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Abstract 

Precision medicine (PM) is a branch of medicine that defines a disease at a higher 

resolution using genetic and other technologies to enable more specific targeting of its 

subgroups. Because of its uses in clinical treatment and diagnostics, this field exemplifies 

the modern era of medicine. PM looks for not just the right drug, but also the right dosage 

and treatment regimen. PM encounters a variety of challenges, which will be explored in 

this dissertation.  

Large-scale sensitivity screens and whole-exome sequencing experiments (WES) have 

fostered a new wave of targeted treatments based on finding associations between drug 

sensitivity and response biomarkers. These experiments with the aid of state-of-the-art 

artificial intelligence (AI) algorithms are opening new therapeutic opportunities for diseases 

with unmet clinical needs. It has been proved that AI is capable of predicting novel 

personalized treatments based on complex genotypic and phenotypic patterns in tumors. 

The scientific community should make an effort to make these algorithms to be interpretable 

to humans so that the results could be easily approved by the medical regulators. The 

purpose of this thesis is to apply AI algorithms for precision oncology that are highly 

accurate, while guaranteeing that the predictions are interpretable by humans.  

This work is divided in three main sections. The first section comprises a new methodology 

to increase the predictive power of the discovery of novel treatments in large-scale 

screenings by exploiting that some biomarkers tend to appear in many treatments. This fact 

is called hub effect in gene essentiality (HUGE). Content of this section was published in 

[1]. The second section contains a novel interpretable AI method -called multi-dimensional 

module optimization (MOM)- that associates drug screening with genetic events and 

proposes a treatment guideline. Content of this section was published in [2]. Finally, the 

third section includes a detailed comparison of different recently published algorithms that 

attempt to overcome the barriers proposed by today's precision medicine. This study also 

includes two novel algorithms specifically designed to solve the challenges of applicability 

to clinical practice: Optimal Decision Tree (ODT) and Multinomial Lasso. 

The characterization of Interpretable Artificial Intelligence as approach with strong potential 

for use in clinical practice is one of the study's most significant achievements. We present 
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unique methods for PM that are highly interpretable, and we summarize the needs that 

could be considered for constructing interpretable AI. We are confident that this method will 

transform the way PM is addressed, bridging the gap between AI and clinical practice. 
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Chapter 1. Introduction to Precision Medicine Challenges 

and Acute Myeloid Leukemia 

Precision medicine (PM) is the science that “defines a disease at a higher resolution by 

genomic and other technologies to enable more precise targeting of its subgroups” [3]. It is 

an emerging field that epitomes the new era of medicine owing to its applications in clinical 

treatment and diagnosis [4].  

PM tries to find not only the right drug but also the right dosage and the proper treatment 

schedule. These goals are usually summed up as “targeting the right treatments to the right 

patients at the right time” [5]. PM faces different challenges that will be described in this 

introduction. 

The challenge of getting the patients’ response to drugs. 

PM requires the different patients’ characteristics to make their predictions [6] such as 

genomic and transcriptomic data, health records, lifestyle characteristics, etc. (Figure 1). 

With an adequate data policy, they are reasonably easy to obtain; genomic data can be 

acquired from sequencing techniques, wearable technologies can collect data that provide 

lifestyle information, EHRs are invaluable sources of information on health status and 

previous conditions, etc. Its integrative analysis requires complex models and a solid 

understanding of the interaction of biological systems [7]. 

However, PM also requires drug sensitivity information which is much more difficult to find, 

having most likely incomplete information on all patients’ response to all available drugs, 

i.e. each patient is given one or, at most, a few drugs, not all the possible ones[8] (Figure 

1). Even in these cases, distinguishing between responders and non-responders is not an 

easy task and requires tailoring methods specific to each disease. In turn, these different 

criteria for different diseases make it difficult to compare diseases or drugs [9]. 

Large-scale sensitivity screenings such as PDX (patient-derived xenografts), loss-of-

function screens or ex-vivo experiments can be used as proxies to estimate the patients’ 

response to several drugs [10]. Ex-vivo experiments in hematological cancers are of great 

importance since they are performed directly on the patient’s living tumor cells[11,12].  

All these three approaches have strong limitations. In the case of PDX, the animal models’ 

immune system is usually compromised and, in the case of loss-of-function screens there 
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is not an interaction of a specific drug but the effect of its target, and, in the case of ex vivo 

experiments –used mainly in hematologic oncology−, the interaction of the cells and the 

immune system is not properly modeled. Despite these difficulties, they are reasonable 

sources of information to predict the response of the patients to different treatments [13]. 

 

Figure 1. Precision Medicine paradigm. The left-side panel represents patients’ data the and right-
side panel shows the data available for patients’ responses to treatment. 

The multiple Hypothesis Problem for biomarker’s finding when using large-

scale sensitivity screening 

The advance of personalized medicine, and in particular precision oncology, is partially 

based on the development of drug sensitivity studies. These experiments are promoting 

the discovery of new drugs, biomarkers of sensitivity, and drug repositioning. With 

increasing frequency, these studies have widened their scope from single drug studies to 

experiments involving hundreds of drugs −or even combination of drugs− and targets, also 

known as sensitivity screenings.  

In recent years, sensitivity screenings are being carried out on hundreds of cell lines giving 

rise to large-scale sensitivity screening datasets,− e.g., GDSC, which includes 130 

screened drugs in an average of 368 lines per drug [14]−, and large-scale loss-of function 

sensitivity screens −e.g. the Achilles Project [15,16], or The Project Score [17]. Combining 

these sensitivity studies with tumor genotypes makes it possible to associate the response 

to treatment with genetic alterations (biomarkers), thus promoting the search for new 

personalized therapies[18].  

However, the multiple testing problem, related to the large number of gene knockouts or 

drug tested, and the number of possible biomarkers, limits the statistical power of these 

studies and, therefore, their potential to find new therapies. 

Drug centered  

 ptimum  patient   

for a drug

Information  esponses

 enomics  ifestyle    s Drugs

Patient centered  

 ptimum drug for a 

patient
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Precision Medicine falls beyond traditional machine learning (ML) problems.  

PM can be considered an assignation problem: each patient must be provided a drug (or a 

set of drugs) given the patient’s information. This assignation problem does not perfectly fit 

in any of the “traditional” fields of machine learning. It is not a unsupervised problem, 

although, with a proper selection of variables, patients with identical “optimal” drugs should 

cluster together [19,20].  

Regarding supervised machine learning, it is not either a standard regression problem since 

the aim is not to predict the effectiveness of a drug on each patient but to find the most 

effective ones [21]. Nevertheless, both problems are related and, if the effectiveness of 

each drug were exactly modeled, the “perfect” drug for a patient would be simply the most 

effective one predicted by the model. PM assignation could also be treated as a 

classification problem dividing the drugs for each patient into two classes: the most effective 

one belongs to one class and the others belong to another class. Again, it solves the 

problem if the predictions were perfect. However, since this simplistic model only considers 

misclassifications (the second-best drug is as bad as the worst), it does not work well in 

practice. 

Finally, it can also be considered a reinforced learning problem [22]. For example,  [23] 

includes a review of reinforcement learning applications to oncology. The objective of this 

field of machine learning is to learn an optimal, or nearly optimal, policy that maximizes the 

“reward function” –in this case, the patient’s response to treatment. Reinforced learning is 

traditionally applied to teach the computer how to play games (chess, Go, or video games) 

[20]. In this case, different methods state how use a reinforced learning algorithm to “find a 

policy that maximizes the patient response to treatment”.  
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Figure 2: Relationship between Machine Learning and the Assignation Problem. The assignation 
problem is not a specific machine learning problem but could be addressed from all the machine 
learning branches. 

As a result, precision medicine –assigning the proper drug to each patient– given the 

patients’ data is a problem that shares characteristics of different machine learning fields 

(Figure 2) and can be tackled in many ways. 

Different approaches for solving the assignation problem.  

There are two main approaches to solve the goal of “targeting the right treatments to the 

right patients" (Figure 1). The first one is to state which is the proper drug for a specific 

patient. We will name this approach “patient-centered”. The other approach consists of 

finding the patient or patients that are responders for a specific drug, named “drug-

centered” in this review. This problem –closely related to finding biomarkers of response– 

is interesting for the pharma industry.  

If the output of the algorithm is a continuous value, it is possible to adapt a drug-based 

method to solve the patient-based problem and vice-versa. For example, many drug-

centered methods return a sensitivity score for each patient when applied to a specific drug. 

If this score is computed for all the drugs, it can be used to select the drug that maximizes 

sensitivity for each patient.  
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The challenge of interpretability.  

One common problem in ML is the (lack of) interpretability. Exploring the potential of large-

scale sensitivity screenings, artificial intelligence (AI) algorithms for personalized medicine 

focus on the analysis of such datasets to bridge the gap for drug discovery. Some studies 

use machine learning algorithms for monotherapy prediction [24,25], other approaches are 

based on training deep learning (D ) models from patients’ omics data [26,27]. These 

methods create black-box predictors that make agnostic inferences of treatment for a 

patient based on complex non-linear relationships. The output is, for these cases, an 

individual therapy for a patient, instead of a general treatment guideline [28]. This approach 

has the inherent disadvantages of methods based on neural networks: they require a huge 

amount of data, and are unable to show the criteria that trigger the decision –since neural 

networks tend to be black-box models–. In many cases the blackbox algorithm gives no 

clues on why a specific decision is taken [29,30,39–41,31–38]. It is difficult, if not reckless, 

for a physician to use a treatment guideline with no information on the ultimate reasons that 

drove this recommendation.  These technical challenges are limiting the translation of drug 

screening experiments to clinical practice.  

Explainable AI tries to give a solution to “black-box” algorithms, by analyzing the weights 

and variables of the different models. There are several differences between Explainable 

AI and Interpretable AI. The article by Rubin, C., details how these two conceptions differ 

from one another [42]. The first is the method by which an explanation of the process 

followed by a "black-box" model is suggested, although frequently these justifications are 

not totally true or are not enough to apply critical judgment on the algorithm's thinking. The 

second, though, is the feature that enables the expert using the algorithm to offer his or her 

personal assessment of the outcomes it produces. It is important to start designing an 

interpretable ML model with subject-matter specialists, paying particular attention to the 

logic's clarity [42]. 

Interpretability focuses on making AI understandable to humans by the usage of “white-

box” algorithms [43,44]. Interpretable AI is an active field of research: it justifies the 

response and ensures that, given the a priori knowledge, the recommendation is sensible. 

It also helps to improve the results since, as they are understandable by physicians, they 

can provide expert feedback to fine tune the algorithms [45–48]. The importance of using 

interpretable models in the finding of new personalized treatments is twofold: therapeutic 

pipelines can be more easily adopted in normal clinical guides (e.g., using a decision tree 

that does not require a complex model with a high number of variables) [44] and drug 



Introduction 

28 

 

regulators, such as the Food and Drug Administration (FDA), or European Medicines 

Agency (EMA) will have an easier journey to approve a drug if the companion biomarkers 

are reasonable and robust [49,50]. Some methods have tried to explain their reasoning to 

become more explainable but not of them could be defined as interpretable [43,46,51–56]. 

Consequently, interpretable ML opens the door to bridge the gap between clinical practice 

and bioinformatics [43,57]. 

Acute Myeloid Leukemia 

We selected Acute Myeloid Leukemia (AML) as a disease model, a highly heterogeneous 

type of cancer that affects bone marrow cell precursors. In AML, genomic profiling is 

essential to understand its biology, diagnosis, and treatment [58–60]. Unfortunately, 70% 

of adult people diagnosed with this disease die within five years of diagnosis [61]. The 

current ELN (European Leukemia Network) risk stratification is based on the genetic 

biomarkers of the disease [62].  

Current patient stratification guides divide AML patients into three subgroups according to 

their prognosis, namely favorable-, intermediate- and adverse-risk. Each subgroup is 

defined by a combination of genetic biomarkers that can be either chromosomal 

rearrangements, genetic mutations, or allele deletions. Thus, the favorable risk subgroup –

a 5-year overall survival (OS) of 45% to 80%– includes 45% of AML patients and is 

diagnosed mainly through the biomarkers NPM1Mut, chromosome 16 inversion (inv(16)), 

and CEBPAMut. The intermediate-risk subgroup –5 years OS of 30%– comprises 25% of 

AML cases and is associated with the internal tandem duplications in the FLT3 gene (FLT3-

ITD), and NPM1WT. Finally, the adverse risk subgroup –5 years OS of 10%– represents 

30% of AML cases and has scattered deletions and complex karyotypes as biomarkers 

[59].  

Although there are big prognosis differences across these genetic groups, the current 

approach for young and fit patients is a standard induction cytotoxic therapy ("3+7") [59,62] 

with different dosages and aggressiveness depending on the severity and with the addition 

of targeted therapies, mainly FLT3 inhibitors, to a specific group of AML patients [59]. 

Recently, FLT3 inhibitors have been incorporated as a treatment directed to FLT3-ITD 

patients, but effective treatments for patients who do not have this alteration remain an 

unmet clinical challenge [63].  
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Despite eight new drugs have been approved for AML in the last years, its lethality is still 

very high. In addition, there are no targeted treatments directed to FLT3WT patients –70% 

of all AML cases[63]. An interpretable machine learning approach that identifies the most 

adequate FLT3 inhibitor as well as the treatment for other AML genotypes, would allow the 

discovery of new indications for other drugs for the AML. As a result, a new classification 

guide based on the response to therapy for specific genetic alterations would be beneficial 

in clinical practice. 

In the following sections we will discuss how to address these challenges. Section 1 

includes the definition and performance of a method to solve the multiple hypothesis 

problem. Section 2 comprises a new Machine Learning method designed to be 

interpretable and it solves the assignation problem. Finally, Section 3 includes a 

quantitative comparison that defined Interpretability of a model and compares six methods 

suited for PM.  
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In the context of precision medicine, we propose the development of a model that, using 

artificial intelligence, solves the assignment problem with an accuracy comparable to other 

state-of-the-art methods, but also prioritizes its ease clinical implementation. We use Acute 

Myeloid Leukemia as a test model due to its clinical urgency and genomic heterogeneity. 

The following objectives are defined in order to carry out this proposal: 

1. Accuray: To improve accuracy, data from large-scale screenings will be used. As 

a result, the first goal is to increase the predictive power of these experiments, 

resulting in a larger number of reliable and significant hypotheses when analyzing 

these screenings. 

2. Interpretability: After resolving the multiple hypothesis correction problem, we 

proposed the definition of an algorithm that apart from accurate, is also 

interpretable and simple so that it improves clinical traslationality. 

3. Benchmarking: Finally, this model will be compared with other similar state-of-the-

art models in terms of interpretability −the main feature that enhances clinical 

traslationality. Furthermore, we will define two refined interpretable artificial 

intelligence model that will aim to overcome the shortcomings observed in state-

of-the-art models. The most essential characteristics of interpretability will be 

compiled in order to encourage the development of interpretable methods.  

This report has been divided into three sections each of them illustrates how the preceding 

objectives were approached and accomplished. The method that solves the multiple 

hypothesis problem is explained in Section 1: "A Novel Method to Predict Lethal 

Dependencies with High Predictive Power." In section 2, "Interpretable Artificial Intelligence 

for Precision Medicine in Acute Myeloid Leukemia" an accurate, interpretable, and simple 

artificial intelligence model is defined. Finally, in section 3 "The challenge of interpretability", 

the algorithm developed in this doctoral thesis is compared with other methods in terms of 

interpretability, for which a quantitative and qualitative metric is defined, and two new 

methods are added, which obtained excellent results. 
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Section 1: A Novel Method to Predict Lethal 

Dependencies with High Predictive Power 

Solving a massive Multiple Hypothesis testing problem 
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Introduction to Section 1 

The traditional concept of synthetic lethality consists of the concurrent loss of functionality 

of two genes resulting in cellular death. A relevant example is the effectiveness of PARP 

inhibitors in tumors with inactivated BRCA1 and BRCA2 [64]. In recent years, the advances 

in functional genomics triggered by large-scale loss-of-function screening -such as 

CRISPR-Cas9 or RNA interference (RNAi) screens- have boosted the discovery of 

hundreds of novel targets and context-specific lethal dependencies (LEDs) [15–17,65–67], 

defined as any association between two genes that results in differential viability depending 

on their genetic context (Figure 3). 

Several studies have carried out large-scale functional genomic screens to identify 

genome-wide targets and LEDs [15,17,65,66]. The Project Score [17], the Achilles Project 

[15,16] and the Project DRIVE [67] are three studies that performed genome-wide gene-

knockouts in cancer cells aiming at establishing novel targets and LEDs. The refinement of 

computational and technical tools have improved the potential of loss-of-function screening 

to identify cancer vulnerabilities [66,68,69]. However, the multiple-hypothesis problem 

related to the large number of gene knockouts limits the statistical power of these studies. 

In this section we show that previous efforts to predict LEDs from functional screening can 

be significantly improved by considering the “ Ub effect” in  enetic  ssentiality ( U  ) of 

some gene alterations: a few specific sets of gene alterations are statistically associated 

with large changes in the essentiality of multiple genes. These “hub” aberrations lead to 

more statistically reliable LEDs than other alterations that do not participate in such hubs. 

We incorporated the HUGE effect in the statistical analysis of three recent loss-of-function 

experiments of both The Project Score and The Achilles Project (two datasets) showing 

that the number of LEDs discovered for a given FDR considerably improves for both 

CRISPR-Cas9 and RNAi screens.  

Using acute myeloid leukemia (AML), breast cancer (BRCA), lung adenocarcinoma (LUAD) 

and colon adenocarcinoma (COAD) as disease models, we validated that the predictions 

are enriched in associations used in the clinic. Finally, we validated in-vitro an example of 

a therapy guideline based in LED selection in AML. The HUGE analysis will help discover 

novel tumor vulnerabilities in specific genetic contexts, providing valuable candidates -
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targets and genetic variants as biomarkers- for further personalized treatments in 

hematological diseases or other cancer disorders. 

The HUGE-based methodology is published in [1]. 

 

Figure 3. Types of Lethal Dependencies. Lethal dependencies that affect two genes: (A) in a Positive 
Lethal Dependency (pLED), a gene is essential for tumor survival when another gene is mutated 
(MUT). This is the traditional concept of synthetic lethality, in which a gene knockout (KO) causes 
cellular death only for another gene’s mutant phenotype. (B) Conversely, in Negative Lethal 
Dependency (nLED), a gene is essential for tumor survival when another gene is not genetically altered 
(wild type-WT), here gene variant confers resistance to the inhibition. (C) A lethal dependency that 
affects three genes: Dual Lethal Dependency (dLED), an altered gene (Gene 1) confers, at the same 
time, sensitivity to the inhibition of one gene (Gene 2) and resistance to the inhibition of another gene 
(Gene 3). In this figure, the shape of the cells denotes different cell-types with different genomic 
characteristics. The color of the cells denote whether the cell survives to the knock down or not. The 
star shape in a gene denotes a genetic variant. The red crosses denote pharmacological inhibition. 
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Chapter 2. Methods 

Data integration 

Data of loss-of-function screens libraries (17,980 knockout genes in 412 cancer cell lines) 

of the project Achilles [70] were integrated with gene expression and their corresponding 

gene alteration profiles (gene variants in ~1600 genes; Figure 4A) obtained from CCLE 

and Shao et al. [16]. We gathered gene expression of cells using RNA-seq data to confirm 

that the genes that were essential for a cohort of cells were expressed before the RNAi 

library experiment was performed [71]. Gene variant panels were filtered out using the 

parameters of CC  ’s authors to avoid common polymorphisms, low allelic fraction, 

putative neutral variants, and substitutions located outside of the coding sequence [72]. 

We used the DEMETER score [15,68] as a measure of gene essentiality of the RNAi 

libraries of the project Achilles [70]. DEMETER quantizes the competitive proliferation of 

the cell lines controlling the effect of off-target hybridizations of siRNAs by solving a 

complex optimization problem. The more negative the DEMETER score is, the more 

essential the gene is for a cell line. We imputed missing elements of DEMETER using the 

nearest neighbor averaging algorithm [73]. Besides, we collected gene expression patterns 

from RNA-seq data [71] to confirm that essential genes are expressed when they are 

essential. Based on DEMETER data, we first identified genes that were essential for a 

selected tumor subtype. Essential genes were required to meet several criteria: i) they must 

be essential for at least 20% samples of the selected cancer subtype, ii) they must be 

specific to the cancer type under study, i.e. they must be non-essential for other cancer 

types and iii) they must be expressed before RNAi experiment (>1TPM at least in 75% 

samples).  
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Figure 4. Computational pipeline to find lethal dependencies. (A) Scheme of data integration for 
N samples (cell lines). RNAi libraries data (gene essentiality; DEMETER score) and gene variant 
panels are represented as two heatmaps. Each pair of a knock-down gene (KD-gene) and a gene 
variant defines a p-value, which represents a lethal dependency. Boxplots represent the DEMETER 
score of a cell line when inhibiting one gene (X-axis) depending on the genetic alteration of another 
gene (Y-axis). Genes with a DEMETER score < -2 are considered essential for a cell line. (B) Scheme 
of the histogram of P-values using standard approaches (e.g., Storey-Tibshirani), in red; and using a 
covariate-based algorithm, in blue. 

Statistical model 

We developed a statistical algorithm to identify genes whose essentiality is highly 

associated with the genetic alteration of other genes. Dealing with this statistical issue 

implies solving a large multiple hypotheses problem (more than one million hypotheses). In 

similar scenarios, traditional corrections -such as Benjamini-Hochberg (BH), Bonferroni, or 

Holm- showed very few or no gene-biomarker LEDs for a given FDR [74]. To overcome 

this problem, we developed a covariate-based statistical approach -similar to the 

Independent Hypothesis Weighting procedure [74] (Figure 4).  

Let e denote the number of RNAi target genes and n denote the number of screened 

samples. Let D be an 𝑒 × 𝑛  matrix of essentiality whose entries 𝑑𝑖𝑗  represent the 
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DEMETER score for the RNAi target i in sample j. Let m be a 𝑚 × 𝑛 dichotomized matrix 

whose entry 𝑚𝑖𝑗  denotes whether sample j is mutant or not according to the previous 

criteria:  

 
𝑚𝑖𝑗 = {

1,   𝑖𝑓𝑚𝑢𝑡𝑎𝑛𝑡(𝑀𝑈𝑇)

0,    𝑖𝑓 𝑤𝑖𝑙𝑑 − 𝑡𝑦𝑝𝑒  (WT)
 , 

(1) 

 

Let s be a subset of n’ cell lines that yields an essentiality vector𝒅𝒔 = (𝑑𝑒𝑠1
, … , 𝑑𝑒𝑠𝑛′ ) for the 

eth RNAi target. Let 𝒎𝒔 = (𝑚𝑠1
… , 𝑚sn

)  be the expression vector of a putative gene 

biomarker. The null hypotheses are defined as: 

 𝐻0
𝑔

: 𝐸(𝒅𝒔|𝒎𝒔 ∈ 𝑀𝑈𝑇) = 𝐸(𝒅𝒔|𝒎𝒔 ∈ 𝑊𝑇) (2) 

   

This null hypothesis is, therefore  “the expected essentiality of a gene knock-down is 

identical in mutant and wild-type cell lines”. To test this hypothesis, we used a moderated 

t-test implemented in limma[75]. We applied this test for each RNAi target and all the gene 

variants to get the corresponding p-values (Figure 4). Dealing with these p-values implies 

correcting for multiple hypotheses.  

In our case, we divided the p-values corresponding to all the tests into n groups, where n 

is the number of altered genes. For each of these groups, we computed the local false 

discovery rate (local FDR) [76]. The local FDR estimates, for each test, the probability of 

the null hypothesis to be true, conditioned on the observed p-values. The formula of the 

local FDR is the following: 

 𝑃(𝐻0|𝑧) = 𝑙𝑜𝑐𝑎𝑙𝐹𝐷𝑅(𝑧) =
𝜋0𝑓0(𝑧)

𝑓(𝑧)
 , (3) 

where z is the observed p-values, π0 is the proportion of true null hypotheses –estimated 

from the data-, 𝑓0(𝑧) the empirical null distribution –usually a uniform (0,1) distribution for 

well-designed tests- and 𝑓(𝑧)  the mixture of the densities of the null and alternative 

hypotheses, which is also estimated from the data. 

As stated by B. Efron and R. Tibshirani [76],  «the advantage of the local FDR is its 

specificity  it provides a measure of belief in gene i’s ‘significance’ that depends on its p-
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value, not on its inclusion in a larger set of possible values» as it occurs, for example with 

q-values or the standard FDR. The local FDR and π0 were estimated using the 

Bioconductor’s   Package qvalue [77].   

Comparison with the Project Score 

To compare our results with Project Score’s ones, we selected the same 12 primary cancer 

tissues shared in both datasets. The comparison followed two steps: 1) using CCLE and 

D M T   scores with the Project Score’s algorithm, 2) running our approach adapted to 

Project Score conditions.  In the first step, following the code published in their work, an 

ANOVA test was performed on each tissue to calculate all possible dependent partners. 

