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HTTP Adaptive Streaming (HAS) is quickly becoming the de facto standard for video streaming services. In
HAS, each video is temporally segmented and stored in different quality levels. Rate adaptation heuristics,
deployed at the video player, allow the most appropriate level to be dynamically requested, based on the
current network conditions. It has been shown that today’s heuristics underperform when multiple clients
consume video at the same time, due to fairness issues among clients. Concretely, this means that different
clients negatively influence each other as they compete for shared network resources. In this article, we
propose a novel rate adaptation algorithm called FINEAS (Fair In-Network Enhanced Adaptive Streaming),
capable of increasing clients’ Quality of Experience (QoE) and achieving fairness in a multiclient setting. A
key element of this approach is an in-network system of coordination proxies in charge of facilitating fair
resource sharing among clients. The strength of this approach is threefold. First, fairness is achieved without
explicit communication among clients and thus no significant overhead is introduced into the network.
Second, the system of coordination proxies is transparent to the clients, that is, the clients do not need to be
aware of its presence. Third, the HAS principle is maintained, as the in-network components only provide
the clients with new information and suggestions, while the rate adaptation decision remains the sole
responsibility of the clients themselves. We evaluate this novel approach through simulations, under highly
variable bandwidth conditions and in several multiclient scenarios. We show how the proposed approach can
improve fairness up to 80% compared to state-of-the-art HAS heuristics in a scenario with three networks,
each containing 30 clients streaming video at the same time.
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1. INTRODUCTION

Nowadays, video streaming applications are responsible for the largest portion of the
traffic exchanged over the Internet. Particularly, HTTP Adaptive Streaming (HAS) pro-
tocols have become very popular due to their flexibility, and can therefore be considered
as the de facto standard for video streaming services. Microsoft’s Smooth Streaming,
Apple’s HTTP Live Streaming, Adobe’s HTTP Dynamic Streaming, and MPEG Dy-
namic Adaptive Streaming over HTTP (DASH) are examples of available HAS tech-
nologies. In an HAS architecture, video content is stored on a server as segments of
fixed duration at different quality levels. Each client can request the segment at the
most appropriate quality level on the basis of the local perceived bandwidth. In this
way, video playback dynamically changes according to the available resources, result-
ing in a smoother video streaming experience. The main disadvantage of current HAS
solutions is that the heuristics used by clients to select the appropriate quality level
underperform in a multiclient scenario [Akhshabi et al. 2012a; Li et al. 2014; Petrangeli
et al. 2014]. In a real scenario, multiple clients simultaneously request content from the
HAS server. Often, clients have to share a single medium, and issues concerning fair-
ness among them appear, meaning that the presence of a client has a negative impact
on the performance of others. As reported by Akhshabi et al. [2012a], fairness issues
are not due to TCP dynamics but mainly arise from the rate adaptation algorithms, as
they decide on the actual rate to download. When multiple clients stream a video at
the same time, a wrong bandwidth estimation can occur, due to the temporal overlap of
the activity-inactivity periods of different clients. This wrong estimation subsequently
affects the bit rate selection and thus the clients’ Quality of Experience (QoE). This
problem is aggravated by the uncoordinated nature of current HAS heuristics. This
entails that they are not aware of the presence of other clients nor can they adapt their
behaviour to deal with it.

In this article, we investigate the aforementioned problems arising in a multiclient
setting. Particularly, we present a fair HAS client able to achieve smooth video play-
back while coordinating with other clients in order to improve the fairness of the entire
system. This goal is reached with the aid of an in-network-based system of coordination
proxies, in charge of collecting measurements on the network conditions. This informa-
tion is then used by the clients to refine their quality decision process and develop a
fair behavior.

The main contributions of this article are threefold. First, we present a new HAS
heuristic called FINEAS (Fair In-Network Enhanced Adaptive Streaming) able to se-
lect the best quality depending on network conditions in order to provide a smooth
video streaming and improve fairness. Particularly, our heuristic is able to increase the
average requested quality level compared to current HAS heuristics and avoid video
freezes, while guaranteeing similar QoE to all the clients streaming video, that is, fair-
ness. Second, we design an in-network-based system to help clients coordinate their
behavior, which does not require explicit client-to-client communication or a central-
ized decision process. Consequently, the quality level selection can still be performed
locally and independently by each client, without any modification to the general HAS
principle. Third, detailed simulation results are presented to characterize the gain of
the proposed framework compared to state-of-the-art HAS heuristics.
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The remainder of this article is structured as follows. Section 2 reports related work
on HAS and multiclient algorithms. Section 3 details the proposed multiclient HAS
framework, from both an architectural and algorithmic point of view. In Section 4,
we evaluate our solution through simulation and show its effectiveness compared to
current HAS heuristics. Section 5 presents the main conclusions. The Online Appendix
presents an analytical formulation of the general fairness problem.

2. RELATED WORK

Akhshabi et al. [2012b] present an analysis of the performance and drawbacks of some
commercially available HAS heuristics, such as Microsoft’s Smooth Streaming, Netflix,
and Adobe players. It is shown that current heuristics perform quality selection sub-
optimally. Particularly, they fail to adapt to rapid bandwidth changes, leading to drops
in the client play-out buffer and unnecessary quality switches. They also analyze the
performance of two competing HAS clients sharing the same bottleneck and point out
that they are not able to develop a fair behavior. Similar considerations are reported
by Müller et al. [2012a] when testing different HAS implementations using real band-
width traces collected on a mobile network. They also point out that the Microsoft’s
Smooth Streaming client is able to achieve the highest average bit rate as well as a low
number of quality switches.

Many HAS rate adaptation heuristics have been proposed to alleviate the problems
highlighted in the previous paragraph. Zhou et al. [2012] present a control theory-based
HAS client where the buffer filling level of the client is controlled. A similar approach
is also studied by Tian and Liu [2012]. Adzic et al. [2011] propose to add additional
information into the video segments to enhance the quality decision algorithm. The
client can then decide to switch up or down depending on the effect on bit rate and
the intrinsic quality of the next segment to download. Jarnikov and Ozcelebi [2010]
study an algorithm based on a Markov Decision Process (MDP), which requires offline
training. Xiang et al. [2012] use a similar approach for Scalable Video Coding streaming
and adopt a Markov model to describe the variations of wireless channel conditions.
Also, the work presented by Claeys et al. [2014] is based on an MDP and Reinforcement
Learning theory. In this case, the solution to the MDP is computed online by means of
the Q-Learning algorithm, without any a priori knowledge. All these algorithms share a
common drawback. Although effective in a single-client scenario, they are not explicitly
designed to deal with the presence of multiple clients streaming video simultaneously
over a shared network medium. This means that they can fail in these circumstances,
as shown by Akhshabi et al. [2012a]. They report that unfairness is mainly caused by
the quality adaptation algorithms themselves, since they are not designed to explicitly
cope with a multiclient scenario. It is shown that a relevant cause of unfairness is the
temporal overlap of the activity-inactivity periods of different clients, since this can
lead to wrong bandwidth estimations.

