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Abstract. The Sequential Importance Sampling with Re-
sampling (SISR) particle filter and the SISR with parameter
resampling particle filter (SISR-PR) are evaluated for their
performance in soil moisture assimilation and the consequent
effect on baseflow generation. With respect to the resulting
soil moisture time series, both filters perform appropriately.
However, the SISR filter has a negative effect on the base-
flow due to inconsistency between the parameter values and
the states after the assimilation. In order to overcome this
inconsistency, parameter resampling is applied along with
the SISR filter, to obtain consistent parameter values with
the analyzed soil moisture state. Extreme parameter replica-
tion, which could lead to a particle collapse, is avoided by
the perturbation of the parameters with white noise. Both the
modeled soil moisture and baseflow are improved if the com-
plementary parameter resampling is applied. The SISR fil-
ter with parameter resampling offers an efficient way to deal
with biased observations. The robustness of the methodology
is evaluated for 3 model parameter sets and 3 assimilation
frequencies.

Overall, the results in this paper indicate that the parti-
cle filter is a promising tool for hydrologic modeling pur-
poses, but that an additional parameter resampling may be
necessary to consistently update all state variables and fluxes
within the model.

1 Introduction

It is widely recognized that hydrologic models are useful
tools for a number of purposes, ranging from flood fore-
casting (Andersson, 1992) to numerical weather prediction
and climate studies (Zhang et al., 2008). Due to uncer-
tainties in the meteorological forcings and model parame-
ters, and errors or oversimplifications in the model physics,
these models are always prone to a certain level of uncer-
tainty. One way to reduce the predictive uncertainty of hy-
drologic models is to regularly update these models using
externally obtained data sets, which is commonly referred to
as Data Assimilation (DA). The improvement of hydrologic
model results through the assimilation of soil moisture data
has been the subject of numerous studies (Entekhabi et al.,
1994; Walker et al., 2002; Pauwels et al., 2002; De Lan-
noy et al., 2007a). The underlying idea of data assimila-
tion is to calculate a weighted average between the obser-
vations and the model results. The simplest way to perform
this is to simply replace the model results by the observa-
tions, which is defined as direct insertion (Heathman et al.,
2003). More advanced assimilation methods include nudg-
ing of the model results to the observations (Houser et al.,
1998; Pauwels et al., 2001; Paniconi et al., 2002) and optimal
interpolation (Seuffert et al., 2004). These techniques are in
fact simplifications of the Kalman filter (Kalman, 1960), in
which the model error is calculated explicitly throughout the
simulation.

Originally developed for linear systems, and later ex-
tended for nonlinear systems, a great deal of attention has
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been paid to this assimilation method for hydrologic data as-
similation. The extended Kalman filter, in which the forecast
error covariance is calculated through a linearization of the
model, and the ensemble Kalman filter, in which this model
error covariance is calculated using the spread of an ensem-
ble of model realizations, have been intercompared byRe-
ichle et al.(2002). At this point, it can be argued that the
ensemble Kalman filter is the most frequently used assimila-
tion method in hydrology. A variation to this method is the
ensemble Kalman smoother (Dunne and Entekhabi, 2005), in
which observations that are distributed in time are used to up-
date the model state variables. This method is comparable to
variational assimilation (Caparrini et al., 2004), in which ob-
servations within a predefined window are used to estimate
the initial state variables. One problem with the frequently
used ensemble Kalman filter is the underlying assumption of
Gaussianity of both the forecast and observation error struc-
ture. As it is evident that this assumption is not realistic for
hydrologic systems, assimilation methods have been devel-
oped that relax this assumption.

One method that is receiving increasing attention in hy-
drology is the particle filter, which has been developed to
function for any kind of model error (Liu and Chen, 1998).
This method has been used to assimilate discharge records
into relatively simple rainfall-runoff models (Weerts and
El Serafy, 2006; Moradkhani et al., 2005b) and to assimi-
late water stage records into hydraulic models (Matgen et al.,
2010; Giustarini et al., 2011). Recently, this method is also
used for the assimilation of soil moisture data, for the esti-
mation of model parameters (Montzka et al., 2011), and the
estimation of root-zone soil moisture conditions (Nagarajan
et al., 2010).

According toMoradkhani et al.(2005b), Nagarajan et al.
(2010), andMontzka et al.(2011), it is clear that the trend to-
wards the application of particle filters is not limited to only
the state estimation problem, but it can also be used for the
identification of model parameter values, by exploiting the
advantage of the flexible structure of the particle filter al-
gorithms. In this study, state and parameter estimation are
performed within the framework of the particle filter, aim-
ing at an improvement of the model performance in terms of
both soil moisture and discharge, through the assimilation of
soil moisture data. Moreover, instead of estimating all the
model parameters, we propose a methodology where a lim-
ited model parameter set is used. Dual or joint estimation has
been widely studied using either the Kalman filter (Morad-
khani et al., 2005a; Franssen and Kinzelbach, 2008; Wang
et al., 2009) or recently, the particle filter (Moradkhani et al.,
2005b; Nagarajan et al., 2010; Montzka et al., 2011). The ap-
proach presented here differs from previous state-parameter
estimation studies in the objective. More specifically, the
particle filter with parameter resampling is applied aiming
at an improvement of the modeled discharge as a result of
soil moisture assimilation, and the parameter values are not
estimated explicitly.