The Storey-Tibshirani correction was then used, using the criteria mentioned in Project 

Score methods [17]. This enabled us to correct the ANOVA p-values and get significant 

associations. Secondly, the comparison between both methodologies was only possible if 

the same adjusted p-value is calculated for both datasets. Therefore, we estimated the 

FDR with our data as it is the q-value selected by the Project Score. The FDR correction 

was obtained using the Bioconductor R package IHW [74], which enables the consideration 

of covariates-based multiple hypothesis correction, as well as estimating the FDR. 

Discoveries from both methodologies in DEMETER and CCLE datasets were plotted in 

different volcano plots, and the number of significant LEDs were counted (FDR<20%). 

Integration of the VICC knowledgebase of clinical interpretations of genomic 

variants 

We downloaded 19,551 clinical interpretations of somatic genomic variants in cancer of the 

Variant Interpretation for Cancer Consortium (VICC) [78,79] (version December 2020). We 

filtered out incomplete (e.g., entries without annotated drug or biomarker) and redundant 

associations. We then selected all associations that are annotated to acute myeloid 

leukemia (AML) and synonyms. From all drugs, we selected those that have an annotated 

protein target. To do so, we retrieved the data publicly available in the ChEMBL [80] and 

DrugBank [81] online repositories. In total, 216 out of 19,551 associations matched these 

criteria. We considered a true positive if either HUGE or ST identifies an LED whose 

mutation biomarker coincides with a VICC’s association and the protein target is included 

in the same association, or at least in a gene of the same pathway in the STRING database 

(v.11, STRING score threshold = 400; default value on ST IN  for “medium” confidence) 

[82]. 
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We calculated ROC and PR curves considering the two top evidence levels included in 

VICC [78,79], namely, (i) evidence from professional guidelines or FDA-approved 

therapies; and (ii) evidence from clinical trials or other well-powered studies in clinical 

populations, with expert consensus. 

Application to acute myeloid leukemia as a disease model  

We applied the pipeline to the AML cohort of cell-lines (n=15). In the first step, essential 

genes were required to be: (i) essential for at least 25% AML samples, (ii) specific for AML 

cells, and (iii) expressed before the RNAi experiment. The algorithm outputs a ranking of 

significant Lethal Dependencies (LEDs) that consist of a couple of genes in which the first 

one is essential depending on the genetic alteration of the other. 

For the final ranking for AML, we selected those LEDs that showed a p-value < 0.05 and 

local FD  ≤ 0.6, |ΔD M T  | > 2 (default value suggested by D M T  ’s authors). 

Additionally, we interrogated which of these LEDs had direct relationships (co-expressed, 

annotated in the same pathway database, or contained in a common experiment) in the 

STRING database [82] to ensure there is an established biological relationship between 

the essential gene and the subrogate biomarker. This biological double-check is not 

necessary and can be omitted when the researcher looks for novel relationships.  

In vitro validation was performed using siRNAs against NRAS and PTPN11 in four different 

AML cell lines, two with NRAS-genetic variants (HL-60 and OCI-AML3) and two NRAS-wt 

cell lines (MV4-11 and HEL). Finally, the model was compared with 3 standard statistical 

methods (namely Benjamini-Hochberg (BH), Bonferroni and Holm) known to have 

suboptimal sensitivity (recall of true positives) in specific scenarios in 19 additional tumor 

subtypes to define the potential for controlling the FDR. [74] See Appendix 1 for more 

details on the cell line culture protocol and the demonstration of the increased statistical 

power.  
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Chapter 3. Results 

Gene variants associated with multiple essential genes increase the power of 

loss-of-function screens 

One of the main statistical challenges to find LEDs by integrating genome-wide functional 

screens with -omics datasets is the multiple hypothesis testing problem. Correction for 

multiple hypothesis reduces the statistical significance of results (meaning a decreased 

detection rate and an increased false-positive rate). The Project Score presented a large-

scale genome-wide CRISPR-Cas9 screening analysis targeting 18,009 genes in 30 

different cancer types, across 14 different tissues [17,83]. They presented a methodology 

to detect LEDs based on finding differences in genetic essentiality in cell lines associated 

with the presence of specific gene variants (ANOVA test [84] with the Storey-Tibshirani p-

value correction). Following this procedure, the Project Score was able to identify genetic 

LEDs in 7 out of 14 individual tissues analyzed [17,83]. 

Analyzing Project Score’s data, we noticed that for each tumor type a few specific genetic 

alterations were significantly associated with the genetic essentiality of a large set of genes. 

This handful of genetic aberrations shows a hub effect, in which a gene variant is 

associated with large changes in the essentiality of multiple genes. We termed this behavior 

as “ Ub effect in  enetic  ssentiality” ( U  ) (Figure 5A; other tumor types can be 

visualized in https://fcarazo.shinyapps.io/visnetShiny/). From the point of view of statistics, 

the HUGE effect is defined as improvement of the statistical power by using gene variants 

as co-variates in a multiple hypothesis problem. Other biological covariates such as gene 

expression or copy number alterations has also shown to be covariates that increase the 

statistical power [74]. Using gene variants as statistical covariates provides a larger number 

of positives for a given FDR, which consequently means an increased specificity and 

sensitivity, or type I and type II errors, as demonstrated in Appendix 1. Interestingly, the 

analysis shows that HUGE effect is present in all tumors analyzed, significantly improving 

the predictive power of LEDs.  

The presence of the HUGE effect in a cancer type can be also understood as a predictive 

model in which each mutation has a different capability to define the genetic essentiality of 

https://fcarazo.shinyapps.io/visnetShiny/
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multiple genes. To show it visually, the histogram of p-values of a gene alteration 

represents how gene alterations are associated with the genetic essentiality of multiple 

genes. Histograms of the p-values for alterations that conform to a “hub” show a peak near 

the origin, which means that cells with these alterations are sensitive to the depletion of a 

large number of genes (Figure 5B). Conversely, if the hubs of alterations are not 

considered, the relationships of mutations and viability show a flat histogram of p-values. 

This does not necessarily mean that such relationships are not biologically relevant, but 

that is difficult to distinguish them from random associations and will be considered as 

artifacts after multiple testing correction. 

 

Figure 5 The hub effect in genetic essentiality (HUGE) in Acute Myeloid Leukemia: in a given 
cell, a small set of gene aberrations is associated with large changes in genetic essentiality. (a) A 
bipartite graph in which red squares represent gene variants (e.g., mutations), blue triangles represent 
significant changes in cell viability related to knocked-down genes. Both vertexes are linked by a line 
if the variations in the essentiality have a statistically significant association with the presence of the 
gene variant. (b) Implications in p-value histograms of the HUGE effect. Hub associations show a high 
peak close to zero p-values indicating that the null hypothesis is rejected in more cases and that these 
genetic variants are associated to a higher response to the inhibition of more gene products. 
Segregating the statistical analysis according to the alteration provides more statistical power. 
Essential genes and other tumor types can be visualized in https://fcarazo.shinyapps.io/visnetShiny/ 

https://fcarazo.shinyapps.io/visnetShiny/
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The HUGE effect helps to palliate the multiple hypothesis correction problem. Using the 

mutation under study as a covariate, multiple hypotheses can be differently treated 

considering the overall association of gene alteration in the complete set of essential genes 

(Figure 4 and Figure 6). Using this concept, we developed a statistical model that 

integrates HUGE information to find LEDs (Figure 4).  

 

Figure 6. Schematic representation of the covariate-based statistical approach in this context. 
In this case, the use of genetic variants as covariates of a covariate-based problem allows the reduction 
of false positive rate, and consequently, the percentage of true null-hypothesis in a statistical test. 

 

Figure 7. Histogram of P-values of all lethal dependencies in acute myeloid leukemia. Previous 
efforts to correct multiple testing in this problem consider a single set of tests (all gene aberrations and 
CRISPR-Cas9 knockouts) and apply a correction that control the FDR, such as Storey-Tibshirani (ST), 
as done in the Project Score. Interestingly, in this approach histogram of p-values shows flat-shaped 
histograms. 

Previous efforts to correct multiple testing in this problem consider a single set of tests (all 

gene aberrations and CRISPR-Cas9 knockouts) and apply a correction that controls the 

FDR, such as Storey-Tibshirani (ST), as done in the Project Score. Interestingly, in all 

tumors our approach increases the statistical power of the analysis. From a statistical point 

view, a flat histogram is compatible with the null hypothesis for all the tests and, therefore, 

multiple hypothesis correction drives to none or few discoveries (Figure 7). Every single 

tumor shows p-value histograms related to specific gene variants that have a higher zero-
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peak than the histogram associated to all tests in such tumor. To test this approach, we 

compare the results using HUGE with previous LED identification strategies in three 

genome-wide functional genomic projects: The Project Score [17], the DEMETER score 

and the CERES score (DEMETER and CERES are included in the Achilles Project [15,16]). 

First, to test the potential of HUGE to predict LEDs with CRISPR-Cas9 screens, we analyze 

the Project Score dataset [17]. Project Score integrates 215 different genetic events across 

14 tumor types, including SNVs and CNVs. In the same reference, the authors found at 

least one LED in 7 out of the 14 tumor types analyzed. 40 out of 215 events were detected 

to be significant biomarkers of essentiality (FD  ≤ 20%), which correspond to 77 unique 

LEDs (a single genetic event can be associated with several essential genes). Analyzing 

Project Score’s data using the  U  -based methodology, we identify 1,438 unique 

associations with the same FDR (18 times larger than Project Score, Figure 8A), 

corresponding to 80 single genetic events. Besides, using HUGE we detect at least one 

LED in all the 14 tumors analyzed, finding LEDs in 10 tumors that would have been missed 

using the original pipeline, affecting around 10-20 genes for each disease type. 

We also tested HUGE in the DEMETER score of the Achilles Project to predict LEDs, in 

this case using RNAi screening. The DEMETER dataset [15,70] is a large-scale genome-

wide experiment of RNA interference libraries (17,085 knockdown genes) in 19 tumor 

types. We integrated the DEMETER data with the corresponding cell line gene alteration 

profiles (genetic variants in ~1,600 genes) obtained from the Cancer Cell Line Encyclopedia 

(CCLE) [72] and Shao et al. [16]. This integration turns out to have 27 Million hypotheses, 

which will hardly impair p-values after multiple hypothesis correction (Figure 4). Then, we 

replicate the Project Score’s pipeline with the DEMETER dataset and compare it with the 

HUGE-based approach to find LEDs, also including in the comparison other two standard 

p-value corrections used to control the FDR, namely Holm and Bonferroni. Using the 

standard ST procedure, we find 126 LEDs (FD  ≤ 20%). There are   Ds for 7 out of 19 

tumors. The same dataset and FDR threshold using the HUGE-based approach provides 

9,535 LEDs (75.7 times larger than using ST). All cancer types (19 out of 19) showed 

significant LEDs in the HUGE-based analysis (Figure 8B). HUGE identifies 1,675 LEDs in 

6 tumor types in which other methods recall no   Ds (FD  ≤ 20%); and 9,409   Ds in 19 

tumor types that would have been missed using previous procedures (FD  ≤ 20%; Figure 

8C). These results show that the HUGE effect is present with different intensities in all 

tumor types analyzed (https://fcarazo.shinyapps.io/visnetShiny/).  

https://fcarazo.shinyapps.io/visnetShiny/
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Figure 8. HUGE-based analysis with Project Score and Achilles Project datasets. (a) Volcano-
plots of LEDs identified in the Project Score dataset. From left to right: i) result of Project Score, ii) 
results of analyzing Project Score dataset with HUGE-based methodology. Each dot represents a 
significant LED (FDR<20%). The X-axis represents the difference in gene essentiality when the event 
(gene variants) is present. The Y-axis represents the FDR values (-log10) for that change. (b) 
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Equivalent volcano-plots using Achilles Project. From left to right: i) results of Achilles Project analyzed 
with the standard procedure, ii) results of analyzing Achilles Project dataset with HUGE-based 
methodology. (c) The number of LEDs found (FD  ≤ 20%) in 19 tumors of the D M T   score ( NAi) 
and 22 tumors of the CERES score (CRISPR-Cas9) using standard statistical pipelines (Storey-
Tibshinary, Bonferroni, and Holm) and the HUGE-based algorithm. Bonferroni and Holm return the 
same number of hypotheses in all cases. LEGEND: ALL: acute lymphoblastic leukemia; AML: acute 
myeloid leukemia; BRCA: breast ductal carcinoma; CNSA-IV: central nervous system astrocytoma 
grade IV; COAD: colon adenocarcinoma; CUADT: upper aero-digestive tract squamous cell 
carcinoma; DLBCL: diffuse large B-cell lymphoma; ESCA: esophagus squamous cell carcinoma; 
KIRC: kidney renal clear cell carcinoma; LCC: lung large cell carcinoma; LUAD: lung adenocarcinoma; 
LUSC: lung squamous cell carcinoma; MM: multiple myeloma; NSCLC: non–small cell lung carcinoma; 
OS: osteosarcoma; OVAD: ovary adenocarcinoma; PDAC: pancreas ductal carcinoma; SCLC: small 
cell lung carcinoma; SKCM: skin carcinoma; UCEC: endometrium adenocarcinoma. 

As a further test of the increase predictive power of HUGE we carry out a similar analysis 

using the CERES score, a CRISPR-Cas9 experiment of 22 tumors also included in the 

Achilles Project. In this case, the number of significant pairs is enriched 14 times over the 

standard approaches (FD  ≤ 20%; Figure 8C-right panel). 

LEDs predicted by HUGE have better validation rates than standard 

approaches 

Validating a ranking of LEDs is not a simple task: it is desirable to have a gold standard of 

disease-specific list of validated target-biomarker associations. We selected as our gold 

standard The Variant Interpretation for Cancer Consortium (VICC) Meta-Knowledgebase 

[78,79]. This database integrates different datasets of clinical associations and includes the 

level of evidence for each entry: spanning from professional FDA guidelines to preclinical 

findings. 

We tested the enrichment in associations included in VICC in four tumor types, namely 

acute myeloid leukemia (AML), breast cancer (BRCA), lung adenocarcinoma (LUAD) and 

colon adenocarcinoma (COAD) for both HUGE and standard statistical methods. The VICC 

knowledgebase integrates (in September 2021) 19,551 clinical interpretations of somatic 

genomic variants in cancer of both resistant and sensitive biomarkers. We deleted 

duplicated and incomplete associations, focused on those related to confirmed mutations 

and manually selected associations that match each tumor type (including synonyms). 

We first run the two procedures (HUGE and Storey-Tibshirani; ST) with AML cell lines to 

find LEDs and compare how many LEDs predicted by HUGE and by ST are included in the 

VICC knowledgebase. For instance, if  HUGE or the ST procedure predicts FLT3 mutant 

AML genotypes to be sensitive to FLT3 inhibition, it will be considered a true positive LED, 

as FLT3 is a well-known target of AML and mutations in FLT3,  the fms-like receptor-type 
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tyrosine-protein kinase [85,86],  are known to be sensitive biomarkers of the effectiveness 

of most FLT3-inhibitors [87,88].  

 

Figure 9. ROC and precision-recall curves of four tumor types. True positives were found somatic 
genomic variants in the knowledbase of the Variant Interpretation for Cancer Consortium (VICC). a) 
AML, b) BRCA, c) LUAD and d) COAD. We selected associations indicated for each tumor type that 
are within the three highest levels of confidence (Level A: Evidence from professional guidelines or 
FDA-approved therapies relating to a biomarker and disease; Level B: Evidence from clinical trials or 
other well-powered studies in clinical populations, with expert consensus; and Level C: Evidence for 
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therapeutic predictive markers from case studies, or other biomarkers from several small studies, or 
evidence for biomarker therapeutic predictions for established drugs for different indications). 

In total, 216 out of 19,551 associations matched these filters. Getting the top 500 LEDs 

according to the ranking using the HUGE algorithm with AML, we find 17 LEDs that match 

the VICC knowledgebase of known clinic relationships (Table 1; Fisher p-value < 1e-51). 

An equivalent analysis using the standard pipeline (ANOVA test [84] with the Storey-

Tibshirani p-value correction) shows that out of the top 500 LEDs, only 1 is included in the 

VICC knowledgebase (Table 1; Fisher p-value = 6.551e-3). This means that HUGE 

analysis identifies 16 true positive dependencies not recovered by ST (Fisher p-value = 

6.41e-5). The global value of AUROC (0.53) is not too far from the baseline of 0.5 (Figure 

9A), perhaps because of the scarcity of true positives in our gold standard. We performed 

the same analysis with LUAD, BRCA and COAD getting AUCROC values of 0.62 (vs 0.5), 

0.87 (vs 0.64) and 0.72 (vs 0.54) for HUGE and ST respectively. All cases show better 

values for HUGE than for ST (Figure 9A to D). 

Table 1. Associations within the top 500 pairs predicted using the HUGE-based and standard pipeline 
algorithms in AML that match the knowledgebase of clinical interpretations of somatic genomic variants 
in cancer of  the Variant Interpretation for Cancer Consortium (VICC). 

Essential 

Gene 

Biomarker 

Gene 

Difference 

Essentiality 

P-Value Local Fdr Method 

NRAS NRAS -6,83 4,67E-08 1,38E-04 HUGE 

FLT3 FLT3 -6,36 2,28E-04 2,00E-01 HUGE 

TACR2 NRAS 4,71 9,21E-03 3,07E-01 HUGE 

SH2D1A NRAS -4,96 9,74E-03 3,14E-01 HUGE 

APBB1 FLT3 -2,87 5,54E-03 3,89E-01 HUGE 

FGF18 NRAS 2,58 1,62E-02 3,89E-01 HUGE 

FLNA NRAS 4,53 1,85E-02 4,13E-01 HUGE 

IL12RB1 NRAS 2,62 1,87E-02 4,15E-01 HUGE 

FGF13 NRAS 3,01 2,10E-02 4,37E-01 HUGE 

CD1C FLT3 -3,21 9,22E-03 4,66E-01 HUGE 

PPP4C NPM1 3,55 1,35E-03 4,78E-01 HUGE 

FGF13 FLT3 -3,09 1,09E-02 4,96E-01 HUGE 

CCR7 FLT3 -3,74 1,12E-02 5,01E-01 HUGE 

GATA6 FLT3 -3,43 1,18E-02 5,11E-01 HUGE 

TYMS FLT3 -4,22 1,21E-02 5,15E-01 HUGE 

SRSF2 NRAS 3,86 3,23E-02 5,31E-01 HUGE 

CCND3 NRAS -2,62 3,35E-02 5,40E-01 HUGE 

NRAS NRAS -6,70 1,48E-08 2,49E-02 ST 
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Applying HUGE methodology to acute myeloid leukemia cell-lines discovers 

potential therapy biomarkers 

AML is a hematologic neoplasm characterized by a remarkable phenotypic and genomic 

heterogeneity [89], a challenging disease model to test the applicability and impact of 

HUGE. We run the complete HUGE pipeline with AML and validate in vitro two of the 

predicted LEDs.  

As a preliminary step, we identified the potential genes that are essential for AML cell 

survival. The Achilles Project yield 443 essential genes that are essential and specific for 

AML cells compared to other tumors. Some of these genes belong to pathways known to 

be deregulated in AML (e.g., MYB [90] or CEBPA [91]). Interestingly, 160 of these 443 

genes have previously been identified as potential cancer drivers in hematological 

malignancies according to the Candidate Cancer Gene Database (p-value = 7.76e-05, 

Fisher exact test) [92]. 

We then run the HUGE algorithm to identify genomic alterations that could be defined as 

LED partners of those 443 essential genes. In this pipeline, we required predicted pairs to 

be biologically related to each other in the STRING database[82] (co-expressed, annotated 

in the same pathway database or contained in a common experiment). LED associations 

can be broken down into three groups regarding their dependency type: positive lethal 

dependency (pLED), when a gene variant marks sensitivity to the inhibition of another gene; 

negative lethal dependency (nLED), when a gene variant marks resistance to the inhibition 

of another gene; or dual lethal dependency (dLED), when the same gene variant confers, 

concurrently, sensitivity to the inhibition of one gene and resistance to the inhibition of 

another gene (Figure 3). In total, we predicted 24 LEDs, (12 pLEDs and 12 nLEDs, 

including 2 dLEDs; p-value < 0.05, local FD  ≤ 0.6 and |Δ ssentiality| > 2; Figure 10A, 

Table 2). Using the standard multiple hypotheses correction only 1 dependency turns out 

to be statistically significant. We provided the identified LEDs for the 19 tumors included in 

the Achilles Project following a similar pipeline. 



Section 1: A Novel Method to Predict Lethal Dependencies with High Predictive Power 

54 

 

 

Figure 10. Gene variants-based treatment guidelines in acute myeloid leukemia (AML). (a) 
Volcano-plot of LEDs related to NRAS genetic mutations (left; MUT) and -wildtype (right; WT) 
phenotypes. Increment of Essentiality and -log10 (p-value) are shown in X-axis and Y-axis, 
respectively. (b) Histogram of p-values for 6 genetic sequence variants in AML. NRAS-alteration is 
enriched in close to zero p-values, which is the basic concept of HUGE-based statistical approach. All 
genetic variants histograms of p-values can be found in the Supplementary Material. (c) Summary of 
the computational predictions validated: NRAS-altered cells were predicted to be sensitive to siNRAS 
and resistant to siPTPN11. Conversely, NRAS-wt cells were predicted to be sensitive to siPTPN11 
and resistant to siNRAS. (D) Tumor proliferation of the four AML cell lines after inhibiting NRAS 
(siNRAS) and PTPN11 (siPTPN11) with specific siRNAs. Blue: NRAS-altered AML cell lines (HL-60 
and OCI-AML3); Orange: NRAS-wild-type AML cell lines (MV4-11 and HEL). 

 

NRAS mutation ranks first in the analysis. Lethally dependent partners associated with 

NRAS genetic sequence variants show a p-value histogram that peaks at the origin (Figure 

10A and B), meaning that NRAS mutations are associated with more tumor vulnerabilities 

than other alterations. Interestingly, NRAS alteration forms a Dual Lethal Dependency with 

PTPN11 (Table 2, Figure 10C): it confers tumor sensitivity to NRAS inhibition and 

resistance to PTPN11 inhibition.  
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To validate our prediction, we first checked that both NRAS and PTPN11 siRNAs efficiently 

decreased the NRAS and PTPN11 expression, respectively, in four AML cell lines (Figure 

11). Then, we confirmed the computational hypothesis: the downregulation of NRAS 

significantly decreases cell proliferation only in the NRAS-altered AML cell lines, and the 

inhibition of PTPN11 expression produces an equivalent effect, but specifically in the 

NRAS-wt AML cell lines (Figure 10D), validating the predicted dLED. Remarkably, the 

validated PTPN11-NRAS-wt pair was not detected using standard methodologies. 

Table 2. Ranking of Lethal Dependencies in AML using the HUGE-based statistical approach. 
The ranking is divided into three groups regarding the typology of the lethal dependency relationship: 
Positive Lethal Dependency, Negative Lethal Dependency or Dual Lethal Dependency (Figure 1). The 
Increment of Essentiality column represents the average variation in the DEMETER score between 
altered and wild-type cells, and its sign is related to the lethal dependency relationship. Lethal 
dependencies that share the same essential gene and the same Increment of Essentiality sign have 
been omitted in this table. 

Gene 

variant 
Essential 

Increment 

of t-score P-value Local FDR 

Biomarker Gene Essentiality 

      
Positive Lethal Dependency 

TGS1 SNRPF -7,87 -4,05 6,69E-04 3,36E-01 

CLTCL1 UBR5 -6,66 -3,59 1,99E-03 2,20E-01 

FLT3 FLT3 -6,36 -4,53 2,28E-04 2,00E-01 

CDK14 CDK2 -3,95 -2,75 1,28E-02 4,30E-01 

AURKC ACTL6A -3,26 -3,89 9,55E-04 4,99E-01 

      

Negative Lethal Dependency 

NPM1 EEF2 3,81 3,34 3,39E-03 5,96E-01 

PIK3C2G CDK6 3,35 2,95 8,20E-03 3,51E-01 

NCOA3 EP300 3,04 2,75 1,25E-02 4,94E-01 

CDK14 CCND2 2,97 2,22 3,88E-02 4,99E-01 

EPHB6 ZNF266 2,53 2,77 1,22E-02 3,42E-01 

ZFYVE9 TOM1L2 2,14 2,35 2,96E-02 5,12E-01 

      

Dual Lethal Dependency 

NRAS NRAS -6,83 -8,71 4,67E-08 1,38E-04 

NRAS PTPN11 4,17 2,2 4,05E-02 5,89E-01 

EP300 PLK1 -8,11 -4,04 7,01E-04 2,17E-01 

EP300 KLF2 3,69 4,08 6,38E-04 2,12E-01 
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Figure 11. mRNA expression of NRAS and PTPN11 genes after nucleofection with the specific 
siRNAs. Data are referred to GUSB gene and an experimental group nucleofected with negative 
control siRNA. 

