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DIBRIS, Università degli Studi di Genova
Via Opera Pia, 13

I-16145 Genova, Italy
http://www.dibris.unige.it/

Ph.D. Thesis in Computer Science and Systems Engineering
Secure and Reliable Systems Curriculum

(S.S.D. INF/01)

Submitted by
Marco Zuppelli
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Abstract

A new attack trend concerns the use of some form of steganography and information
hiding to make malware stealthier and able to elude many standard security mecha-
nisms. Therefore, this Thesis addresses the detection and the mitigation of this class
of threats1. In particular, it considers malware implementing covert communications
within network traffic or cloaking malicious payloads within digital images.

The first research contribution of this Thesis is in the detection of network covert
channels. Unfortunately, the literature on the topic lacks of real traffic traces or
attack samples to perform precise tests or security assessments. Thus, a propaedeu-
tic research activity has been devoted to develop two ad-hoc tools. The first al-
lows to create covert channels targeting the IPv6 protocol by eavesdropping flows,
whereas the second allows to embed secret data within arbitrary traffic traces that
can be replayed to perform investigations in realistic conditions. This Thesis then
starts with a security assessment concerning the impact of hidden network commu-
nications in production-quality scenarios. Results have been obtained by consider-
ing channels cloaking data in the most popular protocols (e.g., TLS, IPv4/v6, and
ICMPv4/v6) and showcased that de-facto standard intrusion detection systems and
firewalls (i.e., Snort, Suricata, and Zeek) are unable to spot this class of hazards.
Since malware can conceal information (e.g., commands and configuration files) in
almost every protocol, traffic feature or network element, configuring or adapting
pre-existent security solutions could be not straightforward. Moreover, inspecting
multiple protocols, fields or conversations at the same time could lead to perfor-
mance issues. Thus, a major effort has been devoted to develop a suite based on
the extended Berkeley Packet Filter (eBPF) to gain visibility over different network
protocols/components and to efficiently collect various performance indicators or
statistics by using a unique technology. This part of research allowed to spot the
presence of network covert channels targeting the header of the IPv6 protocol or
the inter-packet time of generic network conversations. In addition, the approach

1The research presented in this Thesis has been partially funded by the Horizon 2020 Program through the
Project Secure Intelligent Methods for Advanced RecoGnition of malware and stegomalware - SIMARGL, H2020-
SU-ICT-01-2018, Grant Agreement No. 830929.
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based on eBPF turned out to be very flexible and also allowed to reveal hidden data
transfers between two processes co-located within the same host. Another impor-
tant contribution of this part of the Thesis concerns the deployment of the suite in
realistic scenarios and its comparison with other similar tools. Specifically, a thor-
ough performance evaluation demonstrated that eBPF can be used to inspect traffic
and reveal the presence of covert communications also when in the presence of high
loads, e.g., it can sustain rates up to 3 Gbit/s with commodity hardware. To further
address the problem of revealing network covert channels in realistic environments,
this Thesis also investigates malware targeting traffic generated by Internet of Things
devices. In this case, an incremental ensemble of autoencoders has been considered
to face the “unknown” location of the hidden data generated by a threat covertly
exchanging commands towards a remote attacker.

The second research contribution of this Thesis is in the detection of malicious pay-
loads hidden within digital images. In fact, the majority of real-world malware ex-
ploits hiding methods based on Least Significant Bit steganography and some of its
variants, such as the Invoke-PSImage mechanism. Therefore, a relevant amount of
research has been done to detect the presence of hidden data and classify the pay-
load (e.g., malicious PowerShell scripts or PHP fragments). To this aim, mechanisms
leveraging Deep Neural Networks (DNNs) proved to be flexible and effective since
they can learn by combining raw low-level data and can be updated or retrained to
consider unseen payloads or images with different features. To take into account re-
alistic threat models, this Thesis studies malware targeting different types of images
(i.e., favicons and icons) and various payloads (e.g., URLs and Ethereum addresses,
as well as webshells). Obtained results showcased that DNNs can be considered a
valid tool for spotting the presence of hidden contents since their detection accu-
racy is always above ∼90% also when facing “elusion” mechanisms such as basic
obfuscation techniques or alternative encoding schemes. Lastly, when detection or
classification are not possible (e.g., due to resource constraints), approaches enforc-
ing “sanitization” can be applied. Thus, this Thesis also considers autoencoders able
to disrupt hidden malicious contents without degrading the quality of the image.

2



Acknowledgements

I would like to thank my supervisors Luca and Alessio for giving me this opportunity.
I would also like to thank Matteo, Massimo, Nunzio, Giuseppe, Wojciech, and all the people I
have had the pleasure and honor of collaborating with during these years.
I would like to thank all the friends and colleagues from IMATI for being close to me, for the
support, but above all, for the “yogurtino” breaks.
Finally, I would like to express my gratitude to my family for their understanding, encourage-
ment, and support all through my studies.

This work has been partially supported and funded by the Horizon 2020 Program through the
Project Secure Intelligent Methods for Advanced RecoGnition of malware and stegomalware -
SIMARGL, H2020-SU-ICT-01-2018, Grant Agreement No. 830929.



Table of Contents

I Preliminaries 6

Chapter 1 Introduction 7

1.1 Information Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Covert Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Local Covert Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Network Covert Channels . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.3 Detection of Network Covert Channels . . . . . . . . . . . . . . . . . . 15

1.3 Digital Media Steganography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Detection of Malware Hidden in Digital Images . . . . . . . . . . . . . . 20

1.4 Real Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Research Contributions and Thesis Outline . . . . . . . . . . . . . . . . . . . . 23

II Detection of Covert Channels 25

Chapter 2 Testing Tools and Security Assessment 26

2.1 Offline Creation of Covert Channels . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2 Performance of the Tool . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.2.1 Data Injection and Replaying . . . . . . . . . . . . . . . . . . 31

2.1.2.2 Generation of Metrics . . . . . . . . . . . . . . . . . . . . . . 33

1



2.1.2.3 Resource Usage . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Online Creation of Covert Channels . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.1 Covert Channels in IPv6 . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.2 Covert Channels in TLS . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Security Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.1 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 3 Data Gathering for Covert Channels 45

3.1 Collecting Statistics From Protocol Headers . . . . . . . . . . . . . . . . . . . . 45

3.2 The bccstego Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 The eBPF Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 The ipstats.py Tool . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Towards the Detection of Covert Channels . . . . . . . . . . . . . . . . . 55

3.4 Other Tracing Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 4 Detection of Covert Channels via Kernel-level Tracing 59

4.1 Data Gathering for Colluding Applications . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 chmod-based Stegomalware and its Detection . . . . . . . . . . . . . . . 60

4.1.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Data Gathering for Network Covert Channels . . . . . . . . . . . . . . . . . . . 64

4.2.1 IPv6 Covert Channels and Their Detection . . . . . . . . . . . . . . . . 64

4.2.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Deployability and Additional Results . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Resource Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 Envisioned Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2



4.3.3 Open Points and Limits of the Approach . . . . . . . . . . . . . . . . . . 71

4.4 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 5 Detection of Network Covert Channels via Code Layering 74

5.1 Reference Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Detection of Storage Covert Channels . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.1 Detection of Channels Targeting the Flow Label . . . . . . . . . . . . . 81

5.4.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.3 Channels Targeting Other IPv6 Fields . . . . . . . . . . . . . . . . . . . 85

5.5 Detection of Timing Covert Channels . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.1 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6.1 Impact on Packet Transmission . . . . . . . . . . . . . . . . . . . . . . 89

5.6.2 CPU and Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.7 eBPF for Security Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.8 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Chapter 6 Towards a Real-World Deployment 95

6.1 Pros and Cons of Monitoring and Inspection Processes . . . . . . . . . . . . . . 95

6.2 Monitoring Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.1 Extending Zeek to Handle Network Covert Channels . . . . . . . . . . . 97

6.2.2 Implementing the bin-based Approach with libpcap . . . . . . . . . . . . 98

6.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.1 Impact on Packet Transmission . . . . . . . . . . . . . . . . . . . . . . 100

6.4.2 CPU Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3



6.4.3 Memory Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Chapter 7 Detection of Network Covert Channels via AI 109

7.1 Attack Model and Design of the Covert Channel . . . . . . . . . . . . . . . . . . 110

7.2 Deep Ensemble Learning Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.1 Detection Through a Single Autoencoder . . . . . . . . . . . . . . . . . 113

7.2.2 Learning and Combining Different Detectors . . . . . . . . . . . . . . . 115

7.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3.2 Preprocessing, Parameters and Evaluation Metrics . . . . . . . . . . . . 117

7.3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.4 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

III Detection of Malware Hidden in Digital Images 122

Chapter 8 Revealing Threats in Favicons via AI 123

8.1 Attack Model and Solution Approach . . . . . . . . . . . . . . . . . . . . . . . 124

8.2 Detection via Deep Learning Models . . . . . . . . . . . . . . . . . . . . . . . . 126

8.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3.2 Parameters, Evaluation Metrics, and Testbed . . . . . . . . . . . . . . . 129

8.3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.4 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Chapter 9 Revealing Threats in Icons via AI 134

9.1 Attack Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.2 Detection Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4



9.2.1 Architectural Blueprint . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.2.2 Hidden Content Detection Approach . . . . . . . . . . . . . . . . . . . . 138

9.2.3 Neural Detector Architecture . . . . . . . . . . . . . . . . . . . . . . . . 139

9.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.3.1 Design of Attacks and Dataset Preparation . . . . . . . . . . . . . . . . 142

9.3.2 Parameters, Evaluation Metrics, and Testbed . . . . . . . . . . . . . . . 144

9.3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.4 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Chapter 10 Sanitization of Images Containing Stegomalware via AI 149

10.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

10.1.1 Stegomalware and Attack Model . . . . . . . . . . . . . . . . . . . . . . 150

10.1.2 Machine Learning for Image Processing . . . . . . . . . . . . . . . . . . 151

10.2 Sanitization Through Machine Learning . . . . . . . . . . . . . . . . . . . . . . 152

10.2.1 Architectural Blueprint . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

10.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

10.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

10.4 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

IV Conclusions and Appendices 159

Chapter 11 Conclusions and Future Works 160

Bibliography 164

Appendix A Software and Datasets 185

Appendix B Publications Used in This Thesis 187

Appendix C Publications Made During the PhD 192

5



Part I

Preliminaries

6



Chapter 1

Introduction

This Thesis deals with the detection of malware endowed with information hiding and stegano-
graphic techniques, which can be used to avoid detection, bypass security perimeters or exfiltrate
sensitive information without being noticed. Accordingly, this class of threats is often identified
as stegomalware, i.e., steganographic malware. As it will be detailed later, the majority of at-
tacks observed in real scenarios mainly cloaks information in network traffic and digital images.
Therefore, this Thesis faces the problems related to the detection and mitigation of stegomalware
hiding arbitrary data in network conversations and concealing additional payloads in various
types of images.

1.1 Information Hiding

The umbrella term information hiding includes the broad range of disciplines used to conceal
messages, secret information, or arbitrary data within various digital objects defined as carri-
ers. Such techniques are typically used for different purposes, for instance, they allow to protect
intellectual proprieties or enforce copyright by avoiding duplication, illegal distribution or tam-
pering of software components and digital objects. The latter can be also uniquely identified via a
“hidden” fingerprint, e.g., a serial number, which prevents unauthorized usages. In this case, the
hidden data is commonly referred as watermark. Such mechanisms are now commonly applied
to network traffic for a wide-array of tasks, for instance, to identify flows and trace them across
the Internet or to implement traffic engineering policies [IE16]. However, the investigation of
watermarking techniques is outside the scope of this Thesis.

Despite licit usages, information hiding techniques are increasingly adopted by attackers to
make malware stealthier, more sophisticated and capable of eluding some security frameworks
[MC15]. For example, mechanisms to cloak data can be used to conceal malicious payloads or
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attack routines into innocent-looking images, escape file system analysis, covertly exfiltrate sen-
sitive data, remotely orchestrate botnets, implement multi-stage loading architectures, or retrieve
additional configuration files or commands [CCC+20]. As regards the first notable example of a
long-lasting attack campaign leveraging information hiding mechanisms, we mention the Oper-
ation Shady RAT started in mid 2006. In more detail, the attack campaign leverages a phishing
email to decoy the victim. When the attachment is executed, an exploit downloads an additional
malware component to open a backdoor for communicating towards a Command & Control
(C&C) server. To avoid detection, attackers cloak malicious instructions in the HTML source,
i.e., the commands are hidden in HTML comments and obfuscated by using Base64 encoding.
When retrieved by the backdoor, the additional commands enable the attackers to access the
targeted machine and rapidly escalate privileges [Alp11].

Nowadays, the adoption of hiding techniques to empower different stages of the cyber kill chain
is becoming widespread, so much that researchers named this class of threats stegomalware
[CM22]. This term was firstly introduced in [STTPL14] to showcase how mobile applications
containing hidden malicious code remained undetected within the Google Play Store for several
months. Although the literature and real-world attacks take advantage of a great variety of dif-
ferent information hiding techniques [WCM+22], especially in terms of carriers and embedding
mechanisms, in this Thesis we address two major domains: the creation of covert channels (es-
pecially for the network case) and the use of digital media steganography for cloaking malicious
assets.

1.2 Covert Channels

Among the various techniques that can be used to make malware stealthier or to implement
sophisticated attack schemes, covert channels are of prime importance. Originally introduced
by Lampson in 1973, covert channels are “[channels] not intended for information transfer at
all” [Lam73]. Figure 1.1 depicts the hidden communication model for implementing a covert
channel. Such a model has been firstly formalized by Simmons in 1983 [Sim84] and it considers
two prisoners, defined as the covert sender and the covert receiver, wanting to escape. A third-
party entity, defined as the warden, monitors their communications. For this reason, the prisoners
want to deceive the warden by finding a way to secretly communicate and arrange an escape plan.
To do this, they must agree on a pre-shared hiding mechanism, select a carrier to “transport” the
secret information and then, set up a covert channel.

To not appear suspicious, the covert endpoints should choose popular carriers in order to pass
unnoticed amongst the bulk of data and to increase the overall stealthiness. Moreover, the carrier
containing the secret should preserve its original functionalities and should not appear anomalous
or suspicious to the warden. In other words, the “Carrier + Secret” element depicted in the figure
should be as much as possible similar to the original “Carrier”.

8



Covert
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Covert
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Carrier Carrier
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Carrier
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Secret Secret
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Communication Channel

Covert Channel

Figure 1.1: Model for attack schemes implementing covert channels.

Even if during the years mechanisms for implementing the reference model of Figure 1.1 prolif-
erated, two major classes of covert channels exist: storage and timing covert channels. The first
group consists of channels created by directly writing the secret information in the carrier. For
instance, a payload can be hidden within the header of a network protocol. The second group
is composed of those channels created by encoding the secret information through the temporal
evolution of a certain event. Figure 1.2 depicts two different approaches for implementing timing
channels. In particular, Figure 1.2(a) depicts temporal techniques, which are based on the fre-
quency of events. Considering the example of a covert communication within a mobile device, a
covert sender can use the status of the screen as the carrier. Hence, it can manipulate its behavior
by alternating between ON and OFF states. Then, the covert receiver monitors the screen: if the
time elapsed between two activation events is greater than a certain threshold, then the bit 1 is
transmitted [SZZ+11, LW13]. Instead, Figure 1.2(b) depicts volume techniques, which are based
on the modification of the magnitude of an event. For example, the covert sender can encode the
bits composing a secret message in the amount of threads generated in a certain time window: if
the amount of threads is higher than an agreed value, then the bit 1 is transmitted [MRFC12].

In general, the performance of a covert channel is described via different but interdependent
metrics, often denoted as the “magic triangle” [FPK07, MC14]. Specifically, the proprieties
are: the steganographic bandwidth, i.e., how much secret information can be sent per time unit,
the undetectability, i.e., how the channel is difficult to spot, and the robustness, i.e., how the
channel can resist against delays, errors and deliberate manipulations from a security tool acting
as a warden. These metrics are tightly coupled. In fact, it is not possible to maximize a metric

9
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Figure 1.2: Reference models for timing covert channels.

belonging to the magic triangle without degrading the others. As a paradigmatic example, the
steganographic bandwidth cannot be increased without influencing the undetectability of the
channel: the more the carrier is manipulated to contain secrets, the higher the chance of artifacts
that can reveal the presence of hidden information. Similarly, the robustness of the channel may
require to deploy an error correction algorithm causing an erosion of the available space within
the carrier or accounting for computational overheads that generate lags in the device of the
victim [UMLC17].

Some works also propose an additional metric called the steganographic cost, which allows
to evaluate the degradation experienced by the carrier due to the presence of the secret. As
an example, for a covert channel nested in a VoIP conversation, the steganographic cost can
represent the alteration of the audio quality, e.g., additional delays, reduced signal to noise ratio
performances of the codec, or audible artifacts [Maz13].

From the viewpoint of empowering a malware, there are two main types of channels: local covert
channels and network covert channels.
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Application A
(Covert Sender)

Application B
(Covert Receiver)

Sandbox Sandbox

Local Covert Channel

NetworkNetwork

Host

Figure 1.3: Reference model for the colluding applications scheme.

1.2.1 Local Covert Channels

Many attacks exploiting covert channels are created among entities wanting to communicate on
the same device [MC14]. In this Thesis, we refer to this kind of hidden communications as lo-
cal covert channels. Example of such techniques include the modulation of resources such as
the load of the CPU or the memory consumption, the manipulation of the file system, the high-
jacking of inter-process communications or messaging services, or the state of TCP/Unix sock-
ets [MRFC12, MC14, UMLC17]. For the case of developing a malware or different advanced
threats, local covert channels are often used due to their ability of creating a colluding applica-
tions attack scheme. Therefore, in this Thesis we will consider their utilization mainly in the view
of such an attack template. In more detail, with colluding applications we refer to an umbrella
for identifying a class of threats able to bypass the security policies deployed in underlying soft-
ware and hardware layers, including the guest Operating System (OS). Put briefly, the attacker
sets up an “abusive” inter-process communication service between various software entities, e.g.,
applications or processes, for exchanging data within the single host [MRFC12, MC14].

Figure 1.3 illustrates the reference scenario, i.e., two applications wanting to leak sensitive data
outside the hosting node. Both entities are sandboxed by the OS or by some third-party software
layers deployed to enforce security proprieties. The applications are then restricted to access only
some resources (e.g., volume settings or shared files) or functionalities (e.g., network services).
In particular, the Application A, i.e., the covert sender, has access to sensitive information, there-
fore it is prevented by the sandbox from accessing the network layer. The Application B, i.e., the
covert receiver, has not access to such data, thus it is considered safer and can then communicate
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with a node outside the host. In order to leak the sensitive data, the covert sender implements
a local channel to transmit the information and bypass its sandbox. To this aim, it should find
a suitable carrier where to inject the secret information. For instance, the sender can modulate
the amount of used RAM to signal bits, e.g., 1 when allocating memory and reducing the overall
availability on the host and 0 otherwise. The covert receiver monitors the utilization of the RAM,
reconstructs the hidden message and sends the information outside the host by taking advantage
of its network privileges.

Several examples of local covert channels have been proposed to exfiltrate sensitive data from
personal devices. In particular, the work [SZZ+11] showcases how two colluding applications
can exchange data through the vibration settings of an Android device, i.e., by exploiting the
notifications sent in broadcast when changing the configuration. Similarly, the volume can be
altered and then synchronously checked. Another example is based on taking locks on shared
files, i.e., signaling 1 by requesting the lock on a file shared between the covert sender and the
covert receiver. The work [MRFC12] extends this idea and introduces channels communicating
via threads enumeration, i.e., the sender generates a certain number of threads to indicate a 0
or a 1 and the receiver monitors this value by checking the proc directory. The work also
showcases a colluding applications attack scheme achieved by writing and deleting files on the
storage unit, hence modulating the free space on the device. Other examples are provided in
[WZFH15] and [GGK+17], which investigate colluding containers or virtual machines trying to
communicate via a local covert channel to exfiltrate data, map the underlying hardware or guess
if the attacker has been confined within a honeypot. Another typical scenario for a colluding
application scheme concerns the use of hidden channels between virtual machines to exfiltrate
private keys [ZJRR12].

1.2.2 Network Covert Channels

One of the most popular and effective advanced offensive mechanism based on information hid-
ing concerns the creation of a network covert channel, i.e., a hidden communication path laying
within an overt traffic flow acting as the carrier. The exploitation of network covert channels
has become popular in recent years, especially since traffic flows are often “boundless” and it
is not uncommon to have network infrastructures with flows that last several hours and can be
exploited by Advanced Persistent Threats (APTs) [MC15, CCC+20].

Typically, network covert channels are used by stegomalware for data exfiltration, implemen-
tation of the C&C infrastructure, development of cloaked transfer services for retrieving addi-
tional software components, botnet orchestration, and elusion of firewall rules [ZAB07, MC14,
WZFH15]. A network covert channel is created between two covert endpoints (defined again
as the covert sender and the covert receiver, respectively) wanting to remotely communicate in
a hidden manner. To this end, a legitimate, overt network flow is used as the carrier to contain
the secret information. Figure 1.4 shows the reference scenario and the considered attack model.
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Figure 1.4: Reference model for network covert channels.

Specifically, the figure depicts the covert sender, e.g., a compromised node belonging to a LAN,
wanting to secretly communicate with the covert receiver, e.g., the attacker or the C&C facility.
As it usually happens, a firewall, an Intrusion Detection System (IDS) or a monitoring tool is
placed at the border of the network to protect end nodes. To cloak data within a network flow,
different portions of the protocol stack or behaviors of the traffic can be used. Possible examples
are the alteration of the volume of the produced traffic, the modulation of the throughput, the ar-
tificial creation of retransmissions or increased error rates, the transcoding of multimedia streams
for using the freed capacity to store secrets, and the direct embedding of data in unused fields
of headers of packets [ZAB07, MC14, MC15, WZFH15]. As a result, these hiding mechanisms
enable the covert sender and the receiver to bypass the firewall or the network security tool.

The literature offers several examples of network traffic features and protocols that can be used
to implement a covert channel (see, e.g., [ZAB07, WZFH15] for two comprehensive surveys on
the topic). Due to its ubiquitous availability, many works explore how to inject secret data in the
TCP/IP protocol suite. For instance, the work [HS96] identifies covert channels jointly exploiting
the unused bits of the Type of Service field of the IPv4 header and the Reserved bits of
the TCP to contain up to 1 byte of secret information. The work also proposes to create hidden
communications by using the checksum of UDP packets.

Other notable examples to move secret data deal with the Session Initiation Protocol and the
work [MS08] highlights the feasibility of using different fields and features of the protocol to
implement low-bandwidth storage covert channels. For instance, both the random parts of the
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branch and the Call-ID fields can be overwritten with secret data, i.e., the “magic cookie”
and the hostname of the endpoint can be concatenated with arbitrary information. A similar
approach can be used by altering the value of the sequence number contained in the Cseq field.
A comprehensive survey of hiding techniques targeting VoIP traffic flows is presented in the
work [Maz13], which reviews several methods targeting the header/payload of datagrams (i.e.,
storage channels), the time relations (i.e., timing channels), and an hybrid combination between
the two.

Concerning the creation of covert channels targeting the IPv6 protocol, which is becoming
widespread and appealing to attackers, the literature already offers some previous attempts. For
example, the work [BPK+16] showcases how sequential IPv4 and IPv6 sessions can be used to
transmit arbitrary data. Moreover, the work deals with the leakage of hidden information through
the manipulation of different v4/v6 transitional mechanisms, e.g., 6over4. The work [LLC05]
presents several methods targeting various IPv6 header fields. For instance, the Flow Label,
a pseudo-random and uniformly generated value, can be used to contain up to 20 bits of arbitrary
information. Instead, the Payload Length can be increased to append extra data at the end of
the packet. The work also shows that the various extension headers can be used as well, e.g., the
Routing Header contains 4 reserved bytes that can be manipulated to transmit secret data.

In [ROL13] the use of the Dynamic Host Configuration Protocol to establish hidden communica-
tion paths is presented. For instance, the xid field can hide 4 bytes without altering the normal
functioning of the protocol. Instead, the server name and the file fields can carry data only
in the case of Discover, Inform and Request packets coming from the client side. The use of the
Stream Control Transmission Protocol to create covert channels is discussed in [FMS12]. For in-
stance, the Initiate Tag of each packet can be processed to contain up to 32 bits of arbitrary
information. Similarly, the Number of Inbound Streams, which defines the maximum
number of streams that the sender can handle, can contain 8 bits of secret data. Lastly, also the
Stream Sequence Number can be used to cloak up to 16 bits but this can be done only if
the original stream does not require reordering. The feasibility of hiding data within the Trans-
port Layer Security (TLS) header is investigated in [MJ15]. The work evaluates the possibility
of replacing handshake information with arbitrary data. Moreover, the work [HMC20] reviews
and designs seven different TLS-based covert channels. For example, it demonstrates how to
append a hidden content in the ClientHello message or how to alter the Cipher and the
Compression fields to encode data.

Owing to the momentum gained by smart devices and industrial control systems, the recent
work [VMWM19] demonstrates several methods to exploit features of the Message Queuing
Telemetry Transport (MQTT), e.g., by directly altering CONNECT, PUBLISH, or SUBSCRIBE
packets or by modulating the presence/absence of RETAINED messages.

Concerning the case of timing channels, they are usually protocol-agnostic and mainly imple-
mented at the network layer or by altering the error rates characterizing the data link [CBS04,
BGN17]. The work [WYH16] investigates timing covert channels varying the transmission rate
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or the timing statistics characterizing the stream of packets. Possible encoding schemes are based
upon the alteration of the throughput, the introduction of statistical signatures in the jitter or the
manipulation of the inter-packet time.

Finally, a recent research effort has started to unify and refine the terminology of hiding mecha-
nisms that exploit network traffic by defining “patterns”, i.e., a universal language used to create
taxonomies in a generic manner. The work [WZFH15] reviews 109 techniques summarized in
11 hiding patterns defined via the Pattern Language Markup Language. For instance, the “P6.
Reserved/Unused Pattern” groups all the techniques that hide data into a reserved/unused header
field, whereas the “P8. Interarrival Time Pattern” defines network covert channels that encode
an information in the inter-packet time between datagrams. This work has been improved and
extended to other steganographic domains, such as digital media and text, in [WCM+21]. We
point out that, the work [SW22] provides a taxonomy for indirect covert channels, i.e., hidden
paths requiring an intermediate node to store or redirect the covert information, which are outside
the scope of this Thesis.

1.2.3 Detection of Network Covert Channels

By considering again the reference model of Figure 1.1, a warden can be classified according to
its behavior, structure, localization, and the nature of used information [MWCK19]. For instance,
wardens can be passive or active, depending on their capability of monitoring and reporting mali-
cious communications or modifying/dropping traffic without interfering with legitimate packets
[AP98, WK12, DD15]. To effectively counteract a covert channel, as a first step, a warden must
“discover” the hidden communication attempt. Unfortunately, the complexity of network pro-
tocols as well as the heterogeneity of communication technologies prevent to develop a unified
framework. As a partial workaround, Chapter 3 will discuss a flexible and extensible method
for getting visibility over the network and for collecting data to spot the presence of different
network covert channels. Yet, in the following, we present various threat-specific approaches for
detecting hidden communications.

Since attackers can hide malicious payloads or commands within several parts of network pack-
ets, the detection of storage channels is fragmented and the majority of the solutions can only
work in narrow attack scenarios. Owing to its ubiquitous availability and multiple exploitable
behaviors, many works address the problem of revealing hidden communication nested within
the TCP. The work [ZS13] proposes a statistical model to spot data injected in the Initial
Sequence Number (ISN) field used to synchronize peers, whereas [TA05] bases the detec-
tion approach on a model of the original ISN distribution generated by the particular OS. The
work [ZLD10] models the behaviors of TCP flows by using Markov chains to reveal anomalies
through a comparison between overt and covert transition probability matrices. The mitigation of
channels exploiting the DNS has been largely studied as well, especially due to its wide adoption
in data exfiltration campaigns or botnet orchestration. The work [CLL+21] proposes a real-time
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detection method based on an artificial neural network model for revealing various DNS-based
covert channels by inspecting fully qualified domain names.

A relevant amount of works investigates how to mitigate covert channels targeting VoIP con-
versations. To prevent such attacks, the literature proposes to develop an active warden that
“sanitizes” audio signals and limits the bandwidth of the covert channels [TL07]. Unfortunately,
such approaches often lead to latency or degradation of the carrier, which could not be acceptable
when dealing with audio signals. Therefore, a passive warden could be the preferred choice to
inspect the traffic and compute measurements, such as noise quality metrics. Other examples
are provided in [Maz13], which reviews a plethora of mechanisms to tame covert communica-
tions within VoIP conversations. We mention, among the others, the analysis of audio artifacts to
spot data embedded in voice samples, the identification of anomalous traffic features revealing
schemes based on packet losses or manipulations of the delays, as well as the deployment of
nodes buffering and padding traffic to disrupt parasitic information in a blind manner.

Since IPv6 is becoming popular, various countermeasures for this protocol have been proposed
as well. For instance, [SMP17] showcases a machine learning technique based on fuzzy logic
to detect covert channels in the IPv6 header. Alas, this requires suitable datasets for training
the detector, which are often unavailable. The work [BPK+16] investigates the detection of
IPv6/IPv4 transitional mechanisms and highlights that current security tools and IDSes present
“serious drawbacks when handling IPv6 traffic”.

The protocol-agnostic nature of network timing covert channels leads to a more coherent and
homogeneous literature. In this case, the wardens are typically equipped with detection algo-
rithms based on the computation of some statistical indicators. Despite the wide array of used
methodologies (e.g., machine-learning-capable frameworks or ad-hoc metrics), the problem of
revealing hidden or parasitic conversations within timing features has been better investigated
compared to other type of channels (see [BGN17] for a comprehensive survey on the topic). For
example, [CBS04] showcases how a regularity measure computed starting from the standard de-
viation of inter-packet times of a conversation can be used to spot anomalies. Another example
concerns the use of non-parametric statistical tests comparing the inter-packet time distribu-
tions within different observations [BGC05, RHS17]. The work [GRK13] proposes a detection
method based on an entropy measure, i.e., it divides the inter-arrival times into two arrays and
calculates their hierarchical entropy. The recent work [WCTS21] deals with a detection algo-
rithm that converts sampled inter-packet times into symbolic time series and calculates the state
transition probability matrix. Then, overt and covert traffics are compared to compute a similar-
ity score for revealing the presence of hidden malicious attempts. To face advanced techniques
adopted by attackers, e.g., encryption or obfuscation, [Sti08] proposes a warden to detect timing
channels by computing the correlation between the packet timing and the data stored in mem-
ory. To address attackers hiding data in huge traffic traces, a possible idea is to take advantage
of high performance techniques. A possible example is the Worms Distributed Covert Chan-
nel Detection Framework (WoDiCoF), which leverages Apache Hadoop to efficiently process a
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large volume of network packets [KWZ+18]. Artificial Intelligence (AI) paradigms can be used
as well to develop more general approaches and mitigate possible obfuscation schemes. For
instance, [SHRS15] showcases the usage of Support Vector Machines (SVMs) to detect timing
channels and classify covert and overt traffic. Despite its effectiveness, the data used for training
the models are limited, which is a relevant problem when dealing with this class of attacks. An-
other promising approach is presented in [NZCM20], where a combination between data mining
algorithms and traffic classifiers is used to spot covert channels based on the reordering of TCP
options. The work [DAFB+19] combines both statistical analysis, e.g., mean, median, standard
deviation, or entropy of inter-packet time, and Deep Neural Networks (DNNs) to obtain better
performance compared to SVM-based approaches.

Once the warden has detected the presence of a hidden communication, it can follow two strate-
gies: eliminate or limit the covert channel. The first option is not always possible, especially if
eliminating a covert channel leads to disrupt legitimate traffic or reduce the Quality of Experi-
ence perceived by the user (e.g., degradation of audio signals in VoIP conversations). Instead,
the second approach could be adopted to reduce the usability of the channel, e.g., by impairing
the steganographic bandwidth, thus making the channel unusable or not appealing. As hinted,
choosing among these options requires different tradeoffs. For example, the processing capabil-
ities of the warden may impact the behavior of the traffic (e.g., introducing unwanted delays or
bottlenecks) or it could require expensive resources (e.g., to inspect the traffic).

As regards the limitation of covert channels, the Pump [KM93] is one of the earliest solutions.
This mechanism has been originally conceived to prevent the creation of covert channels among
two processes/users with different security levels (i.e., “high” and “low”) in a multi-level secure
system. In more detail, the Pump acts as an intermediary communication buffer between the pro-
cesses, requiring that the “low” process receives messages at probabilistic time intervals based on
the historical activity of the “high” process. This allows to introduce noise in the reception of the
messages and thus reduce the probabilities for creating a covert channel. The Network Pump is an
adapted and improved version of the Pump for its use in a network environment [KML96]. Since
the complete elimination of exploitable flaws in network protocols is often unfeasible [ZAB07],
some approaches aim at “sanitizing” the network traffic, i.e., the covert channel is eliminated by
removing the hidden information from the network traffic without interfering with the legitimate
conversations. For example, [XKC20] showcases the use of a warden able to inspect and mod-
ify headers for mitigating network storage covert channels embedded within TCP connections,
whereas [MC14] proposes to restore fields to default values when possible or to pad sequences
preventing manipulation attempts. Under specific circumstances, transitional mechanisms (e.g.,
IPv4/v6) or middleboxes (e.g., network address translation) can unintentionally disrupt possible
hidden communications during the normal processing of traffic. Moreover, the growing usage
of encryption and security protocols should also be taken into account. In fact, the development
of more secure protocols reduces the likelihood that they can be used improperly to establish
hidden channels. For example, [SVS13] showcases how the Sequence Number in the En-
capsulating Security Payload of the IPsec protocol can be naturally used to mitigate/eliminate
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covert channels modulating the order of packets. As regards the specific case of channels that
hide data through the alteration of the inter-packet time, an effective countermeasure is to add
random delays. Unfortunately, this type of mitigation technique also penalizes the legitimate
traffic, which is seldom acceptable in real use cases [BEK16].

To prevent that threats can exploit network covert channels, a promising idea is to consider
information-hiding-capable attacks from the very early design stages. By following “secure-
by-design” and “secure-by-default” principles, it is possible to prevent network protocols from
being exploited by attackers to implement stegomalware. To this extent, standardization plays
a significant role: in fact, forcing a flow to comply to its standard implementation or blocking
certain features in specific scenarios can disrupt hidden communication attempts.

As a final remark, we point out that being able to collect network information is a core task to
support frameworks and algorithms to detect and prevent attacks or engineer security-by-design
systems, especially for the case of stegomalware leveraging different types of covert channels.
To face the heterogeneity of modern deployments and to provide scalability and reusability fea-
tures, virtualization has been proposed to ease data gathering operations both in computing and
networking scenarios. As possible examples, [CRR18] and [RCL19] propose the adoption of
an orchestrator for monitoring security hooks embedded in the virtual layers of cloud applica-
tions. For the specific case of targeting communication networks, Deep Packet Inspection (DPI)
is an important component as it allows to examine many facets of a flow. For instance, [BLC13]
proposes an approach for the dynamic placement of DPI-capable software to limit power con-
sumption and costs, while delivering suitable degrees of scalability and performance. A similar
blueprint can be used to implement adaptive network security wardens (e.g., IDSes and firewalls)
encapsulated within virtual machines [LLW+12]. Moreover, due to the nature of stegomalware
and other emerging threats (e.g., cryptolockers), a recent trend concerns the gathering and mon-
itoring of some well-defined and low-level features instead of high-level yet specific metrics
[ZAB07, MC15]. Being able to gather system-specific information could allow to generalize
the detection phase or make it more scalable. Indeed, more fine-grained measurements can be
performed by operating in the lower levels of the software architecture, for instance by directly
developing in-kernel network wardens.

1.3 Digital Media Steganography

Compared to network traffic, digital objects and multimedia data offer a wider selection of at-
tractive carriers for cloaking more sophisticated payloads. For example, data can be hidden by
manipulating the echo of a certain audio signal or by taking advantage of barely audible low-
power tones [DAMH12]. Text steganography is another popular example. Information can be
hidden by manipulating the whitespaces between words and paragraphs, marking characters,
changing the style or the font, or by mapping symbols into characters [KTB17]. Recently, video
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Least Significant Bits Pixel Red Green Blue

original pixel 11010110 01111110 00101000
1 11010111 01111111 00101001
3 11010001 01111001 00101111
5 11001001 01100001 00110111
7 10101001 00000001 01010111

Table 1.1: Pixel color variation when modifying the least significant bits of the Red, Blue, and
Green channels.

files are getting more and more attention [SKM15]. Data can be hidden by using video error cor-
rection techniques [YA03] or by transmitting additional information such as subtitles [LLL06].
However, audio, text, and video, are rarely used in real attacks, thus they will not be considered
in this Thesis.

On the contrary, images are the most popular carriers for implementing offensive schemes,
since they offer both large steganographic bandwidth and adequate undetectability [MEO05].
The literature offers several steganographic mechanisms to conceal messages in digital images
[SK15, HWI+18]. Example of these techniques include Pixel Value Difference (PVD) meth-
ods, where the difference between adjacent pixels is used to decide the amount of secret infor-
mation that can be hidden [WT03]. Grey Level Modification algorithms, which map a secret
information by modifying the gray level of each pixel, are other popular mechanisms (see, e.g.,
[PC04, MAF+15]) along with Edge-based methods, which store secret bits in the edges of the im-
age [LHH10]. Due to its tradeoff between simplicity and effectiveness, the Least Significant Bit
(LSB) and its variants are the most common steganographic techniques observed in real attacks.
In essence, the LSB technique allows to alter the least significant bit(s) of the color space of the
pixels, i.e., Red, Green, Blue (RGB) to contain a secret message. Since changes in the LSBs
are often undetectable to the human sight, the method is suitable to conceal information without
causing visible alterations in the resulting image. However, the more bits are used, the more arti-
facts will be present. Table 1.1 depicts the general idea. In particular, the least significant bits of
each color component of the original pixel are modified to contain a secret information (the bits
composing the secret are underlined in the table). As it can be seen, the fewer bits are changed,
the less the resulting pixel differs from the original. With 7 least significant bits modified, the
color information is completely disrupted, and thus the presence of secret information can be
easily detected even by the human eye.

There are several other techniques based on specific transforms of the original image. For ex-
ample, some hiding mechanisms can take advantage of the Discrete Cosine Transform (DCT).
The latter “converts” the image into a sum of sinusoids of various frequencies and magnitudes,
and the coefficients of such components can be used to hide secret messages [PD12]. Other
steganographic methods are based on the Discrete Wavelet Transform [AH08], which exploits
the frequency domain of images.
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As it will be detailed in the next section, the LSB approach is one of the most popular and
effective technique used by attackers to conceal malware targeting digital images. Thus, in this
Thesis, we address the problem of detecting images containing malicious payloads hidden via
various versions of such a technique.

