylamide 
(NHMA), and N,N′-methylenebis(acrylamide) (MBA) monomers, the synthesis of a 
thermoresponsive polymer surrounding the mesoporous silica-coated IONP (Fig. 6). 
Direct injection into the tumor site of Doxo-loaded mesoporous silica NPs, together 
with the application of amplified magnetic fields, provoked a synergistic effect 
between magnetic hyperthermia and chemotherapy that led to significant tumor 
growth inhibition and low toxicity [244].

Hurley et al. [245] demonstrated that the inclusion of functionalized mesoporous 
silica coating in IONPs cores results in stable NPs with high heat capacity and high 
MRI contrast. The anionic surfactants capped IONPs (a commercially available 
IONP called EMG-308) required pre-functionalization with polyvinylpyrrolidone 
(PVP) prior to silica condensation with the TEOS precursor. Finally, the functionali-
zation with PEG and trimethyl silane derivates yields colloidal stable NPs with the 
same magnetic character that un-functionalized IONPs and minimal toxicity toward 
human skin fibroblasts. Furthermore, a direct injection into LNCaP prostate cancer 
tumours implanted in nude mice showed that these hybrid mesoporous silica-IONPs 
can improve the heating and imaging contrast of IONPs [245].

Fig. 5   Schematic illustration of alginate/polyethilenimine-iron (III) oxide (AG/PEI-Fe3O4) and stem-cell-
mediated delivery of nanogels (NGs) for enhanced breast or glioma tumor molecular resonance (MR) 
imaging. Reprinted with permission from [241]. Copyright (2019) Royal Society of Chemistry
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3.3 � Ligand Exchange

Ligand exchange is a very complicated coating strategy that involves multiple inter-
actions potencials/forces. It requires the use of reactive binding molecules that ena-
ble the replacement of capping agents attached to the nanoparticle surfaces. This 
binding between the iron atoms of the IONP and the anchor group of the ligand mol-
ecules is mediated by electrostatic interactions. Therefore, the nature of the anchor 
group is determinant in the search for highly stable ligand molecules at the IONP 
surfaces. In addition to anchor groups, the hydrophilic balance of the ligand is also 
important to render water-soluble NPs [236, 246, 247]. In our group, we have devel-
oped different ligand formulations to functionalize IONPs to obtain soluble and 
stable NPs in physiological media for in vivo MRI applications. These ligands are 
based on a gallol group as a strong binder and PEG chains as hydrophilic tunable 
spacers, which also minimize plasma protein adsorption. In this manner, we have 
demonstrated that selection of the right molecular weight of PEG chain and the out-
ermost charged group of the ligand plays a fundamental role in the fate and bioavail-
ability of intravenously injected IONPs. Thus, a ligand with a PEG chain between 
1500 and 3000  Da and neutral outermost groups showed the best stealth proper-
ties, resulting in longer blood circulation times and higher bioavailability without 
increased toxicity [248–250].

4 � Applications of IONPs in MRI

Among the main clinical diagnostic techniques, MRI stands out for its unique com-
bination of qualities, such as its non-invasive character, the absence of ionizing 
radiation, excellent image quality, and its ability to provide both anatomical and 
functional information [251]. The MRI signal comes mainly from the protons of 
the water molecules, while the image contrast is generated from differences in the 
intensity of this signal among different tissues, which depends on the concentration, 
relaxation times (T1 and T2) and mobility of the water molecules within each tis-
sue [252, 253]. Additionally, image contrast can be further enhanced using CAs. 
Although there are several mechanisms that can produce MRI contrast, such as 

Fig. 6   Synthesis of mesoporous silica-coated (ms)-IONPs. Polyvinylpyrrolidone (PVP)-10 was added to 
IONPs prior to cetyltrimethylammonium bromide (CTAB) addition and silica condensation to allow for 
CTAB colocalization with IONPs and to maintain a spacer layer between the silica shell and IONP core. 
Reprinted with permission from [245]. Copyright (2016) American Chemical Society
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chemical exchange saturation transfer (CEST) or hyperpolarization, most MRI CAs 
produce contrast by altering the relaxation times of the surrounding water protons 
[254, 255]. The capacity of a CA to decrease the relaxation times (T1 or T2) is given 
by a parameter known as relaxivity (r1 or r2), which is expressed in mM−1·s−1.

In MRI, among the most commonly used CA are chelates of paramagnetic 
gadolinium(III) ions (Gd3+). However, conventional Gd-chelates have some impor-
tant limitations, such as the lack of diagnostic specificity and the toxicity associated 
with their use as a result of the unexpected release of free Gd ions [256, 257]. Mag-
netic NPs have emerged as a promising alternative to overcome these limitations 
[258].