The HUGE method was also used in another publication in which several members from 

our research group proved and validated known LEDs from literature. In addition, they 

performed an exhaustive study of the LEDs detected by HUGE in SCLC and successfully 

validated in-vitro PLK1 essentiality when CREBBP was mutant [88] (Figure 12). 
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Figure 12: In vitro validation of the sensitivity of CREBBP-mutant SCLC cell lines to two PLK1 
inhibitors: Volasertib and BI2536. (A) Dose–response curves showing the effect of Volasertib and 
BI2536 treatment on the viability of CREBBP-WT NCI-H841, NCI-H889, NCI-H2171, NCI-H146 cells, 
and CREBBP-MUT NCI-H1048, NCI-H1963, NCI-H211, HCC33 cells. Cells were treated with the 
indicated doses for 72 h. Cell viability was measured using the cell viability (MTS) assay and the IC50 
was calculated for each cell line. (B) Colony formation assays of NCI-H841 and NCI-H1048 cells. Cells 
were seeded onto a six-well plate and were treated with vehicle (0.1% DMSO) or increasing doses of 
Volasertib or BI2536 for 72 h. After treatment, cells were incubated in a drug-free culture medium for 
14 days, fixed and stained with crystal violet. (C) Quantification of the number of colonies obtained in 
each condition with Fiji software. (D) FACS cell cycle analysis of NCI-H841 and NCI-H1048 cells 
conducted upon 5 nM Volasertib and BI2536 treatment for 24 h. 



Section 1: A Novel Method to Predict Lethal Dependencies with High Predictive Power 

58 

 

 



59 

 

Discussion of Section 1 

The advent of large-scale functional genomic screens has allowed the identification of 

hundreds of novel gene targets and the prediction of genome-wide LEDs [17,93]. This 

strategy has multiplied treatment strategies, as using LEDs, the drug targets can be 

decoupled from their corresponding predictive biomarkers. The main statistical limit to find 

LEDs is the large number of hypotheses that result from integrating gene essentiality and 

genetic functional events. In this section, we present HUGE, a novel analysis of CRISPR-

Cas9 and RNAi large-scale screens that significantly improves the predictive power to find 

LEDs from loss-of-function screens in human tumors. It relies on the fact that some gene 

alterations are statistically related to the essentiality of large sets of genes. Using this 

characteristic as a prior covariate we significantly improved the predictive power of LEDs.  

Notably, the presence of the HUGE effect does not necessarily mean biological causality. 

HUGE dependencies are more statistically reliable than others, but this does not imply that 

predicted alterations are the major players in tumor development thus, they are not 

necessarily driver genes; i.e., they are just genetic biomarkers of gene essentiality. In other 

words, the Hub-Effect is a statistical association. Since "correlation does not imply 

causation" is not legitimate to deduce a cause-and-effect relationship between the 

presence of a mutation and the sensitivity to knocking down a gene. Even more, it cannot 

be concluded that the HUGE top-ranked genes (either the mutations or the knockdown 

genes) are driver genes. This would require further experimentation and validation. HUGE 

simply computes biomarkers of the vulnerability to a knockdown gene, that in turn, could 

be targeted by a drug. However, the fact that gene alterations co-occur with multiple LEDs 

in genetic hubs can be exploited to improve the statistical power. 

To measure the increased predictive power of HUGE, we carry out three different 

comparisons within three functional genomic datasets: the Project Score, the DEMETER 

score and the CERES score. HUGE identifies LEDs with 14 and 75 times larger statistical 

power than using state-of-the-art methods in CRISPR-Cas9 and RNAi, respectively. 

However, it could be argued that this result could be an artifact of the statistical technique 

and that −lowering the threshold for standard procedures− would provide LEDs with similar 

reliability. This is not the case. As shown in the results, using the same number of 

predictions,  U  ’s results are more enriched in clinically validated biomarkers than ST’s 

results. Remarkably, one of the 16 LEDs only identified by HUGE is the known interaction 
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of FLT3-mutant genotypes sensitive to FLT3 inhibitors, such as Midostaurin. This fact is 

only an example of the key importance of considering the HUGE effect when analyzing 

LEDs with large-scale functional screens.  

A p-value histogram can be modeled as the superposition of two distributions, a uniform 

distribution (which corresponds to the null hypothesis) and another distribution with a larger 

proportion of low p-values. A good covariate splits the overall p-value histogram into 

histograms with different enrichments in small p-values. If all the histograms related to a 

covariate have similar shapes, it means that the covariate is uninformative. Here, we show 

that stating which gene is mutated in each test is a good covariate for the LED prediction 

problem because there is a hub effect of gene aberrations in gene essentiality. The usage 

of covariates has successfully been incorporated before in other genomics applications 

(e.g., the abundance of a gene is known to be informative in differential expression 

analyses; or the proximity of loci in the genome is known to play a role in genome-wide 

association studies), but it has not yet been exploited in large-scale functional genomic 

screens. 

One main limitation lies in the volume of data required for its execution due to the need for 

multiple hypotheses to detect the Hub-Effect. Hence, the HUGE-based approach will not 

obtain such striking results if applied to the analysis of smaller experiments in number, it 

would perform similarly to current standard methods. Nevertheless, this method has been 

developed for large-scale screening analyses. 

We are confident that the HUGE-based approach to calculating LEDs has great potential if 

applied to the study of patient data. Nowadays, drug development usually starts from large-

scale loss-of-function screenings. Therefore, this work has identified a large number of 

LEDs across 19 tumor types in 3 different large-scale experiments. Besides, to facilitate 

the in-vitro validation of these LEDs as possible therapeutic targets, we have added 

information regarding targeted drugs for those essential genes that are drug targets 

Predicting true LEDs is especially challenging for tumors with high genetic heterogeneity. 

In AML, for instance, state-of-the-art approaches only recover 2 LEDs. The HUGE-based 

approach captured 24 LEDs for the same False Discovery Rate (FDR). Interestingly, 

NRASwt-PTPN11 LED, which was only identified by HUGE, has been validated in vitro. 

The validation in AML highlights the potential of the HUGE-based approach to discover and 

validate new LEDs of biomarkers and drug targets. We pinpoint the dLED characteristic of 

the NRAS gene, meaning that if a tumor has NRAS mutated a treatment that targets NRAS 
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itself would be the best option to reduce their tumorigenicity, whereas if it is NRAS wild-

type, a PTPN11 inhibition would be a better recommendation. This dLED discovery confers 

special relevance to clinically translational therapeutic strategies, as it has been proved 

effective in AML cell lines, further validation in ex-vivo analysis and murine models is 

required but if resulting effective, it could be suggested as a treatment and it could 

incentivize drug development targeting NRAS and PTPN11. This methodology has 

potential applications both in basic and clinical research. 
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Introduction to Section 2 

Drug sensitivity studies have helped personalized medicine evolve, particularly in the field 

of precision oncology. Combining these drug sensitivity studies with tumor genotypes 

makes it possible to associate the response to treatment with genetic alterations 

(biomarkers), thus promoting the search for new personalized therapies[18]. 

Exploring the potential of these experiments, artificial intelligence (AI) algorithms for 

personalized medicine focus on the analysis of such datasets to bridge the gap for drug 

discovery.  owever, the concept of “black box" in AI limits the potential of this approach to 

be translated into the clinical practice. In contrast, Interpretable AI focuses on making AI 

results understandable to humans. 

In this section we include the development of a new Interpretable AI method, called Multi-

dimensional Module Optimization (MOM) algorithm, to predict therapeutic strategies based 

on large-scale drug screening data. This method systematically associates drugs with 

combined sets of genetic biomarkers that can be generalized and applied to other cohorts 

of patients. The therapeutic strategies provided by MOM can easily be understood by 

humans and are easy to implement in the clinical practice with a process equivalent to a 

decision tree. The optimization problem considers the effect of drug toxicity focusing on 

providing drugs that are differentially effective to patients with a specific genotype. M M’s 

result is deterministic −this is important to get regulatory approvals− and guaranteed to be 

optimal, the overall sensitivity of the patients is maximized. 

We applied MOM to an AML cohort, the BeatAML project cohort, which carried out WES 

(Whole Exome Sequencing) and drug screening experiments of 122 drugs with ex-vivo 

AML tumor samples from 319 patients [12]. Ex-vivo experiments in hematological cancers 

are of great importance since they are performed directly on the patient’s living tumor cells 

[11,12], allowing to correlate drug sensitivity to the patient’s genotype. The results obtained 

using MOM are in-silico validated using K-fold cross-validation and in three independent 

large-scale experiments, one based on pan-cancer drug sensitivity and two referred to pan-

cancer gene essentiality using siRNA and CRISPR-cas9. M M’s patient indications require 

only three different biomarkers, which makes them to be easily understood by the clinician. 

MOM is published in [2]. 
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Chapter 4. Results 

An interpretable artificial intelligence method to predict optimal treatments 

based on patient genotype  

The implementation of a clinical translational interpretable AI model requires the 

development of a robust method to associate biomarkers to specific targeted treatments. 

and, thus, relating drug sensitivity and patient genetic events -including SNVs, indels, 

fusion genes, or even epigenetics. The development of an AI algorithm in this context 

requires to solve three important challenges: (i) proper modeling of the toxicity of screened 

drugs (most aggressive drugs are not necessarily better treatments), (ii) dealing with a high 

number of statistical hypotheses that intrinsically increase false discovery rate (FDR), and 

(iii) explaining the internal reasoning that the model uses to propose a decision so that it is 

easy to approve and implement in the clinical practice.  

We propose an algorithm named Multi-dimensional Module Optimization (MOM) that 

addresses each of these challenges by dividing the problem into three main steps (Figure 

13): preprocessing the input drug sensitivity scores, associating single biomarkers to drugs 

with an increased statistical power and combining individual treatments to unveil multi-step 

treatment pipelines to stratify patients based on drug-response. 

 

Figure 13. Overview of MOM’s pipeline. (1) Filter and Normalization. (2) Generate individual Drug-
Biomarker Associations using IHW, (3) Multiple-pair analysis that generates a patient stratification 
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guideline using a novel MILP model (IHW: Independent Hypothesis Weighting, MILP: Mixed-integer 
Linear Programming). 

MOM is developed to optimally stratify patients following a decision tree based on simple 

logical rules, in which each step is defined by the presence or absence of a certain 

biomarker and the recommendation of one drug. In turn, MOM requires genetic variants 

information and drug sensitivity screenings as input data. 

To illustrate the steps of the algorithm, let us consider a toy example with 8 drugs and their 

corresponding drug-response scores for 6 patients (Figure 14). In this case, as in every 

precision medicine scenario, we want to find robust companion biomarkers that, associated 

to drugs allow us to maximize patient response with minimized toxicity.  

In the first step, MOM preprocesses drug sensitivity scores (Figure 14.1). For which, 

instead of using the standard measure of IC50, we proposed an incremental version of the 

logarithm of the IC50, named IC50* (See Chapter 5 for more details). The proposed 

correction has two main advantages. First, MOM prioritizes drugs that have a differential 

effect on different patients, which are, in turn, better candidates to develop a personalized 

treatment based on a companion biomarker. Second, drugs whose effectiveness does not 

depend on patient genotype are more unspecific and, therefore, more prone to be toxic for 

different tissues. In the next section, we will illustrate this fact with a real case scenario. 

To exemplify this normalization, let us return to the toy example with 6 patients, 8 drugs 

and their corresponding log(IC50) scores measured in ex-vivo tumors (Figure 14.1). 

Considering raw log(IC50) exclusively (left-hand heatmap), it could be argued that Drug 1 is 

the most effective drug and, therefore, it should be indicated to all patients regardless their 

genotype. However, since the dose can be adjusted for each patient, Drugs 1 and 8 will be 

given at a small and a large dose respectively balancing their effect. Using IC50* (right-

hand panel) allows MOM to maximize the genetic dependence of drugs, rather than the 

absolute cellular death in patient tumors.  

In the second step (Figure 14.2), MOM provides single biomarker-treatment associations 

by prioritizing the drugs whose response is associated with patient genotype. The selected 

statistical analysis to find the biomarker-treatment associations is the Independent 

Hypothesis Weighting (IHW) algorithm. This algorithm has been proved to increase the 

power of tests in several biological scenarios [1,94].  
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This algorithm provides also two interesting “by-products”  i) identifies which biomarkers 

are related to drug sensitivity, e. g. TP53 mutation is usually a source of resistance, ii) 

identifies drugs whose efficacy is related to the genetic profile, Olaparib is effective only for 

BRCAMut  patients [95]. 

In the third step (Figure 14.3), MOM predicts a sequential treatment guideline that 

maximizes the drug effect on the group of patients that share the genotype of the selected 

biomarkers. Using Mixed integer Linear Programing (MILP), MOM gets the optimal 

treatment guideline (decision tree). MILP is a versatile optimization method that allows the 

solution of complex mathematical problems using integer variables and assures that the 

drug assignation is optimal. This solution (i) is interpretable; (ii) eases the translation into 

clinical practice; and (iii) assures a global and deterministic optimum to the problem. 
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Figure 14. MOM Pipeline: MOM pipeline is defined by 3 major steps: 1) Drug normalization to 
reduce drug toxicity. It is performed by removing drug mean effect in all patients. The blue color 
represents drug sensitivity for the sample whereas the red color represents drug resistance in the 
sample. 2) Individual Drug biomarker associations using IHW. Drugs are matched to biomarkers 
profile, all individual associations generate a p-value that is corrected using IHW. IHW selects the 
candidate biomarkers and treatment and are used as input to the MILP problem. 3) Optimal Patient 
Stratification using MILP. The MILP module receives as input the normalized drug information IC50* 

2. Individual Drug Biomarker 

Associations using I W

Patient 1

Patient 2

Patient  

Patient 4

Patient 5

Patient 6

                

            

              

                  

              

                

    

   

    

    

    

 

   

   

   

   

   

 

D
ru
g
 2

D
ru
g
  

D
ru
g
 4

D
ru
g
 5

D
ru
g
 6

D
ru
g
 7

D
ru
g
 1

D
ru
g
  

IC50 

    

    

     

     

     

     

                    

                  

                    

                 

                     

                 

 

 

 

 

 

   

1. Drug Normalization and Filtering

D
ru
g
 2

D
ru
g
  

D
ru
g
 4

D
ru
g
 5

D
ru
g
 6

D
ru
g
 7

D
ru
g
 1

D
ru
g
  

 og(IC50)

                         Mean log(IC50)

Sensitive No effect
B
io
m
a
rk
e
r 
A

B
io
m
a
rk
e
r 
B

B
io
m
a
rk
e
r 
C

B
io
m
a
rk
e
r 
D

B
io
m
a
rk
e
r 
 

B
io
m
a
rk
e
r 
F

I W

Sensitive  esistant

Absent Present

 .  ptimal Patient Stratification using 

MI P

Maximizes overall 

Drug Sensitivity by 

selecting the optimal 

drug biomarker 

combination and 

hierarchical order

MI P

 verall Patient 

Sensitivity

 

Proposed hierarchical 

Patient Stratification

M M Pipeline

Present

Present

Present

Present

Absent

Absent

Absent



Chapter 4: Results 

71 

and the candidate individual associations and outputs a decision tree for clinical decision-making 
guidance. Within this module, the treatment is optimized so that each patient receives the drug for 
which is more sensitive. (IHW: Independent Hypothesis Weighting, MILP: Mixed-Integer linear 
Programing). 

FLT3, CBF-MYH11, and NRAS variants play a key role in Acute Myeloid 

Leukemia sensitivity to Quizartinib, Trametinib, and Selumetinib.  

We selected the BeatAML cohort to test MOM as it contains ex-vivo drug sensitivity 

screenings of 122 drugs in AML tumors derived from 319 patients [12], and includes both 

whole-exome sequencing experiments (WES) and drug sensitivity for every patient. 

Analyzing the WES data, we described the genetic landscape of the cohort shown in Figure 

15 and Appendix 2. Patients within this cohort are in different therapeutic stages, e.g., 

induction, maintenance, consolidation, or palliative care (among others), there also are 32 

de novo patients (Figure 16).  

 

Figure 15. Genetic Variant Type Summary in BeatAML. Variant classification plot represents the 
different genetic variant types, in terms of functionality and we see that the most common is missense 
variant, the Variant type plot represents the type of structural variant, whether they are Single 
Nucleotide Variants (SNVs) or Indels with a clear predominance of SNVs, SNV classification plot shoed 
the type of mutational signature that is predominant with the signature C>T that is quite frequent in 
malignant cancer types followed by C>A which is associated with environmental exposure[96]. The 
Variants per Sample Plot, tells that there is a median of 8 variants per patient. The variant classification 
summary plot summarises all the prior plots and, finally, the Top 10 mutated genes plot, shows for 
each of the top 10 genes the type of mutation. 
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Figure 16. Treatment Stages in the BeatAML cohort. A) From the 319 patients contained in the 
study coming from the BeatAML cohort, the chemotherapy phase veries considerabily. B) Distribution 
of the patients accounting for the different cumulative chemotherapy phases excluding the patients 
with missing info or who did not take any chemotherapy. 

The drugs studied in the BeatAML cohort cover a wide variety of different cancers and 

diseases: 24% are indicated for AML, 16% for other leukemias types, 10% for multiple 

myeloma, and 4% for lymphomas. This means that 54% of the drugs have been studied for 

hematological malignancies. The rest 46% include drugs used in lung, breast, or renal 

cancers among other diseases (Figure 17). Focusing on AML, the dataset provides a total 

of 11 AML drugs already in clinical use -e.g. Venetoclax, Quizartinib, or Gilteritinib- and 18 

AML experimental drugs -e.g. Panobinostat, Lestaurtinib, or Pazopanib.  
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Figure 17. Beat AML Drugs distribution. Drugs studied in the BeatAML cohort cover a wide variety 
of different cancers and diseases, from which 24% are designed, experimental, or already prescribed 
for AML, 16% for other leukemias, 10% are shown concerning multiple myeloma, and 4% for different 
types of lymphomas. This means that 54% of the drugs have been studied for hematological 
malignancies. 

We filtered gene variants to keep the ones that appear in at least 4 out of 319 patients (1%). 

This process provides 64 potential single biomarkers. We also removed drugs used in less 

than 20% of the patients, and those without a candidate gene target. After matching 

samples with ex-vivo and WES experiments, we finally get the ex-vivo screening of 111 

drugs for 319 patients (see Chapter 5 for more details). We then applied the MOM 

algorithm to this cohort to unveil groups of AML patients that share genotype and drug 

sensitivity. In the first step, MOM normalizes the IC50 values to define a score that better 

defines tumor sensitivity, namely IC50*.  

Let us illustrate this with a paradigmatic example. In our dataset, the median IC50 for 

Elesclomol is much smaller than the median IC50 for Quizartinib (Figure 18a, left panel). 

Consequently, Elesclomol seems a better option to treat patients with AML. Figure 18b 

gives a completely different reading: Elesclomol is more toxic in almost any tissue if 

compared with the AML lines. On the contrary, Quizartinib is more toxic on AML than in 

most other tissues. This simple example shows that plain IC50 must not be used to select 

the treatment guideline for the patients. The higher value of IC50 for Quizartinib could be 

corrected by adjusting the dose. In Figure 18a, right-panel, after the normalization, the 

IC50* for Elesclomol appears less effective, whereas Quizartinib preserves its sensitivity 

profile, which, in this example, it is related to the FLT3 status of the tumor. 
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Figure 18. IC50 Normalization to Avoid Drug Toxicity. a) Drug Sensitivity Heatmap in BeatAML 
cohort. The left panel shows the IC50 values for AML tumors of BeatAML. Effectiveness of a drug in a 
patient is plotted in blue color, and resistance is represented in red color. The right panel shows the 
sensitivity in IC50* score. b) Drug sensitivity of Quizartinib and Elesclomol across different tissue types 
using GDSC. IC50 values relative to different tissues are shown in the graph. In yellow color are plotted 
the sensitivity values of AML cell lines, in blue color are plotted the drug sensitivity values for the 
Hematological cell lines, and finally in grey color, are plotted the sensitivity values for the non-
hematological tissues from GDSC. Dotted grey lines represent the second IC50 quantile for AML cell 
lines (GDSC: Genomics of Drug Sensitivity in Cancer). 

In the second step, MOM calculates individual associations between drugs and genetic 

alterations using the HUGE approach from IHW package [94]. This approach sheds light 
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on which drugs can be influenced by patient genotype (Figure 19a). IHW also provides a 

weight for each genetic variant related to the probability of such variant to be a true positive. 

Non-zero IHW weights represent genetic variants that reduce the FDR and increase the 

power of tests as demonstrated by IHW authors [94]. IHW estimates that, in our AML 

cohort, 37 biomarkers have weights greater than zero. IHW weights can be therefore used 

to state the relevance of each biomarker. We sorted IHW  weights confirming that FLT3Mut, 

NPM1Mut, NRASMut, TP53Mut, and KRASMut are included in the top 5 biomarkers (Figure 

19b), which have already been described in previous studies [97–102]. IHW also provides 

an adjusted p-value for each drug-biomarker association. For instance, the pipeline 

identified the known relation of FLT3 internal tandem duplications (FLT3-ITD) patients 

being more sensitive to Sorafenib, Quizartinib, or Gilteritinib (Figure 20). 

Interestingly, an indirect output of this second MOM step is the quantification of the 

sensitiveness or resistance triggered by a specific genetic variant. Summarizing this score, 

gene variants can be classified by their effect: either sensitive or resistant to the tested 

drugs (Figure 19c). For example, variants in FLT3 or NPM1 are associated with a more 

sensitive response for the cohort of drugs in this experiment, whereas genetic alterations 

in KRAS, NRAS, or TP53 are more likely resistance-conferring. Other results include 

CCND3, WDR52, CELSR2, CBF-MYH11, and SMC1A as biomarkers of sensitivity and 

STAG2 of resistance. This effect is relative to the studied dataset, Beat AML, and occurs 

across 66 different drugs studied or prescribed for hematological malignancies.   
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Figure 19. Analysis of single interactions biomarker-drug. a) Overall score of 122 drugs whose 
IC50* is related or non-related to cell genotype according to our model. A drug is related to a relevant 
variant (those whose IHW weight is greater than zero) if its adjusted p-value is below 0.05. b) Global 
effect of AML gene variants in AML drug sensitivity. The x-axis shows the logarithm of the minimum 
adjusted p-value of the biomarker with any of the drugs. Only those biomarkers whose IHW weight is 
greater than zero are shown. c) One-tail p-value histograms comparing drug sensitivity according to 
the biomarker status in AML. If a histogram has a strong peak near zero, patients with the biomarker 
are sensitive to many drugs. On the contrary, if a histogram has a strong peak near one, patients with 
the biomarker are resistant to many drugs. A genetic variant is considered to confer sensitiveness if 
the number of drugs whose p-value <0.2 is twice the number of p-values >0.2. Similarly, a variant 
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confers resistance if fulfills that the number of p-values>0.8 is twice the number of p-values<0.8. (IHW: 
Independent Hypothesis Weighting). 

 

Figure 20. Relevant Individual Drug-Biomarker Associations. In blue the patients with the 
biomarker in orange the patients without the biomarker. P-value association is corrected using IHW. 
The score shows the differential IC50, more negative means more sensitive. 

Finally, in the third step, we solved the MILP problem from MOM using the individual 

candidate associations. As a result, MOM returns a decision tree that, depending on the 

presence or absence of several biomarkers, recommends a treatment for each patient. In 

this case, the patients are divided into four subgroups (one for each level of the tree) 

denoted by FLT3Mut, NRASMut, and inv(16) biomarkers (Table 3; Figure 21).  

Table 3. MOM Output: Patient stratification based on drug response to guide clinical decision-making 

Name Biomarkers Drug Patients 

Treated 

Subgroup 1 FLT3Mut Quizartinib 103 

Subgroup 2 FLT3 WT & inv(16) Trametinib 15 

Subgroup 3 FLT3WT & no inv(16) & NRASMut Selumetinib 42 

Subgroup 4 FLT3WT & no inv(16) & NRASWT Crizotinib 159 
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P.Value 2.22 e 14

P.Value 1e 15

P.Value 1.   e 4

P.Value 1.4 e 07

F T Mut  Sorafenib

F T Mut   uizartinib

F T Mut   ilteritinib

N ASMut  Selumetinib
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Following the new therapeutic strategy, the first biomarker is FLT3Mut-including FLT3-ITD. 

