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Abstract. Fine-scale rainfall data is important for many hy-
drological applications. However, often the only data avail-
able is at a coarse scale. To bridge this gap in resolution,
stochastic disaggregation methods can be used. Such meth-
ods generally assume that the distribution of the field is sta-
tionary, i.e. the distribution for the entire (fine-scale) field is
the same as the distribution of a smaller region within the
field. This assumption is generally incorrect and we provide
a proof of concept of a method to estimate the distribution
of a smaller region. In this method, a copula is used to con-
struct a bivariate distribution describing the relation between
the scales. This distribution is then used to estimate the dis-
tribution of the fine-scale rainfall within a single coarse-scale
pixel, by conditioning on the coarse-scale rainfall depth.

1 Introduction

Hydrological models are used in a variety of small-scale
applications, including flood forecasting (Winchell et al.,
1998), water management (Varis et al., 2004), and land slide
risk assessment (Collison et al., 2000). These models often
simulate hydrological processes and water fluxes at a small
scale (<100 km2), requiring rainfall data with a high spatio-
temporal resolution. However, such data is not available for
many parts of the world as rain-gage networks are lacking
in coverage and General Circulation Models (GCMs) and re-
mote sensing cannot provide data at the required resolution
(Onof et al., 1998; Deidda, 2000). This lack in resolution re-
sults in a scale gap where observations are only available at
a coarser scale, but not at the required finer scale.
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The scale gap between the observed data and the hydrolog-
ical model can be mitigated using stochastic methods. This
is done by investigating the coarse-scale rainfall from which
parameters for a suitable synthetic rainfall model are derived.
A first approach consists of representing rainfall as a stochas-
tic process of cluster-based rectangular pulses, and found its
origin in the mathematical description of rainfall, starting
with a seminal paper byLe Cam(1961). This has led to
the development of rainfall models based on Neyman-Scott
and Bartlett-Lewis point processes (Onof et al., 2000). These
models, which recently have been expanded into the spatial
domain (e.g.Cowpertwait et al., 2002; Burton et al., 2008),
use parameters that have a physical interpretation, such as
the mean intensity and the mean duration of a raincell (Onof
et al., 2000).

A second approach to bridge the scale gap between ob-
served rainfall and the hydrological model applies cascade
models. In contrast to the Neymann-Scott and Bartlett-Lewis
models, cascade models do not use physically-based vari-
ables, but rather a physically relevant model structure: the
(multiplicative) cascade. These models are derived from sta-
tistical fractals (Lovejoy and Mandelbrot, 1985) and con-
stitute the first spatial synthetic rainfall models (Schertzer
and Lovejoy, 1987). Further model development (Deidda
et al., 1999) resulted in spatio-temporal synthetic rainfall
models. One advantage of these models over the Neyman-
Scott and Bartlett-Lewis models is that the resulting cascade-
based synthetic data better represent the spatial structure of
rainfall, which may prove important in small-scale applica-
tions (Willems, 2001).

A third approach consists of purely stochastic methods.
These models are not based on physically-based concepts or
constraints, but rather attempt to model the rainfall process
by stochastic methods. Spatial variants of these methods
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Fig. 1: A coarse-scale image of the rainfall depth (mm)(a),
and its corresponding sub-pixel standard deviation(b).

toregressive model is used to generate a random field which
is passed through a non-linear filter to obtain a rainfall field
that has similar spatial patterns as the large-scale rainfall
field. For a more elaborate introduction to the various meth-
ods of simulating rainfall, we refer toOnof et al.(2000), and
Ferraris et al.(2002).

Many different downscaling methods exist, however, the
above three categories give a brief summary of the most
common methods. All these methods can be used to down-
scale a rainfall field, however, forcing the model to some
observed coarse-scale data has proven to be difficult. Gen-
erally, only the last group of methods offers a way to take
into account other assumptions and forcing data (Mackay
et al., 2001; Rebora et al., 2006). Here, the specific point
of interest is the use of small-scale sub-pixel distributions
to force the fine-scale field to follow the coarse-scale field.
For example,Mackay et al.(2001) use a Gamma distribu-
tion for subgrid variability, andRebora et al.(2006) use a
single log-normal distribution across the entire field. How-
ever, a cursory glance at a rainfall field shows that it is likely
that the local variability is not stationary throughout the field,
and that it varies with the depth of the coarse-scale field (see
Fig. 1). In this paper, we present a method to estimate the
subgrid variability distribution function needed in the down-
scaling of coarse-scale rainfall. Therefore, a novel method is
explored that describes the dependence between the coarse-
and the fine-scale rainfall depth using a copula. Furthermore,
it allows for modeling the sub-pixel probability distribution
within one coarse-scale pixel.

This paper is structured as follows. The data used for
empirical testing is introduced first. Section3 presents the
framework of the copula-based methodology, and Sect.4 in-
troduces some basics on copulas. Subsequently, the frame-
work is tested and validated in Sect.5. Finally, the results are
discussed and conclusions are drawn.

Table 1: The seven events for which data was available, to-
gether with the number of rainy hours on that day, the aver-
age depth (mm) for all active pixels. The ratio expresses the
proportion of dry to wet pixels within the radar image.

Date Rainy Average
(dd-mm-yyyy) Hours Depth Ratio

29-08-2003 14 0.713 0.765
18-11-2004 6 0.498 1.07
29-06-2005 14 1.23 0.742
29-07-2005 7 1.11 0.738
10-09-2005 6 0.914 0.951
03-08-2006 8 0.867 0.558
09-08-2007 19 0.567 1.07

2 Data

The data for this study were acquired by a weather radar near
Wideumont, Belgium, operated by the Belgian Royal Mete-
orological Institute (RMI). The installation covers a circular
area with a radius of 240 km, producing a scan every 5 min.
The region covered includes coastal landscapes to the west,
and a low mountain range, the Ardennes, to the east with land
cover mostly composed of forests, urbanization and agri-
culture. The entire region has a temperate climate and re-
ceives about 800 mm of rain annually, almost uniformly dis-
tributed throughout the year (De Jongh et al., 2006) and a
mean monthly temperature which varies between 18◦C in
June and 3◦C in January.

