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Abstract 

With the advent of mass spectrometry based proteomics, the identification of thousands of 

proteins has become commonplace in biology nowadays. Increasingly, efforts have also 

been invested toward the detection and localization of posttranslational modifications. It is 

furthermore common practice to quantify the identified entities, a task supported by a 

panel of different methods. Finally, the results can also be enriched with functional 

knowledge gained on the proteins, detecting for instance differentially expressed gene 

ontology terms or biological pathways. 

In this study, we review the resources, methods and tools available for the researcher to 

achieve such a quantitative functional analysis. These include statistics for the post-

processing of identification and quantification results, online resources and public 

repositories. With a focus on free but user-friendly software, preferably also open-source, 

we provide a list of tools designed to help the researcher manage the vast amount of data 

generated. We also indicate where such applications currently remain lacking. Moreover, 

we stress the eventual pitfalls of every step of such studies. 
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PTM: posttranslational modification; FDR: false discovery rate; IEF: isoelectric focusing; 
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False Negative Rate; PRIDE: PRoteomics IDEntifications database; PICR: Protein Identifier 

Cross-Referencing; GO: Gene Ontology  

3 
 



1. Introduction 

The progress in the application of mass spectrometry to biological compounds has 

revolutionized the field of biology: the large scale identification of proteins provides a 

unique snapshot of a biological system of interest at a given time point.1, 2 The study of 

proteins and their modifications in a single sample, or differentially between samples 

dramatically increased our understanding of living cells and allowed the setup of ambitious 

experiments3-5 opening new opportunities for biomedical research.6 The canonical example 

of the latter is the comparison of the proteomes of a disease affected population against 

those of a control population.7 Such studies aim to identify biomarkers – an easily 

detectable indicator of a biological state – for the targeted disease.8 However, the efficiency 

of statistical comparison between metrics associated to a biological entity is questioned in 

the literature.9-12 Indeed, such studies suffer from the high variance inherently found in 

biological systems,9 from the low number of replicates typically analyzed,10 and from 

experimental artifacts, errors and missing values.13-15 As a result, the fine nuances of the 

proteomic variations are often not statistically significant when compared to the global 

variance of the system. 

In order to tackle these issues, the proteomics community has started an ambitious 

systematic sharing of resources.16 The rationale is the following: when bringing knowledge 

from previous experiments and other fields like genomics and transcriptomics together, 

one will have a better understanding of the results and might be able to extract patterns of 

interest from the crowd.17 As a result, the community saw the emergence of quantitative 

biological pathway or protein interaction analyses. Such systemic approaches aim at 
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providing a fine grained picture of the biological features of interest, hoping at identifying 

pathology specific disturbances undetectable otherwise.  

This process can typically be subdivided into four main tasks: (1) the identification of the 

biological entities, (2) their absolute or relative quantification, (3) the functional analysis of 

these entities, and (4) the public dissemination of the results in standardized formats. 

Starting from the identified and quantified peptides and proteins results canonically 

obtained from a shotgun proteomics experiment,18 we thus detail in the present review the 

current follow-up resources available in proteomics. Focusing on free and user-friendly 

tools, we list the applications – when existing – allowing researchers to reach these 

objectives. We also list the potential pitfalls involved in these post-identification steps. 

 

2. Global PTM, Peptides and Protein identification  

The typical outcome of a proteomic identification process is a list of identified peptides and 

proteins with posttranslational modifications (PTMs) mapped onto the sequence. However, 

these identifications typically contain a certain proportion of false positives.19 Tremendous 

progress has been achieved in the monitoring of error rates in proteomics, notably with the 

use of target-decoy databases20 – as comprehensively reviewed by Nesvizhskii AI.21 It has 

therefore become possible to filter a dataset of interest at a desired False Discovery Rate22 

(FDR) independently from the specific scoring used by the search engine – an demarche 

common to other scientific fields.23 For example, in a previous study,24 where three 

isoelectric focusing (IEF) fractions of the same sample were analyzed using OMSSA,25 a 

canonical FDR threshold set at 1% required the filtering of all hits with an e-value higher 

than 0.15, 0.20 and 0.19 for fractions 3, 9 and 20, respectively.  
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When comparing the target and decoy distribution of hits at these scores, it is possible to 

estimate an unbiased quality metric, the Posterior Error Probability (PEP).26 Concretely, 

among hundred hits with a PEP of 25%, one expects 25 false positives, 75 true positives. 

