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Abstract
Hepatitis C virus (HCV) infections represent a major 
global health problem. End-stage liver disease caused 
by chronic HCV infection is a major indication for liver 
transplantation. However, after transplantation the en-
grafted liver inevitably becomes infected by the circulat-
ing virus. Direct acting antivirals are not yet approved 
for use in liver transplant patients, and limited efficacy 
and severe side effects hamper the use of pegylated 
interferon combined with ribavirin in a post-transplant 
setting. Therefore, alternative therapeutic options need 
to be explored. Viral entry represents an attractive tar-
get for such therapeutic intervention. Understanding 
the mechanisms of viral entry is essential to define the 
viral and cellular factors involved. The HCV life cycle is 
dependent of and associated with lipoprotein physiolo-
gy and the presence of lipoproteins has been correlated 
with altered antiviral efficacy of entry inhibitors. In this 

review, we summarise the current knowledge on how 
lipoprotein physiology influences the HCV life cycle. We 
focus especially on the influence of lipoproteins on anti-
bodies that target HCV envelope proteins or antibodies 
that target the cellular receptors of the virus. This infor-
mation can be particularly relevant for the prevention 
of HCV re-infection after liver transplantation.
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Core tip: We reviewed the influence of lipids and li-
poproteins on the hepatitis C virus life cycle and their 
impact on viral neutralization by antibodies that target 
the viral envelope proteins or that target the receptors 
used by the virus to infect the hepatocyte.
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INTRODUCTION
Approximately 3% of  the world’s population is chronically 
infected with the hepatitis C virus. Depending on the 
genotype of  the infecting virus, 50% to 80% of  chroni-
cally infected patients clear the virus upon treatment with 
pegylated interferon and ribavirin[1]. Addition of  one 
of  the recently approved protease inhibitors: telaprevir, 
boceprevir or simeprevir; or the nucleotide analogue 
polymerase inhibitor sofosbuvir, significantly increases 
the response rate in patients infected with HCV genotype 
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1[2-4]. However, side effects and drug-drug interactions se-
verely complicate the use of  first wave protease inhibitors 
in triple therapy in chronically infected patients in need 
for liver transplantation[5,6]. Therefore, cocktails of  other 
direct acting antivirals (DAAs) without interferon are 
needed to treat this expanding patient population. Very 
recently, sofosbuvir has been approved in combination 
with ribavirin for the treatment of  chronic HCV patients 
with hepatocellular carcinoma awaiting liver transplanta-
tion in order to prevent post-transplant HCV recurrence. 
No drug interactions with immunosuppressive therapy 
were observed and post-transplantation sustained viro-
logic response (SVR) was achieved in more than half  of  
the patients[7]. Although promising results have been pre-
sented of  studies investigating the effect of  DAA-based 
regimens in patients suffering from recurrent HCV[8-10], 
today no therapy exists that protects the liver graft from 
being infected in viremic pre-transplant patients.

The viral entry process offers multiple targets for the 
development of  alternative strategies for the prevention 
of  HCV recurrence[11]. The viral envelope glycoproteins, 
E1 and E2, are major components of  the viral particle 
and play a pivotal role in the entry process. The enve-
lope protein E2, and especially its hypervariable region 
1 (HVR1), is the main target for neutralizing antibodies 
that are generated by the humoral immune response. 
Presumably, broadly cross-neutralizing monoclonal anti-
bodies (mAbs) directed against HCV E2 could represent 
a promising tool for effective passive immunotherapy. 
However, due to the high propensity of  the virus to 
continually mutate, and the high variability of  this region 
in particular, neutralizing anti-HVR1 antibodies have 
only limited cross-genotype neutralization potency[12]. 
Nevertheless, neutralizing antibodies play a role in viral 
protection and disease outcome[13,14]. Therefore, the ap-
plicability of  HCV neutralizing antibodies as a means 
of  preventing HCV re-infection of  liver allografts has 
been explored. Although proof  of  concept pre-clinical 
studies showed promising results[15-18], no or only tran-
sient effects on HCV RNA levels and HCV recurrence 
after liver transplantation were observed in clinical stud-
ies[19-22]. This lack of  effectiveness could partially be ex-
plained by the observation that human serum, and HDL 
in particular, lower the neutralization efficacy of  anti-
HCV neutralizing antibodies[23-25].

HCV relies on multiple host cell membrane mol-
ecules to establish initial cell contact and other more 
specific interactions to initiate the ensuing entry into the 
hepatocyte. Glycosaminoglycans and the LDL-receptor 
have been proposed to as initial attachment factors for 
HCV to the surface of  the hepatocyte[26,27]. For actual 
endocytosis, the virus first needs to interact with SR-
BI and CD81 before being directed to the tight junction 
proteins claudin-1 (CLDN1) and occludin[28-31]. Blockade 
of  one or more of  these host cell factors represent an 
attractive strategy for antiviral intervention.

During the HCV entry process and different other 
steps in the viral life cycle, lipids and lipoproteins have 
been reported to intervene. For example, essential roles 

for HCV entry have been dedicated to lipid receptors, 
free lipoproteins and apolipoproteins (Apo) associated 
with the viral particle, whereas lipid droplets and ApoE 
expression are important during assembly and release 
of  the viral particle respectively. In this review, we focus 
on the interaction of  lipid physiology with HCV virol-
ogy and to what extent these interactions influence the 
antiviral efficacy of  entry inhibitors, more specifically 
neutralizing antibodies targeting either the viral envelope 
or the cellular (co-)receptors used by HCV for its entry.

LIPIDS AND LIPOPROTEIN METABOLISM
Blood plasma and interstitial fluid represent an aqueous 
environment wherein hydrophilic interactions predomi-
nate. To transport hydrophobic lipids throughout the 
body these are incorporated into water-soluble aggre-
gates of  protein and lipid, known as lipoproteins. Lipo-
proteins are defined by their apolipoprotein, cholesterol, 
triglyceride and phospholipid content and subdivided 
by their buoyant densities into high, low, intermediate 
and very low density lipoproteins (HDL, LDL, IDL and 
VLDL respectively) and chylomicrons[32]. A schematic 
representation of  lipoprotein metabolism can be found 
in Figure 1.