1.3.1 Detection of Malware Hidden in Digital Images

As discussed, multimedia objects are often used as the main carrier for conveying malicious
payloads and commands. Even if commercial tools to spot hidden payloads in digital media are
emerging, they are either unsuitable to handle the wide-range of cloaking schemes and obfusca-
tion techniques observed “in the wild”, or not mature enough to protect large-scale deployments
[HYM+20]. The most popular strategies for detecting multimedia hiding arbitrary information
fall in the steganalysis field [FG02, KKP18]. Concerning digital images, such techniques mainly
measure their statistical properties, e.g., histograms of the color values, correlation between pix-
els or distribution of the DCT coefficients, to search for discrepancies and anomalies. For exam-
ple, [PLL20] investigates the use of the Chi-Square test to calculate the probability that an image
is hiding a secret content and the work [Ker04] introduces a technique to estimate the length of
the secret message in 8-bit GIF images by computing entropy-like measurements. Other tech-
niques aim at directly disrupting the hidden content by applying image processing techniques,
e.g., flip some bits, change the file format, or use compression methods. As an example, the
RS analysis divides the image into groups of pixels. Then, it measures the noise of each group
before and after flipping the least significant bits: if the noise increases, the group is classified
as potentially malicious [FGD01]. Other works exploit more “standard” file analysis methods.
For instance, [VMS22] deals with a technique to spot suitable markers able to reveal alterations,
while [PCK+20] searches for byte-level signatures indicating the presence of additional informa-
tion appended at the end of a digital image. The work [CGG+22] provides an analysis method
developed to reveal images containing PowerShell scripts embedded via the Invoke-PSImage
technique. The tool has been implemented within the framework of the SIMARGL (Secure In-
telligent Methods for Advanced RecoGnition of malware and stegomalware) European project1

and integrated in the dedicated toolkit to holistically face the problem of stegomalware.

A relevant part of literature leverages some form of AI to balance the “arms race” between at-
tackers and defenders [CCC+20], especially to face new challenges like those offered by Internet
of Things (IoT) or zero-day threats [DFP20, WHWS20]. A first attempt to use Deep Learning
(DL) has been firstly adopted in [TL14], using a stack of autoencoders to form a Convolutional
Neural Network (CNN) to detect malicious images (see [RRG19] for a comprehensive survey on
CNNs-based techniques). The recent work [PKSJ22] presents various techniques leveraging ma-
chine learning to create predictive models able to discover images potentially altered by various
steganographic techniques, mainly in the transform domain (e.g., DCT coefficients). Unfortu-

1https://simargl.eu [Last Accessed, October 2022].
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nately, it does not consider real-threats, but focuses on the perspective utilization of data hiding
to develop novel attack mechanisms. The work [LWWL08] showcases a more general discus-
sion and demonstrates how different machine learning methods can be deployed to reveal the
presence of hidden data. As mentioned, an important aspect to consider is that the detection of
stegomalware using some form of AI requires suitable datasets, which are hard to create and
distribute in a standardized form, especially when considering threats leveraging information
hiding. Moreover, attacks tend to evolve, thus leading to “concept drift” phenomena accounting
for degradation of the models [GMP20].

Due to the scalability constraints or lack of suitable models, deploying sophisticated detection
frameworks could not be always possible. Moreover, inspecting all the images exchanged in a
large-scale deployment could be unfeasible due to hardware requirements or the need of satis-
fying real-time constraints. In this case, an alternative approach searches for well-known signa-
tures characterizing a specific hiding mechanism or a payload (e.g., a sequence of bytes) in the
file structure of the image via a simple and optimized tool [PCK+20]. Alas, reverse engineering
a malware to grasp its internals is often difficult, hence a “meet in the middle” solution is repre-
sented by sanitization, i.e., the image is lightly processed to disrupt the secret content, if any. To
this aim, the literature offers solutions using nonlinear transformations [JLE20] or autoencoders
to alter anomalous pixels without degrading the perceived quality. Another approach is based
on the adoption of AI to locate the area of the image modified via steganography [SZZW19] to
trigger the execution of an optimized security pipeline.

1.4 Real Attacks

According to [MC15, CM22], information hiding and steganography are increasingly used by
attackers to make malware stealthier and difficult to spot. Unfortunately, quantifying the diffu-
sion of the phenomenon is extremely complex. On one hand, security experts are seldom able to
precisely identify a threat taking advantage of information hiding techniques. On the other hand,
many attacks remain unnoticed for years. As a consequence, the estimation of the impact of
stegomalware provided by the Criminal Use of Information Hiding (CUING) initiative2 should
be considered a lower bound. In more detail, CUING reports an increasing trend in the diffusion
of information-hiding-capable threats for the 2011-2019 period. The most recent measurement
reports 16 different threats in 2019. Even if precisely identifying the root of this trend is very
difficult, the first malicious activities using network traffic as the steganographic carrier were
first observed in 2011 with the W32.Morto worm. In particular, it exploits DNS TXT records
to receive commands and additional modules from the attackers. During the same period, the
Feederbot botnet has been discovered. It exploits the rdata field of TXT resource record in
the DNS response to contain hidden messages and secretly communicate towards a C&C server

2https://cuing.org [Last Accessed, October 2022].
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[DRF+11]. Another notable example, discovered in 2013, is the Linux.Fokirtor backdoor. It
implements covert communications by exploiting SSH connections to exfiltrate sensitive infor-
mation towards a remote server. Among the others, exfiltrated data contained passwords and
usernames, SSH keys, hostnames and IP addresses. To extract and execute additional com-
mands, the backdoor monitors the incoming SSH traffic and looks for a specific pattern, i.e.,
“:!;.”. One year later, another sophisticated malware named Regin has been discovered. Regin
communicates with a C&C server by using customized versions of the ICMP, UDP, and TCP
protocols. Another example regards the TeslaCrypt ransomware, delivered through the Neutrino
exploit kit. This is used to redirect users to a malicious landing page to download the TeslaCrypt
variant from a remote C&C server via innocent-looking HTTP traffic. A more recent attack is
the Sunburst backdoor able to generate HTTP GET or POST requests to communicate with C&C
facilities, hiding data within the response bodies.

Instead, evidences of the use of image steganography within commercially-available software
can be rooted back in 2014, e.g., see [STTPL14] for an analysis of applications available on the
Google Play Store containing images altered via steganographic mechanisms. More recently,
a massive phishing campaign launched in 2021 used the Invoke-PSImage technique to spread
the Ursnif banking trojan. To this aim, attackers adopted this variant of LSB steganography to
hide a PowerShell script for retrieving additional malicious code [BvEC+17]. The recent attack
launched by the MageCart group against the Magento e-commerce platform is another major
example. In this case, cybercriminals cloaked a web skimmer in favicons, i.e., small images
associated to an URL to enhance the user experience of browsers, to steal credit card credentials.
A new variant of the Zeus malware appended an additional configuration file (encrypted with
Base64, RC4 and XOR) to innocent-looking images. Other recent examples are SteamHide, that
uses the game platform Steam to spread malicious payloads hidden in the PropertyTagIC-
CProfile metadata field of profile images, and an ongoing Monero crypto-mining malware
campaign targeting Docker APIs on Linux servers. In this case, the attackers can run malicious
container and fetch a Bash script concealed in a PNG image. At the beginning of 2022, the Ser-
pent backdoor targeted various French entities, such as real estate and government industries. In
more detail, a Word macro retrieves a Base64 PowerShell script hidden in a JPG image, which
downloads, installs and updates an open-source package installer (i.e., Chocolatey) to configure
the backdoor.

At the time of writing (August-October 2022), a new attack campaign combines both image
steganography and network covert channels. In particular, an image took by the James Webb
telescope has been used to disguise malicious Go code. Specifically, data has been encoded in
Base64 and then embedded by mimicking a valid certificate. Once executed, the malware sends
the stolen sensitive data encoded in Base64 and hidden in the DNS TXT field of “nslookup”
queries.
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1.5 Research Contributions and Thesis Outline

The contribution of this Thesis is mainly in the detection and possible mitigation approaches of
the most recent and popular hiding techniques used by malware. In more detail, it advances in
the detection of network covert channels, especially in the design of scalable, privacy-aware and
extensible mechanisms. Another relevant contribution is on the use of AI for detecting realistic
threats observed in digital images and to provide a workaround when detection is not possible.
Throughout the Thesis, emphasis will be put on the performance evaluation of the approaches
proposed for taming network covert channels and threats exploiting images, highlighting their
impact when deployed in real scenarios. This Thesis also offers some new tools to be used to
assess the impact of stegomalware and network covert channels in production-quality scenarios.
Lastly, an important outcome is in terms of datasets, which can be used to make feasible the
research on threats leveraging advanced information hiding techniques. The rest of the Thesis is
organized as follows.

Part II, Detection of Covert Channels

This part of the Thesis focuses on the detection of threats exploiting covert channels. In particu-
lar:

• Chapter 2 presents pcapStego, a tool for the “offline” creation of network covert chan-
nels in various network protocols, starting from real traffic traces. The chapter also intro-
duces IPv6CC and TLSCC, which allow to create network covert channels targeting IPv6
and TLS conversations in a “online” manner. Finally, the chapter showcases the security
capabilities of different detection tools and IDSes to face network covert channels;

• Chapter 3 introduces bccstego, an inspection framework for gaining visibility over net-
works to compute condensed indicators. The framework is based on the extended Berkeley
Packet Filter (eBPF) and has been designed to be easily extensible and to guarantee pri-
vacy requirements. The scope of this research is to provide a technological foundation to
support the detection of stegomalware leveraging network conversations;

• Chapter 4 showcases the use of in-kernel methodologies based on eBPF to programmat-
ically and efficiently trace and monitor processes and network traffic. The chapter takes
into account two realistic use cases implementing different steganographic mechanisms,
i.e., colluding applications and hidden communication attempts nested within IPv6 con-
versations;

• Chapter 5 investigates the use of eBPF to create ad-hoc security layers in virtualized ar-
chitectures without the need of embedding additional agents. The chapter focuses on the
detection of both network storage and timing covert channels, demonstrating that the dif-
ferent hidden communications can be revealed while using limited resources;
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• Chapter 6 provides a detailed performance analysis of the approaches presented in Chap-
ters 3-5. In particular, it evaluates the development complexity, impact on packet transmis-
sion and resource usage of eBPF, Zeek and libpcap;

• Chapter 7 illustrates an approach based on an ensemble of autoencoders to efficiently re-
veal network covert channels targeting IPv4 traffic in IoT deployments.

Part III, Detection of Malware Hidden in Digital Images

This part of the Thesis focuses on the detection of threats exploiting image steganography. In
particular:

• Chapter 8 proposes an approach based on DNNs for the detection and the classification of
threats using LSB steganography to conceal malicious PHP scripts and URLs in favicons,
as observed in MageCart/Magento-like threats;

• Chapter 9 extends the approach of Chapter 8 by considering larger images, i.e., high reso-
lution icons. The chapter also considers the detection and the classification of different real
malicious payloads, i.e., URLs, Ethereum addresses, HTML, JavaScript and PowerShell
scripts;

• Chapter 10 presents how a residual convolutional autoencoder can be used to disrupt the
information hidden within an image without altering its visual quality. As a test scenario,
it considers images containing malicious data hidden via the Invoke-PSImage method.

Part IV, Conclusions and Appendices

This part of the Thesis draws final conclusions and provides additional information. In particular:

• Chapter 11 concludes this work and provides possible future research directions;

• Appendix A lists the software and datasets produced during the PhD;

• Appendix B lists the scientific works that have been used to write this Thesis;

• Appendix C lists the scientific works produced during the PhD.
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Part II

Detection of Covert Channels
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Chapter 2

Testing Tools and Security Assessment

Despite the increasing volume of attacks, the magnitude of economical losses, the degree of so-
phistication, and the growing attention from security-oriented software firms, threats leveraging
network covert channels are often neglected for a threefold reason:

• the emerging nature of information-hiding-capable malware still requires precise investi-
gation methodologies and conceptual devices;

• the creation of a covert channel is tightly coupled with the specific protocol/feature ex-
ploited to conceal the communication;

• network data usually contains confidential information requiring to adhere to strict rules
and regulations to not disrupt the privacy of users.

As a consequence, the number of malware samples isolated in production-quality deployments is
limited and datasets containing network traffic or execution traces do not consider information-
hiding-capable threats. Even if efforts from the research community for sharing data are multi-
plying (see, e.g., [RWS+19] and the references therein), the majority of publicly available col-
lections appear to be tailored for developing IDSes able to counteract “classical” attacks like
Denial of Service (DoS), flooding, port scanning, and botnet orchestration. Moreover, public
datasets often require a non-negligible preprocessing effort to isolate or label information of in-
terest [TL20]. Typical workarounds for the lack of traces capturing attacks leveraging network
covert channels exploit artificially-generated traffic, non-weaponized malware, and simulations.
Despite the level of accuracy, real-world data is almost mandatory to prove the correctness of
laboratory trials or to evaluate the performance of a mitigation technique [HP09]. Moreover, the
adoption of AI to address security issues (e.g., detection, classification or reverse engineering
of malicious code) demands for relevant volumes of data, which should be organized in a stan-
dardized form for reproducing and comparing the different techniques [GMP20]. In this vein,
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Chapter 7 will address the detection of covert channels in IoT environments via machine learning
techniques and will clarify the need of data to engineer a suitable solution and conduct experi-
ments to validate the effectiveness of envisioned countermeasures. As a consequence, the lack of
testing samples leads to difficulties when assessing the capabilities of security tools to deal with
covert channels. Indeed, evaluating the level of protection of such tools is of prime importance
to fully understand the impact of information-hiding-capable malware in real-world conditions.
Therefore, a relevant and propaedeutic effort performed within the framework of this Thesis has
been devoted to investigate solutions that enable to create and investigate network covert chan-
nels with the aim of testing security tools. At the best of our knowledge, the only previous tool
with similar capabilities is the CCgen framework [IMAZ22] but was not available when per-
forming the needed preliminary investigations. Other solutions worth mentioning are the Covert
Channels Evaluation Framework (CCHEF) [ZA08] and the Covert Channel Educational Analy-
sis Protocol (CCEAP) [WM16]. However, CCHEF does not support IPv6 and CCEAP appears to
be more suited for laboratory trials and didactic purposes rather than for large-scale experiments.
Another important aspect concerns the creation of mitigation and detection techniques. This re-
quires to fully understand the real “permeability” of pre-existent security tools and solutions to
threats exploiting covert channels. As a consequence, the solutions presented in this chapter have
been also used to perform a security assessment of de-facto standard IDSes/firewalls.

The remainder of the chapter is organized as follows. Section 2.1 discusses the architectural
blueprint, the design choices and the performance of a tool for creating network covert channels
starting from real network trace samples. Section 2.2 showcases two tools for the creation of
network covert channels within TLS and IPv6 traffic. Section 2.3 investigates whether standard
security tools can be considered suitable for detection of hidden communications. Lastly, Section
2.4 concludes the chapter.

2.1 Offline Creation of Covert Channels

To generate large dataset and perform experiments with covert channels, we developed pcap-
Stego1, a tool for creating hidden communications in traffic traces organized according to the
.pcap file format. Compared to synthetic traffic generation or toy attacks, pcapStego of-
fers the following benefits: i) data is injected within real traffic to consider production-quality
scenarios or perform “what if” analyses; ii) the creation of covert channels happens offline en-
abling to prepare large datasets or exchange attack templates for reproducing experiments; iii)
.pcap traces can be replayed for pentesting purposes through real devices or laboratory equip-
ment. Currently, pcapStego can create a hidden communication within IPv4, IPv6, ICMPv4,
and ICMPv6 conversations by directly injecting data or manipulating the behavior of the header
fields (i.e., network storage covert channels). Moreover, it allows to encode data by altering the

1https://github.com/Ocram95/pcap injector [Last Accessed, October 2022].
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Covert Channel Field Steganographic
Type Bandwidth [bit/pkt]

IPv4

Storage Type of Service 8
Storage Time To Live 1
Storage Identification Number 16
Timing - 1

ICMPv4

Storage Payload 48
Timing - 1

IPv6

Storage Traffic Class 8
Storage Hop Limit 1
Storage Flow Label 20
Timing - 1

ICMPv6

Storage Payload 8
Timing - 1

Table 2.1: List of protocols/fields and channels supported by pcapStego.

inter-packet time between subsequent datagrams (i.e., network timing covert channels). Table
2.1 reports all the covert channels, protocols and fields supported by the tool.

The pcapStego distribution is organized in two sets of tools serving for different purposes. The
first set implements an interactive mode allowing the user to manually select flows, the hiding
mechanism (e.g., the part of the protocol header targeted for containing data) and the payload to
be transmitted via the resulting channel. In this manner, users can actively experiment with the
tool and gain a deeper understanding of the internals at the basis of network covert channels. The
second set, instead, implements a bulk mode, which can be used to automatize the embedding
of data and thus the creation of various covert communications in the target traffic capture. This
working mode is especially suited for creating large .pcap files containing various channels at
once and in an automatized manner.

Despite the working mode (i.e., interactive or bulk), functionalities of pcapStego are im-
plemented in two different groups of Python modules dedicated to inject/extract data in/from
.pcap files. This design choice allows to provide a simple user interface (especially in terms
of command line parameters) and facilitates the development of scripts invoking the tool for the
creation of multiple datasets or to compute metrics helpful for testing detection algorithms or
perform modelling.
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Figure 2.1: Software architecture of the pcapStego tool.

2.1.1 Software Architecture

To implement pcapStego, we used Python3 and the Scapy 2.4.4 library2 for manipulating pro-
tocol data units, i.e., to alter fields in the protocol header or the inter-packet time for containing
the data. To process .pcap files, our tool relies upon functionalities provided by the tshark
3.4.5 network analyzer3. Details are hidden to the user since the needed functionalities have been
properly encapsulated within the software architecture, which is depicted in Figure 2.1.

As shown, the tool is composed of five main functions. Such a modular design mitigates the
complexity and allows to add the support for other channels and data hiding mechanisms in a
simple manner. In more detail, the software is composed of the following functions/building
blocks:

• read attack(): it parses data contained in the payload.txt file. The function then splits
the payload into chunks fitting the size of the selected carrier (e.g., 8 bits for the case of
the Traffic Class of the IPv6 header). When running the tool in interactive mode,
the function can also parse the input information to be sent via the covert channel directly
from the command line interface. Instead, for the case of bulk mode, each entry in the file
specifies a payload that has to be sent through the covert channel along with the desired
injection mechanism;

2https://scapy.net [Last Accessed, October 2022].
3https://www.wireshark.org/docs/man-pages/tshark.html [Last Accessed, October 2022].
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• find flows(): it parses data from the input.pcap file and prepares a “map” of the
available conversations. As a result, the function provides conversations having enough
steganographic capacity, i.e., it reports flows with a number of packets able to contain the
specified payload, given the specific injection mechanism;

• flow selection(): it allows to identify in a unique manner the traffic flow selected
by the user when the tool is running in interactive mode. Depending on the protocol
chosen, the function relies upon different header fields to identify the flows, e.g., 5-tuple for
TCP/IPv6 conversations. Such details are also used to provide the user appropriate details
to prepare filters and to track network covert channels when traffic is replayed through the
network;

• inject(): it performs the injection using the desired mechanism. In particular, it
searches for the packets belonging to the desired flow and changes them according to the
selected covert channel, leaving unaltered the remaining parts. This function is modular
and can be extended to create other covert channels. In this case, it is sufficient to add an
if-case and prepare a packet with proper invocations of the Scapy library. The function
also populates the output.pcap file, both with unaltered conversations and those containing
the covert channel(s);

• write to csv(): it logs information about the flows containing the covert channels,
such as the tuple to identify the conversation, the injection mechanisms and the length of
the hidden data. Information are stored in a CSV file (denoted as the logfile.csv in the
figure), which can be used to automatize the extraction phase, replicate experiments or
generate filtering/forwarding rules for field trials.

We point out that, the aforementioned functions are general enough to handle the different work-
ing modes available for pcapStego (i.e., interactive or bulk). Minimal differences in the ar-
chitecture of the tool are only due to the need of presenting to the user a suitable interface for
selecting the flows or to identify the conversations to target when the tool is used in bulk mode.
Specifically, when running in bulk mode, the find flows() function automatically searches
for all the traffic flows with enough capacity for the creation of the covert channels provided by
the user. As an example, Listing 1 provides a code snippet for the inject() building block.
In more detail, at line 1, Scapy reads the input .pcap, which is then parsed in the for loop.
A packet is then modified according to the selected field, e.g., Type of Service at line 9,
if and only if it is part of the selected conversation. Finally, at line 19, the (modified) packet is
written in the resulting output .pcap file.
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1 pkts = rdpcap(input_pcap)
2 for pkt in range(len(pkts)):
3 #Search for the correct flow
4 if source == pkts[pkt][IP].src and destination == pkts[pkt][IP].dst
5 and src_port == pkts[pkt].sport and dst_port == pkts[pkt].dport
6 and protocol == pkts[pkt][IP].proto:
7 #If there is still something to inject
8 if index < len(payload):
9 if targeted_field == "TOS":
10 pkts[pkt][IP].tos = int(payload[index],2)
11 elif targeted_field == "TTL":
12 if int(payload[index],2) == 0:
13 pkts[pkt][IP].ttl = 10
14 else:
15 pkts[pkt][IP].ttl = 250
16 elif targeted_field == "ID":
17 pkts[pkt][IP].id = int(payload[index],2)
18 index += 1
19 wrpcap(output_pcap, pkts[pkt], append=True, linktype=1)
20 return output_pcap

Listing 1: Code snippet for the inject() function.

2.1.2 Performance of the Tool

To prove the effectiveness of pcapStego for the preparation of realistic traffic traces containing
network covert channels, especially to support the creation of testbeds, repeatable experiments,
and suitable datasets to be used with AI-based frameworks, we conduct different trials. In the
following we mainly address the case of the IPv6 protocol, however the results can be straight-
forwardly extended to the other protocols/covert channels supported by pcapStego.

2.1.2.1 Data Injection and Replaying

In the first round of tests, we evaluated the correctness of the embedding/extraction process, in-
cluding the preservation of the semantic/structural properties of the output .pcap file. To this
aim, we used realistic IPv6 traffic traces provided by the Center for Applied Internet Data Analy-
sis (CAIDA)4. To avoid burdening the trials, we performed a lightweight preprocessing of traffic.
Specifically, we removed single-packet flows and ICMPv6 traffic. Concerning the information
transmitted via the various covert channels, we considered a command used by the Astaroth mal-

4Traffic dumps have been taken from the CAIDA Anonymized Internet Traces Dataset (April 2008 - January
2019) collected on a OC192 link between Sao Paulo and New York on November, 2018 from 14:00 to 15:00 CET.
Available online: https://www.caida.org/data/passive/passive dataset.xml [Last Accessed:
October 2022].
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(a) Input traffic dump

(b) Output traffic dump

Figure 2.2: Traffic dumps (in .pcap format) before and after using pcapStego to implement a
covert channel targeting the Traffic Class for transmitting a command used by the Astaroth
malware.

ware, borrowed from the Fileless Command Lines (FCL) collection5. Such a command causes
the Windows utility WMIC to download a legitimate file containing an obfuscated JavaScript file,
which is then executed to launch a malicious Astaroth routine.

To assess the ability of pcapStego of producing traffic traces that can be used in realistic
environments, the obtained .pcap files have been processed via tcprewrite6 to rebuild the
payload and assign proper MAC addresses. We point out that, such steps can be omitted when
in the presence of complete or non-anonymized traffic captures. Yet, using anonymized traces
composed of packets deprived of the payload further proves the effectiveness of our approach to
conduct research and experiments while complying with privacy of users. Obtained traces have
been then transmitted over the network with tcpreplay7 and re-collected with tshark in
order to verify the “correctness” of the traffic.

Figure 2.2 depicts partial dumps of a .pcap trace before and after the creation of a covert
channel targeting the Traffic Class field. For the sake of clarity, the figure only reports

5https://github.com/chenerlich/FCL [Last Accessed, October 2022].
6https://tcpreplay.appneta.com/wiki/tcprewrite [Last Accessed, October 2022].
7https://tcpreplay.appneta.com [Last Accessed, October 2022].
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six packets of the original and replayed .pcap files. As shown in Figure 2.2(a), before the
creation of the channel, the original IPv6 flow is characterized by a Traffic Class equal
to 0. Instead, after the creation of the covert channel used to deliver the malicious Astaroth
command, the Traffic Class changes accordingly. Figure 2.2(b) reports the values of the
Traffic Class of packets containing the “os get” portion of the entire command, e.g.,
0x6f and 0x73 correspond to “o” and “s”, respectively.

2.1.2.2 Generation of Metrics

To face the increasing complexity of threats as well as the large-scale and heterogeneous nature
of modern network deployments, a common approach is to use some form of AI to reveal ma-
licious communications, identify malware samples, as well as to perform sanitization of traffic
and multimedia contents [CCC+20]. Moreover, modern software-defined networks offer a large
palette of opportunities both in terms of architectural blueprints (e.g., the possibility of devel-
oping controllers to be deployed in edge nodes) and technologies for gathering data [SCPA19].
Hence, being able to produce suitable datasets for the development of machine-learning-based
frameworks is of prime importance [SCPA19, CCC+20, Cav21].

To prove the effectiveness of pcapStego to produce appropriate information for the generation
of AI-friendly metrics, we performed several round of tests. Specifically, we used the tool to
create two different datasets. The first contains the original traffic and three covert channels
targeting the Flow Label field of IPv6, which directly stores the secret data. The second,
instead, exploits the Hop Limit field and contains three hidden channels as well. In this case,
to encode data, we used two fixed values, i.e., 10 for the binary value 1 and 250 for the binary
value 0. For both datasets, the secret information sent via the channels was the obfuscated
payload of the Emotet malware (2, 045 bytes), borrowed again from the FCL collection, and two
random strings (2, 048 bytes, each), cloaked in 60 seconds of network activity.

As regards the metric, we bear with heatmaps computed from the distributions of values of the
fields targeted by the considered channels. For the Hop Limit, the map has been computed by
considering the number of time a specific value has been observed in the overall traffic volume.
Instead, for the Flow Label, we adopted a bin-based approach. Specifically, the 220 bit space
of the Flow Label has been mapped to a smaller one composed of 28 bins (i.e., ranges of
values), each one grouping 212 possible values. Such a mechanism prevents scalability issues
and “noisy” heatmaps. Chapter 3 will clarify the benefits of using a bin-based data structure
both in terms of performance and scalability, especially to inspect traffic in large-scale network
environments.

To conduct experiments, we prepared a network testbed composed of three hosts. Two hosts
exchanged a trace containing the covert channels, which has been “rebuilt” with tcprewrite
and then replayed with tcpreplay (denoted as “Output Traffic” in the figures). A third host is
responsible of routing the traffic, collecting the values of the Hop Limit and Flow Label
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Figure 2.3: Heatmaps generated before and after using pcapStego for creating covert channels
in the Flow Label.

fields and storing them on the file system for further processing. To have a reference scenario, we
also computed heatmaps of the original .pcap trace, denoted as “Input Traffic” in the figures.

Figure 2.3 depicts example heatmaps both for the input and the output traffic, which have been se-
lected to provide a clear “visual” template when a covert communication is implemented within
the Flow Label. Since each IPv6 conversation is supposed to be identified via its unique
Flow Label value, in the following, we refer both to Flow Label and flows interchange-
ably, except when doubts arise. As shown, pcapStego is used to embed data within flows
denoted as A, B and C of the input traffic. Since original values of the Flow Label have been
replaced with the secret data, the heatmap of the output traffic exhibits alterations of the corre-
sponding bins. Specifically, the flows A and B are completely “exhausted” by the covert channel,
whereas the conversation C is only partially used as a carrier. Moreover, the presence of hidden
data leads to many values of the Flow Label not present in the original input .pcap. This
can be viewed in the map in terms of the increasing “heat” of some bins (denoted as “Partial
Secret Data” in the figure).

Similar considerations can be drawn when the covert channels are implemented within the Hop
Limit field. Specifically, Figure 2.4 depicts the heatmaps collected in our testbed. For the
case of the original input traffic, the map shows a clusterization around 64, i.e., the default value
for the Hop Limit defined by the IPv6 standard implementation. Upon creating the covert
channel, two different values become visible (denoted in the figure as D and E). Specifically,
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Figure 2.4: Heatmaps generated before and after using pcapStego for creating covert channels
in the Hop Limit.

they correspond to 10 and 250, which are the values used by pcapStego to encode the secret
information sent through the covert channels.

2.1.2.3 Resource Usage

The last round of tests aimed at investigating the performance of pcapStego. To conduct trials,
we used a machine running Ubuntu 20.04 with an Intel Core i9-9900KF @3.60GHz and 32 GB
RAM. Table 2.2 summarizes measurements obtained for pcapStego running in interactive
mode. Specifically, it reports the execution time of the main functions implementing the tool
(i.e., the find flows() and inject()), to inject a secret of 110 bytes within the Flow
Label field. To this aim, we considered different sizes of the .pcap file provided as the input.
To have a fine-grained evaluation, we also performed tests with .pcap files composed of a
different number of packets, especially to evaluate if the combination of the size and complexity
of the traffic dump plays a role. As shown, the execution time needed by the find flows()
function to search for conversations able to contain the secret increases with the size of the
traffic trace. Yet, the required time remains bounded, especially for small- and medium-sized
datasets. Instead, the inject() function turns out to be the real bottleneck of the processing
stack implemented by pcapStego.

To better understand the limits of the inject() function, we performed further trials. Table
2.3 reports a breakdown of the operations performed by the function, i.e., reading the input
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.pcap size packets find flows() inject()
[kbytes] [x103] [s] [s]

84 1 0.16 0.31
845 10 0.31 2.86
8, 557 100 1.65 28.14
84, 117 1, 000 14.58 276.87
842, 105 10, 000 142.55 2, 835.91

Table 2.2: Performance of pcapStego in interactive mode.

.pcap size packets read inject and write
[kbytes] [x103] [s] [s]

84 1 0.09 0.22
845 10 0.67 2.19
8, 557 100 6.82 21.32

84, 1174 1, 000 64.86 212.01
842, 105 10, 000 669.49 2, 166.42

Table 2.3: Breakdown analysis of the inject() function in interactive mode.

.pcap (denoted as “read”) and preparing the output traffic trace (denoted as “inject and write”).
As shown, the performance heavily depends on the size of the dataset, which accounts for a
major overhead for a .pcap file containing 10 millions of packets. In this case, the preparation
of the output .pcap requires ∼35 minutes, which is not acceptable when using the tool for
live demonstrations or for training purposes. However, training duties seldom require to deal
with such a large traffic capture. Besides, further measurements and a deeper analysis revealed
that the injection/writing operations are limited by a twofold bottleneck: the I/O bound nature
of read/write operations needed to process/produce the various .pcap files and the overheads
caused by the Scapy stack for parsing and manipulating all the considered packets.

A similar evaluation campaign has been also done when pcapStego operates in bulk mode.
To have a realistic reference usage pattern for the tool, we considered a varying population of
secret messages to be sent through an equal amount of covert channels. Each secret message is
composed of a randomly-generated string in the range of 8 − 64 characters (e.g., a command
for activating a backdoor or a sensitive information exfiltrated from a host). For this round of
tests, we assessed three IPv6 embedding mechanisms implemented by pcapStego, i.e., we
considered a balanced mix of covert channels targeting the Flow Label, Traffic Class
and Hop Limit fields. Table 2.4 summarizes the obtained results.

Despite the number of channels, the execution time needed by the read attack() function is
always almost negligible, especially by considering that the tool is intended for preparing large-
sized datasets in an offline flavor. Instead, the time needed by the find flows() function
increases mainly due to the need of building a larger set of 5-tuples representing the snapshot
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.pcap size packets number of read attack() find flows() inject()
[kbytes] [x103] channels [ms] [s] [s]

845 10 10 0.23 0.36 3.04
845 10 100 0.28 1.36 3.25
845 10 1, 000 − − −

84, 117 1, 000 10 0.21 15.07 304.9
84, 117 1, 000 100 1.22 18.37 327.72
84, 117 1, 000 1, 000 10.53 106.72 471.55

842, 105 10, 000 10 0.26 140.31 2, 452.69
842, 105 10, 000 100 1.34 155.95 2, 611.58
842, 105 10, 000 1, 000 10.73 470.57 3, 743.88

Table 2.4: Performance of pcapStego in bulk mode.

.pcap size packets .pcap size read inject and write
[kbytes] [x103] channels [s] [s]

845 10 10 0.67 2.37
845 10 100 0.66 2.59
845 10 1, 000 − −

84, 117 1, 000 10 65.03 239.87
84, 117 1, 000 100 66.34 261.38
84, 117 1, 000 1, 000 66.23 405.32

842, 105 10, 000 10 661.27 1,791.42
842, 105 10, 000 100 665.55 1, 946.03
842, 105 10, 000 1, 000 655.27 3, 088.61

Table 2.5: Breakdown analysis of the inject() function in bulk mode.

of the IPv6 conversations within the input .pcap file. Similarly to the interactive case, the
inject() function represents the most time-consuming building block of the tool. Specifically,
when the number of channels to be created within the traffic trace approaches the 1, 000 units,
the handling of large .pcap files still accounts for reduced performance.

Again, we analyzed the breakdown of the timing behavior of the inject() function when used
in bulk mode. Table 2.5 reports the obtained results. In more detail, as the number of channels
increases, the number of I/O-bound operations and invocations of the Scapy library increase as
well, thus leading to inflated computational times (e.g., 3, 088.61 s when processing the largest
.pcap file considered in our trials). Instead, as expected, the part of the tool processing the
input traffic trace is quite insensitive to the complexity of the required embedding operations.

Lastly, we also evaluated the amount of resources used by pcapStego. For the sake of brevity,
we limit our investigation to the interactive mode case. Results indicate that the memory footprint
is proportional to the size of the .pcap to be processed. Specifically, the memory consumption
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ranges from 3.3 Mbytes to 24 Gbytes, for the smallest and largest considered traffic traces, re-
spectively. This has to be mainly ascribed to the Scapy library having to process all the packets
composing the .pcap. The size of the input also heavily influences the CPU usage. In fact, it
is already equal to 93% when in the presence of medium-sized .pcap files (i.e., for a dataset
composed of 100, 000 packets). Thus, the need of processing through Scapy large volumes of
data both accounts for I/O and CPU bound operations impacting the overall performance.

2.2 Online Creation of Covert Channels

Even if traces prepared with pcapStego can be replayed and used in realistic network con-
ditions, the lack of processing “live” network conversations could partially void the accuracy
assessing the vulnerability of a deployment against covert channels. In fact, exploited flows
could be accidentally disrupted or delayed, thus revealing the presence of the covert channels or
the traffic manipulation attempts from an attacker. Therefore, a second approach that has been
developed and adopted in this Thesis concerns the development of tools able to act in a Man-
in-the-Middle fashion, by eavesdropping pre-existent and “live” network conversations. In the
following, we will introduce IPv6CC, a tool able to lively intercept legitimate IPv6 network
traffic and create network covert channels. A similar approach has been also adopted for the case
of TLS traffic, by using the TLSCC tool.

2.2.1 Covert Channels in IPv6

As discussed in Chapter 1, the IPv6 protocol is increasingly used and appealing to attackers,
since it provides several features that can be exploited to implement covert channels or support
attack routines of stegomalware [LLC05, MPC19]. For these reasons, we developed IPv6CC8,
a suite of network covert channels targeting the IPv6 protocol, which has been used within the
framework of the project SIMARGL to test a wide range of security devices. Its main scope
is supporting penetration test campaigns to evaluate the security of a system against emerging
information-hiding-capable attacks or steganographic malware. Specifically, the IPv6CC suite
can be used to:

• comprehend the menace: the technology-dependent nature of stegomalware prevents one-
fits-all security roadmaps. This tool can help to understand whether a deployment is al-
ready protecting itself from covert communications;

• assess security: testing the adopted security policies/solutions allows to plan upgrades and
adjust configurations or the design of the network;

8https://github.com/Ocram95/IPv6CC SoftwareX [Last Accessed, October 2022].
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• make decisions: understanding the performance of a covert channel helps to quantify the
menace and the economical impact of required solutions.

The tool is written in Python3 and uses Scapy 2.4.3 for handling data injection and Netfilterqueue
0.8.1 for intercepting the overt IPv6 flows. Currently, the tool supports Traffic Class,
Flow Label, and Hop Limit IPv6 fields for hiding purposes. Moreover, IPv6CC offers
four working modes for implementing covert communications with different degrees of sophis-
tication:

1. Naive Mode: the covert endpoints decide offline the number of packets containing the
secret to be transmitted. The covert peers exfiltrate the information for the number of
agreed packets starting from the beginning of the transmission;

2. Start/Stop: two “magic values” indicating the start and the end of a sequence of packets
containing secret information are agreed offline. Such values are then injected in the tar-
geted field of the IPv6 header. To avoid collisions, hidden data is inserted via character
stuffing;

3. Packet Marking: both endpoints generate a set of encrypted signatures produced by a
pseudo-random number generator built on a shared seed. A mark is then injected into a
field not containing secret information: for the Flow Label, Traffic Class and
Hop Limit channels, the mark is inserted in the Traffic Class, Flow Label,
and Flow Label, respectively;

4. Reliable Marking: this is a cross-layer variant of the previous mode and exploits infor-
mation from the transport layer to implement some form of error detection. The TCP
sequence number is used to detect loss of marked packets.

For all methods, it is also possible to use a more fine-grained injection strategy for simulating
an attacker/malware trying to bypass potential (un)known detection mechanisms. In more detail,
IPv6CC allows to specify a suitable interleaving between legitimate and “stego” packets, as to
reduce the chance of spotting the channels due to anomalous bursts [MPC19]. Further details on
the tool, along with its performance, are available in [CSZM22].