The dates, at which radar imagery is available, are selected
based on rain-gage readings from a network across Belgium,
where the rainfall was required to have a minimum Peak-
over-Threshold return period of 10 yr to be included in the
dataset. This resulted in a dataset consisting of the days listed
in Table 1. For these days, the number of rainy hours has
been listed, along with the average intensity for each rain-
storm, and the ratio of dry pixels to wet pixels. Images that
did not display rainfall were removed from the dataset as they
hold no information.

The raw radar data are stored as digital numbers, repre-
senting reflectivities ranging from−31.5 dB to 95.5 dB in
steps of 0.5 dB. Because of the 0.5 dB step, conversion of
these reflectivities into rainfall rates results in discrete rain-
fall intensity values. Such data is likely to result in repeated
values (often referred to as ties) which can lead to prob-
lems later on in the analysis. Similar toVandenberghe et al.
(2010b), uniform random noise ranging from−0.25 dB to
0.25 dB is introduced to perturb the data and to overcome
the problem of ties. This perturbed data is then converted
into rainfall intensities using the Marshall-Palmer relation-
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Fig. 1. A coarse-scale image of the rainfall depth (mm)(a), and its
corresponding sub-pixel standard deviation(b).

include Markov Random Fields (Mackay et al., 2001; All-
croft and Glasbey, 2003), filtered autoregressive processes,
and the superimposing of random fields (Ferraris et al.,
2003a). Examples of the application of these methods in-
cludeRebora et al.(2006) andPegram and Clothier(2001)
where an autoregressive model is used to generate a random
field which is passed through a non-linear filter to obtain a
rainfall field that has similar spatial patterns as the large-scale
rainfall field. For a more elaborate introduction to the various
methods of simulating rainfall, we refer toOnof et al.(2000),
andFerraris et al.(2003a).

Many different downscaling methods exist, however, the
above three categories give a brief summary of the most
common methods. All these methods can be used to down-
scale a rainfall field, however, forcing the model to some
observed coarse-scale data has proven to be difficult. Gen-
erally, only the last group of methods offers a way to take
into account other assumptions and forcing data (Mackay
et al., 2001; Rebora et al., 2006). Here, the specific point
of interest is the use of small-scale sub-pixel distributions
to force the fine-scale field to follow the coarse-scale field.
For example,Mackay et al.(2001) use a Gamma distribu-
tion for subgrid variability, andRebora et al.(2006) use a
single log-normal distribution across the entire field. How-
ever, a cursory glance at a rainfall field shows that it is likely
that the local variability is not stationary throughout the field,
and that it varies with the depth of the coarse-scale field (see
Fig. 1). In this paper, we present a method to estimate the
subgrid variability distribution function needed in the down-
scaling of coarse-scale rainfall. Therefore, a novel method is
explored that describes the dependence between the coarse-
and the fine-scale rainfall depth using a copula. Furthermore,
it allows for modeling the sub-pixel probability distribution
within one coarse-scale pixel.

This paper is structured as follows. The data used for
empirical testing is introduced first. Section3 presents the
framework of the copula-based methodology, and Sect.4 in-
troduces some basics on copulas. Subsequently, the frame-

Table 1. The seven events for which data was available, together
with the number of rainy hours on that day, the average depth (mm)
for all active pixels. The ratio expresses the proportion of dry to wet
pixels within the radar image.

Date Rainy Average
(dd-mm-yyyy) Hours Depth Ratio

29-08-2003 14 0.713 0.765
18-11-2004 6 0.498 1.07
29-06-2005 14 1.23 0.742
29-07-2005 7 1.11 0.738
10-09-2005 6 0.914 0.951
03-08-2006 8 0.867 0.558
09-08-2007 19 0.567 1.07

work is tested and validated in Sect.5. Finally, the results are
discussed and conclusions are drawn.

2 Data

The data for this study were acquired by a weather radar near
Wideumont, Belgium, operated by the Belgian Royal Mete-
orological Institute (RMI). The installation covers a circular
area with a radius of 240 km, producing a scan every 5 min.
The region covered includes coastal landscapes to the west,
and a low mountain range, the Ardennes, to the east with land
cover mostly composed of forests, urbanization and agri-
culture. The entire region has a temperate climate and re-
ceives about 800 mm of rain annually, almost uniformly dis-
tributed throughout the year (De Jongh et al., 2006) and a
mean monthly temperature which varies between 18◦C in
June and 3◦C in January.

The dates, at which radar imagery is available, are selected
based on rain-gage readings from a network across Belgium,
where the rainfall was required to have a minimum Peak-
over-Threshold return period of 10 yr to be included in the
dataset. This resulted in a dataset consisting of the days listed
in Table 1. For these days, the number of rainy hours has
been listed, along with the average intensity for each rain-
storm, and the ratio of dry pixels to wet pixels. Images that
did not display rainfall were removed from the dataset as they
hold no information.

The raw radar data are stored as digital numbers, repre-
senting reflectivities ranging from−31.5 dB to 95.5 dB in
steps of 0.5 dB. Because of the 0.5 dB step, conversion of
these reflectivities into rainfall rates results in discrete rain-
fall intensity values. Such data is likely to result in repeated
values (often referred to as ties) which can lead to prob-
lems later on in the analysis. Similar toVandenberghe et al.
(2010b), uniform random noise ranging from−0.25 dB to
0.25 dB is introduced to perturb the data and to overcome
the problem of ties. This perturbed data is then converted
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into rainfall intensities using the Marshall-Palmer relation-
ship (Marshall and Palmer, 1948)

R =
b

√
100.1·ZdB

a
, (1)

whereZdB is the reflectivity[dB] anda andb are dimension-
less parameters, respectively equal to 200 and 1.6 as sug-
gested byHeylen and Maenhout(1994). This results in a
set of spatially distributed rainfall intensities, each represent-
ing a surface over which the estimate is valid. However, the
resolution of the image is not constant but changes with dis-
tance from the radar station (Heylen and Maenhout, 1994).
As this is likely to influence the analysis, the data has been
re-sampled to a grid of square pixels of 600 m× 600 m and
the 12 images within one hour are summed to form the total
depth for a single hour.