In the enterocyte, absorbed dietary lipids are re-
esterified to triglycerides (TG), cholesteryl esters and 
phospholipids that, together with fat-soluble vitamins, 
are assembled and secreted into the bloodstream as 
TG- and ApoB48-rich chylomicrons. In contrast, en-
dogenously synthesized lipids are secreted by the liver in 
VLDL particles containing ApoB100. Both these ApoB-
containing lipoproteins are involved in the lipid delivery 
pathway and therefore circulate in the blood in order to 
distribute lipids to peripheral and specific target tissues. 
This process is controlled by the apolipoproteins present 
in these particles that act as receptor ligands or enzyme 
cofactors. ApoCⅡ for example acts as a cofactor for 
lipoprotein lipases (LPL), which catalyzes the hydrolysis 
of  TG into 2-monoacylglycerol and free or non-esteri-
fied fatty acids for tissue utilization as an energy source, 
for energy storage and thermoregulation in specialized 
tissues such as muscles, white and brown adipose tis-
sues respectively. The physiological site of  action of  the 
lipase is located at the luminal surface of  the capillary 
endothelial cells, because TG-rich lipoprotein particles 
are too large to cross the capillary endothelium in most 
tissues. The enzyme is attached to the endothelium via 
highly charged, membrane-bound chains of  heparan 
sulphate-proteoglycans (HSPG). ApoB-containing lipo-
proteins acquire ApoCⅡ and ApoE in circulation, im-
mediately after secretion or due to protein exchange with 
HDL. Chylomicron TG can then be hydrolyzed into free 
fatty acids by LPL, leading to the formation of  smaller 
chylomicron remnants, which are taken up by the liver 
via ApoE interaction with the LDL-R or the low density 
lipoprotein receptor-related protein 1. In addition, LPL 
converts VLDL into ApoE- and cholesterol-rich IDL 
that can also be removed by these receptors. Assisted by 
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hepatic lipase (HL), LPL can further metabolise IDL to 
LDL, upon which it loses most of  its ApoE and can be 
recognized and internalized by the hepatic LDL-R via its 
ApoB moiety. The lipid-proteoglycan bridging capacity 
of  these lipases facilitates clearance of  lipolytic remnant 
particles by presentation to hepatic surface proteogly-
cans before receptor-mediated endocytosis. Although 
mainly recycled to the liver, LDL can also be taken up 
by peripheral cells by the LDL-R. Importantly, excess 
LDL and chylomicron remnants can invade the arterial 
wall, become oxidized and be taken up by the scavenger 
receptor on arterial wall macrophages that are hence 
transformed into foam cells, a process leading to athero-
sclerosis[33,34].

Besides TG, also cholesterol is transported through 
the bloodstream via lipoprotein particles. Cholesterol 
is an essential component of  the plasma membrane by 
maintaining the barrier function between intra- and extra-
cellular environment, modulating its fluidity, and creating 
“rafts” that concentrate signalling molecules. Cholesterol 
is transported back to the liver in a process called reverse 
cholesterol transport that implicates HDL. Nascent HDL 
is generated by the transfer of  phospholipids and cho-
lesterol from peripheral tissues, intestine and liver onto 
ApoA-1. This process is catalyzed by the ATP-binding 
cassette A1 transporter. The cholesterol contained in this 
nascent HDL is then esterified by lysolecithin cholesterol 

acyltransferase thereby forming more spherical mature 
HDL. Additional cholesterol can be loaded onto mature 
HDL by another ABC transporter, ABCG1. HDL can 
further capture free cholesterol from membrane pools via 
interactions with SR-BI, lipid rafts and caveolae. These 
processes are important in preventing atherosclerotic ves-
sel disease by allowing macrophages to efflux artery wall 
cholesterol. During their passage through the circula-
tion the ApoE content of  HDL increases due to protein 
exchange with VLDL. In addition, the cholesteryl ester 
transfer protein can transfer cholesteryl ester from HDL 
to chylomicrons, VLDL and their remnants in exchange 
for TG. HDL-cholesteryl-esters can be utilized by the 
liver through the SR-BI receptor. After hydrolysis, free 
cholesterol can be metabolized to bile acids that are 
excreted into the digestive tract via biliary secretion. Ex-
trahepatically, SR-BI supports HDL-cholesteryl-esters 
consumption as a precursor for the manufacture of  all 
steroid hormones[35,36].

INTERPLAY BETWEEN PATIENT LIPID 
METABOLISM, CHRONIC HCV AND 
ANTI-HCV THERAPY EFFICACY
Chronic HCV infection has been linked to various lipid 
metabolism disorders. HCV perturbs lipid homeostasis 
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while supporting its own survival but thereby causing 
liver disease. These HCV-induced lipid homeostasis al-
terations affect serum lipid profiles that lead to hepatic 
steatosis, the accumulation of  hepatocellular lipid drop-
lets[37]. Especially genotype 3 HCV infections are associ-
ated with reduced levels of  total and LDL cholesterol 
and with the development of  hepatic steatosis[38]. In 
these patients, steatosis and hypocholesterolemia are as-
sociated with high viral load[39].

It has been observed that HCV infection in human-
ized mice mediates changes in the hepatic expression 
of  genes that regulate lipid metabolism[40]. Also during 
the early stages of  HCV infection in chimpanzees that 
permanently or transiently cleared the virus upon IFN-γ 
induction, host genes involved in lipid metabolism were 
shown to be differentially regulated[41]. These observa-
tions suggest that lipid metabolism is essential for the 
HCV life cycle or viral clearance[40] and that changes 
in lipid metabolism can influence the efficacy of  anti-
HCV treatment. Indeed, pre-treatment serum LDL and 
cholesterol levels in HCV infected patients were found 
to directly correlate with response to interferon-based 
therapy[42], while liver steatosis was associated with a low-
er sustained response rate to interferon-based therapy[39]. 
Furthermore, cholesterol-lowering statins possess anti-
HCV capacities[43,44]. However it should be mentioned 
that their anti-HCV property is not considered to de-
pend on their inhibitory effects on cholesterol biosynthe-
sis, but rather on their capacity to inhibit geranylgeranyl 
pyrophosphate synthesis, which is important for HCV 
RNA replication. Although clinical proof  of  anti-HCV 
activity of  statin monotherapy is lacking or contradic-
tory[45-48], its combination with interferon-based therapy 
may improve virologic response rates[49-52]. Another in-
hibitor of  cholesterol synthesis, bezafibrate, only slightly 
reduced HCV viremia in chronic hepatitis C patients 
with concomitant hyperlipidaemia[53]. Finally, HCV vi-
remia has been shown to inversely correlate with serum 
triglyceride levels[54]. In fact, high triglyceridemia during 
acute HCV infection may facilitate viral clearance since 
triglyceridemia was increased in patients that cleared 
HCV infection[55]. Chronic HCV infection is associated 
with the development of  insulin resistance which further 
promotes the progression of  steatosis and fibrosis[56]. 
Since insulin resistance induces interferon resistance, the 
management of  insulin resistance by means of  insulin 
sensitizers such as metformin[57] or pioglitazone[58] has 
been proposed to improve interferon-based HCV treat-
ment outcomes, however insulin therapy reduced SVR[52].

viral life cycle is tightly 
associated with hepatic lipid 
metabolism pathways
HCV circulates in the bloodstream as a very heteroge-
neous population, not only genetically (quasispecies) but 
also physicochemically. The latter is the result of  the 

association of  viral particles with immunoglobulins and 
lipoproteins. HCV particles vary in density between 1.03 
and 1.34 g/ml and the very low-density population ap-
pears to be particularly infectious[59]. This population is 
known as lipoviroparticles, i.e. lipoprotein-like structures 
composed of  triglyceride-rich lipoproteins containing at 
least ApoB and E, viral RNA and HCV core protein[60-62].