2.2.2 Covert Channels in TLS

TLSCC9 is a tool for creating network covert channels targeting the TLS protocol. This tools has
been developed by Corinna Heinz within her work with the FernUniversität in Hagen [HMC20].
The covert channels are implemented in C, using libcrypto (for a wide range of cryptographic

9https://github.com/CoriHe/TLSCC [Last Accessed, October 2022].
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algorithms used in various Internet standard) and libpcap10 (for packet capturing). In essence,
TLSCC establishes a connection to a TLS-enabled service and injects data into the conversation
according to the selected hiding mechanism. Currently, TLSCC supports the following covert
channels, which have been selected as they are characterized by a good tradeoff between the
steganographic bandwidth and the undetectability (see [HMC20] for a more comprehensive dis-
cussion on possible TLS-based covert channels):

• Record Length Encoding: since the overt TLS messages can be split into an arbi-
trary number of records, a secret information can be hidden by modulating their size and
number. To this aim, the covert sender encodes the secret message by properly generating
record lengths. The overt TLS traffic is then artificially split into records of the needed
lengths and forwarded to the receiver. This modification has no influence on the TLS pay-
load data and the overt TLS endpoints are still able to correctly decrypt the information;

• Initialization Vector: this field can be targeted for data hiding purposes when a
Cipher Block Chaining (CBC) cipher (e.g., the AES256-CBC) is used to encrypt each TLS
data record. This can be only modified by the overt TLS nodes, otherwise the manipulation
of the TLS stream will be detected and the connection will be shut down;

• Record Content Type: the Record Layer of the TLS protocol uses the Con-
tent Type to specify the content of a record. An attacker wanting to create a covert
channel within the TLS stream can use non-critical alert messages by exploiting unas-
signed alert identifiers (see, e.g., [DR08] for a list of TLS Alerts maintained by the Inter-
net Assigned Numbers Authority) or an empty record. Then, by interleaving records of
various types, the secret information can be encoded. As an example, a simple encoding
scheme could consider the alternation of TLS data messages and TLS alert messages. For
instance, a data message represents a 1 bit, while an alert message a 0 bit. The covert
receiver inspects the sequence of alert and data records and then decodes the secret infor-
mation according to the agreed scheme.

2.3 Security Assessment

As said, network covert channels are seldom considered and many security tools are not capable
to perform the detection “out-of-the-box”. In fact, risks arising from network covert channels are
largely underestimated both by security experts and users [MC15, CCM+18, CCC+20]. More-
over, extending the functionalities of network security tools could lead to inefficient behaviours
since each protocol requires ad-hoc rules. To avoid bottlenecks, security mechanisms are of-
ten event-based and they could not offer detection schemes based on a per-packet granularity.

10Part of the tcpdump analyzer: https://www.tcpdump.org [Last Accessed, October 2022].
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Figure 2.5: Reference testbed for the security assessment.

As a result, several implementations are not suitable to handle all the possible protocol-hiding
combinations.

Therefore, in the following we will evaluate the “level of insecurity” of covert channels when
deployed in realistic network scenarios. To this aim, we investigate three popular network ID-
Ses when handling the various network covert channels supported by IPv6CC, TLSCC, and
pcapStego, mainly to highlight their inadequacy when used to counteract information-hiding-
capable threats [MC15, KWE+16, CCM+18].

2.3.1 Experimental Setup and Results

To conduct trials, we prepared the testbed depicted in Figure 2.5, which is composed of two
virtual machines, denoted in the figure as VM1 and VM2, both running Debian GNU/Linux
10 (kernel 4.20.9). The endpoints communicate through a third virtual machine, denoted in
the figure as VM IDS. The latter, with the same technical specifications, is in charge of routing
traffic and running the different security tools. In our tests, we considered three different, de-facto

41



standard security frameworks: Snort11, Suricata12, and Zeek13. To prove that risks arising from
network covert channels are often underestimated, we decided to test them in an “out-of-the-
box” fashion. Specifically, we considered Snort with two different set of rules (the “community”
and the “registered” sets), while for the case of Suricata and Zeek we considered only standard
configurations.

To test the firewalls in real traffic conditions, we used traces collected by CAIDA and modified
via pcapStego to contain various covert channels generated in an “offline” flavor. In partic-
ular, we considered a random string of 125 bytes, which can be representative of a malicious
configuration file, and stored within the Type of Service, Time to Live, and Iden-
tification Number fields of IPv4, in the Traffic Class, Hop Limit, and Flow
Label of IPv6, and in the Payload field of ICMPv4 and ICMPv6. Moreover, we evaluated
timing covert channels encoding the random string in the inter-packet time for all the aforemen-
tioned protocols. To investigate a wide range of network conditions, we considered both UDP
and TCP transmissions sent over IPv4 and IPv6. Throughout all the trials, i.e., TCP over IPv4
and IPv6, UDP over IPv4 and IPv6, as well as ICMPv4 and ICMPv6 traffic, the considered tools
never spot the presence of hidden data by means of any alert, warning, or other flag.

To make our investigation more comprehensive, we also evaluated “online” covert channels tar-
geting the TLS protocol created via the TLSCC suite. For our experiments, we considered three
different types of hidden data in order to model realistic attacks. The first case deals with a chan-
nel used to deliver a malware of 179 bytes, i.e., a PowerShell script allowing to infect the victim
with the CryptoWorm threat. The second case considers an obfuscated payload of 2, 046 bytes
retrieved via the covert channel, i.e., a collection of malicious instructions to run the Emotet
malware. Both the CryptoWorm and Emotet payloads are borrowed from the FCL collection.
The third case models the exfiltration of sensitive data via the covert channel from the host of
the victim towards a remote server. Specifically, we modeled the stolen data with a string com-
posed of 1, 000 randomly-generated bytes to consider the presence of some form of encryption
or scrambling to improve the undetectability of the hidden content. The different payloads have
been transmitted via the Initialization Vector, the Record Content Type, and
Record Length Encoding covert channels available in TLSCC.

Finally, we tested covert channels created via the IPv6CC suite. We evaluated the exfiltration of
625 and 1, 250 bytes messages within the Traffic Class, Hop Limit, and Flow Label
of IPv6. Since the IPv6CC acts in a man-in-the-middle fashion on overt communications, we
considered different legitimate traffic, i.e., traffic generated via an SCP file transfer between VM1
and VM2 and a mix of TCP/UDP traffic generated via iPerf314. To avoid burdening results, in
the following we will not report other tests performed with the IPv6CC, including those varying

11https://www.snort.org [Last Accessed, October 2022].
12https://suricata.io [Last Accessed, October 2022].
13https://zeek.org [Last Accessed, October 2022].
14https://iperf.fr [Last Accessed, October 2022].
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Protocol Field Snort Suricata Zeek
community registered

TLS
Initialization Vector − − − −
Record Content Type − − − −

Record Length Encoding − − − −

SCP traffic

IPv6
Traffic Class #  #  − −
Hop Limit #  #  − −
Flow Label #  #  □ −

iPerf3 traffic

IPv6
Traffic Class # # ■ −

Hop Limit # # ■ −
Flow Label # # ■ −

# “Consecutive TCP Small Segments Exceeding Threshold”
 “Challenge-Response Overflow Exploit”
□ “Packet with Invalid Timestamp”
■ “Applayer Protocol Detection Skipped”
− “No Alerts”

Table 2.6: Security assessment when considering “online” covert channels generated with
TLSCC and IPv6CC suites.

the working modes presented in Section 2.2.1 or trying different injection strategies.

Since the outcomes did not change among the different payloads tested, Table 2.6 summarizes the
results in a “condensed” manner. Similar to previous results, all the tools did not raise any flags
when dealing with TLS-based covert channels. Concerning IPv6 hidden communications, Snort
reported the flags “Consecutive TCP Small Segments Exceeding Threshold” and “Challenge-
Response Overflow Exploit” and denoted in the table with# and , respectively. Both warnings
are mainly due to the usage of SSH traffic, rather then the presence of a covert channel. In
fact, they are also raised when Snort processes legitimate SSH connections. Similarly, Suricata
raised the flags “Packet with Invalid Timestamp” (for the case of SCP) and “Applayer Protocol
Detection Skipped” (for the case of iPerf3) and denoted in the table with □ and ■, respectively.
Also in this case, the warnings cannot be considered representative of the presence of the covert
channels since they are also raised during legitimate conditions. Finally, Zeek did not raise any
flag for all the covert channels despite they were injected using overt SCP or iPerf3 traffic.

Summarizing, the selected security tools were not able to detect the covert communications or
raise relevant warnings. Such a finding reinforces the general idea that many firewalls and IDSes,
with a standard set of rules, cannot be considered a valid countermeasure against information-
hiding-capable threats without massive configuration and tweaking efforts. In fact, writing new
detection rules for dealing with network covert channels could require to modify the core of the
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detection mechanism. Even if possible, it is necessary to deal with the limits imposed by the
rules matching structures of the tools. On the other hand, Zeek is a scriptable network IDS,
thus it makes possible to write new detection mechanisms for covert channels. Unfortunately,
due to its event-based nature, it also requires to write ad-hoc event handlers for dealing with the
all possibilities and combinations for the creation of covert channels (e.g., protocols and fields),
which could be unfeasible in many realistic conditions.

2.4 Conclusions and Future Works

In this chapter we introduced three tools for testing network covert channels, i.e., pcapStego,
TLSCC, and IPv6CC. The tools allowed to create covert channels both in an “online” and “of-
fline” manner. Then, we tested three production-quality network security tools (i.e., Snort, Suri-
cata and Zeek) and results showcased their “inability” to detect network covert channels, high-
lighting the urgency of developing novel countermeasures and rules to anticipate such a threat.
Future works aim at extending the assessment by considering ad-hoc rules, testing more sophis-
ticated security frameworks, and types of channels.

In the next chapter, we will discuss a scalable, extensible and privacy-aware data gathering ap-
proach for revealing network covert channels.
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Chapter 3

Data Gathering for Covert Channels

As discussed in Chapter 1, the detection of network covert channels is a nontrivial and poorly
generalizable problem. In fact, spotting hidden communications within a bulk of network flows
typically requires to implement attack-specific methodologies or to deploy DPI strategies, which
pose scalability problems [Cav21]. The latter should be considered as a design constraint, since
inspection processes should not penalize legitimate traffic flows, e.g., by adding additional delays
or disrupt the perceived Quality of Experience [ZAB07, CCC+20, Cav21]. To have a foundation
for gathering the needed information to tackle the problem of detecting covert channels hid-
den within network traffic, we developed bccstego. Specifically, bccstego is a framework
that allows to collect statistics for specific fields of network protocols by creating and injecting
custom eBPF programs within the Linux kernel.

The contribution of the research ideas presented in this chapter is the design of a tool that col-
lects statistical indicators for spotting covert channels within network traffic and a performance
evaluation considering the impact in terms of packet processing overhead and CPU/network foot-
prints.

The remainder of the chapter is organized as follows. Section 3.1 explains the methodology to
collect measurements, and the reasoning behind this choice. Section 3.2 describes bccstego
whereas Section 3.3 reports the functional and performance evaluation of the tool. Section 3.4
showcases other solutions and alternative technologies that could be adopted. Lastly, Section 3.5
concludes the chapter.

3.1 Collecting Statistics From Protocol Headers

The most effective and straightforward way to detect storage covert channels targeting proto-
col headers (introduced in Section 1.2.2) requires to track the values assigned to relevant fields
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N = 2n values

B = 2b bins

S = N/B = 2n-b

Inspected Field

+ 1

b bits

Figure 3.1: Mapping field values to bins.

within the same network flow, an approach that is usually denoted as “flow tracing.” Usually,
the <src addr, dst addr, protocol, src port, dst port> tuple is used for
identifying a conversation. For each stream, several parameters are recorded, e.g., the number of
packets, the number of bytes, or the average inter-packet delay. It would be simple to extended
such approach to also consider fields vulnerable to covert communication attempts (e.g., Flow
Label or Time To Live) and use this information to detect anomalous usages. However,
the overhead due to tracing increases linearly with the number of flows, and may be unfeasible
for large Internet links. Indeed, common tools for network monitoring cannot sustain high bi-
trates, and sometimes make use of sampling techniques to “estimate” the number of active flows
[EKMV04].

Based on this consideration, we introduce an alternative technique able to efficiently scale inde-
pendently from the number of flows and save-up memory. Rather than keeping the “state” for
each flow, we only measure general statistics about the usage of “vulnerable” fields. In essence,
our approach counts the number of occurrences for the different values that a given field assumes.
To make this approach scalable, multiple values may be grouped together into what we call a bin,
and a single counter is assigned for each group. We will refer to this technique as “counters” to
emphasize the differences with the flow tracing approach based on the tuple. The general idea is
depicted in Figure 3.1. Specifically, N = 2n is the number of possible values for a given field,
where n is its length in bit, e.g., n = 20 for the Flow Label. Such values are grouped into
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B = 2b equally-spaced bins, thus S = 2n−b values are grouped into the same bin. The counter
associated to each bin is incremented by 1 every time a specific field value of a packet falls in
the corresponding range. In our design, the number of bins is always a power of 2, which is
necessary to have uniform bins. In addition, mapping the value of a field to the corresponding
bin is reduced to a simple bitwise operation, i.e., only the first b bits of a field value are used to
search for the index of the corresponding bin.

As an example, let us suppose to monitor the Time To Live field of the IPv4 header. Since
the Time To Live has 8 bits in total, the possible values are N = 28 = 256 (i.e., n = 8).
Such values can be then grouped in a number of bins B = 23 (i.e., b = 3), each of which is
S = N/B = 28/23 = 32 values wide. This leads to the fact that the first bin considers the range
of values 0−31, the second bin 32−63 and so on, until the last bin, which deals with the interval
224 − 255. Let us suppose that an inspected packet has a Time To Live value equal to 237,
i.e., “11101101” in bits. The first b = 3 bits, i.e., “111”, are used to increment by 1 the counter
of the 8-th bin.

For what concerns resource consumption, the lower the number of bins, the less the memory
needed. However, this requires to map a larger number of values in the same bin, hence resulting
in coarse-grained statistics that limit the efficiency of the detection when many flows are present.
To make a rough comparison of memory consumption, in the following we estimated the memory
required by classical flow tracing approaches and by our counters methodology.

For the case of flow tracing, the computation of the required memory is rather straightforward.
Let us showcase an example for an IPv6 flow. First, we should consider the tuple for identifying
the conversation, i.e., source and destination addresses (128 bits each), protocol number (8 bits),
and source and destination ports (16 bits each). Then, we also need memory for storing the state
(8 bits), timestamp (64 bits), and the IPv6 header field that is supposed to contain secret data
(32 bits, which allow to contain the larger field, i.e., Flow Label). Thus, each flow requires a
minimum of 400 bits.

When using counters, only 32 bits of memory are required for each bin, independently of the
length of the considered field. However, the number of bins B is not fixed. For the Traffic
Class and the Hop Limit, the memory consumption accounts to 8, 192 bits in the worst-
case scenario, namely when 256 bins are used (one bin for each value). Instead, for the Flow
Label, using a number of bins equals to the entire value space (e.g., b = 20) would led to
an excessive overhead. From our experiments, we found the empirical rule of thumb that the
number of bins B should be at least twice the average number of flows, in order to capture
meaningful trends that could be used for the detection of anomalies caused by a network covert
channel nested within a flow. To be more conservative in our estimation, we considered different
scenarios, where the number of bins is 2, 4, 8, and 16 times the number of active flows.

Figure 3.2 compares the estimated memory consumption of our approach versus flow tracing
while varying the number of active flows. As shown, the memory requirement for standard flow
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Figure 3.2: Estimation of memory consumption with different number of flows.

tracing increases linearly with the number of flows (i.e., each flow requires a 400 bit long record),
whereas our method scales much better and the estimated memory consumption is larger only in
case of few flows.

3.2 The bccstego Framework

The main objective is to design an inspection tool able to run with a low execution footprint in
different environments, both physical and virtual. Since the range of possible covert channels is
virtually unlimited, extensibility is an important design constraint, mainly for handling additional
protocols or considering new attacks. To fit these requirements, we take advantage of the eBPF
technology. In this section, we will introduce the eBPF framework and we will provide the
implementation details of the bccstego framework.

3.2.1 The eBPF Technology

The Berkeley Packet Filter has been originally conceived to monitor and filter network traffic in
a stateless manner. The eBPF is its extended version with the support of key/value data struc-
tures, helper functions, the ability to “stack” multiple programs, and an enhanced set of registers
and instructions, just to mention the most important features. Moreover, interactions with user-
space applications enable to process and monitor network traffic in a stateful manner. Natively
designed to run on Linux kernels, the framework is supported by companies such as Facebook,
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Figure 3.3: The eBPF architecture.

Google, Isolavent, and Netflix1. By extending the visibility over the entire host, eBPF allows
to improve observability, security, tracing, and network monitoring operations. For example, it
can be used to inspect network packets, to trace specific kernel functions or to monitor the CPU
or the memory usage. Owing to its flexibility, the eBPF can collect a wide range of data at run-
time, from behaviour of software processes to network events, addressing both local and network
covert channels.

In essence, eBPF is a virtual machine able to safely execute sandboxed programs within the
kernel. The eBPF programs are attached to specific hook points: once the hook points are passed
by the kernel or by an application, the programs are triggered and executed. There are several pre-
defined kernel and application hooks, including system calls, function entry/exit points, kernel
tracepoints, as well as network hooks such as XDP (the eXpress Data Path) or the tc (the traffic
control subsystem). Hook points can be also created according to the needs (e.g., kprobe or
uprobe). This event-driven architecture allows to execute programs only when needed, without
impacting the overall performance of the kernel.

Figure 3.3 depicts the eBPF architecture. The programs are typically wrote in C and compiled
in eBPF bytecode (for example by leveraging suite like LLVM2). The bytecode is then loaded
in the kernel-space using the bpf system call. To guarantee the safety, an in-kernel verifier en-
sures that the program always terminates (e.g., it does not contain deadlocks or forever-loops), it
does not crash or harm the system (e.g., by accessing memory out of bounds or using uninitial-

1https://netflixtechblog.com/how-netflix-uses-ebpf-flow-logs-at-scale-for-
network-insight-e3ea997dca96 [Last Accessed, October 2022].

2https://llvm.org [Last Accessed: October 2022].
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ized variables), and it has a finite complexity (i.e., the number of instructions that the verifier is
allowed to check before rejecting the program). Once it is validated, a Just-in-Time (JIT) com-
piler optimizes the program by translating the bytecode into the machine-specific instruction set.
Due to performance and security constraints, the only way to interact with an eBPF program is
through data structures called maps, e.g., hash tables, arrays, ring buffers, or stack traces, able
to store data. For this reason, the typical use of eBPF requires the development of both an eBPF
program to collect measurements and a user-space utility to load the program in the kernel-space
and interact with data through the maps.

As hinted, the most resource-consuming operation is the “periodical” data transfer between the
kernel- to the user-space for a twofold reason. First, the more data an eBPF map contains in the
kernel-space, the more resources are required to “move” the data to the user-space to perform
the additional analysis. Second, the “period” to read the data must be properly chosen in order
to avoid bottlenecks and overheads. This mainly leads to correctly devise a map capable of
efficiently scaling with the inspected data. In Chapter 5 we will provide a thorough analysis of
these parameters, highlighting their impact in term of performance.

Although the implementation of an eBPF program consists of a limited number of instructions,
there may be a non-negligible overhead in the external constructs that are necessary to compile
the code, load it into the kernel, and exchange data. Among the alternative loaders available
(e.g., bpftool, tc and ip utilities), the BPF Compiler Collection (BCC)3 emerged as a flex-
ible yet powerful framework for running eBPF programs, including a rich collection of kernel
tracing tools for investigating the performance of the OS (e.g., CPU usage, TCP/IP active connec-
tions, system calls). The programming model for BCC revolves around a Python class delivering
functionalities for compiling, loading, and running eBPF programs. The class also takes care
of creating shared maps, and provides specific methods to read and write data. Therefore, the
source code of the eBPF program is usually embedded into the user-space Python application
(e.g., it is statically-stored as a string within the module), which simplifies the portability of the
application. Alternatively, eBPF programs can also be loaded from an external file.

3.2.2 The ipstats.py Tool

The bccstego4 framework is an umbrella of various tools targeting specific traits of the traf-
fic and providing support for the detection of network covert channels. The idea is to share a
common pattern for parsing packets and collecting data, while different eBPF programs are de-
veloped for specific protocols or steganographic threats. Within the bccstego framework, the
ipstats.py tool builds the usage statistics for multiple header fields, adopting the “counters”
method introduced in Section 3.1.

3https://github.com/iovisor/bcc [Last Accessed, October 2022].
4https://github.com/mattereppe/bccstego [Last Accessed, October 2022].
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Figure 3.4: Software architecture of the ipstats.py tool.

Figure 3.4 depicts the software architecture and the build process of the ipstats.py tool,
which is explicitly designed to facilitate the maintenance of complementary programs (i.e., the
eBPF filter and user-space utility). There are two distinct files: bpfprog.c providing the skele-
ton of the eBPF program and userprog.py, which is the user-space utility written in Python.
A Makefile automatizes the merge of the different components and builds the monolithic ip-
stats.py executable Python module. As soon as new programs will be added to bccstego,
the same implementation pattern should be followed. There are different types of eBPF pro-
grams, based on the specific context where they are executed. For our purposes, we develop
programs for the tc subsystem, which inspects network packets via the special clsact qdisc.
This approach gives access to both ingress or egress traffic, and to richer kernel metadata with
respect to the XDP subsystem.

Since the eBPF code is executed for each packet, it is important to use as few instructions as
possible, mainly to avoid unnecessary computation overheads and delays. For this reason, the
ipstats.py script dynamically creates the eBPF code for monitoring a specific header field,
which is indicated on the command line as a parameter. The current version is able to collect data
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and statistics for the protocols/fields that can be likely used for creating covert channels: IPv6
(Flow Label, Traffic Class, and Hop Limit), IPv4 (Type of Service, Iden-
tification Number, Time To Live, Fragment Offset, and Internet Header
Length), TCP (Acknowledgement Number, Reserved Bits, and Timestamps), and
UDP (Checksum). Other parameters that can be given from the command line include the num-
ber of bins B, the network interface to be monitored, the direction of the traffic (i.e., ingress or
egress), the period to read data from kernel- to user-space, and the name of the file for saving the
obtained statistics. Listing 2 showcases a code snippet of the ipstats.py tool. In particular,
the C program bpfprog.c is stored in the Python variable bpfprog, which changes accord-
ing to the number of bins set at line 2 and to the field length specified at line 4. Moreover, the
src variable contains the code that depends on the specified field, in this case the Flow Label
(lines 6-7), which is properly substituted in the bpfprog variable at lines 9-12. The result-
ing program is used to create a BPF object in order to be loaded in the kernel (lines 14-15).
Finally, the variable hist contains the results stored in the nw stats map eBPF map, which
is periodically queried to print out the values of the inspected field (lines 18-29).

3.3 Numerical Results

To evaluate the performance of the ipstats.py tool in the bccstego framework, we pre-
pared a testbed composed of three virtual machines running Debian GNU/Linux 10 (kernel
4.20.9), with 1 virtual core and 4 GB of RAM: two machines exchanged traffic, while the third
one acted as a router and ran the eBPF software. All the virtual machines were running on a 3.60
GHz Intel i9-9900KF host with 32 GB of RAM and Ubuntu 20.4 (Linux kernel 5.8.0). To test our
tool in real-world network conditions, the overt IPv6 traffic load was created by replicating (via
the tcpreplay tool) traffic collected on a OC192 link between Sao Paulo and New York on
January 17, 2019 from 14:00 to 15:00 CET, and made available CAIDA5. The sampling interval,
i.e., the frequency with which the user-space program reads the counters updated by the eBPF,
was set equal to 1 second.

Since the eBPF map is copied from the kernel- to the user-space in a periodical manner, a useful
metric is how many bins are incremented between two subsequent reads. Figure 3.5 depicts
this idea. In case of Flow Label (see, Figure 3.5(a)), this metric provides an approximate
information about the volume of active IPv6 flows populating the overt traffic. In fact, every
packet belonging to the same IPv6 flow is expected to use the same Flow Label value. When
an attacker uses this field to bear some secret, the number of changing bins will abnormally
increase, hence this metric may be directly used for the detection of covert channels. A similar
consideration can be drawn for the evolutions observed for the Traffic Class and Hop

5The CAIDA Anonymized Internet Traces Dataset (April 2008 - January 2019) - Used traces: Jan. 17th 2019.
Available online: https://www.caida.org/data/monitors/passive-equinix-nyc.xml [Last Accessed: October 2022].
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1 # Set the required number of bins in the source file
2 bpfprog = re.sub(r'SETBINBASE',r'#define BINBASE ' + str(binbase), bpfprog)
3 # Set the length of field to be monitored
4 bpfprog = re.sub(r'IPFIELDLENGTH',str(ipfieldlength), bpfprog)
5 # Set the specific code to read the required field
6 if prog == 'fl':
7 src = """

for(short i=0;i<3;i++) {
ipfield |= iph6->flow_lbl[i];
if(i==0) {

/* Remove DSCP value */
ipfield &=0x0f;

}
if(i!=2)

ipfield <<= 8;
}

"""
8 elif [...]

9 if prog in ipv6_fields:
10 bpfprog = re.sub(r'UPDATE_STATISTICS_V6',src, bpfprog)
11 bpfprog = re.sub(r'UPDATE_STATISTICS_V4',"", bpfprog)
12 bpfprog = re.sub(r'UPDATE_STATISTICS_L4',"", bpfprog)
13 elif prog in ipv4_fields: [...]

14 prog = BPF(text=bpfprog)
15 fn = prog.load_func("ip_stats", BPF.SCHED_CLS)
16 if direction == "ingress":
17 ipr.tc("add-filter", "bpf", idx, ":1", fd=fn.fd, name=fn.name,

parent="ffff:fff2", classid=1, direct_action=True)

18 hist = prog.get_table('nw_stats_map')
19 try:
20 prev = time.time()
21 while True:
22 # Wait for next values to be available
23 time.sleep(output_interval)
24 hist_values = hist.items()
25 now = time.time()
26 num = len(hist_values)
27 print("Bin value\tTotal")
28 for i in range(0,num):
29 print("{0:05x}".format(i), "\t\t", (hist_values[i][1]).value)
30 except KeyboardInterrupt: sys.stdout.close()

Listing 2: Code snippet of the ipstats.py tool.
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Figure 3.5: Number of changing bins of the observed traffic when gathering data for different
fields.

Limit. Specifically, Figure 3.5(b) shows that the number of values observed for the Traffic
Class is limited. Thus, an attacker wanting to inject data in this field without producing visible
alterations should adopt some form of encoding (e.g., mapping 1 and 0 values into a sequence
of Traffic Class values that are present in the overt traffic), or he/she should keep the data
rate as small as possible (see [MPC19] for a thorough investigation on the embedding capacity
of real-world IPv6 traffic). Similarly, using the Hop Limit as a carrier requires the attacker to
modulate values without deviating too much from the observed average value (see Figure 3.5(c)).

Concerning resources used by the ipstasts.py tool, we considered performance of both the
eBPF and the user-space programs. The eBPF code is composed of about 120 assembly instruc-
tions, which are executed only when a packet is processed. As a consequence, providing a simple
estimation for the CPU usage is not straightforward. Instead, we can provide an estimation of
the additional latency introduced when processing a packet. It turned out that such a quantity is
minimal, 104.48 ns, on average. The maximum and minimum execution times observed were
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Interval [s]

CPU Usage [%] Memory Usage [Kbyte]

1 10 30 1 10 30

Flow Label 12 7 3 179,748 176,160 174,472
Traffic Class 3 3 3 164,108 163,752 164,180
Hop Limit 3 3 3 163,680 164,032 163,920

Table 3.1: CPU and memory usage for the user-space program.

19, 715 ns and 49 ns, respectively. To give an idea of the impact of the latency introduced by our
eBPF code on a realistic case, we measured the total delay introduced when transferring a file of
1.2 Gbytes. Results indicate a very minor impact, as the additional delay was equal to ∼7 ms. As
regards the memory usage, the stack size is limited to 512 bytes. Instead, the amount of shared
memory depends on the number of bins, but it is insensitive to the length of the monitored field,
as already discussed in Section 3.1. Accordingly, the maximum memory occupancy occurs for
220 bins, and it is equal to ∼8 MB, which is limited. For a lower number of bins (i.e., in the range
of 4− 8 entries), the memory consumption is constant and equal to 4 Kbytes. The used memory
increases proportionally to the number of bins.

Concerning the user-space program, we measured both the memory and CPU usage. Table 3.1
reports the data obtained via the system tools (top and time). Similar to the case of eBPF
code, the size of the shared memory area impacts on resource consumption, since data is copied
in user-space. For the sake of brevity, we only consider a limited number of bins, corresponding
to what has been used in Figures 3.5 and 3.6. For the case of CPU usage, the relevant parameter is
the sampling interval, i.e., the time frame between consecutive reads from the user-space utility,
denoted as “interval” in the table. As it can be seen, the larger number of bins, the higher the
utilization or resources. For Traffic Class and Hop Limit, which only uses 256 bins,
there is no meaningful difference in CPU utilization when changing the sample time.

3.3.1 Towards the Detection of Covert Channels

Even if ipstasts.py and possible additional tools/features in the bccstego framework
can be used as general methodologies for investigating different anomalies in network traffic,
the prime goal is to use them for the detection of network covert channels. To evaluate this
possibility, we conducted an additional round of tests. Specifically, we used the same testbed
and traffic conditions of the previous round, but we added two malicious endpoints that hide
a secret in the different fields of the IPv6 header. The covert channels are implemented via
the IPv6CC suite presented in Section 2.2.1. The two endpoints injected data within an SCP
file transfer with a rate of 500 kbit/s. Figure 3.6 depicts the number of changing bins when
comparing “clean” traffic, i.e., traffic with no covert channels, with traffic containing a covert
communication, during 10 minutes of network activity. Specifically, Figure 3.6(a) shows the
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Figure 3.6: Different behaviors of the number of bins changed between clean overt traffic and
traffic containing a hidden communication for different fields.

case where the Flow Label has been used to covertly transfer a 65 kbyte file (representative
of a chunk of sensitive data or the retrieval of additional attack routines). As previously hinted,
changes in the number of bins indicate the arrival of new IPv6 conversations. This is due to the
“natural” evolution of randomly-generated Flow Label values that are expected to fall under
different bins during the sample period. This approximation is more precise when the number of
new flows is smaller than the number of bins (hence, B and the sampling interval must be chosen
accordingly). As a consequence, the anomalous increase of the number of bins used can indicate
the presence of a hidden communication.

Different considerations can be done for other fields of the IPv6 header. For the case of a covert
channel using the Traffic Class, the limited amount of values used in practice makes the
detection trivial, as indicated by the “spike” at ∼3 minutes shown in Figure 3.6(b). To elude
the detection, the attacker should be able to use a suitable encoding or to slow the channel down
to only few bits per minute. Finally, the “modulating” flavor used to hide a cover channel in
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the Hop Limit makes the detection more difficult. As depicted in Figure 3.6(c), the specific
behavior is less visible since the secret information is not directly injected in the field and the
alterations are spread over the various bins in a more regular manner.

3.4 Other Tracing Technologies

High-rate inspection of network packets with software tools has always been challenging, espe-
cially since the architecture of general-purpose computers is not designed for this scope. In this
vein, several technologies have been proposed to improve the performance of packet processing.
They usually leverage hardware acceleration capabilities present in network interface cards and
CPUs (e.g., checksum offloading or CPU pinning), reducing the implicit overhead in system calls
(due to the context switching between kernel- and user-space) and packet copies in memory.

The most effective approach is kernel bypass, which replaces the networking stack with an alter-
native path. Notable examples are PF RING [Der04] and Netmap [Riz12], which map Network
Card Interface (NIC) memory and registers to user-space to avoid the need of copying packets.
To support such a paradigm, applications must re-implement common networking utilities and
protocols. To partially overcome this issue, DPDK6 provides a large set of libraries for common
packet-intensive tasks, whereas OpenOnload [PR11] uses a hybrid architecture, which dynam-
ically selects between user-space and kernel mode for any network flow. To further reduce the
impact of context switches in the hardware, Vector Packet Processing [BLM+18] exploits the
persistence of common information in the processor caches. In this case, it collects and pro-
cesses large batches of packets (called vectors). From the viewpoint of supporting security ap-
pliances and operations, [Der04, PR11, Riz12, BLM+18] have been largely used in middleboxes
for intrusion detection, firewalling, flow monitoring, and mitigation of DoS attacks.

Even if kernel bypass is a very effective mechanism for simple networking processes (e.g., packet
forwarding and routing), the implementation of generic communication channels is not trivial.
Hence, many frameworks make use of kernel bypass technology to create common processing
patterns: Click [KMC+00], BESS [HJP+15], Snabb [PNFR15], just to mention a few. In this
case, the adoption of fixed processing patterns may jeopardize the implementation of tailored
monitoring and detection features.

Even if eBPF cannot reach the performance of kernel bypass mechanisms, it represents a very
flexible and efficient solution for making custom operations on the traffic processed by the host.
eBPF has been mainly conceived for investigating the kernel performance, while security-related
tools are largely missing. Interestingly, many eBPF-based tools are being integrated in the Cilium
platform [MG19b]. The flexibility of eBPF and the possibility to precisely monitor and trace
the kernel make this framework a really promising technology for discovering and investigating

6https://doc.dpdk.org/guides/prog guide [Last Accessed, October 2022].
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a large variety of stegomalware [CCRZ20, CMR+21] within single hosts or complex digital
infrastructures [RCR21].

3.5 Conclusions and Future Works

In this chapter we introduced the bccstego framework. Differently from other approaches, it
leverages in-kernel code augmentation to reduce the development effort without impacting the
packet processing performance provided by Linux. The proposed solution should not be con-
ceived as a tool working “out of the box” but it has to be considered as the part of a larger
framework that aggregates information from complementary sources. Future works aim at ex-
tending the framework to consider other protocols and network features.

In the next chapters, we will discuss how bccstego can be used to reveal network covert
channels, also focusing on its impact in terms of network performance.
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Chapter 4

Detection of Covert Channels via
Kernel-level Tracing

As discussed, identifying anomalies and spotting suspicious activities require to have deep vis-
ibility over the behavior of software processes. However, this often leads to unacceptable over-
heads, especially for virtualized services or resource-constrained devices. Moreover, the avail-
ability of ubiquitous and seamless network connectivity, the uptake of 5G with edge/fog instal-
lations, as well as the progressive integration with IoT, build a distributed and multi-domain
computing continuum where new services are created and disposed in a rapid manner. Unfor-
tunately, security paradigms have not evolved at the same pace and legacy security perimeter
models cannot effectively address new vulnerabilities and threats [RR18]. Thus, detecting so-
phisticated attacks or stegomalware is an emerging challenge that should properly balance the
depth of inspection with resource consumption [MC15, CCM+18].

Spotting attacks targeting communication and computing infrastructures has been largely dis-
cussed in the literature. For the case of networks, many works focus on anomaly detection (see,
e.g., [AMH16] for a recent survey), which aims at recognizing deviating behaviors to prevent or
reveal a wide-range of attacks like DoS, traffic amplification, spoofing and scanning attempts.
Another important aspect concerns the ability of detecting threats targeting hosts, network ap-
pliances and personal devices, which are increasingly mobile [YY18] or interconnected with a
cyber-physical system [DHX+18]. However, as shown in Chapter 1, information-hiding-capable
threats pose new challenges, as they exploit bandwidth-scarce channels and their detection de-
pends on the used carrier and steganographic technique.

In this chapter, we show how to take advantage of kernel-level techniques for code augmenta-
tion introduced in Chapter 3 and we investigate their usage for detecting stegomalware. First,
we consider two processes running on the same host and colluding to “evade” typical security
controls, i.e., sandboxing (see Section 1.2.1 for a detailed discussion of this attack template).
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Second, we gather low-level measurements that are not available from common tools to detect
hidden communication attempts nested within network traffic (see Section 1.2.2 for the various
types of network covert channels considered in this Thesis).

Summarizing, the contributions of this chapter are: i) the development of eBPF programs to
collect data from the Linux kernel in an efficient way; ii) the creation of realistic use cases for
colluding applications and IPv6-capable covert channels; iii) the analysis of how the collected
information can be used to design effective algorithms for detecting stegomalware and covert
channels; iv) an analysis on the use of eBPF, by taking into account performance measurements
in terms of resource consumption.

The remainder of the chapter is organized as follows. Section 4.1 showcases the use of eBPF to
detect local covert communications via the manipulation of permissions of files, while Section
4.2 investigates its ability to spot network covert channels targeting IPv6 traffic. Section 4.3
elaborates on the use of kernel-based measurements both in terms of overheads and perspective
integration with other frameworks. Lastly, Section 4.4 concludes the chapter.

4.1 Data Gathering for Colluding Applications

In this section, we investigate eBPF tracing for the detection of a stegomalware implementing
a colluding applications scheme. To this aim, Section 4.1.1 discusses an attack based on the
chmod-stego1 technique and Section 4.1.2 presents the obtained numerical results.

4.1.1 chmod-based Stegomalware and its Detection

To model a malware implementing a colluding applications offensive template, we leveraged
a local covert channel using the chmod-stego as depicted in Figure 4.1. The chmod-stego is a
Python application made of two peers, i.e., the covert sender and the covert receiver. To com-
municate, the sender encodes the secret message by changing the access permissions of vari-
ous files stored in a directory shared between the endpoints. Moreover, it can also modulate
the steganographic bandwidth by imposing a delay between two consecutive invocations of the
needed chmod(s). As a first step, the sender saves the initial permissions “state” for all the files
(by using the stat system call in the OS module). Then, it splits the secret message to be sent
into chunks of a fixed size. Every character within a chunk is converted to an integer value di-
rectly mapped into the permissions of the targeted set of files. This operation is repeated until a
special EOF character is found. To achieve some form of synchronization, the sender signals the
encoding of a character using a ticking mechanism, i.e., each time that a permission is changed,
it toggles the owner read bit of the first file in the directory. Accordingly, the receiver remains

1https://github.com/operatorequals/chmod-stego [Last Accessed, October 2022].
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Application A
(Covert Sender)
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Sandbox Sandbox
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NetworkNetwork

Host

Modulation of 
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Figure 4.1: Reference scenario for the colluding applications technique.

listening on the owner read bit of the file (i.e., the tick bit) in order to understand whether permis-
sions encode new information. If yes, the receiver acquires the access permission for all the files
and deciphers the character by using the ASCII encoding. The process is iterated until the secret
message is transmitted in its entirety. To avoid that the communication is easily spotted due to
inconsistencies in the file system, the secret sender restores the file permissions to the original
state at the end of the transmission.

Since the chmod-stego technique is based on the manipulation of the file system, the most
straightforward way to design a detection strategy is by tracing the x64 sys chmod kernel
function, which provides better indications than generic I/O activity (e.g., read/write operations
through x64 sys read and x64 sys write). For this purpose, we used the trace2

utility from BCC, which periodically reports the number of times a given kernel function is
invoked.