Patients carrying FLT3Mut would be treated with Quizartinib a 2nd generation FLT3 inhibitor 

that is currently facing several clinical trials showing an increase in overall survival for AML 

patients[63]. This group of patients represents 30% of patients [98], in our study, 103 

patients out of 319 belong to this group. The second subgroup comprises 15 patients and 

is characterized by FLT3WT and the inv(16), which generates the fusion gene CBF-

MYH11. Patients with these biomarkers are sensitive to Trametinib, a MAPK inhibitor that 

prevents cell replication and has been initiated in phase I clinical trials for hematological 

malignancies [103]. Interestingly, within this group, the patients with NRASMut (4 out of 16) 

are the most sensitive to Trametinib. The third group is defined by the absence of previous 

biomarkers and NRASMut. This subgroup poses special interest in the research as NRAS 

is one of the biomarkers most closely related to the general resistance to treatments of this 

disease [104]. NRAS gene variants are mutually exclusive with FLT3 variants (p-value 

<0.05; Figure 22). Patients within this subgroup are sensitive to Selumetinib, a MAPK 

inhibitor that has started clinical trials for acute lymphoblastic leukemia in the UK [105], it is 

a mitogen-activated pathway inhibitor, which could inhibit RAS pathway functionality [106].  

Finally, the fourth subgroup comprises the rest of the patients with none of the above 

mutational biomarkers but with other possible mutated biomarkers, for which the best 

treatment is Crizotinib -an ALK and MAPK inhibitor- approved by the FDA for lung cancer. 

It has not been enrolled in clinical trials for AML. Nevertheless, it has been used in studies 

of high-risk AML patients, with TP53Mut and obtained very promising results [107].  

To further validate the M M’s algorithm, we first run M M on the BeatAM  ex-vivo dataset 

using 10-fold cross-validation and compare the results that MOM outputs with each fold. 

This analysis shows that the MILP optimization returns robust results as 90% folds share 4 

out of 5 biomarkers (Figure 23). Specifically, FLT3Mut and NRASMut subgroups appear in 

10 out of 10 folds and subgroup with inv(16) in 3 out of 10 folds. 

We assessed the sensitivity of MOM using a novel metrics. Since MOM suggests a single 

drug for each patient, the potential contingency matrix will be very unbalanced: for each 

patient, only the drug suggested by MOM is a positive and all the other treatments are 

negatives. Instead, we plotted (Figure 24) the sorted ranks of the drug predicted by MOM 

for each patient. We computed the p-values according to this distribution using thresholds 

for 1%, 5%, 10% (0.005, 4.58e-11, and 2.24e-2  respectively). A “prediction” algorithm that 

prescribes a drug by chance would show a curve close to the diagonal in this graph. 
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We then evaluated the treatment guideline proposed by running MOM with BeatAML within 

three independent AML datasets: two large-scale loss-of-functionality experiments that 

used both RNAi (DEMETER 2 [108]) and CRISPR-Cas9 (CERES [109,110]), and an 

additional large-scale cell-drug sensitivity analysis (Genomics of Drug Sensitivity in Cancer, 

GDSC [14,111,112]). We characterize cell lines using the Cancer Cell  ine  ncyclopedia’s 

(CCLE [113,114]) genetic variant files, from which we clustered the AML cell lines into the 

four subgroups predicted by MOM using as input BeatAML. For CERES and DEMETER 2, 

we identified the main target and model drug effects to be proportional to the depletion of 

their target, which is the information these databases included. 

For each subgroup, we compared each experiment’s sensitivity (C   S score, D M T   

2 score, and GDSC-IC50) dividing patients according to the presence of the biomarkers 

predicted by MOM in BeatAML and summing their sensitivity scores of the other three 

databases. We compute the sensitivity scores for the 4 subgroups, and the 3 datasets 

independently DEMETER2 (n=18 AML cell lines), CERES (n=14 AML cell lines), and 

GDSC (n=23 AML cell lines) (Figure 21). For the GDSC dataset, we compared the IC50 

value from the cell lines with the selected biomarker and without the biomarker for a given 

subgroup drug. Finally, we performed an additional validation using DEMETER RNAi 

dataset (n=15 AML cell lines; Figure 25).  

The change in sensitivity for the selected treatments is strongly significant using the M M’s 

predicted biomarkers in the three experiments (p-values of 5.5e-05, 6.8e-06, and 5.5e-04 

for CERES, DEMETER2, and GDSC, respectively). Remarkably, inv(16) is difficult to be 

validated using cell lines, as commercial cell lines mostly lack this alteration. The ME-1 cell 

line is an exception to that, but GDSC is the only dataset that includes the translocation. 

Although this comparison is not statistically significant due to the lack of data, the GDSC-

IC50 of ME-1 is 30 times lower than the average of cells without inv(16). 
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Figure 21. Decision Tree for the Proposed Patient Stratification using MOM. MILP from MOM 
obtained a hierarchical clinical guideline for patient stratification consisting of 4 different subgroups. 
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Each of them is denoted by a biomarker and represented by color (blue, turquoise, orange, and grey). 
These subgroups were validated in the BeatAML ex-vivo cohort, CERES, DEMETER2, and GDSC. 
Boxplots show the results of the validation. The y-axis represents the essentiality score from the 
different experiments and the x-axis represents the biomarker presence-absence of the samples. The 
validation was performed sequentially, already treated samples from previous subgroups were 
excluded in the following subgroups i.e. samples with FLT3Mut (blue) from the first boxplot are not 
plotted in the non-biomarker (grey) in the second boxplot. CERES and DEMETER2 do not have 
experiments with cell lines having inv(16). 

 

 

Figure 22. Somatic Interactions. Mutually exclusive or co-occurring set of genes calculated using 
pair-wise Fisher’s  xact test. Associations plotted in green represent Co-occurrence while brown is a 
sign of mutual exclusivity. Stars are assigned to associations with P< 0.05. We appreciated that FLT3 
and NPM1 variants are co-occurrent, and FLT3 and TP53 and NRAS and IDH2 are mutually exclusive 
respectively. 
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Figure 23. Results 10-fold Cross-validation. In the Y-axis is plotted the number of folds in which 
each subgroup appeared. In the X-axis all the different subgroups that appeared in the cross-
validation. 

 

Figure 24. Results Sensitivity. We plotted the sorted ranks of the drug predicted by MOM for each 
patient. This plot shows that the suggested treatment was the best one in 3% of the cases, within the 
top 10% in 30% of the cases, within the first quartile in 46% of cases. The statistical significance for 
each of the thresholds can be stated using a Bernoulli distribution. We also included the p-values 
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according to this distribution using thresholds for 1% (p-value=0.005), 5%(p-value=4.58e-11), 10%(p-
value=2.24e-23) and 25%(p-value= 4.32e-17) 

 

Figure 25. Validation in cell lines using DEMETER Score. In red the cell lines with the biomarker 
associated with the treatment; in blue the cell lines without the biomarker. On the left, FLT3Mut 
subgroup, on the right NRASMut subgroup. 

We carried out a functional enrichment analysis to unveil the patient genotype according to 

the stratification proposed by MOM. We calculated the differentially expressed genes that 

are representative of each subgroup and computed the enriched biological functions of 

patients that belong to each group. The first subgroup, defined by FLT3Mut, is characterized 

by downregulation in Myeloid Leukocyte Migration (adjusted p-value < 5e-3), this result is 

present in other functional enrichment studies involving FLT3 mutated subgroup [115,116]. 

This subgroup has been repeatedly mentioned in literature and FLT3 inhibitors are being 

implemented in the clinic [63]. The second subgroup, defined by samples with inv(16) and 

FLT3WT shows upregulated cell proliferation (adjusted p-value < 1e-3) including 

angiogenesis and endothelial cell migration upregulated among others, also described in 

other studies concerning this genetic aberration [117–119].  

We also found that the NRASMut subgroup is related to the downregulation of alternative 

splicing (AS; adjusted p-value < 0.2). This subgroup has an upregulation of the transforming 

growth factor-beta (TGF-) signaling pathway (adjusted p-value < 5e-03), which is 

mentioned in other studies concerning AS, especially in myelodysplastic syndromes 
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[120,121]. Furthermore, several studies have attempted to address the relationship 

between AML and AS, with promising results [122–124].  

Finally, patients who do not have the previous biomarkers, have a downregulation in the 

amino acid catabolism process (adjusted p-value < 0.05), i.e. they are less able to 

metabolize amino acids than the rest of the subgroups [125]. A study demonstrates that for 

a subpopulation of AML leukemia stem cells the metabolism of amino acids from the 

medium is essential, and its absence leads to cell death [125]. Further description of the 

enriched functions for each subgroup, as well as their relationships and statistical 

significance, can be found in the Appendix 2. 
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Chapter 5. Methods 

Filter and normalization 

Filtering and Imputation 

We used data from ex-vivo experiments, WES, and RNA-Seq from 319 Acute Myeloid 

Leukemia (AML) patients included in the BeatAML cohort [12]. Data was filtered to ensure 

all samples contained the gene variants and drug sensitivity information, the new dataset 

containing genomic aberrations and drug IC50 for the same patients was used as a starting 

point for the study. Genetic variant samples were previously pathogenically filtered by Tyner 

et al. [12] and we defined as a biomarker a genetic variant present in more than 1% of the 

patients (n≥4), leaving a total number of 64 possible biomarkers.  

For missing drug sensitivity information in the ex-vivo experiments, we imputed the missing 

data using the k-Nearest Neighbourhood (kNN) Impute method, from Impute R package 

[126] (version 1.68.0). 

Drug Normalization: From IC50 to IC50* 

Initially, we tried to use as drug sensitivity values the half-minimal inhibitory concentration, 

(IC50) i.e., the concentration of a drug -in micro molar- for which half of the cell from the ex-

vivo experiment die. Instead of using the IC50, we propose the usage of an incremental 

version of the IC50, named IC50*. As described in the results section, the usage of IC50* 

instead of IC50 is a convenient way to deal with the different toxicity of the drugs under study 

After imputation, IC50 values were taken the log10 logarithm, normalized by subtracting the 

IC50 mean value for each drug, and these scores were made negative by subtracting an 

offset to the normalized IC50 value –the optimization model assumes negative values of 

drug sensitivity. The obtained drug sensitivity values are named IC50*. The transformation 

from IC50 to IC50* is represented in equation (4). Despite the formidable aspect of the 

formula, IC50* is simply an incremental and version of the logarithm of IC50 with an offset.  

Let IC50 be a T x P matrix, with T  the total number of drugs and P  the total number of 

patients, for which each element ic50t,p is a value contained in (0,10] µM.  
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(4) 

𝒊𝒄𝟓𝟎𝒕,𝒑
∗ = (log10(𝑖𝑐50𝑡,𝑝) − 1) −

1

𝑃
∑ (log10( 𝑖𝑐50𝑡,𝑝

𝑃

𝑝=1

) − 1) − 

− max ((𝑙𝑜𝑔10(𝑖𝑐50𝑡,𝑝) − 1) −
1

𝑃
∑ (𝑙𝑜𝑔10( 𝑖𝑐50𝑡,𝑝

𝑃

𝑝=1

) − 1))  

The obtained IC50* is a T x P  matrix containing the new drug sensitivity values.  

Drug-biomarker association 

Following with M M’s second step, we implemented a two-tailed Wilcoxon test to assess 

whether a biomarker influences the sensitivity of each the treatment. Each biomarker is 

tested against each drug and these associations were ranked according to the p-value. The 

p-values were adjusted following the methodology described by Gimeno et al. [1], using the 

R package IHW [94] (version 1.22.0). The package provides (given the p-values and the 

covariates –in our study genetic alterations–) a weight for each covariate related to its 

influence on the p-value significance. 

Using these results, we included two consecutive filters. Firstly, we selected the biomarkers 

whose relative importance (the weight outputted by IHW) is larger than zero. IHW assigns 

a strictly positive weight to biomarkers relevantly correlated to the potency of a drug. 

Afterwards, we removed the drugs with no statistically significant relationship to the 

selected biomarkers (IHW p-value >0.05).  

After this analysis, 122 treatments (biomarker-drug associations), with ∆𝐈𝐂𝟓𝟎∗ > 0.2 

(including vs lacking the biomarker) and adjusted p-value<0.05 were considered for 

therapy. 

MOM: MILP MODULE 

Finally, in the third step, we proceed with the treatment assignation. We developed a MILP 

module described in Chapter 4. This module receives as input the 122 treatments and 

solves an optimization problem.  

The core of MOM is an integer programming optimization model that predicts the 

combination of drugs and biomarkers that optimize patient response to treatment (i.e., 

IC50*). Let us define a treatment as a combination of a drug and a companion biomarker. 

The solution to the optimization problem consists of a set of treatments that will be applied 

sequentially to patients in a defined number of steps (one treatment per step). 
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Let S, P, and T  be the total number of possible steps, patients, and treatments included in 

the study respectively. Let OM be an input 𝑃 𝑥 𝑇 matrix of essentiality, whose elements 

𝑜𝑚𝑝,𝑡 contains the normalized sensitivity score (IC50*) of ex-vivo experiments for a patient 

p and a treatment t, which fulfills  𝑜𝑚𝑝,𝑡 ≤ 0. IC50* values are all negative. 

Let K be a 𝑃 𝑥 𝑇 a binary matrix whose element 𝑘𝑝𝑡 denotes whether a patient p is eligible 

for the treatment t, i.e., the treatment’s companion biomarker is present in the patient, as 

follows: 

𝑘𝑝𝑡 {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝 ℎ𝑎𝑠 𝑡ℎ𝑒 𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑡

0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                           
 

Let 𝐗 be a binary 𝑆 𝑥 𝑃 𝑥 𝑇  array whose element 𝑥𝑠𝑝𝑡 states whether a patient p is treated 

with treatment t  in step s, as follows:  

𝑥𝑠𝑝𝑡 {
1, 𝑖𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑡 𝑖𝑛 𝑠𝑡𝑒𝑝 𝑠                           

0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                   
 

Let 𝐘 be a 𝑆 𝑥 𝑇  binary matrix whose element 𝑦
𝑠𝑡

 represents whether a treatment t is used 

in step s, as follows: 

𝑦
𝑠𝑡

{
1, 𝑖𝑓 𝑡ℎ𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑡 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑠𝑡𝑒𝑝 𝑠                       

0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                         
 

Given these variables, the MOM algorithm was built as a MILP optimization problem 

defined by the following equations.  

(5) 
       minimize ∑ ∑ ∑ 𝑜𝑚𝑝𝑡

𝑃

𝑝=1

· 𝑥𝑠𝑝𝑡

𝑇

𝑡=1

𝑆

𝑠=1

 

(6) 
𝑠. 𝑡.         ∑ 𝑦𝑠𝑡 = 1                                                                         𝑠 = 1, … , 𝑆 

𝑇

𝑡=1
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(7) 
              ∑ ∑ 𝑥𝑠𝑝𝑡 ≤ 1                                                                  𝑝 = 1, … , 𝑃

𝑇

𝑡=1

𝑆

𝑠=1

 

(8) 
              𝑥𝑠𝑝𝑡 ≤ 𝑦𝑠𝑡 · 𝑘𝑝𝑡                                      𝑠 = 1, … , 𝑆; 𝑡 = 1, … , 𝑇; 𝑝 = 1, … , 𝑃 

(9) 𝑥𝑠𝑝𝑡 + ∑ ∑ 𝑥𝑛𝑝𝑚 ≥  𝑦
𝑠𝑡

· 𝑘𝑝𝑡            𝑠 = 1, … , 𝑆; 𝑡 = 1, … , 𝑇; 𝑝 = 1, … , 𝑃

𝑇

𝑚=1

𝑠−1

𝑛=1

 

The objective function of the MILP problem, equation (5), is to minimize drug sensitivity 

scores (IC50*) for all patients. The sensitivity score will be considered if it is included in the 

problem solution (𝑥𝑠𝑝𝑡 ). As drug sensitivity scores are negative, the MILP solution will 

intrinsically maximize the number of treated patients, as each included patient adds a 

negative term to the objective solution. 

The proposed MILP problem has four sets of restrictions, namely equation (6) to equation 

(9). Equation (6) is a set of S restrictions stating that each step consists of one treatment. 

Equation (7) is a set of P restrictions stating that at most one treatment must be used to 

treat each patient. Equation (8) is a set of 𝑆 𝑥 𝑇 𝑥 𝑃  restrictions stating that the treatment 

t  can be applied to patient p in step s, only if (i) the patient p is eligible for treatment t based 

on his/her biomarkers (𝑘𝑝𝑡 = 1), and (ii) the treatment t  is used in step s (𝑦
𝑠𝑡

= 1). Finally, 

equation (9) is set of 𝑆 𝑥 𝑇 𝑥 𝑃 restrictions that impose that the treatments included in the 

solution must be selected hierarchically, i.e., if we have a patient that would be eligible for 

two treatments, only the first treatment must be considered in the optimal solution. 

To solve the model, we used CP  X™© 12.10.0, Python  .7. , and the reticulate   

package [127] (version 1.25.0).  

MILP results can be directly translated into a decision tree for guiding clinical decision-

making. The number of levels of the tree was set to four. Each level of this tree will be 

defined as one therapeutic AML subgroup and each subgroup is defined by a biomarker 

and a recommended drug.  
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Performance of MOM 

The application of typical performance measures of machine learning (specificity, accuracy, 

sensitivity, ROC and PR curves, etc.) to this specific problem is not straightforward. Since 

MOM suggests a single drug per patient, the potential contingency matrix will be very 

unbalanced: for each patient, only the drug suggested by MOM is a positive and all the 

other treatments are negatives. If the suggested drug is the one with the lowest IC50*, the 

prediction will be a true positive. Otherwise, it will be a false positive. On the other hand, all 

the drugs that were not selected are true negatives (except the one with the lowest IC50*). 

The drug with the lowest IC50*, if not selected by MOM, will be a false negative. 

Instead of this approach, we plotted the sorted ranks of the drug predicted by MOM for 

each patient. This plot shows that the suggested treatment was the best one in 2% of the 

cases, within the top 10% in 30% of the cases and so on. The statistical significance for 

each of the thresholds can be stated using a Bernoulli distribution. We computed the p-

values according to this distribution using thresholds for 1%, 5%, 10%.  

External Cohort Validation 

For validating the different subgroups, we compared patients that are given a drug in a 

specific subgroup against the remaining non-treated patients. We validated our results 

using cell lines, specifically, used 2 different large-scale gene essentiality experiments 

including RNAi  (DEMETER 2 [108]) and CRISPR-Cas9 (CERES [109,110]), and an 

additional large-scale cell-drug sensitivity analysis (Genomics of Drug Sensitivity in Cancer, 

GDSC [14,111,112]). We characterized the cell lines using the Cancer Cell Line 

Encyclopedia (CCLE [113,114]) genetic variants files, from which we were able to divide 

the cells into different subgroups. 

We performed the following test for validation. Cells were divided into two groups. The first 

group includes cells with the biomarker associated to that subgroup, and the other group, 

contains the cells without the biomarker that had not been previously treated. This 

comparison was computed for the 4 subgroups, and the 2 datasets DEMETER 2, and 

CERES. DEMETER 2 and CERES were compared using the viability score that 

corresponds to knocking out the corresponding targets for each drug. For the GDSC 

dataset, we used the IC50 value provided in the experiments. All tests were one-tailed 

Wilcoxon’s test to check that the sensitivity increase in the cells with the biomarker.  
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Functional Analysis of the Subgroups 

Functional analysis of the subgroups was performed using gene expression data from the 

BeatAML [12] cohort. We performed a differential gene expression analysis using limma R 

package [128] (version 3.50.3). The contrast matrix compared one group against all the 

others, therefore, there was a different contrast for each group.  

Genes differentially expressed were ranked according to its t-statistic, if t >0, genes were 

considered overexpressed, if t<0, genes were considered underexpressed. For each 

subgroup, we selected the top 500 over and under expressed genes and performed a Gene 

 ntology  nrichment Analysis (  A) using Fisher’s Test. We analyzed the biological 

process ontology. Enriched functions on the overexpressed genes were upregulated, and 

functions obtained from the underexpressed genes were considered to be downregulated. 

The statistics were computed using clusterProfiler R package [129] (version 3.10.1). We 

set an adjusted p-value cutoff of 0.2 for considering a function differentially enriched, 

adjusted p-values were computed using the Benjamini-Hochberg procedure. 

 

 

. 
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Discussion of Section 2 

Despite the advances in drug ex-vivo screening and computational methods for precision 

medicine, there are technical issues that limit their translation to clinical practice. Some of 

these issues are the influence of drug toxicity, the enormous number of statistical 

hypotheses, the complexity of developing algorithms understandable by the clinician, and 

the difficulty of proposing an effective treatment guideline that assigns the best drug for 

each patient. MOM faces and solves each of these challenges. 

These statements are not yet covered by current AI strategies, which are focused on 

increasing accuracy and sensitivity regardless of the complexity of the end model [28,130]. 

In these AI methods, the absence of interpretability of the feature used for classification 

prevents further research and downplays the need for clinically defined subgroups 

[19,131,132]. Indeed, the need of developing interpretable AI algorithms is not only related 

to easing the diagnosis pipeline in cancer but also to increase and facilitate that the pharma 

industry brings new drugs and biomarkers to market. Drug regulators -such as the Food 

and Drug Administration- value that the process to unveil novel biomarkers is robust and 

transparent [49]. In contrast, the patient stratification guideline provided by MOM has the 

following characteristics, i) allows treatment assignment by using a simple genetic panel, 

ii) the results are non-stochastic, they are the same for all possible re-runs of the model, iii) 

the algorithm outputs a decision tree for treatment guidance.  

IC50, EC50, and AUC (used for example in [14,27,133]) are reasonable metrics to determine 

the efficacy of a drug. None of them, however, considers the overall toxicity of the drug. 

Using IC50* in the optimization problem, we focus on the differential effectiveness of a drug 

among different patients, and therefore, drugs that are toxic for most samples will not be 

included in the solution.  

IHW provides us with the ability to increase the power of tests and reduce the FDR. With 

this strategy, we are also able to identify the direction of the influence of genetic events in 

drug response, i.e., whether it defines sensitivity or resistance. With this approach, we 

successfully detected FLT3 as highly influential in terms of sensitivity to treatment, which 

is coherent with other studies [98].  NRAS, instead, showed as a mutation associated with 

treatment resistance also coherent with literature [99,104]. One promising conclusion for 

this study is that we managed to find a drug for which NRAS correlates to drug sensitivity.  
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Interpretable AI defined by MILP ensures that the subgroups obtained are optimal. This 

feature is not common to other classification methods. However, it also presents two main 

limitations. The first one is computational resources, which increases exponentially with the 

number of possible biomarkers, drugs, or patients (on a standard desktop, the presented 

work required 2.5 hours of computing time). In addition, the incorporation of new non-binary 

diagnostic markers requires the redefinition of the model. However, once the optimization 

problem is solved, assigning a treatment to a novel patient is immediate. 

Our AML patient stratification includes a subgroup defined by the absence of a genetic 

mutation, i.e., wild type. It also includes patients who have TP53Mut genotype, which are 

biomarkers associated with poor prognosis [134]. MOM recommends treating these 

patients with Crizotinib, a drug used in other studies with TP53Mut AML patients which in 

fact showed very promising results[107]. In addition, this subgroup shows a deficiency in 

amino acid metabolism which may lead to alternative treatment therapies based on 

metabolomics. 

The subgroup defined by the CBF-MYH11 fusion gene appears characterized in a very 

small percentage of AML cell line cohorts but is nevertheless present in 7% of AML 

patients[135], which enhances the relevance of this biomarker.  CBF-MYH11 is a clear 

indicator of sensitivity to Trametinib, a clinical drug that inhibits cell replication pathway 

[136], which, in turn, appeared as an upregulated biological process in this subgroup. In 

the remaining subgroups, FLT3Mut is widely described in the literature [98]. In contrast, 

NRASMut appears as a biomarker of sensitivity for Selumetinib and has downregulated the 

alternative splicing (AS) process. This subgroup contains, on balance, effective treatment 

for a resistance-associated mutation and a new line of research linking alternative splicing 

and AML.  

It is remarkable the appearance of three different MAPK inhibitors in the proposed 

therapeutic strategy, which is coherent with the disease behavior. Our biomarker analysis 

revealed that the RTK-RAS pathway is the most affected in our cohort of AML samples 

(Appendix 2-Section BeatAML Cohort). Of all drugs suggested as treatment, only 

Quizartinib is clinically approved for AML patients [60]. This study aims to accelerate -once 

the results are validated in cell lines and murine models- the process of approving these 

drugs for AML. 
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The validation of the results is challenging in a real cohort since most patients are treated 

with standard induction cytotoxic therapy (only 7.5% of AML patients in TCGA are treated 

with other treatments). We propose a strategy to take advantage of cell lines loss-of-

function datasets. Nevertheless, even using cell lines -that are quite different from ex vivo 

samples- we validated the subgroups and the IC50 of the lines with indication was 

significantly better than the IC50 of those without indication. Therefore, in the absence of 

clinical data for validation, we consider the results using cell lines data to sufficiently support 

this study.  