Effects on HCV entry
HCV hepatocyte entry involves lipid receptors: Scav-
enger receptor class B type Ⅰ . The scavenger receptor 
class B type Ⅰ (SR-BI) is a highly glycosylated 509 amino 
acid long glycoprotein with a large extracellular domain 
anchored to the plasma membrane at both the amino- 
and carboxy-termini. It is concentrated in microdomains 
that correspond to cholesterol and sphingolipid-enriched 
plasma membrane microdomains (lipid rafts) called 
caveolae[63]. SR-BI is the principal HDL receptor but it 
also binds VLDL, LDL and oxidized lipoproteins. SR-
BI predominantly mediates selective uptake of  HDL-
cholesteryl esters (CE) in a two-step process that first 
involves HDL binding with subsequent incorporation of  
CE to the plasma membrane pool, followed by hydro-
lysis to free cholesterol by a neutral CE hydrolase and 
storage in an intracellular cholesterol pool. This process 
occurs without catabolism of  the HDL particle. In ad-
dition, an alternative lipid exchange pathway exists that 
is thought to gain importance in case of  disturbed lipid 
metabolism and which comprises concomitant endo-
cytosis of  SR-BI and whole HDL particles followed by 
particle re-secretion. HDL re-secretion could be linked 
to cholesterol efflux, since re-secreted HDL particles are 
enriched in cellular cholesterol. SR-BI is also involved 
in bidirectional free cholesterol flux. As mentioned 
before, it is expressed predominantly in the liver and 
steroidogenic tissues. In hepatocytes, SR-BI transports 
cholesteryl esters for membrane function and synthesis 
of  bile acids, thereby participating in reverse cholesterol 
transport and cholesterol homeostasis. In steroidogenic 
tissues, such as the adrenal cortex, it delivers cholesteryl 
esters for the synthesis of  glucocorticoids[63-65].

Attachment through ApoE: SR-BI was initially discov-
ered as an HCV (co-)receptor based on its ability to inter-
act with soluble E2 (sE2). Deletion of  HVR1 impaired 
the binding of  sE2 to SR-BI suggesting that this region 
is particularly involved in this interaction[29]. However, 
more recent data of  Dao Thi et al[66] revealed that the 
HCV-associated lipoproteins are even more important for 
the interaction of  the virus with SR-BI. Indeed, interme-
diate density HCV particles (1.10-1.16 g/ml) bound ef-
ficiently to human SR-BI expressed on BRL3A cells that 
are devoid of  endogenous SR-BI. Surprisingly, a muta-
tion in HVR1 (L339R) that abrogates sE2 binding to SR-
BI, did not alter the ability of  cell culture-derived HCV 
(HCVcc) to bind human SR-BI. In addition, BRL3A 
cells expressing mouse SR-BI, which is unable to bind 
sE2, also supported HCVcc binding. Furthermore, de-
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spite the observation that Blocker of  Lipid Transport-4 
(BLT-4) and anti-E2 antibodies both block sE2-SR-BI 
binding, they did not abrogate HCV-SR-BI binding. In 
contrast, HCVcc did not attach to a mouse SR-BI vari-
ant that is unable to bind lipoproteins. These findings in-
dicate that lipid components of  HCV rather than E2 are 
mainly responsible for HCV-SR-BI binding. This idea 
was further strengthened by the observation that puri-
fied VLDL and ApoE inhibited HCV-SR-BI binding[66]. 
Earlier indications that HCV-associated lipoproteins are 
involved in SR-BI attachment, rather than E2 itself, were 
reported by Maillard et al[67]. They observed that SR-
BI-binding of  HCV from sera of  infected patients was 
insensitive to anti-E2-HVR1 antibodies, whereas this 
interaction was inhibited by ApoE and VLDL.

Lipid transfer function of  SR-BI is involved during post-
attachment HCV entry: SR-BI has also been demonstrat-
ed to mediate post-binding events during HCV entry[68]. 
Besides its primary HCV attachment function through 
HCV-associated ApoE, SR-BI is involved in HCV entry 
by means of  its lipid transfer ability. Antibodies that 
inhibit HDL binding and SR-BI-mediated lipid trans-
fer potently inhibit HCV infection of  different geno-
types both in cell culture and in humanized uPA-SCID 
mice[69,70]. In addition to SR-BI-specific antibodies, small-
molecule inhibitors of  SR-BI-mediated cholesteryl ester 
lipid uptake (ITX-5061, ITX-7650, Rimcazole and BLT 
(block lipid transport)-2, 3 and 4) also have proven anti-
HCV activity[23,71-76]. However, it should be noted that be-
sides their ability to block SR-BI-mediated lipid transfer, 
these molecules all abrogate the sE2-SR-BI interaction 
as well.

Increasing evidence for the role SR-BI’s lipid transfer 
function plays during HCV entry was provided by Dao 
Thi et al[66]. These investigators showed that the inhibi-
tion of  HCV pseudoparticle (HCVpp) entry in murine 
SR-BI expressing cells by BLT-4 correlated with the level 
of  lipid transfer abrogation. Due to the inability of  HCV 
E2 to bind murine SR-BI, this finding indicates the es-
sential involvement of  SR-BI’s lipid transfer function in 
mediating HCV entry in a process that is completely in-
dependent of  E2’s attachment to and/or interaction with 
SR-BI. Additional proof  of  this concept was delivered 
by the observation that an HCVpp E2 mutant (L399R), 
unable to bind SR-BI, was still dependent on the pres-
ence of  SR-BI for its infectivity. This mutant therefore 
used SR-BI for cell entry by other means than its E2 
binding capacity. Furthermore, mouse SR-BI mutants, 
unable to bind E2 and impaired in their lipid transfer, 
reduced HCVpp infection proportional to their impair-
ment of  lipid transfer ability[66]. In addition, anti-SR-BI 
mAbs have been reported that interfere specifically with 
post-binding steps during the HCV entry process linked 
to SR-BI’s lipid transfer function without affecting the 
SR-BI-E2 or SR-BI-HDL interactions[77].

Post-attachment SR-BI-E2 interaction: Although it ap-

pears increasingly unlikely that E2 is directly involved 
in SR-BI mediated primary attachment of  HCV to the 
host cell, a functional role for E2 during the interaction 
of  HCV with SR-BI should not be ignored. Indeed, 
Catanese et al[78] identified residues in SR-BI that are in-
volved in sE2 binding (AA 70-87 and residue E210), but 
these are distinct from the HDL binding site (C323[79]). 
Mutations in this region that confer SR-BI defective for 
sE2 binding (however retaining its oligomerization, HDL 
binding and cholesterol efflux activity) impaired the abil-
ity of  SR-BI to mediate HCV infection. This indicates 
that the E2 binding ability of  SR-BI remains important 
for HCV infection[78]. These observations convince us 
to believe that the ability of  E2 to interact with SR-BI is 
not predominantly involved in primary HCV attachment 
but rather becomes important during a post-attachment 
process. Accordingly, the interaction of  E2 with SR-BI 
is essential for the infection enhancement-process medi-
ated by HDL (cfr. infra)[66].

