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Abstract

Precision medicine (PM) is a branch of medicine that defines a disease at a higher
resolution using genetic and other technologies to enable more specific targeting of its
subgroups. Because of its uses in clinical treatment and diagnostics, this field exemplifies
the modern era of medicine. PM looks for not just the right drug, but also the right dosage
and treatment regimen. PM encounters a variety of challenges, which will be explored in
this dissertation.

Large-scale sensitivity screens and whole-exome sequencing experiments (WES) have
fostered a new wave of targeted treatments based on finding associations between drug
sensitivity and response biomarkers. These experiments with the aid of state-of-the-art
artificial intelligence (Al) algorithms are opening new therapeutic opportunities for diseases
with unmet clinical needs. It has been proved that Al is capable of predicting novel
personalized treatments based on complex genotypic and phenotypic patterns in tumors.
The scientific community should make an effort to make these algorithms to be interpretable
to humans so that the results could be easily approved by the medical regulators. The
purpose of this thesis is to apply Al algorithms for precision oncology that are highly
accurate, while guaranteeing that the predictions are interpretable by humans.

This work is divided in three main sections. The first section comprises a new methodology
to increase the predictive power of the discovery of novel treatments in large-scale
screenings by exploiting that some biomarkers tend to appear in many treatments. This fact
is called hub effect in gene essentiality (HUGE). Content of this section was published in
[1]. The second section contains a novel interpretable Al method -called multi-dimensional
module optimization (MOM)- that associates drug screening with genetic events and
proposes a treatment guideline. Content of this section was published in [2]. Finally, the
third section includes a detailed comparison of different recently published algorithms that
attempt to overcome the barriers proposed by today's precision medicine. This study also
includes two novel algorithms specifically designed to solve the challenges of applicability

to clinical practice: Optimal Decision Tree (ODT) and Multinomial Lasso.

The characterization of Interpretable Artificial Intelligence as approach with strong potential

for use in clinical practice is one of the study's most significant achievements. We present
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uniqgue methods for PM that are highly interpretable, and we summarize the needs that
could be considered for constructing interpretable Al. We are confident that this method will

transform the way PM is addressed, bridging the gap between Al and clinical practice.
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Chapter 1. Introduction to Precision Medicine Challenges

and Acute Myeloid Leukemia

Precision medicine (PM) is the science that “defines a disease at a higher resolution by
genomic and other technologies to enable more precise targeting of its subgroups” [3]. Itis
an emerging field that epitomes the new era of medicine owing to its applications in clinical
treatment and diagnosis [4].

PM tries to find not only the right drug but also the right dosage and the proper treatment
schedule. These goals are usually summed up as “targeting the right treatments to the right
patients at the right time” [5]. PM faces different challenges that will be described in this

introduction.

The challenge of getting the patients’ response to drugs.

PM requires the different patients’ characteristics to make their predictions [6] such as
genomic and transcriptomic data, health records, lifestyle characteristics, etc. (Figure 1).
With an adequate data policy, they are reasonably easy to obtain; genomic data can be
acquired from sequencing techniques, wearable technologies can collect data that provide
lifestyle information, EHRs are invaluable sources of information on health status and
previous conditions, etc. Its integrative analysis requires complex models and a solid

understanding of the interaction of biological systems [7].

However, PM also requires drug sensitivity information which is much more difficult to find,
having most likely incomplete information on all patients’ response to all available drugs,
i.e. each patient is given one or, at most, a few drugs, not all the possible ones[8] (Figure
1). Even in these cases, distinguishing between responders and non-responders is not an
easy task and requires tailoring methods specific to each disease. In turn, these different
criteria for different diseases make it difficult to compare diseases or drugs [9].

Large-scale sensitivity screenings such as PDX (patient-derived xenografts), loss-of-
function screens or ex-vivo experiments can be used as proxies to estimate the patients’
response to several drugs [10]. Ex-vivo experiments in hematological cancers are of great
importance since they are performed directly on the patient’s living tumor cells[11,12].

All these three approaches have strong limitations. In the case of PDX, the animal models’

immune system is usually compromised and, in the case of loss-of-function screens there
23



Introduction

is not an interaction of a specific drug but the effect of its target, and, in the case of ex vivo
experiments —used mainly in hematologic oncology—, the interaction of the cells and the
immune system is not properly modeled. Despite these difficulties, they are reasonable
sources of information to predict the response of the patients to different treatments [13].

Information Responses

Drug-centered:
Optimum “patient”

= for a drug

° ||

m :—\[ Patient-centered: ]
_ Optimum drug for a

patient

G i Lifestyle EHRs’ 4
enomics ifestyle S & Drugs

Figure 1. Precision Medicine paradigm. The left-side panel represents patients’ data the and right-
side panel shows the data available for patients’ responses to treatment.

The multiple Hypothesis Problem for biomarker’s finding when using large-

scale sensitivity screening

The advance of personalized medicine, and in particular precision oncology, is partially
based on the development of drug sensitivity studies. These experiments are promoting
the discovery of new drugs, biomarkers of sensitivity, and drug repositioning. With
increasing frequency, these studies have widened their scope from single drug studies to
experiments involving hundreds of drugs —or even combination of drugs— and targets, also

known as sensitivity screenings.

In recent years, sensitivity screenings are being carried out on hundreds of cell lines giving
rise to large-scale sensitivity screening datasets,— e.g., GDSC, which includes 130
screened drugs in an average of 368 lines per drug [14]-, and large-scale loss-of function
sensitivity screens —e.g. the Achilles Project [15,16], or The Project Score [17]. Combining
these sensitivity studies with tumor genotypes makes it possible to associate the response
to treatment with genetic alterations (biomarkers), thus promoting the search for new
personalized therapies[18].

However, the multiple testing problem, related to the large number of gene knockouts or
drug tested, and the number of possible biomarkers, limits the statistical power of these

studies and, therefore, their potential to find new therapies.
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Precision Medicine falls beyond traditional machine learning (ML) problems.

PM can be considered an assignation problem: each patient must be provided a drug (or a
set of drugs) given the patient’s information. This assignation problem does not perfectly fit
in any of the “traditional” fields of machine learning. It is not a unsupervised problem,
although, with a proper selection of variables, patients with identical “optimal” drugs should
cluster together [19,20].

Regarding supervised machine learning, itis not either a standard regression problem since
the aim is not to predict the effectiveness of a drug on each patient but to find the most
effective ones [21]. Nevertheless, both problems are related and, if the effectiveness of
each drug were exactly modeled, the “perfect” drug for a patient would be simply the most
effective one predicted by the model. PM assignation could also be treated as a
classification problem dividing the drugs for each patient into two classes: the most effective
one belongs to one class and the others belong to another class. Again, it solves the
problem if the predictions were perfect. However, since this simplistic model only considers
misclassifications (the second-best drug is as bad as the worst), it does not work well in

practice.

Finally, it can also be considered a reinforced learning problem [22]. For example, [23]
includes a review of reinforcement learning applications to oncology. The objective of this
field of machine learning is to learn an optimal, or nearly optimal, policy that maximizes the
“reward function” —in this case, the patient’s response to treatment. Reinforced learning is
traditionally applied to teach the computer how to play games (chess, Go, or video games)
[20]. In this case, different methods state how use a reinforced learning algorithm to “find a

policy that maximizes the patient response to treatment”.
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MACHINE LEARNING

Unsupervised Learning Supervised Learning Reinforcement Learning
égg lh;hcn: Reward Function |state

.‘

v
The class for each Reward Function

patient is the most p
effective drug o
maxz drug sensitivity;

=1

Find a policy that
maximizes the patient's
Optimal drugs should response to treatment

cluster together

Assignation Problem

Figure 2: Relationship between Machine Learning and the Assignation Problem. The assignation
problem is not a specific machine learning problem but could be addressed from all the machine
learning branches.

As a result, precision medicine —assigning the proper drug to each patient— given the
patients’ data is a problem that shares characteristics of different machine learning fields

(Figure 2) and can be tackled in many ways.

Different approaches for solving the assignation problem.

There are two main approaches to solve the goal of “targeting the right treatments to the
right patients” (Figure 1). The first one is to state which is the proper drug for a specific
patient. We will name this approach “patient-centered”. The other approach consists of
finding the patient or patients that are responders for a specific drug, named “drug-
centered” in this review. This problem —closely related to finding biomarkers of response—

is interesting for the pharma industry.

If the output of the algorithm is a continuous value, it is possible to adapt a drug-based
method to solve the patient-based problem and vice-versa. For example, many drug-
centered methods return a sensitivity score for each patient when applied to a specific drug.
If this score is computed for all the drugs, it can be used to select the drug that maximizes

sensitivity for each patient.
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The challenge of interpretability.

One common problem in ML is the (lack of) interpretability. Exploring the potential of large-
scale sensitivity screenings, artificial intelligence (Al) algorithms for personalized medicine
focus on the analysis of such datasets to bridge the gap for drug discovery. Some studies
use machine learning algorithms for monotherapy prediction [24,25], other approaches are
based on training deep learning (DL) models from patients’ omics data [26,27]. These
methods create black-box predictors that make agnostic inferences of treatment for a
patient based on complex non-linear relationships. The output is, for these cases, an
individual therapy for a patient, instead of a general treatment guideline [28]. This approach
has the inherent disadvantages of methods based on neural networks: they require a huge
amount of data, and are unable to show the criteria that trigger the decision —since neural
networks tend to be black-box models—. In many cases the blackbox algorithm gives no
clues on why a specific decision is taken [29,30,39-41,31-38]. It is difficult, if not reckless,
for a physician to use a treatment guideline with no information on the ultimate reasons that
drove this recommendation. These technical challenges are limiting the translation of drug

screening experiments to clinical practice.

Explainable Al tries to give a solution to “black-box” algorithms, by analyzing the weights
and variables of the different models. There are several differences between Explainable
Al and Interpretable Al. The article by Rubin, C., details how these two conceptions differ
from one another [42]. The first is the method by which an explanation of the process
followed by a "black-box" model is suggested, although frequently these justifications are
not totally true or are not enough to apply critical judgment on the algorithm's thinking. The
second, though, is the feature that enables the expert using the algorithm to offer his or her
personal assessment of the outcomes it produces. It is important to start designing an
interpretable ML model with subject-matter specialists, paying particular attention to the

logic's clarity [42].

Interpretability focuses on making Al understandable to humans by the usage of “white-
box” algorithms [43,44]. Interpretable Al is an active field of research: it justifies the
response and ensures that, given the a priori knowledge, the recommendation is sensible.
It also helps to improve the results since, as they are understandable by physicians, they
can provide expert feedback to fine tune the algorithms [45-48]. The importance of using
interpretable models in the finding of new personalized treatments is twofold: therapeutic
pipelines can be more easily adopted in normal clinical guides (e.g., using a decision tree
that does not require a complex model with a high number of variables) [44] and drug
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regulators, such as the Food and Drug Administration (FDA), or European Medicines
Agency (EMA) will have an easier journey to approve a drug if the companion biomarkers
are reasonable and robust [49,50]. Some methods have tried to explain their reasoning to
become more explainable but not of them could be defined as interpretable [43,46,51-56)].
Consequently, interpretable ML opens the door to bridge the gap between clinical practice
and bioinformatics [43,57].

Acute Myeloid Leukemia

We selected Acute Myeloid Leukemia (AML) as a disease model, a highly heterogeneous
type of cancer that affects bone marrow cell precursors. In AML, genomic profiling is
essential to understand its biology, diagnosis, and treatment [58—60]. Unfortunately, 70%
of adult people diagnosed with this disease die within five years of diagnosis [61]. The
current ELN (European Leukemia Network) risk stratification is based on the genetic
biomarkers of the disease [62].

Current patient stratification guides divide AML patients into three subgroups according to
their prognosis, namely favorable-, intermediate- and adverse-risk. Each subgroup is
defined by a combination of genetic biomarkers that can be either chromosomal
rearrangements, genetic mutations, or allele deletions. Thus, the favorable risk subgroup —
a 5-year overall survival (OS) of 45% to 80%- includes 45% of AML patients and is
diagnosed mainly through the biomarkers NPM1MU, chromosome 16 inversion (inv(16)),
and CEBPAM, The intermediate-risk subgroup -5 years OS of 30%— comprises 25% of
AML cases and is associated with the internal tandem duplications in the FLT3 gene (FLT3-
ITD), and NPM1WT, Finally, the adverse risk subgroup -5 years OS of 10%-— represents
30% of AML cases and has scattered deletions and complex karyotypes as biomarkers
[59].

Although there are big prognosis differences across these genetic groups, the current
approach for young and fit patients is a standard induction cytotoxic therapy ("3+7") [59,62]
with different dosages and aggressiveness depending on the severity and with the addition
of targeted therapies, mainly FLT3 inhibitors, to a specific group of AML patients [59].
Recently, FLT3 inhibitors have been incorporated as a treatment directed to FLT3-ITD
patients, but effective treatments for patients who do not have this alteration remain an

unmet clinical challenge [63].
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Despite eight new drugs have been approved for AML in the last years, its lethality is still
very high. In addition, there are no targeted treatments directed to FLT3"T patients —70%
of all AML cases[63]. An interpretable machine learning approach that identifies the most
adequate FLT3 inhibitor as well as the treatment for other AML genotypes, would allow the
discovery of new indications for other drugs for the AML. As a result, a new classification
guide based on the response to therapy for specific genetic alterations would be beneficial

in clinical practice.

In the following sections we will discuss how to address these challenges. Section 1
includes the definition and performance of a method to solve the multiple hypothesis
problem. Section 2 comprises a new Machine Learning method designed to be
interpretable and it solves the assignation problem. Finally, Section 3 includes a
quantitative comparison that defined Interpretability of a model and compares six methods
suited for PM.
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Hypothesis and Objectives

In the context of precision medicine, we propose the development of a model that, using
artificial intelligence, solves the assignment problem with an accuracy comparable to other
state-of-the-art methods, but also prioritizes its ease clinical implementation. We use Acute
Myeloid Leukemia as a test model due to its clinical urgency and genomic heterogeneity.

The following objectives are defined in order to carry out this proposal:

1. Accuray: To improve accuracy, data from large-scale screenings will be used. As
a result, the first goal is to increase the predictive power of these experiments,
resulting in a larger number of reliable and significant hypotheses when analyzing
these screenings.

2. Interpretability: After resolving the multiple hypothesis correction problem, we
proposed the definition of an algorithm that apart from accurate, is also
interpretable and simple so that it improves clinical traslationality.

3. Benchmarking: Finally, this model will be compared with other similar state-of-the-
art models in terms of interpretability —the main feature that enhances clinical
traslationality. Furthermore, we will define two refined interpretable artificial
intelligence model that will aim to overcome the shortcomings observed in state-
of-the-art models. The most essential characteristics of interpretability will be

compiled in order to encourage the development of interpretable methods.

This report has been divided into three sections each of them illustrates how the preceding
objectives were approached and accomplished. The method that solves the multiple
hypothesis problem is explained in Section 1: "A Novel Method to Predict Lethal
Dependencies with High Predictive Power." In section 2, "Interpretable Artificial Intelligence
for Precision Medicine in Acute Myeloid Leukemia" an accurate, interpretable, and simple
artificial intelligence model is defined. Finally, in section 3 "The challenge of interpretability",
the algorithm developed in this doctoral thesis is compared with other methods in terms of
interpretability, for which a quantitative and qualitative metric is defined, and two new

methods are added, which obtained excellent results.
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Dependencies with High Predictive Power

Solving a massive Multiple Hypothesis testing problem
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Introduction to Section 1

The traditional concept of synthetic lethality consists of the concurrent loss of functionality
of two genes resulting in cellular death. A relevant example is the effectiveness of PARP
inhibitors in tumors with inactivated BRCA1 and BRCA2 [64]. In recent years, the advances
in functional genomics triggered by large-scale loss-of-function screening -such as
CRISPR-Cas9 or RNA interference (RNAI) screens- have boosted the discovery of
hundreds of novel targets and context-specific lethal dependencies (LEDs) [15-17,65-67],
defined as any association between two genes that results in differential viability depending
on their genetic context (Figure 3).

Several studies have carried out large-scale functional genomic screens to identify
genome-wide targets and LEDs [15,17,65,66]. The Project Score [17], the Achilles Project
[15,16] and the Project DRIVE [67] are three studies that performed genome-wide gene-
knockouts in cancer cells aiming at establishing novel targets and LEDs. The refinement of
computational and technical tools have improved the potential of loss-of-function screening
to identify cancer vulnerabilities [66,68,69]. However, the multiple-hypothesis problem

related to the large number of gene knockouts limits the statistical power of these studies.

In this section we show that previous efforts to predict LEDs from functional screening can
be significantly improved by considering the “HUb effect” in Genetic Essentiality (HUGE) of
some gene alterations: a few specific sets of gene alterations are statistically associated
with large changes in the essentiality of multiple genes. These “hub” aberrations lead to
more statistically reliable LEDs than other alterations that do not participate in such hubs.
We incorporated the HUGE effect in the statistical analysis of three recent loss-of-function
experiments of both The Project Score and The Achilles Project (two datasets) showing
that the number of LEDs discovered for a given FDR considerably improves for both
CRISPR-Cas9 and RNAi screens.

Using acute myeloid leukemia (AML), breast cancer (BRCA), lung adenocarcinoma (LUAD)
and colon adenocarcinoma (COAD) as disease models, we validated that the predictions
are enriched in associations used in the clinic. Finally, we validated in-vitro an example of
a therapy guideline based in LED selection in AML. The HUGE analysis will help discover

novel tumor vulnerabilities in specific genetic contexts, providing valuable candidates -
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targets and genetic variants as biomarkers- for further personalized treatments in

hematological diseases or other cancer disorders.

The HUGE-based methodology is published in [1].
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Figure 3. Types of Lethal Dependencies. Lethal dependencies that affect two genes: (A) in a Positive
Lethal Dependency (pLED), a gene is essential for tumor survival when another gene is mutated
(MUT). This is the traditional concept of synthetic lethality, in which a gene knockout (KO) causes
cellular death only for another gene’s mutant phenotype. (B) Conversely, in Negative Lethal
Dependency (nLED), a gene is essential for tumor survival when another gene is not genetically altered
(wild type-WT), here gene variant confers resistance to the inhibition. (C) A lethal dependency that
affects three genes: Dual Lethal Dependency (dLED), an altered gene (Gene 1) confers, at the same
time, sensitivity to the inhibition of one gene (Gene 2) and resistance to the inhibition of another gene
(Gene 3). In this figure, the shape of the cells denotes different cell-types with different genomic
characteristics. The color of the cells denote whether the cell survives to the knock down or not. The
star shape in a gene denotes a genetic variant. The red crosses denote pharmacological inhibition.
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Data integration

Data of loss-of-function screens libraries (17,980 knockout genes in 412 cancer cell lines)
of the project Achilles [70] were integrated with gene expression and their corresponding
gene alteration profiles (gene variants in ~1600 genes; Figure 4A) obtained from CCLE
and Shao et al. [16]. We gathered gene expression of cells using RNA-seq data to confirm
that the genes that were essential for a cohort of cells were expressed before the RNAI
library experiment was performed [71]. Gene variant panels were filtered out using the
parameters of CCLE’s authors to avoid common polymorphisms, low allelic fraction,
putative neutral variants, and substitutions located outside of the coding sequence [72].

We used the DEMETER score [15,68] as a measure of gene essentiality of the RNAI
libraries of the project Achilles [70]. DEMETER quantizes the competitive proliferation of
the cell lines controlling the effect of off-target hybridizations of siRNAs by solving a
complex optimization problem. The more negative the DEMETER score is, the more
essential the gene is for a cell line. We imputed missing elements of DEMETER using the
nearest neighbor averaging algorithm [73]. Besides, we collected gene expression patterns
from RNA-seq data [71] to confirm that essential genes are expressed when they are
essential. Based on DEMETER data, we first identified genes that were essential for a
selected tumor subtype. Essential genes were required to meet several criteria: i) they must
be essential for at least 20% samples of the selected cancer subtype, ii) they must be
specific to the cancer type under study, i.e. they must be non-essential for other cancer
types and iii) they must be expressed before RNAIi experiment (>1TPM at least in 75%

samples).
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Figure 4. Computational pipeline to find lethal dependencies. (A) Scheme of data integration for
N samples (cell lines). RNAI libraries data (gene essentiality; DEMETER score) and gene variant
panels are represented as two heatmaps. Each pair of a knock-down gene (KD-gene) and a gene
variant defines a p-value, which represents a lethal dependency. Boxplots represent the DEMETER
score of a cell line when inhibiting one gene (X-axis) depending on the genetic alteration of another
gene (Y-axis). Genes with a DEMETER score < -2 are considered essential for a cell line. (B) Scheme
of the histogram of P-values using standard approaches (e.g., Storey-Tibshirani), in red; and using a
covariate-based algorithm, in blue.

Statistical model

We developed a statistical algorithm to identify genes whose essentiality is highly
associated with the genetic alteration of other genes. Dealing with this statistical issue
implies solving a large multiple hypotheses problem (more than one million hypotheses). In
similar scenarios, traditional corrections -such as Benjamini-Hochberg (BH), Bonferroni, or
Holm- showed very few or no gene-biomarker LEDs for a given FDR [74]. To overcome
this problem, we developed a covariate-based statistical approach -similar to the

Independent Hypothesis Weighting procedure [74] (Figure 4).

Let e denote the number of RNAI target genes and n denote the number of screened

samples. Let D be an e xn matrix of essentiality whose entries d;; represent the
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DEMETER score for the RNAI target i in sample j. Let m be a m x n dichotomized matrix
whose entry m;; denotes whether sample j is mutant or not according to the previous

criteria:

1, ifmutant(MUT) 1)
Y0, if wild — type (WT)’

Let s be a subset of n’ cell lines that yields an essentiality vectords = (deSI, ...,deSn,) for the

e RNAI target. Let m = (mSl ...,msn) be the expression vector of a putative gene

biomarker. The null hypotheses are defined as:

HJ: E(dglms € MUT) = E(ds|mg € WT) 2

This null hypothesis is, therefore: “the expected essentiality of a gene knock-down is
identical in mutant and wild-type cell lines”. To test this hypothesis, we used a moderated
t-test implemented in limma[75]. We applied this test for each RNAI target and all the gene
variants to get the corresponding p-values (Figure 4). Dealing with these p-values implies

correcting for multiple hypotheses.

In our case, we divided the p-values corresponding to all the tests into n groups, where n
is the number of altered genes. For each of these groups, we computed the local false
discovery rate (local FDR) [76]. The local FDR estimates, for each test, the probability of
the null hypothesis to be true, conditioned on the observed p-values. The formula of the

local FDR is the following:

7o fo(2)

P(Hylz) = localFDR(z) = @

®)

where z is the observed p-values, 1o is the proportion of true null hypotheses —estimated
from the data-, f;(z) the empirical null distribution —usually a uniform (0,1) distribution for
well-designed tests- and f(z) the mixture of the densities of the null and alternative

hypotheses, which is also estimated from the data.

As stated by B. Efron and R. Tibshirani [76], «the advantage of the local FDR is its

specificity: it provides a measure of belief in gene i’s ‘significance’ that depends on its p-
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value, not on its inclusion in a larger set of possible values» as it occurs, for example with
g-values or the standard FDR. The local FDR and mo were estimated using the
Bioconductor’'s R Package qvalue [77].

Comparison with the Project Score

To compare our results with Project Score’s ones, we selected the same 12 primary cancer
tissues shared in both datasets. The comparison followed two steps: 1) using CCLE and
DEMETER scores with the Project Score’s algorithm, 2) running our approach adapted to
Project Score conditions. In the first step, following the code published in their work, an
ANOVA test was performed on each tissue to calculate all possible dependent partners.
The Storey-Tibshirani correction was then used, using the criteria mentioned in Project
Score methods [17]. This enabled us to correct the ANOVA p-values and get significant
associations. Secondly, the comparison between both methodologies was only possible if
the same adjusted p-value is calculated for both datasets. Therefore, we estimated the
FDR with our data as it is the g-value selected by the Project Score. The FDR correction
was obtained using the Bioconductor R package IHW [74], which enables the consideration
of covariates-based multiple hypothesis correction, as well as estimating the FDR.
Discoveries from both methodologies in DEMETER and CCLE datasets were plotted in

different volcano plots, and the number of significant LEDs were counted (FDR<20%).

Integration of the VICC knowledgebase of clinical interpretations of genomic

variants

We downloaded 19,551 clinical interpretations of somatic genomic variants in cancer of the
Variant Interpretation for Cancer Consortium (VICC) [78,79] (version December 2020). We
filtered out incomplete (e.g., entries without annotated drug or biomarker) and redundant
associations. We then selected all associations that are annotated to acute myeloid
leukemia (AML) and synonyms. From all drugs, we selected those that have an annotated
protein target. To do so, we retrieved the data publicly available in the ChEMBL [80] and
DrugBank [81] online repositories. In total, 216 out of 19,551 associations matched these
criteria. We considered a true positive if either HUGE or ST identifies an LED whose
mutation biomarker coincides with a VICC’s association and the protein target is included
in the same association, or at least in a gene of the same pathway in the STRING database
(v.11, STRING score threshold = 400; default value on STRING for “medium” confidence)
[82].
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We calculated ROC and PR curves considering the two top evidence levels included in
VICC [78,79], namely, (i) evidence from professional guidelines or FDA-approved
therapies; and (ii) evidence from clinical trials or other well-powered studies in clinical

populations, with expert consensus.

Application to acute myeloid leukemia as a disease model

We applied the pipeline to the AML cohort of cell-lines (n=15). In the first step, essential
genes were required to be: (i) essential for at least 25% AML samples, (ii) specific for AML
cells, and (iii) expressed before the RNAi experiment. The algorithm outputs a ranking of
significant Lethal Dependencies (LEDs) that consist of a couple of genes in which the first
one is essential depending on the genetic alteration of the other.

For the final ranking for AML, we selected those LEDs that showed a p-value < 0.05 and
local FDR =< 0.6, |JADEMETER| > 2 (default value suggested by DEMETER’s authors).
Additionally, we interrogated which of these LEDs had direct relationships (co-expressed,
annotated in the same pathway database, or contained in a common experiment) in the
STRING database [82] to ensure there is an established biological relationship between
the essential gene and the subrogate biomarker. This biological double-check is not

necessary and can be omitted when the researcher looks for novel relationships.

In vitro validation was performed using siRNAs against NRAS and PTPN11 in four different
AML cell lines, two with NRAS-genetic variants (HL-60 and OCI-AML3) and two NRAS-wt
cell lines (MV4-11 and HEL). Finally, the model was compared with 3 standard statistical
methods (namely Benjamini-Hochberg (BH), Bonferroni and Holm) known to have
suboptimal sensitivity (recall of true positives) in specific scenarios in 19 additional tumor
subtypes to define the potential for controlling the FDR. [74] See Appendix 1 for more
details on the cell line culture protocol and the demonstration of the increased statistical

power.
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Gene variants associated with multiple essential genes increase the power of

loss-of-function screens

One of the main statistical challenges to find LEDs by integrating genome-wide functional
screens with -omics datasets is the multiple hypothesis testing problem. Correction for
multiple hypothesis reduces the statistical significance of results (meaning a decreased
detection rate and an increased false-positive rate). The Project Score presented a large-
scale genome-wide CRISPR-Cas9 screening analysis targeting 18,009 genes in 30
different cancer types, across 14 different tissues [17,83]. They presented a methodology
to detect LEDs based on finding differences in genetic essentiality in cell lines associated
with the presence of specific gene variants (ANOVA test [84] with the Storey-Tibshirani p-
value correction). Following this procedure, the Project Score was able to identify genetic
LEDs in 7 out of 14 individual tissues analyzed [17,83].

Analyzing Project Score’s data, we noticed that for each tumor type a few specific genetic
alterations were significantly associated with the genetic essentiality of a large set of genes.
This handful of genetic aberrations shows a hub effect, in which a gene variant is
associated with large changes in the essentiality of multiple genes. We termed this behavior
as “HUb effect in Genetic Essentiality” (HUGE) (Figure 5A; other tumor types can be

visualized in https://fcarazo.shinyapps.io/visnetShiny/). From the point of view of statistics,

the HUGE effect is defined as improvement of the statistical power by using gene variants
as co-variates in a multiple hypothesis problem. Other biological covariates such as gene
expression or copy number alterations has also shown to be covariates that increase the
statistical power [74]. Using gene variants as statistical covariates provides a larger number
of positives for a given FDR, which consequently means an increased specificity and
sensitivity, or type | and type Il errors, as demonstrated in Appendix 1. Interestingly, the
analysis shows that HUGE effect is present in all tumors analyzed, significantly improving

the predictive power of LEDs.

The presence of the HUGE effect in a cancer type can be also understood as a predictive

model in which each mutation has a different capability to define the genetic essentiality of
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multiple genes. To show it visually, the histogram of p-values of a gene alteration
represents how gene alterations are associated with the genetic essentiality of multiple
genes. Histograms of the p-values for alterations that conform to a “hub” show a peak near
the origin, which means that cells with these alterations are sensitive to the depletion of a
large number of genes (Figure 5B). Conversely, if the hubs of alterations are not
considered, the relationships of mutations and viability show a flat histogram of p-values.
This does not necessarily mean that such relationships are not biologically relevant, but
that is difficult to distinguish them from random associations and will be considered as
artifacts after multiple testing correction.

Biomarker
b

Essential
Gene

of Essentiality
Mutation

0.5 1.0
P-value

Figure 5 The hub effect in genetic essentiality (HUGE) in Acute Myeloid Leukemia: in a given
cell, a small set of gene aberrations is associated with large changes in genetic essentiality. (a) A
bipartite graph in which red squares represent gene variants (e.g., mutations), blue triangles represent
significant changes in cell viability related to knocked-down genes. Both vertexes are linked by a line
if the variations in the essentiality have a statistically significant association with the presence of the
gene variant. (b) Implications in p-value histograms of the HUGE effect. Hub associations show a high
peak close to zero p-values indicating that the null hypothesis is rejected in more cases and that these
genetic variants are associated to a higher response to the inhibition of more gene products.
Segregating the statistical analysis according to the alteration provides more statistical power.
Essential genes and other tumor types can be visualized in https://fcarazo.shinyapps.io/visnetShiny/
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The HUGE effect helps to palliate the multiple hypothesis correction problem. Using the
mutation under study as a covariate, multiple hypotheses can be differently treated
considering the overall association of gene alteration in the complete set of essential genes
(Figure 4 and Figure 6). Using this concept, we developed a statistical model that
integrates HUGE information to find LEDs (Figure 4).
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Figure 6. Schematic representation of the covariate-based statistical approach in this context.
In this case, the use of genetic variants as covariates of a covariate-based problem allows the reduction
of false positive rate, and consequently, the percentage of true null-hypothesis in a statistical test.

A st

Figure 7. Histogram of P-values of all lethal dependencies in acute myeloid leukemia. Previous
efforts to correct multiple testing in this problem consider a single set of tests (all gene aberrations and
CRISPR-Cas9 knockouts) and apply a correction that control the FDR, such as Storey-Tibshirani (ST),
as done in the Project Score. Interestingly, in this approach histogram of p-values shows flat-shaped
histograms.

Previous efforts to correct multiple testing in this problem consider a single set of tests (all
gene aberrations and CRISPR-Cas9 knockouts) and apply a correction that controls the
FDR, such as Storey-Tibshirani (ST), as done in the Project Score. Interestingly, in all
tumors our approach increases the statistical power of the analysis. From a statistical point
view, a flat histogram is compatible with the null hypothesis for all the tests and, therefore,
multiple hypothesis correction drives to none or few discoveries (Figure 7). Every single

tumor shows p-value histograms related to specific gene variants that have a higher zero-

47



Section 1: A Novel Method to Predict Lethal Dependencies with High Predictive Power

peak than the histogram associated to all tests in such tumor. To test this approach, we
compare the results using HUGE with previous LED identification strategies in three
genome-wide functional genomic projects: The Project Score [17], the DEMETER score
and the CERES score (DEMETER and CERES are included in the Achilles Project [15,16]).
First, to test the potential of HUGE to predict LEDs with CRISPR-Cas9 screens, we analyze
the Project Score dataset [17]. Project Score integrates 215 different genetic events across
14 tumor types, including SNVs and CNVs. In the same reference, the authors found at
least one LED in 7 out of the 14 tumor types analyzed. 40 out of 215 events were detected
to be significant biomarkers of essentiality (FDR < 20%), which correspond to 77 unique
LEDs (a single genetic event can be associated with several essential genes). Analyzing
Project Score’s data using the HUGE-based methodology, we identify 1,438 unique
associations with the same FDR (18 times larger than Project Score, Figure 8A),
corresponding to 80 single genetic events. Besides, using HUGE we detect at least one
LED in all the 14 tumors analyzed, finding LEDs in 10 tumors that would have been missed
using the original pipeline, affecting around 10-20 genes for each disease type.

