
Porcine Sialoadhesin (CD169/Siglec-1) Is an Endocytic
Receptor that Allows Targeted Delivery of Toxins and
Antigens to Macrophages
Peter L. Delputte1*.¤b, Hanne Van Gorp1*., Herman W. Favoreel1,2, Inge Hoebeke1, Iris Delrue1, Hannah

Dewerchin1, Frank Verdonck2¤a, Bruno Verhasselt3, Eric Cox2, Hans J. Nauwynck1*

1 Laboratory of Virology, Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium, 2 Laboratory of

Immunology, Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium, 3 Department of Clinical

Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Science, Ghent University, Ghent, Belgium

Abstract

Sialoadhesin is exclusively expressed on specific subpopulations of macrophages. Since sialoadhesin-positive macrophages
are involved in inflammatory autoimmune diseases, such as multiple sclerosis, and potentially in the generation of immune
responses, targeted delivery of drugs, toxins or antigens via sialoadhesin-specific immunoconjugates may prove a useful
therapeutic strategy. Originally, sialoadhesin was characterized as a lymphocyte adhesion molecule, though recently its
involvement in internalization of sialic acid carrying pathogens was shown, suggesting that sialoadhesin is an endocytic
receptor. In this report, we show that porcine sialoadhesin-specific antibodies and F(ab’)2 fragments trigger sialoadhesin
internalization, both in primary porcine macrophages and in cells expressing recombinant porcine sialoadhesin. Using
chemical inhibitors, double immunofluorescence stainings and dominant-negative constructs, porcine sialoadhesin
internalization was shown to be clathrin- and Eps15-dependent and to result in targeting to early endosomes but not
lysosomes. Besides characterizing the sialoadhesin endocytosis mechanism, two sialoadhesin-specific immunoconjugates
were evaluated. We observed that porcine sialoadhesin-specific immunotoxins efficiently kill sialoadhesin-expressing
macrophages. Furthermore, porcine sialoadhesin-specific albumin immunoconjugates were shown to be internalized in
macrophages and immunization with these immunoconjugates resulted in a rapid and robust induction of albumin-specific
antibodies, this compared to immunization with albumin alone. Together, these data expand sialoadhesin functionality and
show that it can function as an endocytic receptor, a feature that cannot only be misused by sialic acid carrying pathogens,
but that may also be used for specific targeting of toxins or antigens to sialoadhesin-expressing macrophages.
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Introduction

Sialoadhesin (Siglec-1, CD169, or Sn) was initially identified as a

sialic acid-dependent sheep erythrocyte receptor (SER) on resident

bone marrow cells of mice, and is now also characterized in man, rat

and swine [1–5]. Sn belongs to the family of sialic acid binding

immunoglobulin-like lectins (siglecs) which are expressed, with

exclusion of MAG (Siglec-4), on distinct subsets of haematopoietic

cells [6]. Sn is expressed only on specific subsets of tissue macrophages

that are found mostly in spleen, lymph nodes, bone marrow, liver,

colon and lungs [3,5,7–9]. High Sn expression has also been detected

on inflammatory macrophages in tissues from patients with

rheumatoid arthritis, and on infiltrating macrophages that make

close contact with breast carcinoma cells, suggesting a role for Sn or

Sn-positive macrophages in these diseases [3,10]. Recently, Sn

deficient mice have been generated and their use in murine models of

inflammatory autoimmune diseases, such as multiple sclerosis [11],

further supports the concept that Sn-positive macrophages may play

a role in regulation of immune responses [12].

Almost all siglecs have one or more cytosolic tyrosine-based

motifs that are implicated in signal transduction and/or

endocytosis [13]. Intriguingly, Sn lacks obvious tyrosine-based

motifs, nevertheless recent data provide evidence for a role of Sn in

receptor-mediated internalization processes and show that path-
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ogens that carry sialic acids can be internalized into Sn-expressing

macrophages. Indeed, porcine Sn (pSn) is involved in attachment

and internalization of the porcine arterivirus [5,14–17]. Further, it

was shown that alveolar macrophages that express pSn internalize

a Sn-specific monoclonal antibody (mAb) [5]. Mouse macrophages

expressing murine Sn (mSn), and cells expressing recombinant

mSn were also shown to be involved in binding and phagocytosis

of sialylated Neisseria meningitides [18]. Although initially character-

ized as a non-phagocytic adhesion molecule involved in cell-cell

interactions [8,19,20], these data indicate the involvement of Sn in

internalization processes, which may have implications for the

understanding of its physiological role.

The possible role of Sn in an internalization process and its

restricted expression pattern on macrophages implicate potential

use of this protein in specific macrophage targeting of antigens,

toxins, drugs or other molecules, either to specifically eliminate,

activate or deactivate macrophages. Seen the potential of this

newly attributed property of Sn, this study aimed to characterize

the endocytic properties of pSn upon binding of Sn-specific

antibodies and to analyze the potential of this receptor as a

macrophage-specific molecule allowing targeting of toxins and

antigens.

Results

Confocal microscopical analysis of antibody-induced Sn
internalization in primary porcine macrophages and cells
expressing recombinant pSn

To study Sn endocytosis, porcine macrophages were incubated

with the Sn-specific mAb 41D3 and at different time points cells

were fixed and stained. At time 0, a clear membrane staining was

observed, and none of the macrophages contained Sn-positive

vesicles in the cytoplasm (Fig. 1a–b). With increasing time, the

number of cells which internalized Sn increased to reach a

maximum of 90% at 90 min (Fig. 1a–b). At early time points,

endocytic vesicles were mainly present in the vicinity of the plasma

membrane, while with increasing time, endocytosed Sn was

localized closer to the perinuclear region (Fig. 1a). As a control,

macrophages were incubated with irrelevant, isotype matched

mAb 13D12 (gD of pseudorabies virus), or mAb 74-22-15 (SWC3

on macrophages). Cells incubated with mAb 13D12 showed no

staining (Fig. 1c), while mAb 74-22-15 incubated cells showed

exclusive plasma membrane staining at all time points examined

(Fig. 1d). To exclude the potential involvement of Fc receptors in

41D3-induced internalization, macrophages were incubated with

41D3 F(ab’)2 fragments, showing clear internalization (Fig. 1e and

Fig. S1). In addition, 41D3 was added to CHO-Sn cells expressing

recombinant pSn, but lacking Fc receptors. Again 41D3 was

internalized, confirming that Fc receptors are not required for

41D3-induced internalization (Fig. 1f).