The organization of the paper is as follows: first, the study
site and the description of the model are presented. The de-
scription of the experiment is presented. Then, the data as-
similation methodologies are explained, after which the re-
sults from the study are explained. Finally, the conclusions
from this study are summarized.

2 Materials and methods

2.1 Site description

The area (Fig.1) to be studied is located in the Grand Duchy
of Luxembourg and includes the drainage area expanded
from the head of the Alzette River basin, 4 km south of the
French-Luxembourg border, to the stream gauge located in
Pfaffenthal (Luxembourg City).

The discharge area covers a surface of 356 km2 and con-
sists of about 50 % cultivated land, 22 % urban centers and
28 % woodland. The topography of the floodplain is char-
acterized by a natural sandstone bottleneck which is located
near Luxembourg city. The valley located upstream of the
bottleneck is up to 2.5 km wide, while in the Luxembourg
sandstone the valley is only 75 m wide. The geological sub-
stratum is dominated by marls on the left bank and by lime-
stone and sandstones deposits on the right bank. Sand and
gravel, as well as marls and clay alternate in the alluvial
deposits covering the stratum. A gauging station, operated
since 1996, is located around the village of Livange provid-
ing accumulated precipitation amounts with a sampled fre-
quency of 15 min. The meteorological station at Findel Air-
port is operated in the vicinity of the catchment.

2.2 Model description

The Community Land Model (CLM2.0) is the hydrologic
model used in this study. CLM2.0 simulates land surface pro-
cesses by calculating water and heat fluxes for each grid cell
separately, without any interaction between cells. Each grid
cell can be subdivided into several patches, containing one
single land cover type such us urban, vegetated, wetlands,
glacier and lake. The vegetated fraction is further subdivided
into patches of plant functional types, which maintain their
own prognostic variables (i.e., a vegetated land cover with 4
patches representing 4 different plant functional types). In
this study, CLM2.0 was adapted in order to be able to use
the individual patches as ensemble members according to
De Lannoy et al.(2006a).

The meteorological forcings required by the model are
the air temperature, wind speed, specific humidity, incoming
solar radiation, and precipitation. The meteorological forc-
ings were assumed to be spatially uniform over the complete
study area. Vertical layers in CLM2.0 embody one vegeta-
tion layer, up to ten soil layers and up to 5 snow layers. In
this application, soil layers depths were set to 10, 20, 30, 40,
50, 60, 70, 80, 90, 100 cm. CLM2.0 computes the surface
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Table 1. Optimal parameter sets:NwRb andNwRs were converted into tuneable parameters (De Lannoy, 2006b), k is the soil layer index.
NwRb andNwRsare not considered in the parameter resampling step.

Description set 1 set 2 set 3 set 4

Fraction of model area with high water table (wtfact[fraction]) 0.280 0.704 0.742 0.7174
Water table depth scale parameter (fz [m−1]) 49.173 3.423 3.475 3.523
Saturated soil hydraulic conductivity (kd [mm s−1]) 0.827 0.095 0.099 0.098
Base flow parameter for saturated fraction of watershed (ld [mm s−1]) 0.0071 0.0034 0.0027 0.0038
First bottom layer contributing to the calculation of base flow (NwRb [−]) 5 5 6 5
Last top layer contributing to the calculation of the surface runoff (NwRs [−]) 3 4 4 4
Clapp and Hornberger constant (bswk [−]) 5.487 4.659 4.623 5.919
Volumetric soil water at saturation (watsatk [−]) 0.638 0.597 0.600 0.617
Hydraulic conductivity at saturation (hksatk [mm s−1]) 0.047 0.011 0.010 0.024
Minimum soil suction (sucsatk [mm]) 284.76 557.17 606 497.16

Fig. 1. The study area: the discharge area in the Alzette river basin
is indicated by the green patch.

runoff and the baseflow for every grid cell. The discharge
is routed to the basin outlet using the linear unit hydrograph
approach ofTroch et al.(1994).

In CLM2.0, each grid cell contains around 30 model pa-
rameters related to the different physical processes repre-

sented by the model such as the canopy water balance, the
soil water balance, and the energy balance. From these 30 pa-
rameters, 10 parameters are related to the soil water balance.
The reduced parameter set allows for the application of au-
tomatic calibration algorithms, such as the Shuffled complex
evolution approach (Duan et al., 1993) which was used in
this study. Table1 presents the description of the selected pa-
rameters and three corresponding sets of optimal parameter
values (set 1, set 2, set 3) which yield a similar good model
performance. Due to the size of the parameter space and
the complexity of the model, the system is prone to behave
the equifinality phenomena. The optimal values were iden-
tified by minimizing the Root Mean Square Error (RMSE)
between observed and simulated discharge during the year
2006. The three parameter sets will be used to validate the
data assimilation methodology.