We also tested HUGE in the DEMETER score of the Achilles Project to predict LEDs, in
this case using RNAI screening. The DEMETER dataset [15,70] is a large-scale genome-
wide experiment of RNA interference libraries (17,085 knockdown genes) in 19 tumor
types. We integrated the DEMETER data with the corresponding cell line gene alteration
profiles (genetic variants in ~1,600 genes) obtained from the Cancer Cell Line Encyclopedia
(CCLE) [72] and Shao et al. [16]. This integration turns out to have 27 Million hypotheses,
which will hardly impair p-values after multiple hypothesis correction (Figure 4). Then, we
replicate the Project Score’s pipeline with the DEMETER dataset and compare it with the
HUGE-based approach to find LEDs, also including in the comparison other two standard
p-value corrections used to control the FDR, namely Holm and Bonferroni. Using the
standard ST procedure, we find 126 LEDs (FDR < 20%). There are LEDs for 7 out of 19
tumors. The same dataset and FDR threshold using the HUGE-based approach provides
9,535 LEDs (75.7 times larger than using ST). All cancer types (19 out of 19) showed
significant LEDs in the HUGE-based analysis (Figure 8B). HUGE identifies 1,675 LEDs in
6 tumor types in which other methods recall no LEDs (FDR = 20%); and 9,409 LEDs in 19
tumor types that would have been missed using previous procedures (FDR < 20%; Figure
8C). These results show that the HUGE effect is present with different intensities in all

tumor types analyzed (https://fcarazo.shinyapps.io/visnetShiny/).
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Lethal Dependencies Predictive Power Comparison
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Figure 8. HUGE-based analysis with Project Score and Achilles Project datasets. (a) Volcano-
plots of LEDs identified in the Project Score dataset. From left to right: i) result of Project Score, ii)
results of analyzing Project Score dataset with HUGE-based methodology. Each dot represents a
significant LED (FDR<20%). The X-axis represents the difference in gene essentiality when the event
(gene variants) is present. The Y-axis represents the FDR values (-log10) for that change. (b)
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Equivalent volcano-plots using Achilles Project. From left to right: i) results of Achilles Project analyzed
with the standard procedure, ii) results of analyzing Achilles Project dataset with HUGE-based
methodology. (c) The number of LEDs found (FDR < 20%) in 19 tumors of the DEMETER score (RNAI)
and 22 tumors of the CERES score (CRISPR-Cas9) using standard statistical pipelines (Storey-
Tibshinary, Bonferroni, and Holm) and the HUGE-based algorithm. Bonferroni and Holm return the
same number of hypotheses in all cases. LEGEND: ALL: acute lymphoblastic leukemia; AML: acute
myeloid leukemia; BRCA: breast ductal carcinoma; CNSA-IV: central nervous system astrocytoma
grade IV; COAD: colon adenocarcinoma; CUADT: upper aero-digestive tract squamous cell
carcinoma; DLBCL: diffuse large B-cell lymphoma; ESCA: esophagus squamous cell carcinoma;
KIRC: kidney renal clear cell carcinoma; LCC: lung large cell carcinoma; LUAD: lung adenocarcinoma;
LUSC: lung squamous cell carcinoma; MM: multiple myeloma; NSCLC: non—small cell lung carcinoma;
OS: osteosarcoma; OVAD: ovary adenocarcinoma; PDAC: pancreas ductal carcinoma; SCLC: small
cell lung carcinoma; SKCM: skin carcinoma; UCEC: endometrium adenocarcinoma.

As a further test of the increase predictive power of HUGE we carry out a similar analysis
using the CERES score, a CRISPR-Cas9 experiment of 22 tumors also included in the
Achilles Project. In this case, the number of significant pairs is enriched 14 times over the
standard approaches (FDR < 20%; Figure 8C-right panel).

LEDs predicted by HUGE have better validation rates than standard

approaches

Validating a ranking of LEDs is not a simple task: it is desirable to have a gold standard of
disease-specific list of validated target-biomarker associations. We selected as our gold
standard The Variant Interpretation for Cancer Consortium (VICC) Meta-Knowledgebase
[78,79]. This database integrates different datasets of clinical associations and includes the
level of evidence for each entry: spanning from professional FDA guidelines to preclinical

findings.

We tested the enrichment in associations included in VICC in four tumor types, namely
acute myeloid leukemia (AML), breast cancer (BRCA), lung adenocarcinoma (LUAD) and
colon adenocarcinoma (COAD) for both HUGE and standard statistical methods. The VICC
knowledgebase integrates (in September 2021) 19,551 clinical interpretations of somatic
genomic variants in cancer of both resistant and sensitive biomarkers. We deleted
duplicated and incomplete associations, focused on those related to confirmed mutations

and manually selected associations that match each tumor type (including synonyms).

We first run the two procedures (HUGE and Storey-Tibshirani; ST) with AML cell lines to
find LEDs and compare how many LEDs predicted by HUGE and by ST are included in the
VICC knowledgebase. For instance, if HUGE or the ST procedure predicts FLT3 mutant
AML genotypes to be sensitive to FLT3 inhibition, it will be considered a true positive LED,

as FLT3 is a well-known target of AML and mutations in FLT3, the fms-like receptor-type
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tyrosine-protein kinase [85,86], are known to be sensitive biomarkers of the effectiveness
of most FLT3-inhibitors [87,88].

a Acute myeloid leukemia (AML)
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Figure 9. ROC and precision-recall curves of four tumor types. True positives were found somatic
genomic variants in the knowledbase of the Variant Interpretation for Cancer Consortium (VICC). a)
AML, b) BRCA, c) LUAD and d) COAD. We selected associations indicated for each tumor type that
are within the three highest levels of confidence (Level A: Evidence from professional guidelines or
FDA-approved therapies relating to a biomarker and disease; Level B: Evidence from clinical trials or
other well-powered studies in clinical populations, with expert consensus; and Level C: Evidence for
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therapeutic predictive markers from case studies, or other biomarkers from several small studies, or
evidence for biomarker therapeutic predictions for established drugs for different indications).

In total, 216 out of 19,551 associations matched these filters. Getting the top 500 LEDs
according to the ranking using the HUGE algorithm with AML, we find 17 LEDs that match
the VICC knowledgebase of known clinic relationships (Table 1; Fisher p-value < 1e-51).
An equivalent analysis using the standard pipeline (ANOVA test [84] with the Storey-
Tibshirani p-value correction) shows that out of the top 500 LEDs, only 1 is included in the
VICC knowledgebase (Table 1; Fisher p-value = 6.551e-3). This means that HUGE
analysis identifies 16 true positive dependencies not recovered by ST (Fisher p-value =
6.41e-5). The global value of AUROC (0.53) is not too far from the baseline of 0.5 (Figure
9A), perhaps because of the scarcity of true positives in our gold standard. We performed
the same analysis with LUAD, BRCA and COAD getting AUCROC values of 0.62 (vs 0.5),
0.87 (vs 0.64) and 0.72 (vs 0.54) for HUGE and ST respectively. All cases show better
values for HUGE than for ST (Figure 9A to D).

Table 1. Associations within the top 500 pairs predicted using the HUGE-based and standard pipeline
algorithms in AML that match the knowledgebase of clinical interpretations of somatic genomic variants
in cancer of the Variant Interpretation for Cancer Consortium (VICC).

Essential Biomarker Difference P-Value Local Fdr Method
Gene Gene Essentiality

NRAS NRAS -6,83 4,67E-08 1,38E-04 HUGE
FLT3 FLT3 -6,36 2,28E-04 2,00E-01 HUGE
TACR2 NRAS 4,71 9,21E-03 3,07E-01 HUGE
SH2D1A NRAS -4,96 9,74E-03 3,14E-01 HUGE
APBB1 FLT3 -2,87 5,54E-03 3,89E-01 HUGE
FGF18 NRAS 2,58 1,62E-02 3,89E-01 HUGE
FLNA NRAS 4,53 1,85E-02 4,13E-01 HUGE
IL12RB1 NRAS 2,62 1,87E-02 4,15E-01 HUGE
FGF13 NRAS 3,01 2,10E-02 4,37E-01 HUGE
cDic FLT3 3,21 9,22E-03 4,66E-01 HUGE
PPP4C NPM1 3,55 1,35E-03 4,78E-01 HUGE
FGF13 FLT3 -3,09 1,09E-02 4,96E-01 HUGE
CCR7 FLT3 3,74 1,12E-02 5,01E-01 HUGE
GATAG FLT3 -3,43 1,18E-02 5,11E-01 HUGE
TYMS FLT3 -4,22 1,21E-02 5,15E-01 HUGE
SRSF2 NRAS 3,86 3,23E-02 5,31E-01 HUGE
CCND3 NRAS 2,62 3,35E-02 5,40E-01 HUGE
NRAS NRAS -6,70 1,48E-08 2,49E-02 ST
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Applying HUGE methodology to acute myeloid leukemia cell-lines discovers

potential therapy biomarkers

AML is a hematologic neoplasm characterized by a remarkable phenotypic and genomic
heterogeneity [89], a challenging disease model to test the applicability and impact of
HUGE. We run the complete HUGE pipeline with AML and validate in vitro two of the
predicted LEDs.

As a preliminary step, we identified the potential genes that are essential for AML cell
survival. The Achilles Project yield 443 essential genes that are essential and specific for
AML cells compared to other tumors. Some of these genes belong to pathways known to
be deregulated in AML (e.g., MYB [90] or CEBPA [91]). Interestingly, 160 of these 443
genes have previously been identified as potential cancer drivers in hematological
malignancies according to the Candidate Cancer Gene Database (p-value = 7.76e-05,
Fisher exact test) [92].

We then run the HUGE algorithm to identify genomic alterations that could be defined as
LED partners of those 443 essential genes. In this pipeline, we required predicted pairs to
be biologically related to each other in the STRING database[82] (co-expressed, annotated
in the same pathway database or contained in a common experiment). LED associations
can be broken down into three groups regarding their dependency type: positive lethal
dependency (pLED), when a gene variant marks sensitivity to the inhibition of another gene;
negative lethal dependency (nLED), when a gene variant marks resistance to the inhibition
of another gene; or dual lethal dependency (dLED), when the same gene variant confers,
concurrently, sensitivity to the inhibition of one gene and resistance to the inhibition of
another gene (Figure 3). In total, we predicted 24 LEDs, (12 pLEDs and 12 nLEDs,
including 2 dLEDs; p-value < 0.05, local FDR < 0.6 and |AEssentiality| > 2; Figure 10A,
Table 2). Using the standard multiple hypotheses correction only 1 dependency turns out
to be statistically significant. We provided the identified LEDs for the 19 tumors included in

the Achilles Project following a similar pipeline.
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Figure 10. Gene variants-based treatment guidelines in acute myeloid leukemia (AML). (a)
Volcano-plot of LEDs related to NRAS genetic mutations (left; MUT) and -wildtype (right; WT)
phenotypes. Increment of Essentiality and -logl0 (p-value) are shown in X-axis and Y-axis,
respectively. (b) Histogram of p-values for 6 genetic sequence variants in AML. NRAS-alteration is
enriched in close to zero p-values, which is the basic concept of HUGE-based statistical approach. All
genetic variants histograms of p-values can be found in the Supplementary Material. (c) Summary of
the computational predictions validated: NRAS-altered cells were predicted to be sensitive to sSINRAS
and resistant to siPTPN11. Conversely, NRAS-wt cells were predicted to be sensitive to siPTPN11
and resistant to siNRAS. (D) Tumor proliferation of the four AML cell lines after inhibiting NRAS
(siNRAS) and PTPN11 (siPTPN11) with specific sSiRNAs. Blue: NRAS-altered AML cell lines (HL-60
and OCI-AML3); Orange: NRAS-wild-type AML cell lines (MV4-11 and HEL).

NRAS mutation ranks first in the analysis. Lethally dependent partners associated with
NRAS genetic sequence variants show a p-value histogram that peaks at the origin (Figure
10A and B), meaning that NRAS mutations are associated with more tumor vulnerabilities
than other alterations. Interestingly, NRAS alteration forms a Dual Lethal Dependency with
PTPN11 (Table 2, Figure 10C): it confers tumor sensitivity to NRAS inhibition and
resistance to PTPN11 inhibition.
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To validate our prediction, we first checked that both NRAS and PTPN11 siRNAs efficiently
decreased the NRAS and PTPN11 expression, respectively, in four AML cell lines (Figure
11). Then, we confirmed the computational hypothesis: the downregulation of NRAS
significantly decreases cell proliferation only in the NRAS-altered AML cell lines, and the
inhibition of PTPN11 expression produces an equivalent effect, but specifically in the
NRAS-wt AML cell lines (Figure 10D), validating the predicted dLED. Remarkably, the
validated PTPN11-NRAS-wt pair was not detected using standard methodologies.

Table 2. Ranking of Lethal Dependencies in AML using the HUGE-based statistical approach.
The ranking is divided into three groups regarding the typology of the lethal dependency relationship:
Positive Lethal Dependency, Negative Lethal Dependency or Dual Lethal Dependency (Figure 1). The
Increment of Essentiality column represents the average variation in the DEMETER score between
altered and wild-type cells, and its sign is related to the lethal dependency relationship. Lethal
dependencies that share the same essential gene and the same Increment of Essentiality sign have
been omitted in this table.

Gene ) Increment

) Essential
variant of t-score P-value Local FDR
Biomarker Gene Essentiality

Positive Lethal Dependency

TGS1 SNRPF -7,87 -4,05 6,69E-04 3,36E-01
CLTCL1 UBR5 -6,66 -3,59 1,99E-03 2,20E-01
FLT3 FLT3 -6,36 -4,53 2,28E-04 2,00E-01
CDK14 CDK2 -3,95 -2,75 1,28E-02 4,30E-01
AURKC ACTL6A -3,26 -3,89 9,55E-04 4,99E-01

Negative Lethal Dependency

NPM1 EEF2 3,81 3,34 3,39E-03 5,96E-01
PIK3C2G CDK6 3,35 2,95 8,20E-03 3,51E-01
NCOA3 EP300 3,04 2,75 1,25E-02 4,94E-01
CDK14 CCND2 2,97 2,22 3,88E-02 4,99E-01
EPHBG6 ZNF266 2,53 2,77 1,22E-02 3,42E-01
ZFYVE9 TOM1L2 2,14 2,35 2,96E-02 5,12E-01

Dual Lethal Dependency

NRAS NRAS -6.83 -8,71 4,67E-08 1,38E-04
NRAS PTPN11 417 2,2 4,05E-02 5,89E-01
EP300 PLK1 8,11 -4,04 7,01E-04 2,17E-01
EP300 KLF2 3,69 4,08 6,38E-04 2,12E-01
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Figure 11. mRNA expression of NRAS and PTPN11 genes after nucleofection with the specific
siRNAs. Data are referred to GUSB gene and an experimental group nucleofected with negative
control siRNA.

The HUGE method was also used in another publication in which several members from
our research group proved and validated known LEDs from literature. In addition, they
performed an exhaustive study of the LEDs detected by HUGE in SCLC and successfully
validated in-vitro PLK1 essentiality when CREBBP was mutant [88] (Figure 12).
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Figure 12: In vitro validation of the sensitivity of CREBBP-mutant SCLC cell lines to two PLK1
inhibitors: Volasertib and BI12536. (A) Dose-response curves showing the effect of Volasertib and
BI2536 treatment on the viability of CREBBP-WT NCI-H841, NCI-H889, NCI-H2171, NCI-H146 cells,
and CREBBP-MUT NCI-H1048, NCI-H1963, NCI-H211, HCC33 cells. Cells were treated with the
indicated doses for 72 h. Cell viability was measured using the cell viability (MTS) assay and the IC50
was calculated for each cell line. (B) Colony formation assays of NCI-H841 and NCI-H1048 cells. Cells
were seeded onto a six-well plate and were treated with vehicle (0.1% DMSO) or increasing doses of
Volasertib or BI2536 for 72 h. After treatment, cells were incubated in a drug-free culture medium for
14 days, fixed and stained with crystal violet. (C) Quantification of the number of colonies obtained in
each condition with Fiji software. (D) FACS cell cycle analysis of NCI-H841 and NCI-H1048 cells
conducted upon 5 nM Volasertib and BI2536 treatment for 24 h.
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Discussion of Section 1

The advent of large-scale functional genomic screens has allowed the identification of
hundreds of novel gene targets and the prediction of genome-wide LEDs [17,93]. This
strategy has multiplied treatment strategies, as using LEDs, the drug targets can be
decoupled from their corresponding predictive biomarkers. The main statistical limit to find
LEDs is the large number of hypotheses that result from integrating gene essentiality and
genetic functional events. In this section, we present HUGE, a novel analysis of CRISPR-
Cas9 and RNAI large-scale screens that significantly improves the predictive power to find
LEDs from loss-of-function screens in human tumors. It relies on the fact that some gene
alterations are statistically related to the essentiality of large sets of genes. Using this
characteristic as a prior covariate we significantly improved the predictive power of LEDs.

Notably, the presence of the HUGE effect does not necessarily mean biological causality.
HUGE dependencies are more statistically reliable than others, but this does not imply that
predicted alterations are the major players in tumor development thus, they are not
necessarily driver genes; i.e., they are just genetic biomarkers of gene essentiality. In other
words, the Hub-Effect is a statistical association. Since "correlation does not imply
causation" is not legitimate to deduce a cause-and-effect relationship between the
presence of a mutation and the sensitivity to knocking down a gene. Even more, it cannot
be concluded that the HUGE top-ranked genes (either the mutations or the knockdown
genes) are driver genes. This would require further experimentation and validation. HUGE
simply computes biomarkers of the vulnerability to a knockdown gene, that in turn, could
be targeted by a drug. However, the fact that gene alterations co-occur with multiple LEDs

in genetic hubs can be exploited to improve the statistical power.

To measure the increased predictive power of HUGE, we carry out three different
comparisons within three functional genomic datasets: the Project Score, the DEMETER
score and the CERES score. HUGE identifies LEDs with 14 and 75 times larger statistical
power than using state-of-the-art methods in CRISPR-Cas9 and RNAI, respectively.
However, it could be argued that this result could be an artifact of the statistical technique
and that —lowering the threshold for standard procedures- would provide LEDs with similar
reliability. This is not the case. As shown in the results, using the same number of
predictions, HUGE’s results are more enriched in clinically validated biomarkers than ST's

results. Remarkably, one of the 16 LEDs only identified by HUGE is the known interaction
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of FLT3-mutant genotypes sensitive to FLT3 inhibitors, such as Midostaurin. This fact is
only an example of the key importance of considering the HUGE effect when analyzing

LEDs with large-scale functional screens.

A p-value histogram can be modeled as the superposition of two distributions, a uniform
distribution (which corresponds to the null hypothesis) and another distribution with a larger
proportion of low p-values. A good covariate splits the overall p-value histogram into
histograms with different enrichments in small p-values. If all the histograms related to a
covariate have similar shapes, it means that the covariate is uninformative. Here, we show
that stating which gene is mutated in each test is a good covariate for the LED prediction
problem because there is a hub effect of gene aberrations in gene essentiality. The usage
of covariates has successfully been incorporated before in other genomics applications
(e.g., the abundance of a gene is known to be informative in differential expression
analyses; or the proximity of loci in the genome is known to play a role in genome-wide
association studies), but it has not yet been exploited in large-scale functional genomic

screens.

One main limitation lies in the volume of data required for its execution due to the need for
multiple hypotheses to detect the Hub-Effect. Hence, the HUGE-based approach will not
obtain such striking results if applied to the analysis of smaller experiments in number, it
would perform similarly to current standard methods. Nevertheless, this method has been
developed for large-scale screening analyses.

We are confident that the HUGE-based approach to calculating LEDs has great potential if
applied to the study of patient data. Nowadays, drug development usually starts from large-
scale loss-of-function screenings. Therefore, this work has identified a large number of
LEDs across 19 tumor types in 3 different large-scale experiments. Besides, to facilitate
the in-vitro validation of these LEDs as possible therapeutic targets, we have added

information regarding targeted drugs for those essential genes that are drug targets

Predicting true LEDs is especially challenging for tumors with high genetic heterogeneity.
In AML, for instance, state-of-the-art approaches only recover 2 LEDs. The HUGE-based
approach captured 24 LEDs for the same False Discovery Rate (FDR). Interestingly,
NRASwt-PTPN11 LED, which was only identified by HUGE, has been validated in vitro.
The validation in AML highlights the potential of the HUGE-based approach to discover and
validate new LEDs of biomarkers and drug targets. We pinpoint the dLED characteristic of

the NRAS gene, meaning that if a tumor has NRAS mutated a treatment that targets NRAS
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itself would be the best option to reduce their tumorigenicity, whereas if it is NRAS wild-
type, a PTPN11 inhibition would be a better recommendation. This dLED discovery confers
special relevance to clinically translational therapeutic strategies, as it has been proved
effective in AML cell lines, further validation in ex-vivo analysis and murine models is
required but if resulting effective, it could be suggested as a treatment and it could
incentivize drug development targeting NRAS and PTPN11. This methodology has
potential applications both in basic and clinical research.
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Introduction to Section 2

Drug sensitivity studies have helped personalized medicine evolve, particularly in the field
of precision oncology. Combining these drug sensitivity studies with tumor genotypes
makes it possible to associate the response to treatment with genetic alterations
(biomarkers), thus promoting the search for new personalized therapies[18].

Exploring the potential of these experiments, artificial intelligence (Al) algorithms for
personalized medicine focus on the analysis of such datasets to bridge the gap for drug
discovery. However, the concept of “black box" in Al limits the potential of this approach to
be translated into the clinical practice. In contrast, Interpretable Al focuses on making Al
results understandable to humans.

In this section we include the development of a new Interpretable Al method, called Multi-
dimensional Module Optimization (MOM) algorithm, to predict therapeutic strategies based
on large-scale drug screening data. This method systematically associates drugs with
combined sets of genetic biomarkers that can be generalized and applied to other cohorts
of patients. The therapeutic strategies provided by MOM can easily be understood by
humans and are easy to implement in the clinical practice with a process equivalent to a
decision tree. The optimization problem considers the effect of drug toxicity focusing on
providing drugs that are differentially effective to patients with a specific genotype. MOM'’s
result is deterministic —this is important to get regulatory approvals— and guaranteed to be

optimal, the overall sensitivity of the patients is maximized.

We applied MOM to an AML cohort, the BeatAML project cohort, which carried out WES
(Whole Exome Sequencing) and drug screening experiments of 122 drugs with ex-vivo
AML tumor samples from 319 patients [12]. Ex-vivo experiments in hematological cancers
are of great importance since they are performed directly on the patient’s living tumor cells
[11,12], allowing to correlate drug sensitivity to the patient’s genotype. The results obtained
using MOM are in-silico validated using K-fold cross-validation and in three independent
large-scale experiments, one based on pan-cancer drug sensitivity and two referred to pan-
cancer gene essentiality using siRNA and CRISPR-cas9. MOM's patient indications require

only three different biomarkers, which makes them to be easily understood by the clinician.

MOM is published in [2].
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An interpretable artificial intelligence method to predict optimal treatments

based on patient genotype

The implementation of a clinical translational interpretable Al model requires the
development of a robust method to associate biomarkers to specific targeted treatments.
and, thus, relating drug sensitivity and patient genetic events -including SNVs, indels,
fusion genes, or even epigenetics. The development of an Al algorithm in this context
requires to solve three important challenges: (i) proper modeling of the toxicity of screened
drugs (most aggressive drugs are not necessarily better treatments), (ii) dealing with a high
number of statistical hypotheses that intrinsically increase false discovery rate (FDR), and
(iii) explaining the internal reasoning that the model uses to propose a decision so that it is

easy to approve and implement in the clinical practice.

We propose an algorithm named Multi-dimensional Module Optimization (MOM) that
addresses each of these challenges by dividing the problem into three main steps (Figure
13): preprocessing the input drug sensitivity scores, associating single biomarkers to drugs
with an increased statistical power and combining individual treatments to unveil multi-step

treatment pipelines to stratify patients based on drug-response.

1) Filter and Normalization 2) Drug Biomarker Association

Individual Effect of
Biomarkers in drug sensitivity

Drug Reduce and
Sereening Normalize
HW Single biomarker-drug
associations
Gene Variants Filter
Drug sensitivity related to
genolype
3) Multiple-pair analysis: Proposed Patient Stratification using MILP
Single biomarker-drug MILP Patient Stratification based
associations on drug-response

Figure 13. Overview of MOM'’s pipeline. (1) Filter and Normalization. (2) Generate individual Drug-
Biomarker Associations using IHW, (3) Multiple-pair analysis that generates a patient stratification
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guideline using a novel MILP model (IHW: Independent Hypothesis Weighting, MILP: Mixed-integer
Linear Programming).

MOM is developed to optimally stratify patients following a decision tree based on simple
logical rules, in which each step is defined by the presence or absence of a certain
biomarker and the recommendation of one drug. In turn, MOM requires genetic variants
information and drug sensitivity screenings as input data.

To illustrate the steps of the algorithm, let us consider a toy example with 8 drugs and their
corresponding drug-response scores for 6 patients (Figure 14). In this case, as in every
precision medicine scenario, we want to find robust companion biomarkers that, associated

to drugs allow us to maximize patient response with minimized toxicity.

In the first step, MOM preprocesses drug sensitivity scores (Figure 14.1). For which,
instead of using the standard measure of ICso, we proposed an incremental version of the
logarithm of the 1Csp, named IC50* (See Chapter 5 for more details). The proposed
correction has two main advantages. First, MOM prioritizes drugs that have a differential
effect on different patients, which are, in turn, better candidates to develop a personalized
treatment based on a companion biomarker. Second, drugs whose effectiveness does not
depend on patient genotype are more unspecific and, therefore, more prone to be toxic for

different tissues. In the next section, we will illustrate this fact with a real case scenario.

To exemplify this normalization, let us return to the toy example with 6 patients, 8 drugs
and their corresponding log(ICso) scores measured in ex-vivo tumors (Figure 14.1).
Considering raw log(ICso) exclusively (left-hand heatmap), it could be argued that Drug 1 is
the most effective drug and, therefore, it should be indicated to all patients regardless their
genotype. However, since the dose can be adjusted for each patient, Drugs 1 and 8 will be
given at a small and a large dose respectively balancing their effect. Using IC50* (right-
hand panel) allows MOM to maximize the genetic dependence of drugs, rather than the

absolute cellular death in patient tumors.

In the second step (Figure 14.2), MOM provides single biomarker-treatment associations
by prioritizing the drugs whose response is associated with patient genotype. The selected
statistical analysis to find the biomarker-treatment associations is the Independent
Hypothesis Weighting (IHW) algorithm. This algorithm has been proved to increase the
power of tests in several biological scenarios [1,94].
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This algorithm provides also two interesting “by-products”: i) identifies which biomarkers
are related to drug sensitivity, e. g. TP53 mutation is usually a source of resistance, ii)
identifies drugs whose efficacy is related to the genetic profile, Olaparib is effective only for
BRCAMt patients [95].

In the third step (Figure 14.3), MOM predicts a sequential treatment guideline that
maximizes the drug effect on the group of patients that share the genotype of the selected
biomarkers. Using Mixed integer Linear Programing (MILP), MOM gets the optimal
treatment guideline (decision tree). MILP is a versatile optimization method that allows the
solution of complex mathematical problems using integer variables and assures that the
drug assignation is optimal. This solution (i) is interpretable; (ii) eases the translation into
clinical practice; and (iii) assures a global and deterministic optimum to the problem.
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Figure 14. MOM Pipeline: MOM pipeline is defined by 3 major steps: 1) Drug normalization to
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represents drug sensitivity for the sample whereas the red color represents drug resistance in the
sample. 2) Individual Drug biomarker associations using IHW. Drugs are matched to biomarkers
profile, all individual associations generate a p-value that is corrected using IHW. IHW selects the
candidate biomarkers and treatment and are used as input to the MILP problem. 3) Optimal Patient
Stratification using MILP. The MILP module receives as input the normalized drug information 1C50*
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and the candidate individual associations and outputs a decision tree for clinical decision-making
guidance. Within this module, the treatment is optimized so that each patient receives the drug for
which is more sensitive. (IHW: Independent Hypothesis Weighting, MILP: Mixed-Integer linear
Programing).

FLT3, CBFB-MYH11, and NRAS variants play a key role in Acute Myeloid

Leukemia sensitivity to Quizartinib, Trametinib, and Selumetinib.

We selected the BeatAML cohort to test MOM as it contains ex-vivo drug sensitivity
screenings of 122 drugs in AML tumors derived from 319 patients [12], and includes both
whole-exome sequencing experiments (WES) and drug sensitivity for every patient.
Analyzing the WES data, we described the genetic landscape of the cohort shown in Figure
15 and Appendix 2. Patients within this cohort are in different therapeutic stages, e.g.,
induction, maintenance, consolidation, or palliative care (among others), there also are 32

de novo patients (Figure 16).
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Figure 15. Genetic Variant Type Summary in BeatAML. Variant classification plot represents the
different genetic variant types, in terms of functionality and we see that the most common is missense
variant, the Variant type plot represents the type of structural variant, whether they are Single
Nucleotide Variants (SNVs) or Indels with a clear predominance of SNVs, SNV classification plot shoed
the type of mutational signature that is predominant with the signature C>T that is quite frequent in
malignant cancer types followed by C>A which is associated with environmental exposure[96]. The
Variants per Sample Plot, tells that there is a median of 8 variants per patient. The variant classification
summary plot summarises all the prior plots and, finally, the Top 10 mutated genes plot, shows for
each of the top 10 genes the type of mutation.
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Figure 16. Treatment Stages in the BeatAML cohort. A) From the 319 patients contained in the
study coming from the BeatAML cohort, the chemotherapy phase veries considerabily. B) Distribution
of the patients accounting for the different cumulative chemotherapy phases excluding the patients
with missing info or who did not take any chemotherapy.

The drugs studied in the BeatAML cohort cover a wide variety of different cancers and
diseases: 24% are indicated for AML, 16% for other leukemias types, 10% for multiple
myeloma, and 4% for lymphomas. This means that 54% of the drugs have been studied for
hematological malignancies. The rest 46% include drugs used in lung, breast, or renal
cancers among other diseases (Figure 17). Focusing on AML, the dataset provides a total
of 11 AML drugs already in clinical use -e.g. Venetoclax, Quizartinib, or Gilteritinib- and 18

AML experimental drugs -e.g. Panobinostat, Lestaurtinib, or Pazopanib.
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Figure 17. Beat AML Drugs distribution. Drugs studied in the BeatAML cohort cover a wide variety
of different cancers and diseases, from which 24% are designed, experimental, or already prescribed
for AML, 16% for other leukemias, 10% are shown concerning multiple myeloma, and 4% for different
types of lymphomas. This means that 54% of the drugs have been studied for hematological
malignancies.

We filtered gene variants to keep the ones that appear in at least 4 out of 319 patients (1%).
This process provides 64 potential single biomarkers. We also removed drugs used in less
than 20% of the patients, and those without a candidate gene target. After matching
samples with ex-vivo and WES experiments, we finally get the ex-vivo screening of 111
drugs for 319 patients (see Chapter 5 for more details). We then applied the MOM
algorithm to this cohort to unveil groups of AML patients that share genotype and drug
sensitivity. In the first step, MOM normalizes the ICso values to define a score that better
defines tumor sensitivity, namely IC50*.

Let us illustrate this with a paradigmatic example. In our dataset, the median ICso for
Elesclomol is much smaller than the median ICso for Quizartinib (Figure 18a, left panel).
Consequently, Elesclomol seems a better option to treat patients with AML. Figure 18b
gives a completely different reading: Elesclomol is more toxic in almost any tissue if
compared with the AML lines. On the contrary, Quizartinib is more toxic on AML than in
most other tissues. This simple example shows that plain ICso must not be used to select
the treatment guideline for the patients. The higher value of ICsp for Quizartinib could be
corrected by adjusting the dose. In Figure 18a, right-panel, after the normalization, the
ICs0* for Elesclomol appears less effective, whereas Quizartinib preserves its sensitivity

profile, which, in this example, it is related to the FLT3 status of the tumor.

73



Section 2: Interpretable Artificial Intelligence for Precision Medicine in Acute Myeloid Leukemia

ST ﬁ
Mruuum I Resistant FLT3 status FLT3 status
FLT3_mut
Quizarinib (AC220) | e Quizartinib (AC220) FLT3_WT
| | Eesciomol | sensitive [ “I Elesclomol
1C50*
1C5o
b Elesclomol
1005
1014
Calar
E B3 a
E BS Hemetological Cal Lines
= EE OTHER TUMORS
i i | ‘ ‘ ] ! 7* 777777777 L
[ L + *i - - 777777 - ,iT

B8 Hematological Cell Lines
B GTHER TUMDRS

i *m-* O g el

thabdamyosarzom

lung_NSELC
lung_NSCLC,
digestve_systam_

haema
Iymph
lung_NSCLE_squemous,

GDSC Tissue Sublypes

Figure 18. ICsy Normalization to Avoid Drug Toxicity. a) Drug Sensitivity Heatmap in BeatAML
cohort. The left panel shows the ICs, values for AML tumors of BeatAML. Effectiveness of a drug in a
patient is plotted in blue color, and resistance is represented in red color. The right panel shows the
sensitivity in IC50* score. b) Drug sensitivity of Quizartinib and Elesclomol across different tissue types
using GDSC. ICsg values relative to different tissues are shown in the graph. In yellow color are plotted
the sensitivity values of AML cell lines, in blue color are plotted the drug sensitivity values for the
Hematological cell lines, and finally in grey color, are plotted the sensitivity values for the non-
hematological tissues from GDSC. Dotted grey lines represent the second ICs, quantile for AML cell
lines (GDSC: Genomics of Drug Sensitivity in Cancer).