The processed data was artificially downgraded to
obtain the coarse-scale images with a pixel size of
19.2 km× 19.2 km. Each coarse-scale pixel is obtained by
spatially averaging over the rainfall depths of the 1024 fine-
scale pixels (hereafter referred to as sub-pixels) covered by
a single coarse-scale pixel (Ferraris et al., 2003a; Deidda,
2000). Thus, the relation between the coarse scale fieldDλ

and the fine scale fieldD′
λ, can be expressed as

Dλ(i,j)=
1

n2

in∑
k=(i−1)n+1

jn∑
l=(j−1)n+1

Dλ′(k,l), (2)

wherei andj are location indices at the coarse scale,k and
l denote the location at the finer scale andn is the number
of rows (and columns) of sub-pixels within one coarse-scale
pixel.

3 Framework

Downscaling of rainfall fields at the image scale, as it is gen-
erally done in literature, does not specify a local cumulative
distribution function (CDF) for the sub-pixels belonging to a
coarse-scale pixel. It does not model the local fluctuations in
the fine-scale distribution of the entire field. However, one
can expect that the distribution of the local fine-scale rain-
fall, e.g. within a single coarse-scale pixel, will vary across
the entire rainfall field. These local distributions may deviate
(strongly) from the total field fine-scale distribution, and it
can be expected that the shape of these distributions will de-
pend on the corresponding coarse-scale observation, among
other factors, as can be concluded from Fig.1. When the
coarse-scale rainfall depth is shown together with the corre-
sponding sub-pixel standard deviation field, the relation be-
tween the distribution and the coarse-scale depth becomes
evident. Therefore, to model these varying sub-pixel proba-
bility density functions, one should account for the observed

rainfall depth in the coarse-scale pixel by considering the de-
pendence between the observed coarse-scale depth and the
corresponding fine-scale sub-pixels.

In this paper, a framework is introduced which allows for
the derivation of the modeled cumulative distribution func-
tion of the sub-pixel rainfall depth at a small scale, given
a coarse-scale rainfall depth; this framework is depicted in
Fig. 2. Paramount in this framework is the use of a copula
to model the dependence between the coarse- and fine-scale
rainfall depths given their marginal distribution functions.

Within the framework, the coarse-scale distribution func-
tion is first fitted to the entire rainfall image (Fig.2e).
The field-wide fine-scale cumulative distribution function
(Fig. 2c) is then derived from the coarse-scale cumulative
distribution function through scaling laws. Further, the de-
pendence between the coarse- and fine-scale variables can
then be described by means of a copulaC (Fig. 2d):

Fλ′λ(dλ′ ,dλ) = C(Fλ′(dλ′),Fλ(dλ)) = C(u,v), (3)

which is obtained through fitting to a set of corresponding
coarse- and fine-scale wet pixels. Note that the upper case
D has been replaced by the lower cased to denote the use
of a single pixel; also, in this context the spatial organiza-
tion of the field is disregarded and thus they are referred to
as variables.C is a copula, a bivariate distribution function
on the unit square with uniform marginals (see Sect.4). A
copula, together with the coarse- and fine-scale marginal dis-
tribution functions and their inverses, can describe the joint
probability distribution. The validity of this approach is as-
sured by Sklar’s theorem (seeNelsen, 2006), which states
that for every bivariate distribution with continuous marginal
distributions, there exists a unique copula.

The modeled sub-pixel distribution of a wet coarse-scale
pixel with observed depthdm can be calculated from the joint
probability distribution. To do this, the copula is conditioned
to the valuevm = Fλ(dm), leading to the conditional cumula-
tive distribution function (Fig.2a), calculated as:

FU |V (u|vm) = P(U ≤ u|V = vm) =
∂C(u,v)

∂v

∣∣∣∣
v=vm

. (4)

In this equationU andV correspond to the cumulative prob-
abilities ofDλ′ andDλ, i.e. the depth at the coarse and fine
scale. Then using the fine-scale marginal distribution,U can
be transformed into its fine-scale rainfall depthDλ′ (Fig. 2c)
(e.g., x′

= F−1
λ′ (u′)). This is possible by virtue of Eq. (3)

which shows that corresponding values ofU andDλ′ have
the same probability of occurrence, i.e.

FU |V (u|vm) = Fλ′|λ(dλ′ |dm). (5)

Hence, through a transformation using the cumulative dis-
tribution function (CDF) at the fine scale, the modeled fine-
scale sub-pixel distribution, as given in Fig.2b, is obtained.
Moreover, the resulting distribution function is specific to the
coarse-scale valuedm.
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Fig. 2. A graphical representation of the framework used to retrieve the sub-pixel distribution. In the lower left, the copula is depicted, and
in the top left, a slice of the copula representingP(U ≤ u,V ≤ v). Starting at the coarse-scale distribution, one obtains the probability (rank)
of the value used for conditioning. This value is used in the copula to find the conditional probability of the fine-scale ranks, which are then
’projected’ using the fine-scale distribution to find the conditional probability of the sub-pixel rainfall depths.

The cumulative distribution functionP(U ≤ u|V = vm)

only represents the wet regions of the rainfall field. To extend
this to the entire rainfall field within a coarse-scale pixel, in-
cluding the intermittency, the fraction of dry fine-scale pixels
should be accounted for. This fraction is modeled using an
exponential function

f (v) = eav , (6)

which was fitted to several coarse-scale pixels. In Fig.4 the
relation between the fraction of dry pixels and the coarse-
scale rainfall depth is depicted, as well as the fit of Eq. (6).
Note that this function is not probabilistic in nature, but de-
scribes the relationship between the fraction of dry pixels
P(X = 0) and the coarse-scale value. Finally, the sub-pixel

distribution, including zero-valued pixels, is found as

F+

U |V (u|vm) = f (vm)H(u)+(1−f (vm))FU |V (u|vm), (7)

whereH(u) is the Heaviside function which is equal to one
for all u ≥ 0 and zero elsewhere.

4 Copulas

Copulas have gained increased attention in hydrological
studies, including investigations into rainfall (Serinaldi,
2009; De Michele and Salvadori, 2003; Vandenberghe et al.,
2010b; Grimaldi and Serinaldi, 2006), storm generators (Kao
and Govindaraju, 2008; Salvadori and De Michele, 2006;
Vandenberghe et al., 2010a) and data assimilation (Gao et al.,
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Fig. 3. The coarse-scale empirical marginal distribution and the
fitted coarse-scale marginal distribution.