The model is applied using a constant hourly time step
and the study area is represented by 4 grid cells at a 10 km
x 10 km resolution which is consistent with the resolution of
large scale models. For the sake of clarity in the presentation
of the algorithm performances, results corresponding to the
cell located in the lower left quadrant in Fig.1 are presented.

2.3 Experimental setup

A synthetic soil moisture data assimilation study is per-
formed to assess the performance of the filters. Soil mois-
ture assimilation has received a lot of attention during the
last decades, but insight in the impact of soil moisture assim-
ilation on dependent variables, for instance discharge, has
been limited (Pauwels et al., 2002; De Lannoy et al., 2007b;
Brocca et al., 2010).

For each model grid cell, synthetic volumetric soil mois-
ture observations, corresponding to the top 10 cm soil layer,
are generated with the CLM2.0. The generation of the ob-
servation consists of the perturbation of the model parame-
ters presented in Table1 (set 4) and the perturbation of the
forcings. Parameters and forcings were perturbed by white
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Fig. 2. Monitoring the importance weights: axis x represents the particles location (volumetric soil moisture [vol %]) and axis y the impor-
tance weights values at four different daily model time steps 0, 1 (1 Jan), 51 (20 Feb), 126 (6 May).

Gaussian noise with zero mean and the standard deviation
set to 1% of the parameter value and 1% of the maximum
forcing value. Furthermore, it is worth mentioning the fol-
lowing two facts: first, the small level of noise used in the
perturbation of the parameters and forcings can limit the rep-
resentation of a real-case model error and second, the use of
a different parameter set (set 4) in the generation of the syn-
thetic observations introduces bias in the observations them-
selves. Therefore, the synthetic experiment is focused more
on the study of the performances of the filters in the removal
of bias and may not represent most of the real-world situa-
tions. However, the way how the experiment is carried out
allows to demonstrate the applicability of the particle filter in
this study-case.

The forecast uncertainty is introduced through the gener-
ation of soil moisture random samples, which is referred to
ensemble generation. The meteorological forcings and the
model parameters were disturbed with an additive zero mean
white Gaussian noise in order to obtain the soil moisture en-
semble (De Lannoy et al., 2006a). The standard deviation
of this random number for the parameters was set to a pre-
defined fraction of the parameter value. In order to check
for the correctness of the ensemble, two different ensemble
verification measures were used (De Lannoy et al., 2006a).
The ensemble spread (enspt ), the ensemble mean square er-

ror (mset ), and the ensemble skill (enskt ) have to be com-
puted first and at each time stept :

enspt =
1

N

N∑
i=1

(ẑt,i −
¯̂zt )

2

mset =
1

N

N∑
i=1

(ẑt,i −zt )
2 (1)

enskt = ( ¯̂zt −zt )
2

whereẑt is the variable to be estimated andzt is the corre-
sponding observation of the estimated variable at time step
t . In order to have a large enough ensemble spread, on av-
erage the ensemble mean differs from the observation by a
value that is equal to the time average of the ensemble spread.
Therefore, the following expression should be true:

< ensk>

< ensp>
≈ 1 (2)

where< . > indicates an average over the simulation pe-
riod. Furthermore, if the truth is statistically indistinguish-
able from a member of the ensemble, the following expres-
sion should be true:

<
√

ensk>

<
√

mse>
≈

√
N +1

2N
(3)
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Fig. 3. Extreme particle replication example withN = 64: (a) and(b) present a proper resampling performance whereas(c) and(d) show
the extreme replication problem. The sample set collapses to particles located at 27th, 53th and 60th positions in(c) and almost all the set
collapses to the value of the particle at the 54th position in(d).

For the selection of the ensemble/particle size, the assimi-
lation algorithms were evaluated using three different ensem-
ble sizes: 64, 128 and 256. Results shown that the improve-
ment obtained when increasing the size is not very significant
while the increase in the computational time demand is very
significant. Therefore, an ensemble size of 64 is used in this
study.

The standard deviation of the perturbation noises corre-
sponds to 10 % of the nominal values for the model parame-
ters, and 1 % for the meteorological forcings. These fractions
have been calibrated in order to balance the different sensi-
tivities of model parameters and meteorological forcings in
the generation of an adequate ensemble. Figure4 shows the
soil moisture ensemble and the corresponding baseflow en-
semble, the ratio<ensk>/<ensp> is equal to 1.09 which
approximates 1 and the ratio<

√
ensk>/<

√
mse> is equal

to 0.72 which approximates the value of
√

1/2 with the sim-
ulation period corresponding to year 2007.

A robustness test of the assimilation algorithms will be
performed by considering the impact of the data assimila-
tion frequency and of different optimal parameter values for
the model integration. Discussion on the filter performances
for these scenarios will be extended in the results section.