In the second step, MOM calculates individual associations between drugs and genetic
alterations using the HUGE approach from IHW package [94]. This approach sheds light
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on which drugs can be influenced by patient genotype (Figure 19a). IHW also provides a
weight for each genetic variant related to the probability of such variant to be a true positive.
Non-zero IHW weights represent genetic variants that reduce the FDR and increase the
power of tests as demonstrated by IHW authors [94]. IHW estimates that, in our AML
cohort, 37 biomarkers have weights greater than zero. IHW weights can be therefore used
to state the relevance of each biomarker. We sorted IHW weights confirming that FLT3Mt,
NPM1Mut NRASMUt TP53MUt and KRASM! are included in the top 5 biomarkers (Figure
19b), which have already been described in previous studies [97-102]. IHW also provides
an adjusted p-value for each drug-biomarker association. For instance, the pipeline
identified the known relation of FLT3 internal tandem duplications (FLT3-ITD) patients
being more sensitive to Sorafenib, Quizartinib, or Gilteritinib (Figure 20).

Interestingly, an indirect output of this second MOM step is the quantification of the
sensitiveness or resistance triggered by a specific genetic variant. Summarizing this score,
gene variants can be classified by their effect: either sensitive or resistant to the tested
drugs (Figure 19c). For example, variants in FLT3 or NPM1 are associated with a more
sensitive response for the cohort of drugs in this experiment, whereas genetic alterations
in KRAS, NRAS, or TP53 are more likely resistance-conferring. Other results include
CCND3, WDR52, CELSR2, CBFS-MYH11, and SMC1A as biomarkers of sensitivity and
STAG2 of resistance. This effect is relative to the studied dataset, Beat AML, and occurs

across 66 different drugs studied or prescribed for hematological malignancies.
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Figure 19. Analysis of single interactions biomarker-drug. a) Overall score of 122 drugs whose
IC50* is related or non-related to cell genotype according to our model. A drug is related to a relevant
variant (those whose IHW weight is greater than zero) if its adjusted p-value is below 0.05. b) Global
effect of AML gene variants in AML drug sensitivity. The x-axis shows the logarithm of the minimum
adjusted p-value of the biomarker with any of the drugs. Only those biomarkers whose IHW weight is
greater than zero are shown. ¢) One-tail p-value histograms comparing drug sensitivity according to
the biomarker status in AML. If a histogram has a strong peak near zero, patients with the biomarker
are sensitive to many drugs. On the contrary, if a histogram has a strong peak near one, patients with
the biomarker are resistant to many drugs. A genetic variant is considered to confer sensitiveness if
the number of drugs whose p-value <0.2 is twice the number of p-values >0.2. Similarly, a variant
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confers resistance if fulfills that the number of p-values>0.8 is twice the number of p-values<0.8. (IHW:
Independent Hypothesis Weighting).
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Figure 20. Relevant Individual Drug-Biomarker Associations. In blue the patients with the
biomarker in orange the patients without the biomarker. P-value association is corrected using IHW.
The score shows the differential ICso, more negative means more sensitive.

Finally, in the third step, we solved the MILP problem from MOM using the individual
candidate associations. As a result, MOM returns a decision tree that, depending on the
presence or absence of several biomarkers, recommends a treatment for each patient. In
this case, the patients are divided into four subgroups (one for each level of the tree)
denoted by FLT3M, NRASMt, and inv(16) biomarkers (Table 3; Figure 21).

Table 3. MOM Output: Patient stratification based on drug response to guide clinical decision-making

Name Biomarkers Drug Patients
Treated
Subgroup 1 FLT3Mut Quizartinib 103
Subgroup 2 FLT3WT & inv(16) Trametinib 15
Subgroup 3 FLT3"T & no inv(16) & NRASM Selumetinib 42
Subgroup 4 FLT3"T & no inv(16) & NRASYT Crizotinib 159
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Following the new therapeutic strategy, the first biomarker is FLT3M"-including FLT3-ITD.
Patients carrying FLT3M would be treated with Quizartinib a 2" generation FLT3 inhibitor
that is currently facing several clinical trials showing an increase in overall survival for AML
patients[63]. This group of patients represents 30% of patients [98], in our study, 103
patients out of 319 belong to this group. The second subgroup comprises 15 patients and
is characterized by FLT3"T and the inv(16), which generates the fusion gene CBFf
MYH11. Patients with these biomarkers are sensitive to Trametinib, a MAPK inhibitor that
prevents cell replication and has been initiated in phase | clinical trials for hematological
malignancies [103]. Interestingly, within this group, the patients with NRASM!t (4 out of 16)
are the most sensitive to Trametinib. The third group is defined by the absence of previous
biomarkers and NRASM", This subgroup poses special interest in the research as NRAS
is one of the biomarkers most closely related to the general resistance to treatments of this
disease [104]. NRAS gene variants are mutually exclusive with FLT3 variants (p-value
<0.05; Figure 22). Patients within this subgroup are sensitive to Selumetinib, a MAPK
inhibitor that has started clinical trials for acute lymphoblastic leukemia in the UK [105], itis
a mitogen-activated pathway inhibitor, which could inhibit RAS pathway functionality [106].

Finally, the fourth subgroup comprises the rest of the patients with none of the above
mutational biomarkers but with other possible mutated biomarkers, for which the best
treatment is Crizotinib -an ALK and MAPK inhibitor- approved by the FDA for lung cancer.
It has not been enrolled in clinical trials for AML. Nevertheless, it has been used in studies

of high-risk AML patients, with TP53M't and obtained very promising results [107].

To further validate the MOM’s algorithm, we first run MOM on the BeatAML ex-vivo dataset
using 10-fold cross-validation and compare the results that MOM outputs with each fold.
This analysis shows that the MILP optimization returns robust results as 90% folds share 4
out of 5 biomarkers (Figure 23). Specifically, FLT3M and NRASMU subgroups appear in
10 out of 10 folds and subgroup with inv(16) in 3 out of 10 folds.

We assessed the sensitivity of MOM using a novel metrics. Since MOM suggests a single
drug for each patient, the potential contingency matrix will be very unbalanced: for each
patient, only the drug suggested by MOM is a positive and all the other treatments are
negatives. Instead, we plotted (Figure 24) the sorted ranks of the drug predicted by MOM
for each patient. We computed the p-values according to this distribution using thresholds
for 1%, 5%, 10% (0.005, 4.58e-11, and 2.24e-23 respectively). A “prediction” algorithm that

prescribes a drug by chance would show a curve close to the diagonal in this graph.
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We then evaluated the treatment guideline proposed by running MOM with BeatAML within
three independent AML datasets: two large-scale loss-of-functionality experiments that
used both RNAi (DEMETER 2 [108]) and CRISPR-Cas9 (CERES [109,110]), and an
additional large-scale cell-drug sensitivity analysis (Genomics of Drug Sensitivity in Cancer,
GDSC [14,111,112]). We characterize cell lines using the Cancer Cell Line Encyclopedia’s
(CCLE [113,114]) genetic variant files, from which we clustered the AML cell lines into the
four subgroups predicted by MOM using as input BeatAML. For CERES and DEMETER 2,
we identified the main target and model drug effects to be proportional to the depletion of
their target, which is the information these databases included.

For each subgroup, we compared each experiment’s sensitivity (CERES score, DEMETER
2 score, and GDSC-IC50) dividing patients according to the presence of the biomarkers
predicted by MOM in BeatAML and summing their sensitivity scores of the other three
databases. We compute the sensitivity scores for the 4 subgroups, and the 3 datasets
independently DEMETER2 (n=18 AML cell lines), CERES (n=14 AML cell lines), and
GDSC (n=23 AML cell lines) (Figure 21). For the GDSC dataset, we compared the ICso
value from the cell lines with the selected biomarker and without the biomarker for a given
subgroup drug. Finally, we performed an additional validation using DEMETER RNAI
dataset (n=15 AML cell lines; Figure 25).

The change in sensitivity for the selected treatments is strongly significant using the MOM’s
predicted biomarkers in the three experiments (p-values of 5.5e-05, 6.8e-06, and 5.5e-04
for CERES, DEMETERZ2, and GDSC, respectively). Remarkably, inv(16) is difficult to be
validated using cell lines, as commercial cell lines mostly lack this alteration. The ME-1 cell
line is an exception to that, but GDSC is the only dataset that includes the translocation.
Although this comparison is not statistically significant due to the lack of data, the GDSC-

IC50 of ME-1 is 30 times lower than the average of cells without inv(16).
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Figure 21. Decision Tree for the Proposed Patient Stratification using MOM. MILP from MOM
obtained a hierarchical clinical guideline for patient stratification consisting of 4 different subgroups.
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Each of them is denoted by a biomarker and represented by color (blue, turquoise, orange, and grey).
These subgroups were validated in the BeatAML ex-vivo cohort, CERES, DEMETER2, and GDSC.
Boxplots show the results of the validation. The y-axis represents the essentiality score from the
different experiments and the x-axis represents the biomarker presence-absence of the samples. The
validation was performed sequentially, already treated samples from previous subgroups were
excluded in the following subgroups i.e. samples with FLT3M! (blue) from the first boxplot are not
plotted in the non-biomarker (grey) in the second boxplot. CERES and DEMETER2 do not have
experiments with cell lines having inv(16).
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Figure 22. Somatic Interactions. Mutually exclusive or co-occurring set of genes calculated using
pair-wise Fisher's Exact test. Associations plotted in green represent Co-occurrence while brown is a
sign of mutual exclusivity. Stars are assigned to associations with P< 0.05. We appreciated that FLT3
and NPM1 variants are co-occurrent, and FLT3 and TP53 and NRAS and IDH2 are mutually exclusive

respectively.
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Figure 24. Results Sensitivity. We plotted the sorted ranks of the drug predicted by MOM for each
patient. This plot shows that the suggested treatment was the best one in 3% of the cases, within the
top 10% in 30% of the cases, within the first quartile in 46% of cases. The statistical significance for
each of the thresholds can be stated using a Bernoulli distribution. We also included the p-values
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according to this distribution using thresholds for 1% (p-value=0.005), 5%(p-value=4.58e-11), 10%(p-
value=2.24e-23) and 25%(p-value= 4.32e-17)
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Figure 25. Validation in cell lines using DEMETER Score. In red the cell lines with the biomarker
associated with the treatment; in blue the cell lines without the biomarker. On the left, FLT3Mut
subgroup, on the right NRASMut subgroup.

We carried out a functional enrichment analysis to unveil the patient genotype according to
the stratification proposed by MOM. We calculated the differentially expressed genes that
are representative of each subgroup and computed the enriched biological functions of
patients that belong to each group. The first subgroup, defined by FLT3M't, is characterized
by downregulation in Myeloid Leukocyte Migration (adjusted p-value < 5e-3), this result is
present in other functional enrichment studies involving FLT3 mutated subgroup [115,116].
This subgroup has been repeatedly mentioned in literature and FLT3 inhibitors are being
implemented in the clinic [63]. The second subgroup, defined by samples with inv(16) and
FLT3WT shows upregulated cell proliferation (adjusted p-value < 1e-3) including
angiogenesis and endothelial cell migration upregulated among others, also described in

other studies concerning this genetic aberration [117-119].

We also found that the NRASM" subgroup is related to the downregulation of alternative
splicing (AS; adjusted p-value < 0.2). This subgroup has an upregulation of the transforming
growth factor-beta (TGF-B) signaling pathway (adjusted p-value < 5e-03), which is

mentioned in other studies concerning AS, especially in myelodysplastic syndromes
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[120,121]. Furthermore, several studies have attempted to address the relationship
between AML and AS, with promising results [122-124].

Finally, patients who do not have the previous biomarkers, have a downregulation in the
amino acid catabolism process (adjusted p-value < 0.05), i.e. they are less able to
metabolize amino acids than the rest of the subgroups [125]. A study demonstrates that for
a subpopulation of AML leukemia stem cells the metabolism of amino acids from the
medium is essential, and its absence leads to cell death [125]. Further description of the
enriched functions for each subgroup, as well as their relationships and statistical
significance, can be found in the Appendix 2.
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Filter and normalization

Filtering and Imputation

We used data from ex-vivo experiments, WES, and RNA-Seq from 319 Acute Myeloid
Leukemia (AML) patients included in the BeatAML cohort [12]. Data was filtered to ensure
all samples contained the gene variants and drug sensitivity information, the new dataset
containing genomic aberrations and drug ICso for the same patients was used as a starting
point for the study. Genetic variant samples were previously pathogenically filtered by Tyner
et al. [12] and we defined as a biomarker a genetic variant present in more than 1% of the
patients (n=4), leaving a total number of 64 possible biomarkers.

For missing drug sensitivity information in the ex-vivo experiments, we imputed the missing
data using the k-Nearest Neighbourhood (KNN) Impute method, from Impute R package
[126] (version 1.68.0).

Drug Normalization: From IC50 to IC50*

Initially, we tried to use as drug sensitivity values the half-minimal inhibitory concentration,
(ICso) i.e., the concentration of a drug -in micro molar- for which half of the cell from the ex-
vivo experiment die. Instead of using the ICso, we propose the usage of an incremental
version of the 1Csp, named IC50*. As described in the results section, the usage of IC50*

instead of ICsp is a convenient way to deal with the different toxicity of the drugs under study

After imputation, ICsp values were taken the logio logarithm, normalized by subtracting the
ICs0 mean value for each drug, and these scores were made negative by subtracting an
offset to the normalized ICso value —the optimization model assumes negative values of
drug sensitivity. The obtained drug sensitivity values are named IC50*. The transformation
from ICso to IC50* is represented in equation (4). Despite the formidable aspect of the
formula, IC50* is simply an incremental and version of the logarithm of 1Cso with an offset.

Let ICso be a 7 x P matrix, with 7 the total number of drugs and P the total number of

patients, for which each element ic50, is a value contained in (0,10] uM.
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P
1
ic50;,, = (logy(ic50,,) — 1) _Fz (log1o(ic50,,) — 1) —
p=1

4) P
1
—max| (logy(ic50.,) — 1) _FZ (log10(ic50¢p) — 1)
p=1

The obtained IC50* is a 7x P matrix containing the new drug sensitivity values.

Drug-biomarker association

Following with MOM'’s second step, we implemented a two-tailed Wilcoxon test to assess
whether a biomarker influences the sensitivity of each the treatment. Each biomarker is
tested against each drug and these associations were ranked according to the p-value. The
p-values were adjusted following the methodology described by Gimeno et al. [1], using the
R package IHW [94] (version 1.22.0). The package provides (given the p-values and the
covariates —in our study genetic alterations—) a weight for each covariate related to its
influence on the p-value significance.

Using these results, we included two consecutive filters. Firstly, we selected the biomarkers
whose relative importance (the weight outputted by IHW) is larger than zero. IHW assigns
a strictly positive weight to biomarkers relevantly correlated to the potency of a drug.
Afterwards, we removed the drugs with no statistically significant relationship to the
selected biomarkers (IHW p-value >0.05).

After this analysis, 122 treatments (biomarker-drug associations), with AIC50* > 0.2
(including vs lacking the biomarker) and adjusted p-value<0.05 were considered for
therapy.

MOM: MILP MODULE

Finally, in the third step, we proceed with the treatment assignation. We developed a MILP
module described in Chapter 4. This module receives as input the 122 treatments and

solves an optimization problem.

The core of MOM is an integer programming optimization model that predicts the
combination of drugs and biomarkers that optimize patient response to treatment (i.e.,
IC50%). Let us define a treatment as a combination of a drug and a companion biomarker.
The solution to the optimization problem consists of a set of treatments that will be applied

sequentially to patients in a defined number of steps (one treatment per step).
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Let S, P, and T be the total number of possible steps, patients, and treatments included in

the study respectively. Let OM be an input P x T matrix of essentiality, whose elements

om, , contains the normalized sensitivity score (IC50*) of ex-vivo experiments for a patient

p and a treatment t, which fulfills om,, < 0. IC50* values are all negative.

pt —

Let K be a P x T a binary matrix whose element k,,, denotes whether a patient p is eligible

for the treatment t, i.e., the treatment’s companion biomarker is present in the patient, as

follows:

i {1, if the patient p has the biomarker associated with treatment t
rtLo, otherwise

LetX be a binary Sx Px T array whose element x,,, states whether a patient p is treated

with treatment t in step s, as follows:

1, if patient p is given the treatment t in step s
Xspt :
0, otherwise

LetYbeaSxT binary matrix whose element y_ represents whether a treatment tis used

in step s, as follows:

{1, if the treatment t is used in step s
st 0, otherwise

Given these variables, the MOM algorithm was built as a MILP optimization problem

defined by the following equations.

s T P
) minimize E E E OMyy * Xyt

s=1 t=1 p=1

T
s.t. Z}’st=1 s=1,..,8
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S T
ZZxSptﬁl p=1..,P

) s=1t=1

®) Xspt < Vst * kpt s=1,..,5t=1,...T;p=1,..,P
s—=1 T

(9) xSpt—I—sznme yst~kpt SZ1,...,S;t=1,...,T;p=1,...,P
n=1 m=1

The objective function of the MILP problem, equation (5), is to minimize drug sensitivity
scores (IC50") for all patients. The sensitivity score will be considered if it is included in the

problem solution (x,,). As drug sensitivity scores are negative, the MILP solution will

intrinsically maximize the number of treated patients, as each included patient adds a

negative term to the objective solution.

The proposed MILP problem has four sets of restrictions, namely equation (6) to equation
(9). Equation (6) is a set of S restrictions stating that each step consists of one treatment.
Equation (7) is a set of P restrictions stating that at most one treatment must be used to
treat each patient. Equation (8) is a set of S x T x P restrictions stating that the treatment

t can be applied to patient p in step s, only if (i) the patient p is eligible for treatment t based
on hisfher biomarkers (k,, = 1), and (i) the treatment t is used in step s (y, = 1). Finally,
equation (9) is set of S x T x P restrictions that impose that the treatments included in the

solution must be selected hierarchically, i.e., if we have a patient that would be eligible for
two treatments, only the first treatment must be considered in the optimal solution.

To solve the model, we used CPLEX™® 12.10.0, Python 3.7.3, and the reticulate R
package [127] (version 1.25.0).

MILP results can be directly translated into a decision tree for guiding clinical decision-
making. The number of levels of the tree was set to four. Each level of this tree will be
defined as one therapeutic AML subgroup and each subgroup is defined by a biomarker

and a recommended drug.
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Performance of MOM

The application of typical performance measures of machine learning (specificity, accuracy,
sensitivity, ROC and PR curves, etc.) to this specific problem is not straightforward. Since
MOM suggests a single drug per patient, the potential contingency matrix will be very
unbalanced: for each patient, only the drug suggested by MOM is a positive and all the
other treatments are negatives. If the suggested drug is the one with the lowest IC50*, the
prediction will be a true positive. Otherwise, it will be a false positive. On the other hand, all
the drugs that were not selected are true negatives (except the one with the lowest IC50%).
The drug with the lowest IC50*, if not selected by MOM, will be a false negative.

Instead of this approach, we plotted the sorted ranks of the drug predicted by MOM for
each patient. This plot shows that the suggested treatment was the best one in 2% of the
cases, within the top 10% in 30% of the cases and so on. The statistical significance for
each of the thresholds can be stated using a Bernoulli distribution. We computed the p-
values according to this distribution using thresholds for 1%, 5%, 10%.

External Cohort Validation

For validating the different subgroups, we compared patients that are given a drug in a
specific subgroup against the remaining non-treated patients. We validated our results
using cell lines, specifically, used 2 different large-scale gene essentiality experiments
including RNAi (DEMETER 2 [108]) and CRISPR-Cas9 (CERES [109,110]), and an
additional large-scale cell-drug sensitivity analysis (Genomics of Drug Sensitivity in Cancer,
GDSC [14,111,112]). We characterized the cell lines using the Cancer Cell Line
Encyclopedia (CCLE [113,114]) genetic variants files, from which we were able to divide

the cells into different subgroups.

We performed the following test for validation. Cells were divided into two groups. The first
group includes cells with the biomarker associated to that subgroup, and the other group,
contains the cells without the biomarker that had not been previously treated. This
comparison was computed for the 4 subgroups, and the 2 datasets DEMETER 2, and
CERES. DEMETER 2 and CERES were compared using the viability score that
corresponds to knocking out the corresponding targets for each drug. For the GDSC
dataset, we used the ICso value provided in the experiments. All tests were one-tailed

Wilcoxon'’s test to check that the sensitivity increase in the cells with the biomarker.
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Functional Analysis of the Subgroups

Functional analysis of the subgroups was performed using gene expression data from the
BeatAML [12] cohort. We performed a differential gene expression analysis using limma R
package [128] (version 3.50.3). The contrast matrix compared one group against all the
others, therefore, there was a different contrast for each group.

Genes differentially expressed were ranked according to its t-statistic, if t >0, genes were
considered overexpressed, if t<0, genes were considered underexpressed. For each
subgroup, we selected the top 500 over and under expressed genes and performed a Gene
Ontology Enrichment Analysis (GEA) using Fisher's Test. We analyzed the biological
process ontology. Enriched functions on the overexpressed genes were upregulated, and
functions obtained from the underexpressed genes were considered to be downregulated.
The statistics were computed using clusterProfiler R package [129] (version 3.10.1). We
set an adjusted p-value cutoff of 0.2 for considering a function differentially enriched,
adjusted p-values were computed using the Benjamini-Hochberg procedure.
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Despite the advances in drug ex-vivo screening and computational methods for precision
medicine, there are technical issues that limit their translation to clinical practice. Some of
these issues are the influence of drug toxicity, the enormous number of statistical
hypotheses, the complexity of developing algorithms understandable by the clinician, and
the difficulty of proposing an effective treatment guideline that assigns the best drug for
each patient. MOM faces and solves each of these challenges.

These statements are not yet covered by current Al strategies, which are focused on
increasing accuracy and sensitivity regardless of the complexity of the end model [28,130].
In these Al methods, the absence of interpretability of the feature used for classification
prevents further research and downplays the need for clinically defined subgroups
[19,131,132]. Indeed, the need of developing interpretable Al algorithms is not only related
to easing the diagnosis pipeline in cancer but also to increase and facilitate that the pharma
industry brings new drugs and biomarkers to market. Drug regulators -such as the Food
and Drug Administration- value that the process to unveil novel biomarkers is robust and
transparent [49]. In contrast, the patient stratification guideline provided by MOM has the
following characteristics, i) allows treatment assignment by using a simple genetic panel,
i) the results are non-stochastic, they are the same for all possible re-runs of the model, iii)

the algorithm outputs a decision tree for treatment guidance.

ICs0, ECs0, and AUC (used for example in [14,27,133]) are reasonable metrics to determine
the efficacy of a drug. None of them, however, considers the overall toxicity of the drug.
Using IC50* in the optimization problem, we focus on the differential effectiveness of a drug
among different patients, and therefore, drugs that are toxic for most samples will not be

included in the solution.

IHW provides us with the ability to increase the power of tests and reduce the FDR. With
this strategy, we are also able to identify the direction of the influence of genetic events in
drug response, i.e., whether it defines sensitivity or resistance. With this approach, we
successfully detected FLT3 as highly influential in terms of sensitivity to treatment, which
is coherent with other studies [98]. NRAS, instead, showed as a mutation associated with
treatment resistance also coherent with literature [99,104]. One promising conclusion for
this study is that we managed to find a drug for which NRAS correlates to drug sensitivity.
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Interpretable Al defined by MILP ensures that the subgroups obtained are optimal. This
feature is not common to other classification methods. However, it also presents two main
limitations. The first one is computational resources, which increases exponentially with the
number of possible biomarkers, drugs, or patients (on a standard desktop, the presented
work required 2.5 hours of computing time). In addition, the incorporation of new non-binary
diagnostic markers requires the redefinition of the model. However, once the optimization

problem is solved, assigning a treatment to a novel patient is immediate.

Our AML patient stratification includes a subgroup defined by the absence of a genetic
mutation, i.e., wild type. It also includes patients who have TP53M!t genotype, which are
biomarkers associated with poor prognosis [134]. MOM recommends treating these
patients with Crizotinib, a drug used in other studies with TP53Mut AML patients which in
fact showed very promising results[107]. In addition, this subgroup shows a deficiency in
amino acid metabolism which may lead to alternative treatment therapies based on
metabolomics.

The subgroup defined by the CBFS-MYH11 fusion gene appears characterized in a very
small percentage of AML cell line cohorts but is nevertheless present in 7% of AML
patients[135], which enhances the relevance of this biomarker. CBFA-MYH11 is a clear
indicator of sensitivity to Trametinib, a clinical drug that inhibits cell replication pathway
[136], which, in turn, appeared as an upregulated biological process in this subgroup. In
the remaining subgroups, FLT3M! is widely described in the literature [98]. In contrast,
NRASMU appears as a biomarker of sensitivity for Selumetinib and has downregulated the
alternative splicing (AS) process. This subgroup contains, on balance, effective treatment
for a resistance-associated mutation and a new line of research linking alternative splicing
and AML.

It is remarkable the appearance of three different MAPK inhibitors in the proposed
therapeutic strategy, which is coherent with the disease behavior. Our biomarker analysis
revealed that the RTK-RAS pathway is the most affected in our cohort of AML samples
(Appendix 2-Section BeatAML Cohort). Of all drugs suggested as treatment, only
Quizartinib is clinically approved for AML patients [60]. This study aims to accelerate -once
the results are validated in cell lines and murine models- the process of approving these
drugs for AML.
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The validation of the results is challenging in a real cohort since most patients are treated
with standard induction cytotoxic therapy (only 7.5% of AML patients in TCGA are treated
with other treatments). We propose a strategy to take advantage of cell lines loss-of-
function datasets. Nevertheless, even using cell lines -that are quite different from ex vivo
samples- we validated the subgroups and the ICso of the lines with indication was
significantly better than the 1Cso of those without indication. Therefore, in the absence of
clinical data for validation, we consider the results using cell lines data to sufficiently support
this study.

The concept of MOM is also applicable to other disease types using ex-vivo experiments
as well as to other sensitivity measurements, leaving an open door for new patient
stratifications based either on drug response or even on any other experiment to measure
the effectiveness of certain drugs in the future. We believe that Interpretable Al will help
physicians and regulators understand Al medical decisions and, therefore, ease the
translations of Al analysis of drug screening experiments to clinical practice.
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Assessing the Interpretability of novel and state-of-the-art

methods
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Introduction to Section 3

As mentioned in the first chapter of this thesis dissertation, interpretability is an essential
feature for the applicability of a machine learning model. Interpretability makes an ML model
understandable by an expert and allows him/her to critically judge the algorithm output.
This characteristic is especially important in Precision Medicine.

In this section, we will compare various methods that solve the assignment problem posed
by PM in terms of their interpretability. To do so, we reviewed the current literature to
summarize the state-of-the-art and selected different methods that were defined as
interpretable and solved the assignment problem.

We have compared 22 different algorithms suited for solving the assignation problem, out
of which, 13 algorithms were black-boxes [29,30,39-41,31-38], thus, they are not
interpretable and nor suited for the comparison. None of them were defined as explainable
[43,46,51-56]. We divided these latter into the two main approaches mentioned in Chapter
1, “patient-centered” meaning that the method outputs a drug assignation for each patient
[2,137], and “drug-centered” meaning that the method finds which patient or patients that
are responders for a specific drug [138—-140]. Regarding this last group, “drug-centered”
methods can be transformed into “patient-centered” if their output is a continuous variable,
as the best drug for each patient will be the drug with the highest sensitivity from the drugs
predicted for that patient. We thus, selected from this last group only the methods that are

suited for “patient-centered” approach.

Within this last classification, the top-ranked algorithms in the state-of-the-art are
Multidimensional Optimization Module (MOM) [2] and Kernelized Rank Learning (KRL)
[137] from the “patient-centered” perspective, and BOSO [138] and Lasso Regression
[140] in the “drug-centered” approach. MOM uses mixed integer linear programming (MILP)
to discover the optimal therapeutic strategy that is returned as a decision tree and was
described in the previous section. KRL is a machine learning method based on an
optimization problem that applies a kernel approach to circumvent the convexity limitations
and also solves the problem using MILP. BOSO and Lasso can be applied to predict the
ICs0 of a drug in different patients. BOSO is a MILP model built up from the Lasso
Regression equations that have been modified to predict a numeric variable with the least
number of features, improving the reduced interpretability of Lasso Regression.
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We also included in this analysis two novel “patient-centered” algorithms developed in this
thesis: Optimal Decision Trees (ODT) and an adaptation of the Multinomial Lasso. ODTs
are decision trees that recursively optimize the drug recommendation on each branch until
a preset group size is reached. Finally, Multinomial Lasso is a modified Lasso regression
methodology for which each patient “selects” its best drug using a vote sharing scheme.

Our main challenge in this comparison was to provide a definition of interpretability. There
is no immediate quantitative way to compare two methods in terms of their interpretability,
so in this section we will define a quantitative metric to evaluate the interpretability of a
method. In turn, we also include some qualitative metrics to complement the quantitative

ones.

We compared the methods in this section in terms of interpretability, focusing specially on
the accuracy, multi-omics capability, explainability, and implementability. Method
comparison was performed using the BeatAML [12] dataset and the Genomics of Drug
Sensitivity in Cancer (GDSC) [112] dataset for Acute Myeloid Leukemia (AML).

We focused on the BeatAML dataset due to its abundance of patient information —e.g.
genomic data, gene expression, clinical data—, and drug sensitivity information which
proceeded from ex-vivo experiments performed on patient samples instead of cell lines
[12]. Indeed, ex-vivo drug sensitivity provided more information for patient sensitivity than
conventional information from clinical data due to the possibility of testing more drugs on
the living tumor without injuring the patient and solving possible harmful drug interactions
from previous treatments. Although this information could be less reliable, it solves the
sparsity issue of drug sensitivity data explained in Chapter 1 of this dissertation.
Furthermore, drug screens performed on ex-vivo experiments improve data reliability if
compared to cell line screenings. Nevertheless, further experimental validation is required

for clinical applications.
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Focusing on approaches to address the complex Precision Medicine (PM) problem, we
found different methodologies from the “patient-centered” perspective, Multidimensional
Optimization Module (MOM) [2] and Kernelized Rank Learning (KRL) [137]. We also
included in this group two novel algorithms: Optimal Decision Trees (ODT) and an

adaptation of the Multinomial Lasso.

In the “drug-centered” approach, BOSO [138] and Lasso Regression [140] can be applied
to predict the ICso of a drug in different patients. Both methods select a small number of
variables to make their predictions. Once the predictions are obtained, comparing the
predicted ICso for each drug on a patient, the drug with the minimal ICso is selected. The
description of the six methods is summarized in Table 4. Some of the methods only accept
binary data as input. These methods cannot be applied to gene expression unless using a
hard threshold.

Optimal Decision Trees (ODT)
In this work, we are introducing a novel algorithm that uses a tree-like method for precision
medicine. This method is intrinsically different from classification or regression trees, as will

be shown.

In a classification tree, in each step, the tree is split into two subtrees finding the variable
(with its corresponding threshold) that best splits the tree according to some figure of merit
(Gini index, entropy, information gain, etc.). This figure of merit measures the overall

enrichment of the classes in the subtrees.

On the contrary, the ODT algorithm selects for each step the splitting variable (selecting a
proper threshold) and the treatments for each split. The selection is based on the
optimization of an overall measure of the sensitivity of both branches to the selected

treatments (Figure 26).
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Table 4: Precision Medicine Pipelines selected for comparison. This table collects the description
of each of the methods. Algorithm shows the method’s given name. Type refers to whether the method
is patient- or drug-centered. The software column collects all the required software environment
programs for the model to be run. Method refers to the pipeline description. Suitable for mutational
data has a “Yes” if the method could use genetic variants as input. Suitable for gene expression has a
“Yes” if the method could use gene expression data as input and a “No” otherwise. Output explains
the raw output of the model. Reference contains the publications in which the method was defined.

Algorithm  Type Software Method Suitable  Suitable  Output Reference
for for gene

mutatio  expressi

nal data on
MOM Patient Python Feature Yes No Drug [2]
3.7, R Selection assignation
4.2,and  and MILP
CPLEX
oDT Patient R 4.2 Recursive Yes Yes Drug Novel
Decision assignation
Tree
Multinomial Patient R 4.2 Adapted Yes Yes Drug Novel
Lasso assignation
KRL Patient Python Kernelize Yes No Drug [137]
2.7 d MILP assignation
BOSO Drug R 4.2 Lasso Yes Yes Predicted [138]
and regressio IC50 for a
CPLEX n using drug
MILP
Lasso Drug R 4.2 Traditiona Yes Yes Predicted [140]
| Lasso IC50 for a
regressio drug
n

Specifically, let Y be a P x D matrix where P is the number of patients and D is the number
of tested drugs. Each of the entries of the matrix quantifies the sensitivity of each patient to
a drug, i.e., the matrix Y can be either the ICsp or a modified version of it, the area under
the concentration-response curve, etc. Let X be a P x M matrix where P is the number of
patients and M is the number of biomarkers. The matrix X can be a matrix of mutations,

gene expression, or other characteristics specific to each patient.
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In the case of binary variables (mutations for example), for each step in the splits of tree,

the following optimization problem is solved (Equations 4-6):

max A+ B
m,dq,d, (4)

A= Z Ypdl(xpm == 1) (5)
pEsplit

B= Z Ypdz(xpm == 0) (6)

pEsplit

Where split is the set of patients under study (all patients belong to the split in the case of
the root node), m is the selected mutation or biomarker, and di and dz are the selected
drugs for the patients that have or do not have the mutation m respectively. The notation
“(condition)” represents 1 or 0 depending on whether the expression inside the parenthesis
is true or false (Equations 5,6). This problem can be easily extended to continuous

variables, using a threshold (Equations 7-9). In this case the optimization problem is:

gllgxd A+ B

m

’ 1,42 (7)

A= Z Ypa, (Xpm >= th) (8)
pEsplit

B = Z Yp, (Xpm < th) 9)
pEsplit

Both optimization problems start by setting all the patients within the studied split. The
optimization splits the patients into two groups. For each of these groups, the algorithm is
applied recursively until the number of patients in the split is smaller than a given number

or until the optimization problem results in the same drug for both splits.
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Figure 26. ODT Model Performance. The ODT model uses as input the sensitivity matrix and the
biomarker matrix, on each step it splits the patients into two groups according to the presence or
absence of a biomarker. This split is optimized so that the drug-assigned is the most sensitive to each
of the splits. It recursively splits the different branches until a predefined group size is reached.