2007). This increased popularity can be attributed to the flex-
ibility copulas offer for describing multivariate dependence
(Genest and Favre, 2007).

The increased tractability offered by the use of copulas
is due to the fact that the fitting of a bivariate distribution
function is split into two more manageable problems, the
marginal distribution functions on the one hand, and the de-
pendence between them on the other hand. To illustrate
this, a simple example in the context of this paper is pre-
sented. For more mathematical details, the reader is referred
to Nelsen(2006), Genest and Favre(2007) andSalvadori and
De Michele(2007).

Consider two scale levels, a fine-scale level and a coarse-
scale level, respectively with resolutionsλ′ andλ, both of
the same rainfall field. These fields are represented as cou-
ples(dλ,dλ′), where a single coarse-scale pixeldλ can have
several corresponding fine-scale pixelsdλ′ , i.e. each coarse
scale pixel leads toN couples whereN is the number of fine-
scale pixels within the coarse-scale pixel. Assume that both
scale levels are observable and that their rainfall depths are
described by cumulative distribution functionsFλ andFλ′ .
These marginal distribution functions map the random vari-
ables to the unit intervalI, according to:{

u = Fλ′ (dλ′)

v = Fλ(dλ)
⇐⇒

{
dλ = F

[−1]

λ′ (u)

dλ′ = F
[−1]

λ (v)
, (8)

whered denotes a single pixel from the fieldD, andu and
v are single pixels from the probability-transformed fieldsU

andV . F
[−1]

λ denotes the pseudo-inverse, which corresponds
to the inverse if it is defined everywhere onR. Since the
transformed fieldsU andV are both uniformly distributed,

Fig. 4. The fraction of zero rainfall cells at fine scale compared to
the coarse-scale value.

their pixelsu andv can be approximated according to:

u =

∑n
j=1I(dj

λ′ < dλ′)

n
, (9)

v =

∑n
j=1I(dj

λ < dλ)

n
,

for all pixelsd in D, whereI () is the indicator function (Gen-
est and Favre, 2007). The superscriptj is an index number
identifying the pixels within a field.

The bivariate copula of the transformed variablesu,v is a
functionC : I×I → I, i.e. it maps values from the unit square
I×I to the unit intervalI. Moreover, it satisfies the following
conditions:

– for all u,v ∈ I

C(u,0) = 0, C(0,v) = 0, C(u,1) = u, C(1,v)= v. (10)

– for all u1,u2,v1,v2 ∈ I for whichu1 ≤ u2 andv1 ≤ v2

C(u2,v2)−C(u2,v1)−C(u1,v2)+C(u1,v1) ≥ 0. (11)

These conditions imply thatC is an increasing function.
The link between bivariate copulas and bivariate distribution
functions is expressed by the theorem of Sklar (seeNelsen,
2006) as given in Eq. (3). This theorem states that a bivariate
copula results in the same probability as the multivariate dis-
tribution function, however it is calculated from the uniform
marginal distribution functions of the variablesU andV .

The significance of Sklar’s theorem is that the dependence
betweenDλ andDλ′ can be described independently from
their marginal distribution functions; this simplifies the cal-
culations as the new marginal distributions are uniform and
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parameter free. Furthermore, the copula is invariant under
strictly increasing transformations of the marginals and the
bivariate distribution function is no longer dependent on the
marginals allowing any (continuous) distribution functions
to be joined with the copula. In this paper, the coarse- and
fine-scale marginals are coupled to form a joint distribution
function using the dependence model provided by a copula.
A large number of different copulas exist, covering a wide
range of different behaviors. For example, the tail behavior is
difficult to capture using data and often described by means
of a parametrical copula. Also, more common copulas ex-
ist such as the Gaussian copula which, when combined with
Gaussian marginals, describes the bivariate Gaussian joint
probability distribution function.

However, fitting a parametrical copula has proven to
be non-trivial, and research is still ongoing (Scḧolzel and
Friderichs, 2008). Because of this, an empirical, non-
parametrical copula provides an appealing parsimony, and
retains all information found in the data as well. Therefore,
we opted to work with the empirical copula, although future
research will investigate the use of parametrical copulas in
the proposed framework. The functionC can be empirically
represented by the joint rank of the couples(ui,vi), given by

Cn(u,v) =
1

n

n∑
i=1

I (ui ≤ u,vi ≤ v). (12)

This equation calculates the cumulative probability of each
point in the dataset, representing the theoretical copulaC as
a set of empirical pointsCn(u,v).

5 Results

In this section, the application of the framework is discussed
and validated. First, the scaling laws and the empirical cop-
ula will be shown to be effective for modeling the relations
observed in the data. Then, several practical issues that were
observed will be explained.

5.1 Assessment of the scaling laws

The distribution of spatial rainfall fields is often represented
by means of a Gamma distribution (Wilks, 1999; Vrac and
Naveau, 2007; Mackay et al., 2001). This distribution is also
used in this study and exhibits a good fit (see Fig.3). More-
over, if the rainfall depth follows the Gamma distribution at
coarse scaleλ and shows simple scaling, or fractal behavior
(Gupta and Waymire, 1990), then the distribution at the fine
scaleλ′ is known as well. This relation will be used to down-
scale the field-wide distribution in this study and is defined
as

t ·0(k,θλ) = 0(k,t ·θλ). (13)

0(k,θλ) denotes the Gamma distribution with shape param-
eterk and scale parameterθλ. t is a variable factor that de-
scribes the relation between scale levelsλ andλ′. Further-
more, whilek is constant over all scales, the scale parameter
changes with each scale such thatθλ′ = t ·θλ. As mentioned
before, the scaling of the Gamma distribution is tied to frac-
tal behavior (Gupta and Waymire, 1990). Therefore, in order
to find t , the fractal scaling laws need to be examined (see
Veneziano et al., 2006; Gupta and Waymire, 1990; Menabde
et al., 1999).