The complement of the PEP (100%-25%=75%) hence indicates a confidence in the 

identification. Note that the threshold scores used for the IEF fractions example, although 

very similar, correspond to a confidence of 72%, 96% and 84%, respectively. This 

variability in confidence between fractions at fixed FDR shows the heterogeneity found in 

proteomic results and highlights the necessity for thorough statistical post-processing of 

the identification matches.  

As schematized in Figure 1A, proteomic experiments typically consist of several samples 

that are measured in replicates (technical and biological) and that may each be further 

fractionized. Peptides are inferred from the obtained mass spectra, and proteins are then in 

turn inferred from the peptides. In the example of the IEF fractions above, we illustrate the 

importance of processing sets of spectra specifically: the PEP at a given OMSSA score differs 

from one fraction to the other. Using the OMSSA score for the merged PSM set hence results 

in a lower identification rate (6,084 PSMs at 1% FDR, in orange Figure 1A) compared to the 

same set scored using a fraction specific PEP (in black Figure 1A, 6,247 PSMs at 1% FDR: 

+2.6%). Such specific processing is comparable to charge and modification specific 

scoring27, also mandatory when different mass spectrometers or experimental workflows 

are used on the same sample. A critical point is then to ensure a statistically relevant size of 

the subgroups of PSMs retained for scoring.28 Statistical processing hence makes it possible 

to filter identification matches at a given quality threshold with a high accuracy29 and 

merge the results a posteriori. 
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However, as illustrated in Figure 1B with the concatenation of three hypothetical datasets, 

merging results obtained on different replicates substantially increases the share of false 

positives since false positive identifications are more likely to differ between replicates 

than true identifications – a problem well known to affect searches using multiple search 

engines30 and peptide and protein inference approaches.31 In this simple example, where 

every dataset was filtered to 1% FDR, 25% of the correct matches were unique to a 

particular dataset, while all false positives were unique. The final FDR therefore reached 

1.7% across the datasets: it is hence vital to monitor the quality level of the final result set. 

Crucially, as illustrated in Figure 1C, a peptide or a protein can score moderately (in orange) 

in each of the replicates (like protein D), preventing it from being validated at a quality 

driven FDR within that replicate. However, its presence among all replicates may make it 

more confident than another protein scoring well in only one replicate (like protein C). 

Keeping all identifications from all datasets when creating the merged results and 

subsequently filtering the combined set thus allows rescuing such peptides and proteins, 

reducing the False Negative Rate (FNR).  

Finally, as illustrated in Figure 1D, when a peptide is shared between different proteins 

(e.g., peptide 2 that is shared between proteins A and B), it is not always possible to resolve 

the correct protein identification; this is the well-described but often underestimated 

protein inference problem,32 which has particularly strong incidence on the quantification 

of proteins. In the illustrative example Figure 1D, the uniquely matched peptide 1 scores 

well in the first replicate and gives evidence for the presence of protein A. In replicate 2 

however, this peptide now receives a poor score and would not pass a stringent quality 

threshold, thus impairing the protein inference within this replicate. This kind of situation 
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typically occurs when proteins are identified using different fractionation methods or 

different mass spectrometers. It is hence crucial to consider all peptide candidates across all 

replicates for protein inference as well. 

