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Abstract. A lattice of geometries is presented and compared for representing some
geometrical aspects of the kinematic design of robot systems and subsystems Three
geometries (set theory, topology and projective geometry) are briefly explored in more
detail in the context of three geometric configurations in robotics (robot groupings, robot
connectivities and robot motion sensor patterns).

1 Introduction
Kinematics is naturally focussed on changes, with respect to time, in the relative distances and
angles between mechanical systems and/or sub-systems. But distance and angle are not the only
concepts involved in kinematics and a range of other entities and constructs arise in a more
general treatment. Many of these are essentially geometrical, in that they can be expressed in
terms of some type of geometry, although it may not be Euclidean. Characterising a particular
geometry usually gives rise to one or more types of geometric configuration. In this paper the
emphasis is on geometric configuration associated with robot components, spatial relationships
and patterns of motion. It is assumed that a group of robot systems (or subsystems) operates, co-
operates or competes kinematically within one or more geometrical regimes, and geometric
configuration may be identified whenever robot systems move, change shape or evolve.

2 A Lattice of Geometries
Felix Klein, in his Erlanger Programm, organised the (19th century) known geometries into a
very elegant hierarchical scheme (Meserve, 1955; Klein, 1939). Since then many more types of
geometry have been constructed, including a major class of finite or discrete geometries.
Klein’s hierarchy (a tree) is now a larger and more general lattice of inter-related geometries.

Klein made sense of the diversity by treating a geometry as a set of points, a set of relations
between the points, and a group of transformations on the points. For robots a 'point' might
represent: a location in workspace or jointspace; a vision sensor pixel; a complete manipulator
system; a robot state; a pattern of motion, etc. A relation might represent: an association of two
or more pixels; distances between pairs of robots, or states; the ‘connectivities between robot
components or sub-systems. A transformation might represent: a rotation of a manipulator link
or of a set of pixels forming a vision sensor; a permutation of robot 'names' or identities; a
mapping between a robot’s jointspace and workspace.

If a transformation is applied to a set of points, then certain attributes of the points and their
inter-relationships do not change – they remain invariant. Each type of transformation and its
invariants characterise the type of geometry. Typically, concepts such as magnitude, direction,
dimension, orientation, connectedness etc. can be given formal geometrical meanings (as
invariants under particular types of transformation).



By considering a lattice of geometries in robotics it is hoped that something akin to the
Brooks hierarchical subsumption architecture (Brooks, 1999) might be achieved. The idea is
that each geometry on one level of the lattice subsumes all aspects of the geometries on the
adjacent lower levels. Obversely, each geometry is subsumed by the geometries on the adjacent
higher levels. A corresponding situation for robot motion behaviour might be that, for example,
initially the robot is being controlled to behave within the scope of a particular geometry for a
period of time. Then in response to some event, fault or failure it switches to a different level in
the hierarchy where it continues to function, but now by being controlled within the scope of
the new geometry on the new level. The resulting new behaviour pattern replaces the original
behaviour pattern in operation before the fault/failure occurred. The capabilities of the robot
under the new geometrical regime might be enhanced, but probably they will be diminished.
However, some aspects of the original robot motion could continue to be controlled under the
new regime. Moreover, another possible scenario is that a group of robots might be controlled
concurrently on a number of different (geometrical) levels in order to produce more complex
behaviour and achieve multiple goals, improve efficiency or optimise performance.