In conclusion, currently available data reveal three 
important SR-BI functions involved in HCV entry: (1) 
SR-BI-ApoE attachment; (2) SR-BI lipid transfer; and 
(3) SR-BI-E2 interaction. Altogether, it can be suggested 
that SR-BI functions as a primary HCV receptor that 
interacts with virus-associated lipoproteins before subse-
quent direct interactions occur with the HCV glycopro-
tein E2. Through its lipid transfer function, SR-BI may 
crucially facilitate the accessibility or the recruitment of  
the HCV receptor complex by membrane cholesterol 
enrichment. Finally, the ability of  SR-BI to simultane-
ously interact with HDL and E2 might be essential for 
the support or even enhancement of  HCV infection.

LDL-receptor. This receptor transfers LDL particles 
into cells through clathrin-coated pits and vesicles before 
lysosomal degradation. Within the cell, LDL-derived 
cholesterol elicits several regulatory functions in choles-
terol metabolism and homeostasis, including feedback 
inhibition of  cholesterol synthesis[80]. VLDL is not a li-
gand for LDL-R whereas its lipolytic remnants IDL and 
LDL, respectively resulting from sequential triglyceride 
hydrolysis catalyzed by LPL and HL, are[33].

While HCV envelope glycoprotein E2 did not bind to 
LDL-R[81], it was proposed to function as an HCV attach-
ment/entry factor through interaction with HCV associ-
ated ApoE and ApoB[60]. Indeed, LDL has been shown 
to compete with serum-derived HCV for LDL-R[82]. 
In addition, Molina and co-workers demonstrated the 
involvement of  LDL-R in HCV infection of  primary 
hepatocytes[83]. The virus is thought to hijack the ability 
of  LDL-R to capture lipoproteins from the circulation 
for uptake of  cholesterol into cells. This mechanism is 
not exclusive to Flaviviridae but may be a general feature 
among viruses that are associated with lipoproteins[27]. 
However, LDL-R implication in the HCV life cycle has 
been controversial. Although it has been suggested that 
HCV infectivity is facilitated by interactions between 
HCV’s ApoE moiety and LDL-R[84-86], recent data indi-
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cate that this is not necessarily the case. Prentoe et al[87] 
observed that LDL-R antibodies interfering with ApoE- 
and ApoB-dependent LDL-R association blocked HCV 
infectivity less efficiently compared to LDL-R antibodies 
with lower interference of  lipoprotein association. Fur-
thermore, addition of  exogenous LPL increased HCV 
binding to LDL-R, which increased HCV RNA inter-
nalization but reduced HCV infectivity[88]. These data 
encourage us to speculate that HCV can indeed interact 
with LDL-R but this event does not necessarily lead to 
a productive infection. Since LDL-R blocking studies 
clearly assigned a supporting role for LDL-R in the life 
cycle of  HCV, we assume that this function must be dis-
tinct from its lipoprotein binding capacities. Interesting-
ly, recent work from Albecka et al[88] confirms a role for 
LDL-R in the life cycle of  HCV but indicates that it is 
mainly involved in viral replication rather than support-
ing productive HCV entry. In summary, the function of  
LDL-R during the HCV life cycle seems double-edged: 
(1) inhibition of  infection through HCV-associated lipo-
protein recognition, which supposedly paves the way to 
non-productive HCV entry; and (2) support of  infection 
by enhancing replication.

NPC1L1. The most recently described host cell protein 
that modulates HCV cell entry is the Niemann-Pick C1-
like 1 cholesterol uptake receptor (NPC1L1)[89]. NPC1L1 
is a 13-transmembrane-domain cell surface cholesterol-
sensing receptor expressed on the apical surface of  in-
testinal enterocytes and the bile canalicular membrane of  
human hepatocytes[90]. It is critical for intestinal choles-
terol absorption[91] and regulation of  biliary cholesterol 
concentration[92]. Probably, the cholesterol uptake activity 
of  NPC1L1 is involved in HCV entry. Antibody-medi-
ated receptor blockade of  NPC1L1 large extracellular 
loop 1 (LEL1), but not LEL 2 or LEL3, and NPC1L1 
silencing impairs HCVcc infection initiation. Ezetimibe, 
a 2-azetidinone-class NPC1L1 antagonist that has been 
approved by the FDA as a cholesterol-lowering medi-
cine[93] inhibits HCV uptake of  all major genotypes in 
vitro at a post-binding step and delays genotype 1b infec-
tion in humanized mice[89].

HSPG, LPL and hepatic triglyceride lipase. Although LPL 
exerts its physiological action at the luminal surface of  
for example cardiac, muscle and adipose tissue endothe-
lial cells, it is found to be synthesized by parenchymal 
cells and thought to be translocated to its site of  action 
afterwards. LPL is a secretory water-soluble protein that 
belongs to the triglyceride lipase family and has triacylg-
lycerol hydrolase activity that targets lipoproteins such as 
chylomicrons and VLDL through their ApoCⅡ moiety. 
By hydrolyzing the triacylglycerol component, LPL pro-
vides fatty acids to peripheral tissues and therefore plays 
a central role in overall lipid metabolism. In addition, 
LPL has a non-catalytic function based on its heparin- and 
lipoprotein-binding domains, which enables it to form a 
bridge between lipoproteins and cell surface HSPG, es-

pecially with strong ligand affinity to hepatocyte HSPG 
(syndecan-1). Since HCV particles are tightly associated 
to lipoproteins, hepatocyte HSPG has been proposed 
as a possible attachment receptor for HCV[94-96]. In addi-
tion, ApoE has been implicated in virus attachment to 
the host cell by an interaction that involves cell surface 
HSPG, in particular syndecan-1[97,98].

Although extrahepatically expressed, peripheral LPL 
was shown to be an important component of  lipoproteins 
capable of  mediating their binding to hepatic receptors 
and, thereby targeting lipoproteins to the liver for inter-
nalization and degradation in hepatocytes[34,99,100]. As it is 
involved in hepatic clearance of  lipoproteins from the 
circulation, LPL’s role has been investigated in HCV cell 
entry. It was observed that exogenous LPL indeed medi-
ates cellular binding of  HCV through HCV-associated 
lipoproteins in an HSPG-dependent manner. These 
findings suggest an indirect interaction of  HCV with 
HSPG, through LPL. As mentioned however, while LPL 
enhances HCVcc binding to hepatoma cells, it actually 
decreases HCV infectivity[88,101,102].

Different mechanisms can be proposed to explain this 
abortive LPL-dependent infection process. LPL could 
mediate hepatic lipoviral clearance either by means of  its 
lipoprotein bridging abilities to liver HSPG (syndecan-1), 
that leads to direct endocytosis through the HSPG-met-
abolic pathway and degradation of  HCV[101], or alterna-
tively by its lipolytic activity, or by a combination of  both. 
The enzymatic activity of  LPL could transform HCV-as-
sociated lipoproteins into lipoprotein remnants that facili-
tate virus binding to LDL-R, also a non-productive HCV 
entry pathway[88,103]. Finally, using electron microscopy 
Maillard et al[102] provided evidence for infectivity inhibi-
tion by retention of  the viral particle at the cell surface, 
rather than non-productive cellular uptake, that depended 
on both LPL-mediated lipolytic modification of  the viral 
lipoprotein content and its strong bridging effect.