In summary, an ideal post-identification workflow for proteomics treats identification 

results accounting for specificities of fractions and replicates (technical and biological) 

while taking advantage of the study design in its whole to reduce the FNR at a controlled 

FDR. However, such a statistical analysis is complicated by the fact that identification 

results between fractions and replicates are not independent. Moreover, there is no 

guarantee that the target/decoy strategy holds when merging replicates. On the contrary, it 

can lead to similar issues as multi-stage search strategies.33 Finally, since such experimental 

designs can easily lead to the generation of several millions of spectra – as evidenced by 

some of the biggest datasets34-37 submitted to the PRoteomics IDEntifications (PRIDE) 

repository,38 global analysis of complex proteomic studies are also challenging in terms of 

processing time, computational space, and data management. Several free packages exist 

that allow the processing of large sets of spectra39-43, these offer different solutions for the 

final compilation of the results between replicates, most notably, the MaxQuant/Perseus39 

tool combination allows combination of large datasets, statistical analysis and interaction 

with external resources. 
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3. PTM, Peptides and Protein quantification 

The identified peptides and proteins are subsequently quantified – taking into account their 

modification status. Various non-targeted methods exist for this purpose, with the 

quantification output being either absolute or relative. Absolute quantification is obtained 

by spectrum counting44-46 or by comparing intensities of peptides of interest with a spiked-

in labeled version of known quantity.47 Relative quantification is usually achieved by 

comparing the intensities of peptides measured in parallel or multiplexed after chemical 

labeling.48 The quantification is then directly obtained by comparing peptide intensities49 or 

by comparing intensities of reporter ions released by the label upon fragmentation.50, 51 

Several reviews cover the advantages and shortcomings of these methods.52-56  

The obtained intensities are typically normalized prior to processing. As demonstrated in 

Figure 2A with different spectra of a regulated peptide monitored by iTRAQ quantification 

(courtesy of F Beck and RP Zahedi, unpublished data), when several quantification channels 

are available, a reference channel is typically used for normalization (here the reporter at 

m/z 114). The result after this normalization step shows high variance for the 115/114, 

116/114 and 117/114 ratios, however. As shown in Figure 2B, after normalizing using the 

average of intensities at m/z 116 and 117, it actually appears that the high variance was 

due to the intensities at m/z 114 and this variance was propagated to all other channels by 

normalization. It is thus preferable to normalize using the median of the intensities or on a 

set of intensities which are known from the experimental design to be a reliable reference. 

A final ratio is estimated (shown in red Figure 2A and B) for the channel using an estimator 

that combines robustness and accuracy: maximum likelihood estimators were shown to 
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perform best.13 This type of processing can be achieved using user friendly tools such as 

Rover57 or Perseus (http://maxquant.org/).  

The overall aim of statistical studies based on quantification results is typically to assert the 

confidence in a hypothesis, for instance the significance of a protein regulation regarding a 

hypothesis of stability: is the protein significantly regulated when compared to the stable 

background? Given a distribution of ratios, as illustrated in blue in Figure 2C for the 

distribution of iTRAQ ratios of two biological replicates from a publicly available dataset,37 

the confidence in a regulation will thus be obtained by comparing potentially regulated 

ratios to the global distribution. Assuming that the total complement of ratios is normally 

distributed, such a test can for instance be performed using thresholds calculated from the 

standard deviation of the ratios after logarithmic transformation. However, as illustrated by 

the dotted red line in Figure 2C, the mean and standard deviation based normal distribution 

is a poor model for the experimental data; here, the model fails the Kolmogorov-Smirnov 

test with a statistic of 0.0759 and a corresponding p-value of 8.686*10-10. It is possible to 

address this issue by reverting to the use of a robust distribution based on the median and 

quartile values – implicitly correcting for non-symmetrical distributions. As displayed by 

the green dashed line in Figure 2C, the match with the actual distribution is improved in 

this case. Yet the Kolmogorov-Smirnov test continues to fail (albeit with a much less 

dramatic statistic of 0.0317 and p-value of 0.04698). This example shows the crucial impact 

of the choice of the statistical model, and it illustrates that the significance of regulation 

must be computed and interpreted with care.  