4.1 � IONPs in Tumor Diagnosis

4.1.1 � Untargeted IONPs

The evaluation of IONPs as CAs in cancer research is performed mainly in rodent 
models, called ‘indirect xenografts’ [259]. Cancer cells can be implanted either 
into a tissue unrelated to the original tumor site (heterotopic model) or into the 
corresponding anatomical position (orthotopic model) [260] (Fig. 7). The route of 
administration of magnetic NPs is also relevant as it influences the biodistribution 
and pharmacokinetics of the CA. Several administration routes have been used in 
preclinical studies, mainly intratumoral, intraperitoneal or intravenous injection; 
for obvious reasons, the latter is the most interesting for clinical applications. After 
intravenous administration, IONPs have been described to accumulate in tumors 
due to the EPR (Enhanced Permeability and Retention) effect. This passive trans-
port is determined by the high vascularization of tumors, and therefore increased 
blood flow, together with increased vascular permeability and poor lymphatic drain-
age [261]. Efremova et al. [262] developed IONPs for diagnosis of breast cancer in 
a heterotopic model. They observed that IONPs accumulated passively inside the 
tumor 24 h after intravenous injection using T2-weighted MR images. Similar stud-
ies have been conducted using orthotopic models of breast cancer [263, 264], pan-
creatic cancer [265] and glioblastoma multiforme (GBM) [266]. All these studies 
conclude that IONPs accumulated in the tumor due to the EPR effect; however, most 
of them lack quantitative analyses, which are necessary to determine the amount of 
IONPs that actually reach the tumor.

Intratumoral administration could be an alternative for tumor therapy when the 
CA is not able to reach the tumor by a venous route. However, this approach has 
serious limitations for diagnostic applications since, in most cases, it would not add 
any useful information to that already provided by the MR images without CA. Fur-
thermore, intratumoral administration makes no sense when it comes to very early 
diagnosis, detection of metastasis or in the case of inaccessible tumors. Neverthe-
less, several preclinical studies have been conducted using intratumoral injection 
of IONPs [267–269]. The authors used qualitative MRI to evaluate the distribu-
tion of IONPs throughout the tumor, which showed that IONPs spread slowly and 
inefficiently. Therefore, in these studies the information provided by MRI after the 
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intratumoral injection of IONPs serves as proof of concept, but, as we have just 
mentioned, it is of no practical value for potential clinical applications.

In conclusion, up to now, untargeted IONPs have not proven to be a good alterna-
tive to conventional MRI CAs for cancer diagnosis.

4.1.2 � Targeted IONPs

To improve the accumulation of IONPs in tumors, a promising strategy is conjuga-
tion with targeting segments [5]. In principle, this functionalization would allow not 
only the visualization of IONPs by MRI, but would also offer the possibility of visu-
alizing cellular and subcellular functions and processes in living organisms without 
perturbing them, giving rise to so-called molecular MRI (mMRI) [270], which was 
first described by Richard Klausner [271, 272] (Fig. 8).

Fig. 7   C6 brain tumor model implanted orthotopically (upper panels) and heterotopically (lower panels). 
Left) T2-weighted MR images before the injection of IONPs; right) T2-weighted MR images 1 h after the 
injection of IONPs
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It is worth mentioning that the targeted strategy for cancer diagnosis was 
described before the untargeted strategy. Reimer et al. [273] described in 1990 the 
diagnosis of liver cancer after the intravenous administration of IONPs-arabinoga-
lactan conjugates, in both heterotopic and orthotopic models.

IONPs have been functionalized with epithelial growth factor (EGFR) antibod-
ies for the diagnosis of breast cancer [274], pancreatic/stomach cancer [275] and 
brain cancer [276]. Because there is an established relationship between mutations 
involving overexpression or overactivity of EGFR and various types of cancer, this 
receptor is currently one of the most important targets in cancer research [277–279]. 
Similarly, PSCA (prostate stem cell antigen) antibody was bound to IONPs for diag-
nosis of prostate cancer [280].

Integrins receptor, especially α5β3, has been found to be differentially overex-
pressed in tumors, playing a vital role in tumor angiogenesis [281–283]. Integrins 
are recognized mainly by short peptide sequences, such as Arg–Gly–Asp (RGD). 
Therefore, some NPs functionalized with RGD have been proposed for the diagnosis 
of brain cancer [284], colon cancer [285] or fibrosarcoma [286], among others.

Among other functionalization molecules for targeted diagnosis, it is worth high-
lighting the use of aptamers for kidney [287] and liver cancer [288], peptides for 
prostate and liver cancer [289, 290], and flavin adenine dinucleotide (FAD) for pros-
tate cancer [291].

Fig. 8   Scheme of the non-targeted (top) and targeted IONPs (bottom)
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Recently, Chee et al. published an interesting study in which they described the 
design of a library of short peptides and ligands to functionalize IONPs. From this 
library, they selected the ligand that provided IONPs with the best characteristics 
for in vivo use, namely, long term stability, non-specific binding to live cells and 
absence of cytotoxicity at high concentrations. IONPs functionalized with this 
ligand showed a significant increase in contrast between the liver tumor and the 
healthy liver tissue, as compared with commercial MRI CAs [292] (Fig. 9).