Based on this consideration, most of the algorithms designed to improve fairness
in HAS focus on the modification of the time interval at which clients request a new
segment. Villa et al. [2012] implement a modified version of the Microsoft’s Smooth
Streaming (MSS) client, randomizing the quality selection decision interval. The re-
sults show that this technique can improve fairness, but the randomization character-
istics have to be selected carefully. A similar approach is also used by Jiang et al. [2014].
In this case, the next segment download is randomized taking into account the buffer
status in order to avoid freezes. Moreover, a stateful bit rate selection is introduced to
allow clients with a low quality to increase it more aggressively. The authors theoreti-
cally prove that this selection allows convergence of the clients’ bit rates. In the work
by Li et al. [2014], the download of a chunk is scheduled to obtain a continuous average
data rate sent over the network and to maintain the buffer level close to a given thresh-
old. The segment fetch time is used by Liu et al. [2012] to decide which quality level
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to request. They try to improve fairness by allowing recently joined clients to behave
more aggressively. De Cicco et al. [2013] propose the ELASTIC client, which avoids
activity-inactivity periods by downloading segments in order to maintain the buffer
level close to a set-point. The ELASTIC client is mainly designed to obtain fairness
from the network point of view but not to maximize QoE, since quality switches are not
included in the rate adaptation heuristic. This results in a high number of switches,
even in a fixed bandwidth scenario, and consequently low QoE. The main problem of
the presented algorithms is that they are purely client based, that is, no coordination
is envisaged among the clients. Although this aspect simplifies the design and imple-
mentation of the algorithms, it does not allow solving the fairness problem completely.
The lack of coordination mechanisms entails that the fairness problem has to be solved
at design time and that the solution has to be encoded in the client’s heuristic. Since
fairness is inherently an online problem, which depends on the number of clients, net-
work topology, and bandwidth conditions, the obtained solution is suboptimal. As an
example, Müller et al. [2012b] pointed out that the network infrastructure, as a system
of caching proxies, has a negative impact on the bandwidth estimation process of the
clients, and thus also on their performance in terms of QoE and fairness. This type
of information, which is not known at design time and thus not available to purely
client-based algorithms, affects the effectiveness of the aforementioned solutions.

A first approach to tackle this problem would be a centralized solution, where the
video server decides on the quality level to return. This solution is investigated by De
Cicco et al. [2011] and Kuschnig et al. [2010]. De Cicco et al. [2011] propose a control
theory-based algorithm to control the length of the sender buffer, placed at the server,
in order to select the most appropriate quality level. In the work presented by Kuschnig
et al. [2010], the server estimates the bandwidth of the TCP connection considering
the number of bytes transmitted in a time unit. This estimation is performed on a
per-GOP (Group of Pictures) basis. Even if a centralized approach would facilitate the
computation of an optimal global fair policy, it is not scalable if the number of clients
to serve increases. Moreover, a centralized approach alters the classical HAS principle.

In order to solve the scalability issue, we adopt in this article an in-network ap-
proach. In in-network algorithms, intermediary nodes are placed in the network to
collect information regarding the available bandwidth and influence the behavior of
HAS clients. An example of in-network adaptation is given by Bouten et al. [2012]. A
system of network proxies periodically solves an optimization problem to determine the
maximum quality the clients can download, based on the current network status and
an objective function. Houdaille and Gouache [2012] introduce a bandwidth manager
inside the home gateway to manage the flows belonging to the different clients. Based
on clients’ characteristics and network conditions, the bandwidth manager determines
the target bit rate for each client in order to fairly share the available bandwidth. The
bandwidth manager then applies traffic shaping techniques to limit the bandwidth of
each client and drive it to request the target bit rate. A similar approach is investigated
by Georgopoulos et al. [2013]. A centralized OpenFlow controller is used to allocate the
bandwidth for each streaming device in order to obtain fairness from a QoE point of
view. The authors present a model to correlate video bit rate with video quality, which
is used by the controller in the bandwidth allocation process. Also, Ma and Bartos
[2011] implement a bandwidth manager to determine the quality levels to assign to
the clients, based on the available bandwidth and their subscription level. Mok et al.
[2012] introduce a measurement proxy between the clients and the video streaming
server, which estimates the available bandwidth and decides the highest possible qual-
ity level the clients can support. Based on this information and their buffer status,
the clients decide the most appropriate quality level to request. El Essaili et al. [2013]
propose a QoE optimizer for wireless networks that computes the optimal rate for the
streaming clients, based on the wireless channel conditions. This value is then used
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by a QoE proxy, in charge of intercepting and rewriting clients’ requests to match
the requested quality level with the optimal rate. The principal disadvantage of the
aforementioned algorithms is the active role of the in-network elements in the quality
decision process. This aspect entails an alteration of the classical HAS principle, as the
network de facto decides which quality level the clients can download. Even if different
clients will select quality differently, at steady state all clients will converge to the
quality level enforced by the network. Moreover, these solutions present robustness
issues in case of fault or malfunctioning of the in-network elements.

Based on these considerations, we developed a new client-based rate adaptation
heuristic to optimize the QoE delivered to the clients, together with an in-network
coordination mechanism to improve fairness, which can operate in face of multiple
bottleneck links. This approach presents two advantages. First, the in-network com-
putation can be kept very simple and consequently not be computationally demanding,
since the quality decision algorithm still runs at the client. Second, it is more robust
in case of fault or malfunctioning of the network equipment, as the client can continue
to operate (at a suboptimal level) without the in-network system. The concept of an
in-network system to help clients obtain fairness was first introduced in our previ-
ous work [Petrangeli et al. 2014]. The difference with respect to the work presented
in this article is twofold. First, the in-network system presented by Petrangeli et al.
[2014] is composed of a single centralized node, which collects and aggregates statistics
on clients’ QoE performance. Even though the presented approach showed promising
results, further experiments have shown unsatisfactory performance in complex sce-
narios, mainly due to (1) the centralized nature of the solution, which is not able to
handle the presence of multiple bottlenecks, and (2) the aggregation of QoE statistics,
which is not trivial if clients are located in different subnetworks. In this work instead,
we propose a distributed in-network system, able to cope with the presence of multiple
bottlenecks, computing an estimate of the clients’ fair bandwidth share on bottleneck
links. This information is provided to the clients, which use it in their heuristics to
achieve fairness. Second, we design a completely new rate adaptation heuristic, called
FINEAS, to maximize clients’ QoE and exploit the information provided by the in-
network system to achieve fairness.

3. PROPOSED FAIR HAS FRAMEWORK

The problem we propose to investigate in this article is twofold. First, clients have to
obtain the highest possible video quality. Second, they have to show similar perfor-
mance if they share bottleneck links, that is, fairness. Based on this consideration,
all the clients sharing the same bottlenecks should act fairly, even if they belong to
different networks. An analytical formulation of the general fairness problem is pre-
sented in the Online Appendix. In order to maximize the QoE delivered to the clients
and achieve fairness, we present the FINEAS heuristic. The FINEAS heuristic runs
at the clients and performs the quality level selection based on three inputs: the local
perceived bandwidth, the video player buffer status, and the so-called fairness signal.
The fairness signal is an additional measure introduced to achieve fairness, obtained
when the client downloads a segment. The fairness signal is computed by a system
of network nodes, called coordination proxies, and represents an estimate of the fair
bandwidth share of all the clients streaming video. In the remainder of this section, we
provide an architectural overview of the proposed framework (Section 3.1) and detail
the implementation of the FINEAS heuristic (Section 3.2) and of the fairness signal
computation (Section 3.3).

3.1. Architectural Overview

As introduced previously, the system of coordination proxies is in charge of helping
clients achieve fairness, by computing an estimate of the fair bandwidth share for
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all the clients streaming video, even if they belong to different networks. In order to
maintain scalability, the computation of the fairness signal is performed periodically
and in a hierarchical way by the coordination proxies. A generic coordination proxy P
receives an estimate of the fairness signal from its parent node and computes a new
estimate of the fairness signal for each of its child proxies. This estimate is computed
by monitoring the available bandwidth for HAS traffic on the links connecting proxy
P to its child nodes. A root proxy triggers the computation of the fairness signal. At
initialization, the coordination proxies start monitoring the bandwidth for HAS traffic.
After Tfair seconds, given Tfair is the fairness signal computation period, the root proxy
forwards its first estimate of the signal and triggers its computation for the entire
system. In order to limit overhead, the calculated fairness signal can be added as an
HTTP header field and returned to the clients when delivering the next segment to
play. Particularly, the clients translate the fairness signal into a reference quality level,
representing the theoretical quality level to request in order to obtain perfect fairness
among the clients. This reference gives an indication of the best quality level to achieve
fairness, rather than determining the actual quality to be requested. The reason for
this behavior is twofold. First, directly requesting the reference quality level would be
optimal from the fairness point of view but not from the QoE point of view, because
of the frequent switches that would occur. Second, directly requesting the reference
quality level would alter the classical HAS principle, as the decision on the quality
level to download would no longer be carried out by the clients.

