
1

Uncertainty Assessment of Lossy and Dispersive
Lines in SPICE-Type Environments

Paolo Manfredi, Student Member, IEEE, Dries Vande Ginste, Senior Member, IEEE,
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Abstract—This contribution presents an alternative modeling
strategy for the stochastic analysis of high-speed interconnects.
The proposed approach takes advantage of the polynomial chaos
framework and a fully SPICE-compatible formulation to avoid
repeated circuit simulations, therefore alleviating the computa-
tional burden associated to traditional sampling-based methods
like Monte Carlo. Nonetheless, the technique offers very good
accuracy and the opportunity to easily simulate complex intercon-
nect topologies which include lossy and dispersive transmission
lines, thus overcoming the limitations of previous publications.
Application examples involving the stochastic analysis of on-
chip and on-board interconnects validate the methodology and
conclude the paper.

Index Terms—Circuit design, circuit simulation, polynomial
chaos, SPICE, stochastic analysis, transmission lines, uncertainty.

I. INTRODUCTION

The boost towards very-large-scale integration (VLSI) is
stressing the impact of manufacturing tolerances on the perfor-
mance of electronic circuits and interconnects. The desirability
of performing right-the-first-time designs gave raise to a very
active research field focused on the statistical assessment of
high-speed links [1]. Nevertheless, traditional Monte Carlo
analysis is often inefficient due to the slow convergence rate
and the lack of an explicit relation between the uncertain
response and the random system parameters. Because of this,
interconnect designers are seeking for expedite and reliable
stochastic modeling strategies to assess variability in the early
design phase [2].

In this framework, the so-called polynomial chaos (PC)
technique drew much attention in the electrical engineering
community. This methodology is based on spectral expansions
of random processes in terms of Hermite [3] or other orthog-
onal polynomials, according to the distribution of the input
random variables [4]. PC can be combined with a Galerkin
approach, thus becoming a stochastic Galerkin method (SGM).
This allows to recast the original stochastic problem in terms
of a larger but deterministic one, whose solution provides the
unknown expansion coefficients [4].

The PC-SGM approach has been successfully applied to
electrical networks described by modified nodal analysis
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(MNA) equations [5], [6]. However, ad hoc MATLAB im-
plementations or customized software were required for the
solution of the resulting augmented MNA equations. For
design flexibility, integration into standard circuit analysis
software, such as SPICE or Agilent’s ADS, was imperative.
A SPICE-like code for the stochastic analysis of lumped
circuits was presented in [7], but still based on a customized
solution engine with specific libraries for the different kinds
of stochastic circuit components.

However, all the above applications lacked the inclusion of
distributed transmission-line elements, which are key compo-
nents for modern high-speed designs. Although a stochastic
MTL can be in principle analyzed as a cascade of equivalent
lumped sections (see, e.g., [5] or [8]), this approach is not
suitable to accurately model high-frequency and dispersive
phenomena, such as delay or slow-wave and skin effects.
Moreover, it requires a large number of additional nodes, thus
also reducing the efficiency.

An application of PC-SGM to distributed multiconductor
transmission lines (MTLs) was first presented in [9] and then
improved in [10], where the combination with parametrized
macromodeling made the inclusion of complex frequency-
dependent wave mechanisms efficient and straightforward.
However, the approach was limited to frequency-domain
analysis and basic (source-line-load) configurations. The in-
tegration of the above methodology in SPICE-like design
environments would allow the analysis, either transient or AC,
of arbitrary network topologies. A first attempt was proposed
in [11], but the discretization scheme commonly used by the
PC-SGM partially hindered the implementation, which was
limited to lossless and dispersion-free lines. This issue has
been solved with a better discretization scheme [12], which
opens the door to a SPICE-compatible implementation of lossy
and dispersive lines [13].