Flow-cytometric analysis of pSn endocytosis
Antibody-induced pSn endocytosis was only partial, since

confocal microscopical analysis showed that, together with visible

internalized Sn, a clear plasma membrane staining could still be

observed, even at 90 min when endocytosis was visible in most

cells (Fig. 1b). To estimate the amount of internalized Sn, flow

cytometry was used. With increasing time, a clear reduction in the

mean fluorescence intensity (MFI) of surface Sn could be observed

(Fig. 2a, black squares), with a maximum reduction of surface

fluorescence at 90 min. When cells were permeabilized prior to

staining, so that both surface bound and internalized Sn were

stained, the MFI was identical at 0 and 90 min, indicating that the

observed reduction in fluorescence is not due to shedding of

antibody-antigen complexes (Fig. 2b). Macrophages stimulated

with mAb 13D12 showed no reduction in surface Sn staining

(Fig. 2a, open squares).

Mechanism of antibody-induced pSn internalization in
primary macrophages

Discrimination between the major endocytic pathways can be

made on the basis of their differential sensitivity to pharmacolog-

ical/chemical inhibitors [21,22]. The mechanism of pSn endocy-

tosis was therefore initially analyzed using inhibitors that block

dynamin-dependent endocytosis (dynamin inhibitory peptide),

clathrin-mediated endocytosis (amantadine), lipid raft/caveolae-

mediated endocytosis (nystatin) and phagocytosis (wortmannin).

The dynamin inhibitory peptide is an amphiphysin SH3 domain

recombinant protein that competitively blocks binding of dynamin

to amphiphysin, thereby preventing the recruitment of dynamin to

clathrin-coated pits [23–25]. Using this peptide, a clear block in Sn

internalization was observed, indicating that internalization occurs

via a dynamin-dependent process (Fig. 3a). Also amantadine,

which blocks the budding of clathrin-coated vesicles [26,27],

reduced Sn internalization in a dose-dependent way (Fig. 3b). In

contrast, nystatin and wortmannin had no effect (Fig. 3c–d), with

Figure 1. Kinetics of antibody-induced pSn internalization. (A) Confocal microscopical analysis of mAb 41D3-induced Sn internalization in
primary porcine macrophages. Cells were incubated for the indicated times with mAb 41D3 at 37uC, fixed, permeabilized and stained with FITC-
labelled goat-anti-mouse IgG. Images represent a single confocal z-section through the middle of the cell. (B) Kinetics of the percentage of
macrophages with internalized Sn at different time points after incubation of macrophages at 37uC with mAb 41D3. Data represent the means 6
standard deviations of 3 independent experiments. (C) Isotype matched control mAb 13D12 (gD of pseudorabies virus) shows no staining of primary
macrophages. (D) Antibody internalization is not observed in primary macrophages stimulated with control mAb 74-22-15 (SWC3). (E) 41D3 F(ab’)2

fragments lacking the Fc domain are internalized in primary macrophages. (F) Sn-specific mAb 41D3 induces internalization in CHO cells expressing
recombinant pSn. Scale bar: 5 mm.
doi:10.1371/journal.pone.0016827.g001
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nystatin sequestering cholesterol from microdomains and accu-

mulating it in aggregates, and wortmannin inhibiting phosphati-

dylinositol 3-kinases (PI3Ks) respectively [21]. The absence of an

effect of nystatin is in agreement with the observation that pSn is

not localized to cholesterol enriched lipid raft microdomains (see

Results S1 and Fig. S2). Together, these data suggest that pSn

endocytosis is mediated via clathrin-coated vesicles.

Since the results with the inhibitors indicate that pSn is

internalized via clathrin-mediated endocytosis, double immuno-

fluorescence stainings for both Sn and clathrin were performed to

confirm the potential involvement of clathrin. A clear co-

localization between Sn and clathrin could be observed during

Sn invagination from the plasma membrane, further suggesting

that Sn internalization is clathrin-mediated (Fig. 4a, arrowheads).

Vesicles that were completely internalized in the cytoplasm no

longer co-localized with clathrin, indicating that they released their

clathrin coat (Fig. 4a, arrows). Finally, a dominant-negative form

of Eps15 (Eps15-DIII) that inhibits clathrin-mediated endocytosis

was transduced into Sn-expressing macrophages using a lentiviral

transduction system. As a control, a non-functional Eps15

construct (Eps15-DIIID2) was used. Eps15-DIII transduced cells

showed a 90% reduction in internalization compared to Eps15-

DIIID2 transduced cells (Fig. 4b–d), confirming the importance of

Eps15 and clathrin for antibody-induced Sn internalization in

porcine macrophages.

Intracellular movement of pSn is dependent on dynein
and targets early endosomes

The possible role of microtubules and dynein, a motor protein

involved in movement of vesicles along microtubules, in the

intracellular transport of internalized Sn was analyzed by treating

cells with colchicine, a microtubule disrupting agent, and via a

double immunofluorescence staining for Sn and dynein. Colchi-

cine treatment of porcine macrophages still allowed Sn internal-

ization, although at lower levels than in the absence of colchicine

(Fig. 5a–b). However, when colchicine was added, Sn remained

close to the plasma membrane and did not move in the direction

of the perinuclear region (Fig. 5a–b). Immunofluorescence

stainings for both Sn and dynein showed that Sn-positive vesicles

were in close contact with dynein, since the dynein fluorescence

signal partially overlapped with the Sn fluorescence signal, as

indicated by the yellow colour in the overlay (Fig. 5c), suggesting

that dynein mediates intracellular transport of internalized pSn

along microtubules.

To analyze the intracellular localization of internalized, Sn-

specific antibodies, double immunofluorescence stainings were

performed for mAb 41D3 and EEA1, CI-M6P or Lamp1, markers

for early endosomes, late endosomes and lysosomes respectively.