The equations (5,6,8,9) maximize the sum of the sensitivities of the patients of each of the
branches. Using the same algorithm, it is possible to apply any transformation of the
sensitivity and include them in the optimization process. In this case, equations (5) and (6)

are transformed into:

A= ) fOpa)(tom >= th)

pesplit

B = z f Wpa,) (xpm < th)

peEsplit

Equations (5) and (6) can be transformed in an analogous way. To minimize the effect of
outliers in the sum, we used the square root function to diminish the dynamical range of the

data. The transformation is named ODT Sqrt in this work.

Multinomial logistic Lasso regression

The assignation of the proper drug to each patient problem can be tackled as a multiclass
classification problem: the number of classes is the number of drugs and each patient is
assigned the most effective drug for him/her. Using this approach, a multinomial regression

can be applied to select the proper drug for each patient.
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Predicting exclusively the most effective drug can be simplistic, since the penalty for
misclassification is identical for the second most effective drug or for the least effective
drug. Since the multinomial regression can also be applied to classes defined by continuous
variables, it is possible to give a “vote” for each patient that can be shared among all the
drugs: the most effective drug will receive more shares of this vote that the least effective
drug. Assigning the whole vote to the most effective drug can be seen as a particular case
of this approach. Vote sharing can be seen as a transformation of the PM problem to a
classification problem using probabilistic labels.

The Lasso regression is also implemented for multinomial regression. The implementation
of gimnet (R Package) [140] is fast and convenient and allows for automatic selection of
the regularization parameters using cross-validation.

More specifically, the multinomial regression builds the multinomial regression model
(Equation 10)

XB~Z (10)

where X is a P x M matrix where P is the number of patients and M is the number of
biomarkers, Z is P x D voting matrix where P is the number of patients and D is the number
of tested drugs. All the elements of Z are positive and the sum of its elements by rows is
equal to one. Finally, B the output of the regression is a M x D coefficient matrix. XB are

the predicted logits for each drug being the most effective for each patient (Figure 27).
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Figure 27: Multinomial Model. The multinomial Model corresponds to a modified Multinomial logistic
lasso regression, where the output represents the votes that each patient assigns to each of the drugs.

The specific selection of the entries for the Z matrix is shown in Equation 11.
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exp| —K —222__
min(ypa)
Zpd = (11)
Z?_l exp| —K L
i min(ypi)

Where y,q are the entries of the Y matrix (that measures the sensitivity to a drug) and K is
a predefined constant. If K>>1, all the exponentials of the summations of the denominator
but the min(y,:)) vanished and the vote is given to the most effective drug. If K = 0, all the
drugs share 1/D votes.

Data for Comparisons

We focused on Acute Myeloid Leukemia (AML) to compare the different methods described
above. This disease was selected due to the availability of a wide cohort of patients with
genomics data and ex-vivo drug sensitivity screening data. Ex-vivo data is more reliable
than drug screenings performed on cell lines due to the similarity of the AML patients’ blood
to the tumor tissue. Furthermore, AML is a highly heterogeneous disease with not standard
PM therapeutic strategy, even though there is a growing field of drug development likely

suited for these patients, e.g. Tyrosine Kinase Inhibitors (TKIs)[141].

Consequently, we selected the BeatAML cohort [12] for training the models and predicting

different therapeutic strategies. This cohort is publicly available at http://www.vizome.org/ .

We normalized the drug sensitivity ICso from the ex-vivo experiments into IC50* described
in [2]. To validate the predictions and due to the absence of more large-scale ex-vivo
experiments we used as an independent cohort testing set, the GDSC drug screening for
AML cell lines [112], which could be found publicly available at

https://www.cancerrxgene.org/.

We compared the different algorithms primarily on the basis of four aspects that define
interpretability (Figure 28): i) the accuracy of the method, for which we performed a 5-fold
cross-validation in the training set, an independent cohort validation and an intragroup
validation with the predicted groups in the training and validation set, ii) the multi-omics
capability, for which we tested the ability and performance of the methods when training
with gene expression and genomic variants, iii) the explainability, for which we performed
a qualitative comparison of all algorithms, analyzed the number of variables that each

algorithm uses for prediction, and iv) the implementability, for which apart from qualitative
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comparisons based on the method definition, the computing time that each model requires

for training becomes essential.
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Figure 28: Summary of the available comparisons performed in this study. We trained the
different models in BeatAML cohort and tested the predictions predicting over GDSC. From the training
step we were able to obtain the training computing time, the number of variables required to make the
predictions, a 5-fold cross-validation using mutational and gene expression data, and intragroup
validation. Whereas for the testing step we performed and independent cohort prediction validation
using mutational and gene expression data, and another intragroup validation

/

Accuracy

The first “sine qua non” characteristic of a PM methods is the accuracy. An “interpretable”
method with low accuracy becomes irrelevant. We define the accuracy as the difference of
the IC50* for the assigned drug and the drug with maximum IC50* for that patient.

For assessing the accuracy of each of the methods, we performed the following
comparisons: 5-fold cross-validation, independent cohort validation, and Intra-group
validation.

5-fold cross-validation in BeatAML

We performed a 5-fold cross-validation using the BeatAML dataset. We trained all models
with genetic variants data from 319 patients, dividing the cohort between the training
samples 4-folds and testing samples the selected 1-fold. Each of the folds were tested, and

the predicted IC50* for the 5-fold testing was compared for all the methods and compared
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against the Oracle -the drug with the optimum IC50*- (Figure 29). We calculated the Oracle

as the minimum 1C50* value for each patient.

Select the minimum ICs, Sensitive Resistant

e

Figure 29: Oracle Method. The Oracle predicts the most sensitive drug for each patient or cell line.

Independent cohort validation

One of the main challenges of Machine Learning, including Precision Medicine, is
generalization, i.e. the ability to adapt to new, previously unseen data. All the methods were
tested on the GDSC AML dataset to check their generalization ability. The models were
trained using the BeatAML dataset and were used to predict the optimal drug for AML cell
lines from GDSC using its mutation files. Each of the cell lines was recommended a drug,
we compared the all-samples ICso for all the models and against the Oracle (the drug with

the minimum ICso for each cell line).

Intra group validation

We compared if the IC50* of a drug in the patients where it was recommended, was lower
the IC50* in patients where it was not recommended. Using this information, we compared
the sensitivity to a drug for a specific group against the sensitivity to that drug for the rest
of the samples by using a 2-tailed Wilcoxon test. This analysis was performed both for the
BeatAML dataset (training dataset) and the GDSC AML cell lines cohort (predicted
dataset). This analysis was performed using the predicted drug recommendation for the
BeatAML dataset (training dataset) and the GDSC AML cell lines cohort (predicted

dataset).

Multi-omics suitability

Some of the methods only accept as input binary variables. Although, genomic variants
can be transformed into binary variables, gene expression, methylation, or openness of the
chromatin are intrinsically continuous variables. We have included a table that checks if the

algorithm accepts only binary inputs (only genomic variants) or if it accepts continuous data
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as well (gene expression, methylation, etc.). For the methods that accept continuous
variables, we assessed the performance of the predictions (5-fold cross-validation) in the
BeatAML dataset using both data sources. We state the statistical significance using a 2-
tail Wilcoxon'’s test comparing the IC50* using as input either genetic variants or gene

expression.

Explainability
PM is more suited for healthcare if it can be interpreted. A machine learning method is
interpretable if it provides the decision criteria that define the pathway that leads to the

solution.

Explainability is defined by three different aspects: i) the explainability of the results, which
checks if the method provides a ranking of the variables according to their importance for
drug recommendation, ii) the capacity to output an easy-to-apply decision criteria, and iii)
the understandability of the methods, this category mentions if the process of the algorithm

to reach the classification criteria is easy to understand.

For assessing these characteristics, we performed a qualitative analysis based on the
method description and execution. Furthermore, we analyzed the number of variables that
each model requires to make the predictions. A model with a small number of variables is
easier to understand, improves the understanding of the variable ranking, and is easier to

for clinical diagnosis. Therefore, we paid special attention to the number of variables.

Implementability

Implementability is the easiness of a method being implemented into clinical research or
practice. We measured the implementability of a method by analyzing four main features:
i) the feasibility for wet-lab validations, ii) the consideration of the physician’s experience,
iii) the generation of a clinical guideline, and iv) technical implementation, which refers to
the computational burden and software that the method requires. We used qualitative
grades for the first characteristics. Regarding the technical implementation, we considered
the computational burden. Despite it could be considered less important, some of the
algorithms require hours of computing time for the BeatAML of the subset of AML samples
in GDSC -that be considered to be small/medium size. Requiring fewer resources makes
an algorithm more attractive to be applied for larger datasets. We also analyzed the

software environment that each model requires to be run.
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In this work, we compare several aspects of the performance of different interpretable
models [131]. These models were classified into two main groups. The first one, named
patient-based, are models that return a specific therapeutic strategy for each patient. The
second one, named drug-based, are models that provide the patient(s) that are especially
sensitive to a specific drug. Patient-based models include Multi-dimensional Module
Optimization (MOM) [2], Optimal Decision Trees (ODT), Kernelized Rank Learning (KRL)
[137], and Multinomial Lasso. Drug-based models are more suited for physicians and
clinical investigation. This group comprises BOSO [138] and Lasso [140]. Patient-based
methods rank the effectiveness of the drugs for a specific patient. Drug-based methods
rank the effectiveness of a specific drug for each of the patients.

All the methods were developed to predict the drug response or develop a treatment
strategy using genetic variants information. Thus, we trained the methods to predict drug
efficacy using patients’ samples and ex-vivo drug efficacy from the BeatAML [12] dataset.
The methods were compared in terms of interpretability, which was defined according to
four properties namely accuracy, adaptability, explainability, and easiness of

implementation.

Accuracy: all the methods provided good estimates

The first test to assess the accuracy was a 5-fold cross-validation in BeatAML [12]. Results
for this analysis can be found in Figure 30.a. Multinomial Lasso achieves the lowest
median, -the highest sensitivity- although it also entails the highest variability. Lasso’s
prediction is similar to the former one, but its standard deviation is smaller. Finally, MOM
and BOSO achieve almost identical median. ODT —in both versions — has the highest IC50*
prediction, i.e. the smallest value for sensitivity. However, the performance of the methods
—excluding ODT and ODT Sqrt— was not statistically significant (p-value >0.05). ODT and
ODT Sqrt predictions were significantly worse than Multinomial (two-sided Wilcoxon test p-
value=0.005921 and p-value=0.004942, respectively).
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Figure 30: Accuracy comparison. A) Accuracy in 5-fold cross validation from BeatAML cohort.
The different boxplots show the predicted IC50* of the drugs assigned to each of the patients. The
lower the IC50* is, the more sensitive the method is, ORACLE is the control that shows the best
possible drug to every patient in the cohort. B) Accuracy in independent cohort validation. The
different boxplots show the predicted IC50 of the drugs assigned to each of the patients in GDSC. The
lower the IC50 is, the more sensitive the method is, ORACLE is the control that shows the best possible
drug to every patient in the cohort. Models were trained in BeatAML and predicted over GDSC.
C)Intragroup validation of MOM in BeatAML. Each of the subplots represents the efficacy of one
drug, in blue the patients that were recommended that drug and in red the patients that did not have
that drug. Stars show the significance of the two-tailed Wilcoxon test (*** means p-value <0.05). D)
Intragroup validation of MOM in GDSC. Each of the subplots represents the efficacy of one drug, in
yellow the patients that were recommended that drug and in grey the patients that did not have that
drug. Stars show the significance of the two-tailed Wilcoxon test (*** means p-value <0.05). E)
Intragroup validation of ODT in BeatAML. Each of the subplots represents the efficacy of one drug,
in blue the patients that were recommended that drug and in red the patients that did not have that
drug. Stars show the significance of the two-tailed Wilcoxon test (*** means p-value <0.05). F)
Intragroup validation of ODT in GDSC. Each of the subplots represents the efficacy of one drug, in
yellow the patients that were recommended that drug and in grey the patients that did not have that
drug. Stars show the significance of the two-tailed Wilcoxon test (*** means p-value <0.05). G)
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Intragroup validation of ODT Sqrt in BeatAML. Each of the subplots represents the efficacy of one
drug, in blue the patients that were recommended that drug and in red the patients that did not have
that drug. Stars show the significance of the two-tailed Wilcoxon test (*** means p-value <0.05). H)
Intragroup validation of ODT Sqrt in GDSC. Each of the subplots represents the efficacy of one
drug, in yellow the patients that were recommended that drug and in grey the patients that did not have
that drug. Stars show the significance of the two-tailed Wilcoxon test (*** means p-value <0.05).

In the second test, the used the models trained on the full BeatAML, and tested them
against the Genomics of Drug Sensitivity in Cancer (GDSC) AML dataset. This dataset
contains the genetic variants information for each cell line and the ICso values for most of
the drugs in the same cell lines. The independent cohort validation showed very different
results from the 5-fold cross-validation (Figure 30.b), In this case, the ODT standard
method achieved the best sensitivity score followed by MOM, Multinomial Lasso, Lasso,
ODT square root and BOSO. The IQR for ODT and its standard deviation were much larger
than for other methods. Nevertheless, there were no statistical significance in the difference
of the predicted GDSC ICso comparing any of the methods.

In the third test, we analyzed the intra-group classification performance. In this test we
compared the IC50* of patients that were recommended a drug with the IC50* of the rest
of patients using BeatAML and GDSC. The models with the best intragroup performance
were MOM and ODT in their standard form followed by ODT Sqrt. MOM showed a
significant sensitivity difference in 3 out of 4 groups for the BeatAML dataset (Figure 30.c)
and 3 out of 4 for the GDSC dataset (Figure 30.d). ODT standard achieved a significant
intragroup sensitivity in 4 out of 6 groups for BeatAML (Figure 30.e) and 2 out of 5 for
GDSC (Figure 30.f). Finally, ODT Sqrt significantly recommended the usage of 3 drugs out
of 5 for BeatAML (Figure 30.g), and 1 out of 4 in GDSC (Figure 30.h). No statistical
significance was found for the rest of the methods. Probably, this is owing to that there are
more 10 different suggested treatments and the number of patients is small to get statistical
significance (Appendix 3:Figure S6-Figure S13).

Multi-omics: using gene expression as input provides similar accuracy

if compared to genetic variants.

We tested whether using gene expression could improve the method accuracy [142]. We
trained all models (except MOM and KRL, since they do not accept continuous inputs)
using BeatAML gene expression (GE) data. We performed a 5-fold cross-validation in
BeatAML dataset for the models predicting GE and genetic variants data. The results in

Figure 31 show that the predictions do not significantly change when varying the type of
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input, except in the Multinomial Lasso, where the use of gene expression significantly
increased the precision of the method and in the Lasso, where it significantly decreased
the sensitivity of the method. This analysis was also performed training in BeatAML and
predicting in GDSC with the mutational and GE models. For which, Appendix 3: Figure
S14 showed no statistical significant difference in model sensitivity for any of the methods.

5-fold CV in BeatAML
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Figure 31: Using GE data over Mutational Data does not improve Method Precision. We
compared for each of the algorithms the accuracy in response using Mutational and Gene Expression
data as input. Distributions plotted in a lighter color are the responses obtained by each of the methods
when using Gene Expression, whereas distributions plotted in darker non-transparent colors are the
responses of the methods obtained when using mutational data.

Explainability: tree-like methods (MOM and ODT) require much less variables

than any other methods

To measure the explainability of the method, we trained the models with the BeatAML
dataset and checked the number of variables that each model required to make the
predictions. Results are included in Figure 32.a. Remarkably, MOM and ODT use less than
5 variables, almost ten times less than the rest of the methods. BOSO, Multinomial Lasso,
and Lasso use more than 30 variables. Among them, BOSO (with 33 variables) is the
method that requires less variables. BOSO builds a linear model for each of the drugs.
Each of the results (as occurs in Lasso) are sparse: it requires only 5 variables to predict
drug response for some drugs. Since these variables are not identical for every drug, in the
end, it requires 33 variables to make the predictions. Multinomial Lasso and Lasso were
coded to preserve the same variables for predicting over all the drugs. BOSO did not
implement this option.
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Regarding the KRL method the number of variables it does not provide automatic feature

selection but use regularization methods. Thus, all the 69 gene variants are used.

ODT and MOM output the decision criteria it the form of a decision-tree. The main
difference between ODT and MOM decision trees is their structure, ODT’s tree structure
have several branches where drugs for each of them. MOM’s tree structure is linear, it is
divided into different sequential steps, each of them defined by a biomarker, and there is a
drug recommendation on every step. Regression-based methods (BOSO, Lasso and
Multinomial Lasso) provide the weights for each of the biomarkers on each of the drugs.
Therefore, it is possible to check which are the critical biomarkers for each drug. KRL use
kernels to guess the proper treatment. In this case, it is much more complex to understand
which are the key genomic variants for the recommendation system.

Implementability: Optimal Decision Trees and MOM are the most prone to

clinical practice and ODT the least computing time consuming

We also considered the easiness to implement the methods in wet lab or even clinical
practice according to four different points: i) the feasibility for wet-lab validations, ii) the
consideration of the physician’s experience, iii) the generation of a clinical guideline, and

iv) the computational implementation.

Tree-based models require less biomarkers than regression models or KRL. In addition,
there are few operations to perform the predictions that can be done directly by hand. On
the contrary, regression models and KRL require more genes and a computer-based

environment to perform the drug assignation.

Regarding the computational burden of each of the methods, all the methods need to be
trained in different software environments such as R or Python. Once trained, the tree-
based models directly provide a guideline that do not require the environment anymore.
We have timed the training process of the 6 models (Figure 32.b) using Mutational data
and Gene Expression (where possible). ODT is the fastest method to train (0.05 seconds
for training using mutational data and less than 5 seconds using gene expression data).
Multinomial requires around 15 second using either mutational data or gene expression
data. Lasso lasts 10 and 100 seconds using mutational and gene expression data
respectively. Finally, MOM, KRL and BOSO require several hours for training their models.
MOM and KRL are not suitable for gene expression data so they have been excluded for

the timing analysis with this data. Prediction time is similar (and negligible if compared with
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training time) in all the 6 methods. Focusing on the installation, models based on MILP
(BOSO, KRL, and MOM) require a complex installation of software (Table 4). They are also
the most time-consuming methods. ODT, Multinomial, and Lasso, only require of R
installation to run. All these conclusions that could lead to rank methods according to

Interpretablility have been summed up in Table 5.
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Figure 32: Variable Number and Computer timing performance comparisons. A) Variable
number comparisons. All methods were trained in BeatAML cohort, after the training process we
extracted the number of non-zero weighted input variables that each model requires for making the
predictions. The horizontal axis shows the number of variables required by each method. B) Computer
timing comparison. We measured the training time that each model requires using genetic variants
(lower plot) or gene expression (upper plot) as input, time is shown in seconds in the horizontal axis.
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Table 5: Table containing the interpretability comparisons for each method. The values No(<), Yes(*), and Very(***), reflect whether the method does
not, fulfills or greatly fulfills -respectively-, the conditions mentioned in the columns. Gene Expression refers to whether the method is suitable for this type
of omics data, Genetic Variants refer to whether the method is suitable for this type of omics data. Explainable, refers to whether the method provides a
reference of variable importance that could lead to a reasoning of the classification, Understandable Method, is defined as the logical explanation of the
method, i.e., it does not rely on random selection, Outputs Decision Criteria, refers to whether the method provides the decision criteria used in the
assignation, Easy translation, refers to the ability of the method to be wet-lab validated, to enhance the physician or researcher experience and output a
therapeutic strategy for ulterior patients.
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In this work we have selected four precision medicine methods -MOM, BOSO, Lasso, and
KRL- and developed two additional ones —Optimal Decision Trees and Multinomial Lasso—,
to compare them regarding their interpretability. We performed six quantitative
comparisons and four qualitative comparisons. All the methods were similar in terms of
accuracy. However, MOM and Optimal Decision Trees were the most interpretable and

easy to implement.

PM is a topic that is being widely addressed and there are new algorithm proposals. It may
seem surprising that we included only four of them in this comparison and, indeed, we
developed two additional ones. A systematic review of all the methods --cited in the
Introduction section-- included Machine Learning (ML) methods (using either deep learning,
neural networks, support vector machines, random forests, etc). Among the 24 methods
that used ML for making their predictions, only 10 were explainable. Of those 10, 5 of them
did not solve the “patient-centred” problem: assign the proper drug to each patient. We
ended up with MOM, BOSO, KRL, and LOBICO, and added Lasso as a control of a
traditional approach in the ML field. LOBICO approach, that was also tested on this dataset
elsewhere [139] is drug-centred and, since the output variable is discrete, it cannot be
transformed into the patient-centred problem and not suitable for this comparison [139]. We
developed two additional methods, both patient-centred, with two different approaches:

regression (Multinomial) and tree classification (ODT).

In this work, we have defined Interpretability splitting it into four main concepts: Accuracy,
Multi-omics capacity, Explainability, and Implementability. An interpretable PM method
should be accurate and understandable by the common researcher or clinician. Accuracy
is strictly necessary: if a method is not accurate, it becomes irrelevant despite being easy
to understand. Multi-omics capacity, measures the robustness of the method to adapt into
different data sources, that could be essential for new lines of research. Explainability is
also essential, it should show the reasoning for reaching the results. Finally, the ease of
implementation defines the ability of the method to incorporate the clinician experience and

provide an easy technical usage.

We focused on a specific sensitivity value named IC50*. This metric was previously
described in [2] or in [137] and is a normalization of the logarithm of the 1Cso. Normalizing

the ICso --or other sensitivity value-- is crucial as the best drug is not necessary the drug
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with the lowest ICso value. In fact, a drug with a low ICso can be toxic for the patients. Toxic
drugs tend to have low ICsp values in all tissues, whereas the focus must be set on drugs
with differential sensitivity for different tissues. Normalizing the logarithm of the ICso by
removing the mean sensitivity value of the drug in all patients, preserves the sensitivity
profiles of the drugs and penalizes drugs that are sensitive or resistant in all tissues. The
dosage of drugs with higher ICso can be adjusted to obtain drug effectiveness. We trained
all the models with the normalized version, IC50%, to avoid the aforementioned problems.

All the methods predict reasonably well in terms of accuracy. The 5-fold cross-validation
and the independent cohort validation, showed that the different methods had similar
median and the differences were not statistically significant. The intragroup validation,
showed that the regression-based models (KRL, BOSO, Lasso, and Multinomial) were not
able to distinguish between responders and non-responders to a specific drug. This result
is reasonable since these methods do not divide the patients according to responders or
not responders to one biomarker, but cherry-picked patients based on weighted
combinations of biomarkers. MOM, on the contrary, has a restriction within its model
formulation that means that all patients with a biomarker that confers sensitivity to a specific
drug should be treated in that current step [2]. Nevertheless, not having a successful

intragroup validation does not invalidate the model.

The multi-omics suitability is a “hot-topic” in PM, as there is not a current gold standard
based on which type of data is more accurate when predicting drug response. Some
models use genetic variants to promote interpretability, whereas other use gene expression
or integrated omics for improving accuracy. In this work, we compared the accuracy
changes when training and predicting on gene expression and genetic variants separately,
and found almost no significant statistical difference in the performance. Drug response is
mediated in living beings by complex regulatory and metabolomic processes that are most
likely to be solved using an integrated omics input, instead of just one single omics.

However, the more complex the model becomes, the less interpretable it is.

Regarding the explainability, we included also a qualitative comparison since focusing only
on the number of variables, does not justify that the method is understandable. It is also
desirable that the method can provide decision criteria, i.e. a complete process that a
clinician can follow and understand. This consideration has paramount importance if it is to
be approved by regulators for medicine [49,143]. Consequently, we focused on the ease

to understand the output of the methods, and the explainability of the results. We defined

118



Discussion of Section 3

the latter, as the ability of the method to rank the input variables in order of importance for
drug assignation. Of course, a smaller number of variables is easier to understand. The
tree-based models require less than six variables, and it increases up to five times in the
regression-based models. BOSO, however, uses only five variables to predict response of
just one drug, but when translated into a patient-centred approach, the total nhumber of
variables used for predicting in all drugs is equal to 33. For Lasso and Multinomial, the
number of variables has been optimized to predict response in all drugs. KRL, however,
did not consider this parameter and uses all variables provided as input to make the
predictions, being the less explainable method.

Implementability is a concept easier to understand, as it directly facilitates the clinical
translation. Most of the implementability comparisons were qualitative, but we performed a
technical comparison of the methods regarding its computational burden. There we showed
that MOM, which was leading the accuracy comparisons, is the most time consuming up to
2.5 hours on a normal machine, and it is the model that requires the highest number of
software environments: R, Python, and CPLEX need to be installed in the machine (and
related to each other). It is the most resource consuming. However, if compared against
ODT, which achieved similar accuracy performance, the latter only requires R and the
algorithm is trained, even using gene expression, in less than 5 seconds. Besides, ODT is
more explainable than MOM, because the method is easier to understand, although it is

quite similar to MOM regarding the other explainability and implementability criteria.

Nonetheless, Multinomial and Lasso are also explainable, if not compared against other
methods, and there are additional functions -not defined in the methods themselves- that
can be applied to extract the algorithm reasoning or decision criteria. Also, linear models

can be understandable as the Bs reflect the variable importance for prediction.

To summarize, in this work we defined a quantitative method for evaluating the
interpretability of a given machine learning method, because, as previously discussed,
accuracy is not the only important factor in the complex field of health. The defined criteria
can serve as a guide for developing new translational methods aimed at solving precision

medicine problems
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The defined objectives have been identified, developed, and achieved within this PhD

thesis paper.

The first section provided a computational approach to identify LEDs with increased
predictive power and was validated both in silico and in vitro. Predictions of LEDs from
functional screens can be dramatically improved by incorporating the “HUb effect in Genetic
Essentiality” (HUGE) of gene alterations. We analyzed three recent genome-wide loss-of-
function screens -Project Score, CERES score and DEMETER score- identifying LEDs with
75 times larger statistical power than using state-of-the-art methods. Using acute myeloid
leukemia, breast cancer, lung adenocarcinoma and colon adenocarcinoma as disease
models, we validate that our predictions are enriched in a recent harmonized
knowledgebase of clinical interpretations of somatic genomic variants in cancer (AUROC >
0.87). Our approach is effective even in cancers with large genetic heterogeneity such as
acute myeloid leukemia, where we identified LEDs not recalled by previous pipelines,
including FLT3-mutant genotypes sensitive to FLT3 inhibitors. Interestingly, in-vitro
validations confirm lethal dependencies of either NRAS or PTPN11 depending on the
NRAS mutational status.

The second section presented a novel explainable method -called multi-dimensional
module optimization (MOM)- that associates drug screening with genetic events, while
guaranteeing that predictions are interpretable and robust. We applied MOM to an AML
cohort of 319 ex-vivo tumor samples with 122 screened drugs and WES. MOM returned a
therapeutic strategy based on the FLT3, CBF-MYH11, and NRAS status, which predicted
AML patient response to Quizartinib, Trametinib, Selumetinib, and Crizotinib. We

successfully validated the results in three different large-scale screening experiments.

The third section compared six different machine learning methods to provide guidance for
defining interpretability by focusing on: Accuracy, Multi-omics Capability, Explainability, and
Implementability. Our selection of algorithms included tree, regression, and kernel-based
methods. We also included two novel explainable methods in the comparison. There were
no significant differences in accuracy when comparing methods or when using gene
expression instead of mutational status as input to these methods. This allowed us to
concentrate on the current intriguing challenge: model comprehension, and ease of use.

We discovered that the tree-based methods were the most interpretable of those tested.

Thus, the objectives that were stated at the beginning of the writing of this dissertation

report have been fulfilled. However, one of the main limitations of the development of this
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work is the subjectivity regarding traslationality to clinical practice or research. The issues
that exist on the implemention of these models are not only raised by regulatory agencies,
e.g. FDA or EMA. They also directly depend on the research centre surroundings,

researcher's expertise, the availability of technical resources or funds for data collection.

The primary goal of the interpretability criterion is to not decrease the accuracy of the
method and by secondary goal to reduce application costs and staff training time. Accuracy
is a must since the patient will bear the brunt of the consequences. However, the criterion
we established is debatable. We also believe that the correct quantitative definition of
interpretability should be reached through consensus with a specialized committee
comprised of physicians and researchers from various backgrounds and research
institutions, e.g., regulatory agencies, bioinformaticians, or physicians.

We have defined and validated several methods that solve two major problems in the state-
of-the-art. The HUGE method successfully solves the problem of multiple hypothesis
correction for treatment search. In turn, this method has been implemented in an algorithm
known as MOM, which generates a very simple and accurate treatment pipeline given a
tumor type. It is one of the first methods to solve the assignment problem by returning a
hierarchical and sequential treatment guideline.

This fact distinguishes it from other explainable methods that return the variable hierarchy
but do not explain the algorithm's reasoning, which is critical for regulatory validation.
Finally, the ODT algorithm significantly improves the limitations presented in MOM because
it achieves a similar result in terms of accuracy using a recursive optimization method rather
than MILP, making it much more implementable. Both methods achieve results that are
very close to the state of the art in terms of accuracy, and both methods produce a simple
and hierarchical therapeutic strategy.

The evolution of ODT has allowed us to demonstrate that accuracy does not always go
hand in hand with statistically complex models, but that it is critical to consider the model's
objective or implementation requirements before defining it. Regarding the approach to
solving the assignation problem, we have seen that the "patient-centred" approach allows

for more understandable results. Furthermore, it is the most logical solution to the problem.

As a result, the methods HUGE, MOM, ODT, and Multinomial—which were created
alongside other members of the research team and the PhD thesis' co-directors—are

introduced into the science knowledge. Although these techniques were applied to AML,
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they can be applied to any disease as long as the types of data that each of them needs

as input are available. The quantitative metric of interpretability is likewise contributed to

the state of the art as a strategy for developing new Precision Medicine methods.

Finally, the following are proposed as future research directions:

1.

The incorporation of new omics, including multi-omics specifically, methylation or
chromatin access, to increase the versatility of methods in various fields of
research. It would be necessary to adapt the methods, particularly HUGE and
MOM, because they do not allow for this adaptability.

To improve the accuracy of ODT, this method employs a recursive optimization
for the generation of the decision tree, but it could be extended to hundreds of
trees mimicking the random forest technique. Although the method would be less
interpretable, the accuracy can improve and will also return alternative treatments
for each patient.

We also propose an in vitro validation of the classification obtained by MOM,
Multinomial, or ODT in AML, which was not done during the doctoral thesis due to
a scarcity of time. This validation, which was completed with HUGE, could result
in a fresh approach in disease research since the sensitivity of patients to
recommended drugs or the effect of the proposed biomarkers could be studied.
Contributing to the much-needed new treatments for this type of cancer.

After in vitro testing with AML were successful, the use of these algorithms could
be transferred to the study of therapies for other diseases, adapting the methods

to the requirements of the researcher or practitioner.
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Protocol for In-vitro validation

Cell culture

The AML cell lines HL-60, HEL, MV4-11 and OCI-AML3 were maintained in culture in
RPMI-1640 medium supplemented with 10% fetal bovine serum (Gibco, Grand Island, NY),
penicillin/streptomycin (BioWhitaker, Walkersvill, MD) at 37 °C in a humid atmosphere
containing 5% CO2. All cell lines were tested for mycoplasma (MycoAlert Sample Kit,
Cambrex) and were authenticated by performing a short tandem repeat allele profile.

Cell transfection

Cells were passaged 24 hours before nucleofection, and cells for nucleofection were in
their logarithmic growth phase. The transfection of sSiRNAs was done with the Nucleofector
Il device (Amaxa GmbH, Kdln, Germany) following the Amaxa guidelines. Briefly, 1x108 of
HL-60, HEL, MV4-11 and OCI-AML3 cells were resuspended in 100 pL of supplemented
culture medium or solution V in the case of HL-60 cells, with 75nM of NRAS or PTPN11
siRNAs or Silencer Select Negative Control-1 siRNA (Ambion, Austin, TX) and
nucleofected with the Amaxa nucleofector apparatus using programs A030 (HEL, MV4-11
and OCI-AML3) or T019 (HL-60). We used two different siRNAs against NRAS target
(SINRAS A: GAACCACUUUGUAGAUGAA; siNRAS B: AAGGACAGTTGATACAAAA) and
PTPN11 (siPTPN11 A: AGAUGUCAUUGAGCUUAAA; SiPTPN11 B:
GAAAGAAGCAGAGAAAUUA) to demonstrate that the results obtained with siRNA
nucleofection are not due to a combination of inconsistent silencing and sequence specific
off-target effects. Silencer Select Negative Control-1 siRNA was used to demonstrate that
the nucleofection did not induce non-specific effects on gene expression. Nucleofection
was performed twice with a 24 hours interval. 48 h after the second nucleofection, the
NRAS and PTPN11 mRNA expression was analyzed by Q-PCR (GUSB was employed as
the reference gene). Cell proliferation was analyzed 0, 2 ,4 and 6 days after two repetitive
transfections. Transfection efficiency was determined by flow cytometry using the BLOCK

IT Fluorescent Oligo (Invitrogen Life Technologies, Paisley, UK).