In this paper, the new scheme is used to provide an efficient
strategy for the simulation of generic on-chip and on-board
interconnects in a SPICE-type environment, by outlining a
systematic approach to extend the work in [13], where only
a source-line-load configuration was considered, to the simu-
lation of arbitrary network topologies. The relevance of this
approach is exemplified by a number of illustrative applica-
tions. The new approach, for the first time, allows a PC-SGM-
based statistical (transient) analysis of distributed networks
with uncertain parameters, thus overcoming the limitations
of previous solutions and providing circuit designers with a
powerful and SPICE-compatible tool for a quick statistical
assessment of the overall interconnect response.
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II. STOCHASTIC SIMULATION OF ELECTRICAL NETWORKS

Due to the presence of random circuit components, voltages
and currents in the network also become stochastic. According
to the PC theory [3], [4], stochastic quantities (in this case,
node voltages and branch currents) can be expanded using a
proper multivariate polynomial basis {ϕk}Pk=0, as follows:

V (ξ) ≈
P∑

k=0

Vkϕk(ξ), I(ξ) ≈
P∑

k=0

Ikϕk(ξ), (1)

where ξ = [ξ1, . . . , ξr] encompasses all the independent
random circuit parameters, and Vk and Ik are expansion coef-
ficients to be determined. The coefficients Vk and Ik become
then the new unknowns of the problem. The polynomials {ϕk}
are traditionally chosen to be orthogonal with respect to the
inner product defined as

⟨f, g⟩ =
∫
Ω

f(ξ)g(ξ)w(ξ)dξ, (2)

with Ω the support of ξ and w(ξ) its probability density
function (PDF). We will come back to this choice and further
refine it in Section IV.

Expressions (1) apply both in frequency and time domain
and provide explicit relations between the stochastic voltages
and currents and the random input parameters, thus allowing
a fast extraction of statistical information. For instance, the
mean and variance are readily obtained as

E{V (ξ)} = V0, E{I(ξ)} = I0 (3)

and

Var{V (ξ)} =
P∑

k=1

V 2
k ∥ϕk∥2, Var{I(ξ)} =

P∑
k=1

I2k∥ϕk∥2,

(4)
respectively, where ∥ϕk∥2 = ⟨ϕk, ϕk⟩ is the norm of the poly-
nomials and is analytically known ∀k. Higher order moments
or distribution functions can be computed by numerically
sampling (1), this procedure being fast thanks to the analyticity
of the expressions.

In order to avoid repeated circuit simulations of the stochas-
tic electrical network, the strategy for the computation of
the PC-expansion coefficients is to obtain, by means of the
SGM, new and deterministic constitutive equations, which
relate the coefficients and are directly implementable in a
SPICE-type environment. It is important to observe that in a
circuit with N nodes and B branches, there will be N(P +1)
unknown voltage coefficients and B(P +1) unknown current
coefficients, with

P + 1 =
(p+ r)!

p!r!
, (5)

where r is the number of random parameters and p is the
expansion order (for practical applications, choosing p = 2 al-
ready provides very good accuracy). This suggests to associate
an additional node to each new voltage variable and a branch
to each new current variable. The problem is then interpreted
as an equivalent, augmented network, where the nodes are
connected by appropriate branch elements, defined by the
circuit interpretation of the new constitutive equations. The

solution then amounts to performing a single circuit simulation
of a modified, deterministic network, instead of running a large
number of Monte Carlo simulations of the original, stochastic
network.

III. NEW CONSTITUTIVE EQUATIONS

The sought-for deterministic relations are readily obtained
with the expansion and Galerkin projection of the (stochastic)
governing equations of the random circuit elements [11]. For
instance, MTLs are described by the so-called telegrapher’s
equations, which in presence of variations in their parameters
can be written in a stochastic fashion as

d

dz
V(z, ω, ξ) = − [R(ω, ξ) + jωL(ω, ξ)] I(z, ω, ξ), (6a)

d

dz
I(z, ω, ξ) = − [G(ω, ξ) + jωC(ω, ξ)]V(z, ω, ξ), (6b)

where ω is the angular frequency, whilst for a n-conductor
line R, L, G, C are the n × n p.u.l. resistance, inductance,
conductance and capacitance matrices, respectively, and V
and I are n-vectors collecting the voltages and currents along
the line. The random vector ξ in (6) identifies the quantities
affected by random variations.

The randomness of the p.u.l. matrices suggests they can be
expanded analogously to (1), i.e.