In more advanced experimental designs, the question to answer is typically more complex, 

for example: is a protein significantly regulated in patient samples when compared to control 
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samples? This question is typically assessed by analysis of variance (ANOVA). The design of 

the experiment plays a crucial role here,9 especially regarding the number of replicates that 

will determine the statistical power of the experiment. The power of an experiment 

describes its ability to discriminate the actually regulated compounds from the 

experimental artifacts.10 The subject of replication is essential in proteomics due to the low 

number of samples available for clinical studies. Low number of samples also make the 

study more sensitive toward outliers thus creating important issues regarding pooling 

strategies as often used with gel-based proteomics.58 Perseus (http://maxquant.org/) 

provides several analysis strategies that support the statistical analysis of quantitative 

experiments in a user friendly fashion, as illustrated in Figure 2D with the display of four 

iTRAQ ratios obtained from biological replicates,37 where the color represents the 

abundance of the protein. 

 

4. External resources for functional studies 

The emergence of resources for functional proteomics has broadened the scope of 

quantitative proteomics from the monitoring of single peptides or proteins to entire 

systems. The rationale behind such analyses is that biological deregulations do not only 

affect single proteins but rather disturb or activate entire systems. The comparison of the 

sub-proteome of interest between the healthy and disease state thus provides a fine grained 

picture of the regulations involved. In order to enrich the resulting large amount of 

identification and quantification results with functional knowledge, the community can 

fortunately already make use of various well-established resources, as reviewed in detail by 

Vizcaíno JA et al..16 These external resources can be most readily queried using the 
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accession numbers of the identified and quantified proteins. Note that the portability of 

such accession numbers across databases and through time (as some accession numbers 

may not be stable over time) is ensured by a very powerful and user friendly application: 

the Protein Identifier Cross-Referencing (PICR) service.59  

Proteins are also associated with so-called Gene Ontology (GO) terms,60 that are organized 

into three categories: cellular component, molecular function and biological process. These 

GO terms can be obtained and analyzed for a given list of protein accession numbers using 

web interfaces61, 62 or using dedicated software like Ontologizer.63 It is moreover possible to 

compare the frequency of occurrence of a GO term in a dataset to the frequency of the same 

term in a given background. Similar to the analysis performed in quantification studies, the 

GO term expression analysis comes with a question, most notably: is my term significantly 

differentially expressed in diseased samples? Although quite some effort has been expended 

towards the correction of potential biases in the evaluation of GO term expression,64 it is 

crucial to note that the type of sample used might influence the answer. For instance, when 

studying a given cell type, the detected regulated expression might be due to the cell type 

and not the disease. 

Another source of potentially useful external information comes from interaction 

databases65-67 that list known interacting proteins, as displayed in Figure 3A for data 

obtained from STRING68 on protein P04114. Note that PSIMEX,69 an integrated version of 

these resources, is available. Further information about protein function is available via 

pathway analyses70, 71 as displayed in Figure 3B with a view on the pathway platelet 

homeostasis in Reactome.71 Interestingly, it is possible to study the expression levels of a 

pathway in a dataset.72 It is however important to consider the sensitivity of such an 
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approach in light of protein detection and protein inference issues. Indeed, if unique 

peptides for particular isoforms occurring in the pathway are not found, the coverage might 

easily be falsely underestimated. The pathways obviously also contain entities that are not 

detected in typical proteomic studies, such as metabolites, yet precisely because of this 

reason, pathways provide an ideal means to link proteomics identifications to 

metabolomics data in multi-omics analyses. Finally, pathway coverage is obviously also 

highly dependent on the FDR thresholding used during identification processing. 