The main advantage of this hybrid approach is threefold. First, no communication
is needed among clients and consequently no significant overhead is introduced. More-
over, no client-to-proxy communication is required. The proxies are transparent to the
clients, as the clients only need to know how to access the fairness signal but not how
it is created. Second, the computation and delivery of the fairness signal do not nega-
tively affect the behavior of existing clients. Third, the approach is robust toward proxy
failure, as the clients can also operate without the fairness signal.

As far as the coordination proxies’ positioning is concerned, the proxies should be
located at the main aggregation points of the network in order to monitor the links
where a bottleneck can occur. Potential bottlenecks can be identified by analyzing the
underlying network architecture or at runtime by monitoring link conditions (e.g., if
the traffic exceeds a certain percentage of the link capacity, a coordination proxy can
automatically become active). Since network operators have full control of their deliv-
ery infrastructure, they can easily identify which are the most sensible paths in their
networks where a bottleneck could occur. This way, they can perform an initial place-
ment of the coordination proxies on network nodes. Note that this assumption does not
impact the flexibility of our solution, since in a real scenario the network architecture is
given and does not significantly change over time. Furthermore, as coordination proxy
functionalities can be implemented via software, proxies can be flexibly relocated in
case network conditions consistently change over time. Moreover, coordination proxies
can be placed liberally on network nodes, without negatively impacting the fairness sig-
nal computation even if a bottleneck does not occur. In this case, a proxy only receives
the fairness signal from its parent node and forwards it to its child proxies, without per-
forming any operation on it. In other words, if a bottleneck does not occur, the considered
proxy becomes transparent with respect to the computation of the fairness signal. As an
example of coordination proxies’ placement, Figure 1 depicts a schematic representa-
tion of a communication network architecture based on the Evolved Packet Core (EPC),
as described by Release 11 of the 3rd Generation Partnership Project (3GPP) [3GPP
2013]. The EPC represents a unified core network for the convergence of both 3GPP
(as 2G, 3G, and 4G) and non-3GPP (as WLAN or DSL) access networks, but it is worth
noting that our approach can be applied to other network topologies as well. Depending
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Fig. 1. Schematic representation of a communication network. The possible locations of the coordination
proxies are shown. If the streaming service is offered by an Over-the-Top (OTT) provider, the proxy located
at the HAS server in the core ISP network has to be moved to the router connecting the core ISP network
with the Internet.

on whether the streaming service is offered by the network operator or an Over-the-Top
(OTT) provider, the HAS server can be located inside the core ISP network or in a data
center connected to the core ISP network through the Internet, respectively. In the lat-
ter case, a coordination proxy is located at the edge between the Internet and the core
ISP network. In 2G and 3G access networks, a base station and a base station controller
manage the radio interface. In the 4G case, these functionalities are carried out by the
same node. A DSLAM concentrates the traffic coming from WLAN and DSL access
networks and forwards it to the Broadband Remote Access Server (BRAS). A Packet
Data Network (PDN) Gateway aggregates the traffic belonging to 3GPP and non-3GPP
access networks and directs it into the core ISP network. The aforementioned nodes
can provide coordination proxy functionalities, since they aggregate traffic at different
network levels and can detect the presence of congested links. It is worth noting that
the proposed system can be extended to take into account the presence of caches. In this
case, the proxies have to compute a separate fairness signal for each of the considered
delivery nodes (e.g., a generic HAS server or a cache). Consequently, our approach can
be combined with any existing HAS-optimized caching scheme.

An important aspect of our framework is how the bandwidth estimation process
is carried out by the proxies. In this article, we use an implementation based on
sFlow, which performs bandwidth estimation through an operation of packet sampling
[Schmidt et al. 2013]. Proxies monitor the bandwidth for two groups of flows: HAS
traffic and non-HAS traffic (i.e., the traffic generated by non-HAS clients is grouped
into the same flow). When a packet is sampled, the packet header is extracted and
analyzed in order to match it to a specific flow. A packet belongs to the HAS flow if the
IP source address matches that of the HAS server and the TCP source port is equal to
80 (the standard port for HTTP connections). Otherwise, the packet is considered part
of the non-HAS traffic flow.

3.2. Client-Side Rate Adaptation

The FINEAS heuristic is executed by the client when a new segment has been down-
loaded, and before the request of a new one. The goal of the client is to select the most
appropriate quality level in order to maximize QoE and achieve fairness. A detailed
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ALGORITHM 1: FINEAS client heuristic. The symbol * indicates the parameters belong-
ing to the heuristic.

Data: videoBitRate, vector containing the bit rate of each quality level of the video
maxAvailableQuality, highest available quality level of the video
segmentDuration, duration of the video segments (in seconds)
bufferSize, size of the video player buffer, expressing the maximum amount of video that can be stored (in
seconds)
qualityWindow*, time window stating how many quality level samples should be kept in memory (in
seconds)
bufferMin*, panic threshold of the buffer level (in seconds)
bufferPercentage*, target percentage of the buffer size
α*, global utility function weight
Result: nextQL, the next quality level to request

1 bandwidth ← getLocalPerceivedBandwidth();
2 bufferFillingLevel ← getCurrentBufferFillingLevel();
3 bufferTarget = bufferSize × bufferPercentage;
4 qualityHistoryVector ← updateQualityHistoryVector(currentTime,qualityWindow);
5 averageQuality ← computeAverageQuality(qualityHistoryVector);
6 fairnessSignal ← getFairnessSignal();

7 fairnessQuality = 1;
8 for ql ← 1 to maxAvailableQuality − 1 do
9 if videoBitRate(ql) ≤ fairnessSignal < videoBitRate(ql + 1) then

10 fairnessQuality = fairnessSignal+ql×videoBitRate(ql+1)−(ql+1)×videoBitRate(ql)
videoBitRate(ql+1)−videoBitRate(ql) ;

11 end
12 end
13 if fairnessSignal ≥ videoBitRate(maxAvailableQuality) then
14 fairnessQuality = maxAvailableQuality;
15 end
16 if bufferFillingLevel ≤ bufferMin then
17 nextQL = 1;
18 else
19 maxDownloadableQuality = maxAvailableQuality;
20 for ql ← 1 to maxDownloadableQuality do
21 estimatedDownloadTime = (

videoBitRate(ql) × segmentDuration
)
/bandwidth;

22 estimatedBufferLevel =
bufferFillingLevel − estimatedDownloadTime + segmentDuration;

23 if estimatedBufferLevel ≤ bufferMin then
24 maxDownloadableQuality = ql − 1;
25 break;
26 end
27 end
28 globalUtilityMax = −1000;
29 for ql ← 1 to maxDonwloadableQuality do
30 estimatedDownloadTime = (

videoBitRate(ql) × segmentDuration
)
/bandwidth;

31 estimatedBufferLevel =
bufferFillingLevel − estimatedDownloadTime + segmentDuration;

32 qoeUtility = − | ql − maxDownloadableQuality | − | ql − averageQuality |
−|estimatedBufferLevel − bufferTarget |;

33 fairnessUtility = − | ql − fairnessQuality |;
34 globalUtility = (1 − α) × fairnessUtility + α × qoeUtility;
35 if globalUtility ≥ globalUtilityMax then
36 globalUtilityMax = globalUtility;
37 nextQL = ql;
38 end
39 end
40 end
41 return nextQL;

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 2, Article 28, Publication date: October 2015.



QoE-Driven Rate Adaptation Heuristic for Fair Adaptive Video Streaming 28:9

description of the heuristic is provided in Algorithm 1. We indicate all the parameters
belonging to our heuristic with the symbol *. In Section 4, an extensive evaluation of the
impact of these parameters on the algorithm’s performance is reported. The FINEAS
heuristic can be subdivided into four main parts, which we describe in the following.