As mentioned, LPL is a non-hepatically expressed 
triglyceride lipase, mainly involved in converting VLDL 
to IDL and LDL. Another enzyme catalyzing IDL to 
LDL conversion is the hepatically expressed hepatic 
triglyceride lipase (HTGL). Modification of  HCVcc-as-
sociated lipoproteins exerted by these lipases, resulted in 
a decreased amount of  HCV-associated ApoE and HCV 
of  higher density, which caused loss of  HCV infectiv-
ity. HTGL blockade partially neutralized LPL-mediated 
infection inhibition and its knockdown even increased 
HCV infectivity[103]. Altogether, these observations tempt 
us to hypothesize that interactions with lipases can target 
the lipoviroparticle to an abortive entry pathway that in-
volves LDL-R and/or HSPG.

Lipid receptor ligands influence HCV entry: Sev-
eral SR-BI receptor ligands have been reported to alter 
HCV infectivity; HDL enhances HCV entry (see next 
paragraph) whereas VLDL, LDL, oxidized LDL and 
amyloid-α have inhibitory effects. OxLDL presumably 
inhibits HCV infection by two different mechanisms. 

15980 November 21, 2014|Volume 20|Issue 43|WJG|www.wjgnet.com

Vercauteren K et al . Lipoproteins and HCV entry neutralizing antibodies



First, it affects the biophysical properties of  the viral 
particle; and second it perturbs the interaction between 
HCV and SR-BI in a non-competitive manner[104,105]. Se-
rum amyloid A, an acute phase protein and SR-BI recep-
tor ligand, was also shown to possess anti-HCV activity 
by interacting with the viral particle[106,107].

Both LDL and VLDL reduce infectivity of  HCVpp[23,108]. 
VLDL inhibits HCVcc probably by abrogating the bind-
ing between virus associated ApoE and SR-BI[66]. To some 
degree, LDL also inhibits SR-BI interaction with HCV 
from serum of  infected patients but less efficiently than 
VLDL[67]. Accordingly, LDL and VLDL outcompete 
serum-derived lipoviroparticle binding to hepatocyte 
cell lines[60]. LDL has also been shown to compete with 
serum-derived HCV for LDL-R[82].

HDL enhances HCV infection: Different groups report-
ed that infectivity of  HCVcc and HCVpp in cell culture 
is enhanced by the presence of  human serum, in which 
the HDL component was identified as the responsible 
agent[23-25,69,72,73,108,109]. It was discovered that the HVR1 
region of  E2 is particularly important for this process, 
since HVR1 deletion or mutations in this region greatly 
hamper the infection enhancement ability of  HDL. Ac-
cordingly, we observed that HVR1 deletion or other 
mutations in the envelope glycoproteins that alter HCV’
s SR-BI-dependency for viral entry render these vi-
ruses unable to benefit from HDL-mediated infection 
enhancement[110]. SR-BI is indeed the host cell factor 
supporting this phenomenon. This is endorsed by the 
observations that HDL-mediated infection enhancement 
can be abolished by both small-molecule inhibitors of  
SR-BI’s lipid transfer[23,72,73] and mutations in SR-BI that 
reduce its lipid transfer function[109]. However, besides 
lipid transfer abrogation, these receptor mutations and 
small molecule inhibitors also decreased the binding 
potential of  sE2 to SR-BI, making it impossible to dis-
criminate the involvement of  these two receptor func-
tions in the enhancing process. Dao Thi et al[66] recently 
confirmed the essential role of  the E2 binding function 
of  SR-BI in this context. They observed that mouse SR-
BI, which has functional lipid transfer activity but lacks 
E2 binding properties, did not allow HDL to enhance 
HCV infectivity. In addition, HDL did not enhance cell 
entry of  HCVpp harboring SR-BI binding defective E2.

Since, to our knowledge, it has never been shown that 
HDL infection enhancement solely relies on the ability of  
SR-BI to interact with E2, independent of  SR-BI’s lipid 
transfer, we propose a concerted action of  both receptor 
functions in this process. We postulate that the critical 
E2-SR-BI interaction positions the HCV viral particle in 
such a way that it significantly benefits from SR-BI’s lipid 
transfer, leading to infection enhancement. By promot-
ing the SR-BI mediated lipid transfer, HDL could either 
change cholesterol contents of  the lipoviroparticle itself  
or initiate cholesterol enrichment of  the host cell plasma 
membrane resulting in facilitation of  post-attachment 
entry events. It has indeed been reported that HCV en-
try is dependent on the cholesterol content of  the host 

cell membrane[111]. Possibly, cholesterol-mediated elevated 
plasma membrane fluidity assists and accelerates essen-
tial events in the HCV entry process such as receptor 
recruitment and interactions, particle internalization and 
fusion. Of  note, HDL does not stimulate HCVpp or sE2 
binding to CD81 or SR-BI, and no indication for direct 
interactions between HDL and HCVpp have been ob-
served[73,112].

Increased receptor recruitment and interactions. E2-
specific antibodies do not abrogate HCV binding to SR-
BI, yet they neutralized infectivity of  HCV particles of  
all densities[66]. Although E2 is therefore not involved in 
primary HCV-SR-BI attachment, it does mediate HCV 
cell entry by enabling HDL to enhance its infectivity and 
through interaction with more downstream entry fac-
tors. It is observed that the HVR1 region of  E2 masks 
the viral binding site to CD81[113], the central regulator 
of  HCV entry[114]. Possibly by inducing a conformational 
change to the viral envelope, HCV-E2-SR-BI interac-
tion activates the virus for CD81 receptor engagement. 
A kinetic analysis of  HCVcc entry illustrated that SR-BI 
acts at an early step in the infection process closely linked 
to the interactions of  the virus with CD81 and CLDN1 
suggesting that HCV entry may be mediated through the 
formation of  co-receptor complexes[68,115]. Additional evi-
dence for co-receptor complex formation between CD81 
and CLDN1 was demonstrated using FRET analysis[116].