Cell proliferation assay

Cell proliferation was analyzed using the CellTiter 96 Aqueous One Solution Cell
Proliferation Assay (Promega, Madison, W). This is a colorimetric method for determining

the number of viable cells in proliferation. For the assay, 100 pL of nucleofected cells were
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plated in 96 wells plates 0, 2, 4 and 6 days after the last nucleofection. Plates with
suspension cells were centrifuged at 800 g for 10 minutes and medium was removed. Then,
cells were incubated with 100 plL/well of medium and 20 pL/well of CellTiter 96 Aqueous
One Solution reagent. The plates were incubated for 1-4 hours, depending on the cell line
at 37 °C in a humidified, 5 % CO2 atmosphere. The absorbance was recorded at 490 nm
using 96-well plate readers until absorbance of control cells without treatment was around
0.8. The background absorbance was measured in wells with only cell line medium and
solution reagent. First, the average of the absorbance from the control wells was subtracted
from all other absorbance values. Data were calculated as the percentage of total
absorbance of siRNA transfected cells/absorbance of control cells.

Quantitative-PCR (Q-PCR)

The expression of NRAS and PTPN11 was analyzed by Q-PCR in HL-60, HEL, MV4-11
and OCI-AML3 AML cell lines. First, total MRNA was extracted with Trizol© Reagent 5791
(Life Technologies, Carlsbad, CA, USA) following the manufacturer instructions. RNA
concentration was quantified using NanoDrop Specthophotometer (NanoDrop
Technologies, USA). cDNA was synthesized from 1 ug of total RNA using the PrimeScript
RT reagent kit (Perfect Real Time) (Cat No RR037A, TaKaRa) following the manufacturer’s
instructions. The quality of cDNA was checked by a multiplex PCR that amplifies PBGD,
ABL, BCR and §2-MG genes. Q-PCR was performed in a QuantStudio 5 Real-Time PCR
System (Applied Biosystems), using 20 ng of cDNA in 2 pL, 1 pL of each primer at 5uM
(NRAS F: 5-CGCACTGACAATCCAGCTAA-3’; NRAS R: 5'-
CCAACAAACAGGTTTCACCA-3’; PTPN11 F: 5-CGGAGCCTGAGCAAGGAG-3’;
PTPN11 R: 5-CTGCCTCCACACCAGTGATA-3’; GUSB F:5' gaaaatatgtggttggagagctcatt-
3’; GUSB R: 5'- ccgagtgaagatcccctttita-3’), 6 yL of SYBR Green PCR Master Mix 2X (Cat
No 4334973, Applied Biosystems) in 12 pL reaction volume. The following program
conditions were applied for Q-RT-PCR running: 50 °C for 2 min, 95 °C for 60 s following by
45 cycles at 95 °C for 15 s and 60 °C for 60 s; melting program, one cycle at 95 °C for 15
s, 40 °C for 60 s and 95 °C for 15 s. The relative expression of each gene was quantified

by the Log 2(22¢) method using the gene GUSB as an endogenous control.

Demonstration of the increased statistical power

Lemma: Let us consider two methods that correct multiple hypothesis test, and let us

consider that both methods provide a different number of positives for the same FDR. Then,
130



Appendix 1: Extended Information of HUGE method to predict Lethal Dependencies

the method that provides a larger number of positives has more statistical power. It is also

more specific and sensitive.

The power or sensitivity of a statistical test is the probability that the test correctly rejects
the null hypothesis H, when the alternative hypothesis H; is true. Its value is TP/(TP+FN).

Let’s consider that the estimation of the FDR is performed by two tests A and B and both
tests have the same False Discovery Rate (20% for example). The FDR will be

FP, TP, FPy TPy

FDR = =1- = =1-
TP, + FP, TPy +FP, TPy +FPg TPs + FPy

(1a)

The power of each test will be

PWy=1-8,= 1b
A A TPA FIVA( )

PWy =1 ﬁ = 5 1
B BT TPy + FNy (1c)

Since both tests are performed on the same dataset, the number of true null hypothesis H,
(FP + TN) and true alternative hypothesis H; (TP+FN) will be identical, i.e.,

FPy + TN, = FPy + TNy (1d)
TPA +FNA =5 TPB + FNB(le)

Notice that the denominators of the expression of the power (eq (1b) and (1c)) are identical
according to (1e).

The total number of positives returned by each test is TP, + FP, and TPy + FPy. Let's
assume that method A, returns more positives than method B, i.e.

TP, + FP, > TPy + FPy(2)
Using eq. (1a), and (2)
TP, = (1 — FDR)(TP, + FP,)(3a)
And,

TPy = (1 — FDR)(TPg + FP)(3b)
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Since (2), the righthand member of equation (3a) is larger than the righthand member of

equation (3b) and therefore,

TP, > TPg(4)
As a result,

PW, > PW,

Corolary I. Since PW, = 1 — B4 the type Il error using A is smaller than using B.

Ba < Bs
Corolary Il. The type | error is
FP,
Yy ==
FP,+TN,
And the sensitivity is:
L TN,
%A= TP, + TN,

By (1e) and (4), it is straightforward to conclude that
ay < ap

Therefore, the method that provides a larger number of positives outperforms the other
both in terms of specificity and sensitivity (or type | and type Il errors).
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Extended Information Beat AML Cohort

Biomarker Analysis

We performed an extensive biomarker analysis to characterize the WES from Beat
AML[144] cohort using the maftools [145] R package (version 2.10.05). We intended to
understand the different processes that are regulating the biomolecular characterization of
this cohort. To do it, we plotted several figures that contain the relevant information

concerning the genetic profile of the patients in the cohort.

Figure S1 shows that 88.16% of patients have at least one genetic variation, the majority
of these variants are missense, and DNMT3A, NPM1 and NRAS are the most commonly
mutated genes in this cohort. Moreover, from these variants, the majority correspond to
single Nucleotide Variants (SNVs) with the signature C>T that is quite frequent in malignant
cancer types followed by C>A which is associated with environmental exposure[96] (Figure
15). We appreciated that the median of genetic variants per patient is 8 variants and that

only FLT3 and SRSF2 had insertions i.e. FLT3-ITD.

Altered in 536 (88.16%) of 608 samples.
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Figure S1: Mutational Status of Beat AML cohort. This plot shows the different types of genetic
variants, the lateral barplot shows the sum of all the genetic alterations in all patients and colours the
type of variant. In the horizontal axis we have the individual patients’ information, showing some
patients having up to 70 co-occurring mutations. Of the 608 patients, 538 had at least one genetic
variant (88.16%).

We tried to understand more in-depth the SNVs changes and classified them into

transitions (two-ring purines or one-ring purines changes) and transversions (changes of
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purines for pyrimidines) we discovered that in this cohort the transitions are more frequent
with the most common transition being C>T, followed by a transversion C>A (Figure S2).
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Figure S2: Transitions(Ti) and Transversions (Tv) landscape in Beat AML cohort. Ti vs. Tv plot
shows the number of the transitions and transversions showing that even when transversions seem
most probable to occur, transitions are more present in this cohort. Boxplot showing overall distribution
of six different conversions and as a stacked barplot showing the fraction of conversions in each
sample. The most common transition is C>T, followed by a transversion of C>A.
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Using the Whole Exome Sequencing (WES) data provided in the Beat AML cohort we
analysed co-occurrence and mutual exclusivity of genetic variants at the gene level. We
appreciated that FLT3 and NPML1 variants are co-occurrent (p-value <0.05), and FLT3 and
TP53 (p-value <0.05) and NRAS and IDH2 are mutually exclusive respectively (p-value
<0.05) (Figure 22).

AML is a highly heterogenetic disease and consequently, genetic translocations are
included as possible biomarkers. All translocations can be identified by a gene fusion
product: inv(16) with CBFB-MYH11, inv(3) with RPN1-EVI1, t(9;11) with MLLT3-MLL, and
1(8;21) with RUNX1-RUNX1T1. From these translocations, inv(16) appears in co-
occurrence with FLT3, KIF20B, and ADAMTS7 variants. Whereas t(9;11) can appear with
NRAS variants and inv(3) with KIT variants (Figure S3).
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Figure S3: Translocations and SNVs. All translocations can be identified by a gene fusion product:
inv(16) with CBFB-MYH11, inv(3) with RPN1-EVI1, t(9;11) with MLLT3-MLL, and t(8;21) with RUNX1-
RUNX1T1. From these translocations, inv(16) appears in co-occurrence with FLT3, KIF20B, and
ADAMTS?7 variants. Whereas t(9;11) can appear with NRAS variants and inv(3) with KIT variants

Finally, we addressed the biological consequences of this mutational landscape by
interrogating the alteration of the most common oncogenic pathways (Figure S4). We saw
that RTK-RAS is the most affected pathway, having an alteration in 31 out of 85 genes and
itis presentin 237 out of 608 patients. Remarkable alterations include NOTCH, WNT, MYC,
TP53 and TGF-B pathways. We included a summary by the patient showing the complete

pathway alterations (Figure S5).
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Figure S4: Oncogenic Signalling Pathways altered in Beat AML cohort. The barplot on the left
represents the proportion of genes that are altered in the pathway, whereas the barplot on the right,
shows the proportion of samples that are having an alteration in that pathways.
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Figure S5: RTK-RAS pathway alterations. In the Y-axis all genes are included in the pathway, in
blue the oncogenes and red tumour suppressor genes. In the X-axis all the samples with RTK-RAS
altered and the red marks show the pathway genes altered for each sample.

Additional Results on GO analysis

We tried to understand more in-depth each of the subgroups whose treatment according to
MOM is different. The methodology is described in the Methods section of the main
manuscript. This section includes the results from the enrichment analysis based on gene
expression including all the functions that appeared as statistically enriched from the two
conditions up and downregulated.

We also included Table S1-Table S8, contained detail statistical information of the top 10

significant upregulated and downregulated ontologies for each subgroup.
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Table S1:Top 10 GO upregulated FLT3M“-Quizartinib subgroup

ID Description GeneRatio BgRatio P-value P-adjust

GO:0007389 pattern 33/304 314/13290  2,15E-13 6,86E-10
specification
process

GO0:0003002 regionalization 27/304 245/13290 1,22E-11  1,95E-08

G0:0044782  cilium organization 30/304 308/13290 1,97E-11 2,10E-08

G0O:0048704 embryonic skeletal 15/304 70/13290 4,05E-11  3,23E-08
system
morphogenesis

G0:0098840 protein transport 14/304 61/13290 6,83E-11  3,63E-08
along microtubule

G0:0099118  microtubule-based 14/304 61/13290 6,83E-11  3,63E-08
protein transport

G0:0060271  cilium assembly 28/304 294/13290 1,63E-10 7,42E-08

G0:0048598 embryonic 35/304 449/13290  2,05E-10 8,18E-08
morphogenesis

G0:0048706  embryonic skeletal 16/304 92/13290 2,49E-10 8,86E-08
system
development

GO0:0042073 intraciliary transport  12/304 46/13290 3,21E-10 1,03E-07

Table S2. Top 10 GO downregulated FLT3"“-Quizartinib subgroup.

ID Description GeneRatio BgRatio P-value P-adjust

G0:0042119 neutrophil activation ~ 59/397 471/13290 2,68E-21 9,86E-18

G0:0036230 granulocyte 59/397 477/13290 5,09E-21 9,86E-18
activation

G0:0043312 neutrophil 57/397 459/13290 2,10E-20 2,71E-17
degranulation

G0:0002283 neutrophil activation  57/397 462/13290 2,88E-20 2,79E-17
involved in immune
response

GO0:0002446 neutrophil mediated  57/397 472/13290 8,12E-20 6,30E-17
immunity

G0:0043299 leukocyte 58/397 499/13290 2,40E-19 1,55E-16
degranulation

G0:0002430 complement 6/397 11/13290 2,78E-07 0,000154203
receptor mediated
signaling pathway

G0:0097529 myeloid leukocyte 20/397 185/13290 6,75E-07 0,000327246
migration

G0:0060326 cell chemotaxis 24/397 257/13290 7,88E-07 0,000339463
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GO0:0071621

granulocyte 14/397 104/13290

chemotaxis

2,47E-06 0,000957551

Table S3. Top 10 upregulated GO in Inv(16)-Trametinib subgroup

ID Description GeneRatio BgRatio P-value P-adjust

G0:0001525 angiogenesis 35/369 422/13290 7,10E-09 2,58E-05

G0:0048514  blood vessel 36/369 492/13290 1,08E-07 0,000195429
morphogenesis

G0:0043542 endothelial cell 19/369 182/13290 7,33E-07 0,000853836
migration

G0:0031589 cell-substrate 25/369 299/13290 9,40E-07 0,000853836
adhesion

G0:0001935 endothelial cell 15/369 132/13290 3,81E-06 0,002400726
proliferation

G0:0001667 ameboidal-type 26/369 345/13290 3,97E-06 0,002400726
cell migration

G0:0002040 sprouting 13/369 104/13290 5,88E-06 0,002540273
angiogenesis

GO:0007160  cell-matrix 18/369 194/13290 7,74E-06  0,002540273
adhesion

G0:0010631 epithelial cell 21/369 254/13290 8,41E-06 0,002540273
migration

GO0:0090132  epithelium 21/369 254/13290 8,41E-06 0,002540273
migration

Table S4. Top 10 downregulated GO for Inv(16)-Trametinib subgroup
ID Description GeneRatio BgRatio P-value P-adjust
G0:0042743 hydrogen peroxide  8/338 46/13290 1,81E-05 0,061785701
metabolic process
G0:0015669 gas transport 5/338 16/13290 3,58E-05 0,061785701
Table S5. Top 10 Go upregulated for NRASM!-Selumetinib subgroup

ID Description GeneRatio BgRatio P-value P-adjust

G0:0036230 granulocyte 35/348 477/13290 3,57E-08 6,48E-05
activation

G0:0043312  neutrophil 34/348 459/13290 4,50E-08 6,48E-05
degranulation

G0:0002283 neutrophil activation  34/348 462/13290 5,27E-08 6,48E-05

involved in immune
response
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G0:0042119 neutrophil activation  34/348 471/13290 8,40E-08 6,53E-05

G0:0002446 neutrophil mediated  34/348 472/13290 8,84E-08 6,53E-05
immunity

G0:0043299 leukocyte 35/348 499/13290 1,09E-07 6,68E-05
degranulation

G0:0007179 transforming growth  18/348 167/13290 3,83E-07 0,000202153
factor beta receptor
signaling pathway

GO:0071560 cellular response to  18/348 210/13290 1,04E-05 0,004387859
transforming growth
factor beta stimulus

G0:0045765 regulation of 20/348 252/13290 1,07E-05 0,004387859
angiogenesis

GO0:0030512 negative regulation  10/348 70/13290 1,31E-05 0,00446212
of transforming
growth factor beta
receptor signaling
pathway

Table S6. Top 10 GO downregulated for NRASM“-Selumetinib subgroup

ID Description GeneRatio BgRatio pvalue p.adjust

G0:0022613 ribonucleoprotein 23/328 432/13290 0,000458011 0,539178113
complex biogenesis

G0:0060571 morphogenesis of 4/328 18/13290  0,000847547 0,539178113
an epithelial fold

GO0:0000377 RNA splicing, via 19/328 343/13290 0,000887653 0,539178113
transesterification
reactions with
bulged adenosine
as nucleophile

GO0:0000398 mRNA splicing, via  19/328 343/13290 0,000887653 0,539178113
spliceosome

GO0:0000375 RNA splicing, via 19/328 346/13290 0,000984103 0,539178113
transesterification
reactions

G0:0008380 RNA splicing 22/328 431/13290 0,001055832 0,539178113

G0:0009954  proximal/distal 4/328 20/13290 0,00129069 0,564953245
pattern formation

G0:0006397 mRNA processing 23/328 478/13290 0,001779044 0,681374007

G0:0060601 lateral sprouting 3/328 11/13290  0,002121238 0,722163542
from an epithelium

G0:0016331 morphogenesis of 9/328 121/13290 0,003057585 0,936844029
embryonic
epithelium
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Table S7. Top 10 upregulated GO for Rest-Crizotinib subgroup

ID Description GeneRatio BgRatio P-value P-adjust

GO:0050808 synapse 24/356 335/13290 1,20E-05 0,041169411
organization

GO0:0001906 cell killing 13/356 130/13290 4,55E-05 0,053426939

GO0:0099173 postsynapse 14/356 149/13290 4,68E-05 0,053426939
organization

GO0:0031640 killing of cells of 6/356 35/13290  0,000297916 0,176246865
other organism

G0:1900120 regulation of 5/356 23/13290  0,000303058 0,176246865
receptor binding

G0:0045216  cell-cell junction 13/356 157/13290 0,000309024 0,176246865
organization

G0:0008016 regulation of heart 13/356 166/13290 0,000528978 0,244860946
contraction

G0:0060047 heart contraction 14/356 189/13290 0,000572439 0,244860946

GO:0003015 heart process 14/356 198/13290 0,000905207 0,344179825

GO0:0030198 extracellular matrix ~ 18/356 297/13290 0,001098946 0,355146597
organization

Table S8. Top 10 downregulated GO for Rest-Crizotinib subgroup

ID Description GeneRatio BgRatio P-value P-adjust

G0:0009063  cellular amino acid 13/307 105/13290 8,60E-07 0,002908716
catabolic process

GO0:1901606 alpha-amino acid 11/307 86/13290 4,38E-06 0,007405178
catabolic process

G0:1901605 alpha-amino acid 13/307 161/13290 9,25E-05 0,104297732
metabolic process

G0:0009081 branched-chain 5/307 24/13290  0,000188586 0,11250965
amino acid
metabolic process

GO0:0006520 cellular amino acid 17/307 271/13290 0,000190288 0,11250965
metabolic process

GO0:0006790  sulfur compound 18/307 299/13290 0,000206601 0,11250965
metabolic process

G0:0072350 tricarboxylic acid 4/307 14/13290  0,000232733 0,11250965
metabolic process

G0:0015936 coenzyme A 4/307 15/13290  0,000311615 0,131813013
metabolic process

G0:0009953 dorsal/ventral 7/307 58/13290  0,000359022 0,13499231
pattern formation

GO0:0120031 plasma membrane 23/307 464/13290 0,000490436 0,143965241

bounded cell
projection assembly
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Supplementary Figures

Figure S6: Statistical significance between the different therapeutic strategies using BOSO in

BeatAML.
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Figure S7: Statistical significance between the different therapeutic strategies using BOSO in

BOSO

AZD1480 Bay 11-7085 INJ-28312141 Kl20227
254  Wilcoxon, p =096
0] ==
25
-5.04

MLN120B Pelitinib (EKB-569) PHT-427 Quizartinib (AC220)
254 Wilcoxon, p = 0.26 Wildoxon, p = 0.087
004
-259

.

50 H

=

&

B Rapamycin Saracalinib (AZD0530) Selumetinib (AZDB244) Trametinib (GSK1120212)
254  Wilcoxon, p=0.96 Wilcoxon, p = 0.98 Wilcoxon, p = 0.27 Wildoxon, p et
004 ==

.
-254
.
-5.01 -
Vismodegib (GDC-0449) No Yes No Yes No Yes

251 Wilcoxon, p=0.35
004 +
259
-5.01

No Yes

Recommended

148

Recommended

* No
B3 ves



Appendix 3: Extended Information for Precision Medicine Method Comparison

Figure S8: Statistical significance between the different therapeutic strategies using Lasso in
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Figure S9: Statistical significance between the different therapeutic strategies using Lasso in
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Figure S10: Statistical significance between the different therapeutic strategies using
Multinomial in BeatAML.
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Figure S11: Statistical significance between the different therapeutic strategies
Multinomial in GDSC.
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Figure S12: Statistical significance between the different therapeutic strategies using KRL in

BeatAML.
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Figure S14: GE vs Mut in GDSC
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Simple Summary: This work shows that the predictions of lethal dependencies (LEDs) between
genes can be dramatically improved by incorporating the “HUDb effect in Genetic Essentiality” (HUGE)
of gene alterations. In three genome-wide loss-of-function screens—Project Score, CERES score and
DEMETER score—LEDs are identified with 75 times larger statistical power than using state-of-the-art
methods. In AML, we identified LEDs not recalled by previous pipelines, including FLT3-mutant
genotypes sensitive to FLT3 inhibitors. Interestingly, in-vitro validations confirm lethal de-pendencies
of either NRAS or PTPN11 depending on the NRAS mutational status.

Abstract: Recent functional genomic screens—such as CRISPR-Cas9 or RNAI screening—have
fostered a new wave of targeted treatments based on the concept of synthetic lethality. These
approaches identified LEthal Dependencies (LEDs) by estimating the effect of genetic events on cell
viability. The multiple-hypothesis problem is related to a large number of gene knockouts limiting
the statistical power of these studies. Here, we show that predictions of LEDs from functional screens
can be dramatically improved by incorporating the “HUD effect in Genetic Essentiality” (HUGE)
of gene alterations. We analyze three recent genome-wide loss-of-function screens—Project Score,
CERES score and DEMETER score—identifying LEDs with 75 times larger statistical power than
using state-of-the-art methods. Using acute myeloid leukemia, breast cancer, lung adenocarcinoma
and colon adenocarcinoma as disease models, we validate that our predictions are enriched in a
recent harmonized knowledge base of clinical interpretations of somatic genomic variants in cancer
(AUROC > 0.87). Our approach is effective even in tumors with large genetic heterogeneity such as
acute myeloid leukemia, where we identified LEDs not recalled by previous pipelines, including
FLT3-mutant genotypes sensitive to FLT3 inhibitors. Interestingly, in-vitro validations confirm lethal
dependencies of either NRAS or PTPN11 depending on the NRAS mutational status. HUGE will
hopefully help discover novel genetic dependencies amenable for precision-targeted therapies in
cancer. All the graphs showing lethal dependencies for the 19 tumor types analyzed can be visualized
in an interactive tool.

Keywords: CRISPR-Cas9 screening; precision medicine; synthetic lethality

1. Introduction

The traditional concept of synthetic lethality consists of the concurrent loss of func-
tionality of two genes resulting in cellular death. A relevant example is the effectiveness

Cancers 2022, 14, 3251. https:/ /doi.org /10.3390/ cancers14133251
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of PARP inhibitors in tumors with inactivated BRCAT and BRCAZ [1]. In recent years, the
advances in functional genomics triggered by large-scale loss-of-function screening—such
as CRISPR-Cas9 or RNA interference (RINAi) screens—have boosted the discovery of hun-
dreds of novel targets and context-specific lethal dependencies (LEDs) [2-7], defined as
any association between two genes that results in differential viability depending on their
genetic context (Figure S1).

Several studies have carried out large-scale functional genomic screens to identify
genome-wide targets and LEDs [2-5]. The Project Score [4], the Achilles Project [5,6] and the
Project DRIVE [7] are three studies that performed genome-wide gene-knockouts in cancer
cells aiming at establishing novel targets and LEDs. The refinement of computational and
technical tools has improved the potential of loss-of-function screening to identify cancer
vulnerabilities [3,8,9]. However, the multiple testing problem, related to a large number of
gene knockouts, limits the statistical power of these studies and, therefore, their potential
to find new targets.

Here, we show that previous efforts to predict LEDs from functional screening can
be significantly improved by taking into account the “HUb effect” in Genetic Essentiality
(HUGE) of some gene alterations: a few specific sets of gene alterations are statistically
associated with large changes in the essentiality of multiple genes. These “hub” aberrations
lead to more statistically reliable LEDs than other alterations that do not participate in
such hubs. We incorporate the HUGE effect in the statistical analysis of three recent loss-
of-function experiments of both The Project Score and The Achilles Project (two datasets)
showing that the number of LEDs discovered for a given FDR considerably improves for
both CRISPR-Cas9 and RNAI screens.

Using acute myeloid leukemia (AML), breast cancer (BRCA), lung adenocarcinoma
(LUAD) and colon adenocarcinoma (COAD) as disease models, we validate that the pre-
dictions are enriched in associations used in the clinic. Finally, we validated in vitro an
example of a therapy guideline based on LED selection in AML. The HUGE analysis will
help discover novel tumor vulnerabilities in specific genetic contexts, providing valu-
able candidates—targets and genetic variants as biomarkers—for further personalized
treatments in hematological diseases or other cancer disorders.

2. Materials and Methods
2.1. Data Integration

Data of loss-of-function screens libraries (17,980 knockout genes in 412 cancer cell
lines) of the project Achilles [10] were integrated with gene expression and their corre-
sponding gene alteration profiles (gene variants in ~1600 genes) obtained from CCLE and
Shao et al. [6]. We gathered gene expression of cells using RNA-seq data to confirm that
the genes that were essential for a cohort of cells were expressed before the RN A library
experiment was performed [11]. Gene variant panels were filtered out using the parameters
of CCLE’s authors to avoid common polymorphisms, low allelic fractions, putative neutral
variants, and substitutions located outside of the coding sequence [12].

We used the DEMETER score [5,8] as a measure of gene essentiality of the RNAi
libraries of the project Achilles [10]. DEMETER quantizes the competitive proliferation
of the cell lines controlling the effect of off-target hybridizations of siRNAs by solving
a complex optimization problem. The more negative the DEMETER score is, the more
essential the gene is for a cell line. We imputed missing elements of DEMETER using
the nearest neighbor averaging algorithm [13]. Moreover, we collected gene expression
patterns from RNA-seq data [11] to confirm those essential genes are expressed when
they are essential. Based on DEMETER data, we first identified genes that were essential
for a selected tumor subtype. Essential genes were required to meet several criteria:
(i) they must be essential for at least 20% of samples of the selected cancer subtype, (ii) they
must be specific to the cancer type under study, i.e., they must be non-essential for other
cancer types, and (iii) they must be expressed before RNAi experiment (>1TPM at least in
75% samples).
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2.2. Statistical Model

We developed a statistical algorithm to identify genes whose essentiality is highly
associated with the genetic alteration of other genes. Dealing with this statistical issue
implies solving a large multiple hypotheses problem {more than one million hypotheses). In
similar scenarios, traditional corrections—such as Benjamini-Hochberg (BH), Bonferroni, or
Holm—showed very few or no gene-biomarker LEDs for a given FDR [14]. To overcome this
problem, we developed a covariate-based statistical approach—similar to the Independent
Hypothesis Weighting procedure [14] (Figure $2).

Let e denote the number of RN A target genes and n denote the number of screened
samples. Let [} be an e » n matrix of essentiality whose entries d; represent the DEMETER
score for the RNAi target i in sample j. Let m be a m x n dichotomized matrix whose entry
m;; denotes whether sample j is mutant or not according to the previous criteria:

- 1, if mutant(MUT) )
T 0, if wild — type (WT)

Let s be a subset of n’ cell lines that yield an essentiality vector ds = (de,,- .-, des“,)
for the eth RNAi target. Let s = (ms, ..., ms, ) be the expression vector of a putative gene
biomarker. The null hypotheses are defined as:

HS : L(ds|ms € MUT) = E(ds|ms € WT) )

This null hypothesis is, therefore: “the expected essentiality of a gene knock-down is
identical in mutant and wild-type cell lines”. To test this hypothesis, we used a moderated
t-test implemented in limma [15]. We applied this test for each RNAI target and all the
gene variants to cbtain the corresponding p-values (Figure 52). Dealing with these p-values
implies correcting for multiple hypotheses.

In our case, we divided the p-values corresponding to all the tests into n groups, where
n is the number of altered genes. For each of these groups, we computed the local false
discovery rate (local FDR) [16]. The local FDR estimates, for each test, the probability of the
null hypothesis to be true, conditioned on the observed p-values. The formula of the local
FDR is the following:

N _ mfolz)

P(Hy|z) = lecal FDR(z) ) (3)
where z is the observed p-values, 7y is the proportion of true null hypotheses—estimated
from the data, fo(z) the empirical null distribution—usually a uniform (0, 1) distribution
for well-designed tests—and f(z) the mixture of the densities of the null and alternative
hypotheses, which is also estimated from the data.

As stated by B. Efron and R. Tibshirani [16], “the advantage of the local FDR is its
specificity: it provides a measure of belief in gene i’s “significance” that depends on its
p-value, not on its inclusion in a larger set of possible values” as it occurs, for exam-
ple, with g-values or the standard FDR. The local FDR and 7y were estimated using the
Bioconductor’s R Package g-value [17].

2.3. Comparison with the Project Score

To compare our results with Project Score’s ones, we selected the same 12 primary
cancer tissues shared in both datasets. The comparison followed two steps: (1) using CCLE
and DEMETER scores with the Project Score’s algorithm, (2) running our approach adapted
to Project Score conditions. In the first step, following the code published in their work, an
ANOVA test was performed on each tissue to calculate all possible dependent partners.
The Storey-Tibshirani correction was then used, using the criteria mentioned in Project
Score methods [4]. This enabled us to correct the ANOVA p-values and obtain significant
associations. Secondly, the comparison between both methodologies was only possible
if the same adjusted p-value is calculated for both datasets. Therefore, we estimated the
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FDR with our data as it is the g-value selected by the Project Score. The FDR correction was
obtained using the Bioconductor R package IHW [14], which enables the consideration of
covariates-based multiple hypothesis correction, as well as estimating the FDR. Discoveries
from both methodologies in DEMETER and CCLE datasets were plotted in different volcano
plots, and the number of significant LEDs was counted (FDR < 20%).

2.4. Integration of the VICC Knowledgebase of Clinical Interpretations of Genomic Variants

We downloaded 19,551 clinical interpretations of somatic genomic variants in cancer
from the Variant Interpretation for Cancer Consortium (VICC) [18,19] (version December
2020). We filtered out incomplete (e.g., entrees without annotated drug or biomarker)
and redundant associations. We then selected all associations that are annotated with
acute myeloid leukemia (AML) and synonyms. From all drugs, we selected those that
have an annotated protein target. To do so, we retrieved the data publicly available in the
ChEMBL [20] and DrugBank [21] online repositories. In total, 216 out of 19,551 associations
matched these criteria. We consider a true positive if either HUGE or ST identifies an LED
whose mutation biomarker coincides with a VICC’s association and the protein target is
included in the same association, or at least in a gene of the same pathway in the STRING
database (v.11, STRING score threshold = 400; default value on STRING for “medium”
confidence) [22].

We calculated ROC and PR curves considering the two top evidence levels included in
VICC [18,19], namely, (i) evidence from professional guidelines or FDA-approved therapies;
and (ii) evidence from clinical trials or other well-powered studies in clinical populations,
with expert consensus.

2.5. Application to Acute Myeloid Leukemia (AML) as a Disease Model

We applied the pipeline to the AML cohort of cell lines (# = 15). In the first step,
essential genes were required to be: (i) essential for at least 25% AML samples, (ii) specific
for AML cells, and (iii) expressed before the RNAi experiment. The algorithm outputs a
ranking of significant gene pairs (LEDs) that consist of a couple of genes in which the first
one is essential depending on the genetic alteration of the other.

For the final ranking for AML, we selected those LEDs that showed a p-value < 0.05
and local FDR < 0.6, | D DEMETER| > 2 (default value suggested by DEMETER's authors).
Additionally, we interrogated which of these LEDs had direct relationships (co-expressed,
annotated in the same pathway database, or contained in a common experiment) in the
STRING database [22] to ensure there is an established biclogical relationship between the
essential gene and the subrogate biomarker. This biclogical double-check is not necessary
and can be omitted when the researcher looks for novel relationships.

In vitro validation was performed using siRNAs against NRAS and PTPN11 in four
different AML cell lines, two with NRAS-genetic variants (HL-60 and OCI-AML3) and two
NRAS-wt cell lines (MV4-11 and HEL). Finally, the model was compared with
3 standard statistical methods (namely Benjamini-Hochberg (BH), Bonferroni and Holm)
known to have suboptimal sensitivity (recall of true positives) in specific scenarios in
19 additional tumor subtypes to define the potential for controlling the FDR [14]. See File S1
for more details.

3. Results
3.1. Gene Variants Associated with Multiple Essential Genes Increase the Power of
Loss-of-Function Screens

One of the main statistical challenges to finding LEDs by integrating genome-wide
functional screens with -omics datasets is the multiple hypothesis testing problem. Cor-
rection for multiple hypotheses reduces the statistical significance of results (meaning
a decreased detection rate and an increased false-positive rate). The Project Score pre-
sented a large-scale genome-wide CRISPR-Cas9 screening analysis targeting 18,009 genes in
30 different cancer types, across 14 different tissues [4,23]. They presented a methodology
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to detect LEDs based on finding differences in genetic essentiality in cell lines associated
with the presence of specific gene variants (ANOVA test [24] with the Storey-Tibshirani
p-value correction). Following this procedure, the Project Score was able to identify genetic
LEDs in 7 out of 14 individual tissues analyzed [4,23].

Analyzing Project Score’s data, we observed that for each tumor type, a few specific
genetic alterations were significantly associated with the genetic essentiality of a large
set of genes. This handful of genetic aberrations shows a hub effect, in which a gene
variant is associated with large changes in the essentiality of multiple genes. We termed
this behavior the “HUDb effect in Genetic Essentiality” (HUGE) (Figure 1A; other tumor
types can be visualized in https:/ /fcarazo.shinyapps.io/visnetShiny/ (accessed on 24 June
2022)). From the point of view of statistics, the HUGE effect is defined as an improvement
of the statistical power by using gene variants as co-variates in a multiple hypothesis
problem. Other biological covariates such as gene expression or copy number alterations
have also shown to be covariates that increase the statistical power [14]. Using gene
variants as statistical covariates provides a larger number of positives for a given FDR,
which consequently means an increased specificity and sensitivity, or type I and type II
errors, as demonstrated in File S1, Section S6. Interestingly, the analysis shows that the
HUGE effect is present in all tumors analyzed, significantly improving the predictive power
of LEDs.

