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SUMMARY

While components of the pathway that establishes
left-right asymmetry have been identified in diverse
animals, from vertebrates to flies, it is striking that
the genes involved in the first symmetry-breaking
step remain wholly unknown in the most obviously
chiral animals, the gastropod snails. Previously,
research on snails was used to show that left-right
signaling of Nodal, downstream of symmetry
breaking, may be an ancestral feature of the Bilateria
[1, 2]. Here, we report that a disabling mutation in
one copy of a tandemly duplicated, diaphanous-
related formin is perfectly associated with symmetry
breaking in the pond snail. This is supported by the
observation that an anti-formin drug treatment con-
verts dextral snail embryos to a sinistral phenocopy,
and in frogs, drug inhibition or overexpression by
microinjection of formin has a chirality-randomizing
effect in early (pre-cilia) embryos. Contrary to expec-
tationsbasedonexistingmodels [3–5],wediscovered
asymmetric gene expression in 2- and 4-cell snail em-
bryos, preceding morphological asymmetry. As the
formin-actin filament has been shown to be part of
an asymmetry-breaking switch in vitro [6, 7], together
these results are consistentwith the view that animals
with diverse body plansmayderive their asymmetries
from the same intracellular chiral elements [8].

RESULTS AND DISCUSSION

Bilaterian animals aremore or less symmetrical about themidline

that divides left and right, but internally most organs are asym-

metric in locationor shape.How issymmetrybrokenduringdevel-
opment if the ‘‘right’’ and ‘‘left’’ sides are essentially arbitrary? A

longstandingmodel posits that a chiral ‘‘Fmolecule’’ is orientated

relative to the anteroposterior and dorsoventral axes [9]. This

asymmetric molecular reference then determines left-right (LR)

differentiation at the cellular and organismal level.

Given the importance of chiral patterning in the three bilaterian

superphyla, Deuterostomia, Ecdysozoa, and Lophotrochozoa, a

continuing problem is a lack of knowledge of the first symmetry-

breaking steps in the Lophotrochozoa, even though the first

described locus that reverses the whole body structure of an

animal was from the pond snail Lymnaea [10, 11]. Recently, com-

monalities between different species have been discovered

[12–15]. For example, in both vertebrates (Deuterostomia) and

snails (Lophotrochozoa), nodal and pitx encode key signaling

molecules required for the establishment of LR asymmetry, sug-

gesting that these genesmay have been used in the last common

ancestor of Bilateria, but lost in Ecdysozoa [1, 2, 16]. However,

neither nodal nor pitx is the earliest symmetry-breaking determi-

nant in snails, ultimately limiting a knowledge of whether this rep-

resents deep conservation or convergent use of the same genes.

Within Lophotrochozoa, snails are unique in that they exhibit

genetically tractable, natural variation in chirality [17] and so

may aid in understanding of the establishment and conservation

of LRasymmetry.Here,weusegenetics, genomics, andpharma-

cological inhibition to show that the Lymnaea stagnalis chirality

gene is a scaffolding component of the cytoskeleton.We present

strong evidence that this same molecule is one component of

an early chiral cytoskeletal structure that is involved in the

earliest symmetry-breaking steps across the Bilateria.
A Gene that Is Associated with Chirality in Pond Snails
ThegastropodmolluscL. stagnalis is naturally variable in left-right

asymmetry, outwardly visible in thechirality of the spiral shell, and

under the control of a single maternally expressed locus. In

L. stagnalis (Figure 1A), maternal D alleles dominantly determine

a clockwise (‘‘dextral’’) twist in offspring [18, 19]. Specifically,
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Figure 1. Mapping the Formin Gene, Maternal Expression, and Evolution of Chirality

(A) The snail genera used in this study (image credits: Lymnaea [E. de Roij], Biomphalaria and Physa [creative commons], Partula and Euhadra [A.D.]).

(B) 3,403 offspring were used to infer the recombination breakpoints that bound the D locus. Numbers of mapped recombinants for 1,507 sinistral (dd) snails

are shown on the right and for 1,896 dextral (DD or Dd) on the left. The sinistral mutation must be between loci b6 and b12 (shaded), a region that spans 267

kb (not to scale).

(C) Boxplots show normalized relative quantities (NRQs), on log scale, of quantitative real-time PCR assays of transcripts of three candidate genes and one

control (Larp2/3 1a) in single-cell egg samples from dextral homozygote (DD), dextral heterozygote (Dd), and sinistral recessive homozygote (dd) individuals.