4.1.2 Numerical Results

To assess if kernel-level tracing can be used to detect stegomalware, we created an experimental
setup composed of a virtual machine running Debian GNU/Linux 10 (buster) with Linux kernel
4.20.9 and the aforementioned chmod-stego application. To create some sort of “background

2https://github.com/iovisor/bcc/blob/master/tools/trace.py [Last Accessed, October
2022].
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Figure 4.2: Detected invocation of the x64 sys chmod kernel function with L = 30 and
∆t = 0.5, 5, 10, 20 s.

noise”, a kernel compilation was run, which entails many I/O system calls and can be easily
replicated for comparison. To gather data, a simple eBPF filter was injected to trace invocations
of the x64 sys chmod kernel function and to report its relevant parameters, i.e., file and
permissions, the Process ID, and the Thread ID.

We performed two different sets of experiments. The first aimed at evaluating the tradeoff be-
tween the steganographic bandwidth of the covert channel and its detectability. To this aim, we
fixed the length L of the secret message to be transmitted and we varied the time between the
transmission of two consecutive characters, denoted in the following as ∆t. Specifically, we
conducted trials with L = 30 characters and ∆t = 0.5, 5, 10, 20 s. In the second round of tests,
we investigated the influence of the size of the data exchanged between the two colluding appli-
cations. Hence, we set ∆t = 5 s and we performed trials with L = 30, 60, 90, 120 characters,
which may be representative of the exfiltration of a PIN, a cryptographic key or the information
of a credit card. In both experiments, the “clean” configuration has been considered the one
characterized by the load of traced kernel functions due to the compilation of the Linux kernel
5.5.5. All the trials lasted 10 minutes and the hidden communication started at the begin of
the experiment. We point out that, such parameters allowed to consider a wide range of threats
(e.g., slow and long communications characterizing APTs or malicious applications wanting to
exfiltrate as quick as possible sensitive information) while guaranteeing the adequate statistical
relevance. Figure 4.2 depicts the results of the first round of tests. As shown, the presence of
an exchange of information through a covert channel (denoted as CC in the figure) affects both
the number and the distribution of the x64 sys chmod kernel functions. Specifically, the
presence of an anomaly can be detected by the larger number of cumulative invocations of the
kernel function with respect to a known baseline (see Figure 4.2(a)). We note that the higher the
steganographic bandwidth (i.e., ∆t decreases), the higher is the load of x64 sys chmod ker-
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Figure 4.3: Detected invocation of the x64 sys chmod kernel function with ∆t = 5 s and
L = 30, 60, 90, 120.

nel functions at the begin. In fact, higher transmission rates reduce the time needed to transmit
the secret message. This can be viewed in Figure 4.2(b), where the instantaneous time evolution
is shown. The cumulative number of x64 sys chmod invocations converges to a common
value at the end, since the size of the message is the same in this scenario. Similar results have
been observed for the second set of experiments, which are showcased in Figure 4.3. In this
case, the steganographic bandwidth is fixed and the length of the message is the unique factor
that makes the transmission more or less detectable. The difference between cumulative counters
at the end of the experiments comes from different message sizes.

For what concerns detection, channels with a higher steganographic bandwidth and longer mes-
sages are usually easier to detect. Indeed, they imply either sudden peaks or larger volumes of
x64 sys chmod kernel functions. Clearly, online detection is not straightforward because

of the difficulty to find an effective decision rule able to discriminate between legitimate usage
and the presence of hidden transmissions for different use cases. For the case of chmod-stego
technique, a possible signature is given by a sudden change in the volume of x64 sys chmod
kernel functions at the end of the trials. This is due to the sender that restores the original file
permissions, as to avoid the detection by common file system monitoring tools. Unfortunately,
there may be false positives, as the peak in the middle of the kernel compilation. Yet, taking into
account additional parameters available from tracing (e.g., the file names) can be used to further
improve the likelihood of the detection.
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4.2 Data Gathering for Network Covert Channels

In this section, we investigate the use of eBPF for gathering information on a threat exfiltrat-
ing data through a network covert channel nested in IPv6 traffic. Section 4.2.1 discusses the
implementation of the attack and Section 4.2.2 presents the obtained numerical results.

4.2.1 IPv6 Covert Channels and Their Detection

To implement a realistic IPv6 network covert channel, we used IPv6CC (see Section 2.2.1). We
directly stored the covert data in the Flow Label field of the IPv6 header. This allows to have
an adequate steganographic capacity (i.e., 20 bit per packet) and to model an attack effective in
realistic scenarios [MPC19, MSWC19]. Moreover, recent analyses highlight the fragility of the
algorithms used to randomly generate Flow Label values in many OSes, thus understanding
other potential security flaws is a prime research goal [BKP20]. The bccstego framework
presented in Section 3.2 has been used to inspect IPv6 datagrams and gather Flow Label
values.

4.2.2 Numerical Results

To evaluate the effectiveness of using eBPF to support the detection of covert network communi-
cations, we prepared an experimental testbed. A secret sender and a secret receiver exchange data
through the aforementioned IPv6 covert channel running on two virtual machines with Debian
GNU/Linux 10 (buster) with kernel 4.20.9. The overt traffic used by the two secret endpoints to
embed data is generated by an SCP file transfer over a native IPv6 network (i.e., no tunneling or
additional 4to6 or 6to4 mechanisms were present). We underline that our tests aim at investigat-
ing how changes in the Flow Label affect the “histogram” measured by our eBPF filter and
to understand features that should be considered in the design of effective detection algorithms.
For this reason, background traffic has not been considered and more complex investigations will
be done in Chapter 5. A third virtual machine with Debian GNU/Linux 10 (buster) with kernel
4.20.9 has been set up to act as an intermediate router running the eBPF program and the user-
space utility. The eBPF filter was used to parse all the packet headers, extract the Flow Label
and increase the proper bin, according to the observed value.

To precisely assess the performance of eBPF to support the detection of malware endowed with
steganographic communication features, we performed different trials. The first aimed at evalu-
ating the impact of the volume of information to be exfiltrated on the detectability of the covert
channel. Hence, we varied the length of the secret message L. Specifically, we considered
L = 256 bit (e.g., an encryption key or a PIN), L = 4, 096 bit and L = 65 kbit (e.g., multiple
address book entries or sensitive data in a textual form), and L = 1, 000 kbit (e.g., a highly-
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Figure 4.4: Numbers of changing bins for covert messages with various lengths L and number
of bins B, wit ∆s = 100 ms, k = 0.

compressed image containing an industrial secret). For the second round, we investigated the
impact of possible countermeasures deployed by the attacker. We considered a malware using
covert channels implementing different “interleaving” policies to make the burst of packets con-
taining secret data stealthier through some form of decorrelation. Thus, we performed trials
with steganographic packets interleaved with k “clean” packets, i.e., with the original value of
the Flow Label used by the legitimate endpoints. In this case, we considered k = 0, 10, 100
and 1, 000 packets, with k = 0 denoting a flow without interleaving. The third round of tests
addressed the performance of eBPF. We repeated the aforementioned trials by varying the time
between two adjacent reads of the traffic measurements via the user-space tool, defined in the
following as ∆s. Specifically, we made trials with ∆s = 0.1, 1, 10 s. We also investigated
the “granularity” of the eBPF-capable gathering framework by considering different numbers of
bins, denoted as B. At the time of writing this part of the research, we were not able to map the
Flow Label with a resolution greater than 216 bins for security requirements forced by eBPF.
Since this constraint has been relaxed in later updates, Chapter 5 will provide additional results
when considering larger resolutions.

According to preliminary investigations, we found that ∆s = 100 ms was the best resolution
for detecting attacks. In fact, slower “sampling times” can be effective only in the presence
of bandwidth-scarce environments or long-lasting communications (e.g., as it happens in APTs).
Therefore, in the rest of this section, we omit results for ∆s = 1 s and 10 s since the investigation
of eBPF in challenging settings is part of our ongoing research. Moreover, both for the sake of
clarity and compactness, we will show trials for selected combinations of the parameters.

Figure 4.4 shows the number of bins that change between two consecutive sampling intervals. In
the case of a legitimate behavior, we expect that each active flow uses the same Flow Label
for its whole duration. Hence, for each sampling interval, the number of changing bins will be
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Figure 4.5: Impact of the message length L and the interleaving scheme k on the number of
changing bins with various B and ∆s = 100 ms.

limited to 1 if new packets have been observed, otherwise to 0 (i.e., no traffic was present). To
avoid burdening the graph, we do not show the curve representing the legitimate behavior, since
it would be overlapped to the x-axis. Instead, when the IPv6 traffic is used to embed a covert
channel, the different values of the Flow Label will spread across multiple bins. Here, the
number of bins B plays a role. In fact, low values of B lead to “larger” bins, thus the likelihood
that different (but “close”) labels will be counted in the same bin increases. This suggests that the
detection will be more accurate with a finer-grained partition of the label space (i.e., B increases).
Besides, the detection is also affected by the duration of the transmission, which is proportional
to the length of the secret message. As shown, very short messages (i.e., for L = 256 bit) are
very hard to be detected especially with additional background traffic.

A similar investigation is presented in Figure 4.5. In this case, we consider a stegomalware
using a more sophisticated transmission scheme, i.e., data is exfiltrated in bursts interleaved with
trails of k non-steganographic packets. As shown, the bursty mechanism accounts for visible
oscillations in the number of changing bins. This is more clear for longer messages (i.e., when L
increases), whereas for shorter covert communications the information is completely transmitted
in the first burst. To correctly detect the presence of a covert communication, average values of
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Figure 4.6: Impact of the granularity of B on the number of changing bins for different message
lengths L with ∆s = 100 ms and k = 0 (no interleaving).

multiple consecutive samples should be considered, or a more fine sampling ∆s should be used.

Lastly, Figure 4.6 reports how the number of bins B impacts the “visibility” of the covert channel.
Specifically, the higher the number of bins, the larger the changes in the distribution of various
values of the Flow Label. This lets to easily spot a covert communication even in the presence
of background traffic. In fact, since almost every IPv6 conversation is characterized by a life-
long value for the Flow Label, larger discrepancies in how new values are generated (or their
statistical distribution, see, e.g., [MPC19, BKP20]) can be used to reveal the presence of the
covert channel within the bulk of traffic. Unfortunately, larger granularities require a higher
consumption of resources in the node running the eBPF filter. This is supported by the delay
and lower number of measurements in the case of 216 bins: despite the sampling time is set to
100 ms, the user-space program takes more than 1 s to acquire the map and to write the output
to a file. As a consequence, the related trend is always “late” with respect to the other cases,
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B 0 28 210 212 214 216

Max entries − 256 1, 024 4, 096 16, 384 65, 536
Mem size [Kbyte] − 4.10 12.30 36.96 135.17 528.39

N. of active slabs 5, 777 5, 899 5, 928 5, 938 5, 990 6, 004
Active slab size [Mbyte] 48.49 49.85 49.94 50.14 50.47 50.53
Total slab size [Mbyte] 50.01 51.35 51.47 51.67 52.01 52.06

Free memory [Mbyte] 1, 715.27 1, 620.13 1, 620.81 1, 619.62 1, 619.00 1, 618.26
Mapped memory [Mbyte] 81, 644.00 81, 728.00 81, 720.00 81, 740.00 81, 772.00 81, 808.00

Table 4.1: Memory usage with different number of bins B.

especially for shorter message lengths. Delays and performance issue will be further discussed
in Section 4.3.

4.3 Deployability and Additional Results

Kernel-level tracing can be considered an effective enabler for detecting steganographic attacks
that target both end nodes and network traffic. In general, the technique should be properly inte-
grated in a more complex security framework. For instance, eBPF programs can be used to pro-
vide data to specific toolkits aimed at detecting stegomalware or emergent threats (as proposed
in the SIMARGL project) and they can be dynamically orchestrated at run-time to support multi-
ple detection techniques (as proposed in project ASTRID3 - AddreSsing ThReats for virtualIzeD
services). We then consider additional aspects related to efficiency and resource consumption,
outline possible usage for advanced detection techniques, and identify some open issues. We
point out that, Chapter 6 will present a through investigation of the footprint of our approach,
especially when compared to de-facto standard solutions.

4.3.1 Resource Usage

We took into consideration the impact of the proposed approach on resource consumption. The
most relevant use case is still the IPv6 covert channel, where a larger amount of data is collected.
As said, eBPF is conceived as a lightweight framework, thus its stack size is limited to 512 bytes
and there is no kmalloc-style dynamic allocation inside bpf programs either.

Table 4.1 reports relevant statistics about memory usage when different number of bins are
used (the value 0 denotes the baseline scenario when no monitoring is performed). The first
section summarizes data reported by the eBPF utilities (bpftool, in our case). The middle

3www.astrid-project.eu [Last Accessed, October 2022].
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N. of bins 28 210 212 214 216

∆s′ [ms] 109.40 120.40 233.48 351.13 1, 391.91

Table 4.2: Real sampling time experienced by the user-space program.

section shows selected relevant measures of the used cache (number of active slabs4 and their
size as reported by slabtop). The last section reports a subset of information available from
/proc/meminfo. Even if the memory required may increase by few kilobytes when the num-
ber of bins grows, the impact on the kernel cache is rather limited. The relative impact on the
overall memory is even more limited.

Unfortunately, the user-space application suffers performance issues. To give a simple yet mean-
ingful example, we set the desired sampling time ∆s = 100 ms and tested our framework with
different values of B. Table 4.2 reports the real sampling times obtained, denoted as ∆s′. As
shown, the user-space counterpart of our eBPF program is able to follow the expected working
frequency only for the lowest number of bins. This can be mainly ascribed to the need of saving
data on the file system, which is slower than the RAM. To deploy such a solution in production-
quality environments, a more realistic implementation should not save all measurements on a
file, so this problem could be largely mitigated.

4.3.2 Envisioned Applications

Information gathered by kernel-level inspection and tracing can feed detection algorithms and
analytics engines. Obtained insights can be directly delivered to streaming analytics in a (quasi)
real-time fashion or can be used to create large collections of datasets, which is a key challenge
to address for developing effective detectors based on AI techniques [BG15]. In fact, AI-capable
frameworks require heterogeneous and rich information to provide satisfactory statistical per-
formance or to discover relations “invisible” to methodologies based on the common sense. The
identification of a proper set of “features” that contain relevant information for training the model
is probably the most challenging aspect for application of machine learning, that usually requires
to implement multiple kinds of measurements. In this perspective, code augmentation provides
an effective and flexible mechanism for building the required feature set, especially when a mea-
surement campaign cannot be planned a priori. Thus, a trial and error approach can be easily
implemented by stacking multiple filters for having a suitable volume of information for fea-
ture engineering purposes or to compute efficient high-level indicators allowing to decouple the
detection pipeline from the specific steganographic approach.

4Slabs are small portions of Linux caches and they build the “slab layer”. Each cache stores a different type of
temporary objects, such as task or device structures and inodes. The slab layer improves performance by addressing
efficient allocation/deallocation of frequent data structures, memory fragmentation, intelligent allocation decisions,
or symmetric multi-processors.
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Figure 4.7: Heatmaps for various covert transmissions, with B = 28, and different granularities
∆s used for populating bins via eBPF.

To understand whether our set of measurements could be used to feed a machine learning detec-
tor, we searched for potential correlation patterns of the Flow Label distribution and content
of the hidden message. Therefore, we performed additional tests keeping both the same testbed
and parameters as in Section 4.2, but varying the type of secret message exfiltrated by the mal-
ware via the IPv6 covert channel. Specifically, we considered the transmission of a text file
encoded in ASCII, a JPG and a randomly generated string. Obtained value-to-bin mappings of
the Flow Label have been depicted via heatmaps. Figure 4.7 showcases selected results with
different sampling times of the user-space program. Figures 4.7(a), 4.7(e), and 4.7(i) depict maps
of a clean IPv6 conversation, i.e., only the bin corresponding to the original value of the Flow
Label populates depending on the produced traffic (i.e., the volume of packets).
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According to the figure, correlations characterizing each content can be easily spotted via kernel-
level tracing. For instance, for the case of ∆s = 100 ms, the data depicted in Figures 4.7(b) -
4.7(d) can be used to train some AI for identifying the exfiltrated content. Hence, the proposed
eBPF-based approach can be used in a sort of 2-tier blueprint: a first layer for detecting the
presence of stegomalware by inspecting the number of changing bins for the IPv6 traffic load,
and a second layer for guessing whether the covert channel is used to send commands, orchestrate
a botnet or which type of information is being exfiltrated, e.g., textual or multimedia.

Based on our results, we believe that AI methodologies can be “overlaid” on top of standard tools
to improve the performance of the detection, for instance to identify the severity of exfiltration.
This may also be useful to support the decision process, namely to decide which type of counter-
measure should be deployed. For instance, recognizing a covert channel transporting parameters
for configuring a backdoor may trigger an update in the rules of a firewall or in an IDS.

As a final remark, we argue that the additional code injected in the kernel should not introduce
bottlenecks, mainly to avoid degradation in the performance experienced by end users. Concern-
ing the considered channels, filters and eBPF programs should be then able to efficiently map
the “space” generated by the various values of the Flow Label. We already investigated this
aspect: hence, we now only consider how scalability might affect the detection accuracy. Our
results show that the correlation is visible even in the presence of coarse-grained measurements.
Despite being B = 256 bins, Figures 4.7(j) - 4.7(l) computed from data gathered by the eBPF
program with ∆s = 10 s still offer informative insights.

4.3.3 Open Points and Limits of the Approach

In order to deploy eBPF for detecting stegomalware in production-quality scenarios, some open
research points have to be addressed.

First, although we gave some insights about how our measurements could be used for attack de-
tection, the design of concrete detectors falls outside the scope of this part of the research, which
is rather focused on understanding the “brute force” of eBPF to support the task of mitigating
emerging threats endowed with steganographic features. We then elaborated on the usage of data
gathering techniques jointly with some form of machine learning or statistical tool, but the benefit
of this approach against de-facto standard mechanisms like rule-based ones has to be quantified.
In fact, many existing works highlighted that the need of manual labelling, the lack of scala-
bility and the composite nature of datasets are prime obstacles for successfully mixing AI and
cybersecurity [BBCC19, MG19a]. For instance, the detection of changes in the file permissions
usually falls under the scope of continuous integrity verification; hence, when two colluding
applications try to communicate by altering the file system, an efficient detection scheme may
exploit inconsistencies or anomalous patterns in the access permissions (see, e.g., [PSW16] for
the case of NTFS). Similarly, the detection of covert channels leveraging the Flow Label field
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in the IPv6 header is rather straightforward if state information is kept for each flow, but this is
computationally expensive and does not scale well with the number of active flows.

Second, samples of stegomalware (including threats implementing colluding applications schemes)
and IPv6 covert channels collected in-the-wild are very limited as widely discussed in Chapter 2.
Thus, as it often happens in the literature, our investigation is based on non-weaponized colluding
applications and covert channel attacks [ZAB07, MC14, MC15, WZFH15, CCM+18, MPC19],
but this limitation will be relaxed in the next chapters.

Third, detecting this type of threats requires some a priori knowledge of the steganographic
method used by the attacker (e.g., where the secret is embedded). To this extent, the flexibility of
the eBPF is surely a plus, as it allows to develop in a quite simple manner several filters to differ-
entiate the collection of data, which can be extended to consider different carriers or scenarios.
Moreover, eBPF and kernel-based data gathering should be also evaluated as tools for obtaining
high-level and threat-independent indicators. In addition, also the possibility to automatically
generate and run new programs is really interesting yet very challenging, but requires deep usage
of AI techniques and it mostly represents a long-term objective.

Lastly, the impact of software layers for gathering data and detecting stegomalware should be
better understood. For instance, tracing tools running on mobile devices could deplete the battery
or be undeployable in resource-constrained devices. Besides, network traffic could experience
additional delays and jitter impacting on the Quality of Experience of users. Thus the tradeoffs
of resorting to this type of analysis should be precisely evaluated.

A limit of the proposed approach concerns the tight dependence on the Linux kernel. Even if
many network devices and appliances run Linux, this OS has not the same penetration on end
nodes (with the exception of Android). Thus, revealing steganographic attacks like colluding
applications could require platform-dependent approaches or to shift the detection in the network
or in some edge/cloud components. Again, this requires methods to efficiently collect various
type of data, thus kernel-level measurements still deserve deeper investigation. Yet, as it will
be detailed later, efforts to port eBPF outside the Linux world are ongoing, thus making this
constraint less tight.

4.4 Conclusions and Future Works

In this chapter, we showcased how eBPF can be used for programmatically tracing and moni-
toring the behavior of software processes and network traffic with the aim of detecting stego-
malware. To prove the effectiveness of the idea, we evaluated the use of eBPF to gather data in
two different use cases. In the first, we showed how it can be used to trace specific system calls
when an attack based on the colluding applications scheme is ongoing. In the second, we eval-
uated the behavior of the Flow Label field when used to implement a covert channel within
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bulk of the IPv6 traffic. In both cases, results indicated that in-kernel measurement via code
augmentation can be used to gather data to feed toolkits for detecting stegomalware. In addition,
eBPF demonstrated to be flexible enough to provide information for more sophisticated detection
frameworks, e.g., to feed detection models or create datasets for AI-capable techniques. Future
works aim at refining the proposed approach. In particular, the main objective is the definition of
a more programmatic process to progressively narrow down the scope from generic indicators to
fine-grained tracing of execution patterns. This can be also applied to network covert channels,
e.g., to shift the detection from traffic analysis to code inspection. In this respect, future devel-
opments deal also with finding threat-independent signatures such as energy consumption, RAM
usage patterns, and the time statistics of running processes. Ongoing research aims at extending
and generalizing the eBPF approaches to detect a wider array of threats such as cryptolockers
and APTs.

In the next chapter, we will further elaborate on the detection of network covert channels via
code layering approaches.
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Chapter 5

Detection of Network Covert Channels via
Code Layering

As discussed in Chapter 1, the usage of virtualization can ease data gathering operations in
networking scenarios and face the heterogeneity of modern deployments and threats. To this
aim, we now investigate the detection of network covert channels specializing what presented in
Chapter 4 by the mean of virtualization concepts.

Following the ground-breaking innovation wave that has led to the network function virtualiza-
tion era, the telecommunication industry now requires the agility to rapidly deliver new services
and reduce their time-to-market. In this respect, the growing interest in “cloud-native” solutions
pushes the evolution from Physical Network Functions to Virtual Network Functions (VNFs)
and Container Network Functions (CNFs)1. This trend has been observed in recent open-source
platforms, including CORD, OSM, ONAP and SONATA, not to mention the transition from
traditional function-reference points to service-oriented architectures in the control plane of the
5G core [Eur20]. Unfortunately, moving network functions from physical hardware to virtual
machines is easier than containerizing the software (e.g., due to the lack of kernel accelera-
tion). Monitoring and inspection for security purposes is more difficult as well, especially for
immutable software images that cannot be modified at runtime.

Cloud-native cybersecurity platforms usually provide proactive controls at deployment time on
the integrity and safety of the software. Yet, monitoring, inspection, and tracing remain three cru-
cial requirements for telco-grade transition to Platform-as-a-Service (PaaS), especially to detect
and mitigate attacks at the network boundary [RCL+21]. To this aim, in this chapter we explore
the concept of code layering via the eBPF framework to instrument VNF/CNF entities with mon-
itoring and inspection capabilities. As hinted in Chapter 3, the framework is supported by several

1https://5g-ppp.eu/wp-content/uploads/2020/02/5G-PPP-SN-WG-5G-and-Cloud-
Native.pdf [Last Accessed: October 2022].
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companies such as Google or Facebook and recently it has been also ported on Windows. To meet
the typical demand for safe, immutable, and certified software images for telco-grade services,
we propose a framework for the management of a broad class of eBPF programs. The approach
goes in the direction of agentless systems in order to guarantee the ability to address challenging
and emerging security threats. As a paradigmatic example, we further investigate the detection of
network covert channels. Since modern IDSes have major drawbacks when handling IPv6 traffic
and seldom can detect covert channels out of the box [BPK+16, MPC19], assessing such a class
of threats is of prime importance. Besides, the widespread adoption of IoT and industrial control
systems requires flexible mechanisms against timing channels [KWJ21]. Unfortunately, embed-
ding detection capabilities in resource-constrained devices is extremely challenging, therefore
suggesting to address them within VNFs.

As shown in Chapter 1, there are virtually unlimited opportunities to implement covert chan-
nels by altering protocol headers or packet timings, thus making their detection an open research
question [ZAB07, MC14, WZFH15, CCC+20, Cav21]. Specifically, a comprehensive and gen-
eral solution to address covert channels would require to continuously adapt inspection processes
to new protocols and hiding patterns, which is almost unfeasible with static agents in a conven-
tional security framework. The framework proposed in this chapter allows to run a rich set of
eBPF programs for gathering condensed statistics on header fields and timings that can be further
processed and combined with additional data to spot the presence of covert channels.

In this perspective, the contributions of this part of the research are under the umbrella of the “de-
ployability” of countermeasures against network covert channels in real settings. Specifically, the
chapter showcases the development of a scalable and privacy-preserving method to spot covert
communications in IPv6 headers, and also presents an extensive vis-á-vis comparison among the
proposed code layering approach and de-facto standard tools, i.e., Zeek and libpcap. We also
point out that, this part of research has been carried out by using real traffic traces, differently
from other works only focusing on theoretical analysis or data obtained in experimental setups
(see, e.g., [MPC19] and [LLC05]).

The remainder of the chapter is organized as follows. Section 5.1 showcases the reference archi-
tecture, Section 5.2 introduces the threat model and covert channels, while Section 5.3 describes
the experimental setup. Section 5.4 discusses the detection of storage covert channels, whereas
Section 5.5 considers timing channels. Section 5.6 evaluates the performance of our approach
compared to other tools and Section 5.7 reviews the related literature. Lastly, Section 5.8 con-
cludes the chapter.

5.1 Reference Architecture

Code layering is a technique that stratifies the software into a number of functional layers, which
can be modified in an independent manner. This allows to perform changes without having to re-
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Figure 5.1: Reference layered architecture for the agentless monitoring and detection of various
threats.

build and re-deploy the whole software infrastructure. Such a property is highly desirable, since
the disruption of a running service is an unacceptable practice for telco-grade operations. To
this aim, the approach exploits the eBPF technology to implement low-level inspection and trace
operations at run-time both in conventional or PaaS/serverless environments, with negligible
impact on service continuity. We point out that, the proposed approach is an updated version of
the framework presented in Chapter 3.

Figure 5.1 depicts the reference layered architecture of the proposed framework for monitoring
and detection purposes. In particular, the Inspection Layer is located in kernel-space and contains
various eBPF programs implementing simple monitoring and inspection tasks. It is explicitly de-
signed to run multiple eBPF programs without the need of changing the guest OS. The Inspection
Layer offers functionalities for parsing protocol headers, recording inter-arrival times, as well as
for creating custom statistics. As previously discussed, an eBPF program should be simple and
with a reduced footprint since it is triggered at the reception of each packet and it could lead to
hangs or scalability issues. Interaction with eBPF programs (including management operations
and data exchange) is possible through a specific Kernel API.

The Management Layer runs in user-space and represents a sort of middleware entity responsible
for loading/unloading eBPF programs and collecting their data. To support the broadest range
of inspection and monitoring tasks without having to perform changes, it should be loosely-
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coupled with the data structures used by eBPF programs to collect and store information. In-
deed, the Management Layer is the most critical block for building an agentless system, because
it is expected to collect generic data without any a-priori knowledge of their structure. For in-
stance, tools using eBPF such as Cilium and Suricata put tight constraints on data structures,
hence jeopardizing the possibility to shape the inspection tasks to evolving threats and attacks.
Notwithstanding, there are also some examples of monitoring services that allow the collection
and creation of custom metrics from generic eBPF programs, see, e.g., the dynamic network
monitoring service of Polycube2. Such a design choice allows to include this layer in closed-
source, verified, and certified software images of VNFs/CNFs or hosting infrastructure without
precluding the possibility to collect additional or different measures at run-time. As said, interac-
tions with eBPF programs can be carried out through the Kernel API. However, it is also possible
to exploit higher-layer eBPF libraries, which can include bindings for many languages, e.g., C,
Python, Go, and Lua.

Finally, the Detection Layer entails specific algorithms running in user-space to reveal and mit-
igate various threats and attacks. Algorithms implemented in this layer are not strictly part of
standard security agents, since most security information and event management architectures
deploy them in a remote centralized location. The Detection Layer can be used to engineer a
wide range of security tasks. As possible examples of services using eBPF, we mention: track-
ing traffic with a per-flow granularity with a reduced footprint [BFZ21], identification of pro-
cesses or nodes contacting malicious servers without degrading the performance of the inspected
traffic/processes [DSM+19], and support of DPI operations [RCL+21]. For the case of hidden
communications, this layer can be used to detect network covert channels as well as processes or
threads locally leaking data [CMR+21].

5.2 Threat Model

The threat model considered in this work deals with two endpoints, i.e., the covert sender and the
covert receiver, trying to remotely communicate via a covert channel. Figure 5.2 depicts the two
major classes of covert channels, i.e., storage and timing, introduced in Section 1.2 and used in
this chapter.

Recalling that the use of IPv6 has been partially neglected and it is expected to become a major
target for covert communications in the future, we consider the most effective storage network
covert channels exploiting IPv6 traffic, especially those targeting the Traffic Class, Flow
Label, and Hop Limit [LLC05]. For the case of Traffic Class and Flow Label,
we consider an attacker directly writing data within such fields. Instead, for the case of the
Hop Limit, the secret is encoded by introducing a pre-shared offset between two consecutive

2https://polycube-network.readthedocs.io/en/latest/services/pcn-dynmon/dyn
mon.html [Last Accessed, October 2022].
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Figure 5.2: Storage and timing network covert channels.

values to encode 1 or 0. In Section 5.4 we will mostly concentrate on revealing channels in
the Flow Label since it offers more space to embed secrets (i.e., 20 bits compared to the
8 bits of the Traffic Class and 1 bit of the Hop Limit value modulation). Moreover,
Quality of Service is often enforced in border routers causing the disruption of the secret hidden
in the Traffic Class as well as its detection owing to the presence of anomalous values.
Similar considerations can be drawn for the case of the Hop Limit, especially for modern
networks engineered via fewer but longer links, thus reducing the range of values for the field
and making the presence of arbitrary values easier to spot. Therefore, the Traffic Class and
Hop Limit will be briefly addressed in Section 5.4.3. Moreover, since we are interested in
covert channels with an Internet-wide scope, in Section 5.5 we will address timing channels
exploiting the alteration of the time gap between consecutive datagrams. Compared to storage
channels, the detection of timing channels is more coherent and investigated [ZAB07, BGN17].
Thus, we will resort to a known approach instead of proposing novel mechanisms.

5.3 Experimental Setup

For the sake of evaluating code layering for the detection of network covert channels, we devel-
oped the reference implementation depicted in Figure 5.3, which is composed as follows:

• Inspection Layer: it contains a set of eBPF programs that can create statistics on the usage
of header fields and packet inter-arrival times for both IPv4/v6 traffic. Programs collecting
data to address storage channels are based on bccstego (see Chapter 3 for more details
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Packets

Figure 5.3: Experimental setup leveraging run-time code augmentation for the detection of covert
channels.

on the implementation). Instead, to address timing channels, we created a novel eBPF pro-
gram3 collecting time information and implementing the approach presented in [CBS04]
within the kernel;

• Management Layer: to load and unload eBPF programs as well as to collect measures, we
implemented ad-hoc scripts and userland utilities taking advantage of the BCC library (see
Section 3.2 for additional details);

• Detection Layer: to spot storage covert channels, we developed a method based on “con-
densed” statistical indicators, e.g., the frequency/number of values for a specific field pro-
vided by the Inspection Layer. Instead, for the case of timing channels, we consider regu-
larity metrics presented in [CBS04]. Details on the detection methodology will be provided
in Section 5.4 and Section 5.5, respectively.

Concerning the threat model, we considered malicious endpoints communicating through several
types of network covert channels in different scenarios targeting large traffic aggregates. To
run tests, the communicating peers have been implemented via two virtual machines running
Debian GNU/Linux 10 (kernel 4.20.9), with 1 virtual core and 4 GB of RAM. A third virtual
machine with the same characteristics has been deployed to route and inspect traffic as well as
to implement the code layering approach depicted in Figure 5.3. In our trials, the various eBPF
programs have been attached to the output queue, thus inspecting the egress traffic. However,
this does not lead to a loss of generality, since our implementation can also handle programs
attached to the input queue without any meaningful difference in terms of performance. For the

3https://github.com/Ocram95/cabuk eBPF [Last Accessed, October 2022].
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sake of comparison, the intermediate node has been also used to run a modified version of Zeek,
i.e., zeek-stego4, and a pure user-space tool for gathering data with libpcap. To run the virtual
machines, a host with a 3.60 GHz Intel i9-9900KF CPU, 32 GB of RAM and Ubuntu 20.4 (Linux
kernel 5.8.0) has been used. In all trials, to quantify the footprints in terms of CPU and memory,
we used pidstat, which is part of the sysstat collection5. Apart eBPF programs written in
ANSI C, we used Python to implement loading functionalities, the various user-space daemons
as well as supporting tools for gathering and analyzing obtained data.

To conduct tests in realistic network conditions, we used traffic collected on an OC192 link in
different conditions/periods made available by CAIDA6. Without loss of generality and to pre-
vent burdening our trials, we removed packets with a Flow Label value equal to 0, ICMPv6
traffic, and single-datagram UDP conversations. In our experiments, we used the slice captured
on March 15, 2018 from 14:00 to 15:00 CET between Sao Paulo and New York. After process-
ing, we obtained a 30-minute long dataset composed of ∼15, 000 TCP and UDP conversations.
To implement storage covert channels, we directly injected via pcapStego (see Section 2.1)
various secret messages in the dumps provided by CAIDA. Instead, for the case of timing chan-
nels, we used iPerf3 to generate ad-hoc flows and pcapStego has been used again to modulate
inter-packet times and encode the secret information. Traffic generated via iPerf3 has been also
used to compare the performance of the proposed agentless approach against Zeek and libpcap.

As it will be detailed later, the detection of storage covert channels can also take advantage of
other network monitoring tools. To this aim, in our trials we adopted nProbe Enterprise
M v. 9.5.2107157 to inspect the traffic in real-time and compute the number of active IPv6 flows.
According to preliminary tests, the number of active flows reported by nProbe is insensitive
to the presence of IPv6 covert channels. This further supports the need of teaming up with a
specific solution when such channels have to be detected.

5.4 Detection of Storage Covert Channels

This section showcases the detection of storage covert channels targeting IPv6 conversations. As
a paradigmatic example, we will discuss the case of the Flow Label, since it requires to handle
a 20-bit space leading to a significantly higher steganographic bandwidth compared to other
fields. Thus, for the Hop Limit and the Traffic Class we limit to a simpler analysis. We
point out that, the proposed mechanisms could be further extended to tackle channels targeting
other fields/protocols.

4https://github.com/mattereppe/zeek-stego [Last Accessed, October 2022].
5http://sebastien.godard.pagesperso-orange.fr/index.html [Last Accessed, October

2022].
6The CAIDA Anonymized Internet Traces Dataset (April 2008 - January 2019) - Available online: https:

//www.caida.org/data/monitors/passive-equinix-nyc.xml [Last Accessed, October 2022].
7https://www.ntop.org/products/netflow/nprobe/ [Last Accessed, October 2022].
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5.4.1 Detection of Channels Targeting the Flow Label

The detection of storage channels targeting the Flow Label is based on the coarse-grained
estimation of the number of IPv6 conversations. Since each IPv6 conversation is identified via
a fixed, unique Flow Label value generated according to a uniform distribution [ACJR11],
this can provide a rough estimation of the number of flows. The resulting metric can be then
compared against measurements collected by network monitoring tools or used to “reinforce”
indicators provided by standard firewalls or IDSes. Without loss of generality, we assume to
have periodical measurements on the number of active IPv6 flows in the network, denoted as F ,
which is commonly provided by tools for network monitoring.

To compute such an estimation, we used the bin-based approach described in Chapter 3. Recall-
ing, the kernel has been extended to count the occurrence of Flow Label values by setting a
hook point in the tc queue management. To guarantee privacy and scalability requirements as
well as to prevent performance degradation for large traffic volumes, the 20-bit space of possible
values is mapped into a bin-based data structure composed of B equally-capable bins. Accord-
ingly, each bin has a size of 220/B values. Data is then periodically collected by a user-space utility
every ∆t seconds and the bin-based structure is periodically emptied to avoid saturation: this is
ruled via a time window with a duration denoted with T seconds. Parameters ∆t and T allow to
adjust the proposed approach to “follow” the dynamic of birth/death of covert communications
and match measurements/feedback information provided by external tools with different timings,
respectively. Therefore, the number of “dirty” bins, i.e., bins with a non-zero value, provides an
estimate of the number of IPv6 conversations, denoted in the following with N . This is only an
approximation: if different Flow Label values share the same bin, this will cause a collision.
Greater values of B reduce such a probability and improve the precision, but at the price of a
higher memory burden. As an example, let us consider the case of B = 212 bins with a size of
28 values. If a packet with a Flow Label value equal to 337 (i.e., 0x00151) is observed, the
second bin is flagged since it is the one containing values in the 256− 511 range (indexed by the
0x001 prefix). Accordingly, N is incremented by 1.

The presence of a covert communication could be revealed by comparing N and F , e.g., to
understand if the relation N > F holds. However this could be inaccurate, especially due to the
saturation of a bin and the coalescing of entries caused by a limited value of B. For this reason,
we introduced a scale factor denoted with α to balance the flow/bin proportion. The resulting
detection relationship is then αN > F . Unfortunately, using only a threshold could lead to
an unstable behavior, that is, the detector over/under reacts when in the presence of minimal
fluctuations in the number of flows. For this reason, we added a hysteresis parameter ξ.

For the sake of illustrating the proposed detection mechanism, Figure 5.4 showcases an example
considering the exfiltration of 21.25 kbytes of data. In more detail, Figure 5.4(a) depicts the
outcome of the detection for different values of B when α = 0.9 and T = 30 seconds. As
shown, smaller bins (i.e., when B increases) allow to better spot the covert channel but at the
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Figure 5.4: Detection of a covert channel targeting the Flow Label when transmitting 21.25
kbytes of secret data. The red area denotes when the covert communication is present.

price of more false positives. On the contrary, coarse-grained bins (e.g., for B = 212) tend to
underestimate the presence of an hidden communication. A possible workaround could exploit
a tradeoff between the number of bins and the “frequency” of measures. Figure 5.4(b) reports
the results for T = 15 seconds. As shown, smaller timeframes cause a more frequent “reset” of
the bin-based scheme leading to an underestimation of the number of active IPv6 conversations.
Thus, it is not possible to directly compare N with the measurement F provided by nProbe. The
parameter α can correct this mismatch by “magnifying” the obtained values but at the price of
errors leading to false positives. In general, the “optimal” matching between the observed traffic
and the number of bins is critical since it influences both the “stability” and the performance of
the detection. Thus, Section 5.4.2 discusses in detail the design of the various parameters.