The concept of MOM is also applicable to other disease types using ex-vivo experiments 

as well as to other sensitivity measurements, leaving an open door for new patient 

stratifications based either on drug response or even on any other experiment to measure 

the effectiveness of certain drugs in the future. We believe that Interpretable AI will help 

physicians and regulators understand AI medical decisions and, therefore, ease the 

translations of AI analysis of drug screening experiments to clinical practice. 
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Section 3: The challenge of Interpretability 

Assessing the Interpretability of novel and state-of-the-art 

methods 
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Introduction to Section 3 

As mentioned in the first chapter of this thesis dissertation, interpretability is an essential 

feature for the applicability of a machine learning model. Interpretability makes an ML model 

understandable by an expert and allows him/her to critically judge the algorithm output. 

This characteristic is especially important in Precision Medicine.  

In this section, we will compare various methods that solve the assignment problem posed 

by PM in terms of their interpretability. To do so, we reviewed the current literature to 

summarize the state-of-the-art and selected different methods that were defined as 

interpretable and solved the assignment problem.  

We have compared 22 different algorithms suited for solving the assignation problem, out 

of which, 13 algorithms were black-boxes [29,30,39–41,31–38], thus, they are not 

interpretable and nor suited for the comparison. None of them were defined as explainable 

[43,46,51–56]. We divided these latter into the two main approaches mentioned in Chapter 

1, “patient-centered” meaning that the method outputs a drug assignation for each patient 

[2,137], and “drug-centered” meaning that the method finds which patient or patients that 

are responders for a specific drug [138–140].  egarding this last group, “drug-centered” 

methods can be transformed into “patient-centered” if their output is a continuous variable, 

as the best drug for each patient will be the drug with the highest sensitivity from the drugs 

predicted for that patient. We thus, selected from this last group only the methods that are 

suited for “patient-centered” approach. 

Within this last classification, the top-ranked algorithms in the state-of-the-art are 

Multidimensional Optimization Module (MOM) [2] and Kernelized Rank Learning (KRL) 

[137] from the “patient-centered” perspective, and  BOSO [138] and Lasso Regression 

[140] in the “drug-centered” approach. MOM uses mixed integer linear programming (MILP) 

to discover the optimal therapeutic strategy that is returned as a decision tree and was 

described in the previous section. KRL is a machine learning method based on an 

optimization problem that applies a kernel approach to circumvent the convexity limitations 

and also solves the problem using MILP. BOSO and Lasso can be applied to predict the 

IC50 of a drug in different patients. BOSO is a MILP model built up from the Lasso 

Regression equations that have been modified to predict a numeric variable with the least 

number of features, improving the reduced interpretability of Lasso Regression. 
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We also included in this analysis two novel “patient-centered” algorithms developed in this 

thesis: Optimal Decision Trees (ODT) and an adaptation of the Multinomial Lasso. ODTs 

are decision trees that recursively optimize the drug recommendation on each branch until 

a preset group size is reached. Finally, Multinomial Lasso is a modified Lasso regression 

methodology for which each patient “selects” its best drug using a vote sharing scheme. 

Our main challenge in this comparison was to provide a definition of interpretability. There 

is no immediate quantitative way to compare two methods in terms of their interpretability, 

so in this section we will define a quantitative metric to evaluate the interpretability of a 

method. In turn, we also include some qualitative metrics to complement the quantitative 

ones. 

We compared the methods in this section in terms of interpretability, focusing specially on 

the accuracy, multi-omics capability, explainability, and implementability. Method 

comparison was performed using the BeatAML [12] dataset and the Genomics of Drug 

Sensitivity in Cancer (GDSC) [112] dataset for Acute Myeloid Leukemia (AML).  

We focused on the BeatAML dataset due to its abundance of patient information −e.g. 

genomic data, gene expression, clinical data−, and drug sensitivity information which 

proceeded from ex-vivo experiments performed on patient samples instead of cell lines 

[12]. Indeed, ex-vivo drug sensitivity provided more information for patient sensitivity than 

conventional information from clinical data due to the possibility of testing more drugs on 

the living tumor without injuring the patient and solving possible harmful drug interactions 

from previous treatments. Although this information could be less reliable, it solves the 

sparsity issue of drug sensitivity data explained in Chapter 1 of this dissertation. 

Furthermore, drug screens performed on ex-vivo experiments improve data reliability if 

compared to cell line screenings. Nevertheless, further experimental validation is required 

for clinical applications.  
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Chapter 6. Methods 

Focusing on approaches to address the complex Precision Medicine (PM) problem, we 

found different methodologies from the “patient-centered” perspective, Multidimensional 

Optimization Module (MOM) [2] and Kernelized Rank Learning (KRL) [137]. We also 

included in this group two novel algorithms: Optimal Decision Trees (ODT) and an 

adaptation of the Multinomial Lasso.  

In the “drug-centered” approach, BOSO [138] and Lasso Regression [140] can be applied 

to predict the IC50 of a drug in different patients. Both methods select a small number of 

variables to make their predictions. Once the predictions are obtained, comparing the 

predicted IC50 for each drug on a patient, the drug with the minimal IC50 is selected. The 

description of the six methods is summarized in Table 4. Some of the methods only accept 

binary data as input. These methods cannot be applied to gene expression unless using a 

hard threshold. 

Optimal Decision Trees (ODT) 

In this work, we are introducing a novel algorithm that uses a tree-like method for precision 

medicine. This method is intrinsically different from classification or regression trees, as will 

be shown. 

In a classification tree, in each step, the tree is split into two subtrees finding the variable 

(with its corresponding threshold) that best splits the tree according to some figure of merit 

(Gini index, entropy, information gain, etc.). This figure of merit measures the overall 

enrichment of the classes in the subtrees.  

On the contrary, the ODT algorithm selects for each step the splitting variable (selecting a 

proper threshold) and the treatments for each split. The selection is based on the 

optimization of an overall measure of the sensitivity of both branches to the selected 

treatments (Figure 26). 
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Table 4: Precision Medicine Pipelines selected for comparison. This table collects the description 
of each of the methods. Algorithm shows the method’s given name. Type refers to whether the method 
is patient- or drug-centered. The software column collects all the required software environment 
programs for the model to be run. Method refers to the pipeline description. Suitable for mutational 
data has a “Yes” if the method could use genetic variants as input. Suitable for gene expression has a 
“Yes” if the method could use gene expression data as input and a “No” otherwise.   utput explains 
the raw output of the model. Reference contains the publications in which the method was defined.  

Algorithm Type Software Method Suitable 

for 

mutatio

nal data 

Suitable 

for gene 

expressi

on 

Output Reference 

MOM Patient Python 

3.7, R 

4.2, and 

CPLEX 

Feature 

Selection 

and MILP 

Yes No Drug 

assignation 

[2] 

ODT Patient R 4.2 Recursive 

Decision 

Tree 

Yes Yes Drug 

assignation 

Novel 

Multinomial Patient R 4.2 Adapted 

Lasso 

Yes Yes Drug 

assignation 

Novel 

KRL Patient Python 

2.7 

Kernelize

d MILP 

Yes No Drug 

assignation 

[137] 

BOSO Drug R 4.2 

and 

CPLEX 

Lasso 

regressio

n using 

MILP 

Yes Yes Predicted 

IC50 for a 

drug 

[138] 

Lasso Drug R 4.2 Traditiona

l Lasso 

regressio

n 

Yes Yes Predicted 

IC50 for a 

drug 

[140] 

 

Specifically, let Y be a P x D matrix where P is the number of patients and D is the number 

of tested drugs. Each of the entries of the matrix quantifies the sensitivity of each patient to 

a drug, i.e., the matrix Y can be either the IC50 or a modified version of it, the area under 

the concentration-response curve, etc. Let X be a P x M matrix where P is the number of 

patients and M is the number of biomarkers. The matrix X can be a matrix of mutations, 

gene expression, or other characteristics specific to each patient. 
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In the case of binary variables (mutations for example), for each step in the splits of tree, 

the following optimization problem is solved (Equations 4-6): 

max
𝑚,𝑑1,𝑑2

𝐴 + 𝐵 

 
(4) 

𝐴 = ∑ 𝑦𝑝𝑑1
(𝑥𝑝𝑚 == 1)

𝑝∈𝑠𝑝𝑙𝑖𝑡

 (5) 

𝐵 = ∑ 𝑦𝑝𝑑2
(𝑥𝑝𝑚 == 0)

𝑝∈𝑠𝑝𝑙𝑖𝑡

 (6) 

 

Where split is the set of patients under study (all patients belong to the split in the case of 

the root node), m is the selected mutation or biomarker, and d1 and d2 are the selected 

drugs for the patients that have or do not have the mutation m respectively. The notation 

“(condition)” represents 1 or 0 depending on whether the expression inside the parenthesis 

is true or false (Equations 5,6). This problem can be easily extended to continuous 

variables, using a threshold (Equations 7-9). In this case the optimization problem is: 

max
𝑚,𝑡ℎ,𝑑1,𝑑2

𝐴 + 𝐵 

 
(7) 

𝐴 = ∑ 𝑦𝑝𝑑1
(𝑥𝑝𝑚 >= 𝑡ℎ)

𝑝∈𝑠𝑝𝑙𝑖𝑡

 (8) 

𝐵 = ∑ 𝑦𝑝𝑑2
(𝑥𝑝𝑚 < 𝑡ℎ)

𝑝∈𝑠𝑝𝑙𝑖𝑡

 (9) 

 

Both optimization problems start by setting all the patients within the studied split. The 

optimization splits the patients into two groups. For each of these groups, the algorithm is 

applied recursively until the number of patients in the split is smaller than a given number 

or until the optimization problem results in the same drug for both splits.  
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Figure 26. ODT Model Performance. The ODT model uses as input the sensitivity matrix and the 
biomarker matrix, on each step it splits the patients into two groups according to the presence or 
absence of a biomarker. This split is optimized so that the drug-assigned is the most sensitive to each 
of the splits. It recursively splits the different branches until a predefined group size is reached. 

The equations (5,6,8,9) maximize the sum of the sensitivities of the patients of each of the 

branches. Using the same algorithm, it is possible to apply any transformation of the 

sensitivity and include them in the optimization process. In this case, equations (5) and (6) 

are transformed into: 

𝐴 = ∑ 𝑓(𝑦𝑝𝑑1
)(𝑥𝑝𝑚 >= 𝑡ℎ)

𝑝∈𝑠𝑝𝑙𝑖𝑡

  

𝐵 = ∑ 𝑓(𝑦𝑝𝑑2
)(𝑥𝑝𝑚 < 𝑡ℎ)

𝑝∈𝑠𝑝𝑙𝑖𝑡

  

 

Equations (5) and (6) can be transformed in an analogous way. To minimize the effect of 

outliers in the sum, we used the square root function to diminish the dynamical range of the 

data. The transformation is named ODT Sqrt in this work.  

Multinomial logistic Lasso regression 

The assignation of the proper drug to each patient problem can be tackled as a multiclass 

classification problem: the number of classes is the number of drugs and each patient is 

assigned the most effective drug for him/her. Using this approach, a multinomial regression 

can be applied to select the proper drug for each patient. 

Sensitive  esistant Present Absent

 et  ptimal drug

for each group

 et  ptimalbiomarkerselection
for the untreatedpatients

 et  ptimalbiomarkerselection
for the untreatedpatients

 et  ptimalbiomarkerselection
for the untreatedpatients

PresentAbsent

Absent Present
PresentAbsent

Stop

Stop

PresentAbsentPresentAbsent

Stop Stop Stop Stop
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Predicting exclusively the most effective drug can be simplistic, since the penalty for 

misclassification is identical for the second most effective drug or for the least effective 

drug. Since the multinomial regression can also be applied to classes defined by continuous 

variables, it is possible to give a “vote” for each patient that can be shared among all the 

drugs: the most effective drug will receive more shares of this vote that the least effective 

drug. Assigning the whole vote to the most effective drug can be seen as a particular case 

of this approach. Vote sharing can be seen as a transformation of the PM problem to a 

classification problem using probabilistic labels. 

The Lasso regression is also implemented for multinomial regression. The implementation 

of glmnet  (R Package) [140] is fast and convenient and allows for automatic selection of 

the regularization parameters using cross-validation. 

More specifically, the multinomial regression builds the multinomial regression model 

(Equation 10) 

𝑿𝜷~𝒁 (10) 

 

where X is a P x M matrix where P is the number of patients and M is the number of 

biomarkers, 𝒁  is P x D voting matrix where P is the number of patients and D is the number 

of tested drugs. All the elements of Z are positive and the sum of its elements by rows is 

equal to one. Finally,  𝜷 the output of the regression is a M x D coefficient matrix.  𝑿𝜷 are 

the predicted logits for each drug being the most effective for each patient (Figure 27).  

 

Figure 27: Multinomial Model. The multinomial Model corresponds to a modified Multinomial logistic 
lasso regression, where the output represents the votes that each patient assigns to each of the drugs. 

The specific selection of the entries for the Z matrix is shown in Equation 11. 
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𝑧𝑝𝑑 =

exp (−𝐾
𝑦𝑝𝑑

min
𝑝

(𝑦𝑝𝑑)
)

∑ exp (−𝐾
𝑦𝑝𝑖

min
𝑝

(𝑦𝑝𝑖)
)𝐷

𝑖=1

 (11) 

Where ypd are the entries of the Y matrix (that measures the sensitivity to a drug) and K is 

a predefined constant. If K>>1, all the exponentials of the summations of the denominator 

but the min(ypi) vanished and the vote is given to the most effective drug. If K = 0, all the 

drugs share 1/D votes.  

Data for Comparisons 

We focused on Acute Myeloid Leukemia (AML) to compare the different methods described 

above. This disease was selected due to the availability of a wide cohort of patients with 

genomics data and ex-vivo drug sensitivity screening data. Ex-vivo data is more reliable 

than drug screenings performed on cell lines due to the similarity of the AM  patients’ blood 

to the tumor tissue. Furthermore, AML is a highly heterogeneous disease with not standard 

PM therapeutic strategy, even though there is a growing field of drug development likely 

suited for these patients, e.g. Tyrosine Kinase Inhibitors (TKIs)[141]. 

Consequently, we selected the BeatAML cohort [12] for training the models and predicting 

different therapeutic strategies. This cohort is publicly available at http://www.vizome.org/ . 

We normalized the drug sensitivity IC50 from the ex-vivo experiments into IC50* described 

in [2]. To validate the predictions and due to the absence of more large-scale ex-vivo 

experiments we used as an independent cohort testing set, the GDSC drug screening for 

AML cell lines [112], which could be found publicly available at 

https://www.cancerrxgene.org/. 

We compared the different algorithms primarily on the basis of four aspects that define 

interpretability (Figure 28): i) the accuracy of the method, for which we performed a 5-fold 

cross-validation in the training set, an independent cohort validation and an intragroup 

validation with the predicted groups in the training and validation set, ii) the multi-omics 

capability, for which we tested the ability and performance of the methods when training 

with gene expression and genomic variants, iii) the explainability, for which we performed 

a qualitative comparison of all algorithms, analyzed the number of variables that each 

algorithm uses for prediction, and iv) the implementability, for which apart from qualitative 

http://www.vizome.org/
https://www.cancerrxgene.org/
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comparisons based on the method definition, the computing time that each model requires 

for training becomes essential.  

 

Figure 28: Summary of the available comparisons performed in this study. We trained the 
different models in BeatAML cohort and tested the predictions predicting over GDSC. From the training 
step we were able to obtain the training computing time, the number of variables required to make the 
predictions, a 5-fold cross-validation using mutational and gene expression data, and intragroup 
validation. Whereas for the testing step we performed and independent cohort prediction validation 
using mutational and gene expression data, and another intragroup validation 

Accuracy 

The first “sine qua non” characteristic of a PM methods is the accuracy. An “interpretable” 

method with low accuracy becomes irrelevant. We define the accuracy as the difference of 

the IC50* for the assigned drug and the drug with maximum IC50* for that patient. 

For assessing the accuracy of each of the methods, we performed the following 

comparisons: 5-fold cross-validation, independent cohort validation, and Intra-group 

validation. 

5-fold cross-validation in BeatAML 

We performed a 5-fold cross-validation using the BeatAML dataset. We trained all models 

with genetic variants data from 319 patients, dividing the cohort between the training 

samples 4-folds and testing samples the selected 1-fold. Each of the folds were tested, and 

the predicted IC50* for the 5-fold testing was compared for all the methods and compared 
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against the Oracle -the drug with the optimum IC50*- (Figure 29). We calculated the Oracle 

as the minimum IC50* value for each patient.  

 

Figure 29: Oracle Method. The Oracle predicts the most sensitive drug for each patient or cell line. 

Independent cohort validation 

One of the main challenges of Machine Learning, including Precision Medicine, is 

generalization, i.e. the ability to adapt to new, previously unseen data. All the methods were 

tested on the GDSC AML dataset to check their generalization ability. The models were 

trained using the BeatAML dataset and were used to predict the optimal drug for AML cell 

lines from GDSC using its mutation files. Each of the cell lines was recommended a drug, 

we compared the all-samples IC50 for all the models and against the Oracle (the drug with 

the minimum IC50 for each cell line).  

Intra group validation 

We compared if the IC50* of a drug in the patients where it was recommended, was lower 

the IC50* in patients where it was not recommended. Using this information, we compared 

the sensitivity to a drug for a specific group against the sensitivity to that drug for the rest 

of the samples by using a 2-tailed Wilcoxon test. This analysis was performed both for the 

BeatAML dataset (training dataset) and the GDSC AML cell lines cohort (predicted 

dataset). This analysis was performed using the predicted drug recommendation for the 

BeatAML dataset (training dataset) and the GDSC AML cell lines cohort (predicted 

dataset).  

Multi-omics suitability 

Some of the methods only accept as input binary variables. Although, genomic variants 

can be transformed into binary variables, gene expression, methylation, or openness of the 

chromatin are intrinsically continuous variables. We have included a table that checks if the 

algorithm accepts only binary inputs (only genomic variants) or if it accepts continuous data 

Sensitive  esistantSelect the minimum IC50
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as well (gene expression, methylation, etc.). For the methods that accept continuous 

variables, we assessed the performance of the predictions (5-fold cross-validation) in the 

BeatAML dataset using both data sources. We state the statistical significance using a 2-

tail Wilcoxon’s test comparing the IC50* using as input either genetic variants or gene 

expression.  

Explainability 

PM is more suited for healthcare if it can be interpreted. A machine learning method is 

interpretable if it provides the decision criteria that define the pathway that leads to the 

solution. 

Explainability is defined by three different aspects: i) the explainability of the results, which 

checks if the method provides a ranking of the variables according to their importance for 

drug recommendation, ii) the capacity to output an easy-to-apply decision criteria, and iii) 

the understandability of the methods, this category mentions if the process of the algorithm 

to reach the classification criteria is easy to understand. 

For assessing these characteristics, we performed a qualitative analysis based on the 

method description and execution. Furthermore, we analyzed the number of variables that 

each model requires to make the predictions. A model with a small number of variables is 

easier to understand, improves the understanding of the variable ranking, and is easier to 

for clinical diagnosis. Therefore, we paid special attention to the number of variables.  

Implementability 

Implementability is the easiness of a method being implemented into clinical research or 

practice. We measured the implementability of a method by analyzing four main features: 

i) the feasibility for wet-lab validations, ii) the consideration of the physician’s experience, 

iii) the generation of a clinical guideline, and iv) technical implementation, which refers to 

the computational burden and software that the method requires. We used qualitative 

grades for the first characteristics. Regarding the technical implementation, we considered 

the computational burden. Despite it could be considered less important, some of the 

algorithms require hours of computing time for the BeatAML of the subset of AML samples 

in GDSC -that be considered to be small/medium size. Requiring fewer resources makes 

an algorithm more attractive to be applied for larger datasets. We also analyzed the 

software environment that each model requires to be run. 
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Chapter 7. Results 

In this work, we compare several aspects of the performance of different interpretable 

models [131]. These models were classified into two main groups. The first one, named 

patient-based, are models that return a specific therapeutic strategy for each patient. The 

second one, named drug-based, are models that provide the patient(s) that are especially 

sensitive to a specific drug. Patient-based models include Multi-dimensional Module 

Optimization (MOM) [2], Optimal Decision Trees (ODT), Kernelized Rank Learning (KRL) 

[137], and Multinomial Lasso. Drug-based models are more suited for physicians and 

clinical investigation. This group comprises BOSO [138] and Lasso [140]. Patient-based 

methods rank the effectiveness of the drugs for a specific patient. Drug-based methods 

rank the effectiveness of a specific drug for each of the patients.  

All the methods were developed to predict the drug response or develop a treatment 

strategy using genetic variants information. Thus, we trained the methods to predict drug 

efficacy using patients’ samples and ex-vivo drug efficacy from the BeatAML [12] dataset. 

The methods were compared in terms of interpretability, which was defined according to 

four properties namely accuracy, adaptability, explainability, and easiness of 

implementation. 

Accuracy: all the methods provided good estimates 

The first test to assess the accuracy was a 5-fold cross-validation in BeatAML [12]. Results 

for this analysis can be found in Figure 30.a. Multinomial Lasso achieves the lowest 

median, -the highest sensitivity- although it also entails the highest variability.  asso’s 

prediction is similar to the former one, but its standard deviation is smaller. Finally, MOM 

and BOSO achieve almost identical median. ODT −in both versions − has the highest IC50* 

prediction, i.e. the smallest value for sensitivity. However, the performance of the methods 

−excluding ODT and ODT Sqrt− was not statistically significant (p-value >0.05). ODT and 

ODT Sqrt predictions were significantly worse than Multinomial (two-sided Wilcoxon test p-

value=0.005921 and p-value=0.004942, respectively). 
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Figure 30: Accuracy comparison. A) Accuracy in 5-fold cross validation from BeatAML cohort. 
The different boxplots show the predicted IC50* of the drugs assigned to each of the patients. The 
lower the IC50* is, the more sensitive the method is, ORACLE is the control that shows the best 
possible drug to every patient in the cohort. B) Accuracy in independent cohort validation. The 
different boxplots show the predicted IC50 of the drugs assigned to each of the patients in GDSC. The 
lower the IC50 is, the more sensitive the method is, ORACLE is the control that shows the best possible 
drug to every patient in the cohort. Models were trained in BeatAML and predicted over GDSC. 
C)Intragroup validation of MOM in BeatAML. Each of the subplots represents the efficacy of one 
drug, in blue the patients that were recommended that drug and in red the patients that did not have 
that drug. Stars show the significance of the two-tailed Wilcoxon test (*** means p-value <0.05). D) 
Intragroup validation of MOM in GDSC. Each of the subplots represents the efficacy of one drug, in 
yellow the patients that were recommended that drug and in grey the patients that did not have that 
drug. Stars show the significance of the two-tailed Wilcoxon test (*** means p-value <0.05). E) 
Intragroup validation of ODT in BeatAML. Each of the subplots represents the efficacy of one drug, 
in blue the patients that were recommended that drug and in red the patients that did not have that 
drug. Stars show the significance of the two-tailed Wilcoxon test (*** means p-value <0.05). F) 
Intragroup validation of ODT in GDSC. Each of the subplots represents the efficacy of one drug, in 
yellow the patients that were recommended that drug and in grey the patients that did not have that 
drug. Stars show the significance of the two-tailed Wilcoxon test (*** means p-value <0.05). G) 
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Intragroup validation of ODT Sqrt in BeatAML. Each of the subplots represents the efficacy of one 
drug, in blue the patients that were recommended that drug and in red the patients that did not have 
that drug. Stars show the significance of the two-tailed Wilcoxon test (*** means p-value <0.05). H) 
Intragroup validation of ODT Sqrt in GDSC. Each of the subplots represents the efficacy of one 
drug, in yellow the patients that were recommended that drug and in grey the patients that did not have 
that drug. Stars show the significance of the two-tailed Wilcoxon test (*** means p-value <0.05). 

In the second test, the used the models trained on the full BeatAML, and tested them 

against the Genomics of Drug Sensitivity in Cancer (GDSC) AML dataset. This dataset 

contains the genetic variants information for each cell line and the IC50 values for most of 

the drugs in the same cell lines. The independent cohort validation showed very different 

results from the 5-fold cross-validation (Figure 30.b), In this case, the ODT standard 

method achieved the best sensitivity score followed by MOM, Multinomial Lasso, Lasso, 

ODT square root and BOSO. The IQR for ODT and its standard deviation were much larger 

than for other methods. Nevertheless, there were no statistical significance in the difference 

of the predicted GDSC IC50 comparing any of the methods.  

In the third test, we analyzed the intra-group classification performance. In this test we 

compared the IC50* of patients that were recommended a drug with the IC50* of the rest 

of patients using BeatAML and GDSC. The models with the best intragroup performance 

were MOM and ODT in their standard form followed by ODT Sqrt. MOM showed a 

significant sensitivity difference in 3 out of 4 groups for the BeatAML dataset (Figure 30.c) 

and 3 out of 4 for the GDSC dataset (Figure 30.d). ODT standard achieved a significant 

intragroup sensitivity in 4 out of 6 groups for BeatAML (Figure 30.e) and 2 out of 5 for 

GDSC (Figure 30.f). Finally, ODT Sqrt significantly recommended the usage of 3 drugs out 

of 5 for BeatAML (Figure 30.g), and 1 out of 4 in GDSC (Figure 30.h). No statistical 

significance was found for the rest of the methods. Probably, this is owing to that there are 

more 10 different suggested treatments and the number of patients is small to get statistical 

significance (Appendix 3:Figure S6-Figure S13).  