Further information on proteins that can be quite relevant to the interpretation of 

proteomics results are provided by their three-dimensional structure,73 as illustrated in 

Figure 3C where a protein structure is displayed using jmol74 in the PeptideShaker 

(http://peptide-shaker.googlecode.com) tool. Identified peptides and their modifications 

are mapped onto the structure, immediately revealing the identified peptides and the sites 

of modification from a structural perspective. The latter can provide powerful orthogonal 

information for modification site localization.75 

It is thus clear that a complete cloud of heterogeneous resources are available to the 

researcher interested in placing proteomics results in a biological context. Navigating a 

variety of resources one by one can be very cumbersome and error-prone however, and 

simplified methods to access all this information in single analysis sweeps have therefore 

been constructed. Of these, Biomarts and the DAS protocol stand out as useful resources. 

Originally developed for the Ensembl database,76-79 Biomarts allow dynamic, easily user-

defined querying of available resources, offering a uniform interface regardless of the 

underlying resource. Moreover, Biomarts for two different resources can be linked, 

allowing across-resource queries. As a result, it is quite easy to perform exhaustive and up 
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to date protein annotation for a large dataset from a single (across-)Biomart query. The 

Distributed Annotation System80 (DAS) on the other hand, is meant to aggregate positional 

annotations for a given protein or gene sequence from a very broad set of compatible 

annotation servers. Web interfaces like Dasty81 provide user-friendly tools to aggregate 

these resources, and present the annotations in a global overview (see Figure 3D). 

Despite the capacity of these web interfaces to gather functional information, mapping vast 

quantitative proteomic studies on these external resources and navigating the results 

rapidly becomes impossible. Notably, no free tool allows taking into account the 

experimental design in the statistical processing of the external information while allowing 

its intuitive navigation, although open source network navigation interfaces already exist.82  
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5. Public repositories 

As demonstrated in Section 4 above, proteomics research is not anymore limited to 

obtaining a dataset in the lab, but takes increasing advantage of the global knowledge on 

proteins, their interactions, features and roles as determined by the collective actions of the 

community. In order to improve the outcome of this global process of integrating 

knowledge, public repositories were set up to explicitly enable the sharing of proteomics 

data and associated results; for a detailed review see83. By making their data available, 

scientists can actively contribute to an overall collaborative effort, enabling their findings to 

act in feedback loops by for instance aiding in the annotation of protein databases that are 

in turn so useful in proteomics research. Recently, substantial progress in this area has been 

made to facilitate the submission to repositories with applications like PRIDE Converter84, 85 

and the ProteomeXchange (http://proteomexchange.org) submission tool. At the same 

time, inspecting and retrieving data from repositories such as PRIDE38 has been made much 

easier thanks to the powerful PRIDE Inspector application86 that greatly simplifies the 

interaction between the user and the repository. In fact, user friendliness is a vital feature 

for repositories, as the ultimate potential of the data will depend on the user’s ability to 

deposit their findings in the repository. An important yet often overlooked aspect here is 

the annotation of the data, which is of fundamental importance for the efficient re-use of the 

information. Here, user-friendly interfaces such as the OLS Dialog87 can aid substantially in 

lowering the required effort to correctly annotate a dataset. Automated checks on the 

semantic validity of the annotation can then be used to ensure that the user reports the 

correct type of information.88 High quality public datasets are not only of interest for the 
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simple sharing of the obtained results, but also for their potential value when reused in 

research with a novel focus.89-92   
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6. Discussion and overview 

Thanks to the advent of shotgun proteomics, protein analysis went from the laborious 

identification of a few entities to the automated identification and quantification of 

thousands of proteins with their mapped PTMs. However, for both identification as well as 

quantification, current workflows contain some unseen pitfalls that are not always 

adequately handled by established methods. This is especially the case for advanced, multi-

sample experiments using several replicates. This is unfortunate, since such experiments 

are actually of the highest biological interest. The community is thus in need for renewed 

efforts to develop powerful, user friendly software able to handle such experiments easily 

and correctly. This task is however complicated by the amount of data involved. Indeed, in 

order to resolve protein inference issues, precisely map PTMs, and achieve global proteome 

quantification, it is necessary to navigate and process several millions of spectra in a 

practical time scale with reasonable computational requirements. To successfully tackle 

such a challenge, new, more advanced computational techniques may be required,93 while 

reducing algorithmic complexity without sacrificing performance should be a high priority 

for developers in the field.  