Consider the coarse-scale rainfall fieldDλ whose scaling
behavior is fractal (Veneziano et al., 2006; Ferraris et al.,
2003b). Then, the scaling behavior of this field can be de-
scribed as (Veneziano et al., 2006)

Dλ
d
=r−H Drλ . (14)

H is a constant over all scales, the scaling factorr = λ′/λ

and
d
= denotes equality in distribution. SinceDλ

d
=0(k,θλ),

Eq. (14) becomes

rH 0(k,θλ)
d
=0(k,θλ′), (15)

and thust = rH . The value ofH can be found by computing
the expected value on both sides of Eq. (15):

rH E [0(k,θλ)]=E [0(k,θλ′)] , (16)

whereE [·] denotes the expectation of the distribution. By
log transforming Eq. (16), one obtains:

H · log10(r)=log10

(
E [0(k,θλ′)]

E [0(k,θλ)]

)
. (17)

Hence,H can be found as the slope of the linear fit to
this relation. This relation has been fitted to a series of
ten randomly selected images, and the results are shown in
Fig. 5. The fitted line shows a good consistency with the re-
sults, and the resultingH ≈ −0.10 has been used throughout
this study; this value is consistent with results obtained by
Gupta and Waymire(1990). Summarizing, the marginal dis-
tribution of the coarse-scale image is determined by fitting a
Gamma distribution to the empirical CDF. From this coarse-
scale image, the fine-scale CDF is determined by applying
Eq. (15) with H = −0.10.

5.2 Construction of the empirical copula

Once the marginal distributions of the rain fields on both
scales are obtained, the dependence structure between the
coarse-scale pixels and their corresponding sub-pixels needs
to be determined. Since this paper is considered a proof of
concept, an empirical copula will be used to describe the
dependence, as a parametrical copula may introduce errors
due to an improper representation of the actual dependence.
However, the empirical copula, if it is to represent the depen-
dence properly, should be constructed from carefully chosen
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Fig. 5. Regression analysis between log10(r) and log10(
µλ′

µλ
),

whereµλ = E [0(k,θλ)] .

data. Moreover, issues such as not representing every possi-
ble point in the domain and noise need to be taken into ac-
count. In the following paragraphs, the practical application
and implementation of the empirical copula in our frame-
work will be outlined.

The marginal distributions, as well as the copula itself,
need to be continuous. However, rainfall cannot be fully de-
scribed by a single, continuous distribution because of the
intermittency (Onof et al., 1998), which causes a singularity
at zero rainfall in the probability distribution function. There-
fore, rainfall is often described as a discrete (binomial) distri-
bution that determines whether or not it is raining in a pixel,
and a distribution to determine the rainfall depth of the wet
pixels. Hence, a copula cannot be fitted directly to a rain-
fall field if it contains pixels without rainfall, i.e. dry pixels.
To cope with this, all dry pixels were removed from the data
used, making the copula only applicable to rainfall in a wet
pixel both on the coarse and the fine scale.

In Sect.3, a framework for deriving the sub-pixel distri-
bution was described which requires that the copula is con-
tinuous. However, this condition is not necessarily fulfilled
when using an empirical copula. For example, the deriva-
tive in Eq. (4) cannot be directly assessed from the empiri-
cal copula because it consists of points instead of a continu-
ous surface. This issue is solved by linearly interpolating the
available points to estimate the cumulative probability of a
point wherever no empirical value is available. However, as
in any empirical approach, if insufficient data are available,
noisy and inaccurate results are obtained. This is especially
an issue near the upper edge of the copula domain.

For each coarse-scale pixel the cumulative probability
vm = 0λ(dm) is estimated from a fitted Gamma distribution.
This value is then used to derive the conditional probability

distribution function using Eq. (7). However, as an empirical
copula is used, the derivative in this equation is approximated
as:

FU |V (u,vm) ≈
C(u,vm+δ)−C(u,vm)

δ
, (18)

requiring that two slices need to be extracted from the cop-
ula, i.e.C(u,vm+δ) andC(u,vm), for which, when needed,
linear interpolation on the empirical copula is performed. Fi-
nally, the obtained CDF is rescaled to the fine-scale domain
through the application of the inverse Gamma distribution of
the fine-scale rainfall field resulting in the modeled fine scale
distribution of the non-zero rainfall sub-pixels.

In order to test the framework, an empirical copula needs
to be used which preserves the scale dependencies valid for
the storm at hand. However, constructing these copulas from
an analysis of the coarse- and fine-scale pixels within the
image for which the sub-pixel distribution functions are to
be derived may introduce false optimism. We therefore de-
rived an empirical copula for the rainfall field of the same
storm as observed 5 h prior to the image to be downscaled;
this approach is followed unless mentioned otherwise. For
this time frame, it is assumed that the scaling dependencies
remain similar, but that the actual rainfall field has already
evolved sufficiently to prevent over-fitting on a specific im-
age. The validity of this approach will be further investigated
in Sect.5.4.4.

The copulas obtained from various images show a con-
sistent behavior in time and between different scales, see
e.g. Fig.6, and some common patterns are observed. These
patterns are easily explained as an effect of the changing
scale difference and the numerical properties of scaling, al-
though they are not the result of the data treatment itself.

5.3 Construction of the intermittence model

As the copula only describes the distribution of the wet sub-
pixels, another model is needed to describe the fraction of
dry sub-pixels. As described in Sect.3, a simple exponential
model was used for this purpose. Fitting this function to a
data set, which was obtained by randomly drawing coarse-
scale pixels from the complete data set, the valuea = −5.25
was found (see Fig.4). This model generally performs well,
although large errors, up to 50 %, occurred. This can be at-
tributed to the fact that the intermittency function actually
varies between storms. Given the fact that modeling this vari-
ability is not trivial (Onof et al., 1998) and that the applica-
tion in this paper supports a proof of concept, this additional
modeling exercise was not performed.
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Fig. 6: Three copula densities, constructed from the same image, but using different scale stepsr.

(a) (b)

Fig. 7: An illustration of the EMD. The difference between the functions is shown as mass bars. These bars, or parts of them,
need to be moved around in such a way that the dark gray bars (surplus) fill all the light gray bars (deficit). The distance they
need to be moved is taken into account when calculating the EMD.

The EMD is a distance function which is a natural choice
for comparing probability density functions (Rubner et al.,
2002). It differs from classical measures such as the absolute
error or the root mean squared error, which only take into
account the vertical distance between both distributions. In
contrast, the EMD also includes the horizontal difference,
i.e. the location of the deviations between both distributions.