Finally, it is worth mentioning that, in clinical diagnosis, positive contrast is 
generally preferred over negative contrast because it avoids the potential confu-
sion of signal decay caused by negative CAs with signal voids caused by mag-
netic field inhomogeneities induced by air, metal prosthesis, etc. Thus, a very 
recent study described the use of Cu as a dopant agent that enhances the positive 
contrast of IONPs functionalized with RGD for targeted diagnosis of breast can-
cer [184]. Even though many IONPs show dual contrast potential, that is, r2/r1 
ratio  between 3 and 10, their use in vivo as positive CAs is limited by the acqui-
sition conditions of conventional T1-weighted MRI sequences, which are usually 
based on the spin-echo acquisition scheme and therefore require relatively long 
echo times. However, the introduction of new MRI acquisition sequences, such 
as ultra-short echo time (UTE) sequences, is making it possible to detect IONPs 
as positive contrast [293].

Fig. 9   a In vivo MR images of a NCr nude mouse at different time points after intravenous injection of 
IONPs. b Quantification of liver contrast collected at different time points after accumulation of IONPs 
in NCr nude mice. c In vivo MR images of liver tumor orthotopic xenographs at different time points 
after intravenous injection of IONPs. d Quantification of contrast-to-noise ratio (CNR) of tumor-to-liver 
contrast at different time points. e, f Histopathological analysis of mouse liver 1 h after the intravenous 
injection of IONPs. Reprinted with permission from [292]. Copyright (2018) American Chemical Soci-
ety
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4.2 � IONPs as CA in Other Pathologies

Although most research in IONPs designed to serve as MRI CAs is focused 
on cancer diagnosis, there are many other pathologies that can benefit from 
advances in this field of research, as discussed henceforth. Recent investigations 
have demonstrated that an acetylcholine-sensitive mMRI nanosensor can be used 
for measuring the endogenous release of acetylcholine in the rat brain after its 
intracerebral administration [294]. Similarly, after intracerebral administration 
of alginate-coated IONPs, changes in Ca2+ levels have been monitored following 
a quinolinic acid-induced striatal lesion [295]. Other magnetic nanostructures 
have been used for the detection of brain inflammation [296]. These particular 
nanostructures are based on IONPs coupled covalently through peptide linkers 
that have been designed to be cleaved by the intracellular macrophage cathep-
sin, which results in microparticles of iron oxide (MPIO) and allows the fate 
of magnetic NPs to be tracked. This is because the MPIO, once sequestered by 
macrophages in the liver, decrease their relaxivity, while particles that associate 
with their target tissue in the brain remain unaltered and functional.

Thrombosis is a major clinical problem whose incidence has not decreased 
over the last 20 years and is involved in several pathological disorders such as 
myocardial infarction, ischemic stroke or pulmonary embolism, among others 
[297]. Early detection is essential for effective treatment, but it remains chal-
lenging in practice. P-selectin is an adhesion molecule, overexpressed at the sur-
face of endothelial cells and platelets upon activation, which plays a fundamental 
role in thrombus formation [298]. Based on this fact, Suzuki et al. [299] inno-
vated a fucoidan (a natural sulfated polysaccharide with high affinity for acti-
vated platelets through P-selectin)-coated USPIONs to visualize by MRI arterial 
thrombi in the early stage of the disease. Other investigations used PLGA-coated 
IONs, functionalized with EWVDV peptide, which has a high affinity and speci-
ficity for P-selectin, to target thrombi for both diagnosis and treatment through 
the induction of thrombolysis [300].

4.3 � Other Applications

IONPs have also been used in combination with MRI for many other in vivo appli-
cations, such as imaging of activated microglia during brain inflammation [301], 
tracking of stem cells [302–304], image-guided treatment of anemia using bacte-
ria loaded with IONPs [305], or to carry out vascular imaging [306, 307], among 
others.
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5 � Conclusions

Recent advances in nanotechnology applied to biomedical research have made pos-
sible the development of a new generation of magnetic nanomaterials with great 
potential as MRI CAs. IONPs stand out due to their excellent combination of proper-
ties for in vivo applications, that is, their superparamagnetism along with their high 
biocompatibility. Also, advanced functionalization strategies have allowed these 
IONPs to be specifically targeted to different tissues or cells to perform molecular 
imaging. However, in spite of all these advances, and the large number of studies 
carried out in this field, very little clinical translation has been achieved so far. The 
main reasons behind this relative failure are very likely related to reproducibility 
and scalability issues during the synthesis process, which must be further improved. 
Also, in vivo studies must be thoroughly designed to include comprehensive toxicity 
assays and preclinical imaging studies using appropriate animal models.
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