3 Examples of Geometries
The methods employed by Klein to describe and analyse geometries used co-ordinates. The
most general view is that a co-ordinate is merely a label attached to (i.e. co-ordinated with) a
point. Notions or measures of distance (or of any other potential invariant) are defined in terms
of co-ordinates by specifying some function of the latter. Klein introduced co-ordinate systems
to label the points and then defined each geometry by a set of relationships amongst the co-
ordinates that remained invariant under some group of co-ordinate transformations. The
relationship 2 2

2 1 2 1( ) ( )x x y y− + −  between the Cartesian co-ordinates 1 1( , )x y  and 2 2( , )x y  of
two points in a plane, defines the square of the distance between the points, and both this
Pythagorean relationship and the geometrical distance remain invariant under rotations, etc.
More general types of labels (co-ordinates) than Cartesian ones, and more abstract
relationships than the Pythagorean one are used in the Klein scheme (see Tables 1 and 2).
However, the overall principle is the same, namely: a geometry is defined by the set of co-
ordinate relations that are invariant under the action of a particular group of co-ordinate
transformations, and different types of co-ordinate transformations lead to different geometries.

Klein found that the larger the group of allowed (coordinate) transformations for a
geometry, the fewer the number of invariants. So, paraphrasing Klein, the most general types
of transformation leave hardly anything unchanged, whereas the least general types of
transformation leave many things unchanged. An example of a general transformation is a one-
one mapping (essentially a permutation), and this changes everything except the number
(cardinality) of points or objects. Conversely a Euclidean rotation (a much less general
transformation) maintains distances between points, angles between lines, areas, shapes,
parallelism, etc. Table 1 lists six different geometries and their characteristic coordinate
transformations. The list includes Set Theory as a geometry as well as the more familiar types.
Table 2 shows typical invariants (expressed in terms of co-ordinates) for some of these
geometries and for two extra geometries - the symplectic geometry of the phase plane (Weyl,
1939), used in dynamics, and the pseudo-Euclidean geometry of relativistic kinematics
(Rindler, 1966).



Table 1. Six geometries and their co-ordinate transformations.
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Table 2. Five geometries and some of their invariants.

Geometry
(reference) Typical Invariants and their Context

Differential
(Kreyszig,
1959)

Metric:

2
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where ( , , )x y z and ( , , )x dx y dy z dz+ + +  are two neighbouring points in 3D space
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where 1 1 1( , , )x y z , 2 2 2( , , )x y z  and 3 3 3( , , )x y z  are three points in 3D space

4 Robot Configuration
In the following three sub-sections three different geometries from Table 1, are briefly
explored in the context of geometrical configurations in robotics.

4.1 Robot Groupings (Set Theory)
Consider a set of n  robots and treat it as a finite set of n  points. There are a total of 2n

possible subsets into which the n  robots can group themselves. Specifically there are n rC
different possible subsets containing r  robots, where n rC  is the binomial coefficient Since



there are also n n r n rC C− =  different possible subsets containing n r−  robots, this enumerates
the complete range of possible ways that up to n  robots can partition themselves into two
'teams'.

{A, B, C} {B, C, D}

{A, B} {C, D}

{A} {D}

{}

{B, C}

{A, D}

{A, C} {B, D}

{A, B, D} {A, C, D}

{B} {C}

{A, B, C, D}

Figure 1. The lattice of subsets of a set {A, B, C, D} of four robots.

One way to represent the interrelationships amongst the subsets or 'teams' of robots is to
display them in a lattice with the robots labelled, say, alphabetically. For a set {A, B, C, D} of
four robots, the lattice of subsets is shown in Figure 1. The lattice may be used in various ways
to characterise robot groupings and to follow changes in robot groupings. For instance this
lattice can be viewed essentially as a hypercuboid with the subsets or 'teams' of robots located
at its vertices. Subsets at opposite ends of a hyperspace diagonal have no robots in common
and so the eight possible hyperspace diagonals represent the eight ways to partition the set of
four robots into two non-overlapping 'teams'. This 'geometrical' arrangement can form the basis
of a 4-bit coding scheme to label the subsets with a binary codeword (co-ordinate) rather than
just using letters. The advantage gained from this code is that the codewords of adjacent
subsets in the lattice differ by one bit, and those on opposite ends of a hyperspace diagonal
differ by four bits, hence a simple measure is established for tracking changes in the
membership of 'teams'.