SR-BI localizes to cholesterol-enriched plasma mem-
brane microdomains[117] where also tetraspanins such as 
CD81 associate with each other, with other tetraspanin 
and with non tetraspanin proteins. These associations are 
modulated by cholesterol[118,119]. Therefore, SR-BI/HDL 
mediated cholesterol enrichment of  the plasma mem-
brane could increase the efficiency of  co-receptor com-
plex formation. For this reason, the SR-BI-HDL-HCV 
interaction should act in concert with downstream HCV 
receptors. CD81 is indeed required for SR-BI/HDL-me-
diated HCV entry enhancement since silencing of  CD81 
expression abolished this process[68]. In addition, CD81 
and SR-BI cooperatively mediate HCV infection, and 
this is dependent on membrane cholesterol content[111]. 
Cellular cholesterol depletion also decreased HCV infec-
tivity by reducing CLDN1 localization, CLDN1-CD81 
and CD81-CD81 association at the plasma membrane[120]. 
Furthermore, SR-BI and CD81 mutants defective for 
receptor palmitoylation, which is essential for their parti-
tioning in cholesterol-rich microdomains, reduced HCV 
entry[109,121]. Hydrolysis of  sphingomyelin, another im-
portant plasma membrane lipid constituent, reduced 
HCV entry by decreasing CD81 cell surface levels[122]. Al-
together, these observations emphasize that the function 
of  HCV cell entry factors strongly depends on specific 
membrane lipid contents. Therefore, it can be assumed 
that these HCV receptor associations benefit from SR-
BI/HDL-mediated cholesterol delivery.

Accelerated particle internalization. HDL-mediated HCVpp 
and HCVcc entry acceleration has been observed[24,73]. HDL 
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accelerates HCV endocytosis by reducing the time that 
viral particles are cell-bound before being internalized[73]. 
This pre-internalization phase may reflect the time needed 
to form HCV receptor complexes, a process that likely 
benefits from SR-BI/HDL-mediated cholesterol delivery 
(cfr supra). This is in agreement with the rate-limiting role 
fulfilled by SR-BI in HCV entry[123,124].

Increased fusion. After formation of  the HCV-receptor 
complex, HCV utilizes clathrin-dependent receptor me-
diated endocytosis to enter cells. Of  note, the function 
of  these specialized cholesterol-enriched plasma mem-
brane domains, clathrin-coated pits, is also dependent on 
membrane cholesterol levels[125]. The internalization step 
of  endocytosis involves the budding of  vesicles from the 
plasma membrane, which are then targeted to and fused 
with an early endosomal compartment. In the early en-
dosome, acidification probably induces a conformational 
change in the E1E2 glycoproteins, after which the viral 
envelope fuses with the endosomal membrane, thereby 
releasing the viral nucleocapsid into the cytoplasm[126,127]. 
This fusion process is significantly facilitated by the 
presence of  cholesterol and sphingomyelin in the target 
membrane[128,129] and ApoCI, an exchangeable apolipo-
protein that predominantly resides in HDL, on the viral 
membrane[112]. Since HDL did not directly interact or ex-
change ApoCI with HCV, the authors propose a mecha-
nism for ApoCI exchange mediated by a close interac-
tion of  HDL with HCV at their common receptor, SR-
BI[112]. We hypothesize that this exchange depends on a 
correct approximation of  HCV with HDL, mediated by 
an intact SR-BI-E2 interaction that is essential for HDL-
mediated infection enhancement.

Effects on viral RNA replication
Genomic HCV RNA replication[130] has also been linked 
to lipid metabolism[131]. Changes in hepatocyte lipid con-
tent could therefore affect the replication of  the HCV 
genome. Indeed, an anti-LDL-R mAb decreased HCV 
RNA replication by altering intracellular lipid content[88]. 
For example decreased free/esterified cholesterol and 
phosphatidylcholine/phospatidylethanolamine ratios 
were observed[88]. Of  particular interest is the latter ratio 
of  membrane phospholipids which, when decreased, has 
been linked to steatohepatitis. A decrease of  this phos-
pholipid ratio affects endoplasmic reticulum membrane 
integrity where HCV replication takes place[132]. In addi-
tion, the HCV polymerase, NS5B, contains a sphingolipid 
binding motif  and a sphingolipid biosynthesis inhibitor 
was found to block HCV replication[133]. Finally, the lipid 
kinase phosphatidylinositol 4-kinaseⅢα (PI4KⅢα) was 
shown to be a host cofactor essential for efficient HCV 
replication by supporting the formation of  the membra-
nous web, an altered membrane structure specialized in 
HCV RNA replication[134,135].

Effects on assembly and secretion
Lipid droplets establish an HCV production micro-
environment: The lipid droplet (LD) is an organelle 

used for the storage of  neutral lipids and the mainte-
nance of  intracellular lipid homeostasis. LDs consist of  
a core of  triglycerides and cholesteryl esters, surrounded 
by a phospholipid monolayer and associated proteins. 
It moves through the cytoplasm where it can interact 
with the endoplasmic reticulum, thereby facilitating lipid 
and protein transport to other organelles. In addition, 
cell signaling and trafficking events have been linked to 
LDs[136].

Moradpour et al[137] found that HCV core protein is lo-
cated on the endoplasmic reticulum membrane and on the 
surface of  cytoplasmic LDs[138]. Moreover, it was shown 
that LD-association of  HCV proteins is essential for 
production of  infectious HCV particles. HCV core pro-
teins on the LDs seem to induce endoplasmic reticulum 
derived LD-associated membrane rearrangements. These 
rearrangements might establish an HCV production mi-
croenvironment recruiting HCV RNA and non-structural 
proteins around LDs[139]. In addition, the HCV core pro-
tein induces LD overproduction which might be linked 
to steatosis and abnormal lipid metabolism caused by 
chronic HCV infection[140]. Besides lipid storage, the LD is 
involved in the lipoprotein secretory pathway[141], which is 
found to intersect with the HCV assembly process[142].

HCV secretion intersects with the VLDL secretory 
pathway: The first step in the VLDL assembly process 
involves co-translational lipidation of  ApoB-100, the 
main protein component of  VLDL. Thereto, micro-
somal triglyceride transfer protein (MTP) interacts with 
ApoB100 to deliver lipids from LDs into the endoplas-
mic reticulum lumen. Additional lipidation results in a 
triglyceride-poor form of  VLDL. After transportation to 
the Golgi apparatus, depending on the triglyceride level, 
it can either be secreted as such or further lipidated, and 
associated to other apolipoproteins such as ApoE, into 
mature triglyceride-rich VLDL by fusing with bulk lipids 
from luminal LDs[141].

HCV and VLDL are both uniquely secreted by hepato-
cytes and circulate in blood associated to each other[60,61,143]. 
This complexation likely occurs during viral particle 
assembly and release, processes found to intersect with 
VLDL assembly and secretion pathways. On isolated mem-
brane vesicles containing the HCV replication complex, 
Huang et al[142] observed enrichment of  proteins involved 
in VLDL assembly, such as ApoB, ApoE and MTP. In 
addition, HCV production was reduced by VLDL as-
sembly blockade using ApoB silencing and MTP inhibi-
tion[142,144,145]. These findings, together with the observa-
tion that infectious intracellular precursors of  HCV have 
a higher buoyant density compared to secreted HCV[146,147] 
argues for a lipidation of  HCV during a maturation pro-
cess that parallels VLDL formation. Additional evidence 
for the overlap of  HCV and VLDL assembly processes 
is provided by the work of  Icard et al[148]. They detected 
HCV glycoproteins in ApoB containing triglyceride rich 
lipoproteins when expressed in Caco-2 and HepG2 cells, 
but not in Huh7 hepatoma cells, an event that was pre-
vented by MTP inhibition. Moreover, HCV is thought 
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to divert cellular processes towards its own generation, 
which is detrimental to the hepatocyte’s VLDL pro-
duction. An HCV-induced deficiency in arylacetamide 
deacetylase, an enzyme involved in VLDL production 
by lipolysis of  triacylglycerol from LDs, was identified 
to cause VLDL production impairment during the early 
peak of  HCV infection in culture[149].