At 15 and 30 min after the start of internalization, the majority of

internalized antibodies (.80%) were localized to early endosomes

(Fig. 6). Starting from 60 min, co-localization with early

endosomes diminished to approximately 60%, while from this

point co-localization was observed with late endosomes with a

maximum of 20%. No co-localization of internalized antibodies

with lysosomes was detected at any time tested. From these

experiments it is concluded that pSn internalization mainly targets

to early endosomes and that internalized ligands reside for

prolonged times in this compartment.

Porcine Sn-specific immunotoxins kill macrophages
To evaluate the potential to use Sn endocytosis to specifically

target molecules to macrophages, immunotoxins were constructed

consisting of the pSn-specific mAb 41D3 and the ribosome

inactivating protein saporin. On its own, saporin is not able to

enter cells, but it can be co-internalized following conjugation with

antibodies that recognize cell surface proteins [28]. The disulfide

bond introduced to link antibody and saporin allows dissociation

of the toxin upon internalization, which is essential for its activity.

Saporin conjugated to pSn-specific mAb 41D3 could efficiently kill

macrophages in a dose-dependent manner. At a concentration of

1 mg/ml immunotoxin, more than 60% of the cells were dead after

10 hrs of incubation, while almost 80% of the cells were killed

using 15 mg/ml immunotoxin (Fig. 7). Control immunoconjugates

(irrelevant, isotype matched antibody) had no significant effect on

cell viability, even at the highest concentrations used.

Figure 2. Flow cytometric analysis of pSn internalization. (A)
Cell surface expression of Sn was quantified at different time points
after incubation at 37uC with either the Sn-specific antibody 41D3 or
the irrelevant, isotype matched control antibody 13D12. The level of
surface expression is expressed as MFI, with time 0 as reference point.
pSn internalization was assessed via incubation with the pSn-specific
mAb 41D3 (black squares), followed by the staining consisting of a FITC-
labelled secondary antibody. As a control, cells were incubated with the
control antibody 13D12 (open squares), followed by the staining
consisting of 41D3 as primary antibody and a FITC-labelled secondary
antibody. Staining was performed at the different time points as
indicated. Data represent the means 6 standard deviations of 3
independent experiments. (B) Representative histograms of analysis of
Sn internalization in porcine macrophages. (a) Staining of macrophages
with isotype matched (IgG1), irrelevant control mAb. To analyze
antibody-induced Sn internalization, macrophages were incubated for
1 h with mAb 41D3 at (b) 4uC or at (c) 37uC, followed by staining
surface bound antibodies (no permeabilization) with FITC-labelled goat-
anti-mouse IgG to detect non-internalized mAb 41D3 on the cell
surface. (d) To confirm that antibodies were internalized into the
macrophage, cells were incubated for 1 h with mAb 41D3 at 37uC,
followed by fixation, permeabilization and staining with FITC-labelled
goat-anti-mouse IgG to detect both internalized and cell surface bound
mAb 41D3 (FL1 – logarithmic scale).
doi:10.1371/journal.pone.0016827.g002
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Porcine Sn-specific HSA immunoconjugates are targeted
to Sn-expressing cells, which results in enhanced
antibody responses upon immunization

Antibody-targeted vaccines are used to deliver an antigen to

professional antigen-presenting cells to induce or enhance cellular

and/or humoral immunity to the antigen [29,30]. Sn-positive cells

can be found in the spleen and lymph nodes where they can trap

blood and lymph-born antigens respectively, with the capacity to

induce T-cell immunity [31,32]. Given its interesting expression

profile and capacity to internalize antibodies and antibody-

conjugates, we further analyzed if this property could be used to

specifically target antigens to Sn-positive cells thereby inducing

humoral immunity. Therefore, the antigen human serum albumin

(HSA) was chemically cross-linked via a thio-ether bond to the Sn-

specific mAb 41D3, or to the irrelevant, isotype matched (IgG1)

control mAb 13D12. Incubation of primary, Sn-expressing

porcine macrophages with the Sn-specific immunoconjugate

resulted in uptake of HSA inside the macrophage (Fig. 8a). In

addition, a clear co-localization was seen between internalized Sn-

specific antibodies and HSA, confirming that HSA internalization

was mediated by the Sn-specific mAb. In contrast, HSA coupled to

the control mAb was not internalized in macrophages, or only in

very low amounts in some cells. To investigate whether specific

targeting of HSA immunoconjugates in vivo could have an effect

on HSA-specific immune responses, pigs were immunized with

HSA linked to Sn-specific mAb 41D3, HSA linked to a control

mAb, HSA and mAb 41D3 not conjugated or with HSA alone.

Half of the sample was injected intravenously and the other half

intramuscularly to target Sn-positive cells in the spleen and in the

lymph nodes respectively. Analysis of HSA-specific antibodies in

serum at different time points post immunization revealed that

animals immunized with the Sn-specific immunoconjugate had the

highest and fastest IgM and IgG immune responses during the

course of the experiment (Fig. 8b–c), suggesting that specific

targeting of antigens to Sn-expressing macrophages ameliorates

antibody responses.

Discussion

Previously, Sn was reported to be involved in the attachment

and entry process of viruses [5,14–17,33–35], a bacterium [18],

and potentially also a parasite [36]. Interestingly, all these

pathogens carry sialic acid on their surface and the presence of

this sugar is essential for their interaction with Sn. Although Sn

was shown to be involved in internalization of these pathogens,

these findings do not directly show beyond doubt the endocytic

properties of Sn, since Sn might only mediate pathogen binding,

while other receptors could engage internalization. Previously,

pSn-specific antibodies were also shown to be internalized by

primary macrophages, further indicating that Sn is a receptor with

the capacity to internalize [5,31]. So far, fundamental knowledge

on the Sn-mediated entry process is lacking, therefore we aimed to

investigate Sn in its function as an endocytic receptor and to

explore its potential as a gateway for macrophage-directed

therapeutics.