The paths from one node to another in this lattice can be used as a basis for enumerating
fault and failure modes. Thus suppose the top node represents the state in which all four robots
are functioning, and the next level down represents states in which one robot is not functioning,
and so on. Then the number of paths down through the hierarchy from the top to any particular
node represents the number of ways (and hence modes of failure) to arrive in the state
represented by that node. This leads to a crude measure of probability of ending up in that
state. It may also offer modes of recovery by identifying and suggesting strategies for moving
to nearby nodes.

The transformations within set theory are one-one transformations, and for a finite set of n
points these transformations are permutations (a re-ordering of the points of the set). A
collection of n  robots might be ordered in some sequence determined by their positions, by
their communication protocols, or by their 'seniority', etc. Each possible ordering may be
specified by labelling the robots with a sequence of symbols. Then any re-ordering is



essentially equivalent to a permutation of the robot symbols. For a set of n  robots there are a
total of !n  different permutations of the labels. They fall into two equally sized classes, namely

!
2
n  even permutations and !

2
n  odd permutations. Whatever permutation is applied to a

collection of robots it does not change the number (cardinality) of robots. But the effects of
even and odd permutations are different. Two types of orderings emerge. An even permutation
maintains the 'orientation' of the original ordering whereas an odd permutation produces an
'opposite' orientation. The situation is akin to the difference between right-handed and left-
handed co-ordinate systems. From the set theory viewpoint there is really only one invariant
associated with a collection of robots and that is the number of robots in the collection.
However, although the robots may be identical (i.e. indistinguishable) in construction, they
might nonetheless at each instant be distinguished by labels, names, or codewords, or by an
indication of their places in a chain of command. In this case the different possible labellings
will fall into two equal size classes - those related by even permutations, and the remainder.
Thus a second attribute of the collection of robots is the 'orientation' of the labelling scheme,
but note that this is only an invariant under even permutations.

4.2 Robot Neighbours (Topology)
Given a set of n  robots it is possible to introduce more structure into the set by defining a
notion of 'neighbourliness' between pairs of robots. This establishes a topology for the set. In
general the resulting topology can be very complicated and is often non-intuitive, but in the
present context of a simple discrete set of robots the ‘neighbourliness’ can be specified in terms
of ‘connections’ between pairs of robots. Each connection may be a mechanical or electrical
connection, or more generally it can just be a representation of a communication channel or
relation between ‘neighbouring’ robots. The connectedness of a discrete configuration of n
robots may be described and explored in terms of graph theory (Wilson, 1996).

Within graph theory each robot is represented by a point (a vertex) and each connection or
relation is represented by a line segment (an edge). In general the graph representing the
connections amongst a set of n  robots may be described in terms of one or more spanning
trees. Figure 2 shows two different graphs for a set of six robots. Each graph represents one
possible way for the robots to be interconnected. In both cases one possible spanning tree is
shown by bold edges. A spanning tree may be used to determine two important invariants of
the graph, namely its fundamental cycles and its fundamental cutsets.

In the graph on the left of Figure 2, there are three cycles: 1 2 3 4{ , , , }e e e e , 3 7 6 5{ , , , }e e e e  and

1 2 7 6 5 4{ , , , , , }e e e e e e . But just two are fundamental cycles, since the third may be formed as a
‘sum’ of the first two (where the rule for adding two cycles is to include in the sum all edges
except for those common to both of the original cycles). Given a spanning tree, the
fundamental cycles are immediately identified since every cycle has an edge in common with 
the complement of the tree, and so the number of fundamental cycles is the same as the number
of edges in the complement of the tree. If there are n  vertices and m  edges in the graph there
are 1m n− +  edges in the complement and hence 1m n− +  fundamental cycles. The
importance of fundamental cycles stems from the fact that they characterise the circuits and
thus the fundamentally distinct pathways through the graph. Hence for a set of robots they
therefore characterise how the robots are linked together as a group.
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Figure 2. Two different graphs for six robots, showing spanning trees (bold edges).