2.4 Particle filters

In nonlinear estimation, the dynamic system in discrete time
is described by the state evolution equation given by:

xt = f t (xt−1,ut−1,vt−1) (4)

wheret is the discrete time index,x is the state vector,f t (.)

is the nonlinear function,u is the input vector andv is the
process noise. In this study, the state vector consists of 22
variables for each vertical profile, i.e., canopy water storage,
vegetation temperature and soil temperature and moisture at
10 levels, the observed state corresponds to the soil moisture
at the top layer. CLM2.0 represents the nonlinear function
f t (.) andut is the vector of meteorological forcings.

The state estimation is accomplished when the information
from the measurement is assimilated into the model. The
relationship between the measurements and the system states
(the observation model) is given by:

yt = Htxt +nt (5)

Equation (5) represents the observation model, wherey is
a vector which contains the measurements,Ht is a diagonal
matrix containing values of 0 and 1 andnt is the noise af-
fecting the observations. In this study the observation model
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Fig. 4. Soil moisture and baseflow ensembles: The upper plot corresponds to the generation of the volumetric

soil moisture ensemble with the ensemble members in gray line, the ensemble mean in black line and the

synthetic soil moisture observations in red dotted line. The lower plot corresponds to the baseflow ensemble.

21

Fig. 4. Soil moisture and baseflow ensembles: The upper plot corresponds to the generation of the volumetric soil moisture ensemble with
the ensemble members in gray line, the ensemble mean in black line and the synthetic soil moisture observations in red dotted line. The
lower plot corresponds to the baseflow ensemble.

is linear, because the assimilated soil moisture observations
will correspond directly to the soil moisture state variables.

In recursive Bayesian filtering the solution to the estima-
tion problem consists of two steps: the prediction and cor-
rection steps. These steps are formulated as follows:

p(xt |y1:t−1) =

∫
p(xt |xt−1)p(xt−1|y1:t−1)dxt−1 (6)

p(xt |y1:t ) =
p(yt |xt )p(xt |y1:t−1)∫

p(yt |xt )p(xt |y1:t−1)dxt

(7)

In the prediction step (Equation6), the posterior probabil-
ity density function (pdf)p(xt |y1:t−1) is obtained based on
the fact that the transition pdfp(xt |xt−1) and the prior pdf
at time stept −1 are known, whereas in the correction step
(Eq.7), the prior pdf is corrected using the information from
the likelihood pdfp(yt |xt ) and the posterior pdfp(xt |y1;t )

is derived. The analytical solution of Eqs. (6) and (7) is dif-
ficult to determine since the evaluation of the integrals might
be intractable. Particle filters are a set of algorithms which

approximate the posterior pdf by a group of random samples.
In more detail, the integrals are mapped to discrete sums:

p(xt |y1:t ) ≈ p̂(xt |y1:t ) =
1

N

N∑
i=1

δ(xt −xt,i) (8)

where the particles{xt,i;i = 1...N} should be sampled from
the posterior pdf andδ is the Dirac measure. The Dirac mea-
sure is given by:

δx(X) =

{
0 if x /∈ X,

1 if x ∈ X.
(9)

wherex is a possible element of setX.
At this point, drawing particles is unfeasible since the pos-

terior pdf is unknown. Nevertheless, it is viable to draw
particles from a known proposal pdf (also called importance
pdf). This is the basis of the importance sampling princi-
ple. Sequential Importance Sampling (SIS) is the recursive
version of the importance sampling MC method and the par-
ticle filters are based on the SIS approach. This approach
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approximates the posterior pdf by a set of weighted particles
as follows:

p̂(xt |y1:t ) =

N∑
i=1

w̃t,iδ(xt −xt,i) (10)

wherew̃t,i are the normalized importance weights associated
to the particles which are drawn from the proposal pdf. Con-
sidering that the system state evolves according to a Markov
process, and applying recursion to the filtering problem, the
recursive expression for the importance weights is given by:

wt,i = wt−1,i ·
p(yt |xt,i)p(xt,i |xt−1,i)

q(xt,i |x0:t−1,i,y1:t )
(11)

The selection of the proposal pdfq(.,y1:t ) is extremely im-
portant in the design stage of the SIS filter. The filter perfor-
mance mainly depends on how well the proposal pdf approx-
imates the posterior pdf. InDoucet et al.(2001), an optimal
choice for the importance density function is proposed:

q(xt |x0:t−1,y1:t ) = p(xt |x0:t−1,y1:t ) (12)

This pdf is optimal in the sense that it minimizes the vari-
ance of the importance weights, however, the application of
Eq. (12) is complex from the implementation point of view.
A common choice of the proposal is the transition prior func-
tion (Gordon et al., 1993; Kitagawa, 1996):

q(xt,i |x0:t−1,i,y1:t ) = p(xt,i |xt−1,i) (13)