The EMD is a variation on the transportation problem (Cha
and Srihari, 2002; Rubner et al., 2002) and as such requires
that the integral of the functions to be compared is equal.
Therefore, we start by transforming the modeled CDFs to
their PDFs, using a small amount of smoothing to ensure
that noise does not lead to spurious results. Then, through
subtracting the modeled PDF (either the modeled sub-pixel
distribution or the field-wide marginal distribution) from the
empirical PDF, a difference function showing the positive
and negative differences for the considered variable is ob-
tained (see Fig.7 for an example). If two PDFs resemble
each other, the difference function will display small val-

ues, with negative and positive values occurring close to each
other, i.e. for sub-pixel fields which do not differ much in
density distribution (see Fig.7a). When the PDFs are very
different, less overlap between both functions occurs and the
resulting difference function will display positive and nega-
tive values for very distinct rainfall values (see Fig.7b).

The EMD is a measure for the minimal cost needed to
move all surplus mass to deficit areas, transforming one func-
tion into the other. This cost not only accounts for the to-
tal mass to be transported (i.e. the vertical difference) but
also for the distance between the surplus and the deficit area
(i.e. the horizontal difference). Thus, the cost equals the ver-
tical distance (the mass) multiplied by the distance it needs to
be transported. For the distance measure, weighing functions
can be used, however, for this study, all data were binned
and the distance was calculated as the absolute difference
between the two bin centers. This cost function needs to be
minimized in order to find the EMD. This problem is gener-
ally known as the transportation problem (Cha and Srihari,
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The EMD is a distance function which is a natural choice
for comparing probability density functions (Rubner et al.,
2002). It differs from classical measures such as the absolute
error or the root mean squared error, which only take into
account the vertical distance between both distributions. In
contrast, the EMD also includes the horizontal difference,
i.e. the location of the deviations between both distributions.

The EMD is a variation on the transportation problem (Cha
and Srihari, 2002; Rubner et al., 2002) and as such requires
that the integral of the functions to be compared is equal.
Therefore, we start by transforming the modeled CDFs to
their PDFs, using a small amount of smoothing to ensure
that noise does not lead to spurious results. Then, through
subtracting the modeled PDF (either the modeled sub-pixel
distribution or the field-wide marginal distribution) from the
empirical PDF, a difference function showing the positive
and negative differences for the considered variable is ob-
tained (see Fig.7 for an example). If two PDFs resemble
each other, the difference function will display small val-

ues, with negative and positive values occurring close to each
other, i.e. for sub-pixel fields which do not differ much in
density distribution (see Fig.7a). When the PDFs are very
different, less overlap between both functions occurs and the
resulting difference function will display positive and nega-
tive values for very distinct rainfall values (see Fig.7b).

The EMD is a measure for the minimal cost needed to
move all surplus mass to deficit areas, transforming one func-
tion into the other. This cost not only accounts for the to-
tal mass to be transported (i.e. the vertical difference) but
also for the distance between the surplus and the deficit area
(i.e. the horizontal difference). Thus, the cost equals the ver-
tical distance (the mass) multiplied by the distance it needs to
be transported. For the distance measure, weighing functions
can be used, however, for this study, all data were binned
and the distance was calculated as the absolute difference
between the two bin centers. This cost function needs to be
minimized in order to find the EMD. This problem is gener-
ally known as the transportation problem (Cha and Srihari,

Hydrol. Earth Syst. Sci., 15, 1–13, 2011 www.hydrol-earth-syst-sci.net/15/1/2011/

Fig. 6: Three copula densities, constructed from the same image, but using different scale stepsr.

(a) (b)

Fig. 7: An illustration of the EMD. The difference between the functions is shown as mass bars. These bars, or parts of them,
need to be moved around in such a way that the dark gray bars (surplus) fill all the light gray bars (deficit). The distance they
need to be moved is taken into account when calculating the EMD.

The EMD is a distance function which is a natural choice
for comparing probability density functions (Rubner et al.,
2002). It differs from classical measures such as the absolute
error or the root mean squared error, which only take into
account the vertical distance between both distributions. In
contrast, the EMD also includes the horizontal difference,
i.e. the location of the deviations between both distributions.

The EMD is a variation on the transportation problem (Cha
and Srihari, 2002; Rubner et al., 2002) and as such requires
that the integral of the functions to be compared is equal.
Therefore, we start by transforming the modeled CDFs to
their PDFs, using a small amount of smoothing to ensure
that noise does not lead to spurious results. Then, through
subtracting the modeled PDF (either the modeled sub-pixel
distribution or the field-wide marginal distribution) from the
empirical PDF, a difference function showing the positive
and negative differences for the considered variable is ob-
tained (see Fig.7 for an example). If two PDFs resemble
each other, the difference function will display small val-
ues, with negative and positive values occurring close to each

other, i.e. for sub-pixel fields which do not differ much in
density distribution (see Fig.7a). When the PDFs are very
different, less overlap between both functions occurs and the
resulting difference function will display positive and nega-
tive values for very distinct rainfall values (see Fig.7b).

The EMD is a measure for the minimal cost needed to
move all surplus mass to deficit areas, transforming one func-
tion into the other. This cost not only accounts for the to-
tal mass to be transported (i.e. the vertical difference) but
also for the distance between the surplus and the deficit area
(i.e. the horizontal difference). Thus, the cost equals the ver-
tical distance (the mass) multiplied by the distance it needs to
be transported. For the distance measure, weighing functions
can be used, however, for this study, all data were binned
and the distance was calculated as the absolute difference
between the two bin centers. This cost function needs to be
minimized in order to find the EMD. This problem is gener-
ally known as the transportation problem (Cha and Srihari,
2002; Rubner et al., 2002), and many different specific so-
lutions exist such as the Hungarian method (Kuhn, 1955) or

Hydrol. Earth Syst. Sci., 15, 1–13, 2011 www.hydrol-earth-syst-sci.net/15/1/2011/

Fig. 7. An illustration of the EMD. The difference between the functions is shown as mass bars. These bars, or parts of them, need to be
moved around in such a way that the dark gray bars (surplus) fill all the light gray bars (deficit). The distance they need to be moved is taken
into account when calculating the EMD.