5.4.2 Sensitivity Analysis

Detecting storage covert channels is subject to many tradeoffs. For the case of the Flow Label,
there is the need of balancing the granularity of the gathering phase (i.e., ∆t, T and B), the
quality of the estimation (i.e., N and α), as well as the resources required to run additional logic.
Therefore, this round of tests aims at performing a sensitivity analysis of the framework.

For the sake of considering a wide-range of use cases, we designed three different attack scenar-
ios. Specifically, Scenario 1 considers an exfiltration attempt modeled via the transmission of a
file requiring to target 8, 500 IPv6 packets (i.e., 21.25 kbytes). The used overt IPv6 conversa-
tion had an average bitrate of 12 kbit/s leading to an exfiltration time of ∼10 minutes. Scenario
2 models different channels alternating in time, as it happens in the case of the orchestration
of a botnet [MC15]. To this aim, we used three different covert channels activating in a time-
frame of 15 minutes to exchange data requiring 2, 500, 6, 000, and 7, 500 IPv6 packets (i.e., 6.25,
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B CPU Usage [%] Memory Usage [Mbyte]

∆t [s] 1 5 15 30 60 1 5 15 30 60

28 0.13 0.02 0.01 0.00 0.00 181 180 180 180 181
212 1.84 0.40 0.13 0.01 0.03 184 185 183 183 183
216 20.80 6.31 2.25 1.08 0.48 237 227 225 223 221
217 29.81 11.26 4.36 2.16 0.99 282 272 268 264 260
218 36.97 18.14 7.86 4.21 1.88 379 370 360 350 336
219 42.73 26.55 13.30 7.22 3.68 584 569 544 522 494
220 45.81 34.31 21.88 12.41 7.61 1, 012 970 896 880 818

Table 5.1: Combined CPU and memory usage for different values of B and ∆t.

15, 18.75 kbytes, respectively) within overt flows of 12 kbit/s, 1, 600 kbit/s, and 100 kbit/s, re-
spectively. Lastly, Scenario 3 considers an APT targeting a datacenter or a subnetwork, thus
producing multiple covert channels towards a C&C server. In this case, we used 10 concurrent
covert communications targeting each one of 800 IPv6 packets (i.e., 2 kbytes). After 10 min-
utes the number of connections is halved, for instance, due to reboots or crashes/shutdowns of
compromised nodes.

As a first step, we evaluated the impact of the number of bins B and the sampling time ∆t ruling
the kernel-to-user-space copy of collected values to elaborate on constraints of the granularity
of the detection process. To this aim, we replayed the considered traffic trace towards the node
running the eBPF framework. The related CPU and memory usage have been collected with a
granularity of 10 samples per minute and average values have been computed. Table 5.1 shows
the obtained results. To avoid burdening the table, we report values for B = 28 (as they represent
the case of measuring the Hop Limit and Traffic Class), B = 212 for an intermediate
reference, and for B > 216. As shown, the footprint of the user-space program collecting results
increases with the “precision” of the data gathering (i.e., B and ∆t). Despite the absence of
configurations leading to an unbounded utilization of resources, a major bottleneck is caused
by the operations needed to copy data from the kernel-space to userland. This is especially
true for B = 220: in fact the copy requires ∼14 seconds, thus causing a “misalignment” from
real Flow Label values and those collected in the meantime. Indeed, also the granularity
of ∆t is subject to careful design choices. Even if a precise tracking of the abused flow is
desirable, this should be impeded by difficulties in gathering data in a fine-grained manner. For
instance, a typical timeframe for computing analytics of large-scale links/networks is in the range
of 30 − 90s, thus relaxing tight constraints on ∆t (see, e.g., [ZNA12] for timing constraints for
scalable classification). Therefore, for the sake of brevity, in the rest of the chapter we will limit
our analysis to ∆t = T = 30 s.

Concerning the possible tradeoff among B and the ability of spotting hidden communications
within the bulk of traffic, Figure 5.5 provides a comprehensive overview for the impact of B
on the accuracy. In general, as shown in Figure 5.5(a), best results are achieved for Scenario
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Figure 5.5: Accuracy of the bin-based detection mechanism with different values of B for all the
considered scenarios.

1 mainly owing to the presence of a unique covert communication leading to a non-negligible
volume of artificial Flow Label values. Instead, when in the presence of hidden transfers
characterized by ON/OFF or “fading” behaviors, the accuracy decreases accordingly, as reported
in Figures 5.5(b) and 5.5(c). Even if higher values of B typically lead to a better accuracy, the
proposed approach is able to capture the presence of storage covert channels also with a reduced
number of bins (see Figure 5.5 for the case of B = 214). This can be ascribed to the parameter
α, which can compensate the under/overestimation of the observed values of the Flow Label
used to flag the various bins.

The accuracy may not be sufficient to capture the performance of the proposed approach in terms
of false/true positive/negative events. Therefore, Table 5.2 reports the true positive rate (TPR)
and the true negative rate (TNR) collected when using various values of B for α∗ = 0.9, i.e., the
“optimal” α leading to the best performance. Moreover, as depicted in Figure 5.4, the presence
of a threshold-based rule may lead to an unstable behavior of the detection. To mitigate such an
issue, we also investigate the impact of ξ implementing a sort of hysteresis for the comparator rule
αN > F , i.e., the outcome of the detection changes according to +ξ and −ξ switching thresholds
à-la Schmitt. Specifically, it is a lower/upper bound considering F ± ξ with ξ = 1%, 5%, and
10% of its current value. For the sake of brevity, we limit our analysis to B > 215.

As shown, for the case of Scenario 1, the parameter ξ allows to improve the overall detection,
especially in terms of TNR. However, greater values of ξ may cause a decay of the accuracy
as they make harder to switch the outcome of the detector, thus remaining in a “wrong” state.
For the case of Scenario 2, the poor performance of the TPR affects the accuracy, despite the
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Scenario 1 Scenario 2 Scenario 3

B ξ ACC [%] TPR [%] TNR [%] ACC [%] TPR [%] TNR [%] ACC [%] TPR [%] TNR [%]

B = 215 0% 90.16 80.95 95.00 83.61 59.09 97.44 88.52 71.43 97.50
B = 215 1% 91.80 80.95 97.50 83.61 59.09 97.44 88.52 71.43 97.50
B = 215 5% 91.80 76.19 100.00 85.25 59.09 100.00 86.89 61.90 100.00
B = 215 10% 88.52 66.67 100.00 80.33 45.45 100.00 83.61 52.38 100.00

B = 216 0% 91.80 90.48 92.50 83.61 63.64 94.87 81.97 63.64 92.31
B = 216 1% 90.16 80.95 95.00 85.25 63.64 97.44 88.52 71.43 97.50
B = 216 5% 90.16 76.19 97.50 83.61 59.09 97.44 85.25 61.90 97.50
B = 216 10% 90.16 71.43 100.00 83.61 54.55 100.00 85.25 57.14 100.00

B = 217 0% 90.16 90.48 90.00 81.97 63.64 92.31 85.25 71.43 92.50
B = 217 1% 93.44 90.48 95.00 85.25 63.64 97.44 88.52 71.43 97.50
B = 217 5% 91.80 80.95 97.50 83.61 59.09 97.44 85.25 61.90 97.50
B = 217 10% 90.16 71.43 100.00 83.61 54.55 100.00 85.25 57.14 100.00

B = 218 0% 90.16 90.48 90.00 81.97 63.64 92.31 85.25 71.43 92.50
B = 218 1% 93.44 90.48 95.00 85.25 63.64 97.44 88.52 71.43 97.50
B = 218 5% 91.80 80.95 97.50 83.61 59.09 97.44 85.25 61.90 97.50
B = 218 10% 90.16 71.43 100.00 83.61 54.55 100.00 85.25 57.14 100.00

B = 219 0% 90.16 90.48 90.00 83.61 68.18 92.31 85.25 71.43 92.50
B = 219 1% 91.80 90.48 92.50 83.61 63.64 94.87 86.89 71.43 95.00
B = 219 5% 91.80 80.95 97.50 83.61 59.09 97.44 85.25 61.90 97.50
B = 219 10% 90.16 71.43 100.00 83.61 54.55 100.00 85.25 57.14 100.00

B = 220 0% 90.16 90.48 90.00 83.61 68.18 92.31 85.25 71.43 92.50
B = 220 1% 91.80 90.48 92.50 83.61 63.64 94.87 86.89 71.43 95.00
B = 220 5% 91.80 80.95 97.50 83.61 59.09 97.44 85.25 61.90 97.50
B = 220 10% 91.80 76.19 100.00 83.61 54.55 100.00 85.25 57.14 100.00

Table 5.2: Impact of B and ξ over the accuracy of the detection (ACC), the true positive rate
(TPR), and the true negative rate (TNR).

various B and ξ. This can be ascribed to the presence of a low-throughput channel reducing
the effectiveness of the detection mechanism, i.e., the TPR remains in the 45.45 − 68.18 range.
A similar behavior characterizes Scenario 3: again, ξ improves the TNR. Yet, the presence of
many covert channels halving their activity influences the TPR and the accuracy mainly due to
the reduced volume of altered Flow Label. Similarly for the case of Scenario 1, higher values
of ξ prevent to switch from positive to negative (and viceversa) when the throughput of covert
data changes in time.

5.4.3 Channels Targeting Other IPv6 Fields

When handling less capacious fields, the bin-based approach can still be used to implement
simpler yet effective counters to reveal hidden communications. Specifically, for the case of
the Traffic Class and Hop Limit, by creating a structure with B = 28, it is possible to
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Figure 5.6: Number of “dirty” bins observed when inspecting the Traffic Class and Hop
Limit.

perform a one-to-one map between observed values and “dirty” bins. To this aim, we performed
an experimental campaign considering the same background traffic used for trials in Section
5.4.2. For the Traffic Class, we considered a threat embedding a malicious command of
512 bytes as used by the Silence Trojan to download and execute a PowerShell script within a
flow with the average throughput of 750 bytes/s. Instead, for the Hop Limit, we assumed an
attacker wanting to deliver a stage of the Emotet malware of 964 bytes within a flow with the
average throughput of 1.5 Mbytes/s. The bits 0 and 1 have been encoded by modulating the Hop
Limit with values 10 and 250, respectively. Both malicious payloads are borrowed from the
FCL collection.

Figure 5.6 depicts the collected results. Specifically, Figure 5.6(a) deals with a covert channel
built by embedding secrets in the Traffic Class. As shown, the number of non-empty bins
varies according to the different Traffic Class values within the bulk of traffic. When the
targeted IPv6 conversation is active, the number of bins is higher due to the presence of the
secret, leading to a sort of “signature”. On the contrary, for the case of Hop Limit (see Figure
5.6(b)), this is less evident, especially due to the used hiding strategy not directly storing the
secret. Hence, a more sophisticated approach is needed: this is part of our ongoing research.

5.5 Detection of Timing Covert Channels

This section investigates how the proposed agentless approach can be used to reveal the presence
of timing covert channels. Specifically, we are interested in understanding whether the detec-
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Bitrate 1 Mbit/s 10 Mbit/s 1 Gbit/s

Q 5 10 15 5 10 15 5 10 15

Packet Size [bytes] W = 100

16 0.07 0.06 0.04 0.03 0.04 0.10 0.09 0.02 0.05
1, 470 0.08 0.04 0.05 0.04 0.05 0.07 0.09 0.04 0.04
8, 192 0.06 0.03 0.06 0.06 0.05 0.04 0.07 0.04 0.05
65, 507 0.07 0.04 0.03 0.05 0.06 0.04 0.05 0.06 0.06

W = 250

16 0.09 0.06 0.03 0.03 0.04 0.03 0.05 0.06 0.04
1, 470 0.05 0.06 0.04 0.06 0.04 0.04 0.03 0.05 0.03
8, 192 0.05 0.08 0.06 0.04 0.03 0.05 0.04 0.05 0.04
65, 507 0.09 0.03 0.03 0.04 0.03 0.03 0.06 0.02 0.05

Table 5.3: CPU usage for various traffic rates, W , Q, and different packet size.

tion logic can be partially embedded within eBPF mainly to avoid the need of further moving
and processing data in user-space. To this aim, we implemented a de-facto standard algorithm
borrowed from the literature. Originally introduced in [CBS04], the idea is to compute a mea-
sure of regularity for a set of variances built by grouping packets to make pattern-like behaviors
emerge. Patterns can then be used to reveal the presence of hidden information causing “anoma-
lous” inter-packet times. In essence, for each window composed of W packets, the algorithm
in [CBS04] calculates the standard deviation σ of the related inter-packet time values. Then,
it computes the pairwise differences between σi and σj , for each pair i, j. The final regularity
measure is given by computing the overall standard deviation for all the pairwise differences.
Unlike the original version, our implementation checks the regularity metric on-line, i.e., a flow
is evaluated on a semi-continuous basis. Unfortunately, due to eBPF limitations in terms of stack
size and number of instructions, the regularity measure has been approximated (e.g., the lack of
sqrt() and other mathematical operations required to implement approximate counterparts).
Moreover, to tame memory consumption, the regularity indicator is periodically reported to pre-
vent the need of “unrolling” too many operations. In the following, we define such a “control”
parameter as Q, i.e., the number of values for σ considered for each computation of the regularity
metric.

5.5.1 Numerical Results

To evaluate our code layering mechanism when used to detect timing channels, we performed
trials with hidden conversations nested within the inter-packet time of a ∼7, 000 datagrams flow.
To make our investigation more comprehensive, we present results obtained with IPv4 traffic:
similar results have been obtained with IPv6. To test the covert channel, we sent a malicious
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command of 304 bytes used by the GZipDe malware. According to [CBS04], to encode the
value 1, we inflated the inter-packet time for two adjacent datagrams by 0.06 seconds, which
ensures a character accuracy of 98%. Instead, the 0 value is encoded by maintaining the orig-
inal timing of the overt traffic. To evaluate the impact of the in-kernel detection algorithm, we
measured the CPU and the memory usage, as well as the packet loss and the jitter of the pro-
cessed traffic. For each trial, we considered flows with various bitrates, i.e., 10 kbit/s, 100 kbit/s,
and 1 Mbit/s. We also evaluated the impact of the number of packets W used to compute the
standard deviation, which somewhat constitutes the granularity of the approach. Specifically, we
considered W = 100 and W = 250 as suggested in [CBS04]. Results indicate that our agentless
approach does not introduce further delay or packet loss on the inspected traffic. Indeed, the
low bitrate characterizing timing channels plays a major role, especially it does not require tight
computational constraints. This is further supported by CPU and memory consumptions, which
are limited to ∼0% and ∼114 Mbytes, respectively, throughout all the trials.

To understand the ability of the eBPF-based code layering approach to handle large traffic vol-
umes, we performed an additional round of tests considering different packet sizes and higher
traffic rates. Specifically, we considered datagrams ranging from 16 to 65, 507 bytes, in order
to consider both worst and best cases in terms of packet processing. Although the fragility of
timing channels limits the allotted throughput, the proposed approach could be deployed to mon-
itor Internet-scale deployments (e.g., a datacenter). In this perspective, we also investigated the
impact of W and Q to assess the scalability of the proposed agentless implementation. Table 5.3
contains the CPU utilization. In more detail, the code layering mechanism does not account for
major overheads. Concerning the overall memory consumption, it is always bounded to ∼110
Mbytes and almost constant. This is due to the limited amount of memory needed to store the
Q standard deviations and the W inter-packet times. Lastly, we also measured the delay and
jitter of the traffic processed with the eBPF code. Overheads caused by the inspection are almost
negligible for all the considered configurations.

5.6 Performance Comparison

A main goal of our framework is to run agentless detection processes without relevant perfor-
mance degradation. Hence, this section presents a comparative analysis with well-known mon-
itoring tools and technologies for network inspection. Specifically, we compared our agentless
approach against implementations of the bin-based technique with Zeek and ANSI-C/libpcap.
For the sake of comparison, we also considered a reference scenario, denoted as “baseline” in
the following, where no traffic inspection is performed (i.e., no tools were running) in order to
have a lower bound. Indeed, monitoring network traffic could interfere with the overall Quality
of Service/Experience (especially by impacting on the packet loss, bitrate, and latency of delay-
sensitive applications) or require non-negligible computing and storage resources. Therefore,
we considered the impact of the packet size and transmission rate for UDP flows as well as the
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Figure 5.7: Characteristics of the UDP flow after the inspection (the graph is in log scale).

Maximum Segment Size (MSS) for TCP streams. For the packet, we considered four different
values: 16 bytes modeling tiny and fragmented traffic, 1, 470 bytes modeling a full utilization
of the Ethernet frame, 8, 192 bytes modeling IPv6 jumbo frames, and 65, 507 bytes modeling
maximum size allowed by UDP and representing the “best” condition for forwarding8. For the
MSS, we selected four different values as well, by doing similar considerations for the case of
UDP, i.e., we used 88 bytes, 536 bytes, which is the minimum value that should be used on IP
links, 1, 460 bytes for the full Ethernet utilization, and 9, 216 bytes.

Concerning the transmission rates, we considered traffic loads ranging from 10 kbit/s to 10 Gbit/s.
However, it turned out that our testbed was not able to sustain rates higher than 3 Gbit/s. This
has to be ascribed to a limitation of our softwarized implementation but does not represent a
constraint. In fact, production-quality deployments usually rely upon some form of acceleration
that can sustain more than 10 Gbit/s of traffic [MLR+07].

For the sake of brevity and to avoid burdening results, in the following we only report and discuss
the case of gathering information for the Flow Label when B = 212 and for loads up to 1
Gbit/s. Yet, similar results have been observed for the case of the Traffic Class and Hop
Limit.

5.6.1 Impact on Packet Transmission

Figure 5.7 investigates how the inspection process behaves in the presence of different packet
sizes and bitrates. In more detail, Figure 5.7(a) shows that the proposed method has a very

8The maximum size of 65, 507 bytes is only feasible on loopback interfaces. Yet, it is of interest since is often
used by virtual machines running on the same host.
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Figure 5.8: Measured bitrate for a TCP flow after the inspection (the graph is in log scale).

limited impact on the transmission rate, for the whole range of relevant parameters. Specifically,
libpcap-based tools duplicate packets via raw sockets, hence decoupling additional processing
from forwarding operations (i.e., inspection is done on a copy of the packet). However, even if
eBPF programs act on the forwarding path, the impact is limited, thus the resulting behavior does
not deviate from the considered baseline condition. Figure 5.7(b) depicts results for the packet
loss, which is affected by the bitrate, as expected. In general, the causes of the losses are due to
tiny packets causing a major overhead, and limitations of our setup to handle rates in the 1 Gbit/s
range. For the sake of brevity, we omit results concerning the jitter. The measured variation for
the inter-packet delay is ∼0.1 ms for all the considered tools, thus making our approach feasible
also to search for covert channels in multimedia or time-sensitive flows.

Finally, Figure 5.8 showcases the performance in terms of rates achieved when using the TCP/IPv6
traffic. Coherently, higher bitrates are possible with larger MSS especially due to a beneficial im-
pact on the TCP flow control mechanism. Again, our approach performs similar to the case of
Zeek and libpcap. Thus, our eBPF-based mechanism does not affect packet transmission in a
significant way.

5.6.2 CPU and Memory Usage

CPU and memory utilizations are important to understand the footprint of the various frameworks
used for the detection of network covert channels. Figure 5.9 reports a detailed breakdown of
the used CPU. Our eBPF-based approach accounts for a small overhead with respect to the
baseline. Both the libpcap-based tool and Zeek require more CPU at higher bitrates, whereas
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Figure 5.9: Cumulative CPU usage of the intermediate node for various packet sizes and bitrates
when inspecting a UDP flow.

our framework has a more “stable” demand. Similar considerations hold for the case of TCP as
reported in Figure 5.10. Even if the Python language is not the best option in terms of processing
speed, our agentless mechanism performs better than the other tools and limits the used CPU
compared to the baseline.

Concerning the used memory, in our trials we investigated the overall memory utilization in-
cluding the Virtual Memory Size (VMS), the Resident Set Size (RSS) representing the size of
physical memory including shared libraries, the Proportional Set Size (PSS) capturing the size of
physical memory with proportional attribution to shared libraries, and the Anonymous utilization
(Anon) containing the stack and other allocations. Figure 5.11 depicts the obtained results. As
shown, Zeek has a larger memory footprint, but only a minimal part is allocated to the RAM. The
memory allocated for our eBPF-based approach is larger because of the many libraries needed
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Figure 5.10: Cumulative CPU usage for a TCP flow.

by the Python runtime. Instead, the ANSI-C implementation based on libpcap has a negligible
memory requirement owing to the efficient nature of the library and the use of a very minimal
fraction of other calls, mainly for I/O operations.

5.7 eBPF for Security Tasks

The eBPF has been already considered for a variety of security-related tasks or to improve var-
ious software components. As an example, [DSM+19] investigates how to extend the ntopng
network monitoring tool with events generated by the libebpfflow, which allows to enrich
network-layer data with system metadata (e.g., source and destination IP addresses are matched
against source and destination processes and system users). The goal is to support the definition
of custom policies to drop unwanted connections. Besides, eBPF can be used to break up the
conventional packet filtering model in Linux. This can be achieved by moving the inspection
process in the XDP, where ingress traffic can be processed before the allocation of kernel data
structures, thus leading to performance benefits [HJBB+18]. This paradigm can be used to pro-
vide a “first line of defense” against unwanted traffic such as flows with spoofed addresses or
DoS/Distributed DoS (DDos) attacks [Ber17].

In the context of network tracing, [SZCR18] proposes a framework where a master node trans-
lates user inputs into configuration files to feed eBPF agents for monitoring network packets
of specific connections at given tracepoints (e.g., virtual network interfaces). Obtained mea-
surements are then collected and analyzed in a centralized manner. In [HJYH18], the authors
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propose an eBPF-based implementation for monitoring the traffic exchanged between the virtual
machines without the need of specific hardware appliances. Results indicated that duplicating
packets with an eBPF program attached to a hook in the tc achieves better throughput than
native port mirroring of Open vSwitch, especially for large data units. The idea closest to our
approach is presented in [CTJS20] showcasing a system for deploying eBPF programs and col-
lecting their measurements in containerized user-space applications. To this aim, the framework
exploits tools like Prometheus, Performance Co-Pilot, and Vector, as well as specific eBPF pro-
grams and various userland counterparts. However, differently from our work, [CTJS20] does
not consider covert communications or manipulations of network artifacts. Rather, it focuses on
monitoring the garbage collector, identifying HTTP traffic, and implementing IP whitelisting.

Compared to previous approaches, our idea allows to consider different covert channels within
a unique framework. Owing to the flexibility of eBPF in handling various traffic features, the
inspection process can be extended or adapted to consider different types of covert channels.
Differently from past works available in the literature only addressing a single protocol or pursu-
ing generalization via AI and data-intensive approaches, our bin-based data structures prevents
to store and process sensitive details even with a per-flow granularity. This design allows to
guarantee privacy requirements, while taming the computational burden. For what concerns the
detection, revealing a class of channels only accounts for the creation of a simple detection rule,
which can also take advantage of measurements already provided by network monitoring tools
commonly deployed in medium- and large-sized scenarios.
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5.8 Conclusions and Future Works

In this chapter, we presented a code layering framework for the detection of storage and timing
covert channels. Specifically, we engineered an agentless monitoring architecture and developed
various eBPF programs to gather data, map obtained values in suitable data structures, and im-
plement a reference detection mechanism. Collected results indicate that code layering can be
effectively and efficiently used to implement monitoring mechanisms in PaaS/serverless environ-
ments, as well as to implement a complete detection “pipeline” for covert channels. Moreover,
the required resources make the use of eBPF a convenient choice, especially if compared with
tools like Zeek or libpcap. Future works aim at using eBPF for actively manipulating traffic,
e.g., to sanitize flows and disrupt the channels by overwriting fields or restoring them to a stan-
dard value. Concerning the technological viewpoint, future developments aim at refining the
engineering and implementation of the agentless framework, especially for its deployment in
production-quality environments.

In the next chapter, we will further investigate on the efficiency of the eBPF approach, in terms
of used resources and impact on network transmission, when compared with alternative imple-
mentations and tools. Moreover, to remove some limitations of the detection scheme proposed
in Chapters 3-5, in Chapter 7 we will investigate the use of AI to face realistic threats.
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Chapter 6

Towards a Real-World Deployment

In Chapters 3-5, we discussed how eBPF can be considered a valuable building block to engi-
neer a framework for spotting the presence of network covert communications. In this chapter,
we further investigate its efficiency in terms of resource usage and impact on network transfers.
Specifically, we consider alternative implementations for detecting covert channels built via libp-
cap, which is one of the most widespread library for packet processing outside of the kernel, and
extensions of Zeek, a de-facto standard network analysis platform. The comparison offers a deep
analysis of resource consumption, including CPU, memory and disk usage.

The remainder of the chapter is organized as follows. Section 6.1 discusses the difficulties to
create efficient monitoring processes for covert channels with existing cybersecurity appliances.
Section 6.2 describes the alternative technologies introduced before and used to implement the
same data gathering mechanism. Section 6.3 provides a complexity analysis highlighting the
level of expertise and difficulty for further extending the proposed tools whereas Section 6.4
reports the numerical results. Lastly, Section 6.5 concludes the chapter.

6.1 Pros and Cons of Monitoring and Inspection Processes

Traditionally, network appliances implement packet processing in hardware, because general-
purpose computing architectures do not fit well the workflow for receiving, inspecting, and for-
warding network packets. This approach has been largely used for cybersecurity purposes and
many routing and switching devices today report flow-level statistics and measurements. Al-
though this approach perfectly suits the need for flow analysis and reporting, it lacks the flexibil-
ity to adapt to new protocols and semantics, especially for cloud-native applications and service-
oriented architectures [RR18].

A more flexible approach is also required to effectively tackle the growing sophistication of at-
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tacks, for example in the case of stegomalware. One typical problem is the need to continuously
update the database of known signatures and rules. Besides, when the scope is narrowed to single
applications or few hosts, the amount of network traffic is not comparable with large infrastruc-
tures where hardware appliances are still needed. Today, several technologies are widely used
both in commercial and industrial environments, e.g., Suricata, Ossec, Snort, Zeek just to men-
tion the most popular. Unfortunately, as highlighted in Chapter 2, detection of covert channels is
not a standard feature of security tools, even if they usually provide some mechanisms to extend
the basic capabilities and to define monitoring tasks tailored to different use cases. This is, for
instance, the case of Suricata and Zeek. As it will be detailed later in this chapter, the Zeek
scripting language is more powerful when compared to rule-based tools such as Suricata. How-
ever, Zeek scripts are interpreted at run-time and are not suitable for high packet rates. Moreover,
Zeek is not able to efficiently inspect fields with a per-packet granularity.

Because of performance issues, security technologies often leverage packet processing accel-
eration frameworks that “bypass” the native kernel networking stack and give direct access to
hardware queues and functionalities in the NICs, e.g., PF RING, Netmap, or DPDK, posing two
main issues. First, the main processing code is usually developed in user-space for simplicity
and it does not harm the stability of the whole kernel. Unfortunately, this means that all the
well-tested configuration, deployment and management tools developed over the years within
the built-in stack become useless, and should be re-implemented as well. Second, the direct
access to hardware queues brings great advantage when the processing delay is mostly due to
packet reception and transmission, but forwarding operations are very simple and limited to few
table look-ups. However, such DPI-based methods often require several parsing operations and
the need to continuously polling the NIC, which lead to large wasting of CPU time [RC21].

Finally, following the agile and lightweight nature of modern applications require easily exten-
sible and manageable solutions. The latter are usually general-purpose and conceived to cover a
broad number of threats. This is the best approach for monolithic systems, where all functions
are grouped together on a single system, but does not fit distributed and service-oriented archi-
tectures largely used in cloud and cyber-physical systems [RCR21]. In fact, such architectures
may change their topology at run-time due to management actions, e.g., for scaling or migration
operations.

6.2 Monitoring Technologies

Implementing monitoring processes to detect covert channels is not trivial, especially when mod-
ern computing paradigms are taken into consideration (e.g., cloud-native applications, service-
oriented architectures, or IoT deployments). To understand the feasibility of creating effective
detection algorithms, we investigated and compared the following approaches implementing the
bin-based mechanism used in Chapters 3-5:
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Figure 6.1: Zeek architecture and processing model.

• an extension of Zeek through a patch developed by using its native scripting language;

• a raw implementation in the C language based on libpcap;

• the bccstego approach leveraging the eBPF framework discussed in Chapter 3.

Differently from Chapter 4 and Chapter 5, the main purpose of this portion of research is to
compare the performance of the different implementations in terms of development complexity,
impact on packet transmission and resource usage, while specifically targeting modern comput-
ing paradigms.

6.2.1 Extending Zeek to Handle Network Covert Channels

Zeek is a fully open-source tool optimized for interpreting network traffic, generating logs based
on events and mainly acting as a network probe for security management. Figure 6.1 depicts
the architecture of Zeek. A Capture Driver (e.g., raw socket or PF RING) delivers network
packets to the core of the Zeek framework, called the Event Engine. This component inspects
any protocol header and reduces the incoming packet stream into a series of higher-level events.
Examples of events include connection initiation/termination, DNS query/response, or HTTP
request/response. Finally, the Policy Script Interpreter derives the semantics related to the events,
by executing a set of event handlers written using the custom scripting language provided by
Zeek, and generates Logs and Notifications for external consumers.
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Beyond the extensive set of logs describing network activity and built-in functionality for a range
of analysis and detection tasks, Zeek comes with a domain-specific scripting language for ex-
pressing arbitrary analysis tasks. Indeed, analysis and logging are done via scripts. Following
the above model, it is possible to create custom scripts for collecting data and enable the detec-
tion of network covert channels. Unfortunately, Zeek does not generate events on the reception
of individual IP packets for performance reasons. Therefore, we patched the source code and
created a custom version named zeek-stego. In essence, zeek-stego enables Zeek to compute
statistical indicators with a per-packet granularity rather than a per-flow one. In addition, the
patch can populate the bin-based data structure that has been introduced in Section 3.1.

6.2.2 Implementing the bin-based Approach with libpcap

The second approach we decided to use leverages libpcap, a C/C++ library developed for Unix-
like OSes for traffic monitoring. The library allows to retrieve and capture packets from a live
network device in a simple and straightforward manner.

The implementation1 developed for this Thesis is composed of a single C program, in charge of
opening the network device for packet live capturing, retrieving packets, parsing them according
to the parameters set by the user and updating the counters of the data structure described in
Section 3.1. The current version is able to collect data and statistics for the protocols/fields that
can be likely used for creating covert channels: IPv6 (Flow Label, Traffic Class, Hop
Limit, Next Header, Payload Length), IPv4 (Type of Service, Identifica-
tion Number, Time To Live, and Fragment Offset), TCP (Acknowledgement
Number, and Reserved Bits), and UDP (Checksum). The program is designed to be eas-
ily extended for considering other protocols and fields by simply adding cascading if-case
conditions in the main function.

6.3 Complexity Analysis

Zeek is a well-known tool and its scripting language is rather simple. Moreover, the system
comes with a large set of pre-built functionalities (the “standard library”), which can be used as
a solid base. The main limitation is that the scripting language can only process events generated
by the Event Engine, which requires a non-negligible effort, especially due to lack of documen-
tation. As a partial workaround, recent Zeek versions implement the Packet Analysis feature that
allows to customize the packet analyzer for the IP layer and include the necessary code for gen-
erating an event for each packet. We leveraged this feature for our purposes, even if it is mostly
conceived to parse new protocol headers rather than extending existing ones.

1https://github.com/Ocram95/libpcap filter [Last Accessed, October 2022].
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In general, the development of plain C code based on libpcap is the easier approach. In fact,
capturing packets, parsing the headers and managing the code to handle the asynchronous re-
ception and processing of network packets are straightforward and well documented operations.
Extending such implementations may require full-understanding of the original code, which in
any case is unlikely to reach the maturity of existing tools (e.g., Zeek). Nevertheless, writing C
code is probably the most efficient alternative to find an optimal balance between performance
and resource usage.

As discussed in Chapter 3, writing eBPF programs poses some challenges. First, the relationship
and interaction between user-space utilities and eBPF programs must be fully understood, and
this could be challenging especially due to a fragmented documentation. Second, eBPF pro-
grams have a small available stack size, which limits the number of functions and instructions.
This practically narrows the protocols that can be parsed within a single program. Lastly, eBPF
programs are checked by the kernel verifier before being loaded. The process ensures that there
are no loops and the program always terminates. On the other hand, this has many limitations,
including poor scalability and lack of support for loops [GAG+19].

On the contrary, handling packets is very easy, since eBPF programs are automatically run by
the kernel on each packet reception. Moreover, the usage of frameworks like BCC in user-space
facilitates many operations, including the dynamic creation of eBPF code, which might mitigates
some of the aforementioned limitations. Even if eBPF programs have the steeper learning curve
among the selected alternatives, we think it is a promising approach for this kind of applications.

6.4 Performance Evaluation

To conduct experiments, we prepared a testbed composed of three virtual machines, hosted on
an OpenStack installation. All nodes ran on the same hypervisor, two Intel Xeon CPU E5-2660
v4@2.00GHz with 14 cores, 128 GB RAM, 64 GB SSD storage. Two of them were used as traffic
source and destination, whereas the third virtual machine was used as the router and hosted the
monitoring tools (i.e., Zeek, libpcap filter and eBPF framework). Both the traffic source and
destination were created with 1 virtual core and 1 GB of RAM; the router had 4 virtual cores and
2 GB of RAM. All the virtual machines ran Debian GNU/Linux 11 with kernel 5.10.

Performance evaluation was intended to understand the impact of the alternative implementations
on network operation. To this purpose, we considered both UDP and TCP streams generated with
iPerf3 while changing the following parameters:

• packet size for UDP: 16, 1, 470, 8, 192, and 65, 507 bytes, to account for the minimal
packet size, and Maximum Transfer Unit for Ethernet, Gigabit Ethernet, and the loopback
interface, respectively;
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• transmission bitrate for UDP: 10, 100 Kbit/s, 1, 10, 100 Mbit/s and 1, 10 Gbit/sec, hence
taking into account multiple rates up to the nominal bandwidth of the fastest technology
available in common installations;

• the MSS for TCP: 88, 536, 1, 460 and 9, 216 byte, which reflects the smallest value ac-
cepted by the tool, the minimum value that should be used on IP links, the typical value
used for Ethernet links and jumbo frames, respectively.

The impact was evaluated in terms of both network performance and resource usage. Network
performance was monitored by the iPerf3 tool itself, whereas resource usage was collected by
the sar2 utility for CPU (e.g., user-space, kernel-space) and pmap3 for memory allocation.
In addition to run the three monitoring implementations, we also took measurements when no
tool ran, which is taken as the baseline scenario. We limited our investigation to two different
fields, the Acknowledgment Number and the Hop Limit, in order to consider fields both
in two different layers of the protocol stack, i.e., TCP and IP header, respectively. Since parsing
operations take more CPU instructions than reading specific fields, there is no need to replicate
the experiments for every field covered by our implementation. For the two fields, we took into
account two different amount of bins, i.e., 212 and 28, to understand their impact in the overall
performance.

Experiments were run for 60 seconds, but measurements were taken for a slightly shorter interval,
in order to avoid any transient. The sampling time interval to report the values of the internal
counters was set to 1 second for each implementation.

6.4.1 Impact on Packet Transmission

First, we considered how monitoring operations affect the transmission of network packets, by
measuring the transmission rate, packet error rate and jitter.

Figure 6.2 shows how the bitrate for UDP flows changes at the receiver while varying both
the packet size and the transmission bandwidth, in case of inspection of the Acknowledgment
Number and the Hop Limit. As expected, smaller packet sizes lead to lower bitrates, but there
are not meaningful differences with respect to the baseline when using the proposed monitoring
mechanism, neither for inspection of the Acknowledgment Number nor of the Hop Limit
(Figures 6.2(b) and 6.2(a), respectively). We can also notice that in our setup it is impossible to
transmit at 10 Gbit/s, even with the largest packet size. This has to be ascribed to a limitation of
our setup but does not represent a constraint.

Figure 6.3 shows the packet loss percentage at the receiver in the same conditions aforemen-
tioned. The trends are correlated to the bitrate just seen. In fact, when the desired transmission

2https://linux.die.net/man/1/sar [Last Accessed, October 2022].
3https://linux.die.net/man/1/pmap [Last Accessed, October 2022].
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Figure 6.2: Measured bitrate at the receiver, while varying packet size and the transmission
bitrate for a UDP flow.
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(b) Hop Limit

Figure 6.3: Measured packet loss at the receiver, while varying packet size and the transmission
bitrate for a UDP flow.
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(b) Hop Limit

Figure 6.4: Measured packet jitter at the receiver, while varying packet size and the transmission
bitrate for a UDP flow.
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Figure 6.5: Measured bitrate at the receiver, while varying the MSS for a TCP flow.

rate cannot be reached, we see a higher packet loss. Excluding the case of smaller packets, the
packet loss percentage introduced by the tools is limited and similar to each other.

Figure 6.4 depicts the average packet jitter for a UDP flow. Also in this case, the inter-packet
delay generated by all the technologies is negligible (always under 0.2 ms) for most of practical
applications. Again, no meaningful differences can be found in the inspection of the two fields.

For TCP flows, we measured the average transmission bitrate while varying the MSS (see Figure
6.5). In general, a larger MSS results in a higher bitrate, because the TCP congestion control
protocol works better. No significant differences can be seen for inspection of the different fields
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(b) Userland

Figure 6.6: CPU usage measured at the intermediate node, while varying the packet size and
transmission bitrate for a UDP flow. The monitored field is the Acknowledgement Number.

or the different monitoring mechanisms.

In conclusion, the measurements required by our detection technique do not impact over packet
transmission. Even if eBPF programs are called as part of the forwarding operations, there is
no practical differences with respect to the tools that duplicate packets with libpcap and process
them in parallel to the kernel.

6.4.2 CPU Usage

As a second step, we measured the CPU usage for the different technologies. Since Zeek and
the tool based on the libpcap library are user-space applications, the amount of CPU usage in
userland is expected to behave in a different way compared to eBPF approach, which leverages
in-kernel programs. Figures 6.6 and 6.7 show the CPU consumption in case the Acknowledg-
ment Number or the Hop Limit are monitored, respectively.