These techniques should no longer solely focus on delivering lists of peptides and proteins, 

but aim at identifying entire biological systems, mapping the experimental results on them 

and allow their intuitive navigation. This task is made particularly difficult by the complex 

experimental design of many proteomic experiments. Notably, the combination of shotgun 

and targeted studies for the study of functional changes in proteomics is crucial for the 

identification and validation of biomarkers. However, such investigations currently rely 

heavily on inefficient manual data manipulation. 
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Since functional proteomics relies on acquired knowledge, the quality and quantity of 

information available is strongly species dependent. Moreover, the study of certain samples 

breaks standard statistical assumptions in proteomics, notably in terms of database size 

and identification reliability. Despite the availability of resources for some organisms, 94 

these problems are commonplace in plant proteomics and metaproteomics95 for instance. 

There is therefore a strong need for increased species coverage for functional proteomics, 

which may be answered at least in part by cross-species portability of the existing 

annotation, as for instance performed by Reactome and Ensembl [REFS!!]. 

The second breakthrough that has become evident in proteomics over the past few years is 

the generalization of data and knowledge sharing. This collective effort of the community 

has enriched the field with global access to large amounts of high quality information. Here 

again, despite the progress in data sharing, current resources remain mainly populated 

with data from established methods and well-studied model organisms. Species with a 

partially or non-sequenced genome are simply not yet part of this dynamic. Similarly, 

innovative experimental designs do not always fit in the predefined data structures of 

external resources and repositories. This, together with the sometimes insufficient 

annotation of the datasets currently impairs the mapping of experimental data to external 

resources, hence blocking their use for functional proteomics. This issue can be solved by 

the establishment of efficient curation systems, and the development of robust, automated 

reprocessing methods. 

Yet despite these caveats, the accurate and quantitative systematic proteomics analysis of 

model organisms is now within reach, by bringing together cutting edge competence in 

18 
 



various fields comprising biology, sample preparation, chromatography, mass 

spectrometry, data interpretation and statistics.  

  

19 
 



Acknowledgments 

The financial support by the Ministerium für Innovation, Wissenschaft und Forschung des 

Landes Nordrhein-Westfalen and by the Bundesministerium für Bildung und Forschung 

(SARA, DYNAMO) is gratefully acknowledged. L.M. acknowledges the financial support of 

Ghent University (Multidisciplinary Research Partnership “Bioinformatics: from nucleotides 

to networks”) and the PRIME-XS and ProteomeXchange projects funded by the European 

Union 7th Framework Program under grant agreement numbers 262067 and 260558.  

  

20 
 



Figures 

Figure 1: 

 

21 
 



 

  

1 

2 

3 

FDR: 1% -> 1.7% 

 1 2 3 Id 
Protein A     
Protein B     
Protein C     
Protein D     
Protein E     
Protein F     
Total 2 1 1 4 
 
FNR: 50% -> 33% 

B C 

D 

Replicate 1 A   1  2    
          

 B     2    
 

Replicate 2 A   1  2    
          

 B     2    
 

24 (1) 

25 

24 (1) 

24 (1) 25 

25 
25 

22 
 



Figure 2: 

 

  

23 
 



Figure 3: 

 

  

A B 

C D 

24 
 



Figure legends 

Figure 1: Taking advantage of the experimental design. (A) A typical proteomics 

experiment consists of several samples analyzed in replicates. Here, we take the simple 

example of three measurements of Isoelectric Focusing fractions from which we want to 

infer peptide and protein identifications. For every fraction, we represent the target/decoy 

derived Posterior Error Probability (PEP) at a given score. For the merged result set of 

Peptide-Spectrum Matches (PSMs), the number of PSMs is plotted at a given False 

Discovery Rate (FDR) when sorted against the OMSSA score (orange) and against the 

inferred PEP (black). (B) Processing all samples separately and merging the results 

increases the FDR substantially: considering an example where 25% of the proteins 

identified in a sample are unique to that sample, and this includes all false positives 