5.4 Application of the framework

5.4.1 Assessment of the resulting probability
distribution functions

Generally, the sub-pixel cumulative distribution obtained
through the copula framework resembles the empirical dis-
tribution. However, when statistical tests are applied, it is
found that both distributions are not the same, nor does the
scaled marginal CDF represent the empirical distribution.
Yet, to verify which of the assumed CDFs generally better
compares to the observed one, a distance function, called the
Earth Movers Distance (EMD) or Wasserstein metric (Rub-
ner et al., 2002; Gibbs and Su, 2002), is applied.

The EMD is a distance function which is a natural choice
for comparing probability density functions (Rubner et al.,
2002). It differs from classical measures such as the absolute
error or the root mean squared error, which only take into
account the vertical distance between both distributions. In

contrast, the EMD also includes the horizontal difference,
i.e. the location of the deviations between both distributions.

The EMD is a variation on the transportation problem (Cha
and Srihari, 2002; Rubner et al., 2002) and as such requires
that the integral of the functions to be compared is equal.
Therefore, we start by transforming the modeled CDFs to
their PDFs, using a small amount of smoothing to ensure
that noise does not lead to spurious results. Then, through
subtracting the modeled PDF (either the modeled sub-pixel
distribution or the field-wide marginal distribution) from the
empirical PDF, a difference function showing the positive
and negative differences for the considered variable is ob-
tained (see Fig.7 for an example). If two PDFs resemble
each other, the difference function will display small val-
ues, with negative and positive values occurring close to each
other, i.e. for sub-pixel fields which do not differ much in
density distribution (see Fig.7a). When the PDFs are very
different, less overlap between both functions occurs and the
resulting difference function will display positive and nega-
tive values for very distinct rainfall values (see Fig.7b).
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Fig. 8. Sixteen plots of actual coarse-scale pixels with their marginal (field-wide) distribution (thick, black), the empirical distribution of
their sub-pixels (thin, dashed) and the modeled distribution of their sub-pixels (thin, solid). The rank of the coarse-scale observation used for
conditioning is displayed above each plot.

The EMD is a measure for the minimal cost needed to
move all surplus mass to deficit areas, transforming one func-
tion into the other. This cost not only accounts for the to-
tal mass to be transported (i.e. the vertical difference) but
also for the distance between the surplus and the deficit area
(i.e. the horizontal difference). Thus, the cost equals the ver-
tical distance (the mass) multiplied by the distance it needs to
be transported. For the distance measure, weighing functions
can be used, however, for this study, all data were binned
and the distance was calculated as the absolute difference
between the two bin centers. This cost function needs to be
minimized in order to find the EMD. This problem is gener-
ally known as the transportation problem (Cha and Srihari,
2002; Rubner et al., 2002), and many different specific so-
lutions exist such as the Hungarian method (Kuhn, 1955) or
the simplex method. These methods find the minimal dis-
tance over which the mass needs to be transported, such that
the EMD can be found by multiplying the mass transported
by the distance it needs to be moved.

5.4.2 Comparison to the field-wide sub-pixel CDF

In order to assess whether the copula-based sub-pixel dis-
tribution better represents the actual distribution compared
to what would be obtained with classical scaling, the re-
sulting PDFs are visually inspected before summarizing the
results using the EMD. Figure8 plots the cumulative sub-
pixel distribution for 16 different coarse-scale pixels. These
plots, which are representative for most of the pixels ana-
lyzed, show that the cumulative distributions obtained with
the proposed methodology generally better represent the ob-
served empirical distributions, whereas the sub-pixel distri-
bution obtained through the scaled Gamma distribution does
not allow for discriminating between the different coarse-
scale cells (as this distribution represents the distribution of
the complete rainfall field). The fit of0λ′ deviates in sev-
eral ways from the empirical marginal distribution. First, the
empirical distribution evidently changes and differs from the
field wide marginal. Second, small-sample distributions as-
sociated with low rainfall values tend to be underestimated
(i.e. the distribution predicts more values lower than the em-
pirical distribution), whereas those with high coarse-scale
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Fig. 9: The EMD between the marginal distribution and the empirical sub-pixel distribution (black crosses) compared to the
EMD of the copula-based, modeled distribution (gray dots).

based performance decreases towards the upper end of the
coarse-scale CDF. This trend is likely due to the imperfect fit
of the marginal distributions and the empirical nature of the
framework (see Sect.5.2).

The performance has been observed to vary between dif-
ferent rainstorms and even within storms. As an example,
consider Fig.9a and9b where two EMD plots are shown
for different storms. Figure9b shows a fairly typical per-
formance, doing better than the marginal distribution and
showing a fairly typical pattern. However, Fig.9c shows a
different picture, with a less stable performance. This has
been observed in several cases and seems to be partially due
to instability in the copula as a result of the data. More-
over, the behavior of the performance observed over the do-
main changes between images and storms. Nevertheless,
the copula-based approach generally outperforms the clas-
sical scaling, or has an equal performance. Also, the current
dataset is not amenable to an analysis of the changing pat-
terns prohibiting any further investigation.

5.4.3 Effects of including intermittency

The above section investigated the performance of the
copula-based method without including the intermittence
model. In this section, this model is included in the results
and the EMD computed in a similar fashion to the previous
experiment. The results of this experiment are displayed in
Fig.10, for the same storm as used in Fig.8 (results are simi-
lar for all storms). Note that the EMD for the two approaches
is very close for the first part of the curve, clearly due to the
compression of the non-zero part of the distribution. The
patterns in the remainder of the domain remain similar, al-
though a smoothing effect is observed possibly as a result
of the rescaling of the non-zero parts of the CDF. Thus, as
would be expected, the inclusion of intermittency does not
change the performance patterns significantly.

Fig. 10: The EMD after correction for the fraction of dry
pixels.