Significant differences in expression were detected for Ldia2 only (DD:dd, p = 0.002; DD:Dd and Dd:dd, p = 0.004).

(D) WMISH of maternal Ldia transcripts in early, dextral L. stagnalis embryos.

(E) Schematic showing two hypotheses for the evolution of chirality in three snail families (dextral = blue; sinistral = red). Either sinistrality evolved once from a

dextral ancestor, with the ancestral Lymnaeid reverting to dextral (bottom), or sinistrality evolved twice (top).

See also Table S1 for the mapping data; Figure S3 for further WMISH and quantitative real-time PCR data; and Figure S2C for the full snail phylogeny.
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during the third cleavage in dextral embryos, four micromeres

simultaneously emerge from four macromeres and twist clock-

wise (‘‘spiral deformation’’; [19]). In homozygous recessive (dd)

sinistral embryos the four micromeres initially emerge neutrally,

without rotation, with a later counterclockwise twist taking place

during furrow ingression [19]. These differences are presaged by

the orientation of metaphase-anaphase spindles. In dextral em-

bryos, micromere spindle orientation is chiral (‘‘spindle inclina-

tion’’; [19]), while in sinistral embryos, the spindles are positioned

radially, such that they do not exhibit chirality.

Previously we defined a �0.4 Mb region of the 1 Gb

L. stagnalis genome that must contain the chirality locus [18].
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To identify the chirality-determining gene, we generated two

new resources: a sequenced bacterial artificial chromosome

(BAC) clone walk across the chirality locus interval and draft

genome sequences of DD homozygote and Dd heterozygote in-

dividuals. The BAC clone walk was oriented using three-color fi-

ber fluorescent in situ hybridization (FISH) (Figure S1). We used

the offspring of a large cross to recombination breakpoint map

the position, orientation, and haplotype origin (D or d) of each

BAC clone relative to the original restriction associated DNA

sequencing (RAD-seq) markers (rad4 and rad5) and the chirality

locus D (Table S1). The chirality locus was located between

markers b6 and b12, a region of 267 kb (Figure 1B).We predicted



Figure 2. Impact of Drug Treatment upon 4-Cell Snail Embryos

When applied shortly after the second cleavage had completed, both SMIFH2 and CK-666 reduced the proportion of embryos that survived to the 8-cell stage

(left-hand graphs). Following SMIFH2 treatment (top left), a high proportion of the viable embryos emerged neutrally, without a chiral twist. In contrast, the

proportion of neutral embryos following CK-666 treatment (bottom left) was low. Both drugs reduce the angle of rotation as the micromeres emerge (right-hand

graphs). Mean values for each experiment and SE are shown. See also Table S2 and Movie S1.
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genes across the scaffolded BAC walk assembly and mapped

DD and Dd whole-genome sequencing data to the assembly to

identify haplotype-specific variation.

Only six genes were in perfect linkage with D in our mapping

cross, all contained on a single BAC scaffold: lysosomal pro-x

carboxypeptidase (Lprcp), furry (Lfry), a tudor domain-contain-

ing protein (Ltud), a major facilitator superfamily domain-

containing protein (Lmfsd), and a pair of tandemly duplicated

diaphanous-related formin genes (Ldia1 and Ldia2; Figure S2A).

In sinistral (dd) snails, Ldia2 was found to contain a homozy-

gous, single base deletion in the 50 of the coding region that

causes a frameshift. The mutation was confirmed by cloning

and sequencing Ldia transcripts from both sinistral and dextral

snails (KU341302–KU341305). No disabling mutations were

discovered in the coding sequences of the other genes,

including the adjacent paralog Ldia1.

Maternal expression of genes was assessed by quantitative

real-time PCR in single-cell embryos from DD, Dd, and dd

mothers. Of the six candidate genes, only Ldia2 showed signifi-

cant differences in expression associated with genotype (Fig-
ures 1C and S3A). Ldia2 transcripts were readily detected in

dextral embryos fromDDmothers. However, in sinistral embryos

from dd mothers, Ldia2 transcript levels were �0.6% that of DD

embryos, whereas in embryos from heterozygous Dd mothers,

they were�50%. These differences in expression are consistent

with frameshifted Ldia2sin transcripts being degraded by

nonsense mediated decay.