A(ω, ξ) ≈
P∑

k=0

Ak(ω)ϕk(ξ), (7)

where A stands for any of the four p.u.l. matrices in (6).
The computation of the coefficients Ak is a fundamental step
which is addressed in the next section. Substitution of (1)
and (7) into (6) and application of Galerkin projection yield the
sought-for deterministic relations for the voltage and current
coefficients [10], which can be written in matrix form as
follows

d

dz
Ṽ(z, ω) = −

[
R̃(ω) + jωL̃(ω)

]
Ĩ(z, ω), (8a)

d

dz
Ĩ(z, ω) = −

[
G̃(ω) + jωC̃(ω)

]
Ṽ(z, ω), (8b)

where R̃, L̃, G̃ and C̃ are new n(P + 1) × n(P + 1)
p.u.l. deterministic (block) matrices, whereas Ṽ and Ĩ are
vectors collecting all the n(P + 1) unknown PC-coefficients
for the voltages and currents in the MTL. The augmented
p.u.l. matrices can be easily constructed using the following
expression for their n× n blocks

Ãij =
P∑

k=0

Akαkji, (9)

where αkji = ⟨ϕkϕj , ϕi⟩/⟨ϕi, ϕi⟩ are merely real numbers,
which can be computed by means of analytical formulae.

The deterministic relations in (8) can be interpreted as
pertinent to a MTL with a larger number of terminals and
connecting the 2n(P + 1) nodes which arise from the expan-
sion of the original 2n stochastic node voltages, as illustrated
in Fig. 1 for the case n = 2 and P = 2. Hence, the original
stochastic transmission line can be replaced, in the augmented
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Fig. 1. Pictorial illustration of the augmentation of a MTL-element: original
stochastic circuit element (left) and corresponding augmented deterministic
element (right).

instance of the circuit, by a larger MTL described by the p.u.l.
parameters R̃, L̃, G̃ and C̃.

Concerning the inclusion of other kinds of (lumped) circuit
elements, in this paper and without loss of generality we limit
ourselves to consider deterministic lumped components only.
Hence, the variability is exclusively provided by the distributed
elements, as this represents the main achievement of this paper.
The derivation of deterministic constitutive relations for the
voltage and current coefficients of stochastic lumped elements
has already been addressed in [7] or, alternatively, in [11].

We consider a lumped element connecting two nodes,
indicated as C and D, and described by a Norton equivalent:

I(ω, ξ) = Y (ω) [VC(ω, ξ)− VD(ω, ξ)]−A(ω), (10)

where Y and A are the equivalent admittance and current
source, respectively. It should be noted that voltages and
currents are still stochastic due to the presence in the network
of other random circuit components. Again, the application
of the SGM allows to derive deterministic equations for the
PC-coefficients, here gathered and written in matrix form:

Ĩ(ω) = Y (ω) · IP+1

[
ṼC(ω)− ṼD(ω)

]
− [A(ω), 0, . . . , 0]T ,

(11)
where IP+1 is the (P + 1) × (P + 1) identity matrix, and
the vectors denoted with a tilde collect the PC-coefficients for
the node voltages and the branch currents. Equations (11) are
decoupled and define the behavior of the branches connecting
the 2(P + 1) nodes which result from the expansion of node
voltages VC and VD, as shown in Fig. 2 for P = 2. The circuit
interpretation consists in the replication of the equivalent
admittance on the additional branches. On the other hand, no
replication is required for the equivalent source.

The reasoning in this section equivalently applies in time
domain and outlines a practical rule to derive the overall
augmented circuit, which is obtained by direct construction
and connection of the new elements consistently with the
original circuit topology [11]: stochastic lines are replaced
by their augmented counterparts, whilst deterministic lumped
elements are replicated, as shown in Figs. 1 and 2, respectively.
For the PC simulation, a single solution of this network
provides the PC-coefficients for the stochastic circuit variables.

A(ω)

Y (ω)

C D

A(ω)

Y (ω)

Y (ω)

Y (ω)

C0

C1

C2

D0

D1

D2

Fig. 2. Illustration of the augmentation of a non-stochastic lumped element.

IV. COMPUTATION AND SPICE-TYPE DESCRIPTION OF
THE AUGMENTED TRANSMISSION-LINE MODELS

The PC approach requires the computation of the expansion
coefficients Rk, Lk, Gk, and Ck to be used in (9) for the
construction of the augmented p.u.l. matrices R̃, L̃, G̃ and C̃.
Such expansion coefficients can be obtained according to the
classical projection theorem by using the inner product (2),
i.e.