. Biomarker A
B

of Essentiality

Essential

0.5 1.0
P-value
0.5 1.0
P-value

Figure 1. The hub effect in genetic essentiality in Acute Myeloid Leukemia. In each cell, a small
set of gene aberrations is associated with large changes in genetic essentiality. (A) A bipartite graph
in which red squares represent gene variants (e.g., mutations), blue triangles represent significant
changes in cell viability related to knocked-down genes. Both nodes are linked by a line if the
variations in the essentiality have a statistically significant association with the presence of the gene
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variant. (B) Implications in p-value histograms of the HUGE effect. Hub associations show a high peak
close to zero p-values indicating that the null hypothesis is rejected in more cases and that these genetic
variants are associated with a higher response to the inhibition of more gene products. Segregating
the statistical analysis according to the alteration provides more statistical power. Essential genes
and other tumor types can be visualized in https: / /fearazo.shinyapps.io/visnetShiny/ (accessed on
24 June 2022). Abbreviations. HUGE: The hub effect in genetic essentiality.

The presence of the HUGE effect in a cancer type can be also understood as a predictive
model in which each mutation has a different capability to define the genetic essentiality
of multiple genes. To show it visually, the histogram of p-values of a gene alteration
represents how gene alterations are associated with the genetic essentiality of multiple
genes. Histograms of the p-values for alterations that conform to a “hub” show a peak near
the origin, which means that cells with these alterations are sensitive to the depletion of a
large number of genes (Figure 1B). Conversely, if the hubs of alterations are not considered,
the relationships of mutations and viability show a flat histogram of p-values. This does
not necessarily mean that such relationships are not biologically relevant, but that it is
difficult to distinguish them from random associations and will be considered as artifacts
after multiple testing corrections.

The HUGE effect helps palliate the multiple hypothesis correction problem. Using
the mutation under study as a covariate, multiple hypotheses can be differently treated
considering the overall association of gene alteration in the complete set of essential genes
(Figures S2 and 53). Using this concept, we developed a statistical model that integrates
HUGE information to find LEDs (Figure S2).

Previous efforts to correct multiple testing in this problem consider a single set of tests
(all gene aberrations and CRISPR-Cas9 knockouts) and apply a correction that controls the
FDR, such as Storey—Tibshirani (ST), as performed in the Project Score. Interestingly, in
all tumors, our approach increases the statistical power of the analysis. From a statistical
point of view, a flat histogram is compatible with the null hypothesis for all the tests and,
therefore, multiple hypothesis correction drives to none or few discoveries (Figure 54).
Every single tumor shows p-value histograms related to specific gene variants that have a
higher zero-peak than the histogram associated with all tests in such tumor (Figures 55-523).
To test this approach, we compare the results using HUGE with previous LED identification
strategies in three genome-wide functional genomic projects: The Project Score [4], the
DEMETER score and the CERES score (DEMETER and CERES are included in the Achilles
Project [5,6]). First, to test the potential of HUGE to predict LEDs with CRISPR-Cas9
screens, we analyze the Project Score dataset [4]. Project Score integrates 215 different
genetic events across 14 tumor types, including SNVs and CNVs. In the same reference, the
authors found at least one LED in 7 out of the 14 tumor types analyzed. A total of 40 out of
215 events were detected to be significant biomarkers of essentiality (FDR < 20%), which
correspond to 77 unique LEDs (a single genetic event can be associated with several essential
genes). Analyzing Project Score’s data using the HUGE-based methodology, we identify
1438 unique associations with the same FDR (18 times larger than Project Score, Figure 2A),
corresponding to 80 single genetic events. Moreover, using HUGE we detect at least one
LED in all the 14 tumors analyzed, finding LEDs in 10 tumors that would have been missed
using the original pipeline, affecting around 10-20 genes for each disease type.

We also tested HUGE in the DEMETER score of the Achilles Project to predict LEDs, in
this case using RN'Ai screening. The DEMETER dataset [5,10] is a large-scale genome-wide
experiment of RNA interference libraries (17,085 knockdown genes) in 19 tumor types
(Table S5). We integrate the DEMETER data with the corresponding cell line gene alteration
profiles (genetic variants in ~1600 genes) obtained from the Cancer Cell Line Encyclopedia
(CCLE) [12] and Shao et al. [¢]. This integration turns out to have 27 Million hypotheses,
which will hardly impair p-values after multiple hypothesis correction (Figure S2). Then,
we replicate the Project Score’s pipeline with the DEMETER dataset and compare it with
the HUGE-based approach to find LEDs, also including in the comparison other two
standard p-value corrections used to control the FDR, namely Holm and Bonferroni. Using
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the standard ST procedure, we find 126 LEDs (FDR < 20%). There are LEDs for 7 out
of 19 tumors. The same dataset and FDR threshold using the HUGE-based approach
provides 9535 LEDs (75.7 times larger than using ST). All cancer types (19 out of 19) showed
significant LEDs in the HUGE-based analysis (Figure 2B). HUGE identifies 1,675 LEDs
in six tumor types in which other methods recall no LEDs (FDR < 20%); and 9409 LEDs
in 19 tumor types that would have been missed using previous procedures (FDR < 20%;
Figure 2C). These results show that the HUGE effect is present with different intensities in
all tumor types analyzed (Figures 55-523).
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Figure 2. HUGE-based analysis with Project Score and Achilles Project datasets. (A) Volcano plots
of lethal dependencies, LEDs, identified in the Project Score dataset. From left to right: (i) result of
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Project Score, (ii) results of analyzing Project Score dataset with the HUGE-based methodology:
Each dot represents a significant LED (FDR < 20%). The X-axis represents the difference in gene
essentiality when the event (gene variants) is present. The Y-axis represents the FDR values (—log10)
for that change. (B} Equivalent volcano plots using Achilles Project. From left to right: (i) results of
Achilles Project analyzed with the standard procedure, (i) results of analyzing Achilles Project dataset
with HUGE-based methodology. (C) The number of LEDs found (FDR < 20%) in 19 tumors of the
DEMETER score (RNA) and 22 tumors of the CERES score (CRISPR-Cas9) using standard statistical
pipelines (Storey-Tibshirani, Bonferroni, and Holm}) and the HUGE-based algorithm. Bonferroni and
Holm return the same number of hypotheses in all cases, Abbreviations. LED: lethal dependency;
ALL: acute lymphoblastic leukemia; AML: acute myeloid leukemia; BRCA: breast ductal carcinoma;
CNSA-IV: central nervous system astrocytoma grade [V; COAD: colon adenocarcinoma; CUADT:
upper aero-digestive tract squamous cell carcinoma; DLBCL: diffuse large B-cell lymphoma; ESCA:
esophagus squamous cell carcinoma; KIRC: kidney renal clear cell carcinoma; LCC: lung large cell
carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; MM: multiple
myeloma; NSCLC: non-small cell lung carcinoma; OS: osteosarcoma; OVAD: ovary adenocarcinoma;
PDAC: pancreas ductal carcinoma; SCLC: small cell lung carcinoma; SKCM: skin carcinoma; UCEC:
endometrium adenocarcinoma.

As a further test of the increased predictive power of HUGE, we carry out a similar
analysis using the CERES score, a CRISPR-Cas9 experiment of 22 tumors also included in
the Achilles Project. In this case, the number of significant pairs is enriched 14 times over
the standard approaches (FDR < 20%; Figure 524).

3.2. LEDs Predicted by HUGE Have Better Validation Rates Than Standard Approaches

Validating a ranking of LEDs is not a simple task: it is desirable to have a gold
standard of a disease-specific list of validated target-biomarker associations. We select
as our gold standard The Variant Interpretation for Cancer Consortium (VICC) Meta-
Knowledgebase [18,19]. This database integrates different datasets of clinical associations
and includes the level of evidence for each entry: spanning from professional FDA guide-
lines to preclinical findings.

We test the enrichment in associations included in VICC in four tumor types, namely
acute myeloid leukemia (AML), breast cancer (BRCA), lung adenocarcinoma (LUAD) and
colon adenocarcinoma (COAD) for both HUGE and standard statistical methods, The VICC
knowledgebase integrates (in September 2021) 19,551 clinical interpretations of somatic
genomic variants in cancer of hoth resistant and sensitive biomarkers. We delete duplicated
and incomplete associations, focused on those related to confirmed mutations and manually
selected associations that match each tumor type (including synonyms).

We first run the two procedures (HUGE and Storey-Tibshirani; ST) with AML cell lines
(Table 55) to find LEDs and compare how many LEDs predicted by HUGE and by ST are
included in the VICC knowledgebase. For instance, if HUGE or the ST procedure predicts
FIT3 mutant AML genotypes to be sensitive to FLT3 inhibition, it will be considered a true
positive LED, as FLT3 is a well-known target of AML and mutations in FLT3, the fms-like
receptor-type tyrosine-protein kinase [25,26], are known to be sensitive biomarkers of the
effectiveness of most FLT3-inhibitors [27,28].

In total, 216 out of 19,551 associations matched these filters. Getting the top
500 LEDs according to the ranking using the HUGE algorithm with AML, we find 17 LEDs
that match the VICC knowledgebase of known clinic relationships (Table 51; Fisher
p-value <1 x 107 3. An equivalent analysis using the standard pipeline (ANOVA test [24]
with the Storey-Tibshirani p-value correction) shows that out of the top 500 LEDs, only
one is included in the VICC knowledgebase (Table S1; Fisher p-value = 6,551 x 10~2), This
means that HUGE analysis identifies 16 true positive dependencies not recovered by ST
(Fisher p-value = 6.41 x 1075). The global value of AUROC (0.53) is not too far from the
baseline of 0.5 (Figure 3A), perhaps because of the scarcity of true positives in our gold
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standard. We perform the same analysis with LUAD, BRCA and COAD getting AUCROC
values of 0.62 (vs. 0.5), 0.87 (vs. 0.64) and 0.72 (vs. 0.54) for HUGE and ST, respectively. All
cases show better values for HUGE than for ST (Figures 3B-D and 525).
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Figure 3. ROC and precision-recall curves of four tumor types. (A) Acute myeloid leukemia,
(B) lung adenocarcinoma, (C) breast cancer and (D) colon adenocarcinoma. True positives were
extracted from the knowledge base of the Variant Interpretation for Cancer Consortium [18,19]. For
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each tumor type, we selected only those associations that belong to the three highest levels of
confidence (Level A: Evidence from professional guidelines or FDA-approved therapies relating to a
biomarker and disease; Level B: Evidence from clinical trials or other well-powered studies in clinical
populations, with expert consensus; and Level C: Evidence for therapeutic predictive markers from
case studies, or other biomarkers from several small studies, or evidence for biomarker therapeutic
predictions for established drugs for different indications).

3.3. AppIBying HUGE Methodelagy to Aeute Myeloid Leukemin Cell-Lines Discovers Potential
Therapy Biomarkers

AML is a hematologic neoplasm characterized by a remarkable phenotypic and ge-
nomic heterogeneity [29], a challenging disease model to test the applicability and impact
of HUGE. We run the complete HUGE pipeline with AML and validate in vitro two of the
predicted LEDs.

As a preliminary step, we identify the potential genes that are essential for AML cell
survival. The Achilles Project yielded 443 essential genes that are essential and specific for
AML cells compared to other tumors (Table S2). Some of these genes belong to pathways
known to be deregulated in AML (e.g., MYB [20] or CEBPA [31]). Interestingly, 160 of these
443 genes have previously been identified as potential cancer drivers in hematological
malignancies according to the Candidate Cancer Gene Database (p-value = 7.76 x 1075,
Fisher exact test) [32].

‘We then run the HUGE algorithm to identify genomic alterations that could be defined
as LED partners of those 443 essential genes. In this pipeline, we require predicted pairs
to be biologically related to each other in the STRING database (see Online Methods).
LED associations can be broken down into three groups regarding their dependency type:
positive lethal dependency (pLED), when a gene variant marks sensitivity to the inhibition
of another gene; negative lethal dependency (nLED), when a gene variant marks resistance
to the inhibition of another gene; or dual lethal dependency (ALED), when the same gene
variant confers, concurrently, sensitivity to the inhibition of one gene and resistance to the
inhibition of another gene (Figure S1). In total, we predict 24 LEDs, (12 pLEDs and 12 nl.EDs,
including two dLEDs; p-value < 0.05, local FDR < 0.6 and | AEssentiality| > 2; Figure 44,
Table 1, Figure 526, and Table S3). Using the standard multiple hypotheses correction only
one dependency turns out to be statistically significant. We provide the identified LEDs for
the 19 tumors included in the Achilles Project following a similar pipeline (Tables S6-524).

NRAS mutation ranks first in the analysis. Lethally dependent partners associated
with NRAS genetic sequence variants show a p-value histogram that peaks at the origin
(Figure 4A,B), meaning that NRAS mutations are associated with more tumor vulnerabilities
than other alterations. Interestingly, NRAS alteration forms a Dual Lethal Dependency with
PTPN11 (Table 1, Figure 4C): it confers tumor sensitivity to NRAS inhibition and resistance
to PTPN11 inhibition.

To validate our prediction, we first check that both NRAS and PTPN11 siRNAs effi-
ciently decreased the NRAS and PTPN11 expression, respectively, in four AML cell lines
(Figure 527). Then, we confirm the computational hypothesis: the downregulation of NRAS
significantly decreases cell proliferation only in the NRAS-altered AML cell lines, and the
inhibition of PTPN11 expression produces an equivalent effect, specifically in the NRAS-wt
AML cell lines (Figure 4D), validating the predicted dLED. Remarkably, the validated
PTPN11-NRAS-wt pair was not detected using standard methodologies.
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Figure 4. Gene variants-based treatment guidelines in acute myeloid leukemia. (A) Volcano-plot
of lethal dependencies, LEDs, related to NRAS genetic mutations (left; MUT) and wildtype (right;
WT) phenotypes. Increment of Essentiality and —log10 (p-value) are shown on X-axis and Y-axis,
respectively. (B) Histogram of p-values for 6 genetic sequence variants in acute myeloid leukemia.
NRAS-alteration is enriched in close to zero p-values, which is the basic concept of HUGE-based
statistical approach. All genetic variants histograms of p-values can be found in the Supplementary
Material. (C) Summary of the computational predictions validated: NRAS-altered cells were predicted
to be sensitive to siNRAS and resistant to siPTPN11. Conversely, NRAS-wt cells were predicted to be
sensitive to siPTPN11 and resistant to siNRAS. (D) Tumor proliferation of the four AML cell lines
after inhibiting NRAS (siNRAS) and PTPN11 (siPTPN11) with specific siRNAs. Blue: NRAS-altered
AML cell lines (HL-60 and OCI-AML3); Orange: NRAS-wild-type AML cell lines (MV4-11 and HEL).

Table 1. Ranking of lethal dependencies in AML using the covariate-based statistical approach.
The ranking is divided into three groups regarding the typology of the lethal dependency relationship:
Positive Lethal Dependency (PLD), Negative Lethal Dependency (NLD) or Dual Lethal Dependency
(DLD) (Figure S1). The Increment of Essentiality column represents the average variation in the
DEMETER score between altered and wild-type cells, and its sign is related to the lethal dependency
relationship. Lethal dependencies that share the same essential gene and the same Tncrement of
Essentiality sign were omitted in this table (see complete data in Supplementary Table $3).

Gene Variant Essential Increment of
Biomarker Gene Essentiality t:Score #-Value Local FDR
Positive Lethal Dependencies

TGS1 SNRPF -7.87 —4.05 6.69 x 107% 336 x 107!
CLTCL1 UBRS —6.66 —3.59 199 x 1073 220 % 107!
FLT3 FLT3 —6.36 —453 228 x 104 200x10°!
CDK14 CDK2 -395 -275 1.28%x 102 430x10!
AURKC ACTL6A —3.26 —3.89 955 x 1074 4.99 x 107!
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Table 1. Cont.

Gene Variant Essential Increment of

Biomarker Gene Essentiality t-Score p-Value Local FDR
Negative Lethal Dependencies
NPM1 EEF2 3581 334 339 1072 596 x 107!
PIK3C2G CDK6 335 2.95 820 107% 351 x 107!
NCOA3 EP300 3,04 2.75 1.25 %1072 494 x 107!
CDK14 CCND2 2.97 222 388 %1072 499 x 107!
EPHB6 ZNF266 253 277 122 1072 342 <1071
ZFYVE9 TOM1L2 214 2.35 296 %1072 512 < 107!
Dual Lethal Dependencies
NRAS NRAS —6.83 —8.71 467 1078 138 x 1074
NRAS PTPN11 417 22 405 %1072 589 x 107!
EP300 PLK1 —8.11 —4.04 701 <1074 217 <107t
EP300 KLF2 3.69 4.08 638 x 107 212 <107t

4. Discussion

The advent of large-scale functional genomic screens has allowed the identification of
hundreds of novel gene targets and the prediction of genome-wide LEDs [4,33]. This strat-
egy has multiplied treatment strategies, as using LEDs, the drug targets can be decoupled
from their corresponding predictive biomarkers. The main statistical limit to finding LEDs
is the large number of hypotheses that result from integrating gene essentiality and genetic
functional events. In this work, we present HUGE, a novel analysis of CRISPR-Cas9 and
RNAi large-scale screens that significantly improves the predictive power to find LEDs from
loss-of-function screens in human tumors. It relies on the fact that some gene alterations
are slatistically related to the essentiality of large sets of genes. Using this characteristic as
a prior covariate we significantly improve the predictive power of LEDs.

Notably, the presence of the HUGE effect does not necessarily mean biological causality.
HUGE dependencies are more statistically reliable than others, but this does not imply
that predicted alterations are the major players in tumor development thus, they are not
necessarily driver genes, i.e., they are just genetic biomarkers of gene essentiality. In
other words, the Hub-Effect is a statistical association. Since “correlation does not imply
causation” is not legitimate to deduce a cause-and-effect relationship between the presence
of a mutation and the sensitivity to knocking down a gene. Even more, it cannot be
concluded that the HUGE top-ranked genes (either the mutations or the knockdown genes)
are driver genes. This would require further experimentation and validation. HUGE simply
computes biomarkers of the vulnerability to a knockdown gene, that in turn, could be
targeted by a drug. However, the fact that gene alterations co-occur with multiple LEDs in
genetic hubs can be exploited to improve the statistical power.

To measure the increased predictive power of HUGE, we carry out three different com-
parisons within three functional genomic datasets: the Project Score, the DEMETER score
and the CERES score. HUGE identifies LEDs with 14 and 75 times larger statistical power
than using state-of-the-art methods in CRISPR-Cas9 and RINAI, respectively. However, it
could be argued that this result could be an artifact of the statistical technique and that
lowering the threshold for standard procedures would provide LEDs with similar reliability.
This is not the case. As shown in the results, using the same number of predictions, HUGE"s
results are more enriched in clinically used biomarkers than ST’s results. Remarkably, 1 of
the 16 LEDs only identified by HUGE is the known interaction of FLT3-mulant genotypes
sensitive to FLT3 inhibitors, such as Midostaurin. This fact is only an example of the
key importance of considering the HUGE effect when analyzing LEDs with large-scale
functional screens.

A p-value histogram can be modeled as the superposition of two distributions, a
uniform distribution {(which corresponds to the null hypothesis) and another distribution
with a larger proportion of low p-values. A good covariate splits the overall p-value



Author Publications

Cancers 2022, 14, 3251

13 of 16

histogram into histograms with different enrichments in small p-values. If all the histograms
related to a covariate have similar shapes, it means that the covariate is uninformative. Here,
we show that stating which gene is mutated in each test is a good covariate for the LED
prediction problem because there is a hub effect of gene aberrations in gene essentiality.
The usage of covariates has successfully been incorporated before in other genomics
applications (e.g., the abundance of a gene is known to be informative in differential
expression analyses; or the proximity of loci in the genome is known to play a role in
genome-wide association studies), but it has not yet been exploited in large-scale functional
genomic screens.

One main limitation lies in the volume of data required for its execution due to the
need for multiple hypotheses to detect the Hub-Effect. Hence, the HUGE-based approach
will not obtain such striking results if applied to the analysis of smaller experiments in
number, it would perform similarly to current standard methods. Nevertheless, this method
was developed for large-scale screening analyses.

We are confident that the HUGE-based approach to calculating LEDs has great poten-
tial if applied to the study of patient data. Nowadays, drug development usually starts
from large-scale loss-of-function screenings. Therefore, this work has identified a large
number of LEDs across 19 tumor types in three different large-scale experiments. Moreover,
to facilitate the in vitro validation of these LEDs as possible therapeutic targets, we added
information regarding targeted drugs for those essential genes that are drug targets.

Predicting true LEDs is especially challenging for tumors with high genetic hetero-
geneity. In AML, for instance, state-of-the-art approaches only recover two LEDs. The
HUGE-based approach captured 24 LEDs for the same False Discovery Rate (FDR). In-
terestingly, NRASwt-PTPN11 LED, which was only identified by HUGE, was validated
in vitro. The validation in AML highlights the potential of the HUGE-based approach to
discover and validate new LEDs of biomarkers and drug targets. We pinpoint the dLED
characteristic of the NRAS gene, meaning that if a tumor has NRAS mutated a treatment
that targets NRAS itself would be the best option to reduce their tumorigenicity, whereas if
it is NRAS wild-type, a PTPN11 inhibition would be a better recommendation. This dLED
discovery confers special relevance to clinically translational therapeutic strategies, as it
was proved effective in AML cell lines, further validation in ex vivo analysis and murine
models is required but if the result is effective, it could be suggested as a treatment and it
could incentivize drug development targeting NRAS and PTPN11. This methodology has
potential applications both in basic and clinical research.

5. Conclusions

In conclusion, this work provides a computational approach to identifying LEDs with
increased predictive power. This analysis opens new possibilities for the use of genetic
variants as predictive events for precision oncology, by analyzing both previous and future
functional genomic screens. Moreover, this analysis enhances current applications in
translational oncology, such as drug development or drug repositioning projects.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/ cancers14133251/s1, Supplementary Methods: Section S1: Cell Culture, Section 52: Cell
Transfection, Section 53: Cell proliferation assay, Section 54: Quantitative-PCR{Q-PCR), Section 55:
Statistical pipeline, Section 56: A larger number of positives outperforms specificity and sensitivity.
Supplementary Figures: Figure S1: Types of Lethal Dependencies, Figure 52: Computational pipeline
to find lethal dependencies, Figure S3: Schematic representation of the covariate-based statistical
approach in this context, Figure S4: Histogram of p-values of all LEDs in AML, Figure 85: Histogram
of p-values of all lethal dependencies in acute myeloid leukemia vs. p-values associated with each
gene variant, Figure 56: Histogram of p-values oflethal dependencies in breast cancer vs. p-values
associated with each gene variant, Figure S7: Histogram of p-values of all lethal dependencies
in central nervous system astrocytoma grade [V vs, p-values associated with each gene variant,
Figure 58: Histogram of p-values of all lethal dependencies in colon adenocarcinoma vs. p-values
associated with each gene variant, Figure 59: Histogram of p-values of all lethal dependencies in
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upper aerodigestive tract squamous cell carcinoma vs. p-values associated with each gene variant,
Figure 510: Histogram of p-values of all lethal dependencies in diffuse large B-cell lymphoma
vs. p-values associated with each gene variant, Figure 511: Histogram of p-values of all lethal
dependencies in esophagus squamous cell carcinoma vs. p-values associated with each gene variant,
Figure S12: Histogram of p-values of all lethal dependencies in lung large cell carcinoma vs. p-values
associated with each gene variant, Figure 513: Histogram of p-values of all lethal dependencies
in lung adenocarcinoma vs. p-values associated with each gene variant, Figure 514: Histogram
of p-values of all lethal dependencies in lung squamous cell carcinoma vs. p-values associated
with each gene variant, Figure S15: Histogram of p-values of all lethal dependencies in multiple
myeloma vs. p-values associated with each gene variant, Figure 516: Histogram of p-values of
all lethal dependencies in non—small cell lung carcinoma vs. p-values associated with each gene
variant, Figure 517: Histogram of p-values of all lethal dependencies in osteosarcoma vs. p-values
associated with each gene variant, Figure S18: Histogram of p-values of all lethal dependencies
in ovary adenocarcinoma vs. p-values associated with each gene variant, Figure S19: Histogram
of p-values of all lethal dependencies in pancreas ductal carcinoma vs. p-values associated with
each gene variant, Figure 520: Histogram of p-values of all lethal dependencies in small cell lung
carcinoma vs. p-values associated with each gene variant, Figure 521: Histogram of p-values of all
lethal dependencies in skin carcinoma vs. p-values associated with each gene variant, Figure S22:
Histogram of p-values of all lethal dependencies in stomach adenocarcinoma vs. p-values associated
with each gene variant, Figure 523: Histogram of p-values of all lethal dependencies in utetine corpus
endometrial carcinoma vs. p-values associated with each gene variant, Figure 524: The number
of LEDs found (FDR < 20%), Figure 525: ROC and precision-recall curves of four tumor types,
Figure 526: Volcano plot of Synthetic lethal genes related to NRAS-mutated (A) and EP300-mutated
(B) phenotypes, Figure 527: mRNA expression of NRAS and PTPN11 genes after nucleofection with
the specific siRNAs, Supplementary Tables: Table 51: Associations within the top 500 pairs predicted
using the HUGE-based and standard pipeline algorithms in AML that match the knowledgebase
of clinical interpretations of somatic genomic variants in cancer of the Variant Interpretation for
Cancer Consortium (VICC), Table S2: Essential genes for AML. Selected genes meet the following
criteria: (i) must be essential in >25% of AML cell lines (DEMETER essentiality threshold set to
-2), Table S3: Complete ranking of lethal dependencies in AML using the HUGE-based statistical
approach. The Increment of Essentiality (deltaEs) column represents the average variation in the
DEMETER score between altered and wild-type cells, and its sign is related to the lethal dependy
relationship, Table 54: Cell lines included in the analysis, Table 55: AML cell lines included in the
analysis, Table S6: Ranking of pairs mutation biomarker and essential genes in 19 tumor types using
a covariate-based statistical model, Table S7: Ranking of pairs mutation biomarker and essential
genes in OS, Table S8: Ranking of pairs mutation biomarker and essential genes in BRCA, Table S9:
Ranking of pairs mutation biomarker and essential genes in CNSA-IV, Table §10: Ranking of pairs
mutation biomarker and essential genes in UCEC, Table S11: Ranking of pairs mutation biomarker
and essential genes in COAD, Table S12: Ranking of pairs mutation biomarker and essential genes
in DLBCL, Table S13: Ranking of pairs mutation biomarker and essential genes in MM, Table S14:
Ranking of pairs mutation biomarker and essential genes in LUAD, Table S15: Ranking of pairs
mutation biomarker and essential genes in LCC, Table S16: Ranking of pairs mutation biomarker
and essential genes in NSCLC, Table S17: Ranking of pairs mutation biomarker and essential genes
in SCLC, Table S18: Ranking of pairs mutation biomarker and essential genes in LUSC, Table S19:
Ranking of pairs mutation biomarker and essential genes in ESCA, Table 520: Ranking of pairs
mutation biomarker and essential genes in OVAD, Table S21: Ranking of pairs mutation biomarker
and essential genes in PDAC, Table S22: Ranking of pairs mutation biomarker and essential genes
in SKCM, Table S23: Ranking of pairs mutation biomarker and essential genes in STAD, Table S24:
Ranking of pairs mutation biomarker and essential genes in STAD.
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Artificial intelligence (Al} can unveil novel personalized treatments based on
drug screening and whole-exome sequencing experiments (WES). However,
the concept of "black box" in Al limits the potential of this approach to be
translated into the clinical practice. In contrast, explainable Al (XAl} focuses cn
making Al results understandable to humans. Here, we present a novel XAl
method -called multi-dimensional module optimization (MOM)- that
associates drug screening with genetic events, while guaranieeing that
predictions are interpretable and robust. We applied MOM to an acute
myeloid leukemia (AML) cohort of 319 ex-vive tumor samples with 122
screened drugs and WES. MOM returned a therapeutic strategy based on the
FLT3, CBFB-MYHI11, and NRAS status, which predicted AML patient response to
Quizartinib, Trametinib, Selumetinib, and Crizotinib. We successfully validated
the results in three different large-scale screening experiments. We believe that
XAl will help healthcare providers and drug regulators better understand Al
medical decisions.

KEYWORDS

biomarkers, treatment selection, assignation problem, explainable artificial
intelligence, drug repositioning, large-scale screening, ex-vivo experiment,
drug sensitivity
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1 Introduction

The advance of personalized medicine, and in particular
precision oncology, is partially based on the development of
drug sensitivity studies. These experiments are promoting the
discovery of new drugs, biomarkers of sensitivity, and drug
repositioning. With increasing frequency, these studies have
widened their scope from single drug studies to experiments
involving hundreds of drugs, also known as drug screening. In
recent years, drug screenings are being carried out on hundreds
of cell lines giving rise to large-scale drug screening datasets, e.g.,
GDSC, which includes 130 screened drugs in an average of 368
lines per drug (1). Combining these drug sensitivity studies with
tumor genotypes makes it possible to associate the response to
treatment with genetic alterations (biomarkers), thus promoting
the search for new personalized therapies (2).

Exploring the potential of these experiments, artificial
intelligence (AI) algorithms for personalized medicine focus
on the analysis of such datasets to bridge the gap for drug
discovery. Some studies use machine learning algorithms for
monotherapy prediction (3, 4), other approaches are based on
training deep learning (DL) models from patients” omics data (5,
6). These methods create black-box predictors that make
agnostic inferences of treatment for a patient based on
complex non-linear relationships. The output is, for these
cases, an individual therapy for a patient, instead of a general
treatment guideline (7). Despite optimizing patient treatment,
this approach has the inherent disadvantages of methods based
on neural networks: they require a huge amount of data, and
therefore experiments are unable to show the criteria that trigger
the decision —since neural networks tend to be black-box
models—. These technical challenges are limiting the
translation of drug screening experiments to clinical practice.

Explainable Artificial Intelligence (XAI) focuses on making
AI understandable to humans by the usage of “white-box”
algorithms that allow end-users to understand why the model
predicts a certain solution (8, 9). The importance of using XAI
models in the finding of new personalized treatments is twofold:
therapeutic pipelines can be more easily adopted in normal
clinical guides (e.g., using a decision tree that does not require a
complex model with a high number of variables) (9) and drug
regulators, such as the Food and Drug Administration (FDA), or
European Medicines Agency (EMA) will have an easier journey
to approve a drug if the companion biomarkers are reasonable
and robust (10, 11). Consequently, XAl opens the door to bridge
the gap between clinical practice and bioinformatics (8, 12).

In this study we have developed a new XAI method, called
multi-dimensional module optimization (MOM) algorithm, to
predict therapeutic strategies based on large-scale drug screening
data. This method systematically associates drugs with
combined sets of genetic biomarkers that can be generalized
and applied to other cohorts of patients. The therapeutic
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strategies provided by MOM can easily be understood by
humans and are easy to implement in the clinical practice
with a process equivalent to a decision tree. The optimization
problem considers the effect of drug toxicity focusing on
providing drugs that are differentially effective to patients with
a specific genotype. MOM’s result is deterministic —this is
important to get regulatory approvals— and guaranteed to be
optimal, each patient is given the best possible treatment.

We selected Acute Myeloid Leukemia (AML) as a disease
madel, a highly heterogeneous type of cancer that affects bone
marrow cell precursors, In AML, genomic profiling is essential to
understand its biology, diagnosis, and treatment (13-15).
Unfortunately, 70% of adult people diagnosed with this disease
die within five years of diagnosis (16). The current ELN
(European Leukemia Network) risk stratification is based on
the genetic biomarkers of the disease (17). Although there are big
prognosis differences across these genetic groups, the current
approach for young and fit patients is a standard induction
cytotoxic therapy (“3+77) (14, 17) with the addition of targeted
therapies, mainly FLT3 inhibitors, to a specific group of AML
patients (14). Despite 8 new drugs have been approved for AML
in the last years, its lethality is still very high. In addition, there
are no targeted treatments directed to FLT3"7 patients ~70% of
all AML cases (18). A machine learning approach that identifies
the most adequate FLT3 inhibitor as well as the treatment for
other AML genotypes, would allow the discovery of new
indications for other drugs for the AML. As a result, a new
classification guide based on the response to therapy for specific
genetic alterations would be beneficial in clinical practice.

‘We applied MOM to the BeatAML project cohort, which
carried out WES (Whole Exome Sequencing) and drug screening
experiments of 122 drugs with ex-vive AML tumor samples from
319 patients (19). Ex-vivo experiments in hematological cancers
are of great importance since they are performed directly on the
patient’s living tumor cells {19, 20), allowing to correlate drug
sensitivity to the patient’s genotype. The results obtained using
MOM are in-silico validated using K-fold cross-validation and in
three independent large-scale experiments, one based on pan-
cancer drug sensitivity and two referred to pan-cancer gene
essentiality using siRNA and CRISPR-cas9. MOM’s patient
indications require only three different biomarkers, which
makes them to be easily understood by the clinician.