The tandem duplication perhaps explains why a Ldia2sin mu-

tation is not simply lethal [20–22], in that Ldia1 and Ldia2 may

have overlapping roles in embryonic development, albeit with

some specialized function: while we found that mRNAs for

both Ldia1 and Ldia2 were present in equal quantities in the

dextral 1-cell embryo, Ldia2 was �3-fold enriched in 1-cell

dextral embryos relative to somatic tissues, whereas Ldia1

was �10-fold depleted (�30-fold difference overall).

Asymmetric Expression of Maternal Genes Precedes
Asymmetric Morphology
Expression of candidate loci was examined in early L. stagnalis

embryos using whole-mount in situ hybridization (WMISH; [23]).
Current Biology 26, 1–7, March 7, 2016 ª2016 The Authors 3



Figure 3. Tubulin and Actin Staining of

Control and Drug-Treated Embryos

Embryos were fixed and stained with Cy3-b-

tubulin (red) and 488-phalloidin (green) to highlight

the spindle microtubules and filamentous actin,

respectively. DMSO-treated embryos predomi-

nantly showed spindle inclination (left image, 4-cell

stage), with the micromeres usually emerging with

a dextral twist (right image, 8-cell stage). Aminority

of SMIFH2 treated embryos had mitotic spindles

that showed a radial orientation (left image), an

arrangement that was not observed in DMSO

control dextral embryos. In the SMIFH2 right-hand

image (8-cell stage), the top middle and middle left

micromeres are emerging neutrally (arrows), with

the other two showing a partial rotation. Addition

of SMIFH2 did not influence spindle orientation in

4-cell DMSO control or sinistral embryos, with

spindles typically showing a radial orientation.
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The first two embryonic cleavages in L. stagnalis are equal, so

that the fourmacromeres that are formed from the first two cleav-

ages are indistinguishable [3–5], until contact between the third

quartet of micromeres induces one of the macromeres to

become the future D blastomere (but see 24]). We expected

that mRNA transcripts would initially be equally distributed be-

tween the four macromeres. Surprisingly, however, we found

that Ldia mRNA was asymmetric at the 2-cell stage and largely

confined to one macromere by the 4-cell stage (Figure 1D), with

Lfry sometimes showing an asymmetric pattern, albeit less strik-

ing, and with more variation between individuals (Figure S3B).

While we do not know whether the Ldia2-positive macromere

is the D blastomere, individual macromeres must have an iden-

tity as early as the two-cell stage, contrary to the expectation

based on accepted models [3–5] of development in equal

cleaving snails. This also further emphasizes the general point

that asymmetry is determined very early and intracellularly—

asymmetry of molecules precedes visible morphological asym-

metry, although not necessarily in a causative manner (see [4,

25] for comparison with unequal cleaving embryos). The results

also suggest an explanation for the reduced viability of sinistral

embryos [20–22]—as chiral rotation of micromeres in sinistrals

is sometimes incomplete or error prone, inviability may be

caused by a conflict in identity between individual cells. Further

investigation is necessary, but the sinistral embryos seem to

show more generalized, less obviously asymmetric staining,

consistent with this explanation (perhaps because of reduced

transport on actin microfilaments, [4]) (Figure S3B).

Pharmacological Inhibition of Formin in Early Snail
Embryos Mimics the Sinistral Phenotype
As transgenic approaches are not yet established in L. stagnalis,

andmicroinjection is usually lethal [22], we tested formin involve-

ment in chirality using SMIFH2, an FH2 domain inhibitor [26].

SMIFH2 prevents formin nucleation and processive elongation

of filamentous actin by decreasing the affinity of formin for the

barbed end. Micromolar concentrations of SMIFH2 disrupt the
4 Current Biology 26, 1–7, March 7, 2016 ª2016 The Authors
formation of formin-dependent, but not Arp2/3 complex-depen-

dent, actin cytoskeletal structures [26].

When 100 mM SMIFH2 was added to genetically dextral 4-cell

embryos shortly after completion of the second cleavage, rela-

tively few embryos (�30%–60%) reached third cleavage at

�80 min (Figure 2; Table S2). However, in �25%–35% of those

that did, all four micromeres emerged neutrally, with no chiral

twist (SMIFH2 treated at 0 min, n = 6 experiments, 274 embryos,

compared to n = 11 control experiments, 219 embryos; p <

0.001, U = 5.5, Mann-Whitney U), with up to �45% of individual

micromeres emerging neutrally (Figure 2). SMIFH2 treatment of

dextral embryos thus phenocopies normal sinistral embryos.