Multi-omics: using gene expression as input provides similar accuracy 

if compared to genetic variants. 

We tested whether using gene expression could improve the method accuracy [142]. We 

trained all models (except MOM and KRL, since they do not accept continuous inputs) 

using BeatAML gene expression (GE) data. We performed a 5-fold cross-validation in 

BeatAML dataset for the models predicting GE and genetic variants data.  The results in 

Figure 31 show that the predictions do not significantly change when varying the type of 
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input, except in the Multinomial Lasso, where the use of gene expression significantly 

increased the precision of the method and in the Lasso, where it significantly decreased 

the sensitivity of the method. This analysis was also performed training in BeatAML and 

predicting in GDSC with the mutational and GE models. For which, Appendix 3: Figure 

S14 showed no statistical significant difference in model sensitivity for any of the methods.  

 

Figure 31: Using GE data over Mutational Data does not improve Method Precision. We 
compared for each of the algorithms the accuracy in response using Mutational and Gene Expression 
data as input. Distributions plotted in a lighter color are the responses obtained by each of the methods 
when using Gene Expression, whereas distributions plotted in darker non-transparent colors are the 
responses of the methods obtained when using mutational data.  

Explainability: tree-like methods (MOM and ODT) require much less variables 

than any other methods 

To measure the explainability of the method, we trained the models with the BeatAML 

dataset and checked the number of variables that each model required to make the 

predictions. Results are included in Figure 32.a. Remarkably, MOM and ODT use less than 

5 variables, almost ten times less than the rest of the methods. BOSO, Multinomial Lasso, 

and Lasso use more than 30 variables. Among them, BOSO (with 33 variables) is the 

method that requires less variables. BOSO builds a linear model for each of the drugs. 

Each of the results (as occurs in Lasso) are sparse: it requires only 5 variables to predict 

drug response for some drugs. Since these variables are not identical for every drug, in the 

end, it requires 33 variables to make the predictions. Multinomial Lasso and Lasso were 

coded to preserve the same variables for predicting over all the drugs. BOSO did not 

implement this option. 
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Regarding the KRL method the number of variables it does not provide automatic feature 

selection but use regularization methods. Thus, all the 69 gene variants are used. 

ODT and MOM output the decision criteria it the form of a decision-tree. The main 

difference between  DT and M M decision trees is their structure,  DT’s tree structure 

have several branches where drugs for each of them. M M’s tree structure is linear, it is 

divided into different sequential steps, each of them defined by a biomarker, and there is a 

drug recommendation on every step. Regression-based methods (BOSO, Lasso and 

Multinomial Lasso) provide the weights for each of the biomarkers on each of the drugs. 

Therefore, it is possible to check which are the critical biomarkers for each drug. KRL use 

kernels to guess the proper treatment. In this case, it is much more complex to understand 

which are the key genomic variants for the recommendation system.  

Implementability: Optimal Decision Trees and MOM are the most prone to 

clinical practice and ODT the least computing time consuming 

We also considered the easiness to implement the methods in wet lab or even clinical 

practice according to four different points: i) the feasibility for wet-lab validations, ii) the 

consideration of the physician’s experience, iii) the generation of a clinical guideline, and 

iv) the computational implementation.  

Tree-based models require less biomarkers than regression models or KRL. In addition, 

there are few operations to perform the predictions that can be done directly by hand. On 

the contrary, regression models and KRL require more genes and a computer-based 

environment to perform the drug assignation. 

Regarding the computational burden of each of the methods, all the methods need to be 

trained in different software environments such as R or Python. Once trained, the tree-

based models directly provide a guideline that do not require the environment anymore. 

We have timed the training process of the 6 models (Figure 32.b) using Mutational data 

and Gene Expression (where possible). ODT is the fastest method to train (0.05 seconds 

for training using mutational data and less than 5 seconds using gene expression data). 

Multinomial requires around 15 second using either mutational data or gene expression 

data. Lasso lasts 10 and 100 seconds using mutational and gene expression data 

respectively. Finally, MOM, KRL and BOSO require several hours for training their models. 

MOM and KRL are not suitable for gene expression data so they have been excluded for 

the timing analysis with this data. Prediction time is similar (and negligible if compared with 
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training time) in all the 6 methods. Focusing on the installation, models based on MILP 

(BOSO, KRL, and MOM) require a complex installation of software (Table 4). They are also 

the most time-consuming methods. ODT, Multinomial, and Lasso, only require of R 

installation to run. All these conclusions that could lead to rank methods according to 

Interpretablility have been summed up in Table 5.  

 

Figure 32: Variable Number and Computer timing performance comparisons. A) Variable 
number comparisons. All methods were trained in BeatAML cohort, after the training process we 
extracted the number of non-zero weighted input variables that each model requires for making the 
predictions. The horizontal axis shows the number of variables required by each method. B) Computer 
timing comparison. We measured the training time that each model requires using genetic variants 
(lower plot) or gene expression (upper plot) as input, time is shown in seconds in the horizontal axis. 
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   Method 

 

Multi-omics Explainability Implementability 

Gene 

Expressio

n 

Genetic 

Variants 

Small number 

of Variables 

Understandabl

e 

Method 

Outputs 

Decision 

Criteria 

Easy to 

Validate 

Considering 

Experience 

Clinical 

Guidelin

e 

Computationa

l Burden 

MOM  * *** * * *** *** ***  

ODT * * *** * * *** *** *** *** 

Multinomia

l 
* *  *     *** 

Lasso * *  *     * 

BOSO * *  *      

KRL  *  *      

Table 5: Table containing the interpretability comparisons for each method. The values No(), Yes(*), and Very(***), reflect whether the method does 
not, fulfills or greatly fulfills -respectively-, the conditions mentioned in the columns. Gene Expression refers to whether the method is suitable for this type 
of omics data, Genetic Variants refer to whether the method is suitable for this type of omics data. Explainable, refers to whether the method provides a 
reference of variable importance that could lead to a reasoning of the classification, Understandable Method, is defined as the logical explanation of the 
method, i.e., it does not rely on random selection, Outputs Decision Criteria, refers to whether the method provides the decision criteria used in the 
assignation, Easy translation, refers to the ability of the method to be wet-lab validated, to enhance the physician or researcher experience and output a 
therapeutic strategy for ulterior patients.
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Discussion of Section 3 

In this work we have selected four precision medicine methods −MOM, BOSO, Lasso, and 

KRL− and developed two additional ones −Optimal Decision Trees and Multinomial Lasso−, 

to compare them regarding their interpretability.  We performed six quantitative 

comparisons and four qualitative comparisons. All the methods were similar in terms of 

accuracy. However, MOM and Optimal Decision Trees were the most interpretable and 

easy to implement. 

PM is a topic that is being widely addressed and there are new algorithm proposals. It may 

seem surprising that we included only four of them in this comparison and, indeed, we 

developed two additional ones. A systematic review of all the methods --cited in the 

Introduction section-- included Machine Learning (ML) methods (using either deep learning, 

neural networks, support vector machines, random forests, etc). Among the 24 methods 

that used ML for making their predictions, only 10 were explainable. Of those 10, 5 of them 

did not solve the “patient-centred” problem  assign the proper drug to each patient. We 

ended up with MOM, BOSO, KRL, and LOBICO, and added Lasso as a control of a 

traditional approach in the ML field. LOBICO approach, that was also tested on this dataset 

elsewhere [139] is drug-centred and, since the output variable is discrete, it cannot be 

transformed into the patient-centred problem and not suitable for this comparison [139]. We 

developed two additional methods, both patient-centred, with two different approaches: 

regression (Multinomial) and tree classification (ODT). 

In this work, we have defined Interpretability splitting it into four main concepts: Accuracy, 

Multi-omics capacity, Explainability, and Implementability. An interpretable PM method 

should be accurate and understandable by the common researcher or clinician. Accuracy 

is strictly necessary: if a method is not accurate, it becomes irrelevant despite being easy 

to understand. Multi-omics capacity, measures the robustness of the method to adapt into 

different data sources, that could be essential for new lines of research. Explainability is 

also essential, it should show the reasoning for reaching the results. Finally, the ease of 

implementation defines the ability of the method to incorporate the clinician experience and 

provide an easy technical usage.  

We focused on a specific sensitivity value named IC50*. This metric was previously 

described in [2] or in [137] and is a normalization of the logarithm of the IC50. Normalizing 

the IC50 --or other sensitivity value-- is crucial as the best drug is not necessary the drug 
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with the lowest IC50 value. In fact, a drug with a low IC50 can be toxic for the patients. Toxic 

drugs tend to have low IC50 values in all tissues, whereas the focus must be set on drugs 

with differential sensitivity for different tissues. Normalizing the logarithm of the IC50 by 

removing the mean sensitivity value of the drug in all patients, preserves the sensitivity 

profiles of the drugs and penalizes drugs that are sensitive or resistant in all tissues. The 

dosage of drugs with higher IC50 can be adjusted to obtain drug effectiveness. We trained 

all the models with the normalized version, IC50*, to avoid the aforementioned problems.  

All the methods predict reasonably well in terms of accuracy. The 5-fold cross-validation 

and the independent cohort validation, showed that the different methods had similar 

median and the differences were not statistically significant. The intragroup validation, 

showed that the regression-based models (KRL, BOSO, Lasso, and Multinomial) were not 

able to distinguish between responders and non-responders to a specific drug. This result 

is reasonable since these methods do not divide the patients according to responders or 

not responders to one biomarker, but cherry-picked patients based on weighted 

combinations of biomarkers. MOM, on the contrary, has a restriction within its model 

formulation that means that all patients with a biomarker that confers sensitivity to a specific 

drug should be treated in that current step [2]. Nevertheless, not having a successful 

intragroup validation does not invalidate the model. 

The multi-omics suitability is a “hot-topic” in PM, as there is not a current gold standard 

based on which type of data is more accurate when predicting drug response. Some 

models use genetic variants to promote interpretability, whereas other use gene expression 

or integrated omics for improving accuracy. In this work, we compared the accuracy 

changes when training and predicting on gene expression and genetic variants separately, 

and found almost no significant statistical difference in the performance. Drug response is 

mediated in living beings by complex regulatory and metabolomic processes that are most 

likely to be solved using an integrated omics input, instead of just one single omics. 

However, the more complex the model becomes, the less interpretable it is.  

Regarding the explainability, we included also a qualitative comparison since focusing only 

on the number of variables, does not justify that the method is understandable. It is also 

desirable that the method can provide decision criteria, i.e. a complete process that a 

clinician can follow and understand. This consideration has paramount importance if it is to 

be approved by regulators for medicine [49,143]. Consequently, we focused on the ease 

to understand the output of the methods, and the explainability of the results. We defined 
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the latter, as the ability of the method to rank the input variables in order of importance for 

drug assignation. Of course, a smaller number of variables is easier to understand. The 

tree-based models require less than six variables, and it increases up to five times in the 

regression-based models. BOSO, however, uses only five variables to predict response of 

just one drug, but when translated into a patient-centred approach, the total number of 

variables used for predicting in all drugs is equal to 33. For Lasso and Multinomial, the 

number of variables has been optimized to predict response in all drugs. KRL, however, 

did not consider this parameter and uses all variables provided as input to make the 

predictions, being the less explainable method.  

Implementability is a concept easier to understand, as it directly facilitates the clinical 

translation. Most of the implementability comparisons were qualitative, but we performed a 

technical comparison of the methods regarding its computational burden. There we showed 

that MOM, which was leading the accuracy comparisons, is the most time consuming up to 

2.5 hours on a normal machine, and it is the model that requires the highest number of 

software environments: R, Python, and CPLEX need to be installed in the machine (and 

related to each other). It is the most resource consuming. However, if compared against 

ODT, which achieved similar accuracy performance, the latter only requires R and the 

algorithm is trained, even using gene expression, in less than 5 seconds. Besides, ODT is 

more explainable than MOM, because the method is easier to understand, although it is 

quite similar to MOM regarding the other explainability and implementability criteria.  

Nonetheless, Multinomial and Lasso are also explainable, if not compared against other 

methods, and there are additional functions -not defined in the methods themselves- that 

can be applied to extract the algorithm reasoning or decision criteria. Also, linear models 

can be understandable as the s reflect the variable importance for prediction. 

To summarize, in this work we defined a quantitative method for evaluating the 

interpretability of a given machine learning method, because, as previously discussed, 

accuracy is not the only important factor in the complex field of health. The defined criteria 

can serve as a guide for developing new translational methods aimed at solving precision 

medicine problems 

.  
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The defined objectives have been identified, developed, and achieved within this PhD 

thesis paper. 

The first section provided a computational approach to identify LEDs with increased 

predictive power and was validated both in silico and in vitro. Predictions of LEDs from 

functional screens can be dramatically improved by incorporating the “ Ub effect in  enetic 

 ssentiality” ( U  ) of gene alterations. We analyzed three recent genome-wide loss-of-

function screens -Project Score, CERES score and DEMETER score- identifying LEDs with 

75 times larger statistical power than using state-of-the-art methods. Using acute myeloid 

leukemia, breast cancer, lung adenocarcinoma and colon adenocarcinoma as disease 

models, we validate that our predictions are enriched in a recent harmonized 

knowledgebase of clinical interpretations of somatic genomic variants in cancer (AUROC > 

0.87). Our approach is effective even in cancers with large genetic heterogeneity such as 

acute myeloid leukemia, where we identified LEDs not recalled by previous pipelines, 

including FLT3-mutant genotypes sensitive to FLT3 inhibitors. Interestingly, in-vitro 

validations confirm lethal dependencies of either NRAS or PTPN11 depending on the 

NRAS mutational status. 

The second section presented a novel explainable method -called multi-dimensional 

module optimization (MOM)- that associates drug screening with genetic events, while 

guaranteeing that predictions are interpretable and robust. We applied MOM to an AML 

cohort of 319 ex-vivo tumor samples with 122 screened drugs and WES. MOM returned a 

therapeutic strategy based on the FLT3, CBF-MYH11, and NRAS status, which predicted 

AML patient response to Quizartinib, Trametinib, Selumetinib, and Crizotinib. We 

successfully validated the results in three different large-scale screening experiments. 

The third section compared six different machine learning methods to provide guidance for 

defining interpretability by focusing on: Accuracy, Multi-omics Capability, Explainability, and 

Implementability. Our selection of algorithms included tree, regression, and kernel-based 

methods. We also included two novel explainable methods in the comparison. There were 

no significant differences in accuracy when comparing methods or when using gene 

expression instead of mutational status as input to these methods. This allowed us to 

concentrate on the current intriguing challenge: model comprehension, and ease of use. 

We discovered that the tree-based methods were the most interpretable of those tested. 

Thus, the objectives that were stated at the beginning of the writing of this dissertation 

report have been fulfilled. However, one of the main limitations of the development of this 
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work is the subjectivity regarding traslationality to clinical practice or research. The issues 

that exist on the implemention of these models are not only raised by regulatory agencies, 

e.g. FDA or EMA. They also directly depend on the research centre surroundings, 

researcher's expertise, the availability of technical resources or funds for data collection. 

The primary goal of the interpretability criterion is to not decrease the accuracy of the 

method and by secondary goal to reduce application costs and staff training time. Accuracy 

is a must since the patient will bear the brunt of the consequences. However, the criterion 

we established is debatable. We also believe that the correct quantitative definition of 

interpretability should be reached through consensus with a specialized committee 

comprised of physicians and researchers from various backgrounds and research 

institutions, e.g., regulatory agencies, bioinformaticians, or physicians.   

We have defined and validated several methods that solve two major problems in the state-

of-the-art. The HUGE method successfully solves the problem of multiple hypothesis 

correction for treatment search. In turn, this method has been implemented in an algorithm 

known as MOM, which generates a very simple and accurate treatment pipeline given a 

tumor type. It is one of the first methods to solve the assignment problem by returning a 

hierarchical and sequential treatment guideline.  

This fact distinguishes it from other explainable methods that return the variable hierarchy 

but do not explain the algorithm's reasoning, which is critical for regulatory validation. 

Finally, the ODT algorithm significantly improves the limitations presented in MOM because 

it achieves a similar result in terms of accuracy using a recursive optimization method rather 

than MILP, making it much more implementable. Both methods achieve results that are 

very close to the state of the art in terms of accuracy, and both methods produce a simple 

and hierarchical therapeutic strategy. 

The evolution of ODT has allowed us to demonstrate that accuracy does not always go 

hand in hand with statistically complex models, but that it is critical to consider the model's 

objective or implementation requirements before defining it. Regarding the approach to 

solving the assignation problem, we have seen that the "patient-centred" approach allows 

for more understandable results. Furthermore, it is the most logical solution to the problem. 

As a result, the methods HUGE, MOM, ODT, and Multinomial—which were created 

alongside other members of the research team and the PhD thesis' co-directors—are 

introduced into the science knowledge. Although these techniques were applied to AML, 
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they can be applied to any disease as long as the types of data that each of them needs 

as input are available. The quantitative metric of interpretability is likewise contributed to 

the state of the art as a strategy for developing new Precision Medicine methods.  

Finally, the following are proposed as future research directions: 

1. The incorporation of new omics, including multi-omics specifically, methylation or 

chromatin access, to increase the versatility of methods in various fields of 

research. It would be necessary to adapt the methods, particularly HUGE and 

MOM, because they do not allow for this adaptability. 

2. To improve the accuracy of ODT, this method employs a recursive optimization 

for the generation of the decision tree, but it could be extended to hundreds of 

trees mimicking the random forest technique. Although the method would be less 

interpretable, the accuracy can improve and will also return alternative treatments 

for each patient. 

3. We also propose an in vitro validation of the classification obtained by MOM, 

Multinomial, or ODT in AML, which was not done during the doctoral thesis due to 

a scarcity of time. This validation, which was completed with HUGE, could result 

in a fresh approach in disease research since the sensitivity of patients to 

recommended drugs or the effect of the proposed biomarkers could be studied. 

Contributing to the much-needed new treatments for this type of cancer. 

4. After in vitro testing with AML were successful, the use of these algorithms could 

be transferred to the study of therapies for other diseases, adapting the methods 

to the requirements of the researcher or practitioner. 
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Protocol for In-vitro validation 

Cell culture 

The AML cell lines HL-60, HEL, MV4-11 and OCI-AML3 were maintained in culture in 

RPMI-1640 medium supplemented with 10% fetal bovine serum (Gibco, Grand Island, NY), 

penicillin/streptomycin (BioWhitaker, Walkersvill, MD) at 37 °C in a humid atmosphere 

containing 5% CO2. All cell lines were tested for mycoplasma (MycoAlert Sample Kit, 

Cambrex) and were authenticated by performing a short tandem repeat allele profile. 

Cell transfection 

Cells were passaged 24 hours before nucleofection, and cells for nucleofection were in 

their logarithmic growth phase. The transfection of siRNAs was done with the Nucleofector 

II device (Amaxa GmbH, Köln, Germany) following the Amaxa guidelines. Briefly, 1×106 of 

HL-60, HEL, MV4-11 and OCI-AML3 cells were resuspended in 100 µL of supplemented 

culture medium or solution V in the case of HL-60 cells, with 75nM of NRAS or PTPN11 

siRNAs or Silencer Select Negative Control-1 siRNA (Ambion, Austin, TX) and 

nucleofected with the Amaxa nucleofector apparatus using programs A030 (HEL, MV4-11 

and OCI-AML3) or T019 (HL-60). We used two different siRNAs against NRAS target 

(siNRAS A: GAACCACUUUGUAGAUGAA; siNRAS B: AAGGACAGTTGATACAAAA) and 

PTPN11 (siPTPN11 A: AGAUGUCAUUGAGCUUAAA; siPTPN11 B: 

GAAAGAAGCAGAGAAAUUA) to demonstrate that the results obtained with siRNA 

nucleofection are not due to a combination of inconsistent silencing and sequence specific 

off-target effects. Silencer Select Negative Control-1 siRNA was used to demonstrate that 

the nucleofection did not induce non-specific effects on gene expression. Nucleofection 

was performed twice with a 24 hours interval. 48 h after the second nucleofection, the 

NRAS and PTPN11 mRNA expression was analyzed by Q-PCR (GUSB was employed as 

the reference gene). Cell proliferation was analyzed 0, 2 ,4 and 6 days after two repetitive 

transfections. Transfection efficiency was determined by flow cytometry using the BLOCK 

IT Fluorescent Oligo (Invitrogen Life Technologies, Paisley, UK). 

Cell proliferation assay 

Cell proliferation was analyzed using the CellTiter 96 Aqueous One Solution Cell 

Proliferation Assay (Promega, Madison, W). This is a colorimetric method for determining 

the number of viable cells in proliferation. For the assay, 100 µL of nucleofected cells were 
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plated in 96 wells plates 0, 2, 4 and 6 days after the last nucleofection. Plates with 

suspension cells were centrifuged at 800 g for 10 minutes and medium was removed. Then, 

cells were incubated with 100 L/well of medium and 20 L/well of CellTiter 96 Aqueous 

One Solution reagent. The plates were incubated for 1-4 hours, depending on the cell line 

at 37 ºC in a humidified, 5 % CO2 atmosphere. The absorbance was recorded at 490 nm 

using 96-well plate readers until absorbance of control cells without treatment was around 

0.8. The background absorbance was measured in wells with only cell line medium and 

solution reagent. First, the average of the absorbance from the control wells was subtracted 

from all other absorbance values. Data were calculated as the percentage of total 

absorbance of siRNA transfected cells/absorbance of control cells.  

Quantitative-PCR (Q-PCR) 

The expression of NRAS and PTPN11 was analyzed by Q-PCR in HL-60, HEL, MV4-11 

and OCI-AML3 AML cell lines. First, total mRNA was extracted with Trizol© Reagent 5791 

(Life Technologies, Carlsbad, CA, USA) following the manufacturer instructions. RNA 

concentration was quantified using NanoDrop Specthophotometer (NanoDrop 

Technologies, USA). cDNA was synthesized from 1 µg of total RNA using the PrimeScript 

 T reagent kit (Perfect  eal Time) (Cat No   0 7A, TaKa a) following the manufacturer’s 

instructions. The quality of cDNA was checked by a multiplex PCR that amplifies PBGD, 

ABL, BCR and β2-MG genes. Q-PCR was performed in a QuantStudio 5 Real-Time PCR 

System (Applied Biosystems), using 20 ng of cDNA in 2 µL, 1 µL of each primer at 5µM 

(N AS F  5’-CGCACTGACAATCCAGCTAA- ’; N AS    5’-

CCAACAAACAGGTTTCACCA- ’; PTPN11 F  5’-CGGAGCCTGAGCAAGGAG- ’; 

PTPN11    5’-CTGCCTCCACACCAGTGATA- ’;  USB F 5’ gaaaatatgtggttggagagctcatt-

 ’;  USB    5’- ccgagtgaagatccccttttta- ’), 6 µ  of SYB   reen PC  Master Mix 2X (Cat 

No 4334973, Applied Biosystems) in 12 µL reaction volume. The following program 

conditions were applied for Q-RT-PCR running: 50 ºC for 2 min, 95 ºC for 60 s following by 

45 cycles at 95 °C for 15 s and 60 °C for 60 s; melting program, one cycle at 95 °C for 15 

s, 40 °C for 60 s and 95 °C for 15 s. The relative expression of each gene was quantified 

by the Log 2(-ΔΔCt) method using the gene GUSB as an endogenous control. 

Demonstration of the increased statistical power 

Lemma: Let us consider two methods that correct multiple hypothesis test, and let us 

consider that both methods provide a different number of positives for the same FDR. Then, 
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the method that provides a larger number of positives has more statistical power. It is also 

more specific and sensitive. 

The power or sensitivity of a statistical test is the probability that the test correctly rejects 

the null hypothesis 𝐻0 when the alternative hypothesis 𝐻1 is true. Its value is TP/(TP+FN).  

 et’s consider that the estimation of the FD  is performed by two tests A and B and both 

tests have the same False Discovery Rate (20% for example). The FDR will be 

𝐹𝐷𝑅 =
𝐹𝑃𝐴

𝑇𝑃𝐴 + 𝐹𝑃𝐴
= 1 −

𝑇𝑃𝐴

𝑇𝑃𝐴 + 𝐹𝑃𝐴
=

𝐹𝑃𝐵

𝑇𝑃𝐵 + 𝐹𝑃𝐵
= 1 −

𝑇𝑃𝐵

𝑇𝑃𝐵 + 𝐹𝑃𝐵
(1𝑎) 

The power of each test will be  

𝑃𝑊𝐴 = 1 − 𝛽𝐴 =
𝑇𝑃𝐴

𝑇𝑃𝐴 + 𝐹𝑁𝐴
(1𝑏) 

𝑃𝑊𝐵 = 1 − 𝛽𝐵 =
𝑇𝑃𝐵

𝑇𝑃𝐵 + 𝐹𝑁𝐵
(1𝑐) 

Since both tests are performed on the same dataset, the number of true null hypothesis 𝐻0  

(FP + TN) and true alternative hypothesis 𝐻1 (TP+FN) will be identical, i.e.,  

𝐹𝑃𝐴 + 𝑇𝑁𝐴 = 𝐹𝑃𝐵 + 𝑇𝑁𝐵(1𝑑) 

𝑇𝑃𝐴 + 𝐹𝑁𝐴 = 𝑇𝑃𝐵 + 𝐹𝑁𝐵(1𝑒) 

Notice that the denominators of the expression of the power (eq (1b) and (1c)) are identical 

according to (1e).  