2 Results

2.1 An explainable artificial intelligence
method to predict optimal treatments
based on patient genotype

The implementation of a clinical translational XAl model
requires the development of a robust method to associate

frontiersin.org



Author Publications

Gimeno et al.

biomarkers to specific largeled (realments. and, thus, relaling
drug sensilivity and palient genelic evenls -including SNVs,
indels, fusion genes, or even epigenetics. The development of an
AT algorithm in this context requires to solve three important
challenges: (i) proper modeling of the toxicity of screened drugs
(most aggressive drugs are not necessarily better treatments), (ii)
dealing with a high number of statistical hypotheses that
intrinsically increase false discovery rale (FDR), and (iii)
explaining the internal reasoning that the model uses to
propose a decision so that it is easy to approve and implement
in the clinical practice.

We propose an algorithm named Multi-dimensional
Module Optimization (MOM) that addresses each of these
challenges by dividing the problem inlo three main sleps
(Figure 1): preprocessing the input drug sensitivity scores,
associating single biomarkers to drugs with an increased
statistical power and combining individual treatments to
unveil multi-step treatment pipelines to stratify patients based
on drug-response.

MOM is developed to optimally stratify patients following a
decision tree based on simple logical rules, in which each step is
defined by the presence or absence of a certain biomarker and
the recommendation of one drug. In turn, MOM requires
genetic variants information and drug sensitivity screenings as
input data.

To illustrale the steps of the algorithm, lel us consider a loy
example with 8 drugs and their corresponding drug-response
scores for 6 patients (Figure 2). Tn this case, as in every precision
medicine scenario, we want to find robust companion
biomarkers that, associated to drugs allow us to maximize
patient response with minimized toxicity.

In the first step, MOM preprocesses drug sensilivily scores
(Figure 2.1). For which, instead of using the standard measure of
1Csp, we proposed an incremental version of the logarithm of the

1) Filter and Normalization

(Biom

Drug Reduce and
Screening Normalize
Gene Variants Filter

10.3389/fimmu.2022.977358

1C50, named I1C50% (See Methods for more details). The
proposed correclion has lwo main advanlages. Firsl, MOM
prioritizes drugs that have a differential effect on different
patients, which are, in turn, better candidates to develop a
personalized treatment based on a companion biomarker.
Second, drugs whose effectiveness does not depend on patient
genolype are more unspecific and, therefore, more prone to be
Loxic for different tissues. In Lhe next section, we will illustrate
this fact with a real case scenario.

To exemplify this normalization, let us return to the toy
example with 6 patients, 8 drugs and their corresponding log
(IC;5p) scores measured in ex-vivo tumors (Figure 2.1).
Considering raw log(ICs;) exclusively (left-hand heatmap), it
could be argued thal Drug 1 is the mosl eflective drug and,
therefore, it should be indicated to all patients regardless their
genotype. However, since the dose can be adjusted for each
patient, Drugs 1 and 8 will be given at a small and a large dose
respectively balancing their effect. Using IC50* (right-hand
panel) allows MOM to maximize the genetic dependence of
drugs, rather than the absolute cellular death in patient tumors.

In the second step {Figure 2.2), MOM provides single
biomarker-treatment associations by prioritizing the drugs
whose response is associated with patient genotype. The
selected statistical analysis to find the biomarker-treatment
associations is the Independent Hypothesis Weighting (IHW)
algorithm. This algorithm has been proved Lo increase the power
of Lests in several biological scenarios (21, 22).

This algorithm provides also two interesting “by-products”:
i) identifies which biomarkers are related to drug sensitivity, e.
gr. TP53 is usually a source of resistance, ii) identifies drugs
whose efficacy is related to the genetic profile, Olaparib is
effective only for BRCA™" patients (23).

In the third step (Figure 2.3), MOM predicts a sequential
treatment guideline that maximizes the drug effect on the group

2) Drug Biomarker Assaciation

Individual Effect of |
arkers in drug sensitivity

Single biomarker-drug
associations

IHW

Drug sensiivity relatedto |

3) Multiple-pair analysis: Proposed Patient Stratification using MILP

Single biomarker-drug
associations

C ) ~(

MILP

Patient Stratification based
g on drug-response

)

FIGURE 1

Overview of MOM's pipeline. (1} Filter and Normalization. {2) Generate individual Drug-Biomarker Associations using IHW, (3) Multiple-pair
analysis that generates a patient stratification guideline using a novel MILP model (IHW: Independent Hypothesis Weighting, MILP: Mixed-integer

Linear Programming).
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effect in all patients. The blue color represents d
Individual Drug biomarker associations usi

ig sens

of patients that share the genotype of the selected biomarkers.
Using Mixed integer Lincar Programing (MILP)(sce
Supplementary Mecthods), MOM gets the optimal treatment
guideline (decision tree). MILP is a versatile optimization
method that allows the solution of complex mathematical
problems using inleger variables and assures thal the drug
assignation is optimal. This solution (i) is explainable (XAI);
(ii) eases Lhe ranslation into clinical practice; and (iii} assures a
global and deterministic optimum (o the problem.
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MOM Pipeline: MOM pipeline is defined by 3 major steps: 1) Drug normalization to reduce drug toxicity. [t is performed by removing drug mean
vity for the sample wherea
HW. Drugs are matched to biomarkers profile, all individual as:
carrected using IHW. IHW selects the candidate biomarkers and treatment and are used as input to the M
Stratification using MILP. The MILP module receives as input the normalized drug information IC50* and the candidate individual associations
and outputs a decision tree for clinical decision-making guidance. Within this module, the treatment is optimized so that each patient receives
the drug for which is more sensitive. (IHW. Independent Hypothesis Weighting, MILP: Mixed-Integer linear Programing).

04

10.3389/fimmu.2022.977358

[Bimorkor A
imaranre

[Bimarkar
[Biamorner D
Bienaror £
eimarkar £

" m
S Fasicors

[IIEIT

) AOYKOO®

2. Individual Drug-Biomarker
Associations using IHW

s the red color represents drug resistance in the sample. 2)
ciations generate a p-value that is

P problem. 3) Optimal Patient

2.2 FLT3, CBFB-MYH11, and NRAS
variants play a key role in acute myeloid
leukemia sensitivity to quizartinib,
trametinib, and selumetinib

We sclected the BeatAML cohert to test MOM as it contains
ex-vivo drug sensitivity screenings of 122 drugs in AML tumors
derived from 319 patients (19), and includes both whole-exome

sequencing experiments (WES) and drug sensitivity for every
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patient. This cohort, allows us to measure the impact of genetic
variants on drug sensitivity (Supplementary Figures 13-19). In
addition, AML is a good disease model to develop precision
treatments, as it is a highly heterogeneous disease in which
genomic profiling is essential to understand its biclogy,
diagnosis, and treatment (13-15). Patients within this cohort
are in different therapeutic stages, e.g., induction, maintenance,
consolidation, or palliative care (among others), there also are 32
de novo patients (Supplementary Figure 12).

The drugs studied in the BeatAML cohort cover a wide variety
of different cancers and diseases: 24% are indicated for AML, 16%
for ather leukemias types, 10% for multiple myeloma, and 4% for
lymphomas. This means that 54% of the drugs have been studied
for hematological malignancies. The rest 46% include drugs used
in lung, breast, or renal cancers among other diseases
(Supplementary Figure 20). Focusing on AML, the dataset
provides a total of 11 AML drugs already in clinical use -e.g.
Venetoclax, Quizartinib, or Gilteritinib- and 18 AML
experimental drugs -e.g. Panobinostat, Lestaurtinib, or Pazopanib.

We filtered gene variants to keep the ones that appear in at
least 4 out of 319 patients (1%). This process provides 64
potential single biomarkers. We also removed drugs used in
less than 20% of the patients, and those without a candidate gene
target. After matching samples with ex-vivo and WES
experiments, we finally get the ex-vivo screening of 111 drugs
for 319 patients (see Methods for more details). We then applied
the MOM algorithm to this cohort to unveil groups of AML
patients that share genotype and drug sensitivity. In the first
step, MOM normalizes the ICs, values to define a score that
better defines tumor sensitivity, namely [C50%.

Let us illustrate this with a paradigmatic example. In our
dataset, the median ICs, for Elesclomol is much smaller than the
median [Cq, for Quizartinib (Figure 3A, left panel). Consequently,
Elesclomol seems a better option to treat patients with AML.
Figure 3D gives a completely different reading: Elesclomol is more
toxic in almost any tissue if compared with the AML lines. On the
contrary, Quizartinib is more toxic on AML than in most other
tissues. This simple example shows that plain ICs; must not be
used to select the treatment guideline for the patients. The higher
value of ICsq for Quizartinib could be corrected by adjusting the
dose. In Figure 34, right-panel, after the normalization, the [Csy*
for Elesclomol appears less effective, whereas Quizartinib
preserves its sensitivity profile, which, in this example, it is
related to the FLT3 status of the tumor.

In the second step, MOM calculates individual associations
between drugs and genetic alterations using the [HW strategy
(21). This approach sheds light on which drugs can be
influenced by patient genotype (Figure 4A). IHW also
provides a weight for each genetic variant related to the
probability of such variant to be a true positive. Non-zero
[HW weights represent genetic variants that reduce the FDR
and increase the power of tests as demonstrated by [HW
authors (21). [HW estimates that, in our AML cohort, 37
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biomarkers have weights greater than zero. IHW weights can
be therefore used to state the relevance of each biomarker. We
sorted THW weights confirming that FLT3"™, NPMIM,
NRASM, TP53™, and KRAS™ are included in the top 5
biomarkers (Figure 4B), which have already been described in
previous studies (24-29). I[HW also provides an adjusted p-
value for each drug-biomarker association. For instance, the
pipeline identified the known relation of FLT3 internal tandem
duplications (FLT3-ITD) patients being more sensitive to
Sorafenib, Quizartinib, or Gilteritinib (Supplementary
Table 1; Supplementary Figure 21).

Interestingly, an indirect output of this second MOM step is
the quantification of the sensitiveness or resistance triggered by a
specific genetic variant. Summarizing this score, gene variants
can be classified by their effect: either sensitive or resistant to the
tested drugs (Figure 4C). For example, variants in FLT3 or
NPMI are associated with a more sensitive response for the
cohort of drugs in this experiment, whereas genetic alterations in
KRAS, NRAS, or TP53 are more likely resistance-conferring.
Other results include CCND3, WDR52, CELSR2, CBFF-MYH11,
and SMCIA as biomarkers of sensitivity and STAG2 of
resistance. This effect is relative to the studied dataset, Beat
AML, and occurs across 66 different drugs studied or prescribed
for hematological malignancies.

Finally, in the third step, we solved the MILP problem from
MOM using the individual candidate associations. As a result,
MOM returns a decision tree that, depending on the presence or
absence of several biomarkers, recommends a treatment for each
patient. In this case, the patients are divided into four subgroups
(one for each level of the tree) denoted by FLT3™ NRASM™,
and inv(16) biomarkers (Table 1; Figure 5).

Following the new therapeutic strategy, the first biomarker is
FLT3*“ including FLT3-ITD. Patients carrying FLT3" would
be treated with Quizartinib a 2°¢ generation FLT3 inhibitor that
is currently facing several clinical trials showing an increase in
overall survival for AML patients (18). This group of patients
represents 30% of patients (25), in our study, 103 patients out of
319 belong to this group. The second subgroup comprises 15
patients and is characterized by FLT3"7 and the inv(16), which
generates the fusion gene CBFB-MYHII. Patients with these
biomarkers are sensitive to Trametinib, a MAPK inhibitor that
prevents cell replication and has been initiated in phase I clinical
trials for hematological malignancies (30). Interestingly, within
this group, the patients with NRAS™* (4 out of 16) are the most
sensitive to Trametinib. The third group is defined by the
absence of previous biomarkers and NRAS™™, This subgroup
poses special interest in the research as NRAS is one of the
biomarkers most closely related to the general resistance to
treatments of this disease (31). NRAS gene variants are
mutually exclusive with FLT3 variants (p-value<0.05;
Supplementary Figure 16). Patients within this subgroup are
sensitive to Selumetinib, a MAPK inhibitor that has started
clinical trials for acute lymphoblastic leukemia in the UK (32),
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it is a milogen-activaled pathway inhibilor, which could inhibit
RAS pathway funclionality {33).

Finally, the fourth subgroup comprises the rest of the
patients with none of the above mutational biomarkers but
with other possible mutated biomarkers, for which the best
treatment is Crizotinib -an ALK and MAPK inhibitor-
approved by the FDA for lung cancer. It has not been enrolled
in clinical trials for AML. Nevertheless, it has been used in
studies of high-risk AML patients, with TP53""" and obtained
very promising results (34).

To validate the MOM'’s algorithm, we first run MOM on the
BeatAML ex-vivo dataset using 10-fold cross-validation and
compare the results that MOM outputs with each fold. This
analysis shows that the MILP oplimization returns robust
resulls as 90% folds share 4 oul of 5 biomarkers (Supplementary
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Figure 5). Specifically, FL T3 and NRAS™ subgroups appear in
10 out of 10 folds and subgroup with inv(16) in 3 oul of 10 folds.

We then evaluated the treatment guideline proposed by
running MOM with BeatAML within three independent AML
datasets: two large-scale loss-of-functionality experiments that
used both RNAi (DEMETER 2 (35)) and CRISPR-Cas9 (CERES
{36, 37)), and an additional large-scale cell-drug sensitivity
analysis (Genomics of Drug Sensitivity in Cancer, GDSC {1,
38, 39)). We characterize cell lines using the Cancer Cell Line
Encyclopedia’s (CCLE (40, 41)) genetic variant files, from which
we clustered the AML cell lines into the four subgroups
predicted by MOM using as input BeatAML. For CERES and
DEMETER 2, we identified the main target and model drug
effects Lo be proportional Lo the depletion of their targel, which is
the informalion hese databases included.
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FIGURE 4

Analysis of single interactions biomarker-drug. (A} Overall score of 122 drugs whose IC50* is related or non-related to cell genotype according to our
model A drug is related to a relevant variant (those whose [HW weight is greater than zero) if its adjusted p-value is below 0.05. (B) Global effect of AML
gene variants in AML drug sensitivity. The x-axis shows the logarithm of the minimum adjusted p-value of the biomarker with any of the drugs. Only
those biomarkers whose IHW weight is greater than zero are shown. (C) One-tail p-value histograms comparing drug sensitivity according to the
biomarker status in AML. If a histogram has a strong peak near zero, patients with the biomarker are sensitive to many drugs. On the contrary, if a
histogram has a strong peak near one, patients with the biomarker are resistant to many drugs. A genetic variant is considered to confer sensitiveness if
the number of drugs whose p-value<0.2 is twice the number of p-values »0.2. Similarly, a variant confers resistance if fulfills that the number of p-
values>0.8 is twice the number of p-values<0.8. (IHW. Independent Hypothesis Weighting).

For cach subgroup, we compared cach experiment’s sensitivity other three databases. We compute the sensitivity scores for the 4
(CERES score, DEMETER 2 score, and GDSC-IC50) dividing subgroups, and the 3 datasets independently DEMETER2 (n=18
patients according to the presence of the biemarkers predicted by AML cell lines), CERES (n=14 AML cell lines), and GDSC (n=23
MOM in BeatAML and summing their sensitivity scores of the AML cell lines) (Figure 5). For the GDSC dataset, we compared the

TABLE 1 MOM Output: Patient stratification based on drug response to guide clinical decision-making.

Name Biomarkers Drug Patients Treated
Subgroup 1 FLT3M™ Quizartinib 103
Subgroup 2 FLT3Y! & inv(16) Trametinib 15
Subgroup 3 FLT3"' & no inv(16) & NRAS*™" Selumetinib 42
Subgroup 4 TLT3VT & no inv(16) & NRAS™T Crizotinib 159
Frontiers in Immunology 07 frontiersin.org



Author Publications

Gimeno et al.

10.3389/fimmu.2022.977358

FIGURE 5

i)
c
2
©
o
FLT
o g
Ex-vivo

e
FLT3Mutvs. FLTIWT

vedsatan
=
LN

GDSG 1650

Inv(16)

@  Tremetiniz
16 Patients

. T
-2

W L]
(16} v ne (16

No Data Available

No Data Available

e
Inv{16) 5. 0 In{16)

Decision Tree for the Proposed Patient Stratification using MOM. MILP from MOM obtained a hierarchical clinical guideline for patiant stratification
consisting of 4 different subgroups. Each of them is denoted by a biomarker and represented by color [blue, turqueise, orange, and grey). These subgroups
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1Cs0 value from the cell lines with the selected biomarker and
without the biomarker for a given subgroup drug. Finally, we
performed an additional validation using DEMETER RNAi
dataset (n=15 AML cell lines; Supplementary Figures 7-8).
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The change in sensitivity for the selected treatments is
strongly significant using the MOM’s predicted biomarkers in
the three experiments (p-values of 5.5¢-05, 6.8¢-06, and

5.5¢-04 for CERES, DEMETER2, and GDSC, respectively;
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Supplementary Figures 9-11). Remarkably, inv(16) is difficult to
be validated using cell lines, as commercial cell lines mostly lack
this alteration. The ME-1 cell line is an exception to that, but
GDSC is the only dataset that includes the translocation.
Although this comparison is not statistically significant due to
the lack of data, the GDSC-1IC50 of ME-1 is 30 times lower than
the average of cells without inv(16).

We carried out a functional enrichment analysis to unveil
the patient genotype according to the stratification proposed by
MOM. We calculated the differentially expressed genes that are
representative of each subgroup (Supplementary Tables 2-5) and
computed the enriched biological functions of patients that
belong to each group. The first subgroup, defined by FLT3M*,
is characterized by downregulation in Myeloid Leukocyte
Migration (adjusted p-value< 5e-3; Supplementary Figure 23,
Supplementary Table 7), this result is present in other functional
enrichment studies involving FLT3 mutated subgroup (42, 43).
This subgroup has been repeatedly mentioned in literature and
FLT3 inhibitors are being implemented in the clinic (18). The
second subgroup, defined by samples with inv(16) and FLT3"™
shows upregulated cell proliferation (adjusted p-value< le-3)
including angiogenesis and endothelial cell migration
upregulated among others (Supplementary Figure 24,
Supplementary Table 8), also described in other studies
concerning this genetic aberration (44-46).

We also found that the NRAS™™ subgroup is related to the
downregulation of alternative splicing (AS; adjusted p-value<
0.2; Supplementary Figure 27, Supplementary Table 11). This
subgroup has an upregulation of the transforming growth
factor-beta (TGE-B) signaling pathway (adjusted p-value< Se-
03; Supplementary Figure 26, Supplementary Table 10), which is
mentioned in other studies concerning AS, especially in
myelodysplastic syndromes (47, 48). Furthermore, several
studies have attempted to address the relationship between
AML and AS, with promising results (49-51).

Finally, patients who do not have the previous biomarkers,
have a downregulation in the amino acid catabolism process
(adjusted p-value< 0.05; Supplementary Figure 29,
Supplementary Table 13), ie. they are less able to metabolize
aminoe acids than the rest of the subgroups (52). A study
demonstrates that for a subpopulation of AML leukemia stem
cells the metabolism of amino acids from the medium is
essential, and its absence leads to cell death (52). Further
description of the enriched functions for each subgroup, as
well as their relationships and statistical significance, can be
found in the supplementary material (Supplementary
Figures 22-29, Supplementary Tables 6-13).

3 Discussion

Despite the advances in drug ex-vivo screening and
computational methods for precision medicine, there are
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technical issues that limit their translation to clinical practice.
Some of these issues are the influence of drug toxicity, the
enormous number of statistical hypotheses, the complexity of
developing algorithms understandable by the clinician, and the
difficulty of proposing an effective treatment guideline that
assigns the best drug for each patient. MOM faces and solves
each of these challenges.

These statements are not yet covered by current AL
strategies, which are focused on increasing accuracy and
sensitivity regardless of the complexity of the end model (7,
53). In these Al methods, the absence of interpretability of the
feature used for classification prevents further research and
downplays the need for clinically defined subgroups (54-56).
Indeed, the need of developing XAI algorithms is not only
related to easing the diagnosis pipeline in cancer but also to
increase and facilitate that the pharma industry brings new drugs
and biomarkers to market. Drug regulators -such as the Food
and Drug Administration- value that the process to unveil novel
biomarkers is robust and transparent (10). In contrast, the
patient stratification guideline provided by MOM has the
following characteristics, 1) allows treatment assignment by
using a simple genetic panel, ii) the results are non-stochastic,
they are the same for all possible re-runs of the model, ii1) the
algorithm outputs a decision tree for treatment guidance.

[Csp, ECsg, and AUC (used for example in (1, 6, 38)) are
reasonable metrics to determine the efficacy of a drug. None of
them, however, considers the overall toxicity of the drug. Using
[C50* in the optimization problem, we focus on the differential
effectiveness of a drug among different patients, and therefore,
drugs that are toxic for most samples will not be included in
the solution.

[HW provides us with the ability to increase the power of
tests and reduce the FDR. With this strategy, we are also able to
identify the direction of the influence of genetic events in drug
response, i.e., whether it defines sensitivity or resistance. With
this approach, we successfully detected FLT3 as highly influential
in terms of sensitivity to treatment, which is coherent with other
studies (25). NRAS, instead, showed as a mutation associated
with treatment resistance also coherent with literature (26, 31).
One promising conclusion for this study is that we managed to
find a drug for which NRAS correlates to drug sensitivity.

XAI defined by MILP ensures that the subgroups obtained
are optimal. This feature is not common to other classification
methods. However, it also presents two main limitations. The
first one is computational resources, which increases
exponentially with the number of possible biomarkers, drugs,
or patients (on a standard desktop, the presented work required
2.5 hours of computing time). In addition, the incorporation of
new non-binary diagnostic markers requires the redefinition of
the model. However, once the optimization problem is solved,
assigning a treatment to a novel patient is immediate.

Our AML patient stratification includes a subgroup defined
by the absence of a genetic mutation, ie., wild type. It also
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includes patients who have Tps53Mut genotype, which are
biomarkers associated with poor prognosis (14). MOM
recommends treating these patients with Crizotinib, a drug
used in other studies with TP53™™ AML patients which in
fact showed very promising results (34). In addition, this
subgroup shows a deficiency in amino acid metabolism which
may lead to alternative treatment therapies based
on metabolomics.

The subgroup defined by the CBFB-MYH!! fusion gene
appears characterized in a very small percentage of AML cell line
cohorts but is nevertheless present in 7% of AML patients (57),
which enhances the relevance of this biomarker. CBFf-MYH11
is a clear indicator of sensitivity to Trametinib, a clinical drug
that inhibits cell replication pathway (58), which, in turn,
appeared as an upregulated biological process in this
subgroup. In the remaining subgroups, FLT3"™ is widely
described in the literature (25). In contrast, NRASY™ appears
as a biomarker of sensitivity for Selumetinib and has
downregulated the alternative splicing (AS8) process. This
subgroup contains, on balance, effective treatment for a
resistance-associated mutation and a new line of research
linking alternative splicing and AML.

It is remarkable the appearance of three different MAPK
inhibitors in the proposed therapeutic strategy, which is
coherent with the disease behavior. Our biomarker analysis
revealed that the RTK-RAS pathway is the most affected in
our cohort of AML samples (Supplementary Figures 18-19). Of
all drugs suggested as treatment, only Quizartinib is clinically
approved for AML patients (15). This study aims to accelerate
-once the results are validated in cell lines and murine models-
the process of approving these drugs for AML.

The validation of the results is challenging in a real cohort
since most patients are treated with standard induction cytotoxic
therapy (only 7.5% of AML patients in TCGA are treated with
other treatments). We propose a strategy to take advantage of
cell lines loss-of-function datasets. Nevertheless, even using cell
lines -that are quite different from ex vivo samples- we validated
the subgroups and the ICs, of the lines with indication was
significantly better than the ICs, of those without indication.
Therefore, in the absence of clinical data for validation, we
consider the results using cell lines data to sufficiently support
this study.

The concept of MOM is also applicable to other disease types
using ex-vivo experiments as well as to other sensitivity
measurements, leaving an open door for new patient
stratifications based either on drug response or even on any
other experiment to measure the effectiveness of certain drugs in
the future. We believe that XAT will help doctors and regulators
understand Al medical decisions and, therefore, ease the
translations of Al analysis of drug screening experiments to
clinical practice.
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4 Methods
4.1 Filter and normalization

4.1.1 Filtering and imputation

‘We used data from ex-vivo experiments, WES, and RNA-Seq
from 319 Acute Myeloid Leukemia (AML) patients included in
the Beat AML cohort (19). Data was filtered to ensure all samples
contained the gene variants and drug sensitivity information, the
new dataset containing genomic aberrations and drug ICs, for
the same patients was used as a starting point for the study.
Genetic variant samples were previously pathogenically filtered
by Tyner et al. (19) and we defined as a biomarker a genetic
variant present in more than 1% of the patients (n>4), leaving a
total number of 64 possible biomarkers.

For missing drug sensitivity information in the ex-vivo
experiments, we imputed the missing data using the k-Nearest
Neighbourhood (kNN) Impute method, from Impute R package
(59) (version 1.68.0). An analysis of the missing values —both
patients and drugs- is included in the supplementary material

4.1.2 Drug normalization: from 1Csq to IC50*

Initially, we tried to use as drug sensitivity values the half-
minimal inhibitory concentration, (ICs,) ie., the concentration
of a drug -in micro molar- for which half of the cell from the ex-
vivo experiment die. [nstead of using the ICsp, we propose the
usage of an incremental version of the ICs,, named [C50%. As
described in the results section, the usage of IC50% instead of
ICs is a convenient way to deal with the different toxicity of the
drugs under study

After imputation, ICs;, values were taken the log, ; logarithm,
normalized by subtracting the IC5 mean value for each drug,
and these scores were made negative by subtracting an offset to
the normalized [Csp value —the optimization model assumes
negative values of drug sensitivity. The obtained drug sensitivity
values are named [C50%. The transformation from ICs; to IC50%
is represented in equation (1). Despite the formidable aspect of
the formula, IC50* is simply an incremental and version of the
logarithm of ICsy with an offset.

Let [Csp be a T'x P matrix, with T the total number of drugs
and P the total number of patients, for which each element ic50,
» 15 a value contained in (0,10] pM.

. X L& .
ic50,, = (logp (![‘.‘03?) -1 7;2(]:1310 (lfsow,) -1
F=l

-1

P
—max ((logm (ie50,,) - 1) - %Eflogm (ie50,,) - 1)) (1)
P

The obtained IC50% is a T'x P matrix containing the new
drug sensitivity values.

frontiersin.org



Author Publications

Gimeno et al.

4.2 Drug-biomarker association

Following with MOM’s second step, we implemented a two-
tailed Wilcoxon test to assess whether a biomarker influences the
sensitivity of each the treatment. Each biomarker is tested against
each drug and these associations were ranked according to the p-
value. The p-values were adjusted following the methodology
described by Gimeno ef al. (22), using the R package IHW (21)
(version 1.22.0). The package provides (given the p-values and the
covariates —in our study genetic alterations-) a weight for each
covariate related to its influence on the p-value significance.

Using these results, we included two consecutive filters.
Firstly, we selected the biomarkers whose relative importance
(the weight outputted by IHW) is larger than zero. IHW assigns
a strictly positive weight to biomarkers relevantly correlated to
the patency of a drug, Afterwards, we removed the drugs with no
statistically significant relationship to the selected biomarkers
(IHW p-value >0.05).

After this analysis, 122 treatments (biomarker-drug
associations), with AIC50*>0.2 (including vs lacking the
biomarker) and adjusted p-value<0.05 were considered for therapy.

4.3 MOM: MILP Module

Finally, in the third step, we proceed with the treatment
assignation. We developed a MILP module described in the
Results section, This module receives as input the 122 treatments
and solves an optimization problem (described in detail in de
Supplementary Material) MILP results can be directly translated
into a decision tree for guiding clinical decision-making. The
number of levels of the tree was set to four. Each level of this tree
will be defined as one therapeutic AML subgroup and each
subgroup is defined by a biomarker and a recommended drug.

Additional information regarding the algorithm, its in-silico
validation, and its performance can be found in Supplementary
Material (Section Supplementary Methods).

4 4 External cohort validation

For validating the different subgroups, we compared patients
that are given a drug in a specific subgroup against the remaining
non-treated patients. We validated our results using cell lines,
specifically, used 2 different large-scale gene essentiality
experiments including RNAi (DEMETER 2 (35)) and CRISPR-
Cas9 (CERES (36, 37)), and an additional large-scale cell-drug
sensitivity analysis (Genomics of Drug Sensitivity in Cancer,
GDSC (1, 38, 39)). We characterized the cell lines using the
Cancer Cell Line Encyclopedia (CCLE (40, 41)) genetic variants
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files, from which we were able to divide the cells into
different subgroups.

‘We performed the following test for validation. Cells were
divided into two groups. The first group includes cells with the
biomarker associated to that subgroup, and the other group,
contains the cells without the biomarker that had not been
previously treated. This comparison was computed for the 4
subgroups, and the 2 datasets DEMETER 2, and CERES.
DEMETER 2 and CERES were compared using the viability
score that corresponds to knocking out the corresponding
targets for each drug. For the GDSC dataset, we used the ICy,
value provided in the experiments. All tests were one-tailed
‘Wilcoxon’s test to check that the sensitivity increase in the cells
with the biomarker.

4.5 Functional analysis of the subgroups

Functional analysis of the subgroups was performed using
gene expression data from the BeatAML (19) cohort. We
performed a differential gene expression analysis using limma
R package (60) (version 3.50.3). The contrast matrix compared
one group against all the others, therefore, there was a different
contrast for each group.

Genes differentially expressed were ranked according to its t-
statistic, if t >0, genes were considered overexpressed, if t<0,
genes were considered underexpressed. For each subgroup, we
selected the top 500 over and under expressed genes and
performed a Gene Ontology Enrichment Analysis (GEA) using
Fisher's Test. We analyzed the biological process ontology.
Enriched functions on the overexpressed genes were
upregulated, and functions obtained from the underexpressed
genes were considered to be downregulated. The statistics were
computed using clusterProfiler R package (61) (version 3.10.1).
We set an adjusted p-value cutoff of 0.2 for considering a
function differentially enriched, adjusted p-values were
computed using the Benjamini-Hochberg procedure.
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Abstract

Great efforts have been made to develop Precision Medicine (PM)-based treatments
using Machine Learning. In this field, where the goal is to provide the optimal treatment
for each patient based on his/her medical history and genomic characteristics, it is not
sufficient to make excellent predictions. The challenge is to understand and trust the
model's decisions while also being able to easily implement it. However, one of the
issues with machine learning algorithms -particularly deep learning- is their lack of
interpretability. This review compares six different machine learning methods to provide
guidance for defining interpretability by focusing on: Accuracy, Multi-omics Capability,
Explainability, and Implementability. Our selection of algorithms includes tree,
regression, and kernel based methods, which we selected for their ease of
interpretation for the clinician. We also included two novel explainable methods in the
comparison. There were no significant differences in accuracy when comparing
methods or when using gene expression instead of mutational status as input to those
methods. This allowed us to concentrate on the current intriguing challenge: model
comprehension, and ease of use. We discovered that the tree-based methods were the
most interpretable of those tested.

Keywords:

Interpretability, Precision Medicine, Machine Learning, Explainable Artificial
Intelligence, Drug Recommendation, Asignation Problem, Method Comparison.
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Introduction

Precision medicine (PM) is the science that “defines a disease at a higher resolution by
genomic and other technologies to enable more precise targeting of its subgroups” [1].
It is an emerging field that epitomes the new era of medicine owing to its applications in
clinical treatment and diagnosis [2].

PM tries to find not only the right drug but also the right dosage and the proper
treatment schedule. These goals are usually summed up as “targeting the right
treatments to the right patients at the right time” [3]. In this review, we will focus on
considering the patients’ genome, environment, and lifestyles to provide each patient
with the “best” treatment according to these characteristics. PM faces different
challenges that will be described in this introduction.

The challenge of getting the patients’ response to drugs.

PM requires the different patients' characteristics to make their predictions [4] such as
genomic and transcriptomic data, health records, lifestyle characteristics, etc. (Figure
1). With an adequate data policy, these characteristics are reasonably easy to obtain;
genomic data can be acquired from sequencing techniques, wearable technologies can
collect data that provide lifestyle information, EHRs are invaluable sources of
information on health status and previous conditions, etc. Its integrative analysis
requires complex models and a solid understanding of the interaction of biological
systems [5].

However, PM also requires drug sensitivity information which is much more difficult to
find, having most likely incomplete information on all patients’ response to all available
drugs, i.e. each patient is given one or, at most, a few drugs, not all the possible
ones[6] (Figure 1). Even in these cases, distinguishing between responders and non-
responders is not an easy task and requires tailoring methods specific to each disease.
In tun, these different criteria for different diseases make it difficult to compare
diseases or drugs [7].

PDX (patient-derived xenografts) or ex vivo experiments can be used as proxies to
estimate the patients’ response to several drugs [8]. Both approaches have strong
limitations. In the case of PDX, the animal models’ immune system is usually
compromised and, in the case of ex vivo experiments, —used mainly in hematologic
oncology- the interaction of the cells and the immune system is not properly modeled.
Despite these difficulties, they are reasonable sources of information to predict the
response of the patients to different treatments [9].

PM falls beyond traditional machine learning (ML) problems.

Precision Medicine can be considered an assignation problem: each patient must be
provided a drug (or a set of drugs) given the patient's information. This assignation
problem does not perfectly fit in any of the “traditional” fields of machine learning. It is
not a unsupervised problem, although, with a proper selection of variables, patients
with identical “optimal” drugs should cluster together[10,11].