As expected, both Figures 6.6(a) and 6.7(a) show a kernel CPU usage for bccstego higher
with respect to libpcap and the baseline traffic, but still lower than Zeek, especially when higher
bitrates are considered. However, while kernel CPU usage of the eBPF approach is rather con-
stant with different packet sizes, the same measurement increases for the other tools, because
duplicating packets takes more time in case of larger packets (e.g., 65 Kbytes). Zeek also re-
quires more CPU in the user-space (i.e., 20% in the worst case), with respect to the other tools.
Instead, bccstego performs quite well, remaining close to the baseline in almost all scenarios.

Figure 6.8 depicts a breakdown of the cumulative CPU usage, when varying both the packet
size and the bitrate. For smaller packets, i.e., 16 bytes, and higher bitrate, i.e., 10 − 100 Mbit/s
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(b) Userland

Figure 6.7: CPU usage measured at the intermediate node, while varying the packet size and
transmission bitrate for a UDP flow. The monitored field is the Hop Limit.

and 1− 10 Gbit/s, Zeek uses up to 25% of available CPU. Instead, bccstego makes a limited
usage of CPU for almost every case, while the libpcap tool CPU usage increases especially in
case of 65-Kbyte packets. We only show the results for monitoring the Acknowledgement
Number in this case, since data for the Hop Limit leads to similar considerations (see Figure
6.7). These considerations can also be extended for the case of TCP flows while varying the
MSS. Figures 6.9 and 6.10 show the kernel-space, the user-space and the cumulative CPU used
by all the tools.

6.4.3 Memory Allocation

Finally, Figure 6.12 shows the amount of memory allocated by each technology. Similarly to
Chapter 5, we considered a breakdown of memory allocation, i.e., the VMS, RSS, PSS, and
Anon. The implementation based on the libpcap library has a minor impact on the memory used,
since it only uses minimal system libraries for input/output. Zeek, instead, needs a large memory
space with a minimal allocation in the RAM. Finally, since bccstego leverages Python fea-
tures, it requires larger memory compared to libpcap implementation. This suggests that a more
lightweight implementation is possible, for example by switching to a pure C implementation
that leverages libebpf instead of the BCC framework.

There are no significant differences when using 212 or 28 bins, which are the cases for the Ac-
knowledgement Number and Hop Limit fields, respectively. Again, this confirms that
the overall monitoring approach is really lightweight and scalable, because most of the memory
consumption is due to the implementation and libraries used.
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(b) 1470-bytes payload
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Figure 6.8: Cumulative CPU usage measured at the intermediate node, for a UDP flow. The
monitored field is the Acknowledgement Number.
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Figure 6.9: CPU usage measured at the intermediate node, while varying the MSS for a TCP
flow. The monitored field is the Acknowledgement Number.
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Figure 6.10: CPU usage measured at the intermediate node, while varying the MSS for a TCP
flow. The monitored field is the Hop Limit.
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Figure 6.11: Cumulative CPU usage measured at the intermediate node, for a TCP flow.
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Figure 6.12: Memory allocation for the different inspection tools.
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6.5 Conclusions and Future Works

In this chapter we analyzed different implementations for a lightweight packet inspection mech-
anism that aims at detecting network cover channels. Among the technologies used to implement
the bin-based mechanism proposed in Chapter 3, the results for the eBPF-based approach indi-
cate a negligible impact on packet transmission in terms of bitrate, packet loss percentage, and
jitter, when considering different network conditions. In terms of resource usage, eBPF pro-
grams demonstrate to be lightweight and scalable. However, the implementation of the userland
utility in Python largely increases memory requirements, and suggests to switch to pure C code
for memory-constrained systems (this may be the case for containers and IoT devices). Future
works aim at understanding the feasibility for an automatic code generation approach, in order
to provide more flexibility for network monitoring purposes.

With a suitable technological foundation for gathering data, in the next chapter we will investi-
gate the use of AI for detecting network covert channels in IoT environments.

108



Chapter 7

Detection of Network Covert Channels via
AI

As discussed in Chapter 1, the use of AI for detecting threats is taking momentum. The case of
detecting network covert channels is not an exception. Thus, this part of the Thesis addresses
the problem of using AI to reveal the presence of covert communications in a wide-spread and
challenging scenario, i.e., the IoT case. In fact, the IoT paradigm allows to create advanced ser-
vices able to interact with the physical world and to remotely operate large-scale infrastructures.
As a result, the number of applications taking advantage of IoT technologies is now almost un-
bounded. For instance, cost-effective sensors and devices are used for entertainment and health
purposes, to access and manage industrial control systems, as well as to automatize homes and
buildings. Unfortunately, the tight coupling between devices and physical entities, the resource-
constrained nature of many nodes, and the lack of rigorous development or configuration pro-
cesses, are at the basis of countless security and privacy flaws [NBHC+19].

Despite IoT nodes are often considered simple devices, they can be used to implement effec-
tive threats. As an example, the Mirai malware allows to create a large-scale botnet of devices
with limited computing and connectivity resources, which has been used to launch DDoS at-
tacks against many international organizations and sensitive targets [AAB+17]. In addition, IoT
nodes can be enumerated to infer details on the physical deployment [SGL+18] and the resulting
traffic can be inspected to implement various side-channel-based techniques for partially inval-
idating defensive frameworks or to conduct reconnaissance campaigns [MC21]. Therefore, a
major effort is devoted to make IoT ecosystems more secure, but this could be partially voided
by stegomalware. Due to the ubiquitous availability of devices always connected to the Inter-
net, their intrinsic interaction with sensitive data, as well as several design flaws and limitations,
completely assessing the security of IoT deployments requires also to consider threats endowed
with network covert channels capabilities (see Section 1.4 for examples of real attacks exploit-
ing covert channels). To develop suitable mitigation techniques, machine learning approaches
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demonstrated to be effective for detecting a multitude of network attacks and to implement gen-
eral intrusion detection mechanisms [ASKWS+21].

Therefore, in this chapter we address the problem of detecting network covert channels targeting
the TTL field of IPv4 datagrams. In fact, the resource-constrained nature of IoT devices, includ-
ing the use of “lean” TCP/IP protocol stacks to tame complexity, prevent malware to implement
sophisticated covert channels or computing-intensive network steganography algorithms. To de-
velop our detection methods, we take advantage of autoencoders, which are neural networks
where the target of the network is the data itself. Autoencoders allow to reduce dimension-
ality and learn efficient encoding, whereas they are a convenient choice when in absence of a
labeled training set and can be incrementally updated in order to be deployed also on devices
with limited computational and storage resources. This is of prime importance when addressing
malware exploiting network covert channels, since it often remains undetected or undocumented
until major reverse engineering attempts or forensics investigations [MW17]. As regards prior
works considering covert channels targeting IoT scenarios, the literature mainly focuses on tim-
ing channels, for instance to detect cloaked communications in Supervisory Control And Data
Acquisition applications [ABP+19] or in the Constrained Application Protocol [VMS19].

Summing up, the contributions of this chapter are the design of a machine-learning-capable
approach for detecting covert channels targeting IoT ecosystems, and a performance evaluation
campaign based on realistic traffic traces commonly used in the literature. Since countermeasures
could be also deployed at the border of the network in nodes with limited capabilities (e.g., home
gateways) emphasis has been put on the footprint required by the proposed approach.

The remainder of the chapter is organized as follows. Section 7.1 provides details on the con-
sidered attack model, Section 7.2 introduces our detection approach to detect covert channels
targeting the TTL of IPv4 datagrams, and Section 7.3 showcases numerical results. Lastly, Sec-
tion 7.4 concludes the chapter.

7.1 Attack Model and Design of the Covert Channel

This section discusses the attack model taking advantage of a network covert channel. Figure
7.1 showcases the general reference scenario. Specifically, we consider an attacker able to take
control of one or more IoT nodes, for instance by dropping a malicious payload via a phishing
campaign [NBHC+19]. The infected device will then create a network covert channel to exfiltrate
data towards a remote C&C server or to exchange commands with the attacker, e.g., to configure
a backdoor or operate a botnet. Relying upon a network covert channel allows to bypass a firewall
or specific security policies enforced by a middlebox, such as a home gateway.

Even if the literature abounds of techniques for creating cloaked communication paths within
network flows and real-world threats taking advantage of information hiding are multiplying
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Legitimate Traffic + Covert Channel

Firewall
(Home Gateway)

Legitimate Traffic

Covert Channel

Secret encoded 
in the TTL

Remote 
C&C Server

Malware

IOT Ecosystem

Figure 7.1: Attack model considering a malware sending data towards a remote C&C facility via
a network covert channel created within the TTL field of IPv4 traffic.

[ZAB07, MC15, CCC+20], the resource-limited nature of IoT nodes poses constraints on the
complexity of the covert channel. As a consequence, the embedding mechanism should be sim-
ple in order to not disclose the presence of the malware due to perceptible lags or anomalous
depletion of batteries. At the same time, since IoT traffic often requires some form of Quality of
Experience (e.g., to not postpone the execution of commands sent by the user), traffic alterations
and the introduction of additional delays should be limited. Therefore, we consider a malware
cloaking data within the TTL field of the IPv4 header [ZAB07].

In more detail, the TTL is manipulated to implement a storage network covert channel and trans-
port arbitrary information. Due to the varying nature of the TTL and to not appear suspicious,
the malware should not directly write the secret data in the field [ZAB06]. Rather, it can encode
the bits 1 and 0 by increasing or decreasing the observed TTL of a suitable threshold or by us-
ing most common values as “high” and “low” signals. Finding proper TTL values is not trivial,
since their difference should be ample enough to absorb fluctuations caused by alterations of the
routing and to prevent decoding errors, while not reducing the stealthiness of the channel.

To design the covert channel, the attacker usually investigates the targeted network to understand
“clean” traffic conditions and adapt the hiding mechanism accordingly. To discuss how to tune
the channel used in our attack model, we considered the collection of IoT traffic made available
in [SGL+18]. As an example, we showcase results for the 24-hour slice of data captured from
September 22, 2016 at 16:00 to September 23, 2016 at 16:00, CEST1. Without loss of generality
and to prevent burdening results, we removed IPv6, ICMP, DNS and NTP conversations, in
addition to multicast/broadcast traffic. Figure 7.2 depicts heatmaps for the collected TTL values.
As depicted in Figure 7.2(a), the values observed for the TTL are clusterized, especially in the
32 − 64 and 208 − 224 ranges. This requires the attacker to encode information without using

1Data collected for IEEE TMC 2018, University of New South Wales, Sydney. Available online at: https:
//iotanalytics.unsw.edu.au/iottraces.html [Last Accessed: October 2022].
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(a) Heatmap computed over the entire dataset
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(b) Heatmap computed on 1-hour long slices

Figure 7.2: Various heatmaps computed over a 24h traffic trace.

values never observed in normal conditions. Yet, traffic conditions are not static, hence, we
refined our analysis by resetting the observed values each hour. Figure 7.2(b) portraits results.
As shown, some values of the TTL are always present in the traffic (e.g., those around 48),
whereas others have an intermittent behavior. For instance, datagrams with a TTL equal to 128
are present only for 3 hours (i.e., from 13-th to the 16-th hours). This puts constraints on the
temporal location of channels using a TTL equal to 128 to encode information as well as on their
duration.

In general, channels targeting the TTL should alter datagrams in a limited manner in order to
avoid macroscopic per-flow signatures [ZAB06]. Moreover, TTL values highly depend on the
type of nodes, hosts and appliances exchanging traffic through the network. In fact, Android and
iOS devices as well as Linux hosts generate traffic with a default TTL of 64, whereas Windows
nodes use a default TTL of 128 [CLB+14]. Thus another important trade off should aim at
avoiding to make the channel detectable via simple host/OS fingerprinting mechanism.

7.2 Deep Ensemble Learning Scheme

In this section, we illustrate a solution based on DL to spot the presence of covert channels
within traffic flows. Our detection model takes the form of an ensemble of unsupervised neural
network models. The main benefit in using the unsupervised approach relies on the capability of
the models to raise alarms also on never seen attacks: this represents a frequent scenario when
dealing with covert channels, since they are often undocumented and unknown a priori. We first
illustrate the detection mechanism for a single model and then we describe how this technique
can be extended to learn effective and scalable ensembles.
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Figure 7.3: Neural architecture (Sparse Autoencoder) used to perform the detection of covert
channels targeting the TTL of IPv4 traffic.

7.2.1 Detection Through a Single Autoencoder

The idea behind our solution is to adopt a neural encoder-decoder architecture trained against
traffic data. Basically, an autoencoder is an unsupervised (i.e., trained without any information
concerning the nature of the attack/normal behavior) neural network model performing two main
operations: first, it compresses the input data (i.e., a number of statistics computed over the
traffic generated by the IoT network and described in Section 7.3.2) within a latent space, then it
reconstructs the original information provided as input. In our setting, the model is only trained
against the normal behavior. The underlying intuition is that the legitimate input data should
be (almost) correctly reconstructed by the autoencoder, in other words, the encoding/decoding
phases should not introduce a heavy distortion in the output. By contrast, outliers and anomalous
values in the input will yield a deviant output.

The usage of the reconstruction error as a measure of outlierness to discover abnormal behaviors
has already been proposed in the literature, but the adoption of unsupervised techniques (and
in particular of encoder-decoder architectures) for revealing covert channels is quite unexplored
[BG15, DAFB+19, ASKWS+21]. As discussed in [BLPL06, HS06], autoencoders are consid-
ered as a valid solution to the problem of effectively summarizing the main information of a
given input into a low-dimensionality representation. In essence, these neural network models
aim at yielding as output a duplicate similar to the input data.
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Figure 7.4: Detection mechanism for revealing the presence of network covert channels.

In this work, we employ the neural model shown in Figure 7.3. Basically, it includes two main
components, named Encoder and Decoder, respectively. Let x = {x1, . . . , xN} be a set of
numeric features (in our case, a number of traffic flow statistics computed for a time slot). The
former sub-network is devoted to map the input data with a latent space (encoding), i.e. learning a
function z = enc(x), whereas the second one yields the overall network output by reconstructing
the input from the features extracted by the encoder y = dec(z) (decoding). Gradient descent is
employed to learn the model weights by minimizing a suitable loss function. In our approach,
the Mean Square Error (MSE), i.e., LossMSE(x) =

1
N

∑
i ∥xi − yi∥2, is used as loss.

Notably, the architecture of Figure 7.3 exhibits two main differences with respect to a standard
encoder-decoder model: (i) Skip Connections are used to boost the predictive performance of the
model and to reduce the number of iterations required for the learning algorithm convergence,
and (ii) a hybrid approach including the usage of Sparse Dense Layers is adopted to make the au-
toencoder more robust to noise, especially since attacks often exhibit slight differences compared
with normal behaviors. Both, encoder and decoder are composed of M hidden layers, therefore
we adopted a symmetric architecture. In more detail, the adoption of the skip connections sim-
plifies the learning process of the network by providing as input to each layer of the decoder
(D-DLi), except for the shared latent space, both the previous (D-DLi−1) and the correspondent
encoder layer (E-DLM−i+1). As regards the Sparse Layers, they are used to generate a wider
number of discriminative features, which allow for extracting a more representative latent space.

Figure 7.4 depicts the detection process of covert channels targeting the TTL field of IPv4 data-
grams. Without loss of generality, we assume to monitor an “infinite data stream”, i.e., the traffic
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Figure 7.5: Incremental Deep Ensemble model approach.

of the various IoT nodes feeds our detection mechanism in a continuous manner. At pre-fixed
time intervals (corresponding to a time slot in Figure 7.4), we compute a number of statistics
(e.g., min, max, or average) to describe the behavior of the TTL fields composing the aggregate
traffic flow. This can be done without impairing the overall traffic and by using limited com-
puting resources [RCZ21]. Specifically, we compute metrics starting from TTL values gathered
from the packets composing the inspected traffic aggregate. First, an autoencoder, pretrained
only against legitimate data flows, is used to reproduce the statistics, then reconstruction error
is calculated for the current example as the MSE between x and y. As a last step, if the error is
smaller than a given outlierness threshold, the current data are labeled as “normal” and the model
is updated, otherwise a warning is raised.

7.2.2 Learning and Combining Different Detectors

A main limitation of the above described approach relies on the necessity to learn the neural
network model against the whole training set (that could be unfeasible in IoT networks with tight
computational resources). Moreover, in real scenarios the limited resources of the device where
the detector is deployed and the presence of concept drifts in the observed behaviors [FGP19]
can affect the predictive performance of the autoencoder. To mitigate such issues, we devised an
incremental learning scheme based on an ensemble of encoder-decoder architectures shown in
Figure 7.5. Basically, we consider the case where only a limited number of training examples D
can be gathered and stored in a data chunk (named Di in the figure).

The ensemble solution relies on building up a series of k base DNN detectors (denoted as
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Mi,Mi−1, . . . ,Mi−k) sharing the same neural architecture described in Section 7.2.1. These au-
toencoders are trained from disjoint data chunks (denoted as Di, Di−1, . . . , Di−k, respectively),
which are fed with data instances gathered in different temporal intervals. Specifically, the learn-
ing process is loosely inspired to Transfer Learning (TL). The main idea of TL consists in re-
using DL models, learned on different domains/datasets or for tackling different tasks, by fine-
tuning them for addressing the own learning problem. Differently from a standard TL approach,
in our solution the model Mi is trained (i.e., fine tuned) from the weights of the model Mi−1 and
the sample Di, and so way for all the models composing the ensemble. In this way the detection
model will be able to gradually adapt to normal concept drifts that can occur, for instance, due
to the deployment of new devices in the network that can modify the network statistics. This
approach can also reduce the risk of “catastrophic forgetting” [PKP+19] that affects DL models
(and also different types of shallow architectures) when learned incrementally. The final anomaly
score for each instance is then computed as the median value of the k reconstruction errors, i.e.,
the Deviance Scores (DS), {DSi, . . . , DSi−k} yielded by the base models.

7.3 Performance Evaluation

In this section, we illustrate experiments for evaluating the performance of our deep ensemble
based approach to spot covert channels in IoT scenarios.

7.3.1 Dataset Preparation

To evaluate the effectiveness of our approach for detecting network covert channels targeting IoT
ecosystems, we prepared a dataset starting from the traffic traces made available in [SGL+18].
In more detail, we used datasets containing traffic collected from September 22, 2016 at 16:00 to
September 29, 2016 at 16:00, CEST. Similarly to the example of Section 7.1, we removed IPv6,
ICMP, DNS and NTP conversations as well as multicast/broadcast traffic. To avoid unwanted
signatures/fingerprints, we also removed traffic generated by non-IoT devices, such as mobile
phones and laptops. As a result, we obtained a 1-week long dataset with an overall throughput
in the 5 − 36 kbit/s range, generated by 28 IoT endpoints, such as smart speakers, smart lights,
cameras, and hubs.

To implement the considered attack template in a realistic manner, we modeled the presence
of a threat tampering a single IoT device. As an example, the attacker could gain access to
the assets of the victim via phishing or by exploiting some ad-hoc CVEs2. In our scenario,
we considered a malicious software targeting the Dropcam camera, which has been used to

2List of CVEs targeting IoT nodes/devices maintained by MITRE. Available online at: https://cve.mitr
e.org/cgi-bin/cvekey.cgi?keyword=iot [Last Accessed: October 2022].
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send/exfiltrate sensitive data towards a remote C&C facility. To have a dataset containing fair
amounts of “legitimate” and cloaked conversations, we assumed that the IoT device has been
tampered on September 27, thus the Dropcam has been under control of the attacker for 3 days.

To create the various storage network covert channels, we used pcapStego to directly rewrite
the traffic captures and implement realistic attack conditions. As discussed in Section 7.1, to
not make the detection trivial, we encoded bits 1 and 0 in TTL values equal to 64 and 100,
respectively. Moreover, we randomly interleaved packets containing hidden data with legiti-
mate/unaltered packets in order to prevent long bursts of manipulated TTL values. In fact, the
latter could reduce the stealthiness of the covert channel leading to a trivial detection [ZAB06].
Such a behavior can be ascribed to an attacker switching the hidden communication among two
states (i.e., exfiltrate data and not manipulate traffic) to remain unnoticed via elusive mecha-
nisms. To avoid further statistical signatures, the secret data transmitted over the covert channel
has been modeled with randomly-generated strings: this is representative of an attacker using
some obfuscation technique, such as encryption or scrambling [MRB17]. Concerning the vol-
ume of data transmitted within the covert channel, we modeled each day of attack with a different
template. Specifically, we considered the exfiltration of 69, 80, and 64 kbit of data. Such vol-
umes can represent a file containing sensitive information like several username+password pairs
or configuration details of a specific IoT device or smart hub. Moreover, assuming covert trans-
missions in the 64− 80 kbit range allowed to have an IoT node accounting for a variable amount
of steganographically-modified traffic. In more detail, the compromised IoT node manipulates
the 18%, 1%, and 12% of the overall daily traffic, respectively.

7.3.2 Preprocessing, Parameters and Evaluation Metrics

To assess the quality of the proposed approach in detecting the presence of network covert chan-
nels within traffic aggregates, we developed a prototype in Python based on the TensorFlow3

library. From the traffic dataset, we extracted the following fields: a progressive timestamp, the
number of incoming packets within a given time slot, the average and median values of observed
TTLs, the values of the 10th, 25th, 75th and 90th percentile, minimum and maximum TTLs, as
well as a label indicating the presence of the attack (i.e., for testing purposes). Recalling that our
approach exploits a “slotted” architecture (see Figure 7.4), in this work we consider a time slot
with a duration of 5 seconds.

Data have been partitioned in training and test sets by using a temporal split: (i) the data gathered
in the first 96 hours only contains legitimate traffic and has been used for the learning phase of the
ensemble, whereas (ii) the remaining instances compose the test set. As a result, the training and
the test set contains 69, 116 and 51, 837 instances, respectively. Moreover, input data are further
preprocessed through a normalization procedure: a MinMax normalization has been adopted to

3https://www.tensorflow.org [Last Accessed: October 2022].
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map each feature in the range {−1, 1} to improve the stability of the learning process.

As described in Section 7.2, the base model composing the ensemble is an autoencoder model.
The Encoder is composed of 4 fully-connected dense layers. Three layers have been instanti-
ated with 32, 16, and 8 neurons and equipped with a ReLU (Rectified Linear Unit) activation
function. The fourth layer is the latent space and it is instantiated as a dense layer (shared be-
tween the encoder and the decoder) including 4 neurons and equipped with a ReLU activation
function. Symmetrically, the Decoder consists of three fully-connected dense layers with the
same dimensions and activation functions. The output of the model is yielded by a Dense Layer
with the same size of the input, and equipped with a Tanh activation function since the input is
normalized in the range in {−1, 1}. The model is trained over 16 epochs with a batch size of 16.
Finally, Adam is adopted as optimizer with learning rate lr = 1e−4. As regards the ensemble
parameters, we consider different values of k. In particular we tested the approach by including
the last 3 and 5 base models while we consider data chunk size of ∼5, 000 instances. Notably, k
can influence the capability of the model to keep the memory of past behaviors.

To evaluate the quality of the solution, we computed the following metrics. Let us define TP as
the number of positive cases correctly classified, FP as the number of negative cases incorrectly
classified as positive, FN as the number of positive cases incorrectly classified as negative, and
TN as the number of negative cases correctly classified. Moreover, we considered:

• Accuracy: defined as the fraction of cases correctly classified, i.e., TP+TN
TP+FP+FN+TN

;

• Precision and Recall: metrics used to estimate the detection capability of a methodology,
since they provide a measurement of the accuracy in identifying upcoming attacks and
avoiding false alarms. Specifically, Precision is defined as TP

TP+FP
, while Recall as TP

TP+FN
;

• F-Measure: condenses the overall system performance and is calculated as the harmonic
mean of Precision and Recall.

Lastly, to perform experiments, we used a machine with 32 Gb RAM, an Intel i7-4790K CPU
@4.00GHz and a 1Tb SSD drive.

7.3.3 Numerical Results

Since the outlierness threshold can influence the detection capability of the proposed approach,
its sensitivity analysis is important to assess the robustness of the solution. Thus as a preliminary
step, we investigated its impact. As the autoencoder model is trained only against legitimate
data (i.e., clean traffic produced by IoT nodes), we computed the outlierness degree for each slot
composing the training set. We then selected as the anomaly threshold the values corresponding
to the 90th, 95th and 99th percentiles. A detailed breakdown is depicted in Figure 7.6. Moreover,
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Figure 7.6: Training-set outlierness with different threshold values.

Figure 7.7: Test-set outlierness.

Figure 7.7 portraits the distribution of the outlierness degree for a window including a marked
number of compromised time slots. As it can be seen, the outlierness degree exhibits higher val-
ues than the ones reported in Figure 7.6. In some cases, the outlierness is one order of magnitude
higher than the outlierness max value computed on the training set. This event represents the
presence of a covert communications within the bulk of traffic, thus leading to a “deviation” in
the output of the neural network.

Instead, Table 7.1 reports the results of the trials by comparing the performance of a single
autoencoder with respect to the ensemble model. The performance metrics are computed by
ranging different ensemble sizes and sensitivity thresholds. As regards the anomaly score, it is
estimated by computing the reconstruction error for each instance contained in the training set
and extracting the values corresponding to 90th, 95th and 99th percentiles. As expected, for all
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Model Type Ensemble Size Threshold Accuracy Precision Recall F-Measure

Single Model − 90th perc. 0.882 0.743 0.993 0.850
Single Model − 95th perc. 0.921 0.822 0.976 0.893
Single Model − 99th perc. 0.936 0.942 0.865 0.902

Ensemble 3 90th perc. 0.894 0.771 0.979 0.863
Ensemble 3 95th perc. 0.947 0.902 0.948 0.924
Ensemble 3 99th perc. 0.955 0.950 0.915 0.932

Ensemble 5 90th perc. 0.890 0.764 0.977 0.858
Ensemble 5 95th perc. 0.933 0.863 0.954 0.906
Ensemble 5 99th perc. 0.952 0.944 0.911 0.927

Table 7.1: Experimental results for different outlier thresholds and ensemble size. Values have
been selected by computing the outlier scores against the training set and by extracting the cor-
respondent percentile values.

the model types, the usage of a looser threshold (e.g., the 90th percentile) allows for improving
the probability of detection (i.e., the recall) but at the price of a higher number of false alarms. By
contrast, a higher threshold (e.g., the 99th percentile) allows to limit the number of FP but a lesser
recall value is obtained. Moreover, the adoption of the ensemble strategy improves the overall
predictive capabilities of the detection systems. In fact, the best F-measure is obtained with an
ensemble size equal to 3 and by considering the threshold value corresponding to the 99th per-
centile. Finally, the slight reduction of the predictive performance when increasing the ensemble
size appears to be mainly due to the evolving nature of traffic characterizing IoT ecosystems. In
fact, asynchronous activations of nodes, external triggers, or periodical synchronizations account
for broad changes in traffic conditions. Therefore, recent data in some cases could be more in-
formative for revealing an attack as the “past history” could not be representative of the actual
traffic exchanged over the network.

Lastly, as regards the feasibility of deploying our approach in realistic settings, we point out
that its resource footprint is very limited. In more detail, apart the training phase, which can be
done offline, the average prediction time is 0.0132 ms. Another important aspect concerns the
“stateless” nature of the approach. In fact, the used neural architecture performs the detection
of covert communications by using information on the overall traffic (grouped in time slots),
which prevents memory consumption due to the need of storing information with a per-flow
granularity. Thus, the proposed approach should be considered suitable for being implemented
in home gateways often used in production-quality IoT ecosystems.
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7.4 Conclusions and Future Works

In this chapter, we showcased the use of ensemble of autoencoders for detecting network covert
channels targeting IoT scenarios. Our approach has been designed to be lightweight and required
a limited number of training examples at time to be effective. Numerical results demonstrated
its effectiveness: the method can achieve a probability of detection (i.e., recall) of ∼91% while
exhibiting a good precision ∼95%. Future works aim at considering other types of network
covert channels. To this aim, part of the ongoing research is devoted to develop some form of
“intermediate” representations that can be used to develop a more general mechanisms for facing
different threats, e.g., protocol-agnostic representations.

Next part of this Thesis will be devoted on investigating the use of AI to detect stegomalware
from a different perspective, i.e., the use of images as the main carrier.
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Part III

Detection of Malware Hidden in Digital
Images
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Chapter 8

Revealing Threats in Favicons via AI

As discussed in Chapter 1, the majority of recent attack campaigns primarily utilizes steganog-
raphy to conceal malicious code or configuration files within innocent-looking images. Thus,
being able to detect malicious payloads hidden in digital images is of prime importance to com-
pletely assess the security of modern scenarios and to mitigate the impact of the growing wave
of stegomalware [MC15, CCC+20]. Therefore, from now to Chapter 10, this Thesis will deal
with the problem of using AI to detect and mitigate realistic threats exploiting steganography to
hide data in digital images. In fact, AI can support the arms race between attackers and defend-
ers, especially to face new challenges like those offered by IoT [WHWS20] or zero-day threats
[DFP20].

An important contribution of this part of the Thesis concerns the creation of suitable datasets
built on malicious samples observed in production-quality scenarios and the performance of AI-
based methods when used in realistic conditions. Specifically, in this chapter we want to spot
Magento/MageCart-like attacks, while providing a more general framework. Hence, we consider
the case of the widely-used LSB steganography to embed in favicons both malicious scripts and
URLs (see, e.g., the case of the financial malware Vawtrak). To perform detection, we exploit
DNNs, which turned out to be effective for analyzing and combining raw data from compro-
mised images, as well as to update models when new attacks are available. To the best of our
knowledge, the literature lacks of previous approaches using AI in such a scenario. Specifically,
[AIS16] focuses on revealing URLs hidden in images via pattern-matching, while [PKKK16]
considers favicons but exploits general heuristics. Besides, [SZZW19] addresses the general
problem of locating steganographically-modified areas of an image, but does not consider real
attacks or threat models.

The remainder of the chapter is organized as follows. Section 8.1 introduces the attack model and
the general approach, Section 8.2 showcases the design of the DNNs, and Section 8.3 presents
numerical results. Lastly, Section 8.4 concludes the chapter.
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Figure 8.1: General attack model: a malware retrieves an additional payload hidden in a favicon.

8.1 Attack Model and Solution Approach

Figure 8.1 depicts the reference attack model and generalizes a scheme observed in stegomalware
like MageCart and Vawtrack. In more detail, we assume a malware (denoted as “Stage 1”)
wanting to retrieve an additional payload or a configuration file (denoted as “Stage 2”). The first
stage of the threat could be already present in the host of the victim. For instance, a loader could
have been dropped via phishing or embedded within a web page (e.g., hidden in an iframe)
along with other offensive assets [CCC+20]. To avoid detection, prevent blockages, or make the
forensics analysis harder, the malware extracts content hidden in a favicon. The latter could be
provided by the original webserver or delivered by a third-party host controlled by the attacker
[MC15, CCC+20].

The malicious payload is typically cloaked via a simple LSB steganography approach, i.e., the
least significant bit(s) of the color channels of a pixel are replaced to encode arbitrary data with-
out further considering surrounding values [HKR18, CCC+20]. Usually, “Stage 2” cannot deto-
nate itself: rather, the contained information is decoded and used by previous stages. Without loss
of generality, this chapter focuses on favicons, despite the other stages used in the attack chain.
As discussed, detecting stegomalware leads to scarcely reusable approaches, since each hiding
method is tightly coupled with the exploited carrier or the considered attack model. Therefore,
creating general mechanisms that can be suitable for addressing a family of threats, without be-
ing limited to the specific implementation/version, is a challenging task. This is why, progresses
of AI frameworks in learning from data or image processing should be considered prime tools
towards the engineering of more general detection pipelines [ME21]. To detect the hidden data,
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Figure 8.2: Methodological approach for the detection/classification of a stegomalware cloaked
in a digital image via LSB steganography.

we consider DNNs, which represent an emerging approach for discovering compromised images
via steganographic techniques (see, e.g., [HKR18] and the references therein). In more detail,
DL allows to learn detection or classification models by directly combining raw low-level data,
such as pixels, bits, and sensor data streams [LBH15]. Indeed, these models learn in a hierarchi-
cal fashion: several layers of non-linear processing units are stacked in a single network and each
subsequent layer of the architecture can extract features with a higher level of abstraction com-
pared to the previous one. Therefore, data abstractions and representations at different levels are
automatically learned leading to effective solutions for analyzing and combining raw data from
images. Moreover, discovered models can be updated incrementally or retrained only by con-
sidering the new data, thus overcoming limitations of classical approaches (see, e.g., [OCL17]
and [HYM+20] for a comparison). In the following, we use the terms image and favicon in an
interchangeable manner, except when doubts arise.

Figure 8.2 depicts the general approach. Concerning the input, we consider each image as a
matrix with dimensions X × Y . The pixel is the smallest manageable element of this matrix
and stores color information, which is further decomposed in the three primary components, i.e.,
Red, Green and Blue. Each value represents the intensity of a given component that can vary in
the [0, 255] range. Accordingly, each pixel is stored by using three bytes, one for each primary
color. We denote with N the size of the image computed as N = X × Y × 3.
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As discussed in Chapter 1, the LSB technique can be used to hide malicious code or data by mod-
ifying the least significant bits of each color component of each pixel of the image (denoted as k
and equal to 2 in the figure). If manipulations are under a given threshold, the resulting compro-
mised image will not exhibit any visible alteration, i.e., pixels will appear as homogeneous with
respect to the surrounding space [ZMCG21]. As a result, state-of-the-art approaches may fail in
revealing the presence of the hidden content, leading to weak detection models unable to iden-
tify the slight differences between legitimate and compromised images. Therefore, we devised
an approach that processes and analyses the k LSBs of each pixel of the given image. In essence,
the k bits (represented in a vectorial manner) are offered to the DNN for the learning phase.
The hidden layers combine this raw information and extract high-level discriminative features.
As it will be discussed, this enables to effectively address both the detection of malicious data
and its classification. We point out that, the use of a limited value for k allows to not dilute the
amount of information contained in the attack pattern (see [MP21] for an example considering
monochromatic images).

8.2 Detection via Deep Learning Models

To mitigate the impact of MageCart-like threats, we developed two DNNs for the detection and
classification of various malicious payloads, i.e., PHP and URLs, hidden in favicons. However,
the approach can be easily extended to other types of digital pictures. To this aim, we exploited
the architecture presented in Figure 8.3(a), which provides accurate predictions for both tasks.
The two models (i.e., detector and classifier) share the same topology, except for the last layer
characterized by a task-specific activation function and a suitable number of outputs.

In particular, the DNNs consist of a stack of different subnets. The first layer, denoted as the In-
put Handler, simply propagates the input data, i.e., N×k, through the rest of the architecture
for further processing via subsequent layers of artificial neurons.

Then, both models include a variable number m of SubNets composed of three main parts: a
Fully-Connected Layer equipped with a ReLU activation function [NH10], a Batch Normaliza-
tion Layer for improving stability and performance of the current Fully-Connected Layer [IS15],
and a Dropout Layer for mitigating the problems due to the overfitting [SHK+14]. The detailed
structure of the generic subnet is depicted in Figure 8.3(b). Batch normalization allows to stan-
dardize the input with respect to the current data batch (specifically by considering the average
µ and the variance σ of each feature) for the other layers of the neural network. Additionally,
the dropout mechanism resets a random number of neurons during the training phase. As dis-
cussed in [HSK+12], dropout induces the neural network to behave in an ensemble flavor, i.e.,
the overall DNN can be regarded as a combination of the different subnetworks resulting from
this random masking, which disables some paths of the whole DNN.

Finally, the Output Layer is instantiated on the basis of the specific task. For the case of
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Figure 8.3: Model architecture of used DNNs: overview (a) and details of the internal structure
for each subnet (b).

detection, it is endowed with a sigmoid activation function [GMR18], which maps any given
data instance x = ⟨x1, . . . , xk×N⟩ to an anomaly score ỹ (i.e., the estimate of the probabil-
ity that x is an image containing some hidden information). By contrast, when used for the
classification task, the layer is instantiated with c neurons (one for each class) and equipped
with a softmax activation function [GMR18]. In more detail, the network is learned on a set
D = {(x1,y1), (x2,y2), . . . , (xn,yn)}, where xi represents the k-LSB-based representation of
the image, while y is the label associated with the image. For the detection task, y is a binary
value indicating the legitimate/compromised nature of the image. Instead, for the classification
task, y is an one hot encoded representation of the c classes, i.e., clean images, and favicons
containing a malicious PHP script or URL. The learning phase optimizes the network weights
by minimizing a suitable loss function. For the detection task, the Binary Crossentropy (BCE) is
used as the loss function during the learning phase and it is defined as follow:
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BCE (y, ỹ) = − 1

|D|

|D|∑
i=1

yi log ỹi + (1− yi) log(1− ỹi).

Instead, for the classification task, the Categorical Crossentropy (CCE) is used as the loss func-
tion and it is computed as follow:

CCE (y, ỹ) = −
|D|∑
i=1

yi log ỹi.

8.3 Performance Evaluation

In this section we present the performance of the DNN-based approach for detecting MageCart-
like threats. First, we showcase the dataset, as well as the considered parameters and performance
metrics. Then, we discuss numerical results.

8.3.1 Dataset Preparation

To evaluate the effectiveness of our approach, we prepared a dataset starting from 60, 000 32x32
favicons (i.e,. X, Y = 32) borrowed from the CIFAR-101 collection. To conceal secrets, we used
LSBSteg2, which embeds data in the LSB of each RGB component of a given pixel. If the pay-
load exceeds the available capacity, the tool will use other bits until the embedding is complete.
To have a suitable tradeoff between the visual quality of the favicon (i.e., the undetectability of
the steganographic scheme) and the cloaking volume, as well as to avoid a loss of generality, in
this work we only consider payloads fitting in 1 bit per RGB channel.

We then considered two different payloads. First, since PHP is one of the the most relevant
source of exploits [HY21], we used PHP malicious scripts from the PHP-Malware-Collection3.
In order to prevent trivial detection caused by visible artifacts, we selected PHP scripts (e.g.,
webshells and backdoors) that can be hidden in favicons by only using 1 bit per RGB channel of
each pixel. This led to 28 different malicious PHP scripts. This is not a major limitation: in fact,
real scripts mainly exploit known CVEs or bugs, which are limited. To have a broader scenario,
we also taken into account malicious URLs, which are often cloaked and at the basis of multi-
stage loading schemes [CCC+20]. In this case, we shortlisted 1, 000 real, malicious entries from

1https://www.cs.toronto.edu/˜kriz/cifar.html [Last Accessed, October 2022].
2https://github.com/RobinDavid/LSB-Steganography [Last Accessed, October 2022].
3https://github.com/marcocesarato/PHP-Malware-Collection [Last Accessed, October

2022].
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the URLhaus4 collection. Since real malware samples often mix hard-coded IP addresses and
DNS entries, we considered 500 numeric entries and 500 URLs, respectively. In the following,
we will simply refer to such quantities as URLs.