Input collection (lines 1–15). First, the client obtains the local perceived band-
width, the video player buffer filling level bufferFillingLevel, and the buffer target
bufferTarget (lines 1–3). The perceived bandwidth is the bandwidth measured during
the download of a segment and is computed as the ratio between the segment size
and the segment download time. bufferFillingLevel is the amount of video currently
stored in the video player buffer, expressed in seconds. It depends on the number of
segments currently stored in the buffer and their duration. bufferTarget represents the
target for the buffer filling level, expressed in seconds. The client requests the next
segment in order to maintain the resulting buffer filling level close to bufferTarget.
This value is set by the parameter bufferPercentage, which is expressed as a percent-
age of the total buffer size. As an example, given bufferSize and bufferPercentage are
equal to 10 seconds and 80%, respectively, the desired buffer target would be equal to
10 × 0.8 = 8 seconds. Next, the client updates the vector qualityHistoryVector, which
contains the quality levels requested in the last qualityWindow seconds, and com-
putes the average requested quality over this time window (lines 4–5). The fairness
signal is then extracted from the HTTP header of the downloaded segment (line 6).
The fairness signal represents the fair bandwidth share per client as computed by
the coordination proxies. A client should request the quality level whose bit rate is
closest to the fairness signal in order to fairly share resources with the other clients.
Consequently, a reference quality level fairnessQuality is obtained starting from the
fairnessSignal and the bit rates of the video (lines 7–15). fairnessQuality is then used
as the target quality level to request in order to obtain perfect fairness among clients.
Note that this mapping produces a real value in the interval [1;maxAvailableQuality],
since in general there is not an exact match between the fairness signal and the bit
rates of the video. The client identifies the nearest lower (ql) and nearest higher (ql +
1) bit rates compared to fairnessSignal (line 9). fairnessQuality is computed on line
10. This operation corresponds to finding the fitting line passing through the points
a = (ql,videoBitRate(ql)) and b = (ql + 1,videoBitRate(ql + 1)), and using the obtained
equation to find the coordinate of point c = (fairnessQuality, fairnessSignal), where
the unknown variable is fairnessQuality. Particularly, by substituting points a and
b into the equation y = mx + k and solving it with respect to m and k, the fitting
line can be found. m and k are equal to videoBitRate(ql + 1) − videoBitRate(ql) and
(ql + 1) × videoBitRate(ql) − ql × videoBitRate(ql + 1), respectively. By substituting
the coordinate of point c into the aforementioned equation and solving it with respect
to fairnessQuality, the formula expressed on line 10 is obtained. If fairnessSignal is
greater than the highest available bit rate, fairnessQuality is assigned to the highest
available quality level (lines 13–14).

Buffer status control (lines 16–17). If the buffer level bufferFillingLevel is below
the panic threshold bufferMin, the lowest quality level is directly requested. This way,
the client tries to react in a timely manner to a situation where the risk of video freezes
is high.

Highest downloadable quality level identification (lines 19–27). Otherwise,
the heuristic identifies the highest quality level maxDownloadableQuality that can
actually be downloaded. For each of the available quality levels, the client computes an
estimate of the download time (line 21). We refer here to an estimate as the computation
is performed using the local perceived bandwidth, which could change in the future. The
download time is used to compute an estimate of the buffer level when the download
of the next segment to request will be completed, called estimatedBufferLevel (line 22).
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Fig. 2. Schematic representation of the coordination proxy architecture.

The client identifies the first quality level ql such that estimatedBufferLevel is lower
than the panic threshold bufferMin (line 23). This means that if ql or a higher quality
level is requested, the buffer level is likely to be below the panic threshold at the end of
the segment download. In order to avoid a possible freeze or the request of the lowest
quality level at the next step, the highest quality level that can be downloaded (i.e.,
maxDownloadableQuality) is then set to ql-1 (line 24).

Final quality level selection (lines 28–39). The client finally requests the qual-
ity level maximizing a global utility, given by the weighted sum of a QoE term and
a fairness term. The QoE term (line 32) is an estimation of the actual QoE as ex-
perienced by the user, consisting of (1) segment quality, (2) quality switching, and
(3) freezes. Segment quality is maximized by requesting the highest downloadable
quality level (i.e., −|ql–maxDownloadableQuality|), switching is minimized by reducing
the deviation from the average requested quality within the quality window (i.e., −|ql–
averageQuality|), and freezes are minimized by keeping the buffer level as close to
the buffer target level as possible (i.e., −|estimatedBufferLevel–bufferTarget|). The fair-
ness term is maximized by requesting the quality level closest to the fairnessQuality
(line 33). This way, the client is driven to request the best quality level to fairly share
bandwidth with the other clients. For each quality from 1 to maxDownloadableQuality,
the global utility is computed as the linear combination of the QoE and fairness terms
(line 34). The selected quality level is the quality that maximizes this global utility
(lines 35–38). A parameter α weighs the importance of the QoE and fairness compo-
nents on the global utility. For α → 1, the heuristic tends to only maximize the QoE of
the client, without taking into account fairness. For α → 0, only fairness is optimized.
The influence of this parameter is investigated in Section 4.3.

The computational complexity of our heuristic can be estimated as O(n), with n the
number of quality levels, given the complexity of the loops on lines 8, 20, and 29 is
O(n). The algorithm has been implemented on a Dell Latitude E5530 running Ubuntu
12.04 LTS 64-bit, Intel Core i5-3320M CPU @ 2.60GHz processor and 8 GB of memory
to evaluate scalability. Even with 10,000 available quality levels, the quality selection
can still be performed in less than 6 milliseconds.

3.3. Fairness Signal Computation

The hierarchical system of coordination proxies has the fundamental role to help the
clients in achieving fairness by periodically computing the fairness signal. This value
represents the theoretical fair bandwidth allocation of the clients belonging to a certain
network and is computed taking into account all the clients streaming video (even
those belonging to other networks). Algorithm 2 describes the operations performed by
a generic coordination proxy P to compute its estimate of the fairness signal.

As depicted in Figure 2, proxy P is connected to a parent proxy and to a set of child
proxies, each controlling a certain number of clients as indicated in the vector con-
trolledClients. From the parent node, P receives the fairness signal parentFairnessSig-
nal (line 1). This value represents the fair bandwidth share for each client controlled by

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 2, Article 28, Publication date: October 2015.



QoE-Driven Rate Adaptation Heuristic for Fair Adaptive Video Streaming 28:11

ALGORITHM 2: In-network computation performed at the coordination proxy P
Data: childProxies, vector containing the child coordination proxies of proxy P
controlledClients, vector containing the number of HAS clients controlled by each proxy in
childProxies
Result: fairnessSignal, vector containing the fairness signals to forward to the proxies in

childProxies

1 parentFairnessSignal ← getParentFairnessSignal();

2 unusedBandwidth = 0, entitledClients = 0;
3 for i in childProxies do
4 estimatedBandwidth ← getEstimatedBandwidthForHASTrafficTowardsChildProxy(i);
5 maxFairnessSignal(i) = estimatedBandwidth/controlledClients(i);
6 if maxFairnessSignal(i) ≤ parentFairnessSignal then
7 unusedBandwidth+=(parentFairnessSignal − maxFairnessSignal(i)) ×

controlledClients(i);
8 else
9 entitledClients+=controlledClients(i);

10 end
11 end
12 childProxies ← sortIncreasing(childProxies, maxFairnessSignal); ##sort proxies in

childProxies in increasing order of associated maxFairnessSignal##
13 for i in childProxies do
14 if maxFairnessSignal(i) ≤ parentFairnessSignal then
15 f airnessSignal(i) = maxFairnessSignal(i);
16 else
17 bandwidthPerClient = unusedBandwidth/entitledClients;
18 f airnessSignal(i) =

min(parentFairnessSignal + bandwidthPerClient, maxFairnessSignal(i));
19 unusedBandwidth−=( f airnessSignal(i) − parentFairnessSignal) ×

controlledClients(i);
20 entitledClients−=controlledClients(i);
21 end
22 end
23 return f airnessSignal;

P, as computed by the parent node. Proxy P aims to fairly redistribute the bandwidth
represented by parentFairnessSignal to its child proxies. In case P is the root of the
system, parentFairnessSignal has to be assigned to infinite, as we assume there are no
bottlenecks before the root proxy.