Ak(ω) = ⟨A, ϕk⟩ =
∫
Ω

A(ω, ξ)ϕk(ξ)w(ξ)dξ, (12)

where A(ω, ξ) is the outcome of some function or tool for
the computation of the p.u.l. parameters. Efficient evaluation
of (12) can be achieved by means of Gaussian quadra-
tures [15], i.e. as a weighted sum of discrete values computed
at pre-defined points:∫

Ω

A(ω, ξ)ϕk(ξ)w(ξ)dξ ≈
K∑

k=0

A(ω, ξk)ϕk(ξk)wk, (13)

where the weights wk are related to the weighting function
w(ξ) and K+1 = (p+1)r. The points ξk are a tensor product
combination of the zeros of the adopted class of polynomials.

As far as the practical implementation is concerned, ad-
vanced SPICE-type circuit analysis tools, such as HSPICE
or Agilent’s ADS, include the “W-element” for the modeling
of lossy and dispersive MTLs [16]. The W-element is a
circuit component which provides a numerical solution of the
telegrapher’s equations (6). It generally accepts as inputs static
R, L, G and C matrices or, for dispersive lines, tabulated
frequency data. However, due to the inherent physical sym-
metry of the RLGC-matrices, the W-element only requires the
user to specify the lower triangular part of these matrices.
In Section III, we have shown how the PC-method leads
to an augmented transmission-line model, described by an
appropriately extended set of RLGC-matrices. In order to be
able to implement it into HSPICE via the W-element, we must
assure that these extended matrices are also symmetric. This is
not trivial and in order to be accomplished, as we have already
pointed out in [12], the polynomials {ϕk} in (2) should not
be merely orthogonal but orthonormal. This is a crucial step
for the SPICE-implementation put forward in this paper.

It is also worth mentioning that HSPICE provides an inter-
nal field solver (FS), which is capable of computing lossy and
dispersive p.u.l. parameters and simulating a transmission line
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upon the description of its cross-section [16]. The FS can be
combined with the available feature for Monte Carlo simula-
tions, thus allowing to perform a statistical analysis of circuits
containing transmission lines with stochastic cross-sectional
parameters entirely in the HSPICE environment. Although it is
in general not accurate for structures characterized by complex
wave phenomena, such as on-chip lines, the use of the FS and
the consequent creation of consistent PC-based transmission-
line models can be useful in many practical situations.

The FS basically computes six frequency independent p.u.l.
matrices: the DC inductance L0 [H/m], capacitance C0 [F/m],
resistance R0 [Ω/m], and conductance G0 [S/m] matrices, as
well as the skin effect resistance matrix Rs [Ω/(m

√
Hz)] and

the dielectric loss conductance matrix Gd [S/(m·Hz)]. These
six matrices are combined in a frequency-dependent way to
obtain the dispersive behavior. Also, they are obtainable as an
output or supplied as an input to a W-element (the “RLGC
model”). For the creation of the augmented transmission-line
model, it is alternatively possible to project L0, C0, R0, G0,
Rs and Gd according to (13) and compute their augmented
counterparts L̃0, C̃0, R̃0, G̃0, R̃s and G̃d with (9). These
are then supplied in place of the tabular model to create a
PC-based model which is consistent with the internal FS and
therefore with the HSPICE Monte Carlo analysis.

V. VALIDATION AND NUMERICAL RESULTS

In this section, the proposed approach is applied to the sim-
ulation of several lossy and dispersive interconnect structures.
As time-domain analysis of such structures is usually more
challenging, only transient simulations are considered and
carried out using HSPICE. All the simulations are performed
on an ASUS U30S laptop with an Intel(R) Core(TM) i3-
2330M, CPU running at 2.20 GHz and 4 GB of RAM.

A. Inverted Embedded Microstrip Line

100 µm

2 µm 2 µm

β β

ζ

30 µm

6.4 µm

2 µm

3 µm

3 µm

Aluminum : σ = 3.77 · 10
7
S/m

SiO2 : ǫr = 3.9, tan δ = 0.001

Silicon : ǫr = 11.7, σ = 10S/m

Fig. 3. Cross-section of the coupled on-chip IEM line (not to scale).