Upon addition of mAb 41D3, we observed that pSn together

with the mAb was internalized into the cell. This internalization

was clearly mediated by Sn and not by other macrophage

receptors, since isotype matched control mAbs were not

internalized in the cell and since 41D3 F(ab’)2 fragments, lacking

the Fc domain, are internalized similarly to intact 41D3. In

addition, antibody-induced internalization was also observed in

non-macrophage cell lines that express recombinant pSn, but that

do not express Fc receptors. In the future, Fab fragments will be

generated to assess whether receptor cross-linking is required for

Figure 3. Effect of different inhibitors on antibody-induced pSn endocytosis. Macrophages were stimulated with mAb 41D3 in the
presence of different concentrations of (A) dynamin inhibitory peptide which blocks clathrin- and lipid raft/caveolae-dependent endocytosis and
phagocytosis, (B) amantadine, which interferes with clathrin-mediated endocytosis, (C) nystatin, which blocks lipid raft/caveolae-mediated
endocytosis, and (D) wortmannin, a blocker of phagocytosis. At 60 min post internalization, cells were fixed and stained. The number of internalized
vesicles was quantified and expressed as a percentage relative to the number of internalized vesicles in the absence of the inhibitor. Data represent
the means 6 standard deviations of 3 independent experiments.
doi:10.1371/journal.pone.0016827.g003
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internalization, as well as the requirement of a ligand to trigger Sn

internalization. Subsequently, the mechanism of 41D3-induced

pSn internalization was explored. Using inhibitors, double

immunofluorescence stainings, and lentiviral transduced domi-

nant-negative Eps15 constructs, pSn endocytosis was shown to be

clathrin-dependent. Clathrin-dependent endocytosis of cell surface

receptors is known to depend on the presence of specific amino

acid endocytosis motifs in the cytoplasmic domain of the

internalized protein. Tyrosine- and di-leucine-based motifs are

well-known for their interaction with adaptor proteins as a first

step in endocytosis (reviewed by [37]). Such motifs however, are

not present in the cytoplasmic domain of Sn. Interestingly, the

absence of tyrosine-based internalization motifs makes Sn an

exception in the family of siglecs, since most other siglecs identified

to date were shown to contain tyrosine-based signalling motifs, and

several of them, such as Siglec-2 (CD22) and Siglec-3 (CD33),

have been shown to be internalization receptors [13,38,39]. Most

recently, it has been published that apart from the well-known

endocytic motifs, additional motifs await discovery [40], thus

including the one driving Sn endocytosis.

There are major differences in the cytoplasmic domains of Sn of

different species, both in amino acid sequence and length. So far,

no potential, known clathrin-dependent internalization motifs

were identified in the cytoplasmic domain of Sn of any species

[3,5,8]. Shadee-Eestermans et al. [41] suggested the involvement of

mSn in a receptor-mediated internalization process, since Sn could

be detected in intracellular vesicles. In contrast however, antibody

3D6 directed against mSn is apparently not internalized in

primary macrophages upon binding [42]. Clearly, a comparative

analysis of antibody-induced internalization of Sn of other species

and identification of internalization motifs involved, is needed to

elucidate whether clathrin-dependent endocytosis is a general

feature of Sn of different species, or whether this is a feature of pSn

alone.

Confocal microscopical and flow cytometric analyses showed

that Sn endocytosis appears as a rather slow process. After 30 min

stimulation with mAb 41D3, approximately 20% of Sn was

internalized, and a maximum of 41% was internalized at 90 min.

Why not all Sn is internalized upon mAb 41D3 stimulation is not

known. One possible explanation why only a fraction is

internalized is that two or more forms of pSn may be present in

the plasma membrane of macrophages, each being recognized by

mAb 41D3, but having different internalization capacities. Such

putative different forms may result from alternative splicing.

Alternative splicing of Sn transcripts was previously described for

mSn, but these transcripts were shown to encode for soluble,

secreted variants of Sn, and are thus unlikely to be involved in Sn

internalization from the membrane [8]. If different isoforms of Sn

with different endocytosis capacity exist, the difference may very

well be located in the cytoplasmic domain of the protein, since this

domain may contain the information required for efficient

internalization. Indeed, for the B-cell receptor Siglec-2 (CD22),

which was shown to be internalized via clathrin-coated pits,

alternative splicing was shown to result in two isoforms (CD22a
and CD22b) with different cytoplasmic domains [43–45] and

similarly, alternative splicing of Siglec-8 was shown to result in

isoforms with different cytoplasmic domains [46]. The pSn gene

has however not yet been characterized, it can thus not be

excluded that alternative splicing could lead to expression of pSn

isoforms with differences in the cytoplasmic domain, which

possibly could explain the incomplete pSn internalization observed

in our experiments.

In our study, inhibition of phagocytosis had no effect on

monoclonal antibody-induced pSn internalization, which is in

agreement with the characterization of mSn as a non-phagocytic

receptor [2]. However, recent findings show the involvement of

mSn in phagocytosis of sialylated Neisseria meningitides [18]. As

suggested by the latter authors, mSn might act in synergy with

another phagocytic receptor, or the experimental differences

might be attributed to the size of the particle (erythrocytes or

bacteria) that is presented to the Sn-expressing macrophages.

Porcine Sn, here shown to mediate clathrin-dependent endocyto-

sis, might thus also function as a phagocytic receptor under

different experimental conditions, for example when larger

particles coated with mAb 41D3 would be presented to the

macrophages. Indeed, the involvement of a receptor in endocytosis

does not prevent its functioning as a phagocytic receptor. Fc

receptor internalization via phagocytosis or endocytosis was shown

to be dependent on the size or multiplicity of the ligand presented

to the cells [47], while the mannose receptor was shown to mediate

Figure 4. Antibody-induced pSn endocytosis is clathrin-
mediated. (A) Sn endocytosis was stimulated by incubating porcine
macrophages with mAb 41D3 at 37uC. Cells were fixed 15 min after the
stimulation and stained for both Sn (green) and clathrin (red). (B) Effect
of lentiviral transduction of primary porcine macrophages with
dominant-negative Eps15 (Eps15-DIII) and the control Eps15-DIIID2 on
Sn internalization in macrophages. (C–D) Representative confocal
images of Sn internalization in macrophages expressing dominant-
negative Eps15 (DIII) or inactive Eps15 (DIIID2). Arrowheads indicate Sn
internalization in cells expressing Eps15DIII, which co-localizes with
Eps15 as shown by the yellow colour in the overlay. Scale bar: 5 mm.
doi:10.1371/journal.pone.0016827.g004
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either endocytosis or phagocytosis depending on the state of

activation of the cell [48].