5.4.4 Temporal robustness of copula

The copula is likely to be specific to a certain storm or im-
age and the performance might be limited by the time lag
between the image on which the copula is fitted and the im-
age to be downscaled. To test this, the copula was fitted to
the first image of a storm and was used to downscale all se-
quential radar images within that same storm. For each of
these images the EMD is calculated on a per pixel basis and
all values are then averaged. In Fig.12, these values are
displayed for all storms in our dataset, ordered according to
their time-lag. Note that at zero time-lag, i.e. the image from
which the copula is constructed is the same as the image to
be downscaled, the error is not zero. This is partially due to
the empirical nature of the framework, and possibly due to
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values are overestimated (i.e. more high-valued pixels are
predicted than should be) by the field-wide distribution. As
can be seen from Fig.8, the copula-based methodology is
able to better estimate the varying sub-pixel distributions,
providing a closer match to the empirical distribution.

To quantify the performance, the EMD has been com-
puted for each coarse-scale pixel for all images analyzed.
These values are plotted against the normalized ranks, re-
sulting in Fig. 9a, displaying the performance of both the
marginal distribution, and that of the copula-based distri-
bution. Compared to the marginal distribution, the copula-
based distribution has a much more consistent performance
over the entire domain and for almost all cases the copula-
based method outperforms the fractal-based scaling of the
field-wide marginal distribution. Despite this, the copula-
based performance decreases towards the upper end of the
coarse-scale CDF. This trend is likely due to the imperfect fit
of the marginal distributions and the empirical nature of the
framework (see Sect.5.2).

The performance has been observed to vary between dif-
ferent rainstorms and even within storms. As an example,
consider Fig.9a and9b where two EMD plots are shown
for different storms. Figure9b shows a fairly typical per-
formance, doing better than the marginal distribution and
showing a fairly typical pattern. However, Fig.9c shows a
different picture, with a less stable performance. This has
been observed in several cases and seems to be partially due
to instability in the copula as a result of the data. More-
over, the behavior of the performance observed over the do-
main changes between images and storms. Nevertheless,
the copula-based approach generally outperforms the clas-
sical scaling, or has an equal performance. Also, the current
dataset is not amenable to an analysis of the changing pat-
terns prohibiting any further investigation.

Fig. 10. The EMD after correction for the fraction of dry pixels.

5.4.3 Effects of including intermittency

The above section investigated the performance of the
copula-based method without including the intermittence
model. In this section, this model is included in the results
and the EMD computed in a similar fashion to the previous
experiment. The results of this experiment are displayed in
Fig.10, for the same storm as used in Fig.8 (results are simi-
lar for all storms). Note that the EMD for the two approaches
is very close for the first part of the curve, clearly due to the
compression of the non-zero part of the distribution. The
patterns in the remainder of the domain remain similar, al-
though a smoothing effect is observed possibly as a result
of the rescaling of the non-zero parts of the CDF. Thus, as
would be expected, the inclusion of intermittency does not
change the performance patterns significantly.

Hydrol. Earth Syst. Sci., 15, 1445–1457, 2011 www.hydrol-earth-syst-sci.net/15/1445/2011/



van den Berg et al.: Copula-based downscaling of spatial rainfall 1455

5.4.4 Temporal robustness of copula

The copula is likely to be specific to a certain storm or im-
age and the performance might be limited by the time lag
between the image on which the copula is fitted and the im-
age to be downscaled. To test this, the copula was fitted to
the first image of a storm and was used to downscale all se-
quential radar images within that same storm. For each of
these images the EMD is calculated on a per pixel basis and
all values are then averaged. In Fig.12, these values are
displayed for all storms in our dataset, ordered according to
their time-lag. Note that at zero time-lag, i.e. the image from
which the copula is constructed is the same as the image to
be downscaled, the error is not zero. This is partially due to
the empirical nature of the framework, and possibly due to
the generalizations inherent to fitting a copula. Despite this,
the curves do not appear to have an upward trend, suggesting
that an increasing time-lag does not have a negative effect on
the performance.

5.4.5 Storm dependence of the copula

Until now, the copula which was used was obtained from
the same rain event. To investigate whether the storm used to
construct the empirical copula is of importance, a copula was
built from 10 different images picked at random from the en-
tire dataset. This ensures that the dependence structure gen-
erated by different storm types is mixed in order to provide a
more general copula. This copula is then applied to several
storms and the EMD is calculated for each coarse-scale pixel.
The results are displayed in Fig.11. As can be seen, using
the general copula only slightly decreases the overall perfor-
mance, but still outperforms the sub-pixel distribution based
on scaled marginal distributions. Although more research in
this respect is needed, this simple example demonstrates the
potential of this scaling technique for downscaling rainfall
images in an operational framework, as it may only require
to once construct a copula based on a variety of storms.

6 Conclusions

In this paper, a novel technique is introduced which allows
for downscaling coarse-scale rainfall images. This method
is based on the simultaneous use of fractal-based scaling of
the marginal probability distribution functions and a copula
which describes the dependence between both scales. The
introduction of the dependence allows for a better estimation
of the actual shape of sub-pixel probability functions com-
pared to the scaled marginal distribution function.

The proposed method can strengthen current downscaling
methods which assume unrealistic sub-pixel distributions.
This will require at least a moderate degree of temporal sta-
bility of the copula, which has been tentatively shown in this
study. Future research will focus on this temporal stabil-
ity and it will be investigated whether different copulas are

Fig. 11.The EMD between the empirical sub-pixel distribution and
the specifically fitted copula (gray dots), the more general copula
(black dots), or the field-wide marginal distribution (black crosses).

Fig. 12.The EMD determined for every image of each storm (dates
listed in the legend) with the copula used for all images in a single
storm based on the first image of that storm.

needed for different storm types and whether the same scal-
ing can be applied for different storm types. As such, fu-
ture work should not only include a larger dataset, but also
involve storm classification to investigate differences in de-
pendence structure between storms.

The current method is, as mentioned, still a proof of con-
cept. However, to obtain a workable downscaling method, a
parametrical copula should be identified that best describes
the dependence between two scales. Furthermore, the way
the copula changes as a result of a change in scales needs to
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be known. Therefore, a function is needed that relates the
parameters of the parametrical copulas to the scales between
which these are valid. Future research should also focus on
whether a parametrical copula can be fitted such that prob-
lems at the extremes of the copula, where little data is avail-
able, are solved.

It was shown that the copula-based framework is suffi-
ciently robust to be applied to different storms and time steps,
demonstrating its large potential for statistical downscaling
and hydrological modeling. Yet, more research is needed to
further elaborate the proposed methodology.
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