(numbers in red). When merging these three datasets (that are each filtered at 1% FDR), a 

final dataset is obtained with an FDR equal to 1.7%. (C) When considering six proteins 

identified in the three datasets at different confidence levels (indicated by red, orange and 

green for bad, medium and good confidence, respectively), it can for instance be seen that 

protein D is found in all samples yet is not validated due to its moderate score in each 

sample. The fact that it is found in all samples however, makes it quite likely that it should 

in fact be included in the global set of identifications. Indeed, although a false negative in all 

datasets, this protein could be rescued by scoring the identifications globally. Similarly, 

protein B is not validated in sample 3 but its presence in the global identification suggests 

that the peptides found in sample 3 should be used for quantification. (D) In proteomics it is 

sometimes impossible to infer the presence of a protein due to the absence of an identified 

unique peptide as illustrated here for replicate 1. While protein sequences A and B can be 
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distinguished by peptide 1, this peptide does not receive a high enough score (orange) for 

identification, and will therefore not be used for protein inference. In replicate 2 however, 

peptide 1 receives a higher score (green) allowing the unambiguous identification of 

protein A. Yet if protein A is confidently identified in the second replicate, it is likely to have 

been in the first replicate as well. A suitable study design can thus help resolve protein 

inference by analyzing the data globally. 

 

Figure 2: Quantification post-processing. (A) An example of peptide iTRAQ 4-plex ratios 

measured in different spectra (black crosses). When normalizing on the 114 channel, the 

obtained peptide ratio using a maximal likelihood estimator (red) for the different channels, 

114:115:116:117 are 1:1.56:2.79:3:50, respectively. Note how important the variance on 

every channel is: regulation between 116 and 117 cannot be confidently assessed here. (B) 

when normalizing on the average intensity of channels 116 and 117, the peptide ratios are 

0.2:0.4:0.82:1.18, equivalent to 1:2.00:4.10:5.85. The regulation is hence more pronounced 

and the variability on the channels is reduced, except for the low intensities. In (B) 

significant regulation can be inferred whereas in (A) no significance is detected; this simple 

pitfall can be avoided by normalizing on the most reproducible measurements. (C) When 

asserting the regulation of proteins, as performed here with 1,869 iTRAQ protein ratios 

obtained between two replicates (blue distribution), one typically compares the regulation 

to the standard deviation of the distribution under the assumption that 1.96 times the 

standard deviation yields 95% confidence for a two-sided test. The assumption is of course 

that the data is normally distributed. As shown by the red dotted line, the assumed normal 

distribution based on the mean and the standard deviation of the data, does not fit the 
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experimental distribution at all however, failing the Kolmogorov-Smirnov test (see main 

text). A normal distribution calibrated on the quartiles of the experimental distribution 

(dashed lines in green) fits the experimental distribution better but still does not perform 

very well on the Kolmogorov-Smirnov test (see main text). The choice of the reference 

statistical model is therefore crucial to assess regulation, yet this topic is rarely touched 

upon in quantitative proteomics studies. (D) Statistical analysis and display can be 

performed on any kind of data in the Perseus software. Here, the four ratios obtained from 

a set of 3,253 proteins quantified with iTRAQ between four biological replicates are 

displayed in correlation plots. The color gradient from black to red indicates increasing 

absolute quantification. Note that highly abundant proteins are less subject to relative 

variation than low abundant proteins. 

 

Figure 3: External resources for proteomics. (A) A network of protein-protein 

interactions as rendered by STRING for Apolipoprotein B-100 (accession P04114). (B) 

Pathway platelet homeostasis, as shown in Reactome. (C) 3D structure of a protein with the 

identified peptides and post-translational modifications mapped and highlighted, as shown 

by PeptideShaker (http://peptide-shaker.googlecode.com). (D) Annotation view of a 

protein in Dasty, using combined information from a variety of annotation servers. 
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