A drawback of this approach is the lack of information
regarding the model errors in the computation of the impor-
tance weights. This limitation can affect the performance of
the particle filter. The choice of the transition prior as the pro-
posal simplifies Equation11resulting in an expression where
the importance weights depend on their past values and also
on the likelihood pdf. In this application, the likelihood pdf is
considered to be Gaussian. Thus, the particles are weighted
according to:

p(yt |x̂
−

t,i) =

exp
(
−

1
2(yt −Ht x̂

−

t,i)
TR−1(yt −Ht x̂

−

t,i)
)

(2π)m/2|R|1/2
(14)

whereR is the measurement error covariance matrix, which
is set to 0.0005I , with I the identity matrix and the uncer-
tainty of 0.022 cm3cm−3 (

√
0.0005) is less than the valid up-

per limit of 0.05 cm3cm−3 reported inWalker and Houser
(2004). |R| is the determinant of matrixR andm is the di-
mension of vectoryt . The normalized weights are given by:

w̃t,i =
wt,i∑N
i=1wt,i

(15)

Finally, the best estimate of the state consists of the
weighted mean of the particle set{x̂

−

t,i,w̃t,i}. The SIS fil-
ter poses the problem of particle depletion, this problem is
caused by the increase of the variance over time as stated in
Kong et al.(1994) andDoucet et al.(2001).

The plots in the upper part of Fig.2 show the importance
weight transition from a uniform distribution att = 0 to a nor-
mal distribution according to the Gaussian likelihood pdf at
t = 1. While in the plots located in the lower part, it is clearly
noticeable that after a few model time steps, only one of the
normalized importance weights reaches the value of 1, and
the remaining set of weights are reduced to negligible val-
ues. Consequently, a large number of samples are removed
from the sample space, because their weights become numer-
ically insignificant, generating a wrong approximation of the
posterior pdf.

A heuristic approach to mitigate the degeneracy problem
by increasing the particle set is impractical in most cases.
The approach adopted in this work is the Sequential Impor-
tance Sampling with Resampling filter.

2.4.1 Sequential Importance Sampling with
Resampling (SISR)

Resampling is basically the selection and replication of those
particles with high importance weights. This additional step
to the SIS filter involves mapping the Dirac random mea-
sure {xt,i,w̃t,i} into an equally weighted random measure
{xt,i,N

−1
}. Gordon et al.(1993) proposed a methodology

which consists of drawing samples uniformly from the dis-
crete set{xt,i,w̃t,i} and it is referenced as the Sampling Im-
portance Resampling method (SIR). Beside the SIR method,
more efficient selection techniques in terms of a reduction of
the resampled particles variance have been developed such as
the stratified resampling, systematic resampling and residual
resampling (Arulampalam et al., 2002). Weerts and El Ser-
afy (2006) found that the use of a minimum variance sam-
pling technique such as the residual resampling improves the
overall performance of the particle filter unlike the use of the
SIR.

The SIR algorithm consists in the construction of the cu-
mulative distribution of the particles set and the projection
of a uniformly drawn sampling indexi onto the domain of
the distribution. As a result of the projection, the resampling
indexj is obtained and the particle set{x̂

−

t,i} is resampled ac-

cording to this index, the resulting particle set{x̂
+

t,j } contains
replications of those particles with high importance weight.
An improved version of the SIR method is the stratified re-
sampling approach introduced inKitagawa(1996). This ap-
proach differs from the SIR only in the way how the sam-
pling index i is generated allowing for a reduction of the
variance of the particles. The specific choice of the selection
method among the stratified, systematic or residual resam-
pling should not significantly affect the performance of the
SISR filter since all three are designed to minimize the parti-
cle variance. The SISR particle filter applied in this study is
the SIS filter with stratified resampling.
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The SIS with stratified resampling algorithm used is sum-
marized as follows:

– FOR t = 1,2,...

– Propagate the particles in time.
Draw x̂

−

t,i ∼ p(x̂t,i |x̂
+

t−1,i)

– IF (t corresponds to a DA time step)

• Importance sampling step

· For i = 1 : N

Computewt,i = p(yt |x̂
−

t,i)

Normalizew̃t,i =
wt,i∑N
i=1wt,i

• Resampling step

· For i = 1 : N

Obtain the resampling indexj vector.
Resample{x̂−

t,i} ⇒ {x̂
+

t,j }

Assignw̃t,i =
1
N

– END IF

– END FOR

The replication of the particles during the resampling step
poses a problem when the set of resampled particles col-
lapses in the worst case to a single particle due to a wrong
selection of the importance pdf or due to a narrow likelihood
pdf. Figure3 shows the resampling indexj , which indicates
the location of the particles to be resampled, at 4 DA events.
Subfigures (a) and (b) indicate a proper performance of the
resampling algorithm where the particle replication is not ex-
treme. On the other hand, the resampling indexj , as a result
of the application of a hypothetical and too narrow likelihood
pdf, is presented in subfigures (c) and (d), subfigure (c) indi-
cates that the sample collapses to the particle values located
at positions 27th, 53th, and 60th. The extreme replication
problem is noticeable mostly in subfigure (d) where almost
all the particles collapse to the value of the particle located at
the 54th position.