The first example we consider is that of the coupled inverted
embedded microstrip (IEM) on-chip line shown in Fig. 3.
Due to its tiny dimensions and presence of semiconductors,
such a configuration is characterized by high losses and a
complex frequency behavior. Therefore, its p.u.l. parameters
cannot be accurately computed by means of the HSPICE FS. A

macromodel for the p.u.l. impedance and admittance matrices
of this coupled line is available [10], based on accurate field
simulations and parameterized with respect to the base width
β and the separation of the conductors ζ. Variations in the
base width account for the trapezoidal profile resulting from
the etching process, while variations in the separation describe
the variability of the photolitographic process. Because of the
randomness of these manufacturing steps, it is reasonable to
model such parameters as two independent Gaussian random
variables. Hence, the optimal choice for the basis {ϕk} is
represented in this case by a properly-rescaled version of
Hermite polynomials [12]. Here, a mean value of 2µm and
a relative standard deviation of 10% are considered for β,
whereas ζ has mean 5µm and a standard deviation of 5%.
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Fig. 4. Far-end crosstalk voltage on the coupled IEM line of Fig. 3.
Gray lines: subset of 100 samples from Monte Carlo simulation; other solid
lines: mean value (blue) and standard deviation (red) estimated with Monte
Carlo analysis. Markers (×) and (∗) indicate the same statistical information
obtained from the PC-expansions.

The analyticity of the parametric macromodel allows to
quickly compute a tabular PC-augmented model for the p.u.l.
parameters of the IEM line [10], and this can be supplied
as an input to a W-element in a HSPICE netlist. Also, the
macromodel is randomly sampled to perform repeated Monte
Carlo simulations. For each run, a different tabular input is
generated and a new HSPICE simulation is launched. It is
important to note that the macromodel also allows to speed-
up the Monte Carlo simulation itself, as the computation of an
actual sample of the p.u.l. parameters by means of the accurate
external solver would be much slower.

Fig. 4 shows the stochastic transient simulation of the far-
end crosstalk for the case in which one line is excited by a
1-V step source with a 50-ps risetime and internal impedance
of 1 Ω, and terminated by a capacitance of 1 pF. The other
line is quiet and is also terminated by a 1-Ω resistance and a
1-pF capacitance at the near- and far-end sides, respectively.
The gray lines show the spread of the response resulting from
a subset of 100 Monte Carlo simulations. The blue line is the
average response, while the red line is the standard deviation,
both estimated from 1000 Monte Carlo samples. The markers
depict the same statistical information obtained from a second-
order PC simulation, showing excellent agreement. The local
maxima of the standard deviation indicate points where the
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fluctuation of the response is larger.
As far as the computational times are concerned, the Monte

Carlo analysis required 29 mins, whereas the PC circuit
simulation took 2.7 s. We can thus conclude that, for this
first example, the achieved speed-up is 640×, without any
compromise on the accuracy. It is relevant to point out that
the created model is not restricted to this specific simulation,
but can be stored and re-used for other circuits involving the
same stochastic line structure. Therefore, the time required to
generate the augmented tabular model, which amounts to 53 s,
is not included in the above figures.

B. Transmission-Line Network with Single Lines

75Ω 10nH
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0.5pF
50Ω

25Ω

5nH

2pF

25Ω

5nH

0.5pF

5nH

1pF 30Ω

1pF

vout(t)
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tan δ = 0.02
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150 µm
20 µm
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length=3 cm

length=3 cm

length=3 cm

length=4 cm

length=2 cm

Fig. 5. Transmission-line network with single microstrip traces and corre-
sponding line cross-section.

The second example deals with the interconnect network
illustrated in Fig. 5, whose topology is inspired by [18]. In
this case, the voltage source is a 1-V pulse with rise/fall
times of 200 ps and width of 2.6 ns. The displayed mi-
crostrip cross-section, with copper traces, is considered for the
transmission-line segments. The variability is here provided
by the thickness, permittivity and loss tangent of the board
substrate, which is shared by all the lines. The HSPICE FS
is assumed to be accurate enough for the characterization of
this transmission line geometry, which is then implemented
as a W-element characterized by the description of its cross-
section.