Besides MTP and ApoB, ApoE is essential during 
VLDL and HCV production. Fazio et al[150] demonstrated 
that ApoE is not exclusively important for lipoprotein 
uptake alone, but it can be recycled to be involved in lipo-
protein assembly as well. Interestingly, its knockdown ham-
pers the production of  infectious HCV particles[151,152]. 
Production of  secreted infectious HCV was very poorly 
restored after ectopic expression of  an ApoE mutant 
that is unable to be secreted; infectious HCV particles 
accumulated intracellularly instead[86]. It should be noted 
that Jiang et al[152], emphasize the importance of  ApoE 
during HCV production but show that ApoB inhibition 
does not affect this process. They attribute the effect of  
MTP inhibitors on HCV production suppression to its 
inhibitory consequences on ApoE expression rather than 
its blockade of  ApoB lipidation. Accordingly, produc-
tion of  HCV from non-liver cells depends on ectopic 
expression of  ApoE[153] and not ApoB or MTP[154]. ApoE 
interacts with HCV nonstructural protein 5A (NS5A) 
that is involved in HCV production. Hence assembly-
defective HCV mutants had strongly impaired ApoE-
NS5A binding[152,155]. ApoE is suggested to be involved in 
an assembly step that acts between capsid envelopment 
and secretion of  infectious HCV[154].

Apolipoproteins and lipids are HCV particle con-
stituents: While the requirement of  ApoB for HCV 
assembly is controversial, ApoB-containing lipoviropar-
ticles have been identified in patients[60]. Although VLDL 
and both anti-ApoB and ApoE block serum derived 
lipoviroparticle binding to hepatocyte cell lines[60], only 
VLDL and anti-ApoE can efficiently compete them out 
for interaction with SR-BI[67]. The presence of  ApoE on 
the viral particle is confirmed in different reports and 
is assigned a very important function in HCV entry, es-
pecially since ApoE specific antibodies neutralize HCV 
infectivity[84,151,156]. As mentioned, ApoE, rather than 
HCV glycoprotein E2, is involved in primary attachment 
of  HCV to SR-BI[66,67]. In addition, ApoE is involved in 
direct cell-to-cell transmission[154] and the loss of  HCV 
associated ApoE, after LPL treatment, resulted in de-
creased HCV infectivity[103].

ApoCI, an exchangeable apolipoprotein that predom-
inantly resides in HDL, has been identified as a compo-
nent of  the HCV viral particle[157]. While ApoCI is not a 
minimal requirement for HCV assembly[154], its associa-
tion occurs within the cell prior to virus release[157]. Like 
HDL, pre-incubation of  HCVpp with ApoCI resulted in 
a genotype-independent enhancement of  infection. The 
observation that anti-ApoCI suppressed the HDL-medi-
ated infection enhancement further suggests that ApoCI 

is a key mediator of  this process[108,112,157]. As mentioned, 
ApoCI enhances HCV infectivity by specifically promot-
ing HCV fusion. It should be noted that higher con-
centrations of  ApoCI inhibited HCVpp infectivity by 
specifically disrupting the viral membrane[112].

In support of  the tight association with lipoproteins, 
it was observed that the lipid composition of  HCV par-
ticles is strikingly different from cell membranes, but its 
increased ratio of  cholesteryl esters-to-phospholipids 
rather resembles that of  LDL and VLDL[156]. Further-
more, the association of  cholesterol and sphingolipids 
with HCV is essential for cell internalization, virus matu-
ration and infectivity[158,159]. In addition, HCV-associated 
cholesterol might contribute to the virion’s interaction 
with ApoE, since cholesterol-extracted HCVcc showed 
dramatically reduced reactivity with anti-ApoE[159].

Effect of lipoproteins on 
antiviral efficacy of anti-HCV and 
anti-receptor antibodies
Effect of lipoproteins on escape from anti-HCV 
neutralizing Abs
HCV-associated lipoproteins: Lipoproteins associ-
ated to virus particles could mask neutralizing epitopes, 
thereby facilitating viral escape from the humoral im-
mune response. Besides viral components, cell entry of  
HCV is initiated and mediated by endogenous proteins 
providing a mechanism of  escape from the humoral 
immune response. Indeed, HCV uses associated host 
lipoprotein components to attach to lipid receptors on 
the hepatocyte. This explains, at least partially, the inef-
ficiency of  anti-envelope antibodies to prevent primary 
hepatocyte attachment of  HCV and to neutralize HCV 
infectivity[66,67]. Indeed, it has been postulated that virus-
lipoprotein interactions play a role in immune evasion[60]. 
Some evidence has been obtained to support this hy-
pothesis. It was observed that HCV particles of  lower 
density are more resistant to neutralizing antibodies, a 
feature that might however be specific for gt2a virus 
only[160-162]. In addition, serum-derived HCV particles 
have been observed that were seemingly totally bound 
to beta-lipoprotein, a condition that coincided with the 
absence of  HCV-IgG complexes, suggesting that virus 
associated lipoproteins may restrict the access of  anti-
envelope antibodies[163].

Previous studies have indicated a role for HVR1 and E2 
residue 451 in covering the CD81 binding site, shielding 
neutralizing epitopes and infectivity of  low density viral 
particles[113,160]. In addition, Tao and coworkers described 
a mutant (I414T) with increased susceptibility to E2 neu-
tralizing Abs. Although prior to release, no difference in 
neutralization behavior was observed between mutant 
and wild type virus, the latter became more resistant to 
neutralization upon cell secretion. This observation was 
attributed to increased ApoE and ApoCI abundance 
on the viral particle[147]. Accordingly, HCV production 

15983 November 21, 2014|Volume 20|Issue 43|WJG|www.wjgnet.com

Vercauteren K et al . Lipoproteins and HCV entry neutralizing antibodies



in ApoE knockdown cells generates viral particles with 
increased sensitivity to neutralization[164]. In addition, a 
correlation was observed between ApoE association and 
the ability of  a viral isolate to escape from neutralizing 
antibodies and infect the liver graft after liver transplan-
tation[164]. This might explain viral quasispecies evolu-
tion during liver transplantation. Clinical virus isolates 
selected during the liver transplantation process were 
indeed characterized by enhanced viral entry and escape 
from neutralizing antibodies compared to non-selected 
variants[165].