For each child proxy i, P obtains the estimated bandwidth for HAS traffic on the link
connecting P to proxy i (link Li in Figure 2). Next, it computes the fair bandwidth share
on this link, that is, the ratio between the estimated bandwidth on Li and the number
of clients controlled by proxy i (line 5). This value, indicated as maxFairnessSignal(i),
represents the maximum fairness signal achievable for proxy i. Proxy P then checks
whether Li or LP, the link connecting the parent proxy to P, is the actual bottleneck
for proxy i. Particularly, if the fair bandwidth per client on link Li (i.e., maxFair-
nessSignal(i)) is smaller than that on link Lp (i.e., parentFairnessSignal), the bottleneck
is represented by link Li. Otherwise, if maxFairnessSignal(i)>parentFairnessSignal,
Lp acts as a bottleneck for proxy i. When Li represents the bottleneck (line 6), the
clients controlled by proxy i are not able to use all the bandwidth indicated by par-
entFairnessSignal. Particularly, the unused bandwidth is equal to the difference be-
tween parentFairnessSignal and maxFairnessSignal(i), multiplied by the number of
clients controlled by proxy i (line 7). The leftover bandwidth unusedBandwidth can be
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redistributed to the clients whose bottleneck is represented by link Lp. When Lp is the
bottleneck, the number of clients entitled to accept part of the exceeding bandwidth is
incremented by the number of clients controlled by proxy i (line 9).

The final fairness signal for each child proxy is computed on lines 13–22. Here, proxy
P redistributes the exceeding bandwidth to all the entitled clients. If Li is the bottleneck
for child proxy i (i.e., no extra bandwidth can be assigned), the final fairness signal is
assigned to maxFairnessSignal(i) (lines 14–15). Otherwise, the surplus bandwidth per
client bandwidthPerClient is computed as the ratio between the unused bandwidth
and the number of entitled clients (line 17). Next, the final fairness signal for proxy i is
assigned as the sum between the parent fairness signal and the surplus bandwidth per
client (line 18). The min operation performed on line 18 avoids that fairnessSignal(i)
exceeds maxFairnessSignal(i). The amount of unused bandwidth is then decremented
by the amount assigned at the previous step (line 19). Also, the amount of entitled
clients is decremented by the number of clients controlled by proxy i (line 20).

As an example, we consider the scenario in Figure 2, where proxy P is connected
to three child proxies. We assume each child proxy controls 10 HAS clients (i.e., con-
trolledClients(i) = 10 for i = 1,2,3), and the estimated bandwidth for HAS traffic
on links L1, L2, and L3 is 10, 20, and 35Mbps, respectively. parentFairnessSignal is
2Mbps. In this case, the variable maxFairnessSignal(i) for each proxy is equal to 1,
2, and 3.5Mbps, respectively. This entails that L1 represents the main bottleneck for
proxy #1, as maxFairnessSignal(1) ≤ parentFairnessSignal. The unused bandwidth is
computed as on line 7 and is equal to unusedBandwidth = 10Mbps. This is not the case
for proxy #3, as maxFairnessSignal(3) is greater than parentFairnessSignal. Conse-
quently, the number of entitled clients is incremented by 10 clients. The fairness signal
for proxies #1 and #2 is assigned directly to 1 and 2Mbps, respectively, as both maxFair-
nessSignal(1) and maxFairnessSignal(2) are smaller or equal to parentFairnessSignal.
On the contrary, proxy P can assign the exceeding bandwidth to the clients controlled
by proxy #3. The variable bandwidthPerClient is equal to 1Mbps and the final fairness
signal is equal to parentFairnessSignal + bandwidthPerClient = 3Mbps, as shown on
line 18.

The rationale behind the sort operation performed on line 12 is to reduce the compu-
tational complexity of the heuristic. The complexity of the two for loops on lines 3 and
13 is O(n), while that of the sort operation is O(n × log(n)), with n the length of vector
childProxies. Consequently, the total computational complexity is O(n × log(n)), which
is known to scale well even for large values of n. If the vector childProxies is not sorted,
the computation on lines 13–22 has to be performed using two nested for loops, for a
total computational complexity of O(n2). In order to evaluate complexity, Algorithm 2
has been implemented on a Dell Latitude E5530 running Ubuntu 12.04 LTS 64-bit, In-
tel Core i5-3320M CPU @ 2.60GHz processor and 8GB of memory. We incremented the
number of child coordination proxies from two to 10,000 and measured the time needed
to compute the fairness signal. As expected, the computation time increases logarith-
mically with the number of coordination proxies. Even for 10,000 child proxies, the fair-
ness signal computation is carried out in less than 0.032 seconds on a general-purpose
device. Moreover, it is worth noting that the fairness signal computation is decoupled
from the actual segment delivery to the clients. When a proxy receives a segment to
forward, it just has to embed its current estimate of the fairness signal into an HTTP
header. The actual update of the fairness signal can be considered as an independent
and parallel process occurring periodically within the system of coordination proxies.

The fairness signal computation period, that is, the communication interval among
the proxies, is an important parameter of our algorithm. A small period entails that
the fairness signal closely follows bandwidth variations, at the price of an increased
computational and communication overhead. On the contrary, a high period reduces
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Fig. 3. Simulated topology (a) and an extract of the used bandwidth pattern (b).

overhead but negatively affects the significance of the fairness signal. The impact of
this parameter on the performance of our solution is evaluated in Section 4.

4. PERFORMANCE EVALUATION

4.1. Experimental Setup

An NS-3-based simulation framework has been used to evaluate our multiclient frame-
work [Bouten et al. 2012]. The video streamed is Big Buck Bunny, composed by 299
segments, each 2 seconds long and encoded at seven different quality levels: 300, 427,
608, 806, 1,233, 1,636, 2,436kbps (the lowest quality level is indicated with 1). The
Network Simulation Cradle1 has been enabled for all the results in order to provide a
realistic implementation of the TCP protocol. Unless otherwise stated, the buffer size
for each client is equal to five segments, or 10 seconds.

The simulated network topology is shown in Figure 3(a), where the position of the
coordination proxies is reported. The root proxy is colocated with the HAS Server (not
shown in Figure 3(a)). In order to give an extensive evaluation of the FINEAS heuristic,
we simulate 50 episodes of the video trace and average the results over the 50 runs. The
capacity on links LS-P0 and LP0-P2 is kept fixed for all the experiments. A cross-traffic
generator introduces UDP traffic on links LP0-P1, LP2-P3, and LP2-P4 (highlighted links
in Figure 3(a)) in order to vary the available bandwidth for HAS traffic. A different
cross-traffic pattern is used for each episode, which varies each second and is scaled
with respect to the number of clients. An episode is defined as a single simulation
run. As far as the cross-traffic pattern is concerned, we use an open-source dataset
collected on a real 3G/HSDPA network [Riiser et al. 2012]. The available bandwidth
for one client fluctuates between 202bps and 6,335kbps, with an average of 2,087kbps
and a standard deviation of 1,314kbps. An example of the bandwidth pattern is shown
in Figure 3(b). Regarding the bandwidth estimation at the coordination proxies, the
sFlow packet sampling rate has been set to one packet sampled every 1,000 for all the
experiments. As far as the fairness signal is concerned, it is added as an HTTP header
field by the proxies and returned to the clients when delivering the next segment.

In order to provide an extensive benchmark of the FINEAS algorithm, we compare
our results to those obtained using four other HAS clients. Particularly, we choose
a proprietary HAS client, the MSS2 client, the Q-Learning-based client described by
Claeys et al. [2014], and the client developed by Miller et al. [2012]. We also studied
the performance of the FESTIVE algorithm, one of the first algorithms developed to

1http://research.wand.net.nz/software/nsc.php.
2https://slextensions.svn.codeplex.com/svn/trunk/SLExtensions/AdaptiveStreaming.
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Table I. Overview of Evaluated Parameter Configuration

Parameter Evaluated values Parameter Evaluated values
qualityWindow [sec] 10, 20, 30, 50, 70 bufferMin [sec] 2, 4, 6

bufferPercentage 0.4, 0.6, 0.8, 1.0 α 0, 0.2, 0.4, 0.6, 0.8, 1.0
Tfair [sec] 2, 4, 6

explicitly deal with a multiclient scenario [Jiang et al. 2014]. As far as the performance
evaluation is concerned, fairness is computed as the standard deviation of clients’ QoE.
Unless otherwise stated, all the simulated clients start streaming the video at the same
time.