Not only Sn, but also other siglecs, such as Siglec-2 (CD22) and

Siglec-3 (CD33) were shown to internalize specific monoclonal

antibodies, with CD22 internalization being characterized as

clathrin-mediated [39,43,44,49,50]. Interestingly, the capacity of

CD22 to internalize specific monoclonal antibodies was shown to

make this molecule an effective target for immunoconjugate

therapy of B-cell malignancies [51–53]. Additionally, immuno-

conjugates targeting CD33 are currently a valuable option to

treat patients with acute myeloid leukemia (AML) [54]. Recently,

Siglec-H was also identified as an endocytic receptor that allows

targeted delivery of antigens to murine plasmacytoid dendritic

cell precursors, which results in the induction of CD8+ T-cells

[55]. Similarly, a Sn-specific mAb was shown to efficiently induce

T-cell proliferation compared to an aspecific control mAb,

indicating the potential of pSn as a gateway molecule for

antibody-targeted vaccines [31]. Together with our data, these

promising results fuel the increasing interest in siglecs as targets

for cell-directed immunotherapy as nicely exhibited in a recent

review [13].

In this study, we showed that the capacity of pSn to mediate

antibody-induced internalization can be used for specific targeting

of toxins and antigens to macrophages. This targeted delivery of a

cargo was shown to be functional, since Sn-specific immunotoxins

allowed killing of macrophages. This property could potentially be

of use in diseases were inflammatory, Sn-expressing macrophages

might promote disease progression [3,11,56,57]. Sn-specific

immunotoxins would then have the potential to eliminate these

cells, but further studies are needed to confirm these findings in

vivo.

An interesting observation was the enhanced antibody response

that was observed in animals immunized with immunoconjugates

of the model antigen HSA linked to a Sn-specific mAb, compared

to immunization with HSA alone or HSA linked to an irrelevant

control mAb. For the Sn-specific conjugate, IgG antibody

responses were faster and higher compared to the other constructs.

Since the immunization was done in the absence of adjuvant, this

could suggest that in vivo targeting to Sn might have adjuvant

effects. This effect most likely results from the specific targeting to

Sn-expressing cells, since immunization with both HSA and the

Sn-specific mAb (not conjugated) resulted in a similar antibody

response as immunization with HSA alone. Thus, Sn signalling

induced by antibody-mediated cross-linking is not sufficient on its

own to stimulate antigen-specific antibody responses. In contrast

to HSA alone, the control HSA-conjugate did induce an IgG

response, albeit less potent compared to the Sn-specific conjugate.

This might be explained by Fc receptor-mediated effects or by the

difference in size between the unconjugated and the conjugated

HSA influencing the cellular uptake mechanism [29]. Conjugation

of HSA to an antibody thus increases its immunogenicity, which is

even further improved by targeting HSA to Sn. The specificity and

mechanism responsible for this enhanced humoral immune

response need further investigation, requiring in vivo insight in

the cells responsible for antigen uptake, processing and presenta-

tion. In this context, it should be mentioned that although Sn is

known as a macrophage-restricted surface molecule, rhinovirus

infection seems to be able to induce Sn on dendritic cells (DCs)

[58] and Sn seems to be expressed by some DCs in the lymph

nodes [59]. Our finding that targeting to Sn-positive cells improves

the humoral immune response emphasizes the importance of Sn-

positive cells in immune responses. These cells appear to have

Figure 5. Microtubules and the motor protein dynein are involved in intracellular transport of Sn-positive vesicles. (A) Macrophages
were stimulated with mAb 41D3 in the presence of different concentrations of the microtubule disrupting agent colchicine. The number of
internalized vesicles was quantified and expressed as a percentage relative to the number of internalized vesicles in the absence of the inhibitor. Data
represent the means 6 standard deviations of 3 independent experiments. (B) Confocal analysis of mAb 41D3 stimulated pSn endocytosis in the
presence or absence of colchicine. Colchicine treatment clearly resulted in a block of the intracellular Sn movement, and Sn-positive vesicles
remained close to the plasma membrane. (C) Confocal analysis of a double immunofluorescence staining of Sn (red) and dynein (green) in mAb 41D3
stimulated macrophages. Partial co-localization is observed between Sn-positive vesicles and dynein, as shown by the arrows in the overlay.
Arrowheads indicate internalized Sn that does not co-localize with dynein. Images represent a single confocal z-section through the middle of the
cell. Scale bar: 5 mm.
doi:10.1371/journal.pone.0016827.g005
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multiple functions, since recently, Sn-positive marginal metallo-

philic macrophages in the spleen were shown to transfer antigens

to cross-presenting dendritic cells resulting in cytotoxic T-cell

immunity [60]. Also in the lymph nodes Sn-positive macrophages

have been shown to trigger T-cell immunity [61]. Although the

precise mechanisms involved remain to be elucidated, Sn seems a

versatile and promising target to accomplish immuno-modulating

therapy.

Our results, together with the findings of others [5,18,31],

clearly expand Sn functionality and show that pSn not only

functions as an adhesion receptor, but is also an endocytic

receptor. This feature may be important for the, yet unknown,

physiological function of this protein, but may also make it a

gateway, not only for the porcine arterivirus, but also for other

sialylated pathogens to gain entry in macrophages. Finally, our

data also show that pSn can be used for targeted delivery of

antigens or other molecules, which may result in an enhanced

humoral immune response.

Materials and Methods

Ethics Statement
The experiments were authorized and supervised by the Ethical

and Animal Welfare Committee of the Faculty of Veterinary

Medicine of Ghent University. The named institution approved

the experiments and provided a permit for this study (Permit

Number: EC 2005/14).