Regarding supervised machine learning, it is not either a standard regression problem
since the aim is not to predict the effectiveness of a drug on each patient but to find the
most effective ones [12]. Nevertheless, both problems are related and, if the
effectiveness of each drug were exactly modeled, the “perfect” drug for a patient would
be simply the most effective one predicted by the model. It could also be treated as a
classification problem dividing the drugs for each patient into two classes: the most
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effective one belongs to one class and the others belong to another class. Again, it
solves the problem if the predictions were perfect. However, since this simplistic model
only considers misclassifications (the second best drug is as bad as the worst), it does
not work well in practice.

Finally, it can also be considered a reinforced learning problem [13]. For example, [14]
includes a review of reinforcement learning applications to oncology. The objective of
this field of machine learning is to learn an optimal, or nearly optimal, policy that
maximizes the “‘reward function” —in this case, the patient's response to treatment.
Reinforced learning is traditionally applied to teach the computer how to play games
(chess, Go, or video games) [11]. Applied to PM, different methods state how use a
reinforced learning algorithm to “find a policy that maximizes the patient response to
treatment”.

As a result, precision medicine —assigning the proper drug to each patient— given the
patients' data is a problem that shares characteristics of different machine learning
fields (Figure 2) and can be tackled in many ways as will be shown in the different
analyzed approaches.

Patient-centered vs. drug centered.

There are two main approaches to solve the goal of “targeting the right treatments to
the right patients" (Figure 1). The first one is to state which is the proper drug for a
specific patient. We will name this approach “patient-centered”. The other approach
consists of finding the patient or patients that are responders for a specific drug, named
“drug-centered” in this review. This problem —closely related to finding biomarkers of
response- is interesting for the pharma industry.

If the output of the algorithm is a continuous value, it is possible to adapt a drug-based
method to solve the patient-based problem and vice-versa. For example, many drug-
centered methods return a sensitivity score for each patient when applied to a specific
drug. If this score is computed for all the drugs, it can be used to select the drug that
maximizes sensitivity for each patient.

The challenge of interpretability.

One common problem in ML is the (lack of) interpretability. In many cases the
algorithm is a blackbox that gives no clues on why a specific decision is taken [15-27].
It is difficult, if not reckless, for a physician to use a treatment guideline with no
information on the ultimate reasons that drove this recommendation. Explainable
artificial intelligence (XAl) is an active field of research: it justifies the response and
ensures that, given the a priori knowledge, the recommendation is sensible. XAl also
helps to improve the results since, as they are understandable by physicians, they can
provide expert feedback to fine tune the algorithms [28-31]. Some methods have tried
to explain their reasoning to become more explainable [29,32-38].

Treatment guidelines that require few biomarkers are easier to understand by a human.
Therefore, the number of variables is one of the characteristics used to determine how
explainable a method is. Some methods [17,18,25-27,34,39,40] automatically select
the optimal number of variables to accomplish a task. In other cases, the selection of
variables must be done beforehand using either a filter or a wrapper technique
depending on whether the result of the predictions is included in the loop to select the
variables [19,41-44].
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Method of comparison.

In this review we included interpretable methods amenable to the precision medicine
problem, i.e. find the best drug for a patient. We systematically reviewed the current
literature to summarize the state-of-the-art and compare different methods that solve
the assignation problem.

Some of the methods available in the literature —that are said to be interpretable and
output a drug assignation- refer to methods that are currently under the “patient-
centered” approach [45,46], others are nested under the “drug-centered” approach
[47—49]. From the latter, only the methods that predict a continuous variable for drug
sensitivity could be used for patient assignation.

We compared the methods in this work in terms of interpretability, focusing specially
on accuracy, multi-omics capacities, and translation into clinical practice. Method
comparison was performed using BeatAML [50] dataset and Genomics of Drug
Sensitivity in Cancer (GDSC) [51] dataset for Acute Myeloid Leukemia (AML). We
focused on the BeatAML dataset due to its abundancy of patient information —e.g.
genomic data, gene expression, clinical data—, and drug sensitivity information which
proceeded from ex-vivo experiments performed on patient samples instead of cell lines
[50]. Indeed, ex-vivo drug sensitivity provided more information for patient sensitivity
than conventional information from clinical data due to the possibility of testing more
drugs on the living tumor without injuring the patient and solving possible harmful drug
interactions from previous treatments. Using this information —although it could be less
reliable— solves the sparsity issue of drug sensitivity data. Furthermore, drug screens
performed on ex-vivo experiments improve data reliability if compared to cell line
screenings. Nevertheless, further experimental validation is required for clinical
applications.

AML is an infrequent blood tumor that originates in the bone marrow of the patients and
has a very poor progression-free survival. In addition, it is a highly heterogeneous
disease for which finding effective treatments is a challenge [30,52-54]. Due to the
technical difficulties in finding suitable data from this disease to implement a common
ML model, the need to find therapeutic strategies, and the availability of ex-vivo drug
screening experiments, we believe that the BeatAML dataset is perfectly suited for this
comparison.
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Methods

Focusing on approaches to address the complex Precision Medicine (PM) problem, we
found two methodologies from the “patient-centered” perspective, Multidimensional
Optimization Module (MOM) [45] and Kernelized Rank Learning (KRL) [S5]. We also
included in this group two novel algorithms: Optimal Decision Trees (ODT) and an
adaptation of the Multinomial Lasso. Both are described in more detail in the Methods
section. MOM uses mixed integer linear proagramming (MILP) to discover the optimal
therapeutic strategy that is returned as a decision tree. KRL is a machine learning
method based on an optimization problem -minimizing the sensitivity error-, it applies a
kernel to solve the convexity limitations and solves the problem also using MILP. ODTs
are decision trees that recursively optimize the drug recommendation on each branch
until a preset group size is reached. Finally, Multinomial Lasso is a modified Lasso
regression methodology for which each patient “selects” its best drug using a vote
sharing scheme.

In the “drug-centered” approach, BOSO [47] and Lasso Regression [49] can be applied
to predict the ICs, of a drug in different patients. Both methods select a small number of
variables to make their predictions. Once the predictions are obtained, comparing the
predicted ICs; for each drug on a patient, the drug with the minimal IC5, is selected.
BOSO is a MILP model built up from the Lasso Regression equations that have been
modified to predict a numeric variable with the least number of features, improving the
reduced interpretability of Lasso Regression. The description of the six methods is
summarized in Table 1. Some of the methods only accept binary data as input. These
metheds cannot be applied to gene expression unless using a hard threshold.

Optimal Decision Trees (ODT)

In this work, we are introducing a novel algorithm that uses a tree-like method for
precision medicine. This method is intrinsically different from classification or
regression trees, as will be shown.

In a classification tree, in each step, the tree is split into two subtrees finding the
variable (with its corresponding threshold) that best splits the tree according to some
figure of merit (Gini index, entropy, information gain, etc.). This figure of merit
measures the overall enrichment of the classes in the subtrees.

On the contrary, the ODT algorithm selects for each step the splitting variable
(selecting a proper threshold) and the treatments for each split. The selection is based
on the optimization of an overall measure of the sensitivity of both branches to the
selected treatments (Error! Reference source not found.).

Specifically, let Y be a P x D matrix where P is the number of patients and D is the
number of tested drugs. Each of the entries of the matrix quantifies the sensitivity of
each patient to a drug, i.e., the matrix Y can be either the ICs;, or a modified version of
it, the area under the concentration-response curve, etc. Let X be a P x M matrix where
P is the number of patients and M is the number of biomarkers. The matrix X can be a
matrix of mutations, gene expression, or other characteristics specific to each patient.

In the case of binary variables (mutations for example), for each step in the splits of
tree, the following optimization problem is solved (Equations 1-3):

max A+B
m, dydy (1)
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A= E J’pd,(xpm ==1) (2)
p € split
B= E Vpet, (X == 0) @

p € split

Where split is the set of patients under study (all patients are used in the case of the
root node), m is the selected mutation or biomarker, and d, and d; are the selected
drugs for the patients that have or do not have the mutation m respectively. The
notation “(condition)” represents 1 or 0 depending on whether the expression inside the
parenthesis is true or false (Equations 2,3). This problem can be easily extended to
continuous variables, using a threshold (Equations 4-8). In this case the optimization
problem is:

max A+ B
m, th,dyds (4)
A= E yudl{xpm >= Ch) (5)
p € split
B= Z Vpd,(Xpm < th) (®)
p Esplit

Both optimization problems start by setting all the patients within the studied split. The
optimization splits the patients into two groups. For each of these groups, the algorithm
is applied recursively until the number of patients in the split is smaller than a given
number or until the optimization problem results in the same drug for both splits.

Equations (2,3,5,6) maximize the sum of the sensitivities of the patients of each of the
branches. Using the same algorithm, it is possible to use any transformation of the
sensitivity and include them in the optimization process. In this case, equations (5) and
(6) are transformed into:

a= 2 Fpa,) (pm == th)
p € split

B= Z f(.)’pdg) (xpm <th)

p Esplit

Equations (2) and (3) can be transformed in an analogous way. To minimize the effect
of outliers in the sum, we used the square root function to diminish the dynamical range
of the data. The transformation is named ODT Sqrt in this work.

Multinomial Iogistic Lasso regression

The assignation of the proper drug to each patient problem can be tackled as a
multiclass classification problem: the number of classes is the number of drugs and
each patient is assigned the most effective drug for him/her. Using this approach, a
multinomial regression can be applied to select the proper drug for each patient.

Predicting exclusively the most effective drug can be simplistic, since the penalty for
misclassification is identical for the second most effective drug or for the least effective
drug. Since the multinomial regression can also be applied to continuous variables, it is
possible to give a “vote” for each patient that can be shared among all the drugs: the
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most effective drug will receive more shares of this vote that the least effective drug.
Assigning the whole vote to the most effective drug can be seen as a particular case of
this approach.

The Lasso regression is also implemented for multinomial regression. The
implementation of gimnet (R Package) [49] is fast and convenient and allows for
automatic selection of the regularization parameters using cross-validation.

More specifically, the multinomial regression builds the multinomial regression model
(Equation 8)

Xp~Z ®

where X is a P x M matrix where P is the number of patients and M is the number of
biomarkers, Z is P x D voting matrix (in fact, probabilistic labels) where P is the
number of patients and D is the number of tested drugs. All the elements of Z are
positive and the sum of its elements by rows is equal to one. Finally, B the output of
the regression is a M x D coefficient matrix. Xg are the predicted logits for each drug
being the most effective for each patient (Figure 4).

The specific selection of the entries for the Z matrix is shown in Equation 9.

T
EXP| — in (vpa)
P
T= 9)
T exp| —k———
i= min (yp:)
P

Where y,, are the entries of the Y matrix (that measures the sensitivity to a drug) and K
is a predefined constant. If K>>1, all the exponentials of the summations of the

denominator except the y,,that corresponds to min(y,) vanish and the vote is given to
the most effective drug. If K =0, all the drugs share 1/D votes.

More information regarding the other algorithms already published can be found in the
Supplementary Material (Section Supplementary Methods).

Data for Comparisons

We focused on Acute Myeloid Leukemia (AML) to compare the different methods
described above. This disease was selected due to the availability of a wide cohort of
patients with genomics data and ex-vivo drug sensitivity screening data. Ex-vivo data is
more reliable than drug screenings performed on cell lines since the tests are
performed directly on the AML patients’ blood. Furthermore, AML is a highly
heterogeneous disease with not standard PM therapeutic strategy, even though there
is a growing field of drug development likely suited for these patients, e.g. Tyrosine
Kinase Inhibitors (TKIls)[56].

Consequently, we selected the BeatAML cohort [S0] for training the models and
predicting different therapeutic strategies. This cohort is publicly available at
http:/mww .vizeme.org/ . We normalized the drug sensitivity I1C5; from the ex-vivo
experiments into IC50* described in [45]. This normalization equalizes the toxicity of
the different drugs. To validate the predictions and due to the absence of more large-
scale ex-vivo experiments, we used as an independent cohort testing set, the GDSC
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drug screening for AML cell lines [51], which could be found publicly available at
https://www.cancerrxgene.org/ .

We compared the different algorithms based on four aspects that define interpretability
(Figure &): i) the accuracy of the method, for which we performed a 5-fold cross-
validation in the training set, an independent cohort validation and an intragroup
validation with the predicted groups in the training and validation set, ii) the multi-omics
capacity, for which we tested the ability and performance of the methods when training
with gene expression and genomic variants, iii) the explainability, for which we
performed a qualitative comparison of all algorithms, analyzed the number of variables
that each algorithm uses for prediction, and iv) the implementability, for which apart
from qualitative comparisons based on the method definition, the computing time that
each model requires for training becomes essential.

This four categories are explained more in depth in the following paragraphs.

Accuracy

The first “sine qua non” characteristic of a PM methods is the accuracy. An
“interpretable” method with low accuracy becomes irrelevant. We define the accuracy
as the difference of the IC50* for the assigned drug and the drug with maximum 1C50*
for that patient.

For assessing the accuracy of each of the methods, we performed the following
comparisons: 5-fold cross-validation, independent cohort validation, and Intra-group
validation.

6-fold cross-validation in BeatAML. \We performed a 5-fold cross-validation using the
BeatAML dataset. We trained all models with genetic variants data from 319 patients,
dividing the cohort between the training samples 4-folds and testing samples the
selected 1-fold. Each of the folds were tested, and the predicted 1C50* for the 5-fold
testing was compared for all the methods and compared against the Oracle -the drug
with the optimum IC50*- (Figure 6). We calculated the Oracle as the minimum IC50*
value for each patient.

Independent cohort validation. One of the main challenges of Machine Learning,
including Precision Medicine, is generalization, i.e. the ability to adapt to new,
previously unseen data. All the methods were tested on the GDSC AML dataset to
check their generalization ability. The models were trained using the BeatAML dataset
and were used to predict the optimal drug for AML cell lines from GDSC using its
mutation files. Each of the cell lines was recommended a drug, we compared the all-
samples ICs; for all the models and against the Oracle (the drug with the minimum 1Csq
for each cell line).

Intra group validation. We compared whether the IC50* of a drug in patients in whom
it was recommended was lower than the IC50* in patients in whom it was not
recommended. Using this information we compared the sensitivity to a drug for a
specific group against the sensitivity to that drug for the rest of the samples by using a
2-tailed Wilcoxon test. This analysis was performed both for the BeatAML dataset
(training dataset) and the GDSC AML cell lines cohort (predicted dataset).

Multi-omics suitability

Some of the methods only accept as input binary variables. Although, genomic variants
can be transformed into binary variables, gene expression, methylation, or openness of
the chromatin are intrinsically continuous variables. We have included a table showing
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whether the algorithm accepts only binary inputs (genomic variants only) or whether it
also accepts continuous data (gene expression, methylation, etc.). For the methods
that accept continuous variables, we assessed the performance of the predictions (5-
fold cross-validation) in the BeatAML dataset using both data sources. We state the
statistical significance using a 2-tail Wilcoxon's test comparing the IC50* using as input
either genetic variants or gene expression.

Explainability

PM is more suited for healthcare if it can be interpreted. A machine learning method is
interpretable if it provides the decision criteria that define the pathway that leads to the
solution.

Explainability is defined by three different aspects: i) the explainability of the results,
which checks if the method provides a ranking of the variables according to their
importance for drug recommendation, ii) the capacity to output an easy-to-apply
decision criteria, and iii) the understandability of the methods, this category mentions if
the process of the algorithm to reach the classification criteria is easy to understand.

For assessing these characteristics, we performed a qualitative analysis based on the
method description and execution. Furthermore, we analyzed the number of variables
that each model requires to make the predictions. A model with a small number of
variables is easier to understand, improves the understanding of the variable ranking,
and is easier to for clinical diagnosis. Therefore, we paid special attention to the
number of variables

Implementability

Implementability is the easiness of a method being implemented into clinical research
or practice. We measured the implementability of a method by analyzing four main
features: i) the feasibility for wet-lab validations, ii) the consideration of the physician’s
experience, iii) the generation of a clinical guideline, and iv) technical implementation,
which refers to the computational burden and software that the method requires. We
used qualitative grades for the first characteristics. Regarding the technical
implementation, we considered the computational burden. Despite it could be
considered less important, some of the algorithms require hours of computing time for
the BeatAML of the subset of AML samples in GDSC -that be considered to be
small/medium size. Requiring fewer resources makes an algorithm more attractive to
be applied for larger datasets. We also analyzed the software environment that each
model requires to be run.
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Results

In this work, we compare several aspects of the performance of different interpretable
models[57]. These models were classified into two main groups. The first one, named
patient-based, are models that return a specific therapeutic strategy for each patient.
The second one, named drug-based, are models that provide the patient(s) that are
especially sensitive to a specific drug. Patient-based models include Multi-dimensional
Module Optimization (MOM) [45], Optimal Decision Trees (ODT), Kernelized Rank
Learning (KRL) [46], and Multinomial Lasso. Drug-based models are more suited for
physicians and clinical investigation. This group comprises BOSO [47] and Lasso [49].
Patient-based methods rank the effectiveness of the drugs for a specific patient. Drug-
based methods rank the effectiveness of a specific drug for each of the patients.

All the methods were developed to predict the drug response or develop a treatment
strategy using genetic variants information. Thus, we trained the methods to predict
drug efficacy using patients’ samples and ex-vivo drug efficacy from the BeatAML [50]
dataset. The methods were compared in terms of interpretability, which was defined
according to four properties namely accuracy, adaptability, explainability, and easiness
of implementation.

Accuracy: all the methods provided good estimates.

The first test to assess the accuracy was a 5-fold cross-validation in BeatAML [S0].
Results for this analysis can be found in Figure 7.a. Multinomial Lasso achieves the
lowest median, -the highest sensitivity- although it also entails the highest variability.
Lasso's prediction is similar to the former one, but its standard deviation is smaller.
Finally, MOM and BOSO achieve almost identican median. ODT -in both versions —
has the highest IC50* prediction, i.e. the smallest value for sensitivity. However, the
performance of the methods —excluding ODT and ODT Sqrt— was not statistically
significant (p-value >0.05). ODT and ODT Sqrt predicitons were significantly worse
than Multinomial (two-sided Wilcoxon test p-value=0.005821 and p-value=0.004942,
respectively).

In the second test, we used the models trained on the full BeatAML, and tested them
agains the Genomics of Drug Sensitivity in Cancer (GDSC) AML dataset. This dataset
contains the genetic variants information for each cell line and the 1C5; values for most
of the drugs in the same cell lines. The independent cohort validation showed very
different results from the 5-fold cross-validation (Figure 7.b), In this case, the ODT
standard method achieved the best sensitivity score followed by MOM, Multinomial
Lasso, Lasso, ODT square root and BOSO. The IQR for ODT and its standard
deviation were much larger than for other methods. Nevertheless, there were no
statistical significance in the difference of the predicted GDSC ICg, comparing any of
the methods.

In the third test, we analyzed the intra-group classification performance. In this test we
compared the IC50* of patients that were recommended a drug with the IC50* of the
rest of patients using BeatAML and GDSC. The models with the best intragroup
performance were MOM and ODT in their standard form followed by ODT Sqrt. MOM
showed a significant sensitivity difference in 3 out of 4 groups for the BeatAML dataset
(Figure 7.e¢) and 3 out of 4 for the GDSC dataset (Figure 7.d). ODT standard achieved
a significant intragroup sensitivity in 4 out of 6 groups for BeatAML (Figure 7.e) and 2
out of 5 for GDSC (Figure 7.f). Finally, ODT Sqrt significantly recommended the usage
of 3 drugs out of 5 for BeatAML (Figure 7.g), and 1 out of 4 in GDSC (Figure 7.h). No
statistical significance was found for the rest of the methods. This is most likely due to
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the fact that there are more than ten different treatments proposed, and the number of
patients is insufficient to achieve statistical significance. (Supplementary Figures 4-
11).

Accuracy: using gene expression as input provides similar accuracy if

compared to genetic variants.

We tested whether using gene expression could improve the method accuracy [58].
We trained all models (except MOM and KRL, since they do not accept continuous
inputs) using BeatAML gene expression (GE) data. We performed a 5-fold cross-
validation in BeatAML dataset for the models predicting GE and genetic variants data.
The results in Figure 8 show that the predictions do not significantly change when
varying the type of input, except in the Multinomial Lasso, where the use of gene
expression significantly increased the precision of the method and in the Lasso, where
it significantly decreased the sensitivity of the method. This analysis was also
performed training in BeatAML and predicting in GDSC with the mutational and GE
models. For which, Supplementary Figure 16 showed no statistical significant
difference in model sensitivity for any of the methods.

As shown in the preceding paragraphs, the differences are minor, and no method
outperforms the others in all cases.

Explainability: tree-like methods (MOM and ODT) require much less
variables than any other methods.

To measure the explainability of the method, we trained the models with the BeatAML
dataset and checked the number of variables that each model required to make the
predictions. Results are included in Figure 9.a. Remarkably, MOM and ODT use less
than 5 variables, almost ten times less than the rest of the methods. BOSO,
Multinomial Lasso, and Lasso use more than 30 variables. Among them, BOSO (with
33 variables) is the method that requires less variables. BOSO builds a linear model for
each of the drugs. Each of the results (as occurs in Lasso) are sparse: it requires only
5 variables to predict drug response for some drugs. Since these variables are not
identical for every drug, in the end, it requires 33 variables to make the predictions
(Supplementary Figure 14). Multinomial Lasso and Lasso were coded to preserve the
same variables for predicting over all the drugs (Supplementary Figures 12-13).
BOSO did not implement this option.

Regarding the KRL method the number of variables it does not provide automatic
feature selection but use regularization methods. Thus, all the 69 gene variants are
used.

ODT and MOM output the decision criteria it the form of a decision-tree. The main
difference between ODT and MOM decision trees is their structure, ODT's tree
structure have several branches where drugs for each of them. MOM's tree structure is
linear, it is divided into different sequential steps, each of them defined by a biomarker,
and there is a drug recommendation on every step. Regression-based methods
(BOSO, Lasso and Multinomial Lasso) provide the weights for each of the biomarkers
on each of the drugs. Therefore, it is possible to check which are the critical biomarkers
for each drug. KRL use kernels to guess the proper treatment. In this case, it is much
more complex to understand which are the key genomic variants of the
recommendation system.
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Implementability: Optimal Decision Trees and MOM are the most prone to

clinical practice and ODT the least computing time consuming

We also considered the easeness to implement the methods in wet lab or even clinical
practice according to four different points: i) the feasibility for wet-lab validations, ii) the
consideration of the physician's experience, iii) the generation of a clinical guideline,
and iv) the computational implementation.

Tree-based models require less biomarkers than regression models or KRL.
Furthermore, only a few operations are required to perform the predictions, which can
be done by hand. On the contrary, regression models and KRL require more genes
and a computer-based environment to perform the drug assignation.

Regarding the computational burden of each of the methods, all the methods need to
be trained in different software environments such as R or Python. Once trainced, the
tree-based models directly provide a guideline that do not require the environment
anymore. We have timed the training process of the 6 models (Figure 9.b) using
Mutational data and Gene Expression (where possible). ODT is the fastest method to
train (0.05 seconds for training using mutational data and less than 5 seconds using
gene expression data). Multinomial requires around 15 second using either mutational
data or gene expression data. Lasso lasts 10 and 100 seconds using mutational and
gene expression data respectively. Finally, MOM, KRL and BOSO require several
hours for training their models. MOM and KRL are not suitable for gene expression
data so they have been excluded for the timing analysis with this data. Prediction time
is similar (and negligible if compared with training time) in all the 6 methods. Focusing
on the installation, models based on MILP (BOSO, KRL, and MOM) require a complex
installation of software (Table 1). They are also the most time-consuming methods.
ODT, Multinomial, and Lasso, only require of R installation to run.

All these conclusions that could lead to rank metheds according to Interpretablility have
been summed up in Error! Reference source not found.2.
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Discussion

In this work we have selected four precision medicine methods -MOM, BOSO, Lasso,
and KRL- and developed two additional ones —Optimal Decision Trees and Multinomial
Lasso-, to compare them regarding their interpretability. We performed six quantitative
comparisons and four qualitative comparisons. All the methods were similar in terms of
accuracy. However, MOM and Optimal Decision Trees were the most interpretable and
easy to implement.

PM is a topic that is being widely addressed and there are new algorithm proposals. It
may seem surprising that we included only four of them in this comparison and, indeed,
we developed two additional ones. A systematic review of all the methods --cited in the
Introduction section-- included Machine Learning (ML) methods (using either deep
learning, neural networks, support vector machines, random forests, etc). Among the
24 methods that used ML for making their predictions, only 10 were explainable. Of
those 10, 5 of them did not solve the “patient-centered” problem: assign the proper
drug to each patient. We ended up with MOM, BOSO, KRL, and LOBICO, and added
Lasso as a control of a traditional approach in the ML field. LOBICO approach, that
was also tested on this dataset elsewhere [48] is drug-centered and, since the output
variable is discrete, it cannot be transformed into the patient-centered problem and not
suitable for this comparison [48]. We developed two additional methods, both patient-
centered, with two different approaches: regression (Multinomial) and tree classification
(ODT).

In this work, we have defined Interpretability splitting it into four main concepts:
Accuracy, Multi-omics capacity, Explainability, and Implementability. An interpretable
PM method should be accurate and understandable by the common researcher or
clinician. Accuracy is strictly necessary: if a method is not accurate, it becomes
irelevant despite being easy to understand. Multi-omics capacity, measures the
robustness of the method to adapt into different data sources, that could be essential
for new lines of research. Explainability is also essential, it should show the reasoning
for reaching the results. Finally, the ease of implementation defines the ability of the
method to incorporate the clinician experience and provide an easy technical usage.

We focused on a specific sensitivity value named 1C50*. This metric was previously
described in [45] or in [46] and is a normalization of the logarithm of the ICs.
Normalizing the ICsy —or other sensitivity value-- is crucial as the best drug is not
necessary the drug with the lowest IC5; value. In fact, a drug with a low 1Cs; can be
toxic for the patients. Toxic drugs tend to have low |Cs, values in all tissues, whereas
the focus must be set on drugs with differential sensitivity for different tissues.
Normalizing the logarithm of the 1Cs, by removing the mean sensitivity value of the drug
in all patients, preserves the sensitivity profiles of the drugs and penalizes drugs that
are sensitive or resistant in all tissues. The dosage of drugs with higher ICs, can be
adjusted to obtain drug effectiveness. We trained all the models with the normalized
version, IC50*, to avoid the aforementioned problems.

All the methods predict reasonably well in terms of accuracy. The S-fold cross-
validation and the independent cohort validation, showed that the different methods
had similar median and the differences were not statistically significant. The intragroup
validation, showed that the regression-based models (KRL, BOSO, Lasso, and
Multinomial) were not able to distinguish between responders and non-responders to a
specific drug. This result is reasonable since these methods do not divide the patients
according to responders or not responders to one biomarker, but cherry-picked patients
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based on weighted combinations of biomarkers. MOM, on the contrary, has a
restriction within its model formulation that means that all patients with a biomarker that
confers sensitivity to a specific drug should be treated in that current step [45].
Nevertheless, not having a successful intragroup validation does not invalidate the
model.

The multi-omics suitability is a “hot-topic” in PM, as there is not a current gold standard
based on which type of data is more accurate when predicting drug response. Some
models use genetic variants to promote interpretability, whereas other use gene
expression or integrated omics for improving accuracy. In this work, we compared the
accuracy changes when training and predicting on gene expression and genetic
variants separately, and found almost no significant statistical difference in the
performance. Drug response is mediated in living beings by complex regulatory and
metabolomic processes that are most likely to be solved using an integrated omics
input, instead of just one single omics. However, the more complex the model
becomes, the less interpretable it is.

Regarding the explainability, we included also a qualitative comparison since focusing
only on the number of variables, does not justify that the method is understandable. It
is also desirable that the method can provide decision criteria, i.e. a complete process
that a clinician can follow and understand. This consideration has paramount
importance if it is to be approved by regulators for medicine [59,60]. Consequently, we
focused on the ease to understand the output of the methods, and the explainability of
the results. e defined the latter, as the ability of the method to rank the input variables
in order of importance for drug assignation. Of course, a smaller number of variables is
easier to understand. The tree-based models require less than six varables, and it
increases up to five times in the regression-based models. BOSO, however, uses only
five variables to predict response of just one drug, but when translated into a patient-
centered approach, the total number of variables used for predicting in all drugs is
equal to 33. For Lasso and Multinomial, the number of variables has been optimized to
predict response in all drugs. KRL, however, did not consider this parameter and uses
all variables provided as input to make the predictions, being the less explainable
method

Implementability is a concept easier to understand, as it directly facilitates the clinical
translation. Most of the implementability comparisons were qualitative, but we
performed a technical comparison of the methods regarding its computational burden.
There we showed that MOM, which was leading the accuracy comparisons, is the most
time consuming up to 2.5 hours on a normal machine, and it is the model that requires
the highest number of software environments: R, Python, and CPLEX need to be
installed in the machine (and relatd to each other). It is the most resource consuming.
However, if compared against ODT, which achieved similar accuracy performance, the
latter only requires R and the algorithm is trained, even using gene expression, in less
than 5 seconds. Besides, ODT is more explainable than MOM, because the method is
easier to understand, although it is quite similar to MOM regarding the other
explainability and implementability criteria.

Nonetheless, Multinomial and Lasso are also explainable, if not compared against
other methods, and there are additional functions -not defined in the methods
themselves- that can be applied to extract the algorithm reasoning or decision criteria.
Also, linear models can be understandable as the fs reflect the variable importance for
prediction.
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To summarize, in this work we defined a quantitative method for evaluating the
interpretability of a given machine learning method, because, as previously discussed,
accuracy is not the only important factor in the complex field of health. The defined
criteria can serve as a guide for developing new translational methods aimed at solving
precision medicine problems.

Key Points

« For a machine learning method to be interpretable, it needs to be accurate, suitable
to different multi-omics data, explainable and implementable.

+ Traditional Machine Learning does not solve the complete assignation problem,
thus, there are many creative methodologies to tackle the drug assignation.

« There are several metheds amenable to be interpretable, and can be classified into
two main groups: “patient-centered” or “drug-centered”. “Drug-centered” methods
can be transformed into “patient-centered” methods.

« In terms of explainability and implementability, it is highly important for the method
to provide the decision criteria.

« From the methods compared: MOM, ODT, Multinomial, BOSO, KRL, and Lasso.
They all achieved similar results in terms of accuracy, ODT and MOM are the most
explainable, and ODT the most implementable.
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Table 1. Precisicn Medicine Pipelines selected for comparison. This table collects the description of
each of the methods. Algorithm shows the method’s given name. Type refers to whether the method is
patient- or drug-centered. The software column collects all the required software environment programs for
the model to be run. Method refers to the pipeline description. Suitable for mutational data has a “Yes” if the
method could use genetic variants as input. Suitable for gene expression has a “Yes" if the method could
use gene expression data as input and a "No" otherwise. Output explains the raw output of the model

Reference contains the publications in which the method was defined

Algorithm Type Software Method Surfable  Suitable for
for gene
mutation  expression
af data
MoM Patient  Python Feature Yes No

37.R Selection
4.2, and and MILP

CPLEX
oDpT Patent R4.2 Recursive Yes Yes
Decision
Tree
Multinomial | Patient R 4.2 Multinomial Yes Yes
Lasso
KRL Patient  Python Kernelized Yes No
27 MILP
BOsO Drug R 4.2 Lasso Yes Yes
and regression

CPLEX using MILP
Lasso Drug R 4.2 Standard Yes Yes
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regression
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Figure 1: Precision Medicine paradigm. The left-side panel represents patients” data the and right-side panel
shows the data available for patients’ responses to treatment.
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Figure 2: Relationship between Machine Learning and the Assignation Problem. The assignation problem is
not a specific machine learning problem but could be addressed from all the machine learning branches.
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biomarker. This split is cptimized so that the drug-assigned is the most sensitive to each of the splits. It

recursively splits the different branches until a predefined group size is reached.
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Figure 4. Multinomial Model. The multinomial Model corresponds to a modified Multinomial logistic lasso
regression, where the output represents the votes that each patient assigns to each of the drugs.
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BeatAML cohort and tested the predictions predicting over GDSC. From the training step we were able to
obtain the training computing time, the number of variables required to make the predictions, a 5-fold
cross-validation using mutational and gene expression data, and intragroup validation. Whereas for the
testing step we performed and independent cohort prediction validation using mutational and gene
expression data, and ancther intragroup validation
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Figure 7. Accuracy comparison. A) Accuracy in 5-fold cross validation from BeatAML cohort. The different
boxplots show the predicted 1C50* of the drugs assigned to each of the patients. The lower the 1C50* is, the
more sensitive the method is, ORACLE is the control that shows the best possible drug to every patient in
the cohort. B) Accuracy in independent cohort validation. The different boxplots show the predicted IC50 of
the drugs assigned to each of the patients in GDSC. The lower the IC50 is, the more sensitive the method is,
ORACLE is the control that shows the best possible drug to every patient in the cohort. Models were trained
in BeatAML and predicted over GDSC. C-E-G)Intragroup validation of MOM, ODT and ODT Sqgrt in BeatAML.
Each of the subplots represents the efficacy of one drug, in blue the patients that were recommended that
drug and in red the patients that did not have that drug. Stars show the significance of the two-tailed
Wilcoxon test (*** means p-value <0.05). D-F-H) Intragroup validation of MOM, ODT, and ODT Sqrt in
GDSC. Each of the subplots represents the efficacy of one drug, in yellow the patients that were
recommended that drug and in grey the patients that did not have that drug. Stars show the significance of
the two-tailed Wilcoxon test (*** means p-value <0.05).
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expression (upper plot) as input, time is shown in seconds in the horizontal axis.
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