Andrieu et al.(1999), suggested for nonlinear systems the
use of Markov chain Monte Carlo (MCMC) steps to deal
with the particle degeneracy problem. However, the use of
MCMC steps increases the computational time considerably
due to need of new proposed particles which are sampled
from the prior density function. The scope of this paper is
limited to the application of the SISR filter assuming proper
importance and likelihood density functions.

2.4.2 SISR filter with parameter resampling (SISR-PR)

In the PF, the uncertainty in the model is represented through
samples referred to as particles. These samples are drawn
from the importance density function (equal to the prior den-
sity function for the standard particle filter).

The uncertainty in the model is caused by uncertainty in
the meteorological forcings, initial conditions and parame-
ters. Thus, the generation of ensembles, presented in the ex-
periment setup section, is fundamental since the ensemble
should represent this model uncertainty. The perturbation of
the parameters plays an important role in the generation of
the ensemble due to the contribution of the parameters to the
modelling errors.

The state estimation method aims at finding the optimal
state value based on the information from the measurements.
The estimated state value can positively or negatively affect
the behaviour of other variables in the model. In this study,
soil moisture is the state variable that will affect the baseflow.

Moradkhani et al.(2005b) presented the SISR-PR as a po-
tential methodology to assess the uncertainty in the states
and parameters of a hydrologic model. In this study we
adopted the same methodology aiming at the correction of
model flows after the assimilation of the states. The hydro-
logic literature on Data Assimilation with the Particle Filter
focuses either on direct assimilation of discharge or on an
evaluation of the improvement in the assimilated variable it-
self. In this paper, we assess whether the resampling of the
parameters along with the states improves the behaviour of
the model flows due to a proper combination between states
and parameters.

The operation of the parameter resampling step is the fol-
lowing: after the resampling of the states, the same vec-
tor/matrix containing the particle indices to be resampled is
used to resample the parameter set. The last action leads to a
selection (replication or suppression) of parameters that are
tied to a particular state realization.

An extreme replication of the parameter values poses the
same problem as in the case of the state replication. More-
over, the ensemble will fail in the representation of the model
uncertainty since the spread of the ensemble is decreased af-
ter the parameter resampling. In order to overcome this prob-
lem, the resampled parameter values are perturbed with the
addition of white Guassian noise (Moradkhani et al., 2005b)
and the variance (var) of the noise is set to a fraction of the
optimal parameter value.

The SISR-PR filter applied in this study is summarized in
the following algorithm:

– FOR t = 1,2,...

– Propagate the particles in time.

– IF (t corresponds to a DA time step)

• Importance sampling step

• Resampling step

· For i = 1 : N

Obtain the resampling indexj vector.
Resample{x̂−

t,i} ⇒ {x̂
+

t,j }

Resample the parameter setθ : {θi} ⇒ {θj }

Perturb the resampled parameter setθj +
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Fig. 5. SISR filter performance and assimilation impact on the baseflow. The soil moisture and baseflow time
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Fig. 5. SISR filter performance and assimilation impact on the baseflow. The soil moisture and baseflow time series correspond to the DA
study performed with set 2 as the initial parameter set.

N(0,var)
Assignw̃t,i =

1
N

– END IF

– END FOR

3 Results and discussion

The data assimilation experiments are validated by compar-
ing soil moisture and baseflow assimilation results against
synthetic observed soil moisture and baseflow values. The
reference model integration without data assimilation is per-
formed with parameter set 2, while the assimilation integra-
tions are performed with the different parameter sets 1, 2 and
3.

Data assimilation is performed every week, with the first
DA event at 8 February 2007 and the last at 24 May 2007.
Every DA event is indicated by a black arrow in the fig-
ures and the simulation period corresponds to the first half
of year 2007 (1 January–1 July). The Root Mean Square
Error (RMSE), between the synthetic observed and modeled

soil moisture and baseflow, is computed over the time period
starting 1 day before the first DA event and 1 day after the
last DA event (i.e., from 7 February to 25 May 2007).

3.1 The SISR filter

Figure 5 shows the performance of the SISR filter for soil
moisture assimilation and the corresponding impact of the
assimilation on the baseflow. According to the RMSE val-
ues: 3.65 vol % without assimilation and 2.19 vol % after as-
similation, the improvement obtained from the SISR filter
application is significant. However, when looking at the as-
similation impact on the baseflow (lower part of figure5) a
different performance is observed. The filter performs neg-
atively according to the RMSE value (3.61×10−5 mm s−1

for the SISR filter) when compared to the model run without
assimilation (6.56×10−6 mm s−1).

The behaviour of the baseflow during the assimilation of
soil moisture is the result of an inconsistent combination be-
tween resampled states and perturbed parameters mainly in
the bottom soil layers which contribute to the generation of
the baseflow. The replication of those state particles with
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higher weight in combination with the parameter values af-
fect the baseflow behaviour negatively. More specifically,
the rearrangement of the soil moisture particles in combina-
tion with parameter values for wet or dry moisture conditions
generates huge baseflow peaks as can be seen in the lower
part of Fig.5.