As a result, we obtained 240, 000 images containing malicious URLs (each image has been the
target of LSB steganography for four different entries), and 60, 000 images embedded with a
malicious PHP script, which has been randomly-selected with an uniform distribution. The re-
sulting dataset is then divided into train, test, and validation sets. The train set is composed of
180, 000 favicons (30, 000 legitimate images, 120, 000 obtained by combining each legitimate
image with 4 different URLs, and 30, 000 obtained by combining each legitimate image with
a randomly-picked PHP script). The validation set consists of 90, 000 favicons, divided into
15, 000 legitimate images, 60, 000 images containing different URLs, and 15, 000 images gener-
ated using the PHP scripts. The same proportion applies to the test set.

To further evaluate our approach, we prepared an additional dataset containing URLs and PHP
scripts completely unknown to the DNN. Specifically, we considered 1, 000 new DNS/IP entries
borrowed again from the URLhaus collection. Recalling that realistic, malicious PHP scripts
that can be hidden in favicons exist in a very limited quantity, we decided to model a “lateral
movement” attacking scheme. Thus, we encoded the original 28 scripts in Base64 in order to
consider a sort of basic “obfuscation” mechanism. We point out that, part of our ongoing research
is devoted to use more realistic schemes, such as XORring with a pseudo-random sequence.
Since such encoding inflates their sizes, we only used scripts still able to fit the favicon with
1-bit LSB steganography, leading to 21 valid PHP threats. The resulting set is composed of
90, 000 favicons: 15, 000 legitimate images, 60, 000 images with URLs, and 15, 000 images with
Base64-encoded PHP scripts.

8.3.2 Parameters, Evaluation Metrics, and Testbed

To evaluate the idea, we implemented a prototype5 in Python and the Tensorflow library. Specif-
ically, each model is composed of m = 3 subnets. Each fully-connected layer exploits a ReLU
activation function with 128 neurons and a dropout percentage of 2.5%. The RMSprop is used as
the optimizer with an initial learning rate of 0.001. Finally, each model is trained over 20 epochs
and the value of the batch size is equal to 256. In our experiments, we considered k ∈ {1, 2, 3}
to understand whether the number of bit planes composing the image plays a role. We point out
that, even if the DNN could be used to find the best value of k, i.e., it can be used to “choose”
the most relevant features to drive the detection process, this requires to pay a price in terms of
resources that can be unfeasible in the presence of large volumes of data.

4https://urlhaus.abuse.ch [Last Accessed, October 2022].
5https://github.com/massimo-guarascio/FaviconStegoDetection [Last Accessed,

October 2022].
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k Task Test Type Accuracy F-Measure AUC-PR

1

Detection known payload 1.000 1.000 1.000

unseen/obfuscated payload 0.993 0.987 1.000

Classification known payload 1.000 1.000 1.000

unseen/obfuscated payload 0.907 0.811 0.995

2

Detection known payload 1.000 1.000 1.000

unseen/obfuscated payload 0.990 0.983 1.000

Classification known payload 1.000 1.000 1.000

unseen/obfuscated payload 0.911 0.843 0.999

3

Detection known payload 1.000 1.000 1.000

unseen/obfuscated payload 1.000 0.999 1.000

Classification known payload 1.000 1.000 1.000

unseen/obfuscated payload 0.912 0.834 1.000

Table 8.1: Experimental results on different test cases by ranging different values of k.

Apart the performance metrics already introduced in Chapter 7 for spotting channels in IoT envi-
ronments, i.e., Accuracy, Recall, Precision, and F-Measure, in this chapter we also consider the
AUC-PR, that is the area under the Precision-Recall curve computed considering the different
class probability values. Although the F-Measure and AUC-PR are defined for a binary clas-
sification problem, they can be extended for a multi-class scenario by averaging, the obtained
results for each class. The literature provides two approaches named macro and micro aver-
aging [SL09]. In the former, the performance measure is computed for each class and then it
is averaged, whereas in the latter, the cumulative sum of the counts of various true/false posi-
tive/negative is computed, and then the overall measure is calculated. While macro-averaging
weights all classes equally, micro-averaging favors bigger classes. Since in our dataset the posi-
tive attack examples overwhelm the legitimate ones, we adopted a macro-averaging strategy.

Lastly, to perform experiments we used a machine equipped with an Intel Core I9-9980HK
CPU @2.40GHz and 32 GB RAM. The validation set has been exploited to select the model
guaranteeing the best loss value from the training phase.

8.3.3 Numerical Results

Table 8.1 reports experimental results obtained by taking into account different scenarios and by
varying the number k of bits used to detect/classify payloads hidden within favicons. Specif-
ically, detection and classification tasks have been evaluated by considering two different test
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Figure 8.4: Precision and Recall results for each payload class obtained by varying different
values of k in unseen/obfuscated payload setting.

cases. The first deals with favicons embedding known payloads (i.e., those contained in the train-
ing set), whereas the second addresses favicons cloaking “unseen” URLs or Base64-obfuscated
PHP scripts. As shown, results highlight the capability of the approach to provide very accurate
predictions (∼100% in terms of all the metrics) for both detection and classification tasks. How-
ever, the last test case is more challenging and the number of bits k used by the DNN to encode
the image affects the prediction, especially when detecting the presence of malicious payloads.
In particular, the initial value of 0.987 for the averaged F-Measure increases to 0.999, when k
varies.

For the second round of tests, we conducted a more detailed analysis. Specifically, considering
only unseen URLs or obfuscated PHP scripts allowed to model the presence of an attacker aware
of the AI-based countermeasure and thus deploying elusive techniques, such as the generation of
new URLs via domain fronting and the adoption of different content encoding as “obfuscation”
mechanisms [CCC+20]. Figure 8.4 depicts precision and recall values for each type of malicious
payload while using different values of k (we point out that, the legitimate class has been omitted
since we want to focus on the behavior of attack cases). Since the recall quantifies the capability
of the model to detect examples belonging to a specific class, the precision provides an estimate
of the prediction accuracy. In particular, high values for the precision lead to a low false alarm
rate and limits the number of misclassifications. Always referring to Figure 8.4, the model ex-
hibits excellent performance in correctly classifying favicons containing URLs, both in terms of
precision and recall, whereas ∼50% of the favicons embedding PHP scripts is erroneously clas-
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Figure 8.5: Loss behavior on the training set for the classification task (logarithmic scale).

sified and assigned to the other two classes, i.e., legitimate and URLs. However, the high values
of precision (for each value of k) denote the robustness of the model against false alarms, i.e., a
favicon assigned to this class has an high probability of containing some malicious payload.

We also studied the number of iterations (i.e., epochs) required for convergence of the training
algorithm. In particular, Figure 8.5 shows the training loss value computed per epoch. As it
can be seen, already after a limited number of iterations (∼7), the loss exhibits a stable behavior
meaning that the algorithm has been able to discover an accurate predictive model.

Finally, to understand whether the proposed approach can be deployed in production-quality
scenarios as well as to be implemented in “as-a-Service” paradigm, we performed tests on its
computational footprint. In this vein, it turned out that, processing a batch of 32 images requires
∼4 ms on average, without the need of a dedicated hardware like GPUs. For all these reasons, our
DNN-based architecture can be considered effective for detecting malicious favicons in medium-
sized networks or to be directly implemented through softwarization (e.g., in a containerized
micro service) along with the webserver without penalizing the Quality of Experience perceived
by end users.

8.4 Conclusions and Future Works

In this chapter, we presented a framework based on DNNs for detecting MageCart-like threats
able to cloak malicious payloads in favicons via LSB steganography. Our approach has been also
designed to classify the type of payload, i.e., malicious URLs and PHP scripts. Results show-
cases its ability to detect the ∼100% of compromised favicons (with examples provided during
the learning phase), as well as ∼90% of payloads obfuscated via a Base64 encoding. Owing to
a reduced computational footprint, our method could be deployed to inspect online favicons ex-
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changed in medium-sized networks or delivered by high-traffic web servers. A current limitation
of our approach is its ability of solely spotting payloads directly hidden in bitplanes. Thus, future
works aim at extending it to reveal payloads cloaked within non-zero DCT coefficients.

In the next chapter, we will investigate the use of DNNs to detect/classify other payloads (e.g.,
HTML or PowerShell) hidden in full-sized icons.

133



Chapter 9

Revealing Threats in Icons via AI

The boundaries between mobile and desktop applications are progressively blurring. For in-
stance, iOS/iPadOS applications can run over macOS by using a transparent and lean emula-
tion layer, and Android software can be deployed in set top boxes, mobile devices, and various
appliances with minimal modifications. Moreover, the diffusion of the Software-as-a-Service
paradigm leads to a common back-end, which can be shared by different users and classes of
devices [BHGG18]. As a consequence, malware and threat actors can target a limitless popula-
tion of devices often sharing the underlying hardware architecture or a non-negligible amount of
software assets, such as libraries or network protocols. Even if the uncontrolled diffusion of mali-
cious software characterized by a “write once, attack anywhere” nature could be not an imminent
danger, the use of digital images should be considered an important feature unifying the majority
of devices and hosts connected to the Internet, especially when considering stegomalware.

Therefore, this chapter advances with respect to Chapter 8 and further investigates on image
steganography when considering the massification of mobile devices, the large-scale deploy-
ment of IoT nodes and smart frameworks, as well as the fragmentation of various software
sources (e.g., ad-hoc and official stores vs side-loaded applications). Specifically, it deals with
an ecosystem for the detection of steganographic threats targeting digital images in a general and
efficient manner. In more detail, we propose the usage of a similar DNN architecture to reveal
the presence of a wide array of malicious payloads hidden in larger digital images. Moreover,
we evaluate the cases when the attacker tries to implement basic evasion techniques, i.e., via
obfuscation, compression or alternative encoding schemes.

The contribution of this chapter is twofold: it introduces a framework using AI to detect dif-
ferent malware leveraging steganography, and it showcases the creation of a realistic dataset for
modeling various threats and attack schemes.

The remainder of the chapter is organized as follows. Section 9.1 introduces the attack model
as well as background information on malware and its mitigation via AI techniques, Section
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9.2 presents the proposed ecosystem and the detection approach, and Section 9.3 showcases
numerical results obtained via a thorough performance evaluation campaign. Lastly, Section 9.4
concludes the chapter.

9.1 Attack Model

The general attack model considered in this work deals with an attacker wanting to cloak a
malicious payload into a digital image to bypass a secure perimeter. As an example, a threat
actor wants to drop a payload on the host of the victim or build a stealth chain to reduce the
effectiveness of forensics investigations [MC15]. In general, infiltrating a malicious content or
making difficult to locate the source of the attack can be done by using different techniques.
For instance, in the case of platforms based on Android, malware can be repackaged within ap-
plications to evade detection algorithms, even exploiting machine learning [CLW+19]. Instead,
when considering simpler targets like IoT nodes, malicious routines can be directly injected or
obfuscated in binaries [YY10].

Once the payload is hidden in the image, the malware has to be distributed to the victim. As
today, different attack vectors exists, but the most popular are [CCC+20]: i) the payload is sent
as an email attachment, for instance via phishing campaigns; ii) the target is decoyed to retrieve
some software, for instance by clicking a malicious link or tricked with social engineering tech-
niques; iii) a third-party malicious stage already running on the device of the victim retrieves
the payload from a remote server; iv) the payload is cloaked in an asset delivered via a publicly-
accessible platform, such as a store or a web server. According to the used method, different
checks and countermeasures are enforced within security services implemented through a va-
riety of architectural/functional blueprints. In more detail, for attack vectors i) and ii) a local
antivirus could inspect files searching for known signatures. In the case of iii), a firewall or an
IDS could block/spot the network conversation between the remote C&C server and the compro-
mised node. Lastly, for the case iv), security checks enforced in a web server, a cloud provider,
or an application store could spot the presence of malicious assets packed within in-line objects
composing a web page or a .dll bundled with an application. To have a reference use case, Fig-
ure 9.1 depicts the considered general attack model. Specifically, we consider an attacker hiding
a malicious contents in a digital image (i.e., a high-resolution icon) by exploiting steganography.
Similarly to what discussed in Chapter 8, we consider the use of LSB steganography. When the
malicious payload is cloaked via LSB, it can be delivered via methods i)-iv), each one aiming at
bypassing a specific security service.

With image processing, we refer to the technical analysis of an image through complex algo-
rithms, which are usually exploited to address a variety of tasks. Improving the human un-
derstanding on information content of an image as well as extracting, storing and transmitting
pictorial information [GW18] are typical examples of problems that can be tackled via image
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Figure 9.1: General attack model considered to design the ecosystem for the mitigation of
steganographic threats.

processing. The recent advances in AI and (in particular) in machine learning allowed to fur-
ther boost the capabilities of traditional frameworks and generate reliable and effective models.
Among the others, the DL paradigm [LBH15] is particularly suited to reveal the presence of
malicious information in digital images. Indeed, an emerging solution for identifying hidden
contents relies on the usage of DNN, which allows for detecting and classifying compromised
images through steganographic tools (see, e.g., [HKR18]). Hence, accurate detection and clas-
sification models can be directly learned from raw low-level data (e.g., pixels, bits, and sensor
data streams) by using approaches exploiting DL methodologies. Recalling that these models
can learn in hierarchical fashion, data abstractions and representations at different levels are au-
tomatically learned leading to effective solutions for analyzing and combining raw data. This
is especially true for the case of processing digital images, for instance, high-resolution icons
used in several commercial software such as Android. Moreover, discovered models can be up-
dated incrementally or retrained only by considering new data coming from the observation of
additional threats or variants of well-known attacks.

9.2 Detection Approach

Even if many concepts have been already introduced in Section 8.2, for the sake of complete-
ness we introduce again the software architecture of our ecosystem for revealing the presence
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Figure 9.2: Layered architecture of our approach for detecting malware targeting malicious im-
ages.

of steganographic threats targeting images. Then, we will discuss the design of the detection
framework based on DNNs.

9.2.1 Architectural Blueprint

As discussed, the proposed detection framework aims at revealing the presence of malicious
payloads embedded in images contained in different software artifacts, which can be retrieved
from different sources. Figure 9.2 portraits the layered software architecture. As a first step,
the detection framework “intercepts” the content and extract the digital image(s). For instance,
this could require to extract assets from the resource bundle of an application or capture in-line
objects composing an HTML hypertext. As soon as the image is retrieved, the detection logic
exploiting a DNN checks for hidden contents. Malicious images can be discarded or an alarm
can be raised.

In general, this type of test can be done in two different portions of the network. In the first case,
the detection framework can be deployed at the border of the network closer to devices to be
protected. As a possible example, it can be implemented in edge nodes, home/smart gateways,
or as an ad-hoc service running over local appliances. If performance is not a tight constraint,
the detection can also happen directly in end nodes. In the second case, the framework can be
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Figure 9.3: Methodological approach for the detection/classification of a stegomalware cloaked
in a digital image via LSB steganography.

deployed within the service to protect. For instance, it can be implemented as a software layer
inspecting applications submitted by a developer before they become publicly available, or can
be a component periodically checking assets stored in a datacenter.

Despite the placement, the detection framework should be properly trained and its model should
be periodically updated. When considering edge-like deployments, such requirements could be
too narrow. Thus, data gathering and training of the neural network can be done in a centralized
manner in order to deliver only the model to devices with limited capabilities.

9.2.2 Hidden Content Detection Approach

Figure 9.3 shows the general approach adopted to address the problem of revealing images tar-
geted via steganographic or information-hiding-capable techniques. The core architecture is the
one used in Chapter 8 and it is presented again for the sake of completeness. Basically, the input
data are images, i.e., matrices with dimension X × Y . Each image is composed of pixels, the
smallest manageable element of these matrices storing information about the color. The color
of each pixel is obtained by combining the three RGB components. As it will be detailed later,
in this work we focus on high-resolution icons as they offer a sort of “unified playground” for

138



various threats. Indeed, this does not account for a loss of generality, as the approach can be
applied and scaled also to address regular-sized images. Thus, in the following, we consider that
the values associated to RGB components represents the intensity of that color and ranges in the
interval [0, 255]. Specifically, three bytes are used to store the intensity value for each primary
color. Hereinafter, we denote with N the size of the image computed as N = X × Y × 3.

As previously hinted, LSB steganography represents a prominent approach to hide malicious
code or data in legitimate pictures by changing the value of the (k) least significant bit(s) of each
color composing the pixel of the image (see, Figure 9.3 for the case of k = 1). It is worth noting
that, when only a limited number of changes are performed on the image, it will not exhibit
any visible alteration, i.e., pixels will appear as homogeneous with respect to the surrounding
elements [ZMCG21]. Therefore, a high number of the approaches proposed in literature fail
in detecting the presence of hidden content as they produce weak detection models unable to
discover the slight differences between licit and compromised contents.

To overcome the limitations of traditional frameworks, in this work we designed a machine-
learning-based solution that focuses on processing and analyzing the k LSBs of the images under
investigation. Basically, a vectorial representation is yielded by extracting the k least significant
bits of each pixel, hence this representation is used to feed the learning phase of a DNN. The
raw information is automatically combined by the DNN hidden layers that allows for extracting
high-level discriminative features.

The proposed approach permits to deal with both the main issues investigated in this work i.e., the
effective detection of malicious data and its classification. Notably, the predictive performance of
the detection model are generally not affected by the number k of LSBs analyzed as demonstrated
in [MP21] for monochromatic images.

9.2.3 Neural Detector Architecture

To mitigate the risks arising from threats leveraging information hiding and steganography, we
devised two (deep) neural models for their detection and classification. Specifically, we adopted
the deep architectures depicted in Figure 9.4, which allow for yielding accurate predictions for
both tasks. Basically, the two DNNs (i.e., detector and classifier) share the same backbone (i.e.,
same hidden layers and activation functions), but differ for the output layer, which is instantiated
with a different number of neurons and activation function on the basis of the specific task to
address. Essentially, our solution is composed of a stack of several subnets. The first layer has
the role of handler for the input provided to the network (denoted in Figure 9.4 as Input Han-
dler) and it propagates the raw data to the subsequent layers of the DNN for further processing.
The size of this level is k × N i.e., the product between the number of least significant bits to
analyze and the size of the image.

Both networks are composed of a variable number m of SubNets obtained by stacking three
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Figure 9.4: Neural architecture for hidden content detection and classification.

main components: (i) on top, a fully-connected dense layer (equipped with a ReLU activation
function [NH10]) is instantiated, (ii) then, a batch-normalization layer is stacked to the previ-
ous one in order to improve the stability of the learning phase and to boost the model perfor-
mance, and finally, (iii) to mitigate the risk of overfitting, a dropout layer is added to the subnet
[SHK+14].

As an example, Figure 9.4 illustrates the overall model architecture. The first instance of this
specific configuration has been labeled as SubNet1. In more detail, the Batch Normal-
ization implements the role of standardizing the data to be offered to the subsequent layers
of the DNN with respect to the current batch (by considering the average µ and the variance
σ of each input), whereas a reset of a random number of neurons during the learning stage is
performed by applying the dropout mechanism. As pinpointed in [HSK+12], the adoption of a
dropout technique induces in the DNN a behavior similar to an ensemble model: in a nutshell,
the overall output of the whole neural network can be considered as the combination of differ-
ent subnetworks resulting from this random masking, which disables some paths of the neural
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architecture.

Finally, the number of neurons and the type of activation function of the Output Layer de-
pends on the specific task to address. As regards the detection, a single neuron providing the
attack probability score is required. In particular, the Output Layer is equipped with a sig-
moid activation function [GMR18], which maps any given data instance x = ⟨x1, . . . ,xk×N⟩
to an anomaly score ỹ (i.e., the estimate of the probability that x is an image containing some
hidden information).

By contrast, for the classification task the Output Layer will include C neurons (one for
each class) and will be equipped with a softmax activation function [GMR18]. Basically, we can
consider the detection task as a sub-case of classification where C = 1. The proposed neural
model is trained against a set D = {(x1,y1), (x2,y2), . . . , (xD,yD)}, where xi is the k-LSB-
based representation of the image while y is the class of the image. In particular, as concerns the
detection y takes a binary value specifying the legitimate/compromised nature of the image. For
the classification task, an One-hot Encoding based on C classes is used to model the different
labels each one indicating a specific malicious payloads. As it will be detailed later, in our work
we considered C classes representing “clean” images and images cloaking JavaScript, HTML,
PowerShell, Ethereum wallets, and URL/IP addresses. Finally, the training stage is responsible
for optimizing the network weights by minimizing the same loss function presented in Chapter
8. In particular, for the detection task, the BCE is exploited to compute the network weights,
which is defined as follow:

BCE (y, ỹ) = − 1

|D|

|D|∑
i=1

yi log ỹi + (1− yi) log(1− ỹi).

By contrast, the CCE is adopted for the classification task and it is calculated as follow:

CCE (y, ỹ) = −
|D|∑
i=1

yi log ỹi.

9.3 Performance Evaluation

In this section, we preliminary present how the dataset has been prepared to model the attack
template introduced in Section 9.1. Then, we showcase numerical results.
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9.3.1 Design of Attacks and Dataset Preparation

To model a wide range of threats leveraging steganography with emphasis to real attacks pre-
sented in Section 1.4, we consider an attacker cloaking different malicious payloads within high-
resolution icons. This can be representative of an APT or a Crime-as-a-Service toolkit offering
cross-platform offensive functionalities or generic hiding capabilities. Moreover, icons are an
ubiquitous digital asset deployed in software running in mobile nodes (e.g., Android and iOS de-
vices), tablets and set top boxes (e.g., Windows and Android ecosystems), as well as in desktops.
In general, icons are provided in different sizes or dynamically scaled by the guest OS according
to the resolution or the intended usages, for instance to identify file types or to show applications
on the desktop/dashboard. Thus, without loss of generality and to take into account possible
future scenarios, we considered an attacker targeting icons of a size of 512× 512 pixels.

Concerning payloads, we want to model threats using steganography or information hiding to
conceal different malicious assets, as it happens in real-world attack campaigns and APTs. To
not limit our investigation and to reflect the increasing trend of endowing malware with some
stealthy capabilities, we utilized the following realistic malicious payloads [MC15, CCC+20]:

• JavaScript code1: threats that can target victims in a cross-platform manner. For instance,
such scripts can be used to retrieve an additional payload, de-obfuscate weaponized con-
tents stored in the filesystem, or implement file-less malware;

• Obfuscated JavaScript in HTML2: many scripts are usually obfuscated within an hypertext.
On one hand, this allows to trigger their execution when used in Web-based attack chains.
On the other hand, scripts can be concealed within chunks of text or comments, via a wide
array of text-based obfuscation mechanisms. Hence, they are expected to proliferate for
making detection and forensics attempts harder;

• PowerShell scripts3: malicious PowerShell code has been observed in many stegano-
graphic malware. For instance, the Invoke-PSImage technique used to hide PowerShell
contents in images has been at the basis of several attack campaigns, such as those against
the Pyeongchang Olympic Games or for the diffusion of Bandook malware [HYM+20];

• Ethereum Addresses4: ransomware and cryptojackers in many cases contain data to pro-
grammatically reach a remote wallet or to instruct a victim for paying the ransom. To avoid

1Javascript Malware Collection. Online: https://github.com/HynekPetrak/javascript-
malware-collection [Last Accessed, October 2022].

2Malicious Javascript Dataset. Online: https://github.com/geeksonsecurity/js-malicious-
dataset [Last Accessed, October 2022].

3PowerShell dataset. Online: https://github.com/denisugarte/PowerDrive [Last Accessed,
October 2022].

4Ethereum-lists. Online: https://github.com/MyEtherWallet/ethereum-lists [Last Ac-
cessed, October 2022].
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Train Test Validation

Clean 4, 000 2, 000 2, 000
JavaScript 2, 363 1, 188 1, 214

JavaScript in HTML 2, 284 1, 167 1, 162
PowerShell 2, 468 1, 164 1, 213

Ethereum addresses 2, 473 1, 247 1, 193
URL/IP addresses 2, 412 1, 234 1, 218

Total 16, 000 8, 000 8, 000

Table 9.1: Breakdown of the dataset used to model a malware exploiting steganography and test
our detection approach.

detection or to update the malware during its lifespan, fixed-length hash values identify-
ing crypto wallets can be hidden into innocent-looking contents and periodically retrieved
from a C&C server;

• URL and IP Addresses from URLhaus database: the majority of threats contacts a remote
facility to exfiltrate data as well as to retrieve additional payloads or configurations (see,
e.g., the ZeusVM banking trojan using steganography to conceal a list of addresses and
URLs belonging to financial institutions [MC15]). In general, such information is hard-
coded in the malware, thus making the creation of signatures for binary analysis easy
[CCC+20]. Hence, many recent threats cloak both IP addresses and DNS entries in digital
images to escape detection.

To conceal the payloads within the images, we used the LSB steganography technique, which has
been observed in many real-world threats [MC15, WCM+21]. To this aim, we used LSBSteg. In
essence, the tool hides the source payload (i.e., the malicious content) in the RGB color channels
of each pixel. To avoid trivially-visible artifacts, we considered payloads that can be hidden by
only using 1 bit per channel, i.e., only payloads with a size of 512× 512× 3 bits.

To have a realistic condition, we selected images from different open source repositories (and
released under GPL3 licence) to build a dataset composed of 8, 000 equally-sized images. To
obtain ample test settings, we combined each image with three different payloads, which have
been selected randomly. The selection process has been modeled with an uniform distribution
among the different payloads, i.e., JavaScripts, obfuscated JavaScripts in HTML, PowerShell
scripts, Ethereum addresses, and IP/URLs.

As a result, we obtained 32, 000 images containing the various malicious contents. The dataset
has been further divided into train, test, and validation sets. The overall breakdown is reported
in Table 9.1. As indicated, each entry represents the amount of images generated for each set,
considering the particular payload type.

To verify the effectiveness of our approach when revealing the presence of hidden payloads
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within “unseen” digital images, we prepared two additional test sets. Such sets have been used
to model an attacker aware of the countermeasure, thus trying to escape the detection via ob-
fuscation or lateral movements [MW17]. In more detail, the first additional test set considers
payloads encoded in Base64 with the base64 Linux utility version 1.13.4. The second instead
models attacks à-la LokiBit, which exploits zip compression to further obfuscate the hidden data.
In this case, we used the zip Linux utility version 3.0 with the deflation compression method.
To generate the two additional datasets (denoted in the following as “Base64 Test” and “ZIP
Test”, respectively), we considered again the same 8, 000 images with the same proportions for
the payloads.

9.3.2 Parameters, Evaluation Metrics, and Testbed

As illustrated in Section 9.2, the proposed approach relies on the usage of a DNN architecture
for detecting and classifying compromised images. To validate the approach, a prototypal im-
plementation written in Python based on the Tensorflow library has been developed. As regards
the DNN architecture instantiated for the experimentation, it includes m = 3 SubNets. Specifi-
cally, the hidden fully-connected layers are composed of 128 neurons and equipped with ReLU
activation functions, while the reset probability for the dropout is 2.5%. RMSprop is adopted as
optimizer with a learning rate of 1e− 3. Both models used for detection and classification tasks
are learned over 20 epochs with a batch size of 256.

To assess the quality of the results obtained by the proposed approach, we consider the Accuracy,
Presion, Recall, and F-Measure defined in Chapter 7. Additionally, we evaluated the Area Under
the Curve (AUC) for the the Receiver Operating Characteristic (ROC) curve. Specifically, the
latter is obtained by plotting the False Positive Rate (i.e., the ratio between the number of false
alarms signaled and that of all the licit images) and the True Positive Rate (i.e., the Recall) for
different class probability values. As a result, the AUC is the area under the ROC curve.

Lastly, to perform experiments we used a machine equipped with an Intel Core I9-9980HK
CPU @2.40GHz and 32 GB RAM. The validation set has been exploited to select the model
guaranteeing the best loss value from the training phase.

9.3.3 Numerical Results

Table 9.2 showcases the results obtained for both detection and classification tasks and by con-
sidering the different attack scenarios presented in Section 9.3.1. In the first scenario, the hidden
information has been encoded in a plain ASCII format, whereas in the second and third scenario,
the payload has been encoded in Base64 or compressed in zip format.

As regards the detection, the proposed framework is characterized excellent results, i.e., ∼100%
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Task Test Type Accuracy F-Measure AUC

Detection

Plain 0.992 0.994 1.000

Base64 Encoding 0.999 0.999 1.000

Zip Encoding 1.000 1.000 1.000

Classification

Plain 0.820 0.829 0.969

Base64 Encoding 0.683 0.670 0.886

Zip Encoding 0.487 0.324 0.704

Table 9.2: Experimental results in terms of detection and prediction capabilities obtained by
varying the type of encoding for the payload.

of accuracy, in every scenario. Instead, for the classification task, the overall performance decay,
especially when the payload is compressed before being cloaked in the image. The same behavior
can be observed in Figure 9.5, where the values for the precision and recall are reported for all the
three considered scenarios/cases. As shown, it seems that the encoding/compression operation
reduces the capability of the model to distinguish among the different classes, since both the
precision and recall exhibit a decreasing trend.

To investigate such a behavior in more detail, a further analysis has been performed. Specif-
ically, we quantified the prediction capabilities of the model when dealing with each class for
each scenario. To this aim we plotted the corresponding ROC curves, which have been grouped
according to the use of “normal” hiding, the adoption of an additional encoding, or the use of zip
compression to obfuscate the payload. In more detail, Figure 9.6 shows the ROC curves when
the payload is directly embedded in the images, i.e., no elusive mechanisms are deployed by the
attacker. As shown, the neural classifier exhibits good performance for each class, although it
could misclassify URL/IP addresses with Ethereum ones. This behavior can be explained by
considering the close similarity of such payloads (i.e., both are characterized by short string
containing alphanumerical characters). As a consequence, the learning process becomes more
difficult.

The case of an attacker using the Base64 encoding before the LSB steganographic injection is the
depicted in Figure 9.7. Specifically, we can observe the slight degradation of the performance
for each class (except the legitimate one). It must be noted that, the PowerShell class is the
one suffering most of the encoding: essentially, PowerShell scripts tend to be misclassified with
the JavaScript counterpart. This behavior can be ascribed to the fact that the prose of both
PowerShell and JavaScript shares the use of statements (e.g., if-then clauses), parenthesis
and specific punctuation.

Finally, Figure 9.8 deals with the case of an attacker deploying obfuscation via zip compression,
i.e., the payload has been compressed and then embedded in the image. As it can be seen, a fur-
ther performance degradation can be observed, although the model is however able to distinguish
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Figure 9.5: Precision and recall values for the classification task and grouped by payload type.

between compromised and legitimate images. In essence, payloads containing an “address” (i.e.,
IP/URLs and Ethereum pointers) are misclassified each other, while PowerShell and Javascript
in HTML are labeled as Javascript payload. According to further investigations, this behavior
is mainly due to the fact that the compression operation reduces the differences among the pay-
loads. In fact, the metadata added to the compressed representation further contribute to make
harder the classification task as they are similar for all the classes. In other words, the data struc-
ture imposed by the zip algorithm constitutes the majority of the information compared to the
original data.

Lastly, we point out that our approach can be deployed in a simple manner in many realistic sce-
narios, especially owing to its limited resource footprint. In more detail, the average prediction
time for a single image is ∼5 ms calculated on the same machine used for the experimental cam-
paign. Hence, the architecture of Figure 9.2 could be implemented over commodity hardware to
protect small- and medium-sized networks in a centralized manner (e.g., by deploying a specific
appliance). Besides, if timing constraints are not too tight, our approach can be also deployed
in edge nodes protecting SOHO networks or granting access to various smart devices. Another
possible deployment flavor could exploit the DNN to equip local antivirus with some form of AI
to reveal steganographic threats: in this case, resource-intensive operations (e.g., training) can be
done in a centralized manner and updates about the configuration of the neural network can be
delivered locally.
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Figure 9.6: ROC Curves for Plain Testset.
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Figure 9.7: ROC Curves for Base64 Encoded Testset.
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Figure 9.8: ROC Curves for ZIP Encoded Testset.

9.4 Conclusions and Future Works

In this chapter, we presented an approach for detecting digital pictures containing malicious pay-
loads hidden via LSB steganography. To this aim, we used DNNs and and demonstrated the fea-
sibility of our approach by considering malware exploiting icons with a size of 512× 512 pixels.
This allowed to consider threats targeting an heterogeneous population of devices/ecosystems,
which share the use of icons. Results showcased the effectiveness of our approach also when
handling payloads obfuscated via zip or further processed with an alternative encoding, i.e.,
the attacker deployed some elusive technique. Future works aim at refining the proposed idea.
Specifically, part of our ongoing research is devoted to understand the impact in terms of scalabil-
ity of the approach, especially to understand its feasibility in protecting Internet-scale services or
cloud datacenters in an effective manner. In addition, future research aims at performing detec-
tion of a wider array of digital images, also by considering threats using different steganographic
techniques (e.g., DCT steganography) or information hiding approaches (e.g., manipulation of
metadata).

In the next chapter, we will consider the case when detection of malicious images is not possible
and propose the use of autoencoders for the sanitization.
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Chapter 10

Sanitization of Images Containing
Stegomalware via AI

When preserving privacy is not possible or when stegomalware prevents the detection performed
by classical tools, other approaches for mitigating images containing hidden malicious payloads
are required. Differently from the detection mechanisms presented in Chapters 8 and 9, we pro-
pose a framework based on autoencoders to “sanitize” images by disrupting the hidden payloads
without degrading their quality. We point out that, compared to other works leveraging AI to im-
plement security features (see, e.g., [DFP20, GMP20, CCC+20] and the references therein), we
do not focus on detection. Rather, we sanitize image files assuming the presence of a third-party
tool able to “flag” a content as malicious or by sanitizing all the assets of a well-defined service,
for instance images hosted on a webserver acting as the front-end for a critical infrastructure.
The choice of autoencoders has been driven both by their properties and their performance when
handling security-related tasks, such as the extraction of features to discriminate malicious calls
of APIs [DFP20]. This chapter considers images containing PowerShell scripts embedded via the
Invoke-PSImage technique, which has been observed in many real-world threats and malicious
campaigns [CCC+20].

Therefore, the contributions of this chapter are the design of an architectural framework for
the mitigation of information-hiding-capable threats, and a preliminary performance evaluation
campaign considering the Invoke-PSImage.

The remainder of the chapter is organized as follows. Section 10.1 provides background details
on stegomalware targeting digital media and machine learning techniques for image processing.
Section 10.2 deals with the proposed approach for preventing steganographic attacks via image
sanitization, while Section 10.3 showcases numerical results. Lastly, Section 10.4 concludes the
chapter.
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Figure 10.1: Reference attack model considering an attacker that embeds a malicious script into
an innocent-looking image to evade a security tool.

10.1 Background

This section introduces the considered attack model and provides details on the machine learning
approaches used to manipulate images.

10.1.1 Stegomalware and Attack Model

Figure 10.1 depicts the reference attack model. In particular, an attacker wants to hide a malware
within a digital image to evade detection mechanisms, e.g., antivirus, or to allow data exchange
with the victim even in the presence of a firewall or other blocking mechanisms [MC15]. To
this aim, as a preliminary step, the attacker utilizes some information-hiding-based approach to
inject a secret information within a digital picture. The latter should not appear as an anomaly
and the embedding process should not generate visible artifacts. In this chapter, we will consider
a variant of the LSB embedding technique leveraging the Invoke-PSImage tool. Put briefly, it
allows to encode a PowerShell script within an input image. To hide the payload, the embedding
method uses the 4 least significant bits of the green and the blue channels of each pixel. As a
result, each pixel of the processed image will contain 1 byte of secret information.

According to threats observed in the wild, the secret data could be an attack routine, a script, a
configuration file or a sequence of commands [MC15, CCM+18]. To have a realistic scenario,
in the following we will consider an attacker hiding a PowerShell script within the digital image,
as it has been observed in various malware samples [CCC+20] and APTs1. The obtained image
is seldom delivered to the victim in a direct manner: rather, a third-party vector is exploited. For

1https://cyware.com/news/new-malware-strain-abuses-github-and-imgur-e29bc6
f6 [Last Accessed, October 2022].
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instance, the attacker can send the image via a phishing campaign, or manipulate the content of
a web page: such an altered resource can be then fetched by the victim. As an example, the
MageCart malware exfiltrated payment information by hiding them into images implementing
an e-commerce site [CCC+20] and its detection has been discussed in Chapter 8.

Upon reaching the victim, the malicious payload can be retrieved and then utilized to complete
the attack. Usually, part of the malware has already been injected in the host of the victim and
awaits for a specific image to be scanned for extracting the information (e.g., a list of IP addresses
to contact). Another typical mechanism exploits some form of social engineering where the
victim is decoyed as to use the infected image in a way that the payload detonates.

10.1.2 Machine Learning for Image Processing

Image processing represents the technical analysis of an image by means of complex algorithms.
Roughly, it can be considered as a process where both the input and the output are an image. Im-
age processing techniques can be used to improve the information content of an image for human
understanding, as well as for extracting, storing and transmitting pictorial information [GW18].
Although the field is generally considered loosely separated from image analysis and computer
vision, the rapid acceleration of new AI methods within the latter fields has opened new oppor-
tunities even in the former. In particular, the recent establishment of DL techniques [LBH15]
has fostered significant improvements in various applications of image processing and computer
vision, e.g., image enhancement, restoration and morphing. By exploiting multiple levels of ab-
stractions, deep architectures allow to discover highly accurate models by capturing interactions
between set of features directly from raw and noisy image data. The capability of learning such
abstractions represents one of the most important and disruptive aspects introduced by the DL
framework: no feature engineering or interaction with domain experts are required to build good
representative features.

As discussed, CNNs [LBD+89, LB95] represent a particularly relevant variant of traditional
neural networks, where the connectivity between neurons is delved on a local basis, thus allowing
to capture the invariance of patterns to distortion or shift in the input data. Under this perspective,
CNN architectures are particularly well-suited for the analysis of image data. A basic CNN can
be devised as a stacking of layers where each of them transforms one volume of activations to
another. A convolutional layer produces a higher-level abstraction of the input data, called a
feature map. Units in a convolutional layer are arranged in feature maps, within which each unit
is connected to local regions in the feature maps of the previous layer and represent a convolution
of the input. Each neuron represents a receptive field, which receives as input a rectangular
section (a filter) of the previous layer and produces an output according to the stimuli received
from this filter.

The intuition within the architecture of a CNN is that convolutional layers detect high-level fea-
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tures within the input, which are hence used to represent the key features of the input data and
properly represent the latter at a higher abstraction level. For example, within an image, con-
volutional layers can progressively detect edges, contours and borders, which can be ultimately
exploited to interpret the image. Because of this, deep CNN architectures are extensively used in
image classification [SLJ+15, SZ14, HZRS16] or object detection [Gir15, LAE+16, RDGF16].