4.2. QoE Model

In this section, we define the QoE model used to evaluate the proposed framework.
We use a metric in the same range of the Mean Opinion Score (MOS), which can be
computed as in Equation (1) [Claeys et al. 2014; De Vriendt et al. 2013]:

QoEi
j = 5.67 × q̄i

j

qmax
i
j
− 6.72 × q̂i

j

qmax
i
j
+ 0.17 − 4.95 × Fi

j . (1)

The QoE experienced by client j in network i is the linear combination of the average
quality level requested q̄i

j , its standard deviation q̂i
j (both normalized with respect to

the highest available quality level qmax
i
j), and Fi

j , which models the influence of freezes
and is computed as follows:
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)
+ 1

8
×

(
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j, 15)

15

)
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φi
j and ψ i

j are the freeze frequency and the average freeze duration, respectively. All
the coefficients reported in Equations (1) and (2) have been fixed according to the works
by De Vriendt et al. [2013] and Claeys et al. [2014].

4.3. Parameter Analysis

In this section, we investigate the impact of the parameters characterizing our HAS
framework on clients’ performance and select the configuration to use in the remainder
of the article. As explained in Section 3.2 and Algorithm 1, the FINEAS heuristic
parameters are qualityWindow, a time window stating how many quality levels have
to be kept in memory; bufferMin, the panic buffer threshold; bufferPercentage, to tune
the target buffer level; and α, the global utility function weight. As far as the in-network
coordination is concerned (see Section 3.3), the only parameter to set is the fair signal
computation period, named Tfair. In order to properly tune our HAS framework and
select the best configuration, an elaborate evaluation of the parameter space has been
performed. The evaluated values are reported in Table I for a total of 648 feasible
configurations (note that the target buffer level needs always to be higher than the panic
buffer threshold). We evaluate our solution with the setting reported in Section 4.1,
each network containing 10 clients streaming video at the same time. The capacity of
links LS-P0 and LP0-P2 is set to 60Mbps and 40Mbps, respectively, while the bandwidth
on links LP0-P1, LP2-P3, and LP2-P4 is variable and has an average of 20Mbps and a
standard deviation of 13Mbps over the 50 simulated episodes. This simulation setup
allows us to have a clear understanding of the impact of the different parameters on
the performance of our solution. Depending on the available bandwidth on links LP0-P1,
LP2-P3, and LP2-P4, the actual bottlenecks for the three networks dynamically change.
This way, we can explore a wide range of network configurations, where the three
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Fig. 4. Analysis of the parameter influence.

networks mutually influence each other (due to the bandwidth limitations on links
LS-P0 and LP0-P2) or not. Other topologies have been investigated, but the results do not
significantly change and are omitted due to space constraints.

The performance evaluation is conducted on the basis of the achieved QoE and fair-
ness. Particularly, we express fairness as the standard deviation of clients’ QoE. We
introduce a metric Gk to evaluate the overall performance of the analyzed configura-
tions, defined as in Equation (3):

Gk = 1
N

N∑
i=1

Ji
k −

√√√√√ 1
N

N∑
i=1

(
Ji

k − 1
N

N∑
i=1

Ji
k

)2

with Ji
k = QoE

i
k − ̂QoE

i

k. (3)

N represents the number of networks containing HAS clients streaming video. Ji
k

represents the performance of network i during the kth episode and is the linear com-
bination of QoE

i
k, the average QoE computed over the whole group of clients belonging

to network i for episode k, and ̂QoE
i

k, its standard deviation. This way, Ji
k encodes the

fairness objective for network i, that is, maximizing QoE while improving fairness. Gk
is used to evaluate the overall performance of the analyzed configuration and is given
by the linear combination of the average Ji

k over all networks and of the negative of its
standard deviation. Our aim is to select a configuration that allows one to maximize Gk
in order to achieve the highest possible performance for every network while keeping
the deviation among them as low as possible. For every configuration, the index G has
been computed as the average of Gk over the 50 simulated episodes. For each evaluated
value of each parameter, the average G of the five best configurations containing the
evaluated value has been calculated. Using more than five values does not significantly
affect the outcome of this analysis. The results are shown in Figure 4. Small values of
the panic threshold bufferMin lead to better performance, as they avoid often request-
ing the lowest quality level. The increased risk for video freezes caused by a low panic
threshold is counterbalanced by using higher values of the buffer percentage buffer-
Percentage, which led to higher buffer targets. A tradeoff is present in this case: a high
percentage reduces the risk of freezes but also the possibility to request a high quality
level. The best performance is reached for a value of 0.8. As far as the qualityWindow
is concerned, it appears clearly that the more quality levels stored, the better. This
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Fig. 5. Comparison between the different clients, from a QoE perspective, for a variable bandwidth sce-
nario. Each network contains 30 clients streaming video. The graphs report the relative performance of the
considered clients in terms of (a) average QoE and (b) its standard deviation compared to MSS. The standard
deviation of clients’ QoE is used as fairness metric.

entails that the client has a more comprehensive vision of the actions taken in the
past and can choose the next quality level accordingly. The parameter α states to what
extent the clients follow the indication given by the fairness signal. The best value is
obtained at 0.4, meaning that the two opposite objectives of maximizing clients’ QoE
and achieving fairness are well balanced. Strictly following the fairness signal (i.e.,
values of α close to zero) leads to perfect fairness but bad performance in terms of QoE,
because of the frequent switches that would occur. This result also highlights that it is
more convenient to incorporate the fairness signal into the adaptation heuristic rather
than using it directly to enforce the quality selection process. As expected, a small value
of the fairness signal computation period Tfair leads to the best performance, as the
in-network computation can quickly follow the bandwidth variations. The introduced
communication overhead can be kept minimal by adding an HTTP header to transport
the fairness signal.

Based on this analysis, the configuration with qualityWindow equal to 70 seconds,
bufferMin to 2 seconds, bufferPercentage to 0.8, α to 0.4, and Tfair to 2 seconds has
finally been chosen. It is worth noting that this configuration is also the best overall,
thus showing the validity of the parameter analysis.

4.4. Variable Bandwidth Scenario

After the parameter analysis, we evaluate our solution with an increased number of
clients. A fixed-line scenario has also been evaluated, but the results are omitted due to
space limits. In a fixed-line scenario, all the simulated heuristics are able to guarantee
a high QoE, but only the FINEAS heuristic is able to guarantee fairness.

The same simulation setting as in Section 4.1 is used, with 30 clients per network
streaming a video at the same time. In this case, links LS-P0 and LP0-P2 are fixed
to 180Mbps and 120Mbps, respectively, while the bandwidth on links LP0-P1, LP2-P3,
and LP2-P4 is variable and presents an average of 60Mbps and a standard deviation
of 40Mbps over the 50 simulated episodes. In this scenario, the three networks can
mutually influence their performance, as the links LS-P0 and LP0-P2 act as common
bottlenecks. It is fundamental to stress that the variable bandwidth pattern has been
collected on a real 3G/HSDPA network, as described in Section 4.1. We consider the
MSS as reference client and compute, for each simulated episode and for each network,
the ratio between the average QoE of the analyzed client and that of the MSS. Figure
5(a) reports the average value over the 50 episodes of this ratio, together with the
confidence intervals at 95%. Figure 5(b) reports the average value over the 50 episodes
of the ratio between the QoE standard deviation of the MSS algorithm and that of
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Table II. Performance Summary in the Variable Bandwidth Scenario, in Terms of Quality Components. The
Average Value over the 50 Episodes Is Reported, Together with the Confidence Interval at 95%.