In order to assign to each resampled state particle a con-
sistent parameter value, the application of the parameter re-
sampling is important and it is evaluated as an alternative to
improve the filter performance and to have a positive impact
on the baseflow.

3.2 The SISR filter with parameter resampling

The SISR filter with parameter resampling aims at a com-
bination of estimated state values with consistent parameter
values. This procedure should result in a positive impact on
the land surface variables that dynamically depend (through
the model, including the parameter configuration) on the as-
similated soil moisture state variable. The parameters in-
volved in the resampling step are listed in Table 1, param-
eters NwRb and NwRs are not considered for resampling.

Figure6 shows the performance of the soil moisture as-
similation and the impact of the assimilation on the base-
flow for the SISR-PR filter without the perturbation of the
resampled parameters. Looking at Figs.4 and6, the decrease
in the dispersion of the soil moisture and baseflow particles
is noticeable when the parameter resampling is performed.
This reduction is indicated by the time-averaged ensemble
spread<ensp> (Eq.1), calculated over the entire validation
period with inclusion of the DA time steps, with values of
6.16×10−4 and 5.92×10−5 (mm3 mm−3)2 for soil moisture
and values of 1.34×10−11 and 9.27×10−12 (mm s−1)2 for
the baseflow.

Resampling the parameters along with the state SISR filter
causes a reduction of the analysis error (the ensemble spread
represents the uncertainty at the analysis step). An extreme
reduction of the ensemble spread due to an extreme state and
parameter particles replication needs to be avoided. Here,
we propose the perturbation of the resampled parameters by
using additive white Gaussian noise as the solution to the
particles collapse problem. The predefined standard devia-
tion of the noise is set to a fraction of the optimal parameter
values, for the results presented in Fig.7 the fraction is set to
0.01 of parameter set 2. This fraction was obtained based on
a proper representation of the baseflow ensemble through the
calibration of the ensemble spread measure.

Figure7 shows the SISR-PR filter performance with the
perturbation of the resampled parameters. The upper part
of this figure presents the performance for the soil mois-
ture assimilation. The dynamics of the state ensemble is
positively affected by the parameter resampling improving
the overall performance of the filter and keeping the bene-
fit of the state updating for a long time after the DA events.
The benefit is quantified by the RMSE values correspond-

Table 2. RMSE [mm3 mm−3] between the observed and simulated
soil moisture for 3 parameter sets.

Filter set 1 set 2 set 3

Ensemble 2.89 3.65 3.38
SISR filter 2.33 2.19 1.61
SISR-PR filter 1.85 0.51 0.74

Table 3. RMSE [mm s−1] between the observed and simulated
baseflow for 3 parameter sets. SISR-PR is applied with parameter
perturbation.

Filter set 1 set 2 set 3

Ensemble 1.39×10−5 6.56×10−6 5.89×10−6

SISR filter 2.71×10−5 3.61×10−5 4.08×10−5

SISR-PR filter 1.16×10−5 3.40×10−6 2.39×10−6

ing to 3.65 vol % without assimilation and 0.51 vol % when
the SISR-PR is applied. Moreover, the perturbation of the
resampled parameters increases the ensemble spread from
5.91×10−5 (mm3 mm−3)2 to 7.97×10−5 (mm3 mm−3)2.

Additionally, the plot of the baseflow (see lower part of
Fig. 7) shows graphically a considerable improvement on
the behaviour when comparing to the assimilation effects of
the SISR filter application. Figure8 shows the impact of
the assimilation on the bottom soil layers. The benefit of
the parameter resampling in the top soil layer is propagated
trough the bottom soil layers. As a consequence, the im-
pact on the baseflow is positively affected. This improve-
ment can be corroborated with the reduction in the RMSE
values from 6.56×10−6 mm s−1 when no assimilation is per-
formed to 3.40×10−6 mm s−1 when soil moisture DA is per-
formed. The baseflow ensemble spread can be increased by
the parameter perturbation. The ensemble spread values indi-
cate an increase from 9.26×10−12 (mm s−1)2 to 1.51×10−11

(mm s−1)2.
Figure9 shows the evolution in time of the soil hydraulic

model parameters for the top soil moisture layer. Parameters
bsw1, watsat1, hksat1 converge to the “truth” (parameter val-
ues used in the generation of the synthetic observations) and
parametersucsat1 converges to a different value. The cor-
rection of the soil moisture in the bottom layers and of the
parameters during the first DA time steps allows for a cor-
rection of the baseflow even in the case when the baseflow
measurements are not covered by the baseflow ensemble as
can be seen in Figs.6 and7.

An overall conclusion based on the good RMSE values
obtained for soil moisture and baseflow is that the addition
of the parameter resampling to the SIR filter is effective in
removing the bias through an indirect calibration of the mod-
eled particles.
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Fig. 6. SISR-PR filter performance and assimilation impact on the baseflow without parameter perturbation.