Another deep architecture of interest for image processing and analysis is the Encoder-decoder
framework [HS06, NKK+11]. An autoencoder is a particular neural network where the target
of the network is the data itself, and it is mainly exploited for dimensionality reduction tasks or
for learning efficient encoding. The simplest structure includes three components: i) an input
layer of raw data to be encoded; ii) a stack of hidden layers mapping the input data into a low-
dimensional representation and viceversa; and iii) an output layer with the same size of the
input layer. Autoencoders find several applications in image processing. For example, they can
be used for regularization: a denoising autoencoder [VLBM08] tries to reconstruct the original
information from noisy data. By optimizing the reconstruction loss, the denoising autoencoder
learns to extract features from a noisy input, which can be used to reconstruct the original content
at the same time disregarding the noise. More advanced architectures based on a combination
between convolutional and Encoder-decoder architectures [LSD15, NHH15, RFB15] can also be
exploited for tasks such as enhancement, morphing and segmentation.

10.2 Sanitization Through Machine Learning

In this section we present the approach to sanitize images containing malicious PowerShell
scripts injected via the Invoke-PSImage technique. First we introduce the reference architec-
ture, then we discuss the methodology used to process the various digital media.

10.2.1 Architectural Blueprint

To process a digital image for disrupting the hidden information without altering the perceived
quality, we take advantage of convolutional autoencoders. To this aim, the proposed framework
could be implemented as a middlebox able to intercept the flow of data and process the im-
ages. Figure 10.2 showcases a reference deployment. In general, processing huge volumes of
information in a centralized manner poses some scalability issues, introduces a unique point of
failure, and can account for additional delays or degradation of the Quality of Experience per-
ceived by end users. Moreover, intercepting digital images from the bulk of traffic could not be
possible, e.g., due to encrypted conversations. A possible idea to implement the proposed image
sanitizer framework concerns the use of a proxying architecture only targeting specific proto-
cols. For instance, it can be implemented as an HTTP proxy to prevent an attacker to distribute
malicious code via innocent looking web pages or contents published on online social networks
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Figure 10.2: Reference scenario leveraging the proposed sanitization framework based on au-
toencoders.

[BHCdFR12]. Moreover, since many attacks observed in the wild exploit web pages as the attack
vector, the proposed framework can be engineered as a plug-in to be deployed in the web server
in charge of “scrubbing” images and other in-line objects before they are sent to end users.

10.2.2 Methodology

Within the proposed framework, the image sanitization can be accomplished as follows. We
assume that x is an input image and ϵ is the a priori unknown malicious attack compromising
the content of the image into x + ϵ. The objective is to devise a neural functional N such that
N(x + ϵ) ≈ x, while contemporarily guaranteeing that N(x) ≈ x for uncompromised images.
The functional N represents the sanitizer to be exploited in the reference scenario of Figure 10.2.

The architecture for N is loosely inspired to Unet [RFB15]: the input image is progressively
halved in size and doubled in volume by means of convolutional blocks, until a core compact
representation of 512 layers of size 60 × 60 is obtained. The decoding phase is characterized
by a series of deconvolution blocks, each of them combined with the corresponding residual
block from the encoding phase and transformed in volume through an additional convolutional
block. The final image is reconstructed from the final block by exploiting a sigmoid activation
layer. Each block is composed of: a convolution/transposed convolution, a rectified linear unit, a
dropout and a batch normalization layer. The overall design is illustrated in Figure 10.3: the grey
blocks on the right-hand side represent the corresponding blocks in the encoding phase, stacked
with the outputs from deconvolutional blocks.

The network is learned on a set D = {(y1,x1), (y2,x2), . . . , (yn,xn)} of image pairs, where xi

represents the original image and yi = xi + ϵi the (possibly) compromised input. The learning
phase aims at optimizing the network weights by minimizing the reconstruction loss. We studied
two possible choices for the latter. The MSE is a natural choice for the reconstruction, as it
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Figure 10.3: Reference architecture for the autoencoder. The input (compromised) image is
processed through the convolutional layers and its sanitized version is produced as output.

measures divergences at a pixel level:

MSE (N,D) =
1

n

∑
i

∥xi −N(yi)∥2 .

Notice that here we consider normalized images, such that the values of the pixels within each
channel ranges within the interval [0, 1]. This can set a potential problem, especially when the
attack ϵi represents a negligible distortion of the original image: if the amount of displaced
pixels is small, the loss becomes small and the gradient vanishes, thus making the learning phase
stationary.

To avoid this, we also studied the adoption of the BCE loss,

BCE (N,D) = − 1

n

∑
i

∑
j

(
xij logNj(yi) + (1− xij) log (1−Nj(yi))

)
.

where, j represents the coordinate of the j-th pixel within the image. The rationale is that,
whenever xi and N(yi) diverge on a pixel, the contribution to the loss is significantly amplified
by the logarithmic term. This can stabilize the learning phase making it faster and in principle
more reliable.

10.3 Performance Evaluation

To prove the effectiveness of the sanitization approach, we performed a preliminary performance
evaluation campaign. To this aim, we generated an ad-hoc dataset of images containing Pow-
erShell scripts embedded via the Invoke-PSImage tool. We considered 500 legitimate images
taken from the publicly available Berkeley Segmentation Data Set [AMFM10]. Specifically, the
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dataset consists of 500 natural images, explicitly separated into disjoint train, validation and test
subsets. Images have been processed with a custom Python module to automatize the embedding
of 110 different PowerShell scripts taken from the Lazywinadmin repository2.

The resulting dataset is once again divided into train, test, and validation sets. The train set
is composed of 12, 000 images (200 legitimate images combined with 60 different PowerShell
scripts), the test set contains 2, 500 images (100 legitimate images combined with 25 different
scripts), and the validation set contains 5, 000 images (200 legitimate images combined with 25
PowerShell scripts). As a result, the final dataset is composed of 19, 500 “dirty” images, i.e.,
digital pictures embedding a PowerShell script.

To evaluate the performance in terms of sanitization, we used StegExpose3, which is a Java
tool for detecting contents embedded in images via steganographic techniques [Boe14, Bal17].
Specifically, StegExpose combines four different detection methods, i.e., Sample Pairs [DWW02],
RS Analysis [FGD01], Chi-Square Attack [WP99], and Primary Sets [DWM02]. For each algo-
rithm, it calculates the likelihood of an input image of being “malicious” with the acceptation of
being the target of some steganographic alteration. Returned values are then averaged and the
result is compared to an empiric threshold value. StegExpose implements two execution modes:
default and fast mode. The default mode executes all the four detectors in sequence, whereas the
fast mode perform a decision as soon as a detector returns an alarm. To guarantee the accuracy
of the detection, in this work we use StegExpose in default mode. To conduct tests, we used a
machine running Ubuntu 20.04 with an Intel Core i9-9900KF CPU @3.60GHz and 32 GB RAM.
In our trials, the threshold value used by StegExpose to flag an image as malicious was set to 0.2
since it provides the best tradeoff between false positive and true positive rates [Boe14].

The model devised in Section 10.2.2 has been implemented in PyTorch4. The experiments were
executed on an NVidia DGX Station equipped with 4 GPU V100 32GB. The model was learned
by optimizing the weights in batches of 32 images from the training set using the Adam optimizer
with a learning rate lr = 0.001. The validation set was exploited to select the model guaranteeing
the best reconstruction loss from the training phase. Finally,the the evaluation performed on the
test set images measures the capability of the model in cleaning the images from malicious codes
and simultaneously reconstructing the original image.

Figure 10.4 showcases an example outcome of the proposed approach when an animal with a
complex background is depicted. Specifically, Figure 10.4(a) reports the original image, whereas
Figure 10.4(b) shows the same image after Invoke-PSImage is used to embed a script. According
to our results, our tool makes the embedded PowerShell information unreadable at the price of
a limited variation of the visual quality of the media (see, Figure 10.4(c)). Yet, when alterations
happen, our approach allows to “improve” the overall quality, e.g., by mitigating artifacts caused

2https://github.com/lazywinadmin/PowerShell [Last Accessed, October 2022].
3https://github.com/b3dk7/StegExpose [Last Accessed, October 2022].
4The code is available on https://github.com/gmanco/stegomalware [Last Accessed, October

2022].
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(a) (b) (c)

(d) (e) (f)

Figure 10.4: Example of the sanitization process - an animal with a complex background: (a)
original image, (b) image containing a PowerShell script embedded via Invoke-PSImage, (c)
sanitized image. Magnifications of relevant details for images (a), (b) and (c) are provided in (d),
(e) and (f), respectively.

by the embedding process via Invoke-PSImage (see, Figures 10.4(d), 10.4(e), and 10.4(f)). In
this perspective, our approach should not be perceived only as a sanitization technique: in fact,
it also performs a sort of restoration enabling users to receive contents closer to their original
form. Another example, considering a landscape is reported in Figure 10.5. A key success to
deliver malware and evade detection is to use images that do not appear as anomalous. To this
aim, attacks like those launched by the Zeus/Zbot Trojan exploited an image depicting a sunset to
exchange data while remaining unnoticed [MC15]. Similarly to the previous case, magnifications
of major details (reported in Figures 10.5(d), 10.5(e), and 10.5(f)) demonstrate the ability of the
approach in mitigating alterations introduced by the Invoke-PSImage tool.

Table 10.1 reports summary statistics which quantify the effectiveness of the sanitization. In the
experiment, we compared the original (clean) images with both their compromised and sanitized
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(a) (b) (c)

(d) (e) (f)

Figure 10.5: Another example of the sanitization process - landscape: (a) original image, (b) im-
age containing a PowerShell script embedded via Invoke-PSImage, (c) sanitized image. Magnifi-
cations of relevant details for images (a), (b) and (c) are provided in (d), (e) and (f), respectively.

counterpart. The comparison was done by computing the mean absolute difference among pixels.
For the sanitization, we exploited models learned with either MSE and BCE loss. Within the
table, the second column represents the cumulative absolute difference on the whole test set,
while the third column represents the average number of pixel distortions that can be perceived.
We can see that the sanitization recovers on average more than 35% of the compromised pixels.
Notably, the MSE loss seems to work better, compared to the BCE loss. This behavior is counter-
intuitive with respect to the initial hypotheses and deserves further study. Better tuning strategies,
(e.g., based on weighting schemes), can possibly recover performance for the BCE and further
improve the reconstruction of the original image.

To further prove the effectiveness of our method, we tested images of the validation dataset
against the StegExpose tool. It turned out that, for all of them, the embedded information has
been disrupted and the entire dataset was flagged as clean. However, according to additional tri-
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Cumulative Difference Avg. Pixel Distortions

Malicious samples 3.235 448
MSE sanitization 2.016 279
BCE sanitization 2.36 327

Table 10.1: Comparison between original and compromised/sanitized images.

als on the 5, 000 images of the validation set containing the various PowerShell scripts, StegEx-
pose correctly classified them as “clean” or “malicious” with an error of 19.36%. Thus, even in
the presence of sanitized images, solely using a tool like StegExpose could bring to false posi-
tive/negative phenomena. As a consequence, a more reliable idea could be using some sort of
extracting mechanism as to check the presence of a working script. This is part of our future
work.

Finally, processing a batch of 32 images with our autoencoder-based methodology requires ∼25
ms on average, without the need of a dedicated architecture based on GPUs. Therefore, our
method can be considered effective for disrupting malicious payloads embedded in images also
when deployed in realistic, production-quality scenarios.

10.4 Conclusions and Future Works

In this chapter, we presented an approach leveraging autoencoders to sanitize digital pictures
containing PowerShell scripts injected via the Invoke-PSImage tool. Such a scenario captures a
new-wave of threats defined as stegomalware exploiting steganography and information hiding to
remain unnoticed and avoid detection. Results prove the effectiveness of our approach allowing
to disrupt the embedded information while improving the image quality as to match its original
form. Future works aim at refining the proposed idea. In particular, we want to understand
the “degree of disruption” of a script, i.e., to quantify if some instructions or functions survived
the sanitization process. We also aim at identifying the portion of the image containing the
malicious content. In this case, an important part of the future works will be devoted to quantify
the performance in terms of false negatives/positives as to understand the feasibility of deploying
the proposed approach in production-quality scenarios.

The next part of this Thesis draws the final conclusions of this work and provides additional
information.
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Part IV

Conclusions and Appendices
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Chapter 11

Conclusions and Future Works

The increasing diffusion of malware endowed with information hiding and steganographic tech-
niques demands for efficient algorithms to collect data and implement new mitigation strategies.
Therefore, this Thesis has addressed the detection of network covert channels and malware cloak-
ing malicious payloads within digital images.

In order to conduct the needed research, we first addressed the lack of suitable traffic traces
containing covert communications observed in real attack campaigns. To overcome this issue,
part of the Thesis focused on the creation of two ad-hoc tools, i.e., IPv6CC and pcapStego.
The first creates hidden communication paths within IPv6 traffic in a Man-in-the-Middle fash-
ion, while the second manipulates pre-collected traces to contain various storage and timing
covert channels. Then, IPv6CC and pcapStego have been used to assess the capabilities of
Snort, Suricata, and Zeek to detect several types of network covert channels. Specifically, tests
have been conducted with different traffic volumes and loads and by considering storage and
timing methods, as well as strategies embedding data in various protocol fields. Despite the
configuration, security tools turned out to be insensitive to this class of attacks. For the sake
of completeness, Snort, Suricata and Zeek have been also tested against covert channels within
TLS traffic by using the TLSCC suite. Also in this case, the selected security tools were not
able to spot the presence of hidden data. Thus, the assessment demonstrated the need of im-
proving the standard countermeasures or creating “tweaked” rules and configurations to properly
mitigate the impact of stegomalware. However, as showcased during this Thesis, the amount of
possibilities for cloaking data in terms of protocols, header fields and hiding strategies is almost
unbounded. Thus, a relevant part of future activities will be devoted to extend the functionalities
of pcapStego and IPv6CC to support a wider array of protocols, especially the MQTT used
in IoT settings or ubiquitous VoIP/DNS services. Moreover, another important aspect concerns
the ability of hiding data via advanced schemes, e.g., by encoding information in the modulation
of the throughput, in the artificial creation of retransmissions, or in increased error rates. The
main limit of the investigation presented in this Thesis concerns the lack of consideration of both
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commercial and academic tools. Thus, part of future research will try to conduct tests with solu-
tions such as the Security Event Manager by SolarWinds or the WoDiCoF platform. Moreover,
ad-hoc sets of rules that are starting to emerge for open source solutions (e.g., BroCCaDe for
Zeek) will be evaluated as well.

Unfortunately, malware can conceal information in almost every protocol or traffic feature, thus
extending tools or “stacking” rules should not be considered the preferred solution. For instance,
the zeek-stego patch required to write suitable hooks to inspect traffic with a per-packet granu-
larity and to collect information for the specific protocol field. To overcome this problem, we
proposed a code layering framework based on the eBPF technology, i.e., bccstego. In more
detail, bccstego takes advantage of kernel events to easily inspect network packets and then
to collect statistic indicators useful for revealing the presence of covert communications. How-
ever, this process requires to periodically transfer data from kernel- to user-space, thus leading
to possible bottlenecks. Hence, the solution presented in this Thesis exploited a bin-based data
structure, i.e., several values are grouped and associated to a specific bin. Even if this accounts
for a less precise “snapshot” of the observed traffic, the approach turned out to be effective. For
instance, for the case of covert channels targeting the Flow Label, the number of non-empty
bins can be used to estimate the amount of active IPv6 flows. By using a simple detection rule
(i.e., a comparison against the number of active flows), hidden communication attempts are re-
vealed in various scenarios with ∼90% of accuracy. The use of in-kernel methodologies turned
out to be efficient and lightweight, especially when compared to technologies such as Zeek and
libpcap. In fact, the needed processing influences the network traffic in a minimal manner, i.e.,
the average latency is ∼105 ns on a per-packet basis. Similarly, the CPU and memory foot-
prints are limited, thus proving the scalability of bccstego to spot covert channels starting
from network inspection. Results collected during the Thesis also suggest that some perfor-
mance improvements could be achieved by rewriting the user-space part in C instead of Python.
Unfortunately, this would not prevent the major degradation due to memory copy operations. In
this perspective, an idea that will be considered in future developments regards the use of more
performing and optimized data structures. A possible idea to explore concerns the use of Bloom
filters, which can reduce the time needed to lookup and “fill” the proper bin (e.g., by means of
hash functions) as well as the overall size of data to be moved from kernel- to user-space.

In general, our research demonstrated that eBPF can be considered a good technological solution
to gain visibility over network and software and to collect information useful to spot the pres-
ence of different types of stegomalware. In fact, during the Thesis, eBPF has been also used to
implement the well-known algorithm from Cabuk to detect timing channels. This is a promising
research path to pursue, since being able to perform the detection directly within the kernel pre-
vents kernel- to user-space data movements. Similarly, eBPF also showcased its ability to deal
with local covert channels through a unique technological solution. In this case, the functionali-
ties of eBPF have been also used to trace a kernel function, i.e., the x64 sys chmod, to reveal
data transfers between two processes implementing a colluding applications attack scheme based
on the chmod-stego technique.
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Summing up, results contained in this Thesis suggest to further pursue the use of kernel tracing
techniques to counteract stegomalware or disrupt covert channels by means of suitable sanitiza-
tion techniques. However, the main limitation of the approach is that it heavily relies upon the
specific threat/hiding mechanism, which is seldom known a-priori. To face this issue, a main
research topic for the next years should be the investigation of more general indicators that are
not strictly coupled with the carriers used by the steganographic threat. In this vein, possible
metrics should consider signatures in the CPU usage, in the volume of operations within the
file system, as well as the use of protocol-agnostic features. Luckily, eBPF can still be used to
develop multiple kernel filters for the creation of threat-independent data collectors.

When specific or general indicators/signatures are not available, mitigating the impact of stegano-
graphic threats by using some form of AI should be considered a valid alternative. During the
Thesis, this approach has been applied to two different class of threats. First, unsupervised AI
methods have been investigated with the aim of spotting covert channels targeting IoT nodes.
Despite the ensemble of autoencoders achieved a probability of detection equal to ∼91% and
a precision equal to ∼95%, further refinements should be taken into consideration. As an ex-
ample, the detection has been performed by considering a static threshold, which could fail to
reveal hidden communications when in the presence of “changing” network conditions, e.g., due
to the churning of devices or IoT nodes. To mitigate such a problem, a simple workaround could
exploit dynamic thresholds computed on different time windows of reduced lengths. However,
to really advance in the use of AI for the detection of covert communications, future research
should solve the issue of too many false alarms raised by unsupervised approaches. A promising
path is to adopt hybrid approaches able to combine the benefits of supervised and unsupervised
techniques.

Concerning the detection of malware hidden within digital images, this Thesis proposed the use
of a DNN for mitigating various threats modeled via realistic synthetic datasets. The first refer-
ence scenario considered the detection of MageCart-like threats hiding malicious payloads (i.e.,
URLs and PHP scripts) within favicons of 32 × 32 pixels via a plain LSB steganographic tech-
nique. The proposed approach was able to spot all the modified favicons with an accuracy equal
to ∼100% and was also able to classify the payload type. An important outcome of this part of
research dealt with the ability of the DNN to face also “unknown” payloads or the presence of an
attacker performing some form of “lateral movements” or elusive maneuvers. In fact, the DNN
approach was able to also detect and classify payloads obfuscated via Base64 encoding, even
with an accuracy reduced to ∼91%. The second reference scenario considered a generic stego-
malware hiding information in larger images. In more detail, the Thesis has addressed the case
of attackers trying to take advantage of the massive diffusion of mobile applications, which are
often distributed in a cross-device manner. Thus, high-resolution icons of 512×512 pixels hiding
a wide selection of payloads, e.g., JavaScript, HTML, PowerShell, and Ethereum addresses, have
been considered. Despite some misclassification issues due to similarities in the prose of some
scripting languages (e.g., PowerShell code is often recognized as JavaScript), obtained results
demonstrated that the approach should be considered valid to spot the presence of hidden pay-
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loads. Additionally, the DNN was able to identify malicious contents even in the presence of an
attacker using basic obfuscation techniques or alternative encoding schemes, such as Base64 or
zip compression methods. Yet, to effectively deploy such mechanisms in production-quality sce-
narios, further research needs to be done. For instance, there is the need of understanding whether
DNNs can be also used to detect and classify more sophisticated steganographic methods, such
as the Invoke-PSImage technique observed in Ursnif as well as DCT or PVD algorithms. More-
over, the “robustness” of approaches leveraging AI needs to be fully understood. In fact, it is still
unclear the performance when dealing with adversarial machine learning schemes trying to com-
pute “best” hiding strategies. Similarly, the impact of adversaries providing malicious samples
labeled as legitimate (i.e., data poisoning) should properly investigated. Finally, when the detec-
tion or the classification are not possible (e.g., due to privacy issues or scalability constraints),
this Thesis has also proposed the use of autoencoders to sanitize malicious contents concealed in
digital pictures. Yet, the approach is still not mature enough: for example, the amount of hidden
information that survived the sanitization process has not been quantified. In fact, even if an in-
complete script is almost useless, its residues could still contain data useful for the attacker (e.g.,
a URL for downloading an additional payload). Finally, to really deploy AI-based frameworks
in real settings for counteracting the multifaceted range of offensive mechanisms characterizing
modern steganographic malware, research should advance in terms of privacy and performance.
As regards privacy, GDPR-like regulations would make almost impossible to collect traffic or
to deeply inspect network conversations for collecting data. Similarly, it is quite difficult that
users will give permissions to inspect their images or upload them to third-party providers. To
this aim, a promising idea is to explore some form of federated approach, i.e., AI models are
locally trained at the border of the network or in devices of end users and only parameters are re-
motely uploaded. A second aspect concerns the performance, i.e., the ability of deploying AI in
real conditions. Even if this Thesis has not fully investigated the computational requirements of
the used AI frameworks, observed estimates hint at the possibility of deploying some detection
mechanisms (e.g., those revealing covert channels in IoT ecosystems) at the border of the net-
work, by using the edge paradigm. Similarly, sanitization of images containing hidden payloads
can be done with commodity hardware in a centralized manner for small/medium settings.

As a concluding remark, one of the most important outcome of the Thesis is represented by
the various datasets released during the PhD. In fact, the main challenge to be addressed for
investigating modern steganographic threats concerns the lack of comprehensive collections of
samples or execution traces (as it happens for the mobile case). In this perspective, tools aimed
at producing suitable traffic collections and datasets of images containing real payloads should
be considered a starting point for developing countermeasures against steganographic malware.
Therefore, a relevant part of our future work will be devoted to improve the various publicly-
available datasets for making the research possible.
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Appendix A

Software and Datasets

A.1 Software

The software developed during this Thisis is licensed under MIT, GNU GPL, and Creative Com-
mons and it is available in the repository:

https://github.com/Ocram95/Software-Thesis.

Part of the software has been funded by the project SIMARGL (Grant Agreement No. 833042).

[S1] IPv6CC: it allows to create storage network covert channels within IPv6 traffic in a Man-
in-the-Middle flavor for pentesting purposes. This software is discussed in Chapter 2 and
used in Chapters 3 and 4.

[S2] pcapStego: it allows to create storage and timing network covert channels within IPv4,
IPv6, ICMP, and ICMPv6 traffic, starting from pre-collected traffic traces. This software
is discussed in Chapter 2 and used in Chapters 2, 5, and 6.

[S3] bccstego: it allows to collect network data in a bin-based data structure via the eBPF
technology. This software is discussed in Chapter 3 and used from Chapter 4 to Chapter 7.

[S4] eBPF Framework Simulator: it allows to create datasets to reveal network covert
channels. This software is used in Chapters 4 and 5.

[S5] Cabuk eBPF: it implements an algorithm to detect timing covert channels via eBPF tech-
nology. This software is used in Chapters 5 and 6.

[S6] libpcap Filter: it allows to collect network data via the libpcap library in a bin-
based data structure to enable the detection of network covert channels. This software is
used in Chapters 5 and 6.
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[S7] zeek-stego: it is an extension for Zeek to collect per-packet network information in a
bin-based data structure to enable the detection of network covert channels. This software
is used in Chapters 5 and 6.

Additional software developed to test some ideas presented in this Thesis within the framework
of the project SIMARGL (Grant Agreement No. 833042):

[S8] BCCSIMARGLToolkit: it allows to analyze and process data collected by the eBPF
technology and enables the detection of network covert channels.

[S9] Mavis: it allows to reveal images containing PowerShell scripts embedded via the Invoke-
PSImage technique.

A.2 Datasets

[D1] Stego-Favicons-Dataset: it is composed of 430, 000 favicons (size: 32 × 32 pixels) con-
taining malicious PHP and URLs payloads and embedded with LSB steganography. Pro-
duced in collaboration with the Institute for High Performance Computing and Network-
ing (ICAR) of the National Research Council of Italy (CNR). This dataset is discussed and
used in Chapter 8.

Available online at:

https://github.com/Ocram95/Stego-Favicons-Dataset

[D2] Stego-Images-Dataset: it is composed of 44, 000 images (size: 512×512 pixels) containing
malicious JavaScript, HTML, PowerShell, URLs and Ethereum addresses and embedded
with LSB steganography. Produced in collaboration with ICAR-CNR. This dataset is dis-
cussed and used in Chapter 9.

Available online at:

https://www.kaggle.com/datasets/marcozuppelli/stegoimagesd
ataset
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Appendix B

Publications Used in This Thesis

[P1] N. Cassavia, L. Caviglione, M. Guarascio, A. Liguori, M. Zuppelli, “Ensembling Sparse
Autoencoders for Network Covert Channel Detection in IoT Ecosystems”, in Proceedings
of the 26th International Symposium on Intelligent Systems (ISMIS), Foundations of In-
telligent Systems, in M. Ceci, S. Flesca, E. Masciari, G. Manco, Z.W. Raś (Eds.), Lecture
Notes in Computer Science, Vol. 13515, pp. 209-218, Cosenza, Italy, October 2022.

Abstract. Network covert channels are becoming exploited by a wide-range of threats to
avoid detection. Such offensive schemes are expected to be also used against IoT deploy-
ments, for instance to exfiltrate data or to covertly orchestrate botnets composed of simple
devices. Therefore, we illustrate a solution based on Deep Learning for the detection of
covert channels targeting the TTL field of IPv4 datagrams. To this aim, we take advantage
of an Autoencoder ensemble to reveal anomalous traffic behaviors. An experimentation on
realistic traffic traces demonstrates the effectiveness of our approach.

[P2] N. Cassavia, L. Caviglione, M. Guarascio, G. Manco, M. Zuppelli, “Detection of Stegano-
graphic Threats Targeting Digital Images in Heterogeneous Ecosystems Through Machine
Learning”, Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable
Applications, Vol. 13, No. 3, pp. 50-67, September 2022.

Abstract. Steganography is increasingly exploited by malware to avoid detection and to
implement different advanced offensive schemes. An attack paradigm expected to become
widely used in the near future concerns cloaking data in innocent-looking pictures, which
are normally used by several devices and applications, for instance to enhance the user
experience. Therefore, with the increasing popularity of application stores, availability of
cross-platform services, and the adoption of various devices for entertainment and business
duties, the chances for hiding payloads in digital pictures multiply in an almost unbounded
manner. To face such a new challenge, this paper presents an ecosystem exploiting a
classifier based on Deep Neural Networks to reveal the presence of images embedding
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malicious assets. Collected results indicated the effectiveness of the approach to detect
malicious contents, even in the presence of an attacker trying to elude our framework
via basic obfuscation techniques (i.e., zip compression) or the use of alternative encoding
schemes (i.e., Base64). Specifically, the achieved accuracy is always ∼100% with minor
decays in terms of precision and recall caused by the presence of additional information
caused by compression.

[P3] M. Guarascio, M. Zuppelli, N. Cassavia, L. Caviglione, G. Manco, “Revealing MageCart-
like Threats in Favicons via Artificial Intelligence”, in Proceedings of the 6th International
Workshop on Criminal Use of Information Hiding (CUING), in conjunction of the 17th In-
ternational Conference on Availability, Reliability and Security (ARES), Vienna, Austria,
August 2022.

Abstract. Modern malware increasingly takes advantage of information hiding to avoid
detection, spread infections, and obfuscate code. A major offensive strategy exploits
steganography to conceal scripts or URLs, which can be used to steal credentials or re-
trieve additional payloads. A recent example is the attack campaign against the Magento
e-commerce platform, where a web skimmer has been cloaked in favicons to steal pay-
ment information of users. In this paper, we propose an approach based on deep learning
for detecting threats using least significant bit steganography to conceal malicious PHP
scripts and URLs in favicons. Experimental results, conducted on a realistic dataset with
both legitimate and compromised images, demonstrated the effectiveness of our solution.
Specifically, our model detects ∼100% of the compromised favicons when examples of
various malicious payloads are provided in the learning phase. Instead, it achieves an
overall accuracy of ∼90% when in the presence of new payloads or alternative encoding
schemes.

[P4] M. Guarascio, M. Zuppelli, N. Cassavia, G. Manco, L. Caviglione, “Detection of Network
Covert Channels in IoT Ecosystems Using Machine Learning”, in Proceedings of The
Italian Conference on CyberSecurity (ITASEC), in C. Demetrescu, A. Mei (Eds.), CEUR
Workshop Proceedings, Vol. 3260, pp. 102-113, Rome, Italy, June 2022.

Abstract. Steganographic techniques and especially covert channels are becoming prime
mechanisms exploited by a wide-range of malware to avoid detection and to bypass net-
work security tools. With the ubiquitous diffusion of IoT nodes, such offensive schemes
are expected to be used to exfiltrate data or to covertly orchestrate botnets composed of
resource-constrained nodes (e.g., as it happens in Mirai). Therefore, in this paper, we
present a machine learning technique for the detection of network covert channels target-
ing the TTL field of IPv4 datagrams. Specifically, we propose to use Autoencoders to
reveal anomalous traffic behaviors. The experimental evaluation performed over realistic
traffic traces showcases the effectiveness of our approach.

[P5] M. Zuppelli, M. Repetto, A. Schaffhauser, W. Mazurczyk, L. Caviglione, “Code Layering
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for the Detection of Network Covert Channels in Agentless Systems”, IEEE Transactions
on Network and Service Management, pp. 1-13, May 2022.

Abstract. The growing interest in agentless and serverless environments for the implemen-
tation of virtual/container network functions makes monitoring and inspection of network
services challenging tasks. A major requirement concerns the agility of deploying security
agents at runtime, especially to effectively address emerging and advanced attack pat-
terns. This work investigates a framework leveraging the extended Berkeley Packet Filter
to create ad-hoc security layers in virtualized architectures without the need of embedding
additional agents. To prove the effectiveness of the approach, we focus on the detection
of network covert channels, i.e., hidden/parasitic network conversations difficult to spot
with legacy mechanisms. Experimental results demonstrate that different types of covert
channels can be revealed with a good accuracy while using limited resources compared to
existing cybersecurity tools (i.e., Zeek and libpcap).

[P6] C. Heinz, M. Zuppelli, L. Caviglione, “Covert Channels in Transport Layer Security: Per-
formance and Security Assessment”, Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications, Vol. 12, No. 4, pp. 22-36, December 2021.

Abstract. The ability of creating covert channels within network traffic is now largely
exploited by malware to elude detection, remain unnoticed while exfiltrating data or coor-
dinating an attack. As a consequence, designing a network covert channel or anticipating
its exploitation are prime goals to fully understand the security of modern network and
computing environments. Due to its ubiquitous availability and large diffusion, Transport
Layer Security (TLS) traffic may quickly become the target of malware or attackers want-
ing to establish a hidden communication path through the Internet. Therefore, this paper
investigates mechanisms that can be used to create covert channels within TLS conversa-
tions. Experimental results also demonstrated the inability of de-facto standard network
security tools to spot TLS-based covert channels out of the box.

[P7] M. Zuppelli, A. Carrega, M. Repetto, “An Effective and Efficient Approach to Improve
Visibility Over Network Communications”, Journal of Wireless Mobile Networks, Ubiq-
uitous Computing, and Dependable Applications, Vol. 12, No. 4, pp. 89-108, December
2021.

Abstract. Modern applications and services increasingly leverage network infrastructures,
cyber-physical systems and distributed computing paradigms to offer unprecedented perva-
sive and immersive experience to users. Unfortunately, the massive usage of virtualization
models, the mix of public and private infrastructures, and the large adoption of service-
oriented architectures make the deployment and operation of traditional cyber-security ap-
pliances difficult. Although cyber-security architectures are already migrating towards
distributed models and smarter detectors to account for ever-evolving forms of malware
and attacks, they still miss effective and efficient mechanisms to programmatically inspect
these new environments. In this paper, we investigate the use of the extended Berkeley
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Packet Filter for inspecting network communications. We show how this framework can
be employed to selectively gather various information describing a network conversation
(e.g., packet headers), in order to spot emerging threats like malicious software taking
advantage of hidden communications. Results indicate that our approach can be used to
inspect network traffic in a more efficient way compared to other traditional mechanisms.

[P8] M. Zuppelli, G. Manco, L. Caviglione, M. Guarascio, “Sanitization of Images Containing
Stegomalware via Machine Learning Approaches”, in Proceedings of The Italian Con-
ference on CyberSecurity (ITASEC), CEUR Workshop Proceedings, in A. Armando, M.
Colajanni (Eds.), Vol. 2940, pp. 374-386, online, April 2021.

Abstract. In recent years, steganographic techniques have become increasingly exploited
by malware to avoid detection and remain unnoticed for long periods. Among the vari-
ous approaches observed in real attacks, a popular one exploits embedding malicious in-
formation within innocent-looking pictures. In this paper, we present a machine learning
technique for sanitizing images containing malicious data injected via the Invoke-PSImage
method. Specifically, we propose to use a deep neural network realized through a residual
convolutional autoencoder to disrupt the malicious information hidden within an image
without altering its visual quality. The experimental evaluation proves the effectiveness of
our approach on a dataset of images injected with PowerShell scripts. Our tool removes
the injected artifacts and inhibits the reconstruction of the scripts, partially recovering the
initial image quality.

[P9] L. Caviglione, W. Mazurczyk, M. Repetto, A. Schaffhauser, M. Zuppelli, “Kernel-level
Tracing for Detecting Stegomalware and Covert Channels”, Special Issue on Novel Cyber-
Security Paradigms for Software-defined and Virtualized Systems, Computer Networks,
Vol. 191, pp. 1-12, May 2020.

Abstract. Modern malware is becoming hard to spot since attackers are increasingly
adopting new techniques to elude signature- and rule-based detection mechanisms. Among
the others, steganography and information hiding can be used to bypass security frame-
works searching for suspicious communications between processes or exfiltration attempts
through covert channels. Since the array of potential carriers is very large (e.g., information
can be hidden in hardware resources, various multimedia files or network flows), detecting
this class of threats is a scarcely generalizable process and gathering multiple behavioral
information is time-consuming, lacks scalability, and could lead to performance degra-
dation. In this paper, we leverage the extended Berkeley Packet Filter (eBPF), which is a
recent code augmentation feature provided by the Linux kernel, for programmatically trac-
ing and monitoring the behavior of software processes in a very efficient way. To prove the
flexibility of the approach, we investigate two realistic use cases implementing different
attack mechanisms, i.e., two processes colluding via the alteration of the file system and
hidden network communication attempts nested within IPv6 traffic flows. Our results show
that even simple eBPF programs can provide useful data for the detection of anomalies,
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with a minimal overhead. Furthermore, the flexibility to develop and run such programs
allows to extract relevant features that could be used for the creation of datasets for feeding
security frameworks exploiting AI.

191



Appendix C

Publications Made During the PhD

C.1 International Journals

[IJ1] N. Cassavia, L. Caviglione, M. Guarascio, G. Manco, M. Zuppelli, “Detection of Stegano-
graphic Threats Targeting Digital Images in Heterogeneous Ecosystems Through Machine
Learning”, Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable
Applications, Vol. 13, No. 3, pp. 50-67, September 2022 (doi:10.22667/JOWUA.2022.09
.30.050).

[IJ2] A. Schaffhauser, W. Mazurczyk, L. Caviglione, M. Zuppelli, J. Hernandez-Castro, “Ef-
ficient Detection and Recovery of Malicious PowerShell Scripts Embedded into Digi-
tal Images”, Security and Communication Networks, Vol. 2022, pp. 1-12, June 2022
(doi:10.1155/2022/4477317).

[IJ3] M. Zuppelli, M. Repetto, A. Schaffhauser, W. Mazurczyk, L. Caviglione, “Code Layering
for the Detection of Network Covert Channels in Agentless Systems”, IEEE Transactions
on Network and Service Management, pp. 1-13, May 2022 (doi:10.1109/TNSM.2022.31
76752).

[IJ4] L. Caviglione, A. Schaffhauser, M. Zuppelli, M. Mazurczyk, “IPv6CC: IPv6 Covert Chan-
nels for Testing Networks Against Stegomalware and Data Exfiltration”, SoftwareX, Vol.
17, pp. 1-7, January 2022 (doi:10.1016/j.softx.2022.100975).

[IJ5] C. Heinz, M. Zuppelli, L. Caviglione, “Covert Channels in Transport Layer Security: Per-
formance and Security Assessment”, Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications, Vol. 12, No. 4, pp. 22-36, December 2021
(doi:10.22667/JOWUA.2021.12.31.022).

192



[IJ6] M. Zuppelli, A. Carrega, M. Repetto, “An Effective and Efficient Approach to Improve
Visibility Over Network Communications”, Journal of Wireless Mobile Networks, Ubiq-
uitous Computing, and Dependable Applications, Vol. 12, No. 4, pp. 89-108, December
2021 (doi:10.22667/JOWUA.2021.12.31.089).

[IJ7] L. Caviglione, W. Mazurczyk, M. Repetto, A. Schaffhauser, M. Zuppelli, “Kernel-level
Tracing for Detecting Stegomalware and Covert Channels”, Special Issue on Novel Cyber-
Security Paradigms for Software-defined and Virtualized Systems, Computer Networks,
Vol. 191, pp. 1-12, May 2020 (doi:10.1016/j.comnet.2021.108010).

C.2 International Conferences

[IC1] N. Cassavia, L. Caviglione, M. Guarascio, A. Liguori, M. Zuppelli, “Ensembling Sparse
Autoencoders for Network Covert Channel Detection in IoT Ecosystems”, in Proceed-
ings of the 26th International Symposium on Intelligent Systems (ISMIS), Foundations of
Intelligent Systems, in M. Ceci, S. Flesca, E. Masciari, G. Manco, Z.W. Raś (Eds.), Lec-
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