MSS FINEAS Q-Learning FESTIVE Miller

Network 1

QoE 2.96±.18 3.41±.15 2.61±.07 2.64±.26 2.35±.32
q̄i

j 4.51±.19 5.19±.13 3.69±.03 5.60±.14 5.70±.15
q̂i

j 0.91±.08 0.98±.06 0.55±.03 1.23±.04 1.51±.09
Bitrate [Mbps] 1.01±.08 1.30±.05 0.74±.01 1.47±.05 1.51±.06

Freeze [sec] 0.08±.02 0.07±.02 0.07±.04 4.21±1.16 3.19±.59
Freeze number 0.07±.01 0.05±.02 0.06±.03 3.42±.84 3.40±.49

Network 2

QoE 2.76±.15 3.25±.16 2.52±.08 2.44±.23 2.18±.24
q̄i

j 4.21±.16 5.16±.15 3.68±.04 5.14±.11 5.24±.12
q̂i

j 0.83±.07 1.12±.06 0.62±.04 1.14±.03 1.38±.06
Bitrate [Mbps] 0.89±.06 1.29±.06 0.73±.01 1.28±.04 1.32±.05

Freeze [sec] 0.08±.02 0.09±.03 0.10±.03 3.31±.87 2.66±.48
Freeze number 0.08±.01 0.07±.02 0.11±.02 2.95±.71 2.99±.39

Network 3

QoE 2.78±.15 3.25±.16 2.52±.07 2.44±.22 2.11±.24
q̄i

j 4.21±.16 5.16±.15 3.63±.04 5.14±.11 5.23±.12
q̂i

j 0.81±.07 1.12±.06 0.57±.03 1.14±.03 1.40±.05
Bitrate [Mbps] 0.89±.06 1.29±.06 0.73±.01 1.28±.04 1.31±.05

Freeze [sec] 0.08±.03 0.09±.03 0.11±.03 3.35±.89 2.86±.51
Freeze number 0.07±.01 0.07±.02 0.11±.02 2.91±.69 3.15±.39

the analyzed client, together with the confidence intervals at 95%. The QoE standard
deviation is used as a fairness metric. Our solution is able to increase the average QoE
by almost 20% for each of the three networks and to improve fairness with almost
80% when compared to MSS. Also, the FESTIVE and Miller clients improve fairness
but consistently reduce the average QoE. This entails that the final QoE at the clients
with these two heuristics is lower than that obtained using the MSS heuristic. These
results show the suboptimality of these two heuristics in case of a variable bandwidth,
caused by frequent quality switches and video freezes. As far as the Q-Learning client
is concerned, it improves fairness by about 50% with respect to MSS, but with a loss of
8% to 10% in terms of average QoE. This negative behavior is mainly due to the mutual
influence among the learning processes of the clients and the uncoordinated nature of
Q-Learning [Claus and Boutilier 1998]. When a client selects a certain quality level, it
uses a portion of the shared bandwidth. This decision has an impact on the performance
of the other clients and thus also on their learning process. Since the clients do not
share any information, this leads to a suboptimal quality adaptation policy.

Table II summarizes the results for this scenario. We compute, for each episode and
for each network, the average of clients’ QoE, q̄i

j , q̂i
j , requested bitrate, freeze time, and

freeze number. q̄i
j and q̂i

j represent, respectively, the average quality level requested by
client j in network i and the standard deviation from this average (see Equation (1)).
We then average these values over the 50 simulated episodes. The largest gain of the
FINEAS heuristic is an increased average quality level (15% higher than MSS) and
requested bit rate, without affecting the freeze duration. The FESTIVE and Miller
clients reach the highest quality level, but the freeze duration, number of freezes,
and quality switches increase. This means that the rate adaptation process is not
performed optimally and, consequently, does not lead to the highest possible QoE. The
main problem of the Q-Learning algorithm is the low average requested quality level,
which strongly affects the final QoE. This behavior is a consequence of the mutual
influence among the clients. When a client requests a high quality segment, it could
experience a freeze due to the congestion caused by the other clients. This way, the
clients develop a more conservative policy, where high quality levels are avoided to
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Table III. Statistical Significance of the Average QoE and the Average Standard Deviation
of the QoE, Using a Two-Tail Paired T-Testing with Significance Level 0.05

MSS FINEAS Q-Learning FESTIVE Miller
Average QoE 2.78±.50a 3.24±.55b 2.50±.38c 2.46±.58c 2.17±.60d

Average QoE Standard Deviation 0.69±.16a 0.13±.04b 0.32±.05c 0.31±.08c 0.46±.09d

Fig. 6. Evaluation of the FINEAS heuristic, from a QoE perspective, for a variable bandwidth scenario with
different buffer sizes. Each network contains 30 clients streaming video. The x-axis reports the buffer size,
in seconds.

limit video freezes. This problem is further intensified by the nonstationarity of the
simulated environment.

Table III reports the statistical significance of the results. For each algorithm and for
each episode, we compute the average QoE and the average standard deviation over the
three networks. Next, we perform a two-tail paired t-test for each pair of heuristics.
Results are reported as the mean (and its standard deviation) of the average QoE
and the average QoE standard deviation, over the 50 simulated episodes. Taking two
heuristics, they are statistically different if they are associated to different letters. For
example, the results for the MSS and FINEAS heuristics are statistically different.
Only the Q-Learning and the FESTIVE clients do not show any significant difference
in performance.

4.5. Influence of the Buffer Size

In this section, we investigate clients’ performance using different buffer sizes. Based
on the results of the previous section, we decided to evaluate our solution and the MSS
one, which outperforms the Q-Learning, the FESTIVE, and the Miller client in terms
of QoE (see Figure 5(a)). The same simulation setting of the previous section has been
used, with different buffer sizes from 4 to 30 seconds. In the 4 seconds case, the panic
threshold of the FINEAS heuristic has been disabled (i.e., bufferMin set to zero). The
results of this investigation are depicted in Figure 6. As expected, when the buffer
size increases, the differences between our solution and MSS decrease. Particularly,
the MSS heuristic presents a big performance gain in terms of average QoE and its
standard deviation when the buffer is larger than 14 seconds. Consequently, the gain
brought by the FINEAS algorithm decreases. Nevertheless, the FINEAS heuristic is
still able to outperform MSS by about 20% in terms of fairness. A large buffer simplifies
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Fig. 7. Evaluation of the heterogeneous scenario, from a QoE perspective. Each network contains 30 clients
streaming video. The x-axis reports the percentage of MSS clients on the total.

the rate adaptation process, since it reduces the risk of freezes and thus the dependency
on the current available bandwidth. When the buffer is sufficiently filled, a client can
request the best quality level to maximize its QoE even though the current available
bandwidth would not allow it. Despite that, a large buffer should be avoided because
it causes a long delay when streaming live contents and a big memory occupation on
the device. Also, when the buffer is only a few seconds (4 seconds case in Figure 6), the
performance of the FINEAS client is very close to that of MSS. Unlike the previous case,
if the buffer size is very small, the client has to follow almost precisely the available
bandwidth in order to minimize the risk of freezes. Consequently, the optimization
possibilities are reduced. Nevertheless, our solution always outperforms MSS from the
fairness point of view, while achieving a similar or higher average QoE.

4.6. Client Heterogeneity

So far, we have investigated a homogeneous scenario, where all the clients are equipped
with the same heuristic. In a real scenario, different client types can stream video at
the same time. We analyze here the interaction between two different groups of clients,
one equipped with the FINEAS heuristic and the other equipped with the MSS one.
The fairness signal is computed considering the totality of clients streaming video
but is analyzed by our clients only. The simulation settings are those reported in
Section 4.4. We increase the size of the MSS group from 20% to 80% of the total for
a number of MSS clients ranging from 18 to 72; the assignment of the MSS clients
to each network is made randomly at the beginning of each simulated episode. In
order to evaluate the results, we compute for each simulated episode, for both client
groups, the average QoE and its standard deviation. We then average these values
over the 50 simulated episodes. Figure 7 reports the obtained results, together with
the confidence intervals at 95%. The FINEAS group is always able to outperform the
MSS one, with a gain in the average QoE between 20% and 30% for all the networks
in all scenarios. Interestingly, the performance of the two groups remains constant
even if the number of MSS clients changes. Thanks to the FINEAS heuristic and
the in-network fairness signal computation, our clients are always able to select the
best quality level to maximize their own QoE and optimize fairness. This optimization
is carried out considering all the HAS clients, since the fairness signal is computed
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Fig. 8. Evaluation of a scenario with concurrent TCP clients. TCP clients are 25% of the total. The x-axis
reports the different heuristics, the y-axis the average throughput for each network over the 50 simulated
episodes.