Cells, reagents and antibodies
Primary porcine alveolar macrophages were isolated from 4- to

6-week-old conventional Belgian Landrace pigs as described [62].

The cells were cultivated in RPMI-1640, supplemented with 10%

foetal bovine serum (FBS), 2 mM L-glutamine (BDH Chemicals

Ltd.), 1% non-essential amino acids (Gibco BRL), 1 mM sodium

pyruvate (Gibco BRL) and antibiotics in a humidified 5% CO2

Figure 7. Effect of immunotoxins on macrophage viability.
Macrophages were incubated with different concentrations of Sn-
specific (saporin linked to mAb 41D3; black squares) or control
immunotoxins (isotype control mAb linked to saporin; open squares).
After 10 hrs of treatment, the relative percentages of dead cells were
determined, with concentration 0 as reference point.
doi:10.1371/journal.pone.0016827.g007

Figure 6. Analysis of co-localization between internalized pSn and early endosomes (EEA1), late endosomes (CI-M6P) or lysosomes
(Lamp1) in macrophages. Co-localization between internalized pSn (green) and EEA1, CI-M6P or Lamp1 (red) was calculated from confocal z-
sections of 25 randomly selected cells at the indicated time points. Data represent the means 6 standard deviations of 3 independent experiments.
Representative images of macrophages at different time points during internalization are shown as overlays of the red and green signal with a yellow
colour indicating co-localization. Scale bar, 5 mm.
doi:10.1371/journal.pone.0016827.g006
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atmosphere at 37uC. For all experiments, macrophages were

cultivated for 24 hrs before use. The CHO-Sn cells that stably

express recombinant pSn were described earlier [15].

All products were purchased from Sigma, unless otherwise

mentioned. The myristoylated dynamin inhibitory peptide was

purchased from Tocris.

MAb 41D3, directed against pSn [5,9], isotype matched (IgG1)

control mAb 13D12, directed against pseudorabies virus

glycoprotein gD [63] and mAb 74-22-15, reactive with SWC3

on porcine monocytes, macrophages and neutrophils [64] were

purified using protein G sepharose column chromatography

(Amersham Biosciences), dialyzed to PBS and stored at 270uC.

Raft marker GM1 was visualized via cholera toxin B subunit

conjugated to HRP or biotin for Western blot analysis and

confocal microscopical analysis (Invitrogen – Molecular Probes)

respectively. Mouse anti-clathrin IgM antibodies (ICN Biomed-

icals) and mouse anti-dynein IgM antibodies (Sigma) were used to

label clathrin and dynein, respectively. Endosomal markers early

endosome antigen 1 (EEA1), cation-independent mannose-6-

phosphate receptor (CI-M6P) and lysosome-associated mem-

brane protein 1 (Lamp1) were visualized via an affinity purified

goat pAb (sc-6414; Santa Cruz Biotechnology), a rabbit pAb

(ab32815; Abcam) and a rabbit pAb (sc-5570; Santa Cruz

Biotechnology) respectively. Finally, human serum albumin

(HSA) was visualized using biotinylated HSA-specific pig serum

[65].

Pepsinolysis of mouse IgG1 antibodies to F(ab’)2

fragments
F(ab’)2 fragments were generated essentially as described by

Wilson et al. [66]. 300 mg antibodies in 300 ml PBS supplemented

with G7 reaction buffer were treated with 10 units/ml PNGase F

(New England Biolabs) for 6 hrs to deglycosylate the antibodies.

The subsequent pepsinolysis reaction consisted of 30% by volume

pepsin agarose beads (Thermo scientific – Pierce) (washed in

20 mM NaOAc, pH 4.5), 20% by volume 5x pepsinolysis buffer

(163 mM NaOAc, 1 M KCl, 0.5% Triton X-100, pH 3.5), and

50% by volume deglycosylation reaction. The pepsin treatment

was carried out for 16 hrs. Finally, Fc fragments and buffer

components were removed by extensive dialysis against PBS using

a slide-a-lyzer cassette (Thermo scientific – Pierce) with a 10 kDa

cut off. F(ab’)2 fragments were analyzed by SDS-PAGE and

Western blotting to ensure complete removal of the Fc domain.

Detection was performed using HRP-labelled goat anti-mouse IgG

(Fc specific) antibodies (Sigma Aldrich) and HRP-labelled goat

anti-mouse IgG antibodies (Dako).

Construction of lentiviruses and lentiviral transduction
The lentiviral TRIPDU3-CMV-WPRE vector ( = TRIPDU3-

CMV-GFP-WPRE in which GFP was deleted by BamHI-SalI

digestion) was used as transfer vector, pMD.G as envelope plasmid

and p8.91 as packaging plasmid as described before [67]. The

enhanced green fluorescent protein (EGFP) tagged dominant-

negative (DN) Eps15 construct, named DIII, and the EGFP tagged

control construct DIIID2 [68] were cloned into the TRIPDU3-

CMV-WPRE vector, and lentiviral supernatant was produced and

collected as described [22].

Three hours post seeding, primary porcine alveolar macro-

phages were washed once and medium was replaced with

lentiviral supernatant. Twenty hours later, cells were washed

and fresh medium was added. Another forty-eight hours later,

endocytosis assays were performed as described below.

Endocytosis assay
Macrophages were incubated with purified antibodies at a

concentration of 25 mg/ml for 1 h at 4uC to allow only

attachment, but no internalization. Cells were then washed to

remove unbound antibody and shifted to 37uC to start

endocytosis. After different times, cells were fixed with 3%

paraformaldehyde (PF), permeabilized with 0.1% Triton X-100,

and stained with FITC-labelled goat-anti-mouse IgG to visualize

antibodies bound to and internalized in the cells. As a control, cells

were fixed after the 4uC incubation (time 0). To analyze the effect

of different drugs on endocytosis, cells were incubated with the

Figure 8. Targeting of the HSA antigen to Sn-positive porcine
macrophages. (A) Confocal microscopical analysis of primary macro-
phages incubated for 60 min at 37uC with mAb 41D3-HSA immuno-
conjugates. HSA was detected with biotinylated HSA-specific pig serum
and FITC-labelled streptavidin (green) and mAb 41D3 was stained with
TexasRed labelled goat-anti-mouse IgG (Red). Scale bar, 5 mm (B) and
(C) Kinetics of HSA-specific IgM (B) and IgG (C) antibody titres upon
immunization without adjuvant with Sn-specific immunoconjugates
(mAb 41D3-HSA; squares), with control immunoconjugates (control
mAb 13D12-HSA; triangles), with HSA and 41D3 not conjugated
(crosses) or HSA alone (circles). Data are means 6 SEM of 6 (41D3-
HSA) or 3 animals (control mAb-HSA, HSA and 41D3 not conjugated,
and HSA alone). Dashed line represents the detection limit.
doi:10.1371/journal.pone.0016827.g008
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indicated concentrations of the drugs before and during the

internalization assay, and fixed at 60 min post internalization.