In the graph on the right of Figure 2, there are sixteen cutsets: 1 2{ , }e e , 3 2 7{ , , }e e e ,

4 2 7{ , , }e e e , 5 7{ , }e e , 6 7{ , }e e , 6 5{ , }e e , 1 3 7{ , , }e e e , 2 4 5{ , , }e e e , 1 3 5{ , , }e e e , 2 3 6{ , , }e e e ,

2 3 5{ , , }e e e , 1 4 6{ , , }e e e , 1 4 5{ , , }e e e , 1 4 7{ , , }e e e , 2 4 6{ , , }e e e and 1 3 6{ , , }e e e . But just five are
fundamental cutsets, since the last eleven can be formed from sums of the first five (where the
rule for adding two cutsets is to include in the sum all edges except for those common to both
of the original cutsets). Given a spanning tree the fundamental cutsets are immediately
identified since every cutset has one edge in common with the tree and so the number of
fundamental cutsets is the same as the number of edges in the tree. If there are n  vertices and
m  edges in the graph there are 1n −  edges in the spanning tree and hence 1n −  fundamental
cutsets. The importance of fundamental cutsets stems from the fact that they characterise the
fundamentally distinct divisions of the graph, and hence for a set of robots they therefore
characterise how the robots may be divided into co-operating or competing subgroups.

4.3 Robots in Perspective (Projective Geometry)
Pixel configurations in a robot motion sensing system, such as those used in the visual
morphology research at the University of Sussex (Harvey I, et al., 1996) often have their
outputs grouped into special 2D patterns. The approach has proved to be successful in the
interpretation of perspective views acquired by mobile robots. Their performance may be
further improved by considering the projective geometry of the situation.

One particular special pattern combines the outputs from four pixels. Any non-collinear
group of four pixels in the plane defines a (projective geometry) configuration of seven lines
and nine points forming a complete quadrilateral (Coxeter, 1993). The extra five points and the
seven lines on which they lie have significance in defining auxiliary pixel locations (see Figure
3(a)). An analogous dual configuration of seven points and nine lines, known as a complete
quadrangle, defines another potentially useful projective construct for the vision system (see
Figure 3(b)).

In Figure 3, if the four pixel positions are replaced by a group of four robots in four
positions, the complete quadrilateral and complete quadrangle configurations have significance
for the robot grouping. The diagonal points and the intersections of diagonal lines represent
significant locations for targets, for goals or for where other associated robots may be placed.

5 Discussion and Conclusions
The notion of a hierarchy of geometries, offers a novel approach to understanding robot
kinematic behaviour. A group of robots may behave in a huge range of different ways, co-
operating or competing with one another, but whatever their behaviour it almost always has an
external kinematic manifestation as movement or change of the spatio-temporal configuration



of the group. The geometrical approach may be used to define, characterise and classify
various kinematic behaviours. Each different geometry focusses on specific (often subtle)
aspects of the kinematics, and may be used either to analyse a possible range of kinematic
behaviour or to produce a required kinematic behaviour. By operating solely within the scope
of one level of the hierarchy, or, alternatively, by combining several levels simultaneously,
various degrees of complexity of robot kinematic behaviour may be explored.

p

q r

s

a

b

c

Pixel
(or robot)Pixel

(or robot)

Pixel
(or robot)

Pixel
(or robot)

R

S

B

C

A

Q

P

Pixel
(or robot)

Pixel
(or robot)

Pixel
(or robot)

Pixel
(or robot)

Figure 3(a) Four lines p, q, r, s form a complete quadrilateral, with diagonal lines a, b, c forming the
diagonal triangle)(left); (b) Four points P, Q, R, S form a complete quadrangle, with diagonal
points A, B, C forming the diagonal triangle (right).
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