Fig. 9. Evaluation of a scenario with concurrent TCP clients, from a QoE perspective. TCP clients are 25%
of the total. The x-axis reports the different heuristics, the y-axis the average QoE (a) and its standard
deviation (b) for the HAS clients subgroup.

considering all the clients streaming video, and not only the ones equipped with our
solution. This entails that our clients do not behave greedily with respect to the MSS
group. The difference in performance is thus mainly due to the better rate adaptation
of the FINEAS clients.

In a second set of experiments, we investigate the interaction between different
HAS clients (FINEAS, FESTIVE, and MSS) and generic TCP clients. The simulation
settings are those reported in Section 4.4. The number of TCP clients is equal to 23 (i.e.,
25% of the total); the assignment of the TCP clients to each network is made randomly
at the beginning of each simulated episode. Each TCP client establishes a connection
with the HAS server, where a TCP sender is installed. Each client downloads the
video content from the server in one continuous stream at the fixed rate of 5Mbps.
Consequently, the TCP start-up behavior is negligible compared to the total video
duration and does not affect the outcome of this analysis. During each experiment, the
same HAS heuristic is used. As far as the fairness signal computation is concerned,
it is performed considering the HAS clients only, since we are not in control of the
traffic generated by other non-HAS applications (browsing, file downloading, etc.). In
order to evaluate the results, we compute for each simulated episode, for both the HAS
and TCP groups, the average TCP throughput. We then average this value over the 50
simulated episodes. We also compute the average QoE and its standard deviation over
the 50 episodes for the HAS group. Figures 8 and 9 report the obtained results, with
the confidence intervals at 95%. Based on the simulated topology and the bandwidth
pattern (see Section 4.4), each client should obtain, on average, a bandwidth of 2Mbps.
From Figure 8, it appears clearly that the TCP group behaves greedily with respect to
the HAS group, independently from the adopted heuristic. TCP clients in Network #1,
which are the closest to the HAS server and thus experience the lowest RTT, obtain the
highest throughput. If we consider the results from a QoE point of view, it is possible to
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Fig. 10. Evaluation of the malicious scenario, from a QoE perspective. Each network contains 30 clients
streaming video. The x-axis reports the percentage of malicious clients on the total.

draw two conclusions. First, the FINEAS heuristic is still able to reach the best results
both from the QoE and the fairness perspective, as one can see in Figures 9(a) and
9(b), respectively. Particularly, the average QoE for Network #1 is the same as that of
the MSS and the FESTIVE clients, while the QoE standard deviation is considerably
lower in the FINEAS case. The gain achieved in terms of average QoE for Network #2
and #3 is about 13%. Second, exploited network resources being equal, the FINEAS
client results in a better overall perceived video quality, that is, it is more efficient.
As observed in Figure 8, the average TCP throughput reached by the FINEAS and
FESTIVE clients for Networks #2 and #3 is almost equal and higher than that reached
by MSS. Nevertheless, the QoE achieved by the FINEAS clients is considerably higher
than that achieved by the two other heuristics, entailing a better utilization of network
resources. The same consideration applies to Network #1. Even though the average
throughput reached by the FINEAS clients is lower than MSS and FESTIVE, the
average QoE is the same.

4.7. Malicious Clients and Proxy Failure

In this section, we analyze the robustness of our solution in the presence of malicious
clients and in case of a coordination proxy failure.

In the first set of experiments, we simulate the presence of malicious clients equipped
with a modified FINEAS heuristic that ignores the fairness signal. The only objective of
a malicious client is to maximize its own QoE, neglecting the presence of other clients
and fairness. The simulation settings are those reported in Section 4.4. The fairness
signal computation is performed considering the totality of clients streaming video but
is analyzed by the normal FINEAS clients only. We increase the size of the malicious
group from 0% to 100% of the total for a number of malicious clients ranging from 0 to
90; the assignment of the malicious clients to each network is made randomly at the
beginning of each simulated episode. In order to evaluate the results, we compute for
each simulated episode, for both client groups, the average QoE, its standard deviation,
and the minimum and the maximum QoE. We then average these values over the 50
simulated episodes. The results are reported in Figure 10. The first two histograms
report the results for the two limit cases where the clients are all equipped with the
FINEAS heuristic or are all malicious. As observed in Figure 10(a), the two groups of
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Fig. 11. Performance evaluation, from a QoE perspective, of a scenario where Coordination Proxy P3 (see
Figure 3(a)) is defective. Each network contains 30 clients streaming video. The graphs report the average
QoE (a) and its standard deviation (b).

clients obtain very similar average QoE. The FINEAS group obtains a QoE standard
deviation half of that obtained by the malicious group (not shown in the article due
to space limitations), as the former follows the fairness signal. More interestingly,
Figure 10(b) highlights that a malicious behavior is actually detrimental for some
clients belonging to the malicious group. This occurs when a malicious client would
obtain a better QoE by following the fairness signal instead of ignoring it. Figure 10(b)
shows the average minimum and maximum QoE obtained by the two groups for each
subnetwork. The average minimum QoE for the FINEAS group is always higher than
or equal to the average minimum QoE of the malicious group; that is, some malicious
clients obtain a QoE lower than that they could obtain behaving fairly. Moreover, this
behavior becomes more evident as the number of malicious clients increases. The only
exception is represented by Network #1 in the scenario with 20% malicious clients.
Nevertheless, the FINEAS group outperforms the malicious one from the fairness
point of view while achieving a similar QoE.

In the second set of experiments, coordination proxy P3 is lacking, so that clients in
Network #2 do not receive the fairness signal anymore (see Figure 3(a)). This scenario
represents a situation where proxy P3 is not deployed or cannot forward the fairness
signal because of a fault. Figure 11 shows the results, obtained averaging the QoE
and its standard deviation over the 50 simulated episodes. As expected, the failure
of proxy P3 mainly affects the performance of Network #2 from the fairness point of
view: the QoE standard deviation is almost doubled compared to the reference scenario
presented in Section 4.4, while the average QoE is the same. This means that some
clients experience a lower QoE compared to the reference scenario, as shown also in
the malicious clients case. Interestingly, Networks #1 and #3 are unaffected by the
failure of proxy P3, both from the QoE and the fairness points of view. This behavior
can be explained considering two aspects. First, both networks are still provided with
the fairness signal. Second, the average bandwidth consumed by Network #2 does not
differ significantly from that consumed in the reference scenario. The proxy failure
affects Network #2 from the fairness point of view only, while the average requested
quality level, equal to 5.42, does not significantly change compared to the reference
scenario (see Table II). This entails that the bandwidth available to Networks #1 and
#3 in case of proxy failure and in the reference scenario is similar and no differences
in performance between the two scenarios are noticeable.

5. CONCLUSIONS

In this article, we presented FINEAS, a HAS heuristic able to dynamically adapt its
behavior depending on network conditions in order to obtain a high QoE. Moreover, this
client is able to select the best quality level in order to achieve fairness from the QoE
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point of view. This was necessary as state-of-the-art rate adaptation heuristics intro-
duce nonnegligible differences in obtained quality among clients. Fairness is achieved
by means of a system of intermediate nodes, called coordination proxies, in charge
of collecting information on the overall network conditions. This information is then
provided to the FINEAS clients, which use it to refine their quality decision process.
Numerical simulations using NS-3 have validated the effectiveness of the proposed
approach. Particularly, we have compared our solution with the Microsoft’s Smooth
Streaming client, a Q-Learning based client [Claeys et al. 2014], a single-client heuris-
tic [Miller et al. 2012], and the FESTIVE algorithm [Jiang et al. 2014]. In the evaluated
bandwidth scenarios, we were able to show that our multiclient HAS framework re-
sulted in a better video quality and in a remarkable improvement of fairness, up to
20% and 80%, respectively, when compared to the reference algorithms.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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