Prior to administration, the inhibitors were diluted in their solvent

to obtain the different concentrations. Subsequently cells were

treated with the same volume but different concentrations of the

inhibitors. Treatment without inhibitor was used as negative

control. After fixation, Sn was stained and the number of vesicles

internalized in the macrophages was counted using confocal

microscopy. The effectiveness and specificity of the endocytosis

inhibitors was confirmed with known controls, more specifically

biotinylated transferrin for clathrin-mediated endocytosis, FITC-

labelled BSA for lipid raft/caveolae-mediated endocytosis and

fluorescent polystyrene beads with a diameter of 1 mm for

phagocytosis [22].

Analysis of Sn endocytosis
Macrophages were incubated for 1 h at 4uC with mAb 41D3 or

irrelevant mAb 13D12, washed to remove unbound antibody, and

shifted to 37uC. At different time points, cells were cooled to 4uC
to stop the endocytosis process, fixed, and stained with FITC-

labelled goat-anti-mouse IgG to detect only surface bound 41D3,

but not internalized antibody.

Flow cytometric analysis of pSn endocytosis
Sn endocytosis was quantified by flow cytometry as described

[49]. Macrophages were chilled on ice for 30 min, then incubated

with 10 mg/ml mAb 41D3 in medium for 1 h at 4uC, and washed

to remove unbound mAb. Cells were then shifted to 37uC by the

addition of warm medium and further incubated at 37uC. At

different time points, endocytosis was stopped by shifting the cells

to 4uC. Cells were lifted by incubation with 10 mM EDTA at 4uC,

and pelleted by centrifugation (2506g, 5 min, 4uC). Cells were

incubated with FITC-labelled goat-anti-mouse IgG for 1 h at 4uC,

washed with ice-cold PBS, and analyzed by flow cytometry with a

FACScalibur (Becton Dickinson). Forward-scattered light (FSC),

sideward-scattered light (SSC) and the FITC fluorescence signal

(FL-1) were stored for further analysis.

Immunofluorescence stainings
For double immunofluorescence stainings, Sn endocytosis was

induced using mAb 41D3 as described above and cells were fixed

with 3% PF at indicated time points after the 37uC shift.

For clathrin and dynein staining, the cells were washed twice in

TBS-GS (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 4.5% sucrose,

2% heat-inactivated goat serum), permeabilized by incubating the

cells in 100% methanol for 30 sec at 220uC, and washed twice

with TBS-GS. For double staining of Sn and clathrin, the cells

were then incubated with FITC-labelled goat-anti-mouse IgG

(Molecular Probes) for 1 h at 37uC to visualize Sn, followed by

incubation with anti-clathrin IgM antibodies for 1 h at 37uC,

biotinylated goat-anti-mouse IgM antibodies for 1 h at 37uC, and

Texas Red-labelled streptavidin (Molecular Probes) for 1 h at

37uC. For double staining of Sn and dynein, the cells were

incubated with Texas Red-labelled goat-anti-mouse IgG (Molec-

ular Probes) for 1 h at 37uC to visualize Sn, followed by incubation

with anti-dynein IgM antibodies for 1 h at 37uC, biotinylated

goat-anti-mouse IgM antibodies for 1 h at 37uC, and FITC-

labelled streptavidin (Molecular Probes) for 1 h at 37uC.

For double staining of Sn and markers of endosomal

compartments, subsequent to 41D3 internalization, cells were

fixed, permeabilized and stained for Sn using FITC-labelled goat-

anti-mouse IgG. Different compartments of the endocytic pathway

were visualized via their respective primary antibodies followed by

appropriate TexasRed labelled secondary antibodies.

For double stainings of Sn and lipid raft microdomains on the

plasma membrane of macrophages, cells were fixed in 3% PF and

incubated for 1 h with mAb 41D3 and 1 h with FITC-labelled

goat-anti-mouse IgG (Molecular Probes), followed by incubation

for 1 h with biotinylated Cholera toxin B subunit and 1 h with

Texas Red-labelled streptavidin.

Detection of cell death upon incubation of macrophages with

immunotoxins was done by incubating living cells with ethidium

monoazide bromide (EMA) as described [69].

Cells were washed 3 times following each incubation step. At the

end, cells were mounted in a glycerin-PBS solution (0.9/0.1, vol/vol)

with 2.5% 1,4-diazabicyclo(2.2.2)octane (DABCO; Janssen Chimica).

Purification of lipid rafts by density ultracentrifugation
Lipid rafts were purified essentially as described previously

[70,71]. Briefly, primary alveolar macrophages were lysed for

30 min at 4uC in TNE buffer (25 mM Tris–HCl, 150 mM NaCl,

5 mM EDTA) containing 1% Triton X-100 and complete

protease inhibitor cocktail (Roche). After homogenization with a

25-gauge needle on a 1 ml syringe, the lysate was mixed with ice-

cold iodixanol (Optiprep; Nycomed Pharma) up to 40% iodixanol.

This mixture was put at the bottom of a Beckman SW41Ti

ultracentrifuge tube, overlaid with 5 ml 30% iodixanol (ice-cold)

and 3 ml 5% iodixanol (ice-cold), and centrifuged at 200,0006g at

4uC for 20 h in the SW41Ti rotor of a Beckman ultracentrifuge.