The total number of positives returned by each test is 𝑇𝑃𝐴 + 𝐹𝑃𝐴  and 𝑇𝑃𝐵 + 𝐹𝑃𝐵 .  et’s 

assume that method A, returns more positives than method B, i.e.  

𝑇𝑃𝐴 + 𝐹𝑃𝐴 > 𝑇𝑃𝐵 + 𝐹𝑃𝐵(2) 

Using eq. (1a), and (2) 

𝑇𝑃𝐴 = (1 − 𝐹𝐷𝑅)(𝑇𝑃𝐴 + 𝐹𝑃𝐴)(3𝑎) 

And, 

𝑇𝑃𝐵 = (1 − 𝐹𝐷𝑅)(𝑇𝑃𝐵 + 𝐹𝑃𝐵)(3𝑏) 
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Since (2), the righthand member of equation (3a) is larger than the righthand member of 

equation (3b) and therefore, 

𝑇𝑃𝐴 > 𝑇𝑃𝐵(4) 

As a result, 

𝑃𝑊𝐴 > 𝑃𝑊𝐵 

Corolary I. Since 𝑃𝑊𝐴 = 1 − 𝛽𝐴 the type II error using A is smaller than using B. 

𝛽𝐴 < 𝛽𝐵 

Corolary II. The type I error is 

𝛼𝐴 =
𝐹𝑃𝐴

𝐹𝑃𝐴 + 𝑇𝑁𝐴
 

And the sensitivity is: 

1 − 𝛼𝐴 =
𝑇𝑁𝐴

𝐹𝑃𝐴 + 𝑇𝑁𝐴
 

By (1e) and (4), it is straightforward to conclude that 

𝛼𝐴 < 𝛼𝐵 

Therefore, the method that provides a larger number of positives outperforms the other 

both in terms of specificity and sensitivity (or type I and type II errors).  
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Extended Information Beat AML Cohort 

Biomarker Analysis 

We performed an extensive biomarker analysis to characterize the WES from Beat 

AML[144] cohort using the maftools [145] R package (version 2.10.05). We intended to 

understand the different processes that are regulating the biomolecular characterization of 

this cohort. To do it, we plotted several figures that contain the relevant information 

concerning the genetic profile of the patients in the cohort. 

Figure S1 shows that 88.16% of patients have at least one genetic variation, the majority 

of these variants are missense, and DNMT3A, NPM1 and NRAS are the most commonly 

mutated genes in this cohort. Moreover, from these variants, the majority correspond to 

single Nucleotide Variants (SNVs) with the signature C>T that is quite frequent in malignant 

cancer types followed by C>A which is associated with environmental exposure[96] (Figure 

15). We appreciated that the median of genetic variants per patient is 8 variants and that 

only FLT3 and SRSF2 had insertions i.e. FLT3-ITD.  

 

Figure S1: Mutational Status of Beat AML cohort. This plot shows the different types of genetic 
variants, the lateral barplot shows the sum of all the genetic alterations in all patients and colours the 
type of variant. In the horizontal axis we have the individual patients’ information, showing some 
patients having up to 70 co-occurring mutations. Of the 608 patients, 538 had at least one genetic 
variant (88.16%).  

We tried to understand more in-depth the SNVs changes and classified them into 

transitions (two-ring purines or one-ring purines changes) and transversions (changes of 
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purines for pyrimidines) we discovered that in this cohort the transitions are more frequent 

with the most common transition being C>T, followed by a transversion C>A (Figure S2).  

 

Figure S2: Transitions(Ti) and Transversions (Tv) landscape in Beat AML cohort. Ti vs. Tv plot 
shows the number of the transitions and transversions showing that even when transversions seem 
most probable to occur, transitions are more present in this cohort. Boxplot showing overall distribution 
of six different conversions and as a stacked barplot showing the fraction of conversions in each 
sample. The most common transition is C>T, followed by a transversion of C>A. 

Using the Whole Exome Sequencing (WES) data provided in the Beat AML cohort we 

analysed co-occurrence and mutual exclusivity of genetic variants at the gene level. We 

appreciated that FLT3 and NPM1 variants are co-occurrent (p-value <0.05), and FLT3 and 

TP53 (p-value <0.05) and NRAS and IDH2 are mutually exclusive respectively (p-value 

<0.05) (Figure 22). 

AML is a highly heterogenetic disease and consequently, genetic translocations are 

included as possible biomarkers. All translocations can be identified by a gene fusion 

product: inv(16) with CBFβ-MYH11, inv(3) with RPN1-EVI1, t(9;11) with MLLT3-MLL, and 

t(8;21) with RUNX1-RUNX1T1. From these translocations, inv(16) appears in co-

occurrence with FLT3, KIF20B, and ADAMTS7 variants. Whereas t(9;11) can appear with 

NRAS variants and inv(3) with KIT variants (Figure S3). 
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Figure S3: Translocations and SNVs. All translocations can be identified by a gene fusion product: 
inv(16) with CBFβ-MYH11, inv(3) with RPN1-EVI1, t(9;11) with MLLT3-MLL, and t(8;21) with RUNX1-
RUNX1T1. From these translocations, inv(16) appears in co-occurrence with FLT3, KIF20B, and 
ADAMTS7 variants. Whereas t(9;11) can appear with NRAS variants and inv(3) with KIT variants 

Finally, we addressed the biological consequences of this mutational landscape by 

interrogating the alteration of the most common oncogenic pathways (Figure S4). We saw 

that RTK-RAS is the most affected pathway, having an alteration in 31 out of 85 genes and 

it is present in 237 out of 608 patients. Remarkable alterations include NOTCH, WNT, MYC, 

TP53 and TGF-β pathways. We included a summary by the patient showing the complete 

pathway alterations (Figure S5).  

 

Figure S4: Oncogenic Signalling Pathways altered in Beat AML cohort. The barplot on the left 
represents the proportion of genes that are altered in the pathway, whereas the barplot on the right, 
shows the proportion of samples that are having an alteration in that pathways.  
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Figure S5: RTK-RAS pathway alterations. In the Y-axis all genes are included in the pathway, in 
blue the oncogenes and red tumour suppressor genes. In the X-axis all the samples with RTK-RAS 
altered and the red marks show the pathway genes altered for each sample.  

Additional Results on GO analysis 

We tried to understand more in-depth each of the subgroups whose treatment according to 

MOM is different. The methodology is described in the Methods section of the main 

manuscript. This section includes the results from the enrichment analysis based on gene 

expression including all the functions that appeared as statistically enriched from the two 

conditions up and downregulated.  

We also included Table S1-Table S8, contained detail statistical information of the top 10 

significant upregulated and downregulated ontologies for each subgroup.   
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Table S1:Top 10 GO upregulated FLT3Mut-Quizartinib subgroup 

ID Description GeneRatio BgRatio P-value P-adjust 

GO:0007389 pattern 
specification 
process 

33/304 314/13290 2,15E-13 6,86E-10 

GO:0003002 regionalization 27/304 245/13290 1,22E-11 1,95E-08 

GO:0044782 cilium organization 30/304 308/13290 1,97E-11 2,10E-08 

GO:0048704 embryonic skeletal 
system 
morphogenesis 

15/304 70/13290 4,05E-11 3,23E-08 

GO:0098840 protein transport 
along microtubule 

14/304 61/13290 6,83E-11 3,63E-08 

GO:0099118 microtubule-based 
protein transport 

14/304 61/13290 6,83E-11 3,63E-08 

GO:0060271 cilium assembly 28/304 294/13290 1,63E-10 7,42E-08 

GO:0048598 embryonic 
morphogenesis 

35/304 449/13290 2,05E-10 8,18E-08 

GO:0048706 embryonic skeletal 
system 
development 

16/304 92/13290 2,49E-10 8,86E-08 

GO:0042073 intraciliary transport 12/304 46/13290 3,21E-10 1,03E-07 

 

Table S2. Top 10 GO downregulated FLT3Mut-Quizartinib subgroup. 

ID Description GeneRatio BgRatio P-value P-adjust 

GO:0042119 neutrophil activation 59/397 471/13290 2,68E-21 9,86E-18 

GO:0036230 granulocyte 
activation 

59/397 477/13290 5,09E-21 9,86E-18 

GO:0043312 neutrophil 
degranulation 

57/397 459/13290 2,10E-20 2,71E-17 

GO:0002283 neutrophil activation 
involved in immune 
response 

57/397 462/13290 2,88E-20 2,79E-17 

GO:0002446 neutrophil mediated 
immunity 

57/397 472/13290 8,12E-20 6,30E-17 

GO:0043299 leukocyte 
degranulation 

58/397 499/13290 2,40E-19 1,55E-16 

GO:0002430 complement 
receptor mediated 
signaling pathway 

6/397 11/13290 2,78E-07 0,000154203 

GO:0097529 myeloid leukocyte 
migration 

20/397 185/13290 6,75E-07 0,000327246 

GO:0060326 cell chemotaxis 24/397 257/13290 7,88E-07 0,000339463 
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GO:0071621 granulocyte 
chemotaxis 

14/397 104/13290 2,47E-06 0,000957551 

 

Table S3. Top 10 upregulated GO in Inv(16)-Trametinib subgroup 

ID Description GeneRatio BgRatio P-value P-adjust 

GO:0001525 angiogenesis 35/369 422/13290 7,10E-09 2,58E-05 

GO:0048514 blood vessel 
morphogenesis 

36/369 492/13290 1,08E-07 0,000195429 

GO:0043542 endothelial cell 
migration 

19/369 182/13290 7,33E-07 0,000853836 

GO:0031589 cell-substrate 
adhesion 

25/369 299/13290 9,40E-07 0,000853836 

GO:0001935 endothelial cell 
proliferation 

15/369 132/13290 3,81E-06 0,002400726 

GO:0001667 ameboidal-type 
cell migration 

26/369 345/13290 3,97E-06 0,002400726 

GO:0002040 sprouting 
angiogenesis 

13/369 104/13290 5,88E-06 0,002540273 

GO:0007160 cell-matrix 
adhesion 

18/369 194/13290 7,74E-06 0,002540273 

GO:0010631 epithelial cell 
migration 

21/369 254/13290 8,41E-06 0,002540273 

GO:0090132 epithelium 
migration 

21/369 254/13290 8,41E-06 0,002540273 

 

Table S4. Top 10 downregulated GO for Inv(16)-Trametinib subgroup 

 ID Description GeneRatio BgRatio P-value P-adjust 

GO:0042743 hydrogen peroxide 
metabolic process 

8/338 46/13290 1,81E-05 0,061785701 

GO:0015669 gas transport 5/338 16/13290 3,58E-05 0,061785701 

 

Table S5. Top 10 Go upregulated for NRASMut-Selumetinib subgroup 

ID Description GeneRatio BgRatio P-value P-adjust 

GO:0036230 granulocyte 
activation 

35/348 477/13290 3,57E-08 6,48E-05 

GO:0043312 neutrophil 
degranulation 

34/348 459/13290 4,50E-08 6,48E-05 

GO:0002283 neutrophil activation 
involved in immune 
response 

34/348 462/13290 5,27E-08 6,48E-05 
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GO:0042119 neutrophil activation 34/348 471/13290 8,40E-08 6,53E-05 

GO:0002446 neutrophil mediated 
immunity 

34/348 472/13290 8,84E-08 6,53E-05 

GO:0043299 leukocyte 
degranulation 

35/348 499/13290 1,09E-07 6,68E-05 

GO:0007179 transforming growth 
factor beta receptor 
signaling pathway 

18/348 167/13290 3,83E-07 0,000202153 

GO:0071560 cellular response to 
transforming growth 
factor beta stimulus 

18/348 210/13290 1,04E-05 0,004387859 

GO:0045765 regulation of 
angiogenesis 

20/348 252/13290 1,07E-05 0,004387859 

GO:0030512 negative regulation 
of transforming 
growth factor beta 
receptor signaling 
pathway 

10/348 70/13290 1,31E-05 0,00446212 

 

Table S6. Top 10 GO downregulated for NRASMut-Selumetinib subgroup 

ID Description GeneRatio BgRatio pvalue p.adjust 

GO:0022613 ribonucleoprotein 
complex biogenesis 

23/328 432/13290 0,000458011 0,539178113 

GO:0060571 morphogenesis of 
an epithelial fold 

4/328 18/13290 0,000847547 0,539178113 

GO:0000377 RNA splicing, via 
transesterification 
reactions with 
bulged adenosine 
as nucleophile 

19/328 343/13290 0,000887653 0,539178113 

GO:0000398 mRNA splicing, via 
spliceosome 

19/328 343/13290 0,000887653 0,539178113 

GO:0000375 RNA splicing, via 
transesterification 
reactions 

19/328 346/13290 0,000984103 0,539178113 

GO:0008380 RNA splicing 22/328 431/13290 0,001055832 0,539178113 

GO:0009954 proximal/distal 
pattern formation 

4/328 20/13290 0,00129069 0,564953245 

GO:0006397 mRNA processing 23/328 478/13290 0,001779044 0,681374007 

GO:0060601 lateral sprouting 
from an epithelium 

3/328 11/13290 0,002121238 0,722163542 

GO:0016331 morphogenesis of 
embryonic 
epithelium 

9/328 121/13290 0,003057585 0,936844029 
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Table S7. Top 10 upregulated GO for Rest-Crizotinib subgroup 

ID Description GeneRatio BgRatio P-value P-adjust 

GO:0050808 synapse 
organization 

24/356 335/13290 1,20E-05 0,041169411 

GO:0001906 cell killing 13/356 130/13290 4,55E-05 0,053426939 

GO:0099173 postsynapse 
organization 

14/356 149/13290 4,68E-05 0,053426939 

GO:0031640 killing of cells of 
other organism 

6/356 35/13290 0,000297916 0,176246865 

GO:1900120 regulation of 
receptor binding 

5/356 23/13290 0,000303058 0,176246865 

GO:0045216 cell-cell junction 
organization 

13/356 157/13290 0,000309024 0,176246865 

GO:0008016 regulation of heart 
contraction 

13/356 166/13290 0,000528978 0,244860946 

GO:0060047 heart contraction 14/356 189/13290 0,000572439 0,244860946 

GO:0003015 heart process 14/356 198/13290 0,000905207 0,344179825 

GO:0030198 extracellular matrix 
organization 

18/356 297/13290 0,001098946 0,355146597 

 

Table S8. Top 10 downregulated GO for Rest-Crizotinib subgroup 

ID Description GeneRatio BgRatio P-value P-adjust 

GO:0009063 cellular amino acid 
catabolic process 

13/307 105/13290 8,60E-07 0,002908716 

GO:1901606 alpha-amino acid 
catabolic process 

11/307 86/13290 4,38E-06 0,007405178 

GO:1901605 alpha-amino acid 
metabolic process 

13/307 161/13290 9,25E-05 0,104297732 

GO:0009081 branched-chain 
amino acid 
metabolic process 

5/307 24/13290 0,000188586 0,11250965 

GO:0006520 cellular amino acid 
metabolic process 

17/307 271/13290 0,000190288 0,11250965 

GO:0006790 sulfur compound 
metabolic process 

18/307 299/13290 0,000206601 0,11250965 

GO:0072350 tricarboxylic acid 
metabolic process 

4/307 14/13290 0,000232733 0,11250965 

GO:0015936 coenzyme A 
metabolic process 

4/307 15/13290 0,000311615 0,131813013 

GO:0009953 dorsal/ventral 
pattern formation 

7/307 58/13290 0,000359022 0,13499231 

GO:0120031 plasma membrane 
bounded cell 
projection assembly 

23/307 464/13290 0,000490436 0,143965241 
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Supplementary Figures 

Figure S6: Statistical significance between the different therapeutic strategies using BOSO in 
BeatAML. 
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Figure S7: Statistical significance between the different therapeutic strategies using BOSO in 
GDSC. 
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Figure S8: Statistical significance between the different therapeutic strategies using Lasso in 
BeatAML. 
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Figure S9: Statistical significance between the different therapeutic strategies using Lasso in 
GDSC. 
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Figure S10: Statistical significance between the different therapeutic strategies using 
Multinomial in BeatAML. 
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Figure S11: Statistical significance between the different therapeutic strategies using 
Multinomial in GDSC. 
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Figure S12: Statistical significance between the different therapeutic strategies using KRL in 
BeatAML. 

 

Figure S13: Statistical significance between the different therapeutic strategies using KRL in 
GDSC. 
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Figure S14: GE vs Mut in GDSC 

 

 

 



 

155 

 

Author Publications  

OBTAINED FROM THIS WORK 

GIMENO, MARIAN, EDURNE SAN JOSÉ-ENÉRIZ, ANGEL RUBIO, LEIRE GARATE, 

ESTÍBALIZ MIRANDA, CARLOS CASTILLA, XABIER AGIRRE, FELIPE PROSPER, 

AND FERNANDO CARAZO. 2022. "IDENTIFYING LETHAL DEPENDENCIES WITH 

HUGE PREDICTIVE POWER" CANCERS 14, NO. 13: 3251. 

HTTPS://DOI.ORG/10.3390/CANCERS14133251  IMPACT FACTOR (JCR 2021): 

6.575. Q1 (POSITION 60/245) 

GIMENO M, SAN JOSÉ-ENÉRIZ E, VILLAR S, AGIRRE X, PROSPER F, RUBIO A AND 

CARAZO F (2022) EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR PRECISION 

MEDICINE IN ACUTE MYELOID LEUKEMIA. FRONT. IMMUNOL. 13:977358. DOI: 

10.3389/FIMMU.2022.977358. IMPACT FACTOR (JCR 2021): 8.787 Q1 

(POSITION 35/162) 

GIMENO, MARIAN, SADA KATYNA, RUBIO, ANGEL. (UNDER CONSIDERATION). 

“PRECISION ONCOLOGY: THE CHALLEGE OF INTERPRETABILITY”. UNDER 

REVIEW IN BRIEF. BIOINFORM. IMPACT FACTOR (JCR 2021): 13.994 Q1 

(POSITION 1/57) 

 

ADDITIONAL PUBLICATIONS 

JUAN A FERRER-BONSOMS, MARIAN GIMENO, DANEL OLAVERRI, PABLO SACRISTAN, 

CÉSAR LOBATO, CARLOS CASTILLA, FERNANDO CARAZO, ANGEL RUBIO, 

“EVENTPOINTER 3.0: FLEXIBLE AND ACCURATE SPLICING ANALYSIS THAT 

INCLUDES STUDYING THE DIFFERENTIAL USAGE OF PROTEIN-DOMAINS”, NAR 
Genomics and Bioinformatics, VOLUME 4, ISSUE 3, SEPTEMBER 2022, 

LQAC067,https://doi.org/10.1093/nargab/lqac067. (NEW JOURNAL NO IF 

AVAILABLE) 

GIMENO, M., LOBATO, C., SAN MARTÍN, A., ANORBE, A., RUBIO, A., FERRER-BONSOMS, 

J.A. “A SYSTEMATIC IDENTIFICATION OF RBPS DRIVING ABERRANT SPLICING 

IN CANCER”. (UNDER REVIEW) FRONT. MOL. BIOSCI. IMPACT FACTOR (JCR 

2021):6.11 Q1 (POSITION 73/297) 

CARAZO, FERNANDO, CRISTINA BÉRTOLO, CARLOS CASTILLA, XABIER CENDOYA, 

LUCÍA CAMPUZANO, DIEGO SERRANO, MARIAN GIMENO, FRANCISCO J. 

https://doi.org/10.3390/cancers14133251
https://doi.org/10.1093/nargab/lqac067


Author Publications 

156 

 

PLANES, RUBEN PIO, LUIS M. MONTUENGA, AND ANGEL RUBIO. 2020. 

"DRUGSNIPER, A TOOL TO EXPLOIT LOSS-OF-FUNCTION SCREENS, IDENTIFIES 

CREBBP AS A PREDICTIVE BIOMARKER OF VOLASERTIB IN SMALL CELL LUNG 

CARCINOMA (SCLC)" CANCERS 12, NO. 7: 1824. 

https://doi.org/10.3390/cancers12071824. IMPACT FACTOR (JCR 2019): 6.12 Q1 

(POSITION 37/244) 

ALDAREGIA, JUNCAL, PEIO ERRARTE, ANE OLAZAGOITIA-GARMENDIA, MARIAN 

GIMENO, JOSE JAVIER URIZ, TIMOTHY R. GERSHON, IDOIA GARCIA, AND 

ANDER MATHEU. 2020. "ERBB4 IS REQUIRED FOR CEREBELLAR DEVELOPMENT 

AND MALIGNANT PHENOTYPE OF MEDULLOBLASTOMA" CANCERS 12, NO. 4: 

997. https://doi.org/10.3390/cancers12040997. IMPACT FACTOR (JCR 2019): 6.12 

Q1 (POSITION 37/244) 

CARAZO, F., GIMENO, M., FERRER-BONSOMS, J.A. ET AL.(2019) “INTEGRATION OF CLIP 

EXPERIMENTS OF RNA-BINDING PROTEINS: A NOVEL APPROACH TO PREDICT 

CONTEXT-DEPENDENT SPLICING FACTORS FROM TRANSCRIPTOMIC DATA.” 

BMC GENOMICS 20, 521. https://doi.org/10.1186/s12864-019-5900-1. IMPACT 

FACTOR (JCR 2017): 3.73 Q1 (POSITION 40/161) 

  

https://doi.org/10.3390/cancers12071824
https://doi.org/10.3390/cancers12040997
https://doi.org/10.1186/s12864-019-5900-1


Author Publications 

157 



Author Publications 

158 

 



Author Publications 

159 



Author Publications 

160 

 



Author Publications 

161 



Author Publications 

162 

 



Author Publications 

163 



Author Publications 

164 

 



Author Publications 

165 



Author Publications 

166 

 



Author Publications 

167 



Author Publications 

168 

 



Author Publications 

169 



Author Publications 

170 

 



Author Publications 

171 



Author Publications 

172 

 
 



Author Publications 

173 



Author Publications 

174 

 



Author Publications 

175 



Author Publications 

176 

 



Author Publications 

177 



Author Publications 

178 

 



Author Publications 

179 



Author Publications 

180 

 



Author Publications 

181 



Author Publications 

182 

 



Author Publications 

183 



Author Publications 

184 

 



Author Publications 

185 
 



Author Publications 

186 

 



Author Publications 

187 



Author Publications 

188 

 



Author Publications 

189 



Author Publications 

190 

 



Author Publications 

191 



Author Publications 

192 

 



Author Publications 

193 



Author Publications 

194 

 



Author Publications 

195 



Author Publications 

196 

 



Author Publications 

197 



Author Publications 

198 

 



Author Publications 

199 



Author Publications 

200 

 



Author Publications 

201 



Author Publications 

202 

 



Author Publications 

203 



Author Publications 

204 

 



Author Publications 

205 



Author Publications 

206 

 



Author Publications 

207 



Author Publications 

208 

 



Author Publications 

209 



Author Publications 

210 

 



Author Publications 

211 



Author Publications 

212 

 



Author Publications 

213 



Author Publications 

214 

 



Author Publications 

215 



Author Publications 

216 

 

 

 



 

217 

 

 

Bibliography 

1. Gimeno M, San José-Enériz E, Rubio A, et al. Identifying Lethal Dependencies with HUGE 

Predictive Power. Cancers (Basel). 2022; 14:3251 

2. Gimeno M, San José-Enériz E, Villar Fernandez S, et al. Explainable Artificial Intelligence for 

Precision Medicine in Acute Myeloid Leukemia. Front. Immunol. 2022; 0:5805 

3. Ashley EA. Towards precision medicine. Nat. Rev. Genet. 2016; 17:507–522 

4. He M, Xia J, Shehab M, et al. The development of precision medicine in clinical practice. 

Clin. Transl. Med. 2015 41 2015; 4:1–4 

5. Collins FS, Varmus H. A New Initiative on Precision Medicine. N. Engl. J. Med. 2015; 

372:793–795 

6. Gerstung M, Papaemmanuil E, Martincorena I, et al. Precision oncology for acute myeloid 

leukemia using a knowledge bank approach. Nat. Genet. 2017; 49:332–340 

7. Xu J, Yang P, Xue S, et al. Translating cancer genomics into precision medicine with artificial 

intelligence: applications, challenges and future perspectives. Hum. Genet. 2019 1382 2019; 

138:109–124 

8. Li J, Zheng S, Chen B, et al. A survey of current trends in computational drug repositioning. 

Brief. Bioinform. 2016; 17:2–12 

9. Bhinder B, Gilvary C, Madhukar NS, et al. Artificial Intelligence in Cancer Research and 

Precision Medicine. Cancer Discov. 2021; 11:900–915 

10. Granat LM, Kambhampati O, Klosek S, et al. The promises and challenges of patient-

derived tumor organoids in drug development and precision oncology. Anim. Model. Exp. Med. 