We also visualized spindles during the third cleavage of

L. stagnalis by indirect immunofluorescence with anti-b-tubulin

antibody. In line with previous findings [19], control dextral em-

bryos showed the characteristic spindle inclination, especially

in the latter stages of mitosis. In SMIFH2-treated dextral em-

bryos, the spindles were more frequently radially symmetric,

resembling untreated sinistral embryos (Figure 3).

To rule out a non-specific effect of SMIFH2, we compared the

effect of another inhibitor of actin assembly, CK-666, which acts

specifically on Arp2/3 complex-dependent actin patches [27]

and not on formin-dependent actin cables. CK-666 also had a

lethal effect when applied to genetically dextral early four-cell

embryos and also tended to reduce the average angle of emer-

gence of micromeres. However, an achiral phenotype was

observed in rather few CK-666-treated embryos (Figure 2; CK-

666 treated 0 min, n = 3 experiments, 196 embryos, compared

to n = 5 control experiments, 190 embryos; p = 0.107, U = 2.5,

Mann-Whitney U). Therefore, the differential effects of SMIFH2

and CK-666 suggest that formin-mediated actin assembly may

be a critical factor in determining chiral cleavage orientation be-

tween the second and third cleavages.

In SMIFH2-treated, genetically dextral embryos that

continued to develop following neutral emergence of micro-

meres (i.e., like sinistrals), the direction of the subsequent twist

was dextral, rather than sinistral (6/6; Movie S1). The individual



Figure 4. Effect of Drug Treatment and Microinjection of Overexpressed Formin on Chirality in the Frog

(A) Embryos were treated with DMSO, CK-666, or SMIFH2 at the concentrations indicated, allowed to develop, and scored for visceral organ chirality at stage 45.

(B) Embryoswere injected into the animal pole withmRNA encodingmouse dia1 formin and scored for visceral organ situs at stage 45. Images: Examples of organ

situs for experimental microinjection with wild-type mouse dia1 mRNA. The control shows a wild-type (situs solitus) tadpole, ventral view, demonstrating the

normal arrangement of the stomach (yellow arrowhead), heart apex (red arrowhead), and gall bladder (green arrowhead). Heterotaxic tadpoles (ventral view)

resulting from formin overexpression show reversal of all three organs, i.e., situs inversus; the gut position and looping and gall bladder; or the heart.

See also Table S3 and Figure S4.
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micromeres of genetic sinistrals also sometimes twisted dex-

trally (�0 to 4% in our experiments; the fourth time-lapse in

Movie S1 shows an embryo in which all four micromeres twist

dextrally after neutral emergence; see also [22]). This later twist

is also actin dependent [19], which suggests dextrality may be

the default pathway, independent of FH2 domain function.

A Sinistral Ancestral Pond Snail?
We used genomic and transcriptomic resources, and new se-

quences, to explore links between diaphanous formin and chiral

evolution. First, we found that the chromosomal region that

contains the L. stagnalis chirality locus is deeply conserved,

exhibiting synteny of dia, fry, and tud between L. stagnalis,

Biomphalaria glabrata (planorb snail, sinistral cleaving), andCap-

itella telata (polychaete annelid, dextral cleaving). Second, while

the dia duplication is also evident in Lymnaea trunculata, and so

must pre-date its divergence from L. stagnalis, single-copy dia

genes in B. glabrata and Physa acuta (both sinistral snails: Fig-

ure 1A) are more similar to Ldia1 than Ldia2 (Figure S2B). The

B. glabrata dia gene and Ldia1 also share a non-repetitive UTR

element, absent from Ldia2. Thus, Ldia2 is likely the derived pa-

ralog, which may have evolved specific function in the embryo,

and for which loss leads to a sinistral phenotype.

We mapped chirality onto a new phylogeny of the Hygrophila

(Figure S2C). The predominantly dextral Lymnaeidae and the

sinistral Physidae cluster together, so either sinistrality evolved

once, with a sinistral ancestral Lymnaeid subsequently reverting
to dextral, or else, sinistrality evolved on two separate occasions

(Figure 1E). Both explanations are equally parsimonious. How-

ever, only the first is consistent if the duplication was involved

in enabling dextrality in the Lymnaeidae.

As no natural variation in chirality has been described in

Biomphalaria or Physa, it is difficult to further test the function

of dia in relation to copy number. Instead, we sampled dia ortho-

logs in two other chirally variable snail genera, Euhadra, a

Japanese land snail, and Partula, an endangered species from

Polynesia (Figure 1A; [28, 29]). In both of these genera, chirality

was not associated with variation in a single-copy dia that was

recovered (Figure S2). Molecular understanding of chiral varia-

tion in these species is therefore likely to reveal additional com-

ponents of the LR asymmetry pathway, including variants in

genes that enable chiral evolution without negative pleiotropic

effects upon fitness.

Formin Also Regulates LR Patterning in the Frog
A popular model of LR symmetry breaking in vertebrates relies

on chiral flow of extracellular fluid during neurulation. However,

this mechanism cannot be universal as many phyla lack the cili-

ated structures required or achieve correct LR patterning prior to

the ciliated structure differentiation (reviewed in [8, 14, 15]).

Inherent asymmetry in the cytoskeleton could provide an

ancient, well-conserved mechanism used by vertebrate em-

bryos at the earliest stages of development to initiate the LR

pattern and instruct the entire body plan [8, 30, 31]. We
Current Biology 26, 1–7, March 7, 2016 ª2016 The Authors 5



Please cite this article in press as: Davison et al., Formin Is Associated with Left-Right Asymmetry in the Pond Snail and the Frog, Current Biology
(2016), http://dx.doi.org/10.1016/j.cub.2015.12.071
investigated whether formin inhibition in early embryos, before

the neurula ciliary flow, could affect chirality in the vertebrate

model Xenopus laevis.

SMIFH2 and CK-666 drug treatments were carried out with

X. laevis embryos at different stages of development and scored

by measuring heterotaxia (independent organ LR inversion) in

tadpoles (Figure 4; Table S3). In early embryos (stages 1–6), dur-

ing which the cytoskeleton instructs LR patterning [30], treat-

ment with 50 mM SMIFH2 had a strong effect on LR patterning

(13% heterotaxia, X2, p < 0.001), with a smaller but significant ef-

fect with CK-666 (7% heterotaxia, X2, p < 0.001), whereas em-

bryos treated at neurula stages (stages 19–21), when ciliary

flow is present, showed a strong effect for both 50 mM SMIFH2

(12%, X2, p < 0.001) and 50 mM CK-666 (16%, X2, p < 0.001).

Treatments spanning late blastula to gastrula (stages 8–14)

had a reduced (3%–4%) but still significant effect (Table S3) on

organ heterotaxia, showing that the efficacy of early treatment

cannot be due to remnant drug persisting to cilia stages.

For a more specific gain-of-function test of formin function in

Xenopus, mouse dia1 mRNA was injected into the animal pole

of frog embryos and organ situs assessed at stage 45. Similar

to the in vitro finding that the spontaneous counterclockwise

alignment of actin bundles can be reversed by overexpression

of alpha-actinin [7], we found that overexpression of dia1 re-

sulted in a high and significant proportion of heterotaxia, whether

injected 30 or 60 min post-fertilization, or in one of two or four

cells (Figures 4 and S4). In addition, targeted injection into the

dorsal left (DL) or ventral right (VR) blastomeres at the 4-cell

stage showed that while significantly different from uninjected

controls (X2, p < 0.001), there is no significant difference between

DL and VR in the effect on heterotaxia (n = 85 DL, 5% hetero-

taxia; n = 135 VR, 9% heterotaxia; p = 0.75 Student’s t test),

which would be expected if the effect were at the point of ciliary

flow, as the left side of the embryo is required for ciliary flow

affecting LR patterning [32].
Formin, an F Molecule?
The implication of a key cytoskeletal protein in LR patterning of

both molluscan and vertebrate embryos is consistent with a

view of asymmetry as a highly conserved, ancient property in

which diverse body plans leverage asymmetry from the same

intracellular chiral elements. Bilaterian LR asymmetry may be

dependent upon thephysicalorientationof theactin cytoskeleton,

which, by exerting mechanical stresses on the cell, results in heli-

cal rotation [6, 7].Whilemultiple elements potentially contribute to

the establishment of this asymmetry, formins may have pivotal

roles in coordinating functions that depend upon both the actin

and microtubule cytoskeleton [7, 30, 33, 34]. Pond snails are

now an experimentally tractable, comparative model in which to

integrate understanding of the action of downstream patterning

genes, such as nodal, and the dynamics of cellular interaction

and movement in the embryo to generate handedness.
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