Ten to twelve fractions were collected from top to bottom, diluted

1:2 in 26 concentrated non-reducing SDS–PAGE loading buffer

and subjected to SDS–PAGE and Western blot. Blots were

incubated with the appropriate antibodies or conjugates for

detection of Sn, transferrin receptor and GM1, and developed

with ECL.

Confocal laser scanning microscopy
Z-section images of samples were acquired using a Leica TCS

SP2 laser scanning spectral confocal system (Leica Microsystems

GmbH) linked to a Leica DM IRBE inverted microscope (Leica

Microsystems GmbH). Image acquisition was done using the Leica

TCS SP2 confocal software package, overlay images were

produced with Adobe Photoshop CS and analysis of co-

localization was done using CoLocalizer Pro. For the co-

localization analysis between Sn and the endosomal markers, the

Sn-positive plasma membrane was excluded from the analysis and

only internalized Sn was considered.

Preparation of immunotoxins and HSA
immunoconjugates

Purified mAb 41D3 or isotype matched (IgG1) control mAb

13D12 were coupled to saporin (Sigma) via a disulfide linker [28].

Both antibody and saporin were labelled with the cross-linker SPDP

(N-succinimidyl-3-(2-pyridyldithio)-propionate) according to the

manufacturer’s instructions (Pierce Biotechnology). The saporin-

SPDP was activated via DTT (dithiothreitol, Sigma) and the

proteins were purified from the unreacted cross-linkers with PD-10

desalting columns (Amersham Biosciences). Activated proteins were

mixed in a 1:1 antibody:saporin ratio and incubated for 2 hrs at

room temperature. Finally, unreacted saporin was removed from

the conjugates by extensive dialysis against PBS using a float-a-lyzer

(Spectra/Por) with a 100 kDa cut off. Fractions of all steps were

analyzed by SDS-PAGE and Coomassie blue staining to ensure

efficient coupling of the products and removal of free saporin.

Human serum albumin (HSA) was coupled to the monoclonal

antibodies using a two-step cross-linking protocol. The amine-
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reactive cross-linker LC-SMCC (Pierce Biotechnology) was

coupled to the purified mAb 41D3 or isotype matched (IgG1)

13D12 and the amine-reactive cross-linker SPDP (Pierce Biotech-

nology) was coupled to purified HSA (Sigma) following the

manufacturer’s instructions. The SPDP-HSA was activated by

addition of DTT, which results in the formation of a thiol-

activated protein. Both the mAb-LC-SMCC and the thiol-

activated HSA were then dialyzed to PBS at 4uC using a

membrane with a 10–14 kDa cut-off to remove residual unreacted

LC-SMCC, SPDP and DTT. The mAb-LC-SMCC and the thiol-

activated HSA were then mixed and incubated at 37uC for 30 min

to allow the thiol group on HSA to react with the maleimide end

of the LC-SMCC on the mAb, resulting in the formation of a

covalent thio-ether bond. To terminate the reaction and to remove

unreacted HSA, the mixture was dialyzed against PBS using a

membrane with a 100 kDa cut off. Finally, obtained solutions of

immunoconjugates were shown negative for LPS content using the

Limulus Amebocyte Lysate PYROGENTH Plus assay (Cambrex

Bio Science). Samples were taken in between different steps of the

cross-linking protocol and analyzed by SDS-PAGE and Coomas-

sie blue staining to confirm that the proteins were cross-linked.

To analyze the capacity of the antibody-antigen immunocon-

jugates to internalize in macrophages, the 41D3-HSA and

13D12-HSA constructs were also incubated for 1 h at 37uC with

primary, Sn-expressing macrophages. Cells were then fixed for

10 min at 37uC with 3% PF, washed and permeabilized with

0.1% Triton X-100. Antibodies were stained by incubation with

TexasRed labelled goat-anti-mouse (Molecular Probes). HSA was

stained by incubation with biotinylated, HSA-specific polyclonal

pig antibodies, followed by incubation with FITC-labelled

streptavidin (Invitrogen).

Immunizations with HSA immunoconjugates and
analysis of antibody responses

Six-week-old conventional pigs were housed in isolation units

with HEPA filtered air following the recommendations of the

Ethical and Animal Welfare Committee of the Faculty of Veterinary

Medicine, Ghent University. Six pigs were immunized with 1 mg of

41D3-HSA conjugate, three pigs with 1 mg of a control conjugate

(13D12-HSA), three pigs with unconjugated 41D3 and HSA, and

three pigs with unconjugated HSA alone. For each pig, half of the

sample was injected intramuscularly in 1.5 ml PBS and the other

half intravenously in 1.5 ml PBS. Serum samples were collected

before immunization (day 0) and at days 10, 17, 24, 32 and 38 after

immunization and analyzed for the presence of HSA-specific IgM

and IgG antibodies by ELISA as described [65,72].

Supporting Information

Figure S1 Quality control of F(ab’)2 fragments. SDS-Page

and Western blot analysis of pepsinolysis of control antibody

13D12 and Sn-specific antibody 41D3. – untreated; + treated with

PNGase F and pepsin. Antibodies or antibody fragments were

visualized with either an Fc-specific HRP-labelled secondary

antibody or an HRP-labelled secondary antibody recognizing

whole IgG molecules.

(TIF)

Figure S2 Porcine Sn does not localize to lipid raft
microdomains. (A) Sn is localized in discrete patches on the

surface of macrophages. Image represents an overlay of z-sections

acquired from top to bottom of a macrophage with surface

labelled Sn. (B) Analysis of Sn (green) co-localization with raft

marker GM1 (red) on the cell surface. Image is a representative z-

section of the top of a macrophage which was surface labelled with

mAb 41D3 (Sn) and cholera toxin B subunit (GM1). Scale bar:

5 mm (C) Western blot analysis of fractions obtained by lipid raft

flotation assay shows that Sn localizes to fractions enriched in

transferrin receptor (non-raft fraction) but not to GM1 enriched

fractions (raft fraction).

(TIF)

Results S1 Porcine sialoadhesin (pSn) does not localize
to lipid raft microdomains.
(DOCX)
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