2019; 2:150–161 

11. Snijder B, Vladimer GI, Krall N, et al. Image-based ex-vivo drug screening for patients with 

aggressive haematological malignancies: interim results from a single-arm, open-label, pilot 

study. Lancet Haematol. 2017; 4:e595–e606 

12. Tyner JW, Tognon CE, Bottomly D, et al. Functional genomic landscape of acute myeloid 

leukaemia. Nature 2018; 562:526–531 

13. Roife D, Dai B, Kang Y, et al. Ex vivo testing of patient-derived xenografts mirrors the 

clinical outcome of patients with pancreatic ductal adenocarcinoma. Clin. Cancer Res. 2016; 

22:6021–6030 

14. Garnett MJ, Edelman EJ, Heidorn SJ, et al. Systematic identification of genomic markers 

of drug sensitivity in cancer cells. Nat. 2012 4837391 2012; 483:570–575 



Bibliography 

218 

 

15. Tsherniak A, Vazquez F, Montgomery PG, et al. Defining a Cancer Dependency Map. Cell 

2017; 170:564-576.e16 

16. Shao DD, Tsherniak A, Gopal S, et al. ATARiS: Computational quantification of gene 

suppression phenotypes from multisample RNAi screens. Genome Res. 2013; 23:665–678 

17. Behan FM, Iorio F, Picco G, et al. Prioritization of cancer therapeutic targets using CRISPR–

Cas9 screens. Nature 2019; 568:511–516 

18. Macarron R, Banks MN, Bojanic D, et al. Impact of high-throughput screening in 

biomedical research. Nat. Rev. Drug Discov. 2011; 10:188–195 

19. Shamout F, Zhu T, Clifton DA. Machine Learning for Clinical Outcome Prediction. IEEE 

Rev. Biomed. Eng. 2021; 14:116–126 

20. Scott IA, Cook D, Coiera EW, et al. Machine learning in clinical practice: prospects and 

pitfalls. Med. J. Aust. 2019; 211:203 

21. Adlung L, Cohen Y, Mor U, et al. Machine learning in clinical decision making. Med 2021; 

2:642–665 

22. Oh SH, Lee SJ, Park J. Precision Medicine for Hypertension Patients with Type 2 Diabetes 

via Reinforcement Learning. J. Pers. Med. 2022, Vol. 12, Page 87 2022; 12:87 

23. Eckardt J-N, Wendt K, Bornhäuser M, et al. Reinforcement Learning for Precision 

Oncology. Cancers 2021, Vol. 13, Page 4624 2021; 13:4624 

24. McVeigh TP, Hughes LM, Miller N, et al. The impact of Oncotype DX testing on breast 

cancer management and chemotherapy prescribing patterns in a tertiary referral centre. Eur. 

J. Cancer 2014; 50:2763–2770 

25. Slodkowska EA, Ross JS. MammaPrintTM 70-gene signature: another milestone in 

personalized medical care for breast cancer patients. Expert Rev. Mol. Diagn. 2009; 9:417–

422 

26. Wu L, Yang Y, Guo X, et al. An integrative multi-omics analysis to identify candidate DNA 

methylation biomarkers related to prostate cancer risk. Nat. Commun. 2020; 11:1–11 

27. Kuenzi BM, Park J, Fong SH, et al. Predicting Drug Response and Synergy Using a Deep 

Learning Model of Human Cancer Cells. Cancer Cell 2020; 38:672-684.e6 

28. Malani D, Kumar A, Brück O, et al. Implementing a Functional Precision Medicine Tumor 

Board for Acute Myeloid Leukemia. Cancer Discov. 2022; 12:388–401 

29. Liu Q, Hu Z, Jiang R, et al. DeepCDR: a hybrid graph convolutional network for predicting 

cancer drug response. Bioinformatics 2020; 36:i911–i918 

30. Lee BKB, Tiong KH, Chang JK, et al. DeSigN: Connecting gene expression with 

therapeutics for drug repurposing and development. BMC Genomics 2017; 18:934 

31. Preuer K, Lewis RPI, Hochreiter S, et al. DeepSynergy: predicting anti-cancer drug synergy 

with Deep Learning. Bioinformatics 2018; 34:1538–1546 

32. Robert J, Vekris A, Pourquier P, et al. Predicting drug response based on gene expression. 



Bibliography 

219 

Crit. Rev. Oncol. Hematol. 2004; 51:205–227 

33. Seo H, Tkachuk D, Ho C, et al. SYNERGxDB: an integrative pharmacogenomic portal to 

identify synergistic drug combinations for precision oncology. Nucleic Acids Res. 2020; 

48:W494–W501 

34. Lind AP, Anderson PC. Predicting drug activity against cancer cells by random forest 

models based on minimal genomic information and chemical properties. PLoS One 2019; 

14:e0219774 

35. Boichard A, Richard SB, Kurzrock R. The Crossroads of Precision Medicine and 

Therapeutic Decision-Making: Use of an Analytical Computational Platform to Predict 

Response to Cancer Treatments. Cancers (Basel). 2020; 12:166 

36. Siah KW, Khozin S, Wong CH, et al. Machine-Learning and Stochastic Tumor Growth 

Models for Predicting Outcomes in Patients With Advanced Non–Small-Cell Lung Cancer. JCO 

Clin. Cancer Informatics 2019; 1–11 

37. Chang Y, Park H, Yang HJ, et al. Cancer Drug Response Profile scan (CDRscan): A Deep 

Learning Model That Predicts Drug Effectiveness from Cancer Genomic Signature. Sci. Rep. 

2018; 8: 

38. Joo M, Park A, Kim K, et al. A Deep Learning Model for Cell Growth Inhibition IC50 

Prediction and Its Application for Gastric Cancer Patients. Int. J. Mol. Sci. 2019; 20:6276 

39. Huang C, Clayton EA, Matyunina L V., et al. Machine learning predicts individual cancer 

patient responses to therapeutic drugs with high accuracy. Sci. Rep. 2018; 8: 

40. Guo W, Ji Y, Catenacci DVT. A subgroup cluster-based Bayesian adaptive design for 

precision medicine. Biometrics 2017; 73:367–377 

41. Kim Y, Kim D, Cao B, et al. PDXGEM: Patient-derived tumor xenograft-based gene 

expression model for predicting clinical response to anticancer therapy in cancer patients. 

BMC Bioinformatics 2020; 21:288 

42. Rudin C. Stop explaining black box machine learning models for high stakes decisions and 

use interpretable models instead. Nat. Mach. Intell. 2019; 1:206–215 

43. Jiménez-Luna J, Grisoni F, Schneider G. Drug discovery with explainable artificial 

intelligence. Nat. Mach. Intell. 2020; 2:573–584 

44. Adam G, Rampášek L, Safikhani Z, et al. Machine learning approaches to drug response 

prediction: challenges and recent progress. npj Precis. Oncol. 2020; 4:19 

45. Matchett K, Lynam-Lennon N, Watson R, et al. Advances in Precision Medicine: Tailoring 

Individualized Therapies. Cancers (Basel). 2017; 9:146 

46. Azuaje F. Artificial intelligence for precision oncology: beyond patient stratification. npj 

Precis. Oncol. 2019; 3:1–5 

47. Biankin A V. The road to precision oncology. Nat. Genet. 2017; 49:320–321 

48. Chua IS, Gaziel‐Yablowitz M, Korach ZT, et al. Artificial intelligence in oncology: Path to 

implementation. Cancer Med. 2021; 10:4138–4149 



Bibliography 

220 

 

49. U.S. Food and Drug Administration. Proposed Regulatory Framework for Modifications to 

Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD)-

Discussion Paper and Request for Feedback. FDA 2019; 20 

50. European Medicines Agency. Artificial intelligence in medicine regulation | European 

Medicines Agency.  

51. Kuenzi BM, Park J, Fong SH, et al. Predicting Drug Response and Synergy Using a Deep 

Learning Model of Human Cancer Cells. Cancer Cell 2020; 38:672-684.e6 

52. Khakabimamaghani S, Kelkar YD, Grande BM, et al. SUBSTRA: Supervised Bayesian 

Patient Stratification. Bioinformatics 2019; 35:3263–3272 

53. Kim Y, Bismeijer T, Zwart W, et al. Genomic data integration by WON-PARAFAC identifies 

interpretable factors for predicting drug-sensitivity in vivo. Nat. Commun. 2019; 10:1–12 

54. Vougas K, Sakellaropoulos T, Kotsinas A, et al. Machine learning and data mining 

frameworks for predicting drug response in cancer: An overview and a novel in silico screening 

process based on association rule mining. Pharmacol. Ther. 2019; 203:107395 

55. Astras G, Papagiannopoulos CI, Kyritsis KA, et al. Pharmacogenomic Testing to Guide 

Personalized Cancer Medicine Decisions in Private Oncology Practice: A Case Study. Front. 

Oncol. 2020; 10:521 

56. Pai S, Hui S, Isserlin R, et al. netDx: interpretable patient classification using integrated 

patient similarity networks. Mol. Syst. Biol. 2019; 15:e8497 

57. Lazar AJ, Demicco EG. Human and machine: Better at pathology together? Cancer Cell 

2022; 40:806–808 

58. Perry AM, Attar EC. New Insights in AML Biology From Genomic Analysis. Semin. Hematol. 

2014; 51:282–297 

59. Zeisig BB, Kulasekararaj AG, Mufti GJ, et al. SnapShot: Acute Myeloid Leukemia. Cancer 

Cell 2012; 22:698-698.e1 

60. Wander SA, Levis MJ, Fathi AT. The evolving role of FLT3 inhibitors in acute myeloid 

leukemia: quizartinib and beyond. Ther. Adv. Hematol. 2014; 5:65–77 

61. NIH NCIGDC. Acute Myeloid Leukemia — Cancer Stat Facts.  

62. Ragon BK, Odenike O, Baer MR, et al. Oral MEK 1/2 Inhibitor Trametinib in Combination 

With AKT Inhibitor GSK2141795 in Patients With Acute Myeloid Leukemia With RAS Mutations: 

A Phase II Study. Clin. Lymphoma Myeloma Leuk. 2019; 19:431-440.e13 

63. Sutamtewagul G, Vigil CE. Clinical use of FLT3 inhibitors in acute myeloid leukemia. Onco. 

Targets. Ther. 2018; Volume 11:7041–7052 

64. Lord CJ, Ashworth A. PARP Inhibitors: The First Synthetic Lethal Targeted Therapy. 

Science (80-. ). 2017; 355:1152–1158 

65. O’Neil NJ, Bailey ML, Hieter P. Synthetic lethality and cancer. Nat. Rev. Genet. 2017; 

18:613–623 



Bibliography 

221 

66. Huang A, Garraway LA, Ashworth A, et al. Synthetic lethality as an engine for cancer drug 

target discovery. Nat. Rev. Drug Discov. 2020; 19:23–38 

67. McDonald ER, de Weck A, Schlabach MR, et al. Project DRIVE: A Compendium of Cancer 

Dependencies and Synthetic Lethal Relationships Uncovered by Large-Scale, Deep RNAi 

Screening. Cell 2017; 170:577-592.e10 

68. McFarland JM, Ho Z V., Kugener G, et al. Improved estimation of cancer dependencies 

from large-scale RNAi screens using model-based normalization and data integration. Nat. 

Commun. 2018; 9:1–13 

69. Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-

Cas9. Nat. Rev. Genet. 2015; 16:299–311 

70. Cowley GS, Weir BA, Vazquez F, et al. Parallel genome-scale loss of function screens in 

216 cancer cell lines for the identification of context-specific genetic dependencies. Sci. data 

2014; 1:140035 

71. Tatlow PJ, Piccolo SR. A cloud-based workflow to quantify transcript-expression levels in 

public cancer compendia. Sci. Rep. 2016; 6:39259 

72. Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line Encyclopedia enables 

predictive modelling of anticancer drug sensitivity. Nature 2012; 483:603–307 

73. Brown P, Hastie T, Tibshirani R, et al. Missing value estimation methods for DNA 

microarrays. Bioinformatics 2001; 17:520–525 

74. Ignatiadis N, Klaus B, Zaugg JB, et al. Data-driven hypothesis weighting increases 

detection power in genome-scale multiple testing. Nat. Methods 2016; 13:577–580 

75. Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for 

RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43:e47 

76. Efron B, Tibshirani R. Empirical Bayes methods and false discovery rates for microarrays. 

Genet. Epidemiol. 2002; 23:70–86 

77. Storey JD. A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B Stat. Methodol. 

2002; 64:479–498 

78. Wagner AH, Walsh B, Mayfield G, et al. A harmonized meta-knowledgebase of clinical 

interpretations of somatic genomic variants in cancer. Nat. Genet. 2020; 52:448–457 

79. Alterovitz G, Heale B, Jones J, et al. FHIR Genomics: enabling standardization for precision 

medicine use cases. npj Genomic Med. 2020; 5:9–12 

80. Gaulton A, Hersey A, Nowotka ML, et al. The ChEMBL database in 2017. Nucleic Acids 

Res. 2017; 45:D945–D954 

81. Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: A major update to the DrugBank 

database for 2018. Nucleic Acids Res. 2018; 46:D1074–D1082 

82. Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein-protein association networks 

with increased coverage, supporting functional discovery in genome-wide experimental 

datasets. Nucleic Acids Res. 2019; 47:D607–D613 



Bibliography 

222 

 

83. Lee AJX, Swanton C. Tumour heterogeneity and drug resistance: Personalising cancer 

medicine through functional genomics. Biochem. Pharmacol. 2012; 83:1013–1020 

84. Wilcox RR. ANOVA: A Paradigm for Low Power and Misleading Measures of Effect Size? 

Rev. Educ. Res. 1995; 65:51–77 

85. Kazi JU, Rönnstrand L. FMS-like tyrosine kinase 3/FLT3: From basic science to clinical 

implications. Physiol. Rev. 2019; 99:1433–1466 

86. López-Zabalza MJ, Martínez-Lausín S, Bengoechea-Alonso MT, et al. Signaling pathway 

triggered by a short immunomodulating peptide on human monocytes. Arch. Biochem. 

Biophys. 1997; 338:136–142 

87. Pratz KW, Sato T, Murphy KM, et al. FLT3-mutant allelic burden and clinical status are 

predictive of response to FLT3 inhibitors in AML. Blood 2010; 115:1425–1432 

88. Metzelder S, Röllig C. FLT3 inhibitors for the treatment of acute myeloid leukemia. Best 

Pract. Onkol. 2018; 13:182–190 

89. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic Classification and Prognosis in 

Acute Myeloid Leukemia. N. Engl. J. Med. 2016; 374:2209–2221 

90. Pattabiraman DR, McGirr C, Shakhbazov K, et al. Interaction of c-Myb with p300 is 

required for the induction of acute myeloid leukemia (AML) by human AML oncogenes. Blood 

2014; 123:2682–2690 

91. Matthew L. Smith, M.B., B.S., Jamie D. Cavenagh, M.D., T. Andrew Lister MD, and Jude 

Fitzgibbon PD. Mutation of CEBPA in Familial Acute Myeloid Leukemia. N. Engl. J. Med. 2004; 

351(23):2403–2407 

92. Abbott KL, Nyre ET, Abrahante J, et al. The candidate cancer gene database: A database 

of cancer driver genes from forward genetic screens in mice. Nucleic Acids Res. 2015; 

43:D844–D848 

93. Pacini C, Dempster JM, Najgebauer H, et al. Integrated cross-study datasets of genetic 

dependencies in cancer. Nat. Commun. 2021; 12:1–14 

94. Ignatiadis N, Klaus B, Zaugg JB, et al. Data-driven hypothesis weighting increases 

detection power in genome-scale multiple testing. Nat. Methods 2016; 13:577–580 

95. Guo XX, Wu HL, Shi HY, et al. The efficacy and safety of olaparib in the treatment of 

cancers: a meta-analysis of randomized controlled trials. Cancer Manag. Res. 2018; 10:2553 

96. Alexandrov LB, Kim J, Haradhvala NJ, et al. The repertoire of mutational signatures in 

human cancer. Nature 2020; 578:94–101 

97. Hill R, Cautain B, De Pedro N, et al. Targeting nucleocytoplasmic transport in cancer 

therapy. Oncotarget 2014; 5:11–28 

98. Daver N, Schlenk RF, Russell NH, et al. Targeting FLT3 mutations in AML: review of current 

knowledge and evidence. Leukemia 2019; 33:299–312 

99. Wang S, Wu Z, Li T, et al. Mutational spectrum and prognosis in NRAS-mutated acute 



Bibliography 

223 

myeloid leukemia. Sci. Rep. 2020; 10:12152 

100. Hunter AM, Sallman DA. Current status and new treatment approaches in TP53 mutated 

AML. Best Pract. Res. Clin. Haematol. 2019; 32:134–144 

101. Thiede C, Koch S, Creutzig E, et al. Prevalence and prognostic impact of NPM1 mutations 

in 1485 adult patients with acute myeloid leukemia (AML). Blood 2006; 107:4011–4020 

102. Zhang H, Nakauchi Y, Köhnke T, et al. Integrated analysis of patient samples identifies 

biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. Nat. 

Cancer 2020; 1:826–839 

103. Wright CJM, McCormack PL. Trametinib: First Global Approval. Drugs 2013; 73:1245–

1254 

104. Gui P, Bivona TG. Stepwise evolution of therapy resistance in AML. Cancer Cell 2021; 

39:904–906 

105. Markham A, Keam SJ. Selumetinib: First Approval. Drugs 2020; 80:931–937 

106. Kiessling M, Rogler G. Targeting the RAS pathway by mitogen-activated protein kinase 

inhibitors. Swiss Med. Wkly. 2015; 145:w14207 

107. Antony ML, Noble-Orcutt K, Ogunsan O, et al. Cell Type-Specific Effects of Crizotinib in 

Human Acute Myeloid Leukemia with TP53 Alterations. Blood 2019; 134:2563–2563 

108. McFarland JM, Ho Z V., Kugener G, et al. Improved estimation of cancer dependencies 

from large-scale RNAi screens using model-based normalization and data integration. Nat. 

Commun. 2018; 9:4610 

109. Meyers RM, Bryan JG, McFarland JM, et al. Computational correction of copy number 

effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet. 

2017; 49:1779–1784 

110. Wang T, Yu H, Hughes NW, et al. Gene Essentiality Profiling Reveals Gene Networks and 

Synthetic Lethal Interactions with Oncogenic Ras. Cell 2017; 168:890-903.e15 

111. Iorio F, Knijnenburg TA, Vis DJ, et al. A Landscape of Pharmacogenomic Interactions in 

Cancer. Cell 2016; 166:740–754 

112. Yang W, Soares J, Greninger P, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a 

resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2012; 

41:D955–D961 

113. Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line Encyclopedia enables 

predictive modelling of anticancer drug sensitivity. Nature 2012; 483:603–607 

114. Ghandi M, Huang FW, Jané-Valbuena J, et al. Next-generation characterization of the 

Cancer Cell Line Encyclopedia. Nature 2019; 569:503–508 

115. Chen S, Chen Y, Zhu Z, et al. Identification of the key genes and microRNAs in adult 

acute myeloid leukemia with FLT3 mutation by bioinformatics analysis. Int. J. Med. Sci. 2020; 

17:1269 



Bibliography 

224 

 

116. Lucena-Araujo AR, Souza DL, De Oliveira FM, et al. Results of FLT3 mutation screening 

and correlations with immunophenotyping in 169 Brazilian patients with acute myeloid 

leukemia. Ann. Hematol. 2010; 89:225–228 

117. Gutiérrez NC, López-Pérez R, Hernández JM, et al. Gene expression profile reveals 

deregulation of genes with relevant functions in the different subclasses of acute myeloid 

leukemia. Leukemia 2005; 19:402–409 

118. Zhang L, Nguyen LXT, Chen Y-C, et al. Targeting miR-126 in inv(16) acute myeloid 

leukemia inhibits leukemia development and leukemia stem cell maintenance. Nat. Commun. 

2021; 12:6154 

119. Wunderlich M, Krejci O, Wei J, et al. Human CD34+ cells expressing the inv(16) fusion 

protein exhibit a myelomonocytic phenotype with greatly enhanced proliferative ability. Blood 

2006; 108:1690–1697 

120. Bewersdorf JP, Zeidan AM. Transforming growth factor (TGF)-β pathway as a therapeutic 

target in lower risk myelodysplastic syndromes. Leukemia 2019; 33:1303–1312 

121. Muench DE, Ferchen K, Velu CS, et al. SKI controls MDS-associated chronic TGF-β 

signaling, aberrant splicing, and stem cell fitness. Blood 2018; 132:e24–e34 

122. Bowman T V. Improving AML Classification Using Splicing Signatures. Clin. Cancer Res. 

2020; 26:3503–3504 

123. De Necochea-Campion R, Shouse GP, Zhou Q, et al. Aberrant splicing and drug 

resistance in AML. J. Hematol. Oncol. 2016; 9:1–9 

124. Grinev V V., Barneh F, Ilyushonak IM, et al. RUNX1/RUNX1T1 mediates alternative 

splicing and reorganises the transcriptional landscape in leukemia. Nat. Commun. 2021; 

12:520 

125. Jones CL, Stevens BM, D’Alessandro A, et al. Inhibition of Amino Acid Metabolism 

Selectively Targets Human Leukemia Stem Cells. Cancer Cell 2018; 34:724-740.e4 

126. Hastie T, Tibshirani R, Narasimhan B, et al. impute: Imputation for microarray data. 

Bioinformatics 2001; 17:520–525 

127. JJ Allaire, Kevin Ushey, Yuan Tang  and DE. reticulate: R Interface to Python. 2017;  

128. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for 

RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43:e47–e47 

129. Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting 

omics data. Innov. 2021; 2:100141 

130. Gerstung M, Papaemmanuil E, Martincorena I, et al. Precision oncology for acute myeloid 

leukemia using a knowledge bank approach. Nat. Genet. 2017; 49:332–340 

131. Ahmad MA, Eckert C, Teredesai A. Interpretable Machine Learning in Healthcare. Proc. 

2018 ACM Int. Conf. Bioinformatics, Comput. Biol. Heal. Informatics 2018; 559–560 

132. Oh M, Park S, Kim S, et al. Machine learning-based analysis of multi-omics data on the 



Bibliography 

225 

cloud for investigating gene regulations. Brief. Bioinform. 2021; 22:66–76 

133. Iorio F, Knijnenburg TA, Vis DJ, et al. A Landscape of Pharmacogenomic Interactions in 

Cancer. Cell 2016; 166:740–754 

134. Zeisig BB, Kulasekararaj AG, Mufti GJ, et al. SnapShot: Acute Myeloid Leukemia. Cancer 

Cell 2012; 22:698-698.e1 

135. Surapally S, Tenen DG, Pulikkan JA. Emerging therapies for inv(16) AML. Blood 2021; 

137:2579–2584 

136. Zeiser R, Andrlová H, Meiss F. Trametinib (GSK1120212). Recent Results Cancer Res. 

2018; 211:91–100 

137. He X, Folkman L, Borgwardt K. Kernelized rank learning for personalized drug 

recommendation. Bioinformatics 2018; 34:2808–2816 

138. Valcárcel L V., San José-Enériz E, Cendoya X, et al. BOSO: A novel feature selection 

algorithm for linear regression with high-dimensional data. PLOS Comput. Biol. 2022; 

18:e1010180 

139. Knijnenburg TA, Klau GW, Iorio F, et al. Logic models to predict continuous outputs based 

on binary inputs with an application to personalized cancer therapy. Sci. Reports 2016 61 

2016; 6:1–14 

140. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models 

via Coordinate Descent. J. Stat. Softw. 2010; 33:1–22 

141. Döhner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid 

leukemia in adults: Recommendations from an international expert panel, on behalf of the 

European LeukemiaNet. Blood 2010; 115:453–474 

142. Lucena-Araujo AR, Coelho-Silva JL, Pereira-Martins DA, et al. Combining gene mutation 

with gene expression analysis improves outcome prediction in acute promyelocytic leukemia. 

Blood 2019; 134:951–959 

143. . Artificial intelligence in medicine regulation | European Medicines Agency.  

144. Tyner JW, Tognon CE, Bottomly D, et al. Functional genomic landscape of acute myeloid 

leukaemia. Nature 2018; 562:526–531 

145. Mayakonda A, Lin DC, Assenov Y, et al. Maftools: Efficient and comprehensive analysis 

of somatic variants in cancer. Genome Res. 2018; 28:1747–1756 

 