The soil moisture and baseflow time series correspond to the DA study performed with set 2 as the initial

parameter set.
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Fig. 6. SISR-PR filter performance and assimilation impact on the baseflow without parameter perturbation. The soil moisture and baseflow
time series correspond to the DA study performed with set 2 as the initial parameter set.

Table 4. RMSE [mm3
·mm−3] between the observed and simulated soil moisture for 3 DA frequencies.

Filter DA every week DA every 2 weeks DA every 4 weeks

Ensemble 3.65 3.65 3.65
SISR filter 2.19 2.34 2.60
SISR-PR filter 0.51 0.76 1.22

3.3 Sensitivity study

The performance of the SISR-filter and SISR-PR filter with
parameter perturbation are further analyzed for 3 different
initial parameter sets, each identified by the automatic cal-
ibration algorithm with a similar optimization index value.
The filter performance is analyzed through the comparison
of the RMSE values. The parameter sets 1,2 and 3 repre-
sent 3 different local minima in the parameter space, the idea
behind this is to check the robustness of the parameter resam-
pling algorithm.

Table2 presents the RMSE values between the estimated
and observed volumetric soil moisture at the surface for ev-
ery filter and for every parameter set. Although the SISR-PR

RMSE values are different, due to different system dynamics
the SISR-PR filter outperforms the rest of the filters indicat-
ing robustness of the algorithm. Additionally, according to
Table3 the positive impact on the baseflow persists among
the three cases.

Considering the assimilation of remote sensed soil mois-
ture data, the availability of data is of main importance in
the application of the assimilation algorithm. Therefore, the
SISR-PR performance is tested for 3 DA frequencies. Addi-
tionally to the DA frequency corresponding to 16 DA events,
the methodology is evaluated for 8 DA events with 1 event
every 2 weeks and 4 DA steps with 1 event every four weeks.
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Fig. 7. SISR-PR filter performance and assimilation impact on the baseflow with parameter perturbation. The
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Fig. 7. SISR-PR filter performance and assimilation impact on the baseflow with parameter perturbation. The soil moisture and baseflow
time series correspond to the DA study performed with set 2 as the initial parameter set.

Table 5. RMSE [mm·s−1] between the observed and simulated baseflow for 3 DA frequencies. SISR-PR is applied with parameter
perturbation.

Filter DA every week DA every 2 weeks DA every 4 weeks

Ensemble 6.56×10−6 6.56×10−6 6.56×10−6

SISR filter 3.61×10−5 3.26×10−5 2.51×10−5

SISR-PR filter 3.40×10−6 4.23×10−6 4.37×10−6

Tables4 and5 show the RMSE values for the 3 DA fre-
quencies for soil moisture and baseflow respectively. The
values indicate a notorious improvement when using the
SISR-PR and the positive impact on the baseflow is main-
tained for the 3 DA frequencies. An additional sensitivity
test is recommended concerning the impact of the noise level
and the magnitude of the truth parameter set on the behaviour
of the baseflow since different performances have been noted
when using different parameter values. In Table 5, the RMSE
values corresponding to the performance of the SISR filter
for the 3 DA frequencies indicate the degeneracy of the base-
flow due to an inconsistent combination of states and param-
eters.

4 Summary and conclusions

The SISR filter has been evaluated for the performance in
assimilation of soil moisture and the impact thereof on base-
flow fluxes. The filter performs relatively good for the cor-
rection of the modeled soil moisture, although it should be
noted the presence of bias. The impact of the soil moisture
assimilation on the baseflow results indicates a strong nega-
tive effect. The SISR-PR approach is presented as a solution
to this shortcoming in the SISR filter performance.

The SISR-PR filter methodology strives on the correc-
tion of the consistency between parameters and soil mois-
ture states replicating the consistent parameters and rejecting
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Fig. 8. Impact of the assimilation of soil moisture in the top layer on the bottom layers when the SISR-PR filter

is applied with parameter perturbation.
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Fig. 8. Impact of the assimilation of soil moisture in the top layer on the bottom layers when the SISR-PR filter is applied with parameter
perturbation.
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Fig. 9. Evolution in time of the soil parameters in the top layer when SISR-PR filter is applied with parameter perturbation.
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the erratic parameter values. Results indicate a notorious im-
provement of the performance not only in the estimation of
the soil moisture but also in the influence on the baseflow.

Yet, a severe replication affects the parameter diversity and
leads to an improper representation of the posterior pdf when
assimilating data. The perturbation of the resampled param-
eter set by a white Gaussian noise with zero mean and pre-
defined standard deviation mitigates the side-effects of the
replication.

The robustness of the SISR-PR filter has been tested
through the evaluation of the SISR-PR filter for different pa-
rameter sets and different assimilation frequencies. An over-
all conclusion is that the addition of parameter resampling is
effective in removing the bias.

Supplement related to this article is available online at:
http://www.hydrol-earth-syst-sci.net/16/375/2012/
hess-16-375-2012-supplement.zip.
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