We hypothesize that the interaction of  HCV-asso-
ciated ApoE with the host cell receptor SR-BI initiates 
changes to the viral particle by altering its lipid content, 
mediated by SR-BI’s lipid transfer activity. Alternatively, 
the ApoE-SR-BI interaction could precede and direct 
E2 presentation to SR-BI, which in turn initiates a con-
formational change in E2. These modifications might 
result in exposing CD81 binding sites and neutralizing 
epitopes in E2. This gradual epitope exposure could be 
a system used by HCV to preclude neutralizing antibody 
recognition and might be needed for E2 to interact with 
the downstream receptor CD81. It has indeed been sug-
gested that CD81 binding epitopes are not yet exposed 
on circulating particles[81,166,167]. This implies that anti-E2 
antibodies interfering with E2-CD81 interactions may 
only exert their neutralizing activity from the moment of  
epitope exposure after SR-BI docking until the interac-
tion with the downstream coreceptor complex. Impor-
tantly, HDL reduces this time window presumably by 
facilitating receptor complex formation[73].

Virus-free lipoproteins: As mentioned before, HDL 
is able to enhance HCV infectivity via the SR-BI lipid 
transfer and E2 binding function. It was observed that 
HDL reduces the lag between HCV-host cell binding 
and its actual internalization. This might reflect a reduc-
tion in the time needed to form a functional receptor 
complex and the time needed for viral glycoprotein E2 
to engage with CD81. Therefore, HDL can reduce the 
antiviral efficiency of  molecules blocking these interac-
tions by shortening the time window during which such 
molecules are active. In fact, the virus might use this 
entry acceleration to escape humoral immune responses 
that target this virus-host factor interaction[73]. This was 
confirmed by a kinetic analysis revealing that HCVpp 
entry enhancement by HDL is initiated earlier than the 
activity of  neutralizing antibodies[24]. Accordingly, by 
enhancing HCV entry, HDL lowers the neutralization 
efficacy of  such anti-HCV antibodies. This neutralization 
attenuation effect was specifically observed for antibodies 
interfering with the E2-CD81 interaction (such as AP33, 
3/11 and H48) and was not observed for polyclonal 
anti-E1 or an antibody with slower neutralization kinet-
ics that interfered with E2-SR-BI (designated 9/27)[24,73]. 
In addition, antibodies isolated from HCV-infected pa-
tients also suffer from reduced neutralization efficacy in 
the presence of  human serum or HDL[23-25]. Inhibition 

of  SR-BI’s lipid transfer restores neutralization by anti-
HCV antibodies in the presence of  human serum[23,24,73]; 
resistance to neutralization by an anti-E2 neutralizing 
Ab (C1) correlated with increased SR-BI expression 
levels[123]; and, the neutralizing activity of  patient sera 
increased with lower SR-BI levels[24]. These observations 
indicate that SR-BI is the responsible factor, activated 
by HDL, for neutralization attenuation of  anti-HCV 
antibodies. In conclusion, although antibodies that bind 
to the viral envelope, and thereby interfere with recep-
tor interactions, are able to neutralize HCV infection, 
SR-BI/HDL interactions accelerate the entry of  HCV 
particles that are not yet neutralized. This process there-
fore might help the virus to persist in patients. Indeed, 
persisting viral strains were more efficiently facilitated by 
serum than those that were controlled during the acute 
phase[25].

Effect of lipoproteins on escape from anti-receptor Abs
Anti-CD81 antibodies: Another class of  HCV entry 
inhibitors that interfere with CD81 and E2 interactions 
are CD81-receptor blockers. If  this receptor blocker is 
not present before the virus initiates its entry, HDL could 
again reduce its antiviral efficacy by shortening the win-
dow of  effective antiviral activity. Accordingly, HCV 
infection inhibition using an anti-CD81 mAb, designated 
JS81, was strongly reduced when added during infection 
in the presence of  human serum[73]. Once more, the at-
tenuation of  anti-CD81 antiviral efficacy was alleviated 
by blocking SR-BI, indicating that compounds that block 
E2-CD81 interaction are less potent when SR-BI is ac-
tivated. The same antibody was effective in preventing 
HCV infection in a human-liver chimeric mouse model, 
but was unable to resolve infection when administered 
shortly (six hours to three days) after viral challenge[70,168]. 
This again highlights the importance of  CD81 receptor 
blocker availability before exposure to the virus.

Anti-SR-BI antibodies: In contrast to CD81 receptor 
blockade, the timing of  SR-BI inhibition seems less deli-
cate since administration of  anti-SR-BI mAb therapy 
three days after HCV inoculation still successfully pro-
tects humanized mice from infection[70,169]. Accordingly, 
we have shown that this therapy effectively inhibits direct 
cell-to-cell transmission, hence indicating that it exerts 
its antiviral activity even after the primary infection is es-
tablished. Therefore, compared to anti-CD81 therapy, it 
appears that the time frame after infection during which 
the anti-SR-BI therapy remains effective is significantly 
larger. As mentioned, HDL reduces the antiviral efficacy 
of  molecules interfering with CD81-E2 interactions by 
shortening the time window during which such mol-
ecules are active[73]. In contrast, it was shown that HDL 
did not negatively affect anti-SR-BI’s antiviral efficacy[69]. 
Moreover, we observed that human HDL positively in-
fluences the ability of  an anti-SR-BI specific antibody, 
mAb1671, to inhibit HCV infectivity[110]. Addition of  in 
vivo-like concentrations of  human HDL to anti-SR-BI 
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mAb1671 in the HCV cell culture system significantly 
increases its antiviral efficacy, enabling almost complete 
infection inhibition. This observation might explain why 
the antibody reaches higher protection levels in human-
ized mice than it does in the HCV cell culture system; 
and why it has a larger therapeutic window compared to 
anti-CD81 in vivo. Of  note, anti-SR-BI small molecule 
ITX-5061’s antiviral efficacy was not increased by the 
addition of  in vivo-like concentrations of  human HDL in 
the HCV cell culture system.

CONCLUSION
As mentioned, today no anti-HCV therapy is approved 
for prevention of  re-infection after liver transplantation. 
Interestingly, anti-SR-BI therapy was strongly protective 
in humanized mice after exposure to a serum-derived viral 
variant that escaped the control of  the adaptive immune 
response and became dominant after liver transplanta-
tion[165,169]. These variants have an increased entry pheno-
type and escape more easily from envelope neutralizing 
antibodies, possibly due to increased HCV-ApoE associ-
ations[164]. These data suggest that SR-BI receptor block-
ade may be a novel therapeutic approach to prevent graft 
reinfection in liver transplant patients. Furthermore, 
since active SR-BI was shown to be the responsible 
factor for HDL-mediated infection enhancement and 
reduced efficacy of  anti-CD81 and anti-E2 neutralizing 
Abs, SR-BI inhibitors might increase their antiviral effi-
cacy in vivo. Although HCV variants have been described 
that are more resistant to anti-SR-BI therapy in culture, 
these variants remain fully responsive to anti-SR-BI 
therapy in humanized mice[110]. These observations en-
courage us to speculate that combinations of  anti-SR-BI 
with anti-E2 antibodies might be worth the considering 
in the context of  liver transplantation.
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