A Monte Carlo simulation with 1000 samples is run using
the available HSPICE feature and by considering a 10%
variation of the above parameters with respect to their nominal
values. The plot in Fig. 6 shows the stochastic transient
response of the voltage vout(t) transmitted to the far-end side
of the network, together with its average value and standard
deviation. These statistical parameters are also obtained from
a PC simulation, which again reveals perfect agreement. In
this case, a second-order PC-based RLGC model described
by augmented L̃0, C̃0, R̃0, R̃s, G̃0 and G̃d matrices is
computed by means of a Gauss-Hermite quadrature and 27
calls to the FS. This step took 22.2 s. The circuit simulation
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Fig. 6. Voltage vout(t) transmitted to the far end of the transmission-line
network of Fig. 5. Curves identification as in the inset of Fig. 4.

of the augmented network required 7.5 s instead, whereas the
Monte Carlo simulation took 38 mins 25 s. For this second
example, the speed-up in circuit simulation is 310×.
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Fig. 7. Probability density function of vout(t) computed at t = 2.9 ns from
the Monte Carlo samples (bars) and polynomial chaos expansions (blue line).
Dashed red line: corresponding Gaussian distribution.

It is worth noting that, despite the normal distribution of
the random input parameters, the distribution of the response
is in general not Gaussian and therefore average value and
standard deviation are not sufficient for a complete statistical
characterization. For instance, Fig. 7 displays the PDF at
t = 2.9 ns, computed from the Monte Carlo samples (bars)
and from the PC-expansion (blue line). For comparison, the
dashed red line is the Gaussian distribution corresponding to
the estimated mean value and standard deviation. It should
be noted that the small number of Monte Carlo samples (the
number of samples is typically of the order of 10000) leads to
a poor resolution of the PDF compared to the result obtained
with the PC solution.

C. Transmission-Line Network with Coupled Lines

We now consider the transmission-line network displayed in
Fig. 8 [18]. The coupled lines again have a microstrip cross-
section with random geometrical parameters, i.e. the copper
trace width, trace-to-trace separation, trace thickness, and
substrate thickness have 10% independent relative standard
deviations. Furthermore, the substrate has a permittivity of
3.7 and a loss tangent of 0.02. The FS is used to characterize
the electrical behavior of the transmission-line sections. The
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Fig. 8. Transmission-line network with coupled microstrip traces and
corresponding line cross-section.

voltage source is a Gaussian pulse of peak amplitude of 1 V
and a width of about 0.177 ns at half amplitude.

0.5 1 1.5 2 2.5 3

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Time t, ns

v
F
X
(t
),
V

Fig. 9. Far-end crosstalk voltage vFX(t) in the transmission-line network
of Fig. 8. Curves identification as in the inset of Fig. 4.

Fig. 9 shows the results obtained with the HSPICE Monte
Carlo analysis (1000 samples) of the far-end crosstalk voltage
vFX(t), which required 14 mins 15 s. The comparison with
a PC simulation, taking 14.2 s and based on a second-
order augmented RLGC model, confirms the accuracy of the
proposed technique and shows a 60× speed-up. The generation
of the augmented model required 55 s. Finally, Fig. 10 displays
the PDF for the crosstalk peak, occurring at t = 0.9 ns.
Again, it is possible to appreciate the better reproduction of
the distribution provided by the PC result.

VI. CONCLUSIONS

This paper proposes an alternative approach to Monte
Carlo circuit simulation of high-speed interconnects affected
by random parameter variability. The method is based on
the representation of stochastic circuit variables in terms of
orthonormalized polynomial functions and applies to lossy and
dispersive multiconductor transmission lines with multiple ran-
dom variables. The determination of the expansion coefficients
allows a convenient extraction of statistical information and is
carried out via a single simulation of a modified (augmented)
circuit, which can be readily derived from the original network
topology.
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Fig. 10. Probability density function of vFX(t) for t = 0.9 ns. Gray bars:
result of Monte Carlo analysis. Blue line: estimation from polynomial chaos
expansion.

The novelty of the advocated technique lies in the extension
of literature stochastic circuit modeling strategies with the in-
clusion of lossy and dispersive distributed elements. Moreover,
it takes advantage of a SPICE-type implementation to perform
transient simulations and facilitate the analysis of arbitrary
network topologies without the need for customized software.
This kind of analysis was not possible with previously-
presented PC-based techniques.

The approach is validated by means of three application
examples involving on-chip and on-board lines. Although the
efficiency with respect to Monte Carlo depends on the number
of samples considered, the PC approach turns out to be about
two orders of magnitude faster even when a very small num-
ber of 1000 simulations is considered, nevertheless showing
excellent accuracy on the prediction of statistical information.
It is important to remark that the proposed technique can be
applied to multiconductor lines having an arbitrary number
of conductors, the efficiency of the approach being mainly
determined by the number of terms considered for